Views
1 year ago

DRAFT Inventory of U.S Greenhouse Gas Emissions and Sinks

2017_complete_report

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 7.1 Landfills (IPCC Source Category 5A1) In the United States, solid waste is managed by landfilling, recovery through recycling or composting, and combustion through waste-to-energy facilities (see Box 7-3). Disposing of solid waste in modern, managed landfills is the most commonly used waste management technique in the United States. More information on how solid waste data are collected and managed in the United States is provided in Box 7-2. The municipal solid waste (MSW) and industrial waste landfills referred to in this section are all modern landfills that must comply with a variety of regulations as discussed in Box 7-4. Disposing of waste in illegal dumping sites is not considered to have occurred in years later than 1980 and these sites are not considered to contribute to net emissions in this section for the timeframe of 1990 to the current Inventory year. MSW landfills, or sanitary landfills, are sites where MSW is managed to prevent or minimize health, safety, and environmental impacts. Waste is deposited in different cells and covered daily with soil; many have environmental monitoring systems to track performance, collect leachate, and collect landfill gas. Industrial waste landfills are constructed in a similar way as MSW landfills, but accept waste produced by industrial activity, such as factories, mills, and mines. After being placed in a landfill, organic waste (such as paper, food scraps, and yard trimmings) is initially decomposed by aerobic bacteria. After the oxygen has been depleted, the remaining waste is available for consumption by anaerobic bacteria, which break down organic matter into substances such as cellulose, amino acids, and sugars. These substances are further broken down through fermentation into gases and short-chain organic compounds that form the substrates for the growth of methanogenic bacteria. These methane (CH 4) producing anaerobic bacteria convert the fermentation products into stabilized organic materials and biogas consisting of approximately 50 percent biogenic carbon dioxide (CO 2) and 50 percent CH 4, by volume. Landfill biogas also contains trace amounts of non-methane organic compounds (NMOC) and volatile organic compounds (VOC) that either result from decomposition by-products or volatilization of biodegradable wastes (EPA 2008). Methane and CO 2 are the primary constituents of landfill gas generation and emissions. However, the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines set an international convention to not report biogenic CO 2 released due to landfill decomposition in the Waste sector (IPCC 2006). Carbon dioxide emissions from landfills are estimated and reported under the Land Use, Land-Use Change, and Forestry (LULUCF) sector. Additionally, emissions of NMOC and VOC are not estimated because they are considered to be emitted in trace amounts. Nitrous oxide (N 2O) emissions from the disposal and application of sewage sludge on landfills are also not explicitly modeled as part of greenhouse gas emissions from landfills. Nitrous oxide emissions from sewage sludge applied to landfills as a daily cover or for disposal are expected to be relatively small because the microbial environment in an anaerobic landfill is not very conducive to the nitrification and denitrification processes that result in N 2O emissions. Furthermore, the 2006 IPCC Guidelines did not include a methodology for estimating N 2O emissions from solid waste disposal sites “because they are not significant.” Therefore, only CH 4 generation and emissions are estimated for landfills under the Waste sector. Methane generation and emissions from landfills are a function of several factors, including: (1) the total amount of waste-in-place, which is the total waste landfilled annually over the operational lifetime of a landfill; (2) the characteristics of the landfill receiving waste (e.g., composition of waste-in-place, size, climate, cover material); (3) the amount of CH 4 that is recovered and either flared or used for energy purposes; and (4) the amount of CH 4 oxidized as the landfill gas – that is not collected by a gas collection system – passes through the cover material into the atmosphere. Each landfill has unique characteristics, but all managed landfills employ similar operating practices, including the application of a daily and intermediate cover material over the waste being disposed of in the landfill to prevent odor and reduce risks to public health. Based on recent literature, the specific type of cover material used can affect the rate of oxidation of landfill gas (RTI 2011). The most commonly used cover materials are soil, clay, and sand. Some states also permit the use of green waste, tarps, waste derived materials, sewage sludge or biosolids, and contaminated soil as a daily cover. Methane production typically begins within the first year after the waste is disposed of in a landfill and will continue for 10 to 60 years or longer as the degradable waste decomposes over time. In 2015, landfill CH 4 emissions were approximately 115.7 MMT CO 2 Eq. (4,628 kt), representing the third largest source of CH 4 emissions in the United States, behind natural gas systems and enteric fermentation. Emissions from MSW landfills accounted for approximately 95 percent of total landfill emissions, while industrial landfills accounted for the remainder. Estimates of operational MSW landfills in the United States have ranged from 1,900 to Waste 7-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 2,000 facilities (EPA 2016a; EPA 2016b; WBJ 2010). More recently, the Environment Research & Education Foundation conducted a nationwide analysis of MSW management, and counted 1,540 operational MSW landfills in 2013 (EREF 2016). Conversely, there are approximately 3,200 MSW landfills in the United States that have been closed since 1980 (for which a closure date is known) (EPA 2016a; WBJ 2010). While the number of active MSW landfills has decreased significantly over the past 20 years, from approximately 6,326 in 1990 to 1,540 in the 2013, the average landfill size has increased (EREF 2016; EPA 2016b; BioCycle 2010). While the exact number of active and closed industrial waste landfills exist in the United States, the number of them is relatively low compared to MSW landfills. The Waste Business Journal database (WBJ 2010) includes a total for 1,305 landfills accepting industrial and construction and demolition debris for 2010 (WBJ 2010). Only 176 facilities with industrial waste landfills met the reporting threshold under Subpart TT (Industrial Waste Landfills) of EPA’s Greenhouse Gas Reporting Program (GHGRP), indicating that there may be several hundreds of industrial waste landfills that are not required to report under EPA’s GHGRP. The annual amount of MSW generated and subsequently disposed in MSW landfills varies annually and depends on several factors (e.g., the economy, consumer patterns, recycling and composting programs, inclusion in a garbage collection service). The estimated annual quantity of waste placed in MSW landfills increased 10 percent from approximately 205.1 MMT in 1990 to 226.4 MMT in 2000 and then decreased by 11 percent to 203.4 MMT in 2015 (see Annex 3.14). The total amount of MSW generated is expected to increase as the U.S. population continues to grow, but the percentage of waste landfilled may decline due to increased recycling and composting practices. The estimated quantity of waste placed in industrial waste landfills (from the pulp and paper, and food processing sectors) has remained relatively steady since 1990, ranging from 9.7 MMT in 1990 to 10.5 MMT in 2015. Net CH 4 emissions from MSW landfills have decreased since 1990. In 1990, approximately 0.7 MMT of CH 4 were recovered and combusted from landfills (see Table 7-4), while in 2015, approximately 7.4 MMT of CH 4 were recovered and combusted, representing an average annual increase in the quantity of CH 4 recovered and combusted at MSW landfills from 1990 to 2015 of 11 percent (see Annex 3.14). The decreasing trend since the 1990s can be mostly attributed to increased use of gas collection and control systems, and a reduction of decomposable materials (i.e., paper and paperboard, food scraps, and yard trimmings) discarded in MSW landfills over the time series. The quantity of recovered CH 4 that is collected and either flared or used for energy purposes at MSW landfills has continually increased as a result of 1996 federal regulations that require large MSW landfills to collect and combust landfill gas (see 40 CFR Part 60, Subpart Cc 2005 and 40 CFR Part 60, Subpart WWW 2005). Voluntary programs that encourage CH 4 recovery and beneficial reuse, such as EPA’s Landfill Methane Outreach Program (LMOP) and federal and state incentives that promote renewable energy (e.g., tax credits, low interest loans, and Renewable Portfolio Standards), have also contributed to increased interest in landfill gas collection and control. In 2015, an estimated 11 new landfill gas-to-energy (LFGTE) projects (EPA 2016a) began operation. While the amount of landfill gas collected and combusted continues to increase, the rate of increase in collection and combustion no longer exceeds the rate of additional CH 4 generation from the amount of organic MSW landfilled as the U.S. population grows. Landfill gas collection and control is not accounted for at industrial waste landfills in this chapter (see the Methodology discussion for more information). Table 7-3: CH4 Emissions from Landfills (MMT CO2 Eq.) Activity 1990 2005 2011 2012 2013 2014 2015 MSW CH4 Generation 205.3 - - - - - - Industrial CH4 Generation 12.1 15.9 16.4 16.5 16.5 16.6 16.6 MSW CH4 Recovered (17.9) - - - - - - MSW CH4 Oxidized (18.7) - - - - - - Industrial CH4 Oxidized (1.2) (1.6) (1.6) (1.6) (1.7) (1.7) (1.7) MSW net CH4 Emissions (GHGRP) - 120.0 104.2 106.0 101.9 101.7 100.8 Total 179.6 134.3 119.0 120.8 116.7 116.6 115.7 Notes: Totals may not sum due to independent rounding. For years 1990 to 2004, the Inventory methodology uses the first order decay methodology. A methodological change occurs in year 2005. For years 2005 to 2015, net CH4 emissions from EPA’s GHGRP data are used. These data incorporate CH4 recovered and oxidized. Parentheses indicate negative values. 7-4 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015

  • Page 1 and 2:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 EP

  • Page 3 and 4:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 5 and 6:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 7 and 8:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 9 and 10:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 11 and 12:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 13 and 14:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 15 and 16:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 17 and 18:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 19 and 20:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 21 and 22:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 23 and 24:

    1 2 3 4 5 6 7 8 9 10 11 12 Box 6-2:

  • Page 25 and 26:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 27 and 28:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 29 and 30:

    Residential 338.3 357.8 325.5 282.5

  • Page 31 and 32:

    e LULUCF C Stock Change is the net

  • Page 33 and 34:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 35 and 36:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 37 and 38:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 39 and 40:

    1 2 3 4 5 6 irreversible accumulati

  • Page 41 and 42:

    Substitution of Ozone Depleting Sub

  • Page 43 and 44:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 45 and 46:

    Forest Land Remaining Forest Land:

  • Page 47 and 48:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 49 and 50:

    1 2 3 Figure ES-15: U.S. Greenhouse

  • Page 51 and 52:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 53 and 54:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 55 and 56:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 57 and 58:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 59 and 60:

    1 2 3 4 5 only days to weeks, their

  • Page 61 and 62:

    1 2 3 4 informational purposes, emi

  • Page 63 and 64:

    1 Figure 1-1: National Inventory Ar

  • Page 65 and 66:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 67 and 68:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 69 and 70:

    N2O Emissions from Adipic Acid Prod

  • Page 71 and 72:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 73 and 74:

    a Emission estimates reported in th

  • Page 75 and 76:

    1 3.10. Methodology for Estimating

  • Page 77 and 78:

    1 2 Figure 2-2: Annual Percent Chan

  • Page 79 and 80:

    1 2 3 4 5 6 7 8 gas for electricity

  • Page 81 and 82:

    a Emissions from Wood Biomass and E

  • Page 83 and 84:

    Electrical Transmission and Distrib

  • Page 85 and 86:

    Wetlands (4.0) (5.3) (4.1) (4.2) (4

  • Page 87 and 88:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 89 and 90:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 91 and 92:

    CH4 0.3 0.1 0.1 0.1 0.1 0.2 0.2 Pet

  • Page 93 and 94:

    1 Table 2-7: Emissions from Agricul

  • Page 95 and 96:

    1 2 Table 2-8: U.S. Greenhouse Gas

  • Page 97 and 98:

    1 2 3 4 Overall, in 2015, waste act

  • Page 99 and 100:

    Cement Production 33.3 45.9 32.0 35

  • Page 101 and 102:

    Total 1,862.5 2,441.6 2,197.3 2,059

  • Page 103 and 104:

    Total Emissions 6,366.7 7,315.6 6,7

  • Page 105 and 106:

    N2O 1.0 1.2 1.1 1.0 1.1 1.1 1.1 Oth

  • Page 107 and 108:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 109 and 110:

    1 2 3 4 5 6 7 8 atmospheric sink fo

  • Page 111 and 112:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 113 and 114:

    International Bunker Fuels a 0.2 0.

  • Page 115 and 116:

    1 Table 3-4: CO2, CH4, and N2O Emis

  • Page 117 and 118:

    1 Figure 3-3: 2015 U.S. Energy Cons

  • Page 119 and 120:

    1 2 Figure 3-6: Annual Deviations f

  • Page 121 and 122:

    U.S. Territories a 28.0 50.1 41.7 4

  • Page 123 and 124:

    Fuel Oil 27.2 45.6 36.7 37.6 37.1 3

  • Page 125 and 126:

    1 Figure 3-9: Electricity Generatio

  • Page 127 and 128:

    1 Figure 3-11: Industrial Productio

  • Page 129 and 130:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 131 and 132:

    1 Figure 3-13: Sales of New Passeng

  • Page 133 and 134:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 135 and 136:

    Medium- and Heavy-Duty 0.5 0.9 0.7

  • Page 137 and 138:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 139 and 140:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 141 and 142:

    1 2 Figure 3-15: U.S. Energy Consum

  • Page 143 and 144:

    Coal b 1,653.7 1,596.3 1,809.1 -3%

  • Page 145 and 146:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 147 and 148:

    1 2 Table 3-17: Approach 2 Quantita

  • Page 149 and 150:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 151 and 152:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 153 and 154:

    1 Table 3-20: Adjusted Consumption

  • Page 155 and 156:

    1 2 3 4 percent above the 2014 emis

  • Page 157 and 158:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 159 and 160:

    Gas/Waste Product 1990 2005 2011 20

  • Page 161 and 162:

    1 2 3 4 5 6 7 8 9 10 11 12 13 waste

  • Page 163 and 164:

    1 2 3 4 5 due to the higher CH 4 co

  • Page 165 and 166:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 167 and 168:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 169 and 170:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 171 and 172:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 173 and 174:

    Activity 1990 2005 2011 2012 2013 2

  • Page 175 and 176:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 177 and 178:

    1 2 3 4 5 6 7 8 approach over the t

  • Page 179 and 180:

    Previous Estimated Emissions from S

  • Page 181 and 182:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 183 and 184:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 185 and 186:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 187 and 188:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 189 and 190:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 191 and 192:

    Emissions (w/o Plunger) (MT) 372,28

  • Page 193 and 194:

    Reciprocating Compressors 64,413 64

  • Page 195 and 196:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 197 and 198:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 199 and 200:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 201 and 202:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 203 and 204:

    1 Table 3-72: Woody Biomass Consump

  • Page 205 and 206:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 207 and 208:

    CO2 206.8 189.9 172.9 169.6 171.5 1

  • Page 209 and 210:

    SF6 1 1 + + + + + Electrical Transm

  • Page 211 and 212:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 213 and 214:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 215 and 216:

    2012 13.8 13,785 2013 14.0 14,028 2

  • Page 217 and 218:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 219 and 220:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 221 and 222:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 223 and 224:

    1 2 3 MMT CO 2 Eq. (10,828 kt) (see

  • Page 225 and 226:

    1 2 3 4 5 6 7 8 9 10 11 12 consumed

  • Page 227 and 228:

    1 Table 4-19: CO2 Emissions from Am

  • Page 229 and 230:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 231 and 232:

    1 Table 4-24: Urea Production, Urea

  • Page 233 and 234:

    2012 10.5 35 2013 10.7 36 2014 10.9

  • Page 235 and 236:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 237 and 238:

    2015 4.3 14 1 2 3 4 5 6 7 8 9 10 11

  • Page 239 and 240:

    1 2 Table 4-31: Approach 2 Quantita

  • Page 241 and 242:

    1 2 3 4 5 6 7 8 9 Production data f

  • Page 243 and 244:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 245 and 246:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 247 and 248:

    1 2 3 4 5 6 7 8 9 The activity data

  • Page 249 and 250:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 251 and 252:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 253 and 254:

    1 2 3 4 5 6 7 8 9 The results of th

  • Page 255 and 256:

    2013 4.1 0.3 2014 5.0 0.3 1 2 3 4 5

  • Page 257 and 258:

    1 2 3 4 5 6 7 8 discussion of CO 2

  • Page 259 and 260:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 261 and 262:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 263 and 264:

    1 2 Table 4-56: Approach 2 Quantita

  • Page 265 and 266:

    1 3 4 5 6 7 8 9 10 11 12 13 14 15 1

  • Page 267 and 268:

    1 2 3 4 5 6 7 8 9 10 11 12 13 (i.e.

  • Page 269 and 270:

    1 Table 4-67: Material Carbon Conte

  • Page 271 and 272:

    1 2 Table 4-70: Production and Cons

  • Page 273 and 274:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 275 and 276:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 277 and 278:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 279 and 280:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 281 and 282:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 283 and 284:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 285 and 286:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 287 and 288:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 289 and 290:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 291 and 292:

    1 Table 4-89: CO2 Emissions from Zi

  • Page 293 and 294:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 295 and 296:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 297 and 298:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 299 and 300:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 301 and 302:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 303 and 304:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 305 and 306:

    1 2 3 4 5 6 7 8 9 10 11 4.23 Substi

  • Page 307 and 308:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 309 and 310:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 311 and 312:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 313 and 314:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 315 and 316:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 317 and 318:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 319 and 320:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 321 and 322:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 323 and 324:

    Graphic Arts + 0 0 0 0 0 0 Non-Indu

  • Page 325 and 326:

    1 2 3 4 5 6 7 8 9 5. Agriculture Ag

  • Page 327 and 328:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 329 and 330:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 331 and 332:

    Note that the relative uncertainty

  • Page 333 and 334:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 335 and 336:

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

  • Page 337 and 338:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 339 and 340:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 341 and 342:

    + Does not exceed 0.05 MMT CO2 Eq.

  • Page 343 and 344:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 345 and 346:

    1 2 3 4 5 6 7 8 9 subsequently conv

  • Page 347 and 348:

    1 2 3 4 5 6 7 8 9 Agricultural soil

  • Page 349 and 350:

    1 2 3 4 5 6 7 8 9 low in many parts

  • Page 351 and 352:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 353 and 354:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 355 and 356:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 357 and 358:

    1 2 3 4 5 6 7 8 9 10 methodology te

  • Page 359 and 360:

    1 Table 5-21: Emissions from Liming

  • Page 361 and 362:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 363 and 364:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 365 and 366:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 367 and 368:

    1 2 Table 5-32: Key Assumptions for

  • Page 369 and 370:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 371 and 372:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 373 and 374:

    Land Converted to Forest Land (92.0

  • Page 375 and 376:

    1 2 3 4 5 6 7 8 9 10 11 12 from LUL

  • Page 377 and 378:

    1 2 Table 6-7: Land Use and Land-Us

  • Page 379 and 380:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 381 and 382:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 383 and 384:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 385 and 386:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 387 and 388:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 389 and 390:

    1 2 Harvested wood products (HWP)

  • Page 391 and 392:

    1 2 Figure 6-2: Changes in Forest A

  • Page 393 and 394:

    Note: Forest C stocks do not includ

  • Page 395 and 396:

    1 2 3 4 in Table 6-13 include all m

  • Page 397 and 398:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 399 and 400:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 401 and 402:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 403 and 404:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 405 and 406:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 407 and 408:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 409 and 410:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 411 and 412:

    1 2 3 Total Aboveground Biomass Flu

  • Page 413 and 414:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ap

  • Page 415 and 416:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 417 and 418:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 419 and 420:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 421 and 422:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 423 and 424:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 425 and 426:

    1 2 3 4 5 6 C) from drainage and cu

  • Page 427 and 428:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 429 and 430:

    Belowground Live Biomass 2.3 2.0 2.

  • Page 431 and 432:

    1 2 Table 6-34: Net CO2 Flux from S

  • Page 433 and 434:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 435 and 436:

    1 2 3 4 5 above the 2015 stock chan

  • Page 437 and 438:

    CH4 0.1 0.3 0.8 0.6 0.2 0.4 0.4 N2O

  • Page 439 and 440: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 441 and 442: Other Lands Converted Grassland Min
  • Page 443 and 444: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fo
  • Page 445 and 446: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 447 and 448: On-site 70 71 60 53 50 50 49 N2O (O
  • Page 449 and 450: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 451 and 452: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 453 and 454: 1 2 Table 6-51: Net CH4 Flux from V
  • Page 455 and 456: 1 2 3 Table 6-54: Approach 1 Quanti
  • Page 457 and 458: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 459 and 460: 1 2 3 4 result in cessation of emis
  • Page 461 and 462: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 463 and 464: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 465 and 466: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 467 and 468: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 469 and 470: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 471 and 472: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 473 and 474: New Mexico 70,608 52,250 12.0 0.263
  • Page 475 and 476: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 an
  • Page 477 and 478: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 479 and 480: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 481 and 482: C Storage Factor, Proportion of Ini
  • Page 483 and 484: 1 2 3 4 5 6 7 8 9 10 11 12 13 there
  • Page 485 and 486: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 487 and 488: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 489: 1 Table 7-2: Emissions from Waste (
  • Page 493 and 494: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 495 and 496: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 497 and 498: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 499 and 500: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 501 and 502: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 503 and 504: 1 2 3 4 5 6 7 8 9 10 Table 7-6 pres
  • Page 505 and 506: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 507 and 508: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 509 and 510: 2013 321 10,536 2014 323 10,613 201
  • Page 511 and 512: 1 2 3 4 5 6 7 8 9 %Plants a %Plants
  • Page 513 and 514: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 515 and 516: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 517 and 518: 1 2 Table 7-16: Approach 2 Quantita
  • Page 519 and 520: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 521 and 522: 1 2 3 4 5 6 7 8 9 10 EF i = emissio
  • Page 523 and 524: a Miscellaneous includes TSDFs (Tre
  • Page 525 and 526: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 527 and 528: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 529 and 530: Enteric Fermentation NC NC + NC + (
  • Page 531 and 532: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 533 and 534: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 535 and 536: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 537 and 538: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 539 and 540: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 541 and 542:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 543 and 544:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 545 and 546:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 547 and 548:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 549 and 550:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 551 and 552:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 553 and 554:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 555 and 556:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 557 and 558:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 559 and 560:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 561 and 562:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 563 and 564:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 565 and 566:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 567 and 568:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 569 and 570:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 571 and 572:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 573 and 574:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 575 and 576:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 577 and 578:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 579 and 580:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 581 and 582:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 583 and 584:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 585 and 586:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 587 and 588:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 589 and 590:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 591 and 592:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 593 and 594:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 595 and 596:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 597 and 598:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 599 and 600:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 601 and 602:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 603 and 604:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 605 and 606:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greenhouse Gas Emissions from U.S. Heavy-Duty Trucks
2009 Corporate Greenhouse Gas Emissions Inventory - the Town of ...
Building trust in greenhouse gas inventories from the United ... - WWF
Greenhouse Gas Emissions from U.S. Agriculture and Forestry: A ...
Greenhouse Gas Emissions Inventory Report - Cal Poly Pomona
City of Richmond 2008 Greenhouse Gas Emissions Inventory
Expert Meeting on Uncertainty and Validation of Emission Inventories
Transportation's Role in Reducing U.S. Greenhouse Gas Emissions ...
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS
Reducing U.S. Greenhouse Gas Emissions - Center for Climate and ...
Quality manual for the greenhouse gas inventory. Version 1.
Greenhouse Gas Inventory Municipal Government - City of Clearwater
D - Inventory of Greenhouse Gas Emissions - Abengoa
GHG Inventory in Myanmar: INC Report - GIO Greenhouse Gas ...
fairbanks north star borough baseline greenhouse gas emissions ...
Transportation's Role in Reducing U.S. Greenhouse Gas Emissions ...
Use of Models and Facility-Level Data in Greenhouse Gas Inventories
Trans-boundary Greenhouse Gas Emissions Accounting for Cities
Inventory of New York City Greenhouse Gas Emissions - NYC.gov
Greenhouse gas emission trends and projections in Europe 2007
Propane Reduces Greenhouse Gas Emissions: A Comparative ...
SO , NO Emission Inventory in Korea
County of San Diego 2005/2006 Greenhouse Gas Emissions Inventory
Aspen-Pitkin County Airport Greenhouse Gas Emissions Inventory ...
Greenhouse Gas Emissions Inventory for Chapel Hill Street Lights ...
international maritime transport and greenhouse gas emissions - IMO
Third IMO Greenhouse Gas Study 2014
Annual Danish informative inventory report to UNECE. Emission ...
Greenhouse Gas Emissions from Biofuels: How Land Use Change ...