Views
1 year ago

DRAFT Inventory of U.S Greenhouse Gas Emissions and Sinks

2017_complete_report

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4.22 Semiconductor Manufacture (IPCC Source Category 2E1) The semiconductor industry uses multiple greenhouse gases (GHGs) in its manufacturing processes. These include long-lived fluorinated greenhouse gases used for plasma etching and chamber cleaning, fluorinated heat transfer fluids used for temperature control and other applications, and nitrous oxide (N 2O) used to produce thin films through chemical vapor deposition. The gases most commonly employed in plasma etching and chamber cleaning are trifluoromethane (HFC-23 or CHF 3), perfluoromethane (CF 4), perfluoroethane (C 2F 6), nitrogen trifluoride (NF 3), and sulfur hexafluoride (SF 6), although other fluorinated compounds such as perfluoropropane (C 3F 8) and perfluorocyclobutane (c-C 4F 8) are also used. The exact combination of compounds is specific to the process employed. A single 300 mm silicon wafer that yields between 400 to 600 semiconductor products (devices or chips) may require more than 100 distinct fluorinated-gas-using process steps, principally to deposit and pattern dielectric films. Plasma etching (or patterning) of dielectric films, such as silicon dioxide and silicon nitride, is performed to provide pathways for conducting material to connect individual circuit components in each device. The patterning process uses plasma-generated fluorine atoms, which chemically react with exposed dielectric film to selectively remove the desired portions of the film. The material removed as well as undissociated fluorinated gases flow into waste streams and, unless emission abatement systems are employed, into the atmosphere. Plasma enhanced chemical vapor deposition (PECVD) chambers, used for depositing dielectric films, are cleaned periodically using fluorinated and other gases. During the cleaning cycle the gas is converted to fluorine atoms in plasma, which etches away residual material from chamber walls, electrodes, and chamber hardware. Undissociated fluorinated gases and other products pass from the chamber to waste streams and, unless abatement systems are employed, into the atmosphere. In addition to emissions of unreacted gases, some fluorinated compounds can also be transformed in the plasma processes into different fluorinated compounds which are then exhausted, unless abated, into the atmosphere. For example, when C 2F 6 is used in cleaning or etching, CF 4 is generated and emitted as a process by-product. In some cases, emissions of the by-product gas can rival or even exceed emissions of the input gas, as is the case for NF 3 used in remote plasma chamber cleaning, which generates CF 4 as a by-product. Besides dielectric film etching and PECVD chamber cleaning, much smaller quantities of fluorinated gases are used to etch polysilicon films and refractory metal films like tungsten. N 2O is used in manufacturing semiconductor devices to produce thin films by CVD and nitridation processes as well as for N-doping of compound semiconductors and reaction chamber conditioning (Doering 2000). Liquid perfluorinated compounds are also used as heat transfer fluids (HTFs) for temperature control, device testing, cleaning substrate surfaces and other parts, and soldering in certain types of semiconductor manufacturing production processes. Leakage and evaporation of these fluids during use is a source of fluorinated gas emissions (U.S. EPA 2006). Unweighted HTF emissions consist primarily of perfluorinated amines, hydrofluoroethers, perfluoropolyethers, and perfluoroalkylmorpholines. With the exception of the hydrofluoroethers, all of these compounds are very long-lived in the atmosphere and have GWPs near 10,000. 53 For 2015, total GWP-weighted emissions of all fluorinated greenhouse gases and nitrous oxide from deposition, etching, and chamber cleaning processes in the U.S. semiconductor industry were estimated to be 5.0 MMT CO 2 Eq. Total emissions of all greenhouse gases other than HTFs are presented in Table 4-91 and Table 4-92 below for the 53 The GWP of PFPMIE, a perfluoropolyether used as an HTF, is included in the Fourth Assessment Report with a value of 10,300. The GWPs of the perfluorinated amines and perfluoroalkylmorpholines that are used as HTFs have not been evaluated in the peer-reviewed literature. However, evaluations by the manufacturer indicate that their GWPs are near 10,000 (78 FR 20632), which is expected given that these compounds are both saturated and fully fluorinated. EPA assigns a default GWP of 10,000 to compounds that are both saturated and fully fluorinated and that do not have chemical-specific GWPs in either the Fourth or the Fifth Assessment Reports. 