2017_complete_report
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 The fraction of crop area burned was calculated using data on area burned by crop type and state 18 from McCarty (2010) for corn, cotton, lentils, rice, soybeans, sugarcane, and wheat. 19 McCarty (2010) used remote sensing data from MODIS to estimate area burned by crop. State-level area burned data were divided by state-level crop area harvested data to estimate the percent of crop area burned by crop type for each state. The average percentage of crop area burned at the national scale is shown in Table 5-31. Data on fraction of crop area burned were only available from McCarty (2010) for the years 2003 through 2007. For other years in the time series, the percent area burned was set equal to the average over the five-year period from 2003 to 2007. Table 5-31 shows the resulting percentage of crop residue burned at the national scale by crop type. State-level estimates are also available upon request. All residue: crop product mass ratios except sugarcane and cotton were obtained from Strehler and Stützle (1987). The ratio for sugarcane is from Kinoshita (1988) and the ratio for cotton is from Huang et al. (2007). The residue: crop ratio for lentils was assumed to be equal to the average of the values for peas and beans. Residue dry matter fractions for all crops except soybeans, lentils, and cotton were obtained from Turn et al. (1997). Soybean and lentil dry matter fractions were obtained from Strehler and Stützle (1987); the value for lentil residue was assumed to equal the value for bean residue. The cotton dry matter fraction was taken from Huang et al. (2007). The residue C contents and N contents for all crops except soybeans and cotton are from Turn et al. (1997). The residue C content for soybeans is the IPCC default (IPCC/UNEP/OECD/IEA 1997), and the N content of soybeans is from Barnard and Kristoferson (1985). The C and N contents of lentils were assumed to equal those of soybeans. The C and N contents of cotton are from Lachnicht et al. (2004). The burning efficiency was assumed to be 93 percent, and the combustion efficiency was assumed to be 88 percent, for all crop types, except sugarcane (EPA 1994). For sugarcane, the burning efficiency was assumed to be 81 percent (Kinoshita 1988) and the combustion efficiency was assumed to be 68 percent (Turn et al. 1997). See Table 5-32 for a summary of the crop-specific conversion factors. Emission ratios and mole ratio conversion factors for all gases were based on the Revised 1996 IPCC Guidelines (IPCC/UNEP/OECD/IEA 1997) (see Table 5-33). Table 5-30: Agricultural Crop Production (kt of Product) Crop 1990 2005 2011 2012 2013 2014 2015 Corn a 229,257 300,965 356,783 311,751 398,817 429,405 422,436 Cotton 4,446 6,811 5,607 5,967 5,647 5,934 5,575 Lentils 38 248 59 121 147 134 117 Rice 8,907 12,596 10,408 10,080 10,381 10,347 10,202 Soybeans 55,178 86,908 87,557 85,523 93,928 102,065 102,772 Sugarcane 31,827 32,496 16,795 16,555 16,129 17,136 18,336 Wheat 79,011 70,074 61,902 71,234 69,287 64,650 66,672 a Corn for grain (i.e., excludes corn for silage). 26 Table 5-31: U.S. Average Percent Crop Area Burned by Crop (Percent) State 1990 2005 2011 2012 2013 2014 2015 Corn + + + + + + + Cotton 1% 1% 1% 1% 1% 1% 1% Lentils 2% + + + + + + Rice 9% 5% 7% 7% 7% 7% 7% Soybeans + + + + + + + Sugarcane 10% 14% 53% 53% 52% 53% 54% Wheat 2% 2% 3% 3% 3% 3% 2% + Does not exceed 0.5 percent. 18 Alaska and Hawaii were excluded. 19 McCarty (2009) also examined emissions from burning of Kentucky bluegrass and a general “other crops/fallow” category, but USDA crop area and production data were insufficient to estimate emissions from these crops using the methodology employed in the Inventory. McCarty (2009) estimates that approximately 18 percent of crop residue emissions result from burning of the Kentucky bluegrass and “other crops” categories. 5-42 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015
1 2 Table 5-32: Key Assumptions for Estimating Emissions from Field Burning of Agricultural Residues Burning Efficiency (Fraction) Combustion Efficiency (Fraction) Crop Residue: Crop Ratio Dry Matter Fraction C Fraction N Fraction Corn 1.0 0.91 0.448 0.006 0.93 0.88 Cotton 1.6 0.90 0.445 0.012 0.93 0.88 Lentils 2.0 0.85 0.450 0.023 0.93 0.88 Rice 1.4 0.91 0.381 0.007 0.93 0.88 Soybeans 2.1 0.87 0.450 0.023 0.93 0.88 Sugarcane 0.2 0.62 0.424 0.004 0.81 0.68 Wheat 1.3 0.93 0.443 0.006 0.93 0.88 3 Table 5-33: Greenhouse Gas Emission Ratios and Conversion Factors Gas Emission Ratio Conversion Factor CH4:C 0.005 a 16/12 CO:C 0.060 a 28/12 N2O:N 0.007 b 44/28 NOx:N 0.121 b 30/14 a Mass of C compound released (units of C) relative to mass of total C released from burning (units of C). b Mass of N compound released (units of N) relative to mass of total N released from burning (units of N). 4 5 6 7 8 9 10 11 Uncertainty and Time-Series Consistency The results of the Approach 2 Monte Carlo uncertainty analysis are summarized in Table 5-34. Methane emissions from field burning of agricultural residues in 2015 were estimated to be between 0.17 and 0.39 MMT CO 2 Eq. at a 95 percent confidence level. This indicates a range of 40 percent below and 41 percent above the 2015 emission estimate of 0.3 MMT CO 2 Eq. Nitrous oxide emissions were estimated to be between 0.07 and 0.13 MMT CO 2 Eq., or approximately 29 percent below and 30 percent above the 2015 emission estimate of 0.1 MMT CO 2 Eq. Table 5-34: Approach 2 Quantitative Uncertainty Estimates for CH4 and N2O Emissions from Field Burning of Agricultural Residues (MMT CO2 Eq. and Percent) Source Gas 2015 Emission Estimate Uncertainty Range Relative to Emission Estimate (MMT CO2 Eq.) (MMT CO2 Eq.) (%) Lower Bound Upper Bound Lower Bound Upper Bound Field Burning of Agricultural Residues CH4 0.3 0.17 0.39 -40% 41% Field Burning of Agricultural Residues N2O 0.1 0.07 0.13 -29% 30% a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval. 12 13 14 15 16 Due to data limitations, there are additional uncertainties in agricultural residue burning, particularly the omission of burning associated with Kentucky bluegrass and “other crop” residues. Methodological recalculations were applied to the entire time-series to ensure time-series consistency from 1990 through 2015. Details on the emission trends through time are described in more detail in the Methodology section, above. Agriculture 5-43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 EP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 Box 6-2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Residential 338.3 357.8 325.5 282.5
e LULUCF C Stock Change is the net
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 irreversible accumulati
Substitution of Ozone Depleting Sub
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Forest Land Remaining Forest Land:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 Figure ES-15: U.S. Greenhouse
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 only days to weeks, their
1 2 3 4 informational purposes, emi
1 Figure 1-1: National Inventory Ar
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N2O Emissions from Adipic Acid Prod
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a Emission estimates reported in th
1 3.10. Methodology for Estimating
1 2 Figure 2-2: Annual Percent Chan
1 2 3 4 5 6 7 8 gas for electricity
a Emissions from Wood Biomass and E
Electrical Transmission and Distrib
Wetlands (4.0) (5.3) (4.1) (4.2) (4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CH4 0.3 0.1 0.1 0.1 0.1 0.2 0.2 Pet
1 Table 2-7: Emissions from Agricul
1 2 Table 2-8: U.S. Greenhouse Gas
1 2 3 4 Overall, in 2015, waste act
Cement Production 33.3 45.9 32.0 35
Total 1,862.5 2,441.6 2,197.3 2,059
Total Emissions 6,366.7 7,315.6 6,7
N2O 1.0 1.2 1.1 1.0 1.1 1.1 1.1 Oth
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 atmospheric sink fo
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
International Bunker Fuels a 0.2 0.
1 Table 3-4: CO2, CH4, and N2O Emis
1 Figure 3-3: 2015 U.S. Energy Cons
1 2 Figure 3-6: Annual Deviations f
U.S. Territories a 28.0 50.1 41.7 4
Fuel Oil 27.2 45.6 36.7 37.6 37.1 3
1 Figure 3-9: Electricity Generatio
1 Figure 3-11: Industrial Productio
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Figure 3-13: Sales of New Passeng
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Medium- and Heavy-Duty 0.5 0.9 0.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 Figure 3-15: U.S. Energy Consum
Coal b 1,653.7 1,596.3 1,809.1 -3%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 Table 3-17: Approach 2 Quantita
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Table 3-20: Adjusted Consumption
1 2 3 4 percent above the 2014 emis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Gas/Waste Product 1990 2005 2011 20
1 2 3 4 5 6 7 8 9 10 11 12 13 waste
1 2 3 4 5 due to the higher CH 4 co
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Activity 1990 2005 2011 2012 2013 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 approach over the t
Previous Estimated Emissions from S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Emissions (w/o Plunger) (MT) 372,28
Reciprocating Compressors 64,413 64
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Table 3-72: Woody Biomass Consump
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CO2 206.8 189.9 172.9 169.6 171.5 1
SF6 1 1 + + + + + Electrical Transm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2012 13.8 13,785 2013 14.0 14,028 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 MMT CO 2 Eq. (10,828 kt) (see
1 2 3 4 5 6 7 8 9 10 11 12 consumed
1 Table 4-19: CO2 Emissions from Am
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Table 4-24: Urea Production, Urea
2012 10.5 35 2013 10.7 36 2014 10.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2015 4.3 14 1 2 3 4 5 6 7 8 9 10 11
1 2 Table 4-31: Approach 2 Quantita
1 2 3 4 5 6 7 8 9 Production data f
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 The activity data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 The results of th
2013 4.1 0.3 2014 5.0 0.3 1 2 3 4 5
1 2 3 4 5 6 7 8 discussion of CO 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 Table 4-56: Approach 2 Quantita
1 3 4 5 6 7 8 9 10 11 12 13 14 15 1
1 2 3 4 5 6 7 8 9 10 11 12 13 (i.e.
1 Table 4-67: Material Carbon Conte
1 2 Table 4-70: Production and Cons
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Table 4-89: CO2 Emissions from Zi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 4.23 Substi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 C) from drainage and cu
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Belowground Live Biomass 2.3 2.0 2.
1 2 Table 6-34: Net CO2 Flux from S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 above the 2015 stock chan
CH4 0.1 0.3 0.8 0.6 0.2 0.4 0.4 N2O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Other Lands Converted Grassland Min
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fo
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
On-site 70 71 60 53 50 50 49 N2O (O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 Table 6-51: Net CH4 Flux from V
1 2 3 Table 6-54: Approach 1 Quanti
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 result in cessation of emis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
New Mexico 70,608 52,250 12.0 0.263
1 2 3 4 5 6 7 8 9 10 11 12 13 14 an
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C Storage Factor, Proportion of Ini
1 2 3 4 5 6 7 8 9 10 11 12 13 there
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Table 7-2: Emissions from Waste (
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 Table 7-6 pres
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2013 321 10,536 2014 323 10,613 201
1 2 3 4 5 6 7 8 9 %Plants a %Plants
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 Table 7-16: Approach 2 Quantita
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 EF i = emissio
a Miscellaneous includes TSDFs (Tre
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Enteric Fermentation NC NC + NC + (
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15