Views
1 year ago

DRAFT Inventory of U.S Greenhouse Gas Emissions and Sinks

2017_complete_report

Forest

Forest Land Converted to Settlements 31.5 37.5 36.5 34.6 34.6 34.6 34.6 Aboveground Live Biomass 19.8 23.9 23.7 22.5 22.5 22.5 22.5 Belowground Live Biomass 4.1 4.9 4.8 4.5 4.5 4.5 4.5 Dead Wood 3.8 4.2 3.7 3.4 3.4 3.4 3.4 Litter 3.7 4.1 3.9 3.7 3.7 3.7 3.7 Mineral Soils 0.3 0.4 0.4 0.4 0.4 0.4 0.4 Organic Soils + + + + + + + Grassland Converted Settlements 1.1 3.7 3.4 3.4 3.4 3.4 3.4 Mineral Soils 0.9 3.4 3.2 3.1 3.1 3.1 3.1 Organic Soils 0.1 0.3 0.2 0.2 0.2 0.2 0.2 Other Lands Converted to Settlements + 0.2 0.2 0.2 0.2 0.2 0.2 Mineral Soils + 0.2 0.2 0.2 0.2 0.2 0.2 Organic Soils + + + + + + + Wetlands Converted to Settlements + + + + + + + Mineral Soils + + + + + + + Organic Soils 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Aboveground Biomass Flux 19.8 23.9 23.7 22.5 22.5 22.5 22.5 Total Belowground Biomass Flux 4.1 4.9 4.8 4.5 4.5 4.5 4.5 Total Dead Wood Flux 3.8 4.2 3.7 3.4 3.4 3.4 3.4 Total Litter Flux 3.7 4.1 3.9 3.7 3.7 3.7 3.7 Total Mineral Soil Flux 2.2 6.8 6.4 6.2 6.3 6.3 6.3 Total Organic Soil Flux 0.3 0.7 0.5 0.5 0.5 0.5 0.5 Total Net Flux 33.8 44.6 43.0 41.0 41.0 41.0 41.0 + Does not exceed 0.05 MMT C Notes: Totals may not sum due to independent rounding. Estimates after 2012 for mineral and organic soils are based on NRI data from 2012 and therefore may not fully reflect changes occurring in the latter part of the time series. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Methodology The following section includes a description of the methodology used to estimate C stock changes for Land Converted to Settlements, including (1) loss of aboveground and belowground biomass, dead wood and litter C with conversion of forest lands to settlements, as well as (2) the impact of land use conversions to settlements on mineral and organic soils. Biomass, Dead Biomass, and Litter Carbon Stock Changes A Tier 2 method is applied to estimate aboveground biomass C stock changes for Forest Land Converted to Settlements. For this method, forest land conversions to settlements were identified in each state and C density estimates were compiled by state for aboveground biomass, belowground biomass, dead wood, and litter for settlements (assumed to be zero since no reference biomass C density estimates exist) and forest land use categories. The difference between the stocks is reported as the stock change under the assumption that the change occurred in the year of the conversion. Reference C density estimates (i.e., aboveground biomass, belowground biomass, dead wood, and litter) for forest lands have been estimated from data in the Forest Inventory and Analysis (FIA) program within the USDA Forest Service (USDA Forest Service 2015). If FIA plots include data on individual trees, aboveground and belowground C density estimates are based on Woodall et al. (2011). Aboveground and belowground biomass estimates also include live understory which is a minor component of biomass defined as all biomass of undergrowth plants in a forest, including woody shrubs and trees less than 2.54 cm dbh. For this Inventory, it was assumed that 10 percent of total understory C mass is belowground (Smith et al. 2006). Estimates of C density are based on information in Birdsey (1996) and biomass estimates from Jenkins et al. (2003). If FIA plots include data on standing dead trees, standing dead tree C density is estimated following the basic method applied to live trees (Woodall et al. 2011) with additional modifications to account for decay and structural loss (Domke et al. 2011; Harmon et al. 2011). If FIA plots include data on downed dead wood, downed dead wood C density is estimated based on measurements of a subset of FIA plots for downed dead wood (Domke et al. 2013; 6-116 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Woodall and Monleon 2008). Downed dead wood is defined as pieces of dead wood greater than 7.5 cm diameter, at transect intersection, that are not attached to live or standing dead trees. This includes stumps and roots of harvested trees. To facilitate the downscaling of downed dead wood C estimates from the state-wide population estimates to individual plots, downed dead wood models specific to regions and