4-90 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 years 1990, 2005, and the period 2010 to 2015. (HTF emissions are presented separately, as discussed below.) The rapid growth of this industry and the increasing complexity (growing number of layers) 54 of semiconductor products led to an increase in emissions of 153 percent between 1990 and 1999, when emissions peaked at 9.1 MMT CO 2 Eq. Emissions began to decline after 1999, declining by 45 percent between 1999 and 2015. Together, industrial growth, adoption of emissions reduction technologies (including but not limited to abatement technologies), and shifts in gas usages resulted in a net increase in emissions of 40 percent between 1990 and 2015. In 2010, the industry was still recovering from slowed economic activity which began in 2008. Between 2010 and 2011 fluorinated gas and N 2O emissions increased by 24 percent; reductions in emissions of 9 percent were then observed between both 2011 and 2012, and 2012 and 2013. Emissions increased in 2014, by 24 percent compared to 2013, and stayed similar in 2015, decreasing by less than 1 percent compared to 2014. As discussed below, this apparent increase between 2013 and 2014 is likely to be an artifact of a change in the emission factors applied by facilities that report their emissions to EPA under the Greenhouse Gas Reporting Program (GHGRP). Facility emissions of HTFs from semiconductor manufacturing are reported to EPA under the GHGRP, and are available for the years 2011 through 2015. These emissions are provided for informational purposes and not included in the Inventory totals presented in Table 4-91. It is important to note that the HTF emissions presented in these tables represent a sum of HTF emissions, in CO 2 Eq., from facilities that report under the GHGRP, or only those facilities whose emissions exceed 25,000 metric tons annually. The HTF emissions in 2011 were 0.75 MMT CO 2 Eq., with a high of 0.92 MMT CO 2 Eq. in 2012. Emissions in 2013 were the lowest at 0.62 MMT CO 2 Eq. while the emissions in 2014 and 2015 are comparable at 0.79 MMT CO 2 Eq. and 0.76 MMT CO 2 Eq. respectively. Emissions from one facility contribute significantly to the high emissions in 2012, while the decrease in emissions of the same facility contributes to the lowest emissions in 2013. Emissions in 2014 and 2015 are slightly higher due to a higher number of total reporting facilities. These new facilities represent 1.4 percent of total HTF emissions in 2014, and 1.7 percent in 2015. Additionally, an analysis of the available data reported to the GHGRP indicates that HTF emissions account for anywhere between 13 percent and 17 percent of total annual emissions (F-GHG, N 2O and HTFs) from semiconductor manufacturing. 55 Table 4-91: PFC, HFC, SF6, NF3, and N2O Emissions from Semiconductor Manufacture (MMT CO2 Eq.) Year 1990 2005 2010 2011 2012 2013 2014 2015 CF4 0.8 1.1 1.1 1.4 1.3 1.2 1.6 1.5 C2F6 2.0 2.0 1.4 1.8 1.6 1.4 1.5 1.4 C3F8 + 0.1 0.1 0.2 0.1 0.1 0.1 0.1 C4F8 0.0 0.1 + 0.1 0.1 0.1 0.1 0.1 HFC-23 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 SF6 0.5 0.7 0.4 0.4 0.4 0.4 0.7 0.7 NF3 + 0.5 0.5 0.7 0.6 0.6 0.5 0.6 Total F-GHGs 3.6 4.6 3.8 4.7 4.3 3.9 4.8 4.8 N2O + 0.1 0.1 0.2 0.2 0.2 0.2 0.2 Total 3.6 4.7 4.0 4.9 4.5 4.1 5.0 5.0 HTFs a 0.0 0.0 0.0 0.7 0.9 0.6 0.8 0.8 + Does not exceed 0.05 MMT CO2 Eq. a The HTF emissions from 1990 to 2010 are not estimated and reported as 0. HTF use in semiconductor manufacturing began in early 2000s, and by 2005 started to penetrate applications in electronics manufacturing (U.S. EPA 2006). Emissions are not estimated for those years due to lack of reliable emission factors and activity data for HTFs. 54 Complexity is a term denoting the circuit required to connect the active circuit elements (transistors) on a chip. Increasing miniaturization, for the same chip size, leads to increasing transistor density, which, in turn, requires more complex interconnections between those transistors. This increasing complexity is manifested by increasing the levels (i.e., layers) of wiring, with each wiring layer requiring fluorinated gas usage for its manufacture. 55 Emissions data for HTFs (in tons of gas) from the semiconductor industry from 2011 through 2015 were obtained from the EPA GHGRP annual facility emissions reports. Industrial Processes and Product Use 4-91

  • Page 1 and 2:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 EP

  • Page 3 and 4:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 5 and 6:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 7 and 8:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 9 and 10:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 11 and 12:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 13 and 14:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 15 and 16:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 17 and 18:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 19 and 20:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 21 and 22:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 23 and 24:

    1 2 3 4 5 6 7 8 9 10 11 12 Box 6-2:

  • Page 25 and 26:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 27 and 28:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 29 and 30:

    Residential 338.3 357.8 325.5 282.5

  • Page 31 and 32:

    e LULUCF C Stock Change is the net

  • Page 33 and 34:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 35 and 36:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 37 and 38:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 39 and 40:

    1 2 3 4 5 6 irreversible accumulati

  • Page 41 and 42:

    Substitution of Ozone Depleting Sub

  • Page 43 and 44:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 45 and 46:

    Forest Land Remaining Forest Land:

  • Page 47 and 48:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 49 and 50:

    1 2 3 Figure ES-15: U.S. Greenhouse

  • Page 51 and 52:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 53 and 54:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 55 and 56:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 57 and 58:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 59 and 60:

    1 2 3 4 5 only days to weeks, their

  • Page 61 and 62:

    1 2 3 4 informational purposes, emi

  • Page 63 and 64:

    1 Figure 1-1: National Inventory Ar

  • Page 65 and 66:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 67 and 68:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 69 and 70:

    N2O Emissions from Adipic Acid Prod

  • Page 71 and 72:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 73 and 74:

    a Emission estimates reported in th

  • Page 75 and 76:

    1 3.10. Methodology for Estimating

  • Page 77 and 78:

    1 2 Figure 2-2: Annual Percent Chan

  • Page 79 and 80:

    1 2 3 4 5 6 7 8 gas for electricity

  • Page 81 and 82:

    a Emissions from Wood Biomass and E

  • Page 83 and 84:

    Electrical Transmission and Distrib

  • Page 85 and 86:

    Wetlands (4.0) (5.3) (4.1) (4.2) (4

  • Page 87 and 88:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 89 and 90:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 91 and 92:

    CH4 0.3 0.1 0.1 0.1 0.1 0.2 0.2 Pet

  • Page 93 and 94:

    1 Table 2-7: Emissions from Agricul

  • Page 95 and 96:

    1 2 Table 2-8: U.S. Greenhouse Gas

  • Page 97 and 98:

    1 2 3 4 Overall, in 2015, waste act

  • Page 99 and 100:

    Cement Production 33.3 45.9 32.0 35

  • Page 101 and 102:

    Total 1,862.5 2,441.6 2,197.3 2,059

  • Page 103 and 104:

    Total Emissions 6,366.7 7,315.6 6,7

  • Page 105 and 106:

    N2O 1.0 1.2 1.1 1.0 1.1 1.1 1.1 Oth

  • Page 107 and 108:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 109 and 110:

    1 2 3 4 5 6 7 8 atmospheric sink fo

  • Page 111 and 112:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 113 and 114:

    International Bunker Fuels a 0.2 0.

  • Page 115 and 116:

    1 Table 3-4: CO2, CH4, and N2O Emis

  • Page 117 and 118:

    1 Figure 3-3: 2015 U.S. Energy Cons

  • Page 119 and 120:

    1 2 Figure 3-6: Annual Deviations f

  • Page 121 and 122:

    U.S. Territories a 28.0 50.1 41.7 4

  • Page 123 and 124:

    Fuel Oil 27.2 45.6 36.7 37.6 37.1 3

  • Page 125 and 126:

    1 Figure 3-9: Electricity Generatio

  • Page 127 and 128:

    1 Figure 3-11: Industrial Productio

  • Page 129 and 130:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 131 and 132:

    1 Figure 3-13: Sales of New Passeng

  • Page 133 and 134:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 135 and 136:

    Medium- and Heavy-Duty 0.5 0.9 0.7

  • Page 137 and 138:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 139 and 140:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 141 and 142:

    1 2 Figure 3-15: U.S. Energy Consum

  • Page 143 and 144:

    Coal b 1,653.7 1,596.3 1,809.1 -3%

  • Page 145 and 146:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 147 and 148:

    1 2 Table 3-17: Approach 2 Quantita

  • Page 149 and 150:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 151 and 152:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 153 and 154:

    1 Table 3-20: Adjusted Consumption

  • Page 155 and 156:

    1 2 3 4 percent above the 2014 emis

  • Page 157 and 158:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 159 and 160:

    Gas/Waste Product 1990 2005 2011 20

  • Page 161 and 162:

    1 2 3 4 5 6 7 8 9 10 11 12 13 waste

  • Page 163 and 164:

    1 2 3 4 5 due to the higher CH 4 co

  • Page 165 and 166:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 167 and 168:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 169 and 170:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 171 and 172:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 173 and 174:

    Activity 1990 2005 2011 2012 2013 2

  • Page 175 and 176:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 177 and 178:

    1 2 3 4 5 6 7 8 approach over the t

  • Page 179 and 180:

    Previous Estimated Emissions from S

  • Page 181 and 182:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 183 and 184:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 185 and 186:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 187 and 188:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 189 and 190:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 191 and 192:

    Emissions (w/o Plunger) (MT) 372,28

  • Page 193 and 194:

    Reciprocating Compressors 64,413 64

  • Page 195 and 196:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 197 and 198:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 199 and 200:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 201 and 202:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 203 and 204:

    1 Table 3-72: Woody Biomass Consump

  • Page 205 and 206:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 207 and 208:

    CO2 206.8 189.9 172.9 169.6 171.5 1

  • Page 209 and 210:

    SF6 1 1 + + + + + Electrical Transm

  • Page 211 and 212:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 213 and 214:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 215 and 216:

    2012 13.8 13,785 2013 14.0 14,028 2

  • Page 217 and 218:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 219 and 220:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 221 and 222:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 223 and 224:

    1 2 3 MMT CO 2 Eq. (10,828 kt) (see

  • Page 225 and 226:

    1 2 3 4 5 6 7 8 9 10 11 12 consumed

  • Page 227 and 228:

    1 Table 4-19: CO2 Emissions from Am

  • Page 229 and 230:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 231 and 232:

    1 Table 4-24: Urea Production, Urea

  • Page 233 and 234:

    2012 10.5 35 2013 10.7 36 2014 10.9

  • Page 235 and 236:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 237 and 238:

    2015 4.3 14 1 2 3 4 5 6 7 8 9 10 11

  • Page 239 and 240:

    1 2 Table 4-31: Approach 2 Quantita

  • Page 241 and 242:

    1 2 3 4 5 6 7 8 9 Production data f

  • Page 243 and 244: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 245 and 246: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 247 and 248: 1 2 3 4 5 6 7 8 9 The activity data
  • Page 249 and 250: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 251 and 252: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 253 and 254: 1 2 3 4 5 6 7 8 9 The results of th
  • Page 255 and 256: 2013 4.1 0.3 2014 5.0 0.3 1 2 3 4 5
  • Page 257 and 258: 1 2 3 4 5 6 7 8 discussion of CO 2
  • Page 259 and 260: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 261 and 262: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 263 and 264: 1 2 Table 4-56: Approach 2 Quantita
  • Page 265 and 266: 1 3 4 5 6 7 8 9 10 11 12 13 14 15 1
  • Page 267 and 268: 1 2 3 4 5 6 7 8 9 10 11 12 13 (i.e.
  • Page 269 and 270: 1 Table 4-67: Material Carbon Conte
  • Page 271 and 272: 1 2 Table 4-70: Production and Cons
  • Page 273 and 274: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 275 and 276: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 277 and 278: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 279 and 280: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 281 and 282: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 283 and 284: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 285 and 286: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 287 and 288: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 289 and 290: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 291 and 292: 1 Table 4-89: CO2 Emissions from Zi
  • Page 293: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 297 and 298: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 299 and 300: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 301 and 302: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 303 and 304: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 305 and 306: 1 2 3 4 5 6 7 8 9 10 11 4.23 Substi
  • Page 307 and 308: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 309 and 310: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 311 and 312: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 313 and 314: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 315 and 316: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 317 and 318: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 319 and 320: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 321 and 322: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 323 and 324: Graphic Arts + 0 0 0 0 0 0 Non-Indu
  • Page 325 and 326: 1 2 3 4 5 6 7 8 9 5. Agriculture Ag
  • Page 327 and 328: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 329 and 330: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 331 and 332: Note that the relative uncertainty
  • Page 333 and 334: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 335 and 336: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
  • Page 337 and 338: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 339 and 340: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 341 and 342: + Does not exceed 0.05 MMT CO2 Eq.
  • Page 343 and 344: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 345 and 346:

    1 2 3 4 5 6 7 8 9 subsequently conv

  • Page 347 and 348:

    1 2 3 4 5 6 7 8 9 Agricultural soil

  • Page 349 and 350:

    1 2 3 4 5 6 7 8 9 low in many parts

  • Page 351 and 352:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 353 and 354:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 355 and 356:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 357 and 358:

    1 2 3 4 5 6 7 8 9 10 methodology te

  • Page 359 and 360:

    1 Table 5-21: Emissions from Liming

  • Page 361 and 362:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 363 and 364:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 365 and 366:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 367 and 368:

    1 2 Table 5-32: Key Assumptions for

  • Page 369 and 370:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 371 and 372:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 373 and 374:

    Land Converted to Forest Land (92.0

  • Page 375 and 376:

    1 2 3 4 5 6 7 8 9 10 11 12 from LUL

  • Page 377 and 378:

    1 2 Table 6-7: Land Use and Land-Us

  • Page 379 and 380:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 381 and 382:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 383 and 384:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 385 and 386:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 387 and 388:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 389 and 390:

    1 2 Harvested wood products (HWP)

  • Page 391 and 392:

    1 2 Figure 6-2: Changes in Forest A

  • Page 393 and 394:

    Note: Forest C stocks do not includ

  • Page 395 and 396:

    1 2 3 4 in Table 6-13 include all m

  • Page 397 and 398:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 399 and 400:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 401 and 402:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 403 and 404:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 405 and 406:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 407 and 408:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 409 and 410:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 411 and 412:

    1 2 3 Total Aboveground Biomass Flu

  • Page 413 and 414:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ap

  • Page 415 and 416:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 417 and 418:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 419 and 420:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 421 and 422:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 423 and 424:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 425 and 426:

    1 2 3 4 5 6 C) from drainage and cu

  • Page 427 and 428:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 429 and 430:

    Belowground Live Biomass 2.3 2.0 2.

  • Page 431 and 432:

    1 2 Table 6-34: Net CO2 Flux from S

  • Page 433 and 434:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 435 and 436:

    1 2 3 4 5 above the 2015 stock chan

  • Page 437 and 438:

    CH4 0.1 0.3 0.8 0.6 0.2 0.4 0.4 N2O

  • Page 439 and 440:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 441 and 442:

    Other Lands Converted Grassland Min

  • Page 443 and 444:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fo

  • Page 445 and 446:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 447 and 448:

    On-site 70 71 60 53 50 50 49 N2O (O

  • Page 449 and 450:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 451 and 452:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 453 and 454:

    1 2 Table 6-51: Net CH4 Flux from V

  • Page 455 and 456:

    1 2 3 Table 6-54: Approach 1 Quanti

  • Page 457 and 458:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 459 and 460:

    1 2 3 4 result in cessation of emis

  • Page 461 and 462:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 463 and 464:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 465 and 466:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 467 and 468:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 469 and 470:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 471 and 472:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 473 and 474:

    New Mexico 70,608 52,250 12.0 0.263

  • Page 475 and 476:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 an

  • Page 477 and 478:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 479 and 480:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 481 and 482:

    C Storage Factor, Proportion of Ini

  • Page 483 and 484:

    1 2 3 4 5 6 7 8 9 10 11 12 13 there

  • Page 485 and 486:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 487 and 488:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 489 and 490:

    1 Table 7-2: Emissions from Waste (

  • Page 491 and 492:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 493 and 494:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 495 and 496:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 497 and 498:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 499 and 500:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 501 and 502:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 503 and 504:

    1 2 3 4 5 6 7 8 9 10 Table 7-6 pres

  • Page 505 and 506:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 507 and 508:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 509 and 510:

    2013 321 10,536 2014 323 10,613 201

  • Page 511 and 512:

    1 2 3 4 5 6 7 8 9 %Plants a %Plants

  • Page 513 and 514:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 515 and 516:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 517 and 518:

    1 2 Table 7-16: Approach 2 Quantita

  • Page 519 and 520:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 521 and 522:

    1 2 3 4 5 6 7 8 9 10 EF i = emissio

  • Page 523 and 524:

    a Miscellaneous includes TSDFs (Tre

  • Page 525 and 526:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 527 and 528:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 529 and 530:

    Enteric Fermentation NC NC + NC + (

  • Page 531 and 532:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 533 and 534:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 535 and 536:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 537 and 538:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 539 and 540:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 541 and 542:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 543 and 544:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 545 and 546:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 547 and 548:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 549 and 550:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 551 and 552:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 553 and 554:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 555 and 556:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 557 and 558:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 559 and 560:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 561 and 562:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 563 and 564:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 565 and 566:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 567 and 568:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 569 and 570:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 571 and 572:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 573 and 574:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 575 and 576:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 577 and 578:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 579 and 580:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 581 and 582:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 583 and 584:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 585 and 586:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 587 and 588:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 589 and 590:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 591 and 592:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 593 and 594:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 595 and 596:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 597 and 598:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 599 and 600:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 601 and 602:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 603 and 604:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 605 and 606:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15