Views
1 year ago

# Discrete Mathematics and its Applications (Rosen)7th ed McGraw Hill 2012-- csc 245

## Discrete Mathematics and its Applications (Rosen)7th ed McGraw Hill 2012-- csc

Kenneth H. Rosen Discrete Mathematics and Its Applications SEVENTH EDITION

• Page 2 and 3: Discrete Mathematics and Its Applic
• Page 4 and 5: Contents About the Author vi Prefac
• Page 6 and 7: Contents v 10 Graphs ..............
• Page 8 and 9: Preface In writing this book, I was
• Page 10 and 11: Preface ix Separate chapters now p
• Page 12 and 13: Preface xi FLEXIBILITY This text ha
• Page 14 and 15: Preface xiii instructor. A two-term
• Page 16 and 17: Preface xv Darrell Minor Columbus S
• Page 18 and 19: The Companion Website xvii covering
• Page 20 and 21: To the Student xix percentage of th
• Page 22 and 23: C H A P T E R 1 The Foundations: Lo
• Page 24 and 25: 1.1 Propositional Logic 3 conventio
• Page 26 and 27: 1.1 Propositional Logic 5 The use o
• Page 28 and 29: 1.1 Propositional Logic 7 You might
• Page 30 and 31: 1.1 Propositional Logic 9 EXAMPLE 9
• Page 32 and 33: 1.1 Propositional Logic 11 Preceden
• Page 34 and 35: 1.1 Propositional Logic 13 5. What
• Page 36 and 37: 1.1 Propositional Logic 15 24. Writ
• Page 38 and 39: 1.2 Applications of Propositional L
• Page 40 and 41: 1.2 Applications of Propositional L
• Page 42 and 43: 1.2 Applications of Propositional L
• Page 44 and 45: 1.2 Applications of Propositional L
• Page 46 and 47: 1.3 Propositional Equivalences 25 1
• Page 48 and 49: 1.3 Propositional Equivalences 27 T
• Page 50 and 51: 1.3 Propositional Equivalences 29 E
• Page 52 and 53:

1.3 Propositional Equivalences 31 s

• Page 54 and 55:

1.3 Propositional Equivalences 33 T

• Page 56 and 57:

1.3 Propositional Equivalences 35 c

• Page 58 and 59:

1.4 Predicates and Quantifiers 37 N

• Page 60 and 61:

1.4 Predicates and Quantifiers 39 E

• Page 62 and 63:

1.4 Predicates and Quantifiers 41 T

• Page 64 and 65:

1.4 Predicates and Quantifiers 43 T

• Page 66 and 67:

1.4 Predicates and Quantifiers 45 T

• Page 68 and 69:

1.4 Predicates and Quantifiers 47 T

• Page 70 and 71:

1.4 Predicates and Quantifiers 49 I

• Page 72 and 73:

1.4 Predicates and Quantifiers 51 S

• Page 74 and 75:

1.4 Predicates and Quantifiers 53 E

• Page 76 and 77:

1.4 Predicates and Quantifiers 55 3

• Page 78 and 79:

1.5 Nested Quantifiers 57 62. Let P

• Page 80 and 81:

1.5 Nested Quantifiers 59 and both

• Page 82 and 83:

1.5 Nested Quantifiers 61 Solution:

• Page 84 and 85:

1.5 Nested Quantifiers 63 [Note tha

• Page 86 and 87:

1.5 Nested Quantifiers 65 given at

• Page 88 and 89:

1.5 Nested Quantifiers 67 c) The su

• Page 90 and 91:

1.6 Rules of Inference 69 1.6 Rules

• Page 92 and 93:

1.6 Rules of Inference 71 Rules of

• Page 94 and 95:

1.6 Rules of Inference 73 EXAMPLE 5

• Page 96 and 97:

1.6 Rules of Inference 75 EXAMPLE 9

• Page 98 and 99:

1.6 Rules of Inference 77 EXAMPLE 1

• Page 100 and 101:

1.6 Rules of Inference 79 10. For e

• Page 102 and 103:

1.7 Introduction to Proofs 81 theor

• Page 104 and 105:

1.7 Introduction to Proofs 83 DEFIN

• Page 106 and 107:

1.7 Introduction to Proofs 85 EXAMP

• Page 108 and 109:

1.7 Introduction to Proofs 87 We ha

• Page 110 and 111:

1.7 Introduction to Proofs 89 Mista

• Page 112 and 113:

1.7 Introduction to Proofs 91 Exerc

• Page 114 and 115:

1.8 Proof Methods and Strategy 93 E

• Page 116 and 117:

1.8 Proof Methods and Strategy 95 C

• Page 118 and 119:

1.8 Proof Methods and Strategy 97 B

• Page 120 and 121:

1.8 Proof Methods and Strategy 99 (

• Page 122 and 123:

1.8 Proof Methods and Strategy 101

• Page 124 and 125:

1.8 Proof Methods and Strategy 103

• Page 126 and 127:

1.8 Proof Methods and Strategy 105

• Page 128 and 129:

1.8 Proof Methods and Strategy 107

• Page 130 and 131:

Key Terms and Results 109 33. Adapt

• Page 132 and 133:

Supplementary Exercises 111 RESULTS

• Page 134 and 135:

Supplementary Exercises 113 23. Fin

• Page 136 and 137:

C H A P T E R 2 Basic Structures: S

• Page 138 and 139:

2.1 Sets 117 (Note that some people

• Page 140 and 141:

2.1 Sets 119 Subsets It is common t

• Page 142 and 143:

2.1 Sets 121 Showing Two Sets are E

• Page 144 and 145:

2.1 Sets 123 Many of the discrete s

• Page 146 and 147:

2.1 Sets 125 Truth Sets and Quantif

• Page 148 and 149:

2.2 Set Operations 127 2.2 Set Oper

• Page 150 and 151:

2.2 Set Operations 129 U U A B A A

• Page 152 and 153:

2.2 Set Operations 131 EXAMPLE 11 U

• Page 154 and 155:

2.2 Set Operations 133 EXAMPLE 15 L

• Page 156 and 157:

2.2 Set Operations 135 Solution: Th

• Page 158 and 159:

2.2 Set Operations 137 30. Can you

• Page 160 and 161:

2.3 Functions 139 Adams Chou Goodfr

• Page 162 and 163:

2.3 Functions 141 DEFINITION 3 Let

• Page 164 and 165:

2.3 Functions 143 a b c d FIGURE 4

• Page 166 and 167:

2.3 Functions 145 Suppose that f :

• Page 168 and 169:

2.3 Functions 147 ( f g)(a) g(a) f(

• Page 170 and 171:

2.3 Functions 149 DEFINITION 12 The

• Page 172 and 173:

2.3 Functions 151 We first consider

• Page 174 and 175:

2.3 Functions 153 7. Find the domai

• Page 176 and 177:

2.3 Functions 155 59. How many byte

• Page 178 and 179:

2.4 Sequences and Summations 157 DE

• Page 180 and 181:

2.4 Sequences and Summations 159 EX

• Page 182 and 183:

2.4 Sequences and Summations 161 Wh

• Page 184 and 185:

2.4 Sequences and Summations 163 fr

• Page 186 and 187:

2.4 Sequences and Summations 165 To

• Page 188 and 189:

2.4 Sequences and Summations 167 SO

• Page 190 and 191:

2.4 Sequences and Summations 169 a)

• Page 192 and 193:

2.5 Cardinality of Sets 171 1 2 3 4

• Page 194 and 195:

2.5 Cardinality of Sets 173 Terms n

• Page 196 and 197:

2.5 Cardinality of Sets 175 Because

• Page 198 and 199:

2.6 Matrices 177 18. Show that if A

• Page 200 and 201:

2.6 Matrices 179 We now discuss mat

• Page 202 and 203:

2.6 Matrices 181 DEFINITION 6 EXAMP

• Page 204 and 205:

2.6 Matrices 183 DEFINITION 10 Let

• Page 206 and 207:

Key Terms and Results 185 24. a) Sh

• Page 208 and 209:

Supplementary Exercises 187 7. Expl

• Page 210:

Computer Projects 189 Computer Proj

• Page 213 and 214:

192 3 / Algorithms The term algorit

• Page 215 and 216:

194 3 / Algorithms of the terms of

• Page 217 and 218:

196 3 / Algorithms Algorithm 3 proc

• Page 219 and 220:

198 3 / Algorithms is not less than

• Page 221 and 222:

200 3 / Algorithms Proof: We will u

• Page 223 and 224:

202 3 / Algorithms Input Program P

• Page 225 and 226:

204 3 / Algorithms 51. When a list

• Page 227 and 228:

206 3 / Algorithms THE HISTORY OF B

• Page 229 and 230:

208 3 / Algorithms Cg(x) f (x) g(x)

• Page 231 and 232:

210 3 / Algorithms where C =|a n |+

• Page 233 and 234:

212 3 / Algorithms USEFUL BIG-O EST

• Page 235 and 236:

214 3 / Algorithms EXAMPLE 8 Give a

• Page 237 and 238:

216 3 / Algorithms One useful fact

• Page 239 and 240:

218 3 / Algorithms 59. (Requires ca

• Page 241 and 242:

220 3 / Algorithms EXAMPLE 2 Descri

• Page 243 and 244:

222 3 / Algorithms using a summatio

• Page 245 and 246:

224 3 / Algorithms multiplications

• Page 247 and 248:

226 3 / Algorithms TABLE 1 Commonly

• Page 249 and 250:

• Page 251 and 252:

230 3 / Algorithms a) Show that thi

• Page 253 and 254:

232 3 / Algorithms Key Terms and Re

• Page 255 and 256:

234 3 / Algorithms 21. Find all pai

• Page 257 and 258:

236 3 / Algorithms 9. Given an orde

• Page 259 and 260:

238 4 / Number Theory and Cryptogra

• Page 261 and 262:

240 4 / Number Theory and Cryptogra

• Page 263 and 264:

242 4 / Number Theory and Cryptogra

• Page 265 and 266:

244 4 / Number Theory and Cryptogra

• Page 267 and 268:

246 4 / Number Theory and Cryptogra

• Page 269 and 270:

248 4 / Number Theory and Cryptogra

• Page 271 and 272:

250 4 / Number Theory and Cryptogra

• Page 273 and 274:

252 4 / Number Theory and Cryptogra

• Page 275 and 276:

254 4 / Number Theory and Cryptogra

• Page 277 and 278:

256 4 / Number Theory and Cryptogra

• Page 279 and 280:

258 4 / Number Theory and Cryptogra

• Page 281 and 282:

260 4 / Number Theory and Cryptogra

• Page 283 and 284:

262 4 / Number Theory and Cryptogra

• Page 285 and 286:

264 4 / Number Theory and Cryptogra

• Page 287 and 288:

266 4 / Number Theory and Cryptogra

• Page 289 and 290:

268 4 / Number Theory and Cryptogra

• Page 291 and 292:

270 4 / Number Theory and Cryptogra

• Page 293 and 294:

272 4 / Number Theory and Cryptogra

• Page 295 and 296:

274 4 / Number Theory and Cryptogra

• Page 297 and 298:

276 4 / Number Theory and Cryptogra

• Page 299 and 300:

278 4 / Number Theory and Cryptogra

• Page 301 and 302:

280 4 / Number Theory and Cryptogra

• Page 303 and 304:

282 4 / Number Theory and Cryptogra

• Page 305 and 306:

284 4 / Number Theory and Cryptogra

• Page 307 and 308:

286 4 / Number Theory and Cryptogra

• Page 309 and 310:

288 4 / Number Theory and Cryptogra

• Page 311 and 312:

290 4 / Number Theory and Cryptogra

• Page 313 and 314:

292 4 / Number Theory and Cryptogra

• Page 315 and 316:

294 4 / Number Theory and Cryptogra

• Page 317 and 318:

296 4 / Number Theory and Cryptogra

• Page 319 and 320:

298 4 / Number Theory and Cryptogra

• Page 321 and 322:

300 4 / Number Theory and Cryptogra

• Page 323 and 324:

302 4 / Number Theory and Cryptogra

• Page 325 and 326:

304 4 / Number Theory and Cryptogra

• Page 327 and 328:

306 4 / Number Theory and Cryptogra

• Page 329 and 330:

308 4 / Number Theory and Cryptogra

• Page 331 and 332:

310 4 / Number Theory and Cryptogra

• Page 333 and 334:

312 5 / Induction and Recursion We

• Page 335 and 336:

314 5 / Induction and Recursion FIG

• Page 337 and 338:

316 5 / Induction and Recursion EXA

• Page 339 and 340:

318 5 / Induction and Recursion EXA

• Page 341 and 342:

320 5 / Induction and Recursion tha

• Page 343 and 344:

322 5 / Induction and Recursion ste

• Page 345 and 346:

324 5 / Induction and Recursion IND

• Page 347 and 348:

326 5 / Induction and Recursion to

• Page 349 and 350:

328 5 / Induction and Recursion To

• Page 351 and 352:

330 5 / Induction and Recursion 9.

• Page 353 and 354:

332 5 / Induction and Recursion of

• Page 355 and 356:

334 5 / Induction and Recursion two

• Page 357 and 358:

336 5 / Induction and Recursion We

• Page 359 and 360:

338 5 / Induction and Recursion IND

• Page 361 and 362:

340 5 / Induction and Recursion a b

• Page 363 and 364:

342 5 / Induction and Recursion par

• Page 365 and 366:

344 5 / Induction and Recursion ∗

• Page 367 and 368:

346 5 / Induction and Recursion EXA

• Page 369 and 370