forest types within each region are used. Litter C is the pool of organic C (also known as duff, humus, and fine woody debris) above the mineral soil and includes woody fragments with diameters of up to 7.5 cm. A subset of FIA plots are measured for litter C. If FIA plots include litter material, a modeling approach using litter C measurements from FIA plots is used to estimate litter C density (Domke et al. 2016). See Annex 3.13 for more information about reference C density estimates for forest land. Soil Carbon Stock Changes Soil C stock changes are estimated for Land Converted to Settlements according to land-use histories recorded in the 2012 USDA NRI survey for non-federal lands (USDA-NRCS 2015). Land use and some management information were originally collected for each NRI survey locations on a 5-year cycle beginning in 1982. In 1998, the NRI program began collecting annual data, and the annual data are currently available through 2012 (USDA-NRCS 2015). However, this Inventory only uses NRI data through 2012 because newer data were not available. NRI survey locations are classified as Land Converted to Settlements in a given year between 1990 and 2012 if the land use is settlements but had been classified as another use during the previous 20 years. NRI survey locations are classified according to land-use histories starting in 1979, and consequently the classifications are based on less than 20 years from 1990 to 1998. This may have led to an underestimation of Land Converted to Settlements in the early part of the time series to the extent that some areas are converted to grassland between 1971 and 1978. For federal lands, the land use history is derived from land cover changes in the National Land Cover Dataset (Homer et al. 2007; Fry et al. 2011; Homer et al. 2015). Mineral Soil Carbon Stock Changes An IPCC Tier 2 method (Ogle et al. 2003) is applied to estimate C stock changes for Land Converted to Settlements on mineral soils. Data on climate, soil types, land-use, and land management activity are used to classify land area and apply appropriate stock change factors (Ogle et al. 2003, 2006). Reference C stocks are estimated using the National Soil Survey Characterization Database (NRCS 1997) with cultivated cropland as the reference condition, rather than native vegetation as used in IPCC (2006). Soil measurements under agricultural management are much more common and easily identified in the National Soil Survey Characterization Database (NRCS 1997) than are soils under a native condition, and therefore cultivated cropland provide a more robust sample for estimating the reference condition. United States-specific C stock change factors are derived from published literature to determine the impact of management practices on SOC storage (Ogle et al. 2003, Ogle et al. 2006). However, there are insufficient data to estimate a set of land use, management, and input factors for settlements. Moreover, the 2012 NRI survey data (USDA-NRCS 2015) do not provide the information needed to assign different land use subcategories to settlements, such as turf grass and impervious surfaces, which is needed to apply the Tier 1 factors from the IPCC guidelines (2006). Therefore, the United States has adopted a land use factor of 0.7 to represent the loss of carbon with conversion to settlements, which is similar to the estimated losses with conversion to cropland. More specific factor values can be derived in future inventories as data become available. See Annex 3.12 for additional discussion of the Tier 2 methodology for mineral soils. Organic Soil Carbon Stock Changes Annual C emissions from drained organic soils in Land Converted to Settlements are estimated using the Tier 2 method provided in IPCC (2006). The Tier 2 method assumes that organic soils are losing C at a rate similar to croplands, and therefore uses the country-specific values for cropland (Ogle et al. 2003). To estimate CO 2 emissions, the total area of organic soils in Land Converted to Settlements is multiplied by the Tier 2 emission factor, which is 11.2 MMT C per ha in cool temperate regions, 14.0 MMT C per ha in warm temperate regions and 11.2 MMT C per ha in subtropical regions (See Annex 3.12 for more information). Land Use, Land-Use Change, and Forestry 6-117

