Views
1 year ago

DRAFT Inventory of U.S Greenhouse Gas Emissions and Sinks

2017_complete_report

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 the average BOD concentrations in raw wastewater was estimated to be 0.4 gram BOD/liter (EPA 1997b; EPA 1993b; World Bank 1999). The COD:BOD ratio used to convert the organic loading to COD for pulp and paper mills was 2 (EPA 1997a). Meat and Poultry Processing. The meat and poultry processing industry makes extensive use of anaerobic lagoons in sequence with screening, fat traps, and dissolved air flotation when treating wastewater on site. About 33 percent of meat processing operations (EPA 2002) and 25 percent of poultry processing operations (U.S. Poultry 2006) perform on-site treatment in anaerobic lagoons. The IPCC default B o of 0.25 kg CH 4/kg COD and default MCF of 0.8 for anaerobic lagoons were used to estimate the CH 4 produced from these on-site treatment systems. Production data, in carcass weight and live weight killed for the meat and poultry industry, were obtained from the USDA Agricultural Statistics Database and the Agricultural Statistics Annual Reports (USDA 2016a). Data collected by EPA’s Office of Water provided estimates for wastewater flows into anaerobic lagoons: 5.3 and 12.5 m 3 /metric ton for meat and poultry production (live weight killed), respectively (EPA 2002). The loadings are 2.8 and 1.5 g BOD/liter for meat and poultry, respectively. The COD:BOD ratio used to convert the organic loading to COD for both meat and poultry facilities was 3 (EPA 1997a). Vegetables, Fruits, and Juices Processing. Treatment of wastewater from fruits, vegetables, and juices processing includes screening, coagulation/settling, and biological treatment (lagooning). The flows are frequently seasonal, and robust treatment systems are preferred for on-site treatment. Effluent is suitable for discharge to the sewer. This industry is likely to use lagoons intended for aerobic operation, but the large seasonal loadings may develop limited anaerobic zones. In addition, some anaerobic lagoons may also be used (Nemerow and Dasgupta 1991). Consequently, 4.2 percent of these wastewater organics are assumed to degrade anaerobically. The IPCC default B o of 0.25 kg CH 4/kg COD and default MCF of 0.8 for anaerobic treatment were used to estimate the CH 4 produced from these on-site treatment systems. The USDA National Agricultural Statistics Service (USDA 2016a) provided production data for potatoes, other vegetables, citrus fruit, non-citrus fruit, and grapes processed for wine. Outflow and BOD data, presented in Table 7-14, were obtained from EPA (1974) for potato, citrus fruit, and apple processing, and from EPA (1975) for all other commodities. The COD:BOD ratio used to convert the organic loading to COD for all fruit, vegetable, and juice facilities was 1.5 (EPA 1997a). Table 7-14: Wastewater Flow (m 3 /ton) and BOD Production (g/L) for U.S. Vegetables, Fruits, and Juices Production Commodity Wastewater Outflow (m 3 /ton) BOD (g/L) Vegetables Potatoes 10.27 1.765 Other Vegetables 8.60 0.784 Fruit Apples 3.66 1.371 Citrus Fruits 10.11 0.317 Non-citrus Fruits 12.42 1.204 Grapes (for wine) 2.78 1.831 Sources: EPA (1974); EPA (1975). 29 30 31 32 33 34 35 36 37 38 39 40 41 Ethanol Production. Ethanol, or ethyl alcohol, is produced primarily for use as a fuel component, but is also used in industrial applications and in the manufacture of beverage alcohol. Ethanol can be produced from the fermentation of sugar-based feedstocks (e.g., molasses and beets), starch- or grain-based feedstocks (e.g., corn, sorghum, and beverage waste), and cellulosic biomass feedstocks (e.g., agricultural wastes, wood, and bagasse). Ethanol can also be produced synthetically from ethylene or hydrogen and carbon monoxide. However, synthetic ethanol comprises only about 2 percent of ethanol production, and although the U.S. Department of Energy (DOE) predicts cellulosic ethanol to greatly increase in the coming years, currently it is only in an experimental stage in the United States. Currently, ethanol is mostly made from sugar and starch crops, but with advances in technology, cellulosic biomass is increasingly used as ethanol feedstock (DOE 2013). Ethanol is produced from corn (or other starch-based feedstocks) primarily by two methods: wet milling and dry milling. Historically, the majority of ethanol was produced by the wet milling process, but now the majority is produced by the dry milling process. The dry milling process is cheaper to implement, and has become more efficient in recent years (Rendleman and Shapouri 2007). The wastewater generated at ethanol production facilities Waste 7-25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 is handled in a variety of ways. Dry milling facilities often combine the resulting evaporator condensate with other process wastewaters, such as equipment wash water, scrubber water, and boiler blowdown and anaerobically treat this wastewater using various types of digesters. Wet milling facilities often treat their steepwater condensate in anaerobic systems followed by aerobic polishing systems. Wet milling facilities may treat the stillage (or processed stillage) from the ethanol fermentation/distillation process separately or together with steepwater and/or wash water. Methane generated in anaerobic digesters is commonly collected and either flared or used as fuel in the ethanol production process (ERG 2006). Available information was compiled from the industry on wastewater generation rates, which ranged from 1.25 gallons per gallon ethanol produced (for dry milling) to 10 gallons per gallon ethanol produced (for wet milling) (Ruocco 2006a; Ruocco 2006b; Merrick 1998; Donovan 1996; NRBP 2001). COD concentrations were also found to be about 3 g/L (Ruocco 2006a; Merrick 1998; White and Johnson 2003). One hundred percent of plants were estimated to have onsite wastewater treatment, and the variables used to calculate percent wastewater treated anaerobically are presented in Table 7-13. A default MCF of 0.8 for anaerobic treatment was used to estimate the CH 4 produced from these on-site treatment systems. The amount of CH 4 recovered through the use of biomethanators was estimated, and a 99 percent destruction efficiency was used. Biomethanators are anaerobic reactors that use microorganisms under anaerobic conditions to reduce COD and organic acids and recover biogas from wastewater (ERG 2006). Methane emissions were then estimated as follows: Methane = [Production × Flow × COD × 3.785 × ([%Plantso × %WWa,p × %CODp] + [%Plantsa × %WWa,s × %CODs] + [%Plantst × %WWa,t × %CODs]) × Bo × MCF × % Not Recovered] + [Production × Flow × 3.785 × COD × ([%Plantso × %WWa,p × %CODp] + [%Plantsa × %WWa,s × %CODs] + [%Plantst × %WWa,t × %CODs]) × Bo × MCF × (% Recovered) × (1-DE)] × 1/10 9 where, Production = Gallons ethanol produced (wet milling or dry milling) Flow = Gallons wastewater generated per gallon ethanol produced COD = COD concentration in influent (g/l) 3.785 = Conversion factor, gallons to liters %Plants o = Percent of plants with onsite treatment %WW a,p = Percent of wastewater treated anaerobically in primary treatment %COD p = Percent of COD entering primary treatment %Plants a = Percent of plants with anaerobic secondary treatment %Plants t = Percent of plants with other secondary treatment %WW a,s = Percent of wastewater treated anaerobically in anaerobic secondary treatment %WW a,t = Percent of wastewater treated anaerobically in other secondary treatment %COD s = Percent of COD entering secondary treatment B o = Maximum methane producing capacity (g CH 4/g COD) MCF = Methane conversion factor % Recovered = Percent of wastewater treated in system with emission recovery % Not Recovered = 1 - percent of wastewater treated in system with emission recovery DE = Destruction efficiency of recovery system 1/10 9 = Conversion factor, g to kt A time series of CH 4 emissions for 1990 through 2015 was developed based on production data from the Renewable Fuels Association (Cooper 2016). Petroleum Refining. Petroleum refining wastewater treatment operations have the potential to produce CH 4 emissions from anaerobic wastewater treatment. EPA’s Office of Air and Radiation performed an Information Collection Request (ICR) for petroleum refineries in 2011. 6 Of the responding facilities, 23.6 percent reported using non-aerated surface impoundments or other biological treatment units, both of which have the potential to lead to anaerobic conditions (ERG 2013b). In addition, the wastewater generation rate was determined to be 26.4 gallons 6 See . 7-26 DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015

  • Page 1 and 2:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 EP

  • Page 3 and 4:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 5 and 6:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 7 and 8:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 9 and 10:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 11 and 12:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 13 and 14:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 15 and 16:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 17 and 18:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 19 and 20:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 21 and 22:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 23 and 24:

    1 2 3 4 5 6 7 8 9 10 11 12 Box 6-2:

  • Page 25 and 26:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 27 and 28:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 29 and 30:

    Residential 338.3 357.8 325.5 282.5

  • Page 31 and 32:

    e LULUCF C Stock Change is the net

  • Page 33 and 34:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 35 and 36:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 37 and 38:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 39 and 40:

    1 2 3 4 5 6 irreversible accumulati

  • Page 41 and 42:

    Substitution of Ozone Depleting Sub

  • Page 43 and 44:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 45 and 46:

    Forest Land Remaining Forest Land:

  • Page 47 and 48:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 49 and 50:

    1 2 3 Figure ES-15: U.S. Greenhouse

  • Page 51 and 52:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 53 and 54:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 55 and 56:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 57 and 58:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 59 and 60:

    1 2 3 4 5 only days to weeks, their

  • Page 61 and 62:

    1 2 3 4 informational purposes, emi

  • Page 63 and 64:

    1 Figure 1-1: National Inventory Ar

  • Page 65 and 66:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 67 and 68:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 69 and 70:

    N2O Emissions from Adipic Acid Prod

  • Page 71 and 72:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 73 and 74:

    a Emission estimates reported in th

  • Page 75 and 76:

    1 3.10. Methodology for Estimating

  • Page 77 and 78:

    1 2 Figure 2-2: Annual Percent Chan

  • Page 79 and 80:

    1 2 3 4 5 6 7 8 gas for electricity

  • Page 81 and 82:

    a Emissions from Wood Biomass and E

  • Page 83 and 84:

    Electrical Transmission and Distrib

  • Page 85 and 86:

    Wetlands (4.0) (5.3) (4.1) (4.2) (4

  • Page 87 and 88:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 89 and 90:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 91 and 92:

    CH4 0.3 0.1 0.1 0.1 0.1 0.2 0.2 Pet

  • Page 93 and 94:

    1 Table 2-7: Emissions from Agricul

  • Page 95 and 96:

    1 2 Table 2-8: U.S. Greenhouse Gas

  • Page 97 and 98:

    1 2 3 4 Overall, in 2015, waste act

  • Page 99 and 100:

    Cement Production 33.3 45.9 32.0 35

  • Page 101 and 102:

    Total 1,862.5 2,441.6 2,197.3 2,059

  • Page 103 and 104:

    Total Emissions 6,366.7 7,315.6 6,7

  • Page 105 and 106:

    N2O 1.0 1.2 1.1 1.0 1.1 1.1 1.1 Oth

  • Page 107 and 108:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 109 and 110:

    1 2 3 4 5 6 7 8 atmospheric sink fo

  • Page 111 and 112:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 113 and 114:

    International Bunker Fuels a 0.2 0.

  • Page 115 and 116:

    1 Table 3-4: CO2, CH4, and N2O Emis

  • Page 117 and 118:

    1 Figure 3-3: 2015 U.S. Energy Cons

  • Page 119 and 120:

    1 2 Figure 3-6: Annual Deviations f

  • Page 121 and 122:

    U.S. Territories a 28.0 50.1 41.7 4

  • Page 123 and 124:

    Fuel Oil 27.2 45.6 36.7 37.6 37.1 3

  • Page 125 and 126:

    1 Figure 3-9: Electricity Generatio

  • Page 127 and 128:

    1 Figure 3-11: Industrial Productio

  • Page 129 and 130:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 131 and 132:

    1 Figure 3-13: Sales of New Passeng

  • Page 133 and 134:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 135 and 136:

    Medium- and Heavy-Duty 0.5 0.9 0.7

  • Page 137 and 138:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 139 and 140:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 141 and 142:

    1 2 Figure 3-15: U.S. Energy Consum

  • Page 143 and 144:

    Coal b 1,653.7 1,596.3 1,809.1 -3%

  • Page 145 and 146:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 147 and 148:

    1 2 Table 3-17: Approach 2 Quantita

  • Page 149 and 150:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 151 and 152:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 153 and 154:

    1 Table 3-20: Adjusted Consumption

  • Page 155 and 156:

    1 2 3 4 percent above the 2014 emis

  • Page 157 and 158:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 159 and 160:

    Gas/Waste Product 1990 2005 2011 20

  • Page 161 and 162:

    1 2 3 4 5 6 7 8 9 10 11 12 13 waste

  • Page 163 and 164:

    1 2 3 4 5 due to the higher CH 4 co

  • Page 165 and 166:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 167 and 168:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 169 and 170:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 171 and 172:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 173 and 174:

    Activity 1990 2005 2011 2012 2013 2

  • Page 175 and 176:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 177 and 178:

    1 2 3 4 5 6 7 8 approach over the t

  • Page 179 and 180:

    Previous Estimated Emissions from S

  • Page 181 and 182:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 183 and 184:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 185 and 186:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 187 and 188:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 189 and 190:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 191 and 192:

    Emissions (w/o Plunger) (MT) 372,28

  • Page 193 and 194:

    Reciprocating Compressors 64,413 64

  • Page 195 and 196:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 197 and 198:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 199 and 200:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 201 and 202:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 203 and 204:

    1 Table 3-72: Woody Biomass Consump

  • Page 205 and 206:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 207 and 208:

    CO2 206.8 189.9 172.9 169.6 171.5 1

  • Page 209 and 210:

    SF6 1 1 + + + + + Electrical Transm

  • Page 211 and 212:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 213 and 214:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 215 and 216:

    2012 13.8 13,785 2013 14.0 14,028 2

  • Page 217 and 218:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 219 and 220:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 221 and 222:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 223 and 224:

    1 2 3 MMT CO 2 Eq. (10,828 kt) (see

  • Page 225 and 226:

    1 2 3 4 5 6 7 8 9 10 11 12 consumed

  • Page 227 and 228:

    1 Table 4-19: CO2 Emissions from Am

  • Page 229 and 230:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 231 and 232:

    1 Table 4-24: Urea Production, Urea

  • Page 233 and 234:

    2012 10.5 35 2013 10.7 36 2014 10.9

  • Page 235 and 236:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 237 and 238:

    2015 4.3 14 1 2 3 4 5 6 7 8 9 10 11

  • Page 239 and 240:

    1 2 Table 4-31: Approach 2 Quantita

  • Page 241 and 242:

    1 2 3 4 5 6 7 8 9 Production data f

  • Page 243 and 244:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 245 and 246:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 247 and 248:

    1 2 3 4 5 6 7 8 9 The activity data

  • Page 249 and 250:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 251 and 252:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 253 and 254:

    1 2 3 4 5 6 7 8 9 The results of th

  • Page 255 and 256:

    2013 4.1 0.3 2014 5.0 0.3 1 2 3 4 5

  • Page 257 and 258:

    1 2 3 4 5 6 7 8 discussion of CO 2

  • Page 259 and 260:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 261 and 262:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 263 and 264:

    1 2 Table 4-56: Approach 2 Quantita

  • Page 265 and 266:

    1 3 4 5 6 7 8 9 10 11 12 13 14 15 1

  • Page 267 and 268:

    1 2 3 4 5 6 7 8 9 10 11 12 13 (i.e.

  • Page 269 and 270:

    1 Table 4-67: Material Carbon Conte

  • Page 271 and 272:

    1 2 Table 4-70: Production and Cons

  • Page 273 and 274:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 275 and 276:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 277 and 278:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 279 and 280:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 281 and 282:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 283 and 284:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 285 and 286:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 287 and 288:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 289 and 290:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 291 and 292:

    1 Table 4-89: CO2 Emissions from Zi

  • Page 293 and 294:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 295 and 296:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 297 and 298:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 299 and 300:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 301 and 302:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 303 and 304:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 305 and 306:

    1 2 3 4 5 6 7 8 9 10 11 4.23 Substi

  • Page 307 and 308:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 309 and 310:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 311 and 312:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 313 and 314:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 315 and 316:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 317 and 318:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 319 and 320:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 321 and 322:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 323 and 324:

    Graphic Arts + 0 0 0 0 0 0 Non-Indu

  • Page 325 and 326:

    1 2 3 4 5 6 7 8 9 5. Agriculture Ag

  • Page 327 and 328:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 329 and 330:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 331 and 332:

    Note that the relative uncertainty

  • Page 333 and 334:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 335 and 336:

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

  • Page 337 and 338:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 339 and 340:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 341 and 342:

    + Does not exceed 0.05 MMT CO2 Eq.

  • Page 343 and 344:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 345 and 346:

    1 2 3 4 5 6 7 8 9 subsequently conv

  • Page 347 and 348:

    1 2 3 4 5 6 7 8 9 Agricultural soil

  • Page 349 and 350:

    1 2 3 4 5 6 7 8 9 low in many parts

  • Page 351 and 352:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 353 and 354:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 355 and 356:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 357 and 358:

    1 2 3 4 5 6 7 8 9 10 methodology te

  • Page 359 and 360:

    1 Table 5-21: Emissions from Liming

  • Page 361 and 362:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 363 and 364:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 365 and 366:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 367 and 368:

    1 2 Table 5-32: Key Assumptions for

  • Page 369 and 370:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 371 and 372:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 373 and 374:

    Land Converted to Forest Land (92.0

  • Page 375 and 376:

    1 2 3 4 5 6 7 8 9 10 11 12 from LUL

  • Page 377 and 378:

    1 2 Table 6-7: Land Use and Land-Us

  • Page 379 and 380:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 381 and 382:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 383 and 384:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 385 and 386:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 387 and 388:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 389 and 390:

    1 2 Harvested wood products (HWP)

  • Page 391 and 392:

    1 2 Figure 6-2: Changes in Forest A

  • Page 393 and 394:

    Note: Forest C stocks do not includ

  • Page 395 and 396:

    1 2 3 4 in Table 6-13 include all m

  • Page 397 and 398:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 399 and 400:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 401 and 402:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 403 and 404:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 405 and 406:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 407 and 408:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 409 and 410:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 411 and 412:

    1 2 3 Total Aboveground Biomass Flu

  • Page 413 and 414:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ap

  • Page 415 and 416:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 417 and 418:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 419 and 420:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 421 and 422:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 423 and 424:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 425 and 426:

    1 2 3 4 5 6 C) from drainage and cu

  • Page 427 and 428:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 429 and 430:

    Belowground Live Biomass 2.3 2.0 2.

  • Page 431 and 432:

    1 2 Table 6-34: Net CO2 Flux from S

  • Page 433 and 434:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 435 and 436:

    1 2 3 4 5 above the 2015 stock chan

  • Page 437 and 438:

    CH4 0.1 0.3 0.8 0.6 0.2 0.4 0.4 N2O

  • Page 439 and 440:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 441 and 442:

    Other Lands Converted Grassland Min

  • Page 443 and 444:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fo

  • Page 445 and 446:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 447 and 448:

    On-site 70 71 60 53 50 50 49 N2O (O

  • Page 449 and 450:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 451 and 452:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 453 and 454:

    1 2 Table 6-51: Net CH4 Flux from V

  • Page 455 and 456:

    1 2 3 Table 6-54: Approach 1 Quanti

  • Page 457 and 458:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 459 and 460:

    1 2 3 4 result in cessation of emis

  • Page 461 and 462: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 463 and 464: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 465 and 466: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 467 and 468: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 469 and 470: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 471 and 472: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 473 and 474: New Mexico 70,608 52,250 12.0 0.263
  • Page 475 and 476: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 an
  • Page 477 and 478: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 479 and 480: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 481 and 482: C Storage Factor, Proportion of Ini
  • Page 483 and 484: 1 2 3 4 5 6 7 8 9 10 11 12 13 there
  • Page 485 and 486: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 487 and 488: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 489 and 490: 1 Table 7-2: Emissions from Waste (
  • Page 491 and 492: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 493 and 494: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 495 and 496: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 497 and 498: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 499 and 500: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 501 and 502: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 503 and 504: 1 2 3 4 5 6 7 8 9 10 Table 7-6 pres
  • Page 505 and 506: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 507 and 508: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 509 and 510: 2013 321 10,536 2014 323 10,613 201
  • Page 511: 1 2 3 4 5 6 7 8 9 %Plants a %Plants
  • Page 515 and 516: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 517 and 518: 1 2 Table 7-16: Approach 2 Quantita
  • Page 519 and 520: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 521 and 522: 1 2 3 4 5 6 7 8 9 10 EF i = emissio
  • Page 523 and 524: a Miscellaneous includes TSDFs (Tre
  • Page 525 and 526: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 527 and 528: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 529 and 530: Enteric Fermentation NC NC + NC + (
  • Page 531 and 532: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 533 and 534: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 535 and 536: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 537 and 538: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 539 and 540: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 541 and 542: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 543 and 544: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 545 and 546: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 547 and 548: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 549 and 550: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 551 and 552: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 553 and 554: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 555 and 556: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 557 and 558: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 559 and 560: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 561 and 562: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  • Page 563 and 564:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 565 and 566:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 567 and 568:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 569 and 570:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 571 and 572:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 573 and 574:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 575 and 576:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 577 and 578:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 579 and 580:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 581 and 582:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 583 and 584:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 585 and 586:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 587 and 588:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 589 and 590:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 591 and 592:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 593 and 594:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 595 and 596:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 597 and 598:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 599 and 600:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 601 and 602:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 603 and 604:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • Page 605 and 606:

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greenhouse Gas Emissions from U.S. Heavy-Duty Trucks
Building trust in greenhouse gas inventories from the United ... - WWF
2009 Corporate Greenhouse Gas Emissions Inventory - the Town of ...
City of Richmond 2008 Greenhouse Gas Emissions Inventory
Quality manual for the greenhouse gas inventory. Version 1.
D - Inventory of Greenhouse Gas Emissions - Abengoa
Expert Meeting on Uncertainty and Validation of Emission Inventories
Greenhouse Gas Emissions from U.S. Agriculture and Forestry: A ...
Greenhouse Gas Emissions Inventory Report - Cal Poly Pomona
Use of Models and Facility-Level Data in Greenhouse Gas Inventories
Inventory of New York City Greenhouse Gas Emissions - NYC.gov
Reducing U.S. Greenhouse Gas Emissions - Center for Climate and ...
County of San Diego 2005/2006 Greenhouse Gas Emissions Inventory
Aspen-Pitkin County Airport Greenhouse Gas Emissions Inventory ...
Greenhouse Gas Emissions Inventory for Chapel Hill Street Lights ...
international maritime transport and greenhouse gas emissions - IMO
Transportation's Role in Reducing U.S. Greenhouse Gas Emissions ...
GREENHOUSE GAS EMISSIONS - The Sallan Foundation
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS
Transportation's Role in Reducing U.S. Greenhouse Gas Emissions ...
Greenhouse Gas Inventory Municipal Government - City of Clearwater
Trans-boundary Greenhouse Gas Emissions Accounting for Cities
National Greenhouse Gas Inventories - US Environmental ...
Greenhouse Gas Emissions from U.S. Transportation - Center for ...
Greenhouse Gas Emissions from U.S. Transportation - Center for ...
GHG Inventory in Myanmar: INC Report - GIO Greenhouse Gas ...
LEVErAging nATurAL gAS To rEduCE grEEnhouSE gAS EmiSSionS