Views
1 year ago

DRAFT Inventory of U.S Greenhouse Gas Emissions and Sinks

2017_complete_report

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Grassland: Grassland on non-federal lands is classified using the NRI within 49 states (excluding Alaska), including state and local government-owned land as well as tribal lands. NRI is used as the basis for both Grassland area data as well as to estimate soil C stocks and fluxes on Grassland. Grassland area and soil C stock changes are determined using the classification provided in the NLCD for federal land within the conterminous United States. NLCD is also used to estimate the areas of federal and non-federal grasslands in Alaska, and the federal lands in Hawaii, but the current Inventory does not include C stock changes in these areas. Wetlands: NRI captures wetlands on non-federal lands within 49 states (excluding Alaska), while the land representation data for federal wetlands and wetlands in Alaska are based on the NLCD. 26 Settlements: NRI captures non-federal settlement area in 49 states (excluding Alaska). If areas of Forest Land or Grassland under 10 acres (4.05 ha) are contained within settlements or urban areas, they are classified as Settlements (urban) in the NRI database. If these parcels exceed the 10 acre (4.05 ha) threshold and are Grassland, they will be classified as such by NRI. Regardless of size, a forested area is classified as non-forest by FIA if it is located within an urban area. Land representation for settlements on federal lands and in Alaska is based on the NLCD. Other Land: Any land that is not classified into one of the previous five land-use categories, is categorized as Other Land using the NRI for non-federal areas in the conterminous United States and Hawaii and using the NLCD for the federal lands in all regions of the United States and for non-federal lands in Alaska. Some lands can be classified into one or more categories due to multiple uses that meet the criteria of more than one definition. However, a ranking has been developed for assignment priority in these cases. The ranking process is from highest to lowest priority, in the following manner: Settlements > Cropland > Forest Land > Grassland > Wetlands > Other Land Settlements are given the highest assignment priority because they are extremely heterogeneous with a mosaic of patches that include buildings, infrastructure, and travel corridors, but also open grass areas, forest patches, riparian areas, and gardens. The latter examples could be classified as Grassland, Forest Land, Wetlands, and Cropland, respectively, but when located in close proximity to settlement areas, they tend to be managed in a unique manner compared to non-settlement areas. Consequently, these areas are assigned to the Settlements land-use category. Cropland is given the second assignment priority, because cropping practices tend to dominate management activities on areas used to produce food, forage, or fiber. The consequence of this ranking is that crops in rotation with pasture are classified as Cropland, and land with woody plant cover that is used to produce crops (e.g., orchards) is classified as Cropland, even though these areas may meet the definitions of Grassland or Forest Land, respectively. Similarly, Wetlands are considered Croplands if they are used for crop production, such as rice or cranberries. Forest Land occurs next in the priority assignment because traditional forestry practices tend to be the focus of the management activity in areas with woody plant cover that are not croplands (e.g., orchards) or settlements (e.g., housing subdivisions with significant tree cover). Grassland occurs next in the ranking, while Wetlands then Other Land complete the list. The assignment priority does not reflect the level of importance for reporting greenhouse gas emissions and removals on managed land, but is intended to classify all areas into a discrete land use. Currently, the IPCC does not make provisions in the guidelines for assigning land to multiple uses. For example, a wetland is classified as Forest Land if the area has sufficient tree cover to meet the stocking and stand size requirements. Similarly, wetlands are classified as Cropland if they are used for crop production, such as rice or cranberries, or as Grassland if they are composed principally of grasses, grass-like plants (i.e., sedges and rushes), forbs, or shrubs suitable for grazing and browsing. Regardless of the classification, emissions from these areas are included in the Inventory if the land is considered managed, and therefore impacted by anthropogenic activity in accordance with the guidance provided by the IPCC (2006). 26 This analysis does not distinguish between managed and unmanaged wetlands, which is a planned improvement for the Inventory. 6-18 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 QA/QC and Verification The land base derived from the NRI, FIA, and NLCD was compared to the Topologically Integrated Geographic Encoding and Referencing (TIGER) survey (U.S. Census Bureau 2010). The U.S. Census Bureau gathers data on the U.S. population and economy, and has a database of land areas for the country. The area estimates of land-use categories, based on NRI, FIA, and NLCD, are derived from remote sensing data instead of the land survey approach used by the U.S. Census Survey. The U.S. Census Survey does not provide a time series of land-use change data or land management information, which is needed for reporting greenhouse gas emissions from land use and land use change. Regardless, the U.S. Census Survey does provide sufficient information to provide a check on the Inventory data. The total difference between the U.S. Census Survey and the combined NRI, FIA, and NLCD data is about 46 million hectares for the total U.S. land base of about 936 million hectares currently included in the Inventory, or a 5 percent difference. Much of this difference is associated with open waters in coastal regions and the Great Lakes, which is included in the TIGER Survey of the U.S. Census, but not included in the land representation using the NRI, FIA and NLCD. There is only a 0.4 percent difference when open water in coastal regions is removed from the TIGER data. Recalculations Discussion The land representation data in this Inventory changed slightly from the previous Inventory. Areas associated with Forest Land changed due to updates in the FIA that also influenced the areas for Grasslands, Wetlands, and Croplands through the process of harmonizing these datasets. FIA also provided area data for coastal Alaska that was used in this year’s analysis. In addition to the changes in the FIA data, a new NRI dataset was incorporated into the current Inventory extending the time series from 2010 to 2012. The NRI program recalculated the previous time series based on changes to the classification and imputation procedures for filling gaps. One of the key updates in the recalculation was that the new (2012) NRI dataset had a slightly smaller land base than that reported in the 2010 NRI dataset, resulting in a reduction in the managed area by approximately 34,000 ha. Overall, the updates from NRI and FIA led to a decrease in Forest Land area by 0.4 percent, a decrease in Cropland area by 0.3 percent, an increase in Grassland area by 1.2 percent, an increase in Wetland area by 0.4 percent, a decrease in Settlements area by 0.1 percent, and a decrease in Other Lands by 10 percent. Planned Improvements A key planned improvement for the Inventory is to fully incorporate area data by land-use type for U.S. Territories. Fortunately, most of the managed land in the United States is included in the current land-use statistics, but a complete accounting is a key goal for the near future. Preliminary land-use area data for U.S. Territories by land-use category are provided in Box 6-2. Box 6-2: Preliminary Estimates of Land Use in U.S. Territories Several programs have developed land cover maps for U.S. Territories using remote sensing imagery, including the Gap Analysis Program, Caribbean Land Cover project, National Land Cover Dataset, USFS Pacific Islands Imagery Project, and the National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C- CAP). Land-cover data can be used to inform a land-use classification if there is a time series to evaluate the dominate practices. For example, land that is principally used for timber production with tree cover over most of the time series is classified as forest land even if there are a few years of grass dominance following timber harvest. These products were reviewed and evaluated for use in the national Inventory as a step towards implementing a planned improvement to include U.S. Territories in the land representation for the Inventory. Recommendations are to use the NOAA C-CAP Regional Land Cover Database for the smaller island Territories (U.S. Virgin Islands, Guam, Northern Marianas Islands, and American Samoa) because this program is ongoing and therefore will be continually updated. The C-CAP product does not cover the entire territory of Puerto Rico so the NLCD was used for this area. The final selection of a land-cover product for these territories is still under discussion. Results are presented below (in hectares). The total land area of all U.S. Territories is 1.05 million hectares, representing 0.1 percent of the total land base for the United States. Table 6-9: Total Land Area (Hectares) by Land-Use Category for U.S. Territories Land Use, Land-Use Change, and Forestry 6-19

  • Page 1 and 2:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 EP

  • Page 3 and 4:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 5 and 6:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 7 and 8:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 9 and 10:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 11 and 12:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 13 and 14:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 15 and 16:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 17 and 18:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 19 and 20:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 21 and 22:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 23 and 24:

    1 2 3 4 5 6 7 8 9 10 11 12 Box 6-2:

  • Page 25 and 26:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 27 and 28:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 29 and 30:

    Residential 338.3 357.8 325.5 282.5

  • Page 31 and 32:

    e LULUCF C Stock Change is the net

  • Page 33 and 34:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 35 and 36:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 37 and 38:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 39 and 40:

    1 2 3 4 5 6 irreversible accumulati

  • Page 41 and 42:

    Substitution of Ozone Depleting Sub

  • Page 43 and 44:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 45 and 46:

    Forest Land Remaining Forest Land:

  • Page 47 and 48:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 49 and 50:

    1 2 3 Figure ES-15: U.S. Greenhouse

  • Page 51 and 52:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 53 and 54:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 55 and 56:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 57 and 58:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 59 and 60:

    1 2 3 4 5 only days to weeks, their

  • Page 61 and 62:

    1 2 3 4 informational purposes, emi

  • Page 63 and 64:

    1 Figure 1-1: National Inventory Ar

  • Page 65 and 66:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 67 and 68:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 69 and 70:

    N2O Emissions from Adipic Acid Prod

  • Page 71 and 72:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 73 and 74:

    a Emission estimates reported in th

  • Page 75 and 76:

    1 3.10. Methodology for Estimating

  • Page 77 and 78:

    1 2 Figure 2-2: Annual Percent Chan

  • Page 79 and 80:

    1 2 3 4 5 6 7 8 gas for electricity

  • Page 81 and 82:

    a Emissions from Wood Biomass and E

  • Page 83 and 84:

    Electrical Transmission and Distrib

  • Page 85 and 86:

    Wetlands (4.0) (5.3) (4.1) (4.2) (4

  • Page 87 and 88:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 89 and 90:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 91 and 92:

    CH4 0.3 0.1 0.1 0.1 0.1 0.2 0.2 Pet

  • Page 93 and 94:

    1 Table 2-7: Emissions from Agricul

  • Page 95 and 96:

    1 2 Table 2-8: U.S. Greenhouse Gas

  • Page 97 and 98:

    1 2 3 4 Overall, in 2015, waste act

  • Page 99 and 100:

    Cement Production 33.3 45.9 32.0 35

  • Page 101 and 102:

    Total 1,862.5 2,441.6 2,197.3 2,059

  • Page 103 and 104:

    Total Emissions 6,366.7 7,315.6 6,7

  • Page 105 and 106:

    N2O 1.0 1.2 1.1 1.0 1.1 1.1 1.1 Oth

  • Page 107 and 108:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 109 and 110:

    1 2 3 4 5 6 7 8 atmospheric sink fo

  • Page 111 and 112:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 113 and 114:

    International Bunker Fuels a 0.2 0.

  • Page 115 and 116:

    1 Table 3-4: CO2, CH4, and N2O Emis

  • Page 117 and 118:

    1 Figure 3-3: 2015 U.S. Energy Cons

  • Page 119 and 120:

    1 2 Figure 3-6: Annual Deviations f

  • Page 121 and 122:

    U.S. Territories a 28.0 50.1 41.7 4

  • Page 123 and 124:

    Fuel Oil 27.2 45.6 36.7 37.6 37.1 3

  • Page 125 and 126:

    1 Figure 3-9: Electricity Generatio

  • Page 127 and 128:

    1 Figure 3-11: Industrial Productio

  • Page 129 and 130:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 131 and 132:

    1 Figure 3-13: Sales of New Passeng

  • Page 133 and 134:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 135 and 136:

    Medium- and Heavy-Duty 0.5 0.9 0.7

  • Page 137 and 138:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 139 and 140:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 141 and 142:

    1 2 Figure 3-15: U.S. Energy Consum

  • Page 143 and 144:

    Coal b 1,653.7 1,596.3 1,809.1 -3%

  • Page 145 and 146:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 147 and 148:

    1 2 Table 3-17: Approach 2 Quantita

  • Page 149 and 150:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 151 and 152:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 153 and 154:

    1 Table 3-20: Adjusted Consumption

  • Page 155 and 156:

    1 2 3 4 percent above the 2014 emis

  • Page 157 and 158:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 159 and 160:

    Gas/Waste Product 1990 2005 2011 20

  • Page 161 and 162:

    1 2 3 4 5 6 7 8 9 10 11 12 13 waste

  • Page 163 and 164:

    1 2 3 4 5 due to the higher CH 4 co

  • Page 165 and 166:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 167 and 168:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 169 and 170:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 171 and 172:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 173 and 174:

    Activity 1990 2005 2011 2012 2013 2

  • Page 175 and 176:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 177 and 178:

    1 2 3 4 5 6 7 8 approach over the t

  • Page 179 and 180:

    Previous Estimated Emissions from S

  • Page 181 and 182:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 183 and 184:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 185 and 186:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 187 and 188:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 189 and 190:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 191 and 192:

    Emissions (w/o Plunger) (MT) 372,28

  • Page 193 and 194:

    Reciprocating Compressors 64,413 64

  • Page 195 and 196:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 197 and 198:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 199 and 200:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 201 and 202:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 203 and 204:

    1 Table 3-72: Woody Biomass Consump

  • Page 205 and 206:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 207 and 208:

    CO2 206.8 189.9 172.9 169.6 171.5 1

  • Page 209 and 210:

    SF6 1 1 + + + + + Electrical Transm

  • Page 211 and 212:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 213 and 214:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 215 and 216:

    2012 13.8 13,785 2013 14.0 14,028 2

  • Page 217 and 218:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 219 and 220:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 221 and 222:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 223 and 224:

    1 2 3 MMT CO 2 Eq. (10,828 kt) (see

  • Page 225 and 226:

    1 2 3 4 5 6 7 8 9 10 11 12 consumed

  • Page 227 and 228:

    1 Table 4-19: CO2 Emissions from Am

  • Page 229 and 230:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 231 and 232:

    1 Table 4-24: Urea Production, Urea

  • Page 233 and 234:

    2012 10.5 35 2013 10.7 36 2014 10.9

  • Page 235 and 236:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 237 and 238:

    2015 4.3 14 1 2 3 4 5 6 7 8 9 10 11

  • Page 239 and 240:

    1 2 Table 4-31: Approach 2 Quantita

  • Page 241 and 242:

    1 2 3 4 5 6 7 8 9 Production data f

  • Page 243 and 244:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 245 and 246:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 247 and 248:

    1 2 3 4 5 6 7 8 9 The activity data

  • Page 249 and 250:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 251 and 252:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 253 and 254:

    1 2 3 4 5 6 7 8 9 The results of th

  • Page 255 and 256:

    2013 4.1 0.3 2014 5.0 0.3 1 2 3 4 5

  • Page 257 and 258:

    1 2 3 4 5 6 7 8 discussion of CO 2

  • Page 259 and 260:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 261 and 262:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 263 and 264:

    1 2 Table 4-56: Approach 2 Quantita

  • Page 265 and 266:

    1 3 4 5 6 7 8 9 10 11 12 13 14 15 1

  • Page 267 and 268:

    1 2 3 4 5 6 7 8 9 10 11 12 13 (i.e.

  • Page 269 and 270:

    1 Table 4-67: Material Carbon Conte

  • Page 271 and 272:

    1 2 Table 4-70: Production and Cons

  • Page 273 and 274:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 275 and 276:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 277 and 278:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 279 and 280:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 281 and 282:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 283 and 284:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 285 and 286:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 287 and 288:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 289 and 290:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 291 and 292:

    1 Table 4-89: CO2 Emissions from Zi

  • Page 293 and 294:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 295 and 296:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 297 and 298:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 299 and 300:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 301 and 302:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 303 and 304:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 305 and 306:

    1 2 3 4 5 6 7 8 9 10 11 4.23 Substi

  • Page 307 and 308:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 309 and 310:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 311 and 312:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 313 and 314:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 315 and 316:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 317 and 318:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 319 and 320:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 321 and 322:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 323 and 324:

    Graphic Arts + 0 0 0 0 0 0 Non-Indu

  • Page 325 and 326:

    1 2 3 4 5 6 7 8 9 5. Agriculture Ag

  • Page 327 and 328:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 329 and 330:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 331 and 332:

    Note that the relative uncertainty

  • Page 333 and 334:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 335 and 336: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
  • Page 337 and 338: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 339 and 340: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 341 and 342: + Does not exceed 0.05 MMT CO2 Eq.
  • Page 343 and 344: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 345 and 346: 1 2 3 4 5 6 7 8 9 subsequently conv
  • Page 347 and 348: 1 2 3 4 5 6 7 8 9 Agricultural soil
  • Page 349 and 350: 1 2 3 4 5 6 7 8 9 low in many parts
  • Page 351 and 352: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 353 and 354: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 355 and 356: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 357 and 358: 1 2 3 4 5 6 7 8 9 10 methodology te
  • Page 359 and 360: 1 Table 5-21: Emissions from Liming
  • Page 361 and 362: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 363 and 364: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 365 and 366: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 367 and 368: 1 2 Table 5-32: Key Assumptions for
  • Page 369 and 370: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 371 and 372: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 373 and 374: Land Converted to Forest Land (92.0
  • Page 375 and 376: 1 2 3 4 5 6 7 8 9 10 11 12 from LUL
  • Page 377 and 378: 1 2 Table 6-7: Land Use and Land-Us
  • Page 379 and 380: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 381 and 382: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 383 and 384: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 385: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 389 and 390: 1 2 Harvested wood products (HWP)
  • Page 391 and 392: 1 2 Figure 6-2: Changes in Forest A
  • Page 393 and 394: Note: Forest C stocks do not includ
  • Page 395 and 396: 1 2 3 4 in Table 6-13 include all m
  • Page 397 and 398: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 399 and 400: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 401 and 402: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 403 and 404: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 405 and 406: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 407 and 408: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 409 and 410: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 411 and 412: 1 2 3 Total Aboveground Biomass Flu
  • Page 413 and 414: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ap
  • Page 415 and 416: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 417 and 418: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 419 and 420: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 421 and 422: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 423 and 424: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 425 and 426: 1 2 3 4 5 6 C) from drainage and cu
  • Page 427 and 428: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 429 and 430: Belowground Live Biomass 2.3 2.0 2.
  • Page 431 and 432: 1 2 Table 6-34: Net CO2 Flux from S
  • Page 433 and 434: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 435 and 436: 1 2 3 4 5 above the 2015 stock chan
  • Page 437 and 438:

    CH4 0.1 0.3 0.8 0.6 0.2 0.4 0.4 N2O

  • Page 439 and 440:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 441 and 442:

    Other Lands Converted Grassland Min

  • Page 443 and 444:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fo

  • Page 445 and 446:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 447 and 448:

    On-site 70 71 60 53 50 50 49 N2O (O

  • Page 449 and 450:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 451 and 452:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 453 and 454:

    1 2 Table 6-51: Net CH4 Flux from V

  • Page 455 and 456:

    1 2 3 Table 6-54: Approach 1 Quanti

  • Page 457 and 458:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 459 and 460:

    1 2 3 4 result in cessation of emis

  • Page 461 and 462:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 463 and 464:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 465 and 466:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 467 and 468:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 469 and 470:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 471 and 472:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 473 and 474:

    New Mexico 70,608 52,250 12.0 0.263

  • Page 475 and 476:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 an

  • Page 477 and 478:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 479 and 480:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 481 and 482:

    C Storage Factor, Proportion of Ini

  • Page 483 and 484:

    1 2 3 4 5 6 7 8 9 10 11 12 13 there

  • Page 485 and 486:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 487 and 488:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 489 and 490:

    1 Table 7-2: Emissions from Waste (

  • Page 491 and 492:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 493 and 494:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 495 and 496:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 497 and 498:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 499 and 500:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 501 and 502:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 503 and 504:

    1 2 3 4 5 6 7 8 9 10 Table 7-6 pres

  • Page 505 and 506:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 507 and 508:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 509 and 510:

    2013 321 10,536 2014 323 10,613 201

  • Page 511 and 512:

    1 2 3 4 5 6 7 8 9 %Plants a %Plants

  • Page 513 and 514:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 515 and 516:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 517 and 518:

    1 2 Table 7-16: Approach 2 Quantita

  • Page 519 and 520:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 521 and 522:

    1 2 3 4 5 6 7 8 9 10 EF i = emissio

  • Page 523 and 524:

    a Miscellaneous includes TSDFs (Tre

  • Page 525 and 526:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 527 and 528:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 529 and 530:

    Enteric Fermentation NC NC + NC + (

  • Page 531 and 532:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 533 and 534:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 535 and 536:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 537 and 538:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 539 and 540:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 541 and 542:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 543 and 544:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 545 and 546:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 547 and 548:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 549 and 550:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 551 and 552:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 553 and 554:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 555 and 556:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 557 and 558:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 559 and 560:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 561 and 562:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 563 and 564:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 565 and 566:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 567 and 568:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 569 and 570:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 571 and 572:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 573 and 574:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 575 and 576:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 577 and 578:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 579 and 580:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 581 and 582:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 583 and 584:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 585 and 586:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 587 and 588:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 589 and 590:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 591 and 592:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 593 and 594:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 595 and 596:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 597 and 598:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 599 and 600:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 601 and 602:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 603 and 604:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 605 and 606:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greenhouse Gas Emissions from U.S. Heavy-Duty Trucks
Quality manual for the greenhouse gas inventory. Version 1.
Building trust in greenhouse gas inventories from the United ... - WWF
D - Inventory of Greenhouse Gas Emissions - Abengoa
City of Richmond 2008 Greenhouse Gas Emissions Inventory
Use of Models and Facility-Level Data in Greenhouse Gas Inventories
2009 Corporate Greenhouse Gas Emissions Inventory - the Town of ...
Expert Meeting on Uncertainty and Validation of Emission Inventories
Greenhouse Gas Emissions Inventory for Chapel Hill Street Lights ...
international maritime transport and greenhouse gas emissions - IMO
Inventory of New York City Greenhouse Gas Emissions - NYC.gov
Aspen-Pitkin County Airport Greenhouse Gas Emissions Inventory ...
County of San Diego 2005/2006 Greenhouse Gas Emissions Inventory
Greenhouse Gas Emissions from U.S. Agriculture and Forestry: A ...
Greenhouse Gas Emissions Inventory Report - Cal Poly Pomona
Reducing U.S. Greenhouse Gas Emissions - Center for Climate and ...
GREENHOUSE GAS EMISSIONS - The Sallan Foundation
Greenhouse Gas Emissions from U.S. Transportation - Center for ...
National Greenhouse Gas Inventories - US Environmental ...
Greenhouse Gas Emission Policies Is There a Way ... - Castalia
Evaluation of Greenhouse Gas Emissions from Septic ... - Geoflow
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS
Transportation's Role in Reducing U.S. Greenhouse Gas Emissions ...
Denmark's National Inventory Report 2008 - Emission Inventories ...
Greenhouse Gas Emissions from U.S. Transportation - Center for ...
Greenhouse gas emissions from production of imported and ... - Inra