  • Page 1 and 2:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 EP

  • Page 3 and 4:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 5 and 6:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 7 and 8:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 9 and 10:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 11 and 12:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 13 and 14:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 15 and 16:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 17 and 18:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 19 and 20:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 21 and 22:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 23 and 24:

    1 2 3 4 5 6 7 8 9 10 11 12 Box 6-2:

  • Page 25 and 26:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 27 and 28:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 29 and 30:

    Residential 338.3 357.8 325.5 282.5

  • Page 31 and 32:

    e LULUCF C Stock Change is the net

  • Page 33 and 34:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 35 and 36:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 37 and 38:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 39 and 40:

    1 2 3 4 5 6 irreversible accumulati

  • Page 41 and 42:

    Substitution of Ozone Depleting Sub

  • Page 43 and 44:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 45 and 46:

    Forest Land Remaining Forest Land:

  • Page 47 and 48:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 49 and 50:

    1 2 3 Figure ES-15: U.S. Greenhouse

  • Page 51 and 52:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 53 and 54:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 55 and 56:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 57 and 58:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 59 and 60:

    1 2 3 4 5 only days to weeks, their

  • Page 61 and 62:

    1 2 3 4 informational purposes, emi

  • Page 63 and 64:

    1 Figure 1-1: National Inventory Ar

  • Page 65 and 66:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 67 and 68:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 69 and 70:

    N2O Emissions from Adipic Acid Prod

  • Page 71 and 72:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 73 and 74:

    a Emission estimates reported in th

  • Page 75 and 76:

    1 3.10. Methodology for Estimating

  • Page 77 and 78:

    1 2 Figure 2-2: Annual Percent Chan

  • Page 79 and 80:

    1 2 3 4 5 6 7 8 gas for electricity

  • Page 81 and 82:

    a Emissions from Wood Biomass and E

  • Page 83 and 84:

    Electrical Transmission and Distrib

  • Page 85 and 86:

    Wetlands (4.0) (5.3) (4.1) (4.2) (4

  • Page 87 and 88:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 89 and 90:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 91 and 92:

    CH4 0.3 0.1 0.1 0.1 0.1 0.2 0.2 Pet

  • Page 93 and 94:

    1 Table 2-7: Emissions from Agricul

  • Page 95 and 96:

    1 2 Table 2-8: U.S. Greenhouse Gas

  • Page 97 and 98:

    1 2 3 4 Overall, in 2015, waste act

  • Page 99 and 100:

    Cement Production 33.3 45.9 32.0 35

  • Page 101 and 102:

    Total 1,862.5 2,441.6 2,197.3 2,059

  • Page 103 and 104:

    Total Emissions 6,366.7 7,315.6 6,7

  • Page 105 and 106:

    N2O 1.0 1.2 1.1 1.0 1.1 1.1 1.1 Oth

  • Page 107 and 108:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 109 and 110:

    1 2 3 4 5 6 7 8 atmospheric sink fo

  • Page 111 and 112:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 113 and 114:

    International Bunker Fuels a 0.2 0.

  • Page 115 and 116:

    1 Table 3-4: CO2, CH4, and N2O Emis

  • Page 117 and 118:

    1 Figure 3-3: 2015 U.S. Energy Cons

  • Page 119 and 120:

    1 2 Figure 3-6: Annual Deviations f

  • Page 121 and 122:

    U.S. Territories a 28.0 50.1 41.7 4

  • Page 123 and 124:

    Fuel Oil 27.2 45.6 36.7 37.6 37.1 3

  • Page 125 and 126:

    1 Figure 3-9: Electricity Generatio

  • Page 127 and 128:

    1 Figure 3-11: Industrial Productio

  • Page 129 and 130:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 131 and 132:

    1 Figure 3-13: Sales of New Passeng

  • Page 133 and 134:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 135 and 136:

    Medium- and Heavy-Duty 0.5 0.9 0.7

  • Page 137 and 138:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 139 and 140:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 141 and 142:

    1 2 Figure 3-15: U.S. Energy Consum

  • Page 143 and 144:

    Coal b 1,653.7 1,596.3 1,809.1 -3%

  • Page 145 and 146:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 147 and 148:

    1 2 Table 3-17: Approach 2 Quantita

  • Page 149 and 150:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 151 and 152:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 153 and 154:

    1 Table 3-20: Adjusted Consumption

  • Page 155 and 156:

    1 2 3 4 percent above the 2014 emis

  • Page 157 and 158:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 159 and 160:

    Gas/Waste Product 1990 2005 2011 20

  • Page 161 and 162:

    1 2 3 4 5 6 7 8 9 10 11 12 13 waste

  • Page 163 and 164:

    1 2 3 4 5 due to the higher CH 4 co

  • Page 165 and 166:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 167 and 168:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 169 and 170:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 171 and 172:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 173 and 174:

    Activity 1990 2005 2011 2012 2013 2

  • Page 175 and 176:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 177 and 178:

    1 2 3 4 5 6 7 8 approach over the t

  • Page 179 and 180:

    Previous Estimated Emissions from S

  • Page 181 and 182:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 183 and 184:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 185 and 186:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 187 and 188:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 189 and 190:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 191 and 192:

    Emissions (w/o Plunger) (MT) 372,28

  • Page 193 and 194:

    Reciprocating Compressors 64,413 64

  • Page 195 and 196:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 197 and 198:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 199 and 200:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 201 and 202:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 203 and 204:

    1 Table 3-72: Woody Biomass Consump

  • Page 205 and 206:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 207 and 208:

    CO2 206.8 189.9 172.9 169.6 171.5 1

  • Page 209 and 210:

    SF6 1 1 + + + + + Electrical Transm

  • Page 211 and 212:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 213 and 214:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 215 and 216:

    2012 13.8 13,785 2013 14.0 14,028 2

  • Page 217 and 218:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 219 and 220:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 221 and 222:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 223 and 224:

    1 2 3 MMT CO 2 Eq. (10,828 kt) (see

  • Page 225 and 226:

    1 2 3 4 5 6 7 8 9 10 11 12 consumed

  • Page 227 and 228:

    1 Table 4-19: CO2 Emissions from Am

  • Page 229 and 230:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 231 and 232:

    1 Table 4-24: Urea Production, Urea

  • Page 233 and 234:

    2012 10.5 35 2013 10.7 36 2014 10.9

  • Page 235 and 236:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 237 and 238:

    2015 4.3 14 1 2 3 4 5 6 7 8 9 10 11

  • Page 239 and 240:

    1 2 Table 4-31: Approach 2 Quantita

  • Page 241 and 242:

    1 2 3 4 5 6 7 8 9 Production data f

  • Page 243 and 244:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 245 and 246:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 247 and 248:

    1 2 3 4 5 6 7 8 9 The activity data

  • Page 249 and 250:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 251 and 252:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 253 and 254:

    1 2 3 4 5 6 7 8 9 The results of th

  • Page 255 and 256:

    2013 4.1 0.3 2014 5.0 0.3 1 2 3 4 5

  • Page 257 and 258:

    1 2 3 4 5 6 7 8 discussion of CO 2

  • Page 259 and 260:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 261 and 262:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 263 and 264:

    1 2 Table 4-56: Approach 2 Quantita

  • Page 265 and 266:

    1 3 4 5 6 7 8 9 10 11 12 13 14 15 1

  • Page 267 and 268:

    1 2 3 4 5 6 7 8 9 10 11 12 13 (i.e.

  • Page 269 and 270:

    1 Table 4-67: Material Carbon Conte

  • Page 271 and 272:

    1 2 Table 4-70: Production and Cons

  • Page 273 and 274:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 275 and 276:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 277 and 278:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 279 and 280:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 281 and 282:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 283 and 284:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 285 and 286:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 287 and 288:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 289 and 290:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 291 and 292:

    1 Table 4-89: CO2 Emissions from Zi

  • Page 293 and 294:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 295 and 296:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 297 and 298:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 299 and 300:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 301 and 302:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 303 and 304:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 305 and 306:

    1 2 3 4 5 6 7 8 9 10 11 4.23 Substi

  • Page 307 and 308:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 309 and 310:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 311 and 312:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 313 and 314:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 315 and 316:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 317 and 318:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 319 and 320:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 321 and 322:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 323 and 324:

    Graphic Arts + 0 0 0 0 0 0 Non-Indu

  • Page 325 and 326:

    1 2 3 4 5 6 7 8 9 5. Agriculture Ag

  • Page 327 and 328:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 329 and 330:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 331 and 332:

    Note that the relative uncertainty

  • Page 333 and 334:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 335 and 336:

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

  • Page 337 and 338:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 339 and 340:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 341 and 342:

    + Does not exceed 0.05 MMT CO2 Eq.

  • Page 343 and 344:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 345 and 346:

    1 2 3 4 5 6 7 8 9 subsequently conv

  • Page 347 and 348:

    1 2 3 4 5 6 7 8 9 Agricultural soil

  • Page 349 and 350:

    1 2 3 4 5 6 7 8 9 low in many parts

  • Page 351 and 352:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 353 and 354:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 355 and 356:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 357 and 358:

    1 2 3 4 5 6 7 8 9 10 methodology te

  • Page 359 and 360:

    1 Table 5-21: Emissions from Liming

  • Page 361 and 362:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 363 and 364:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 365 and 366:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 367 and 368:

    1 2 Table 5-32: Key Assumptions for

  • Page 369 and 370:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 371 and 372:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 373 and 374:

    Land Converted to Forest Land (92.0

  • Page 375 and 376:

    1 2 3 4 5 6 7 8 9 10 11 12 from LUL

  • Page 377 and 378:

    1 2 Table 6-7: Land Use and Land-Us

  • Page 379 and 380:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 381 and 382:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 383 and 384:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 385 and 386:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 387 and 388:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 389 and 390:

    1 2 Harvested wood products (HWP)

  • Page 391 and 392:

    1 2 Figure 6-2: Changes in Forest A

  • Page 393 and 394:

    Note: Forest C stocks do not includ

  • Page 395 and 396:

    1 2 3 4 in Table 6-13 include all m

  • Page 397 and 398:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 399 and 400:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 401 and 402:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 403 and 404:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 405 and 406:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 407 and 408:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 409 and 410:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 411 and 412:

    1 2 3 Total Aboveground Biomass Flu

  • Page 413 and 414:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ap

  • Page 415 and 416:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 417 and 418:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 419 and 420:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 421 and 422:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 423 and 424:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 425 and 426:

    1 2 3 4 5 6 C) from drainage and cu

  • Page 427 and 428:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 429 and 430:

    Belowground Live Biomass 2.3 2.0 2.

  • Page 431 and 432:

    1 2 Table 6-34: Net CO2 Flux from S

  • Page 433 and 434: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 435 and 436: 1 2 3 4 5 above the 2015 stock chan
  • Page 437 and 438: CH4 0.1 0.3 0.8 0.6 0.2 0.4 0.4 N2O
  • Page 439 and 440: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 441 and 442: Other Lands Converted Grassland Min
  • Page 443 and 444: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fo
  • Page 445 and 446: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 447 and 448: On-site 70 71 60 53 50 50 49 N2O (O
  • Page 449 and 450: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 451 and 452: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 453 and 454: 1 2 Table 6-51: Net CH4 Flux from V
  • Page 455 and 456: 1 2 3 Table 6-54: Approach 1 Quanti
  • Page 457 and 458: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 459 and 460: 1 2 3 4 result in cessation of emis
  • Page 461 and 462: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 463 and 464: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 465 and 466: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 467 and 468: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 469 and 470: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 471 and 472: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 473 and 474: New Mexico 70,608 52,250 12.0 0.263
  • Page 475 and 476: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 an
  • Page 477 and 478: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 479 and 480: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 481 and 482: C Storage Factor, Proportion of Ini
  • Page 483: 1 2 3 4 5 6 7 8 9 10 11 12 13 there
  • Page 487 and 488: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 489 and 490: 1 Table 7-2: Emissions from Waste (
  • Page 491 and 492: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 493 and 494: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 495 and 496: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 497 and 498: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 499 and 500: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 501 and 502: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 503 and 504: 1 2 3 4 5 6 7 8 9 10 Table 7-6 pres
  • Page 505 and 506: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 507 and 508: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 509 and 510: 2013 321 10,536 2014 323 10,613 201
  • Page 511 and 512: 1 2 3 4 5 6 7 8 9 %Plants a %Plants
  • Page 513 and 514: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 515 and 516: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 517 and 518: 1 2 Table 7-16: Approach 2 Quantita
  • Page 519 and 520: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 521 and 522: 1 2 3 4 5 6 7 8 9 10 EF i = emissio
  • Page 523 and 524: a Miscellaneous includes TSDFs (Tre
  • Page 525 and 526: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 527 and 528: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 529 and 530: Enteric Fermentation NC NC + NC + (
  • Page 531 and 532: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 533 and 534: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 535 and 536:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 537 and 538:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 539 and 540:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 541 and 542:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 543 and 544:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 545 and 546:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 547 and 548:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 549 and 550:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 551 and 552:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 553 and 554:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 555 and 556:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 557 and 558:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 559 and 560:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 561 and 562:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 563 and 564:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 565 and 566:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 567 and 568:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 569 and 570:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 571 and 572:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 573 and 574:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 575 and 576:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 577 and 578:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 579 and 580:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 581 and 582:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 583 and 584:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 585 and 586:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 587 and 588:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 589 and 590:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 591 and 592:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 593 and 594:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 595 and 596:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 597 and 598:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 599 and 600:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 601 and 602:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 603 and 604:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 605 and 606:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greenhouse Gas Emissions from U.S. Heavy-Duty Trucks
Building trust in greenhouse gas inventories from the United ... - WWF
Quality manual for the greenhouse gas inventory. Version 1.
D - Inventory of Greenhouse Gas Emissions - Abengoa
2009 Corporate Greenhouse Gas Emissions Inventory - the Town of ...
City of Richmond 2008 Greenhouse Gas Emissions Inventory
Use of Models and Facility-Level Data in Greenhouse Gas Inventories
Expert Meeting on Uncertainty and Validation of Emission Inventories
Greenhouse Gas Emissions from U.S. Agriculture and Forestry: A ...
Greenhouse Gas Emissions Inventory for Chapel Hill Street Lights ...
Inventory of New York City Greenhouse Gas Emissions - NYC.gov
Greenhouse Gas Emissions Inventory Report - Cal Poly Pomona
international maritime transport and greenhouse gas emissions - IMO
Aspen-Pitkin County Airport Greenhouse Gas Emissions Inventory ...
County of San Diego 2005/2006 Greenhouse Gas Emissions Inventory
Reducing U.S. Greenhouse Gas Emissions - Center for Climate and ...
GREENHOUSE GAS EMISSIONS - The Sallan Foundation
Greenhouse Gas Emissions from U.S. Transportation - Center for ...
Transportation's Role in Reducing U.S. Greenhouse Gas Emissions ...
National Greenhouse Gas Inventories - US Environmental ...
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS
Transportation's Role in Reducing U.S. Greenhouse Gas Emissions ...
Greenhouse Gas Emission Policies Is There a Way ... - Castalia
Evaluation of Greenhouse Gas Emissions from Septic ... - Geoflow
Greenhouse Gas Emissions from U.S. Transportation - Center for ...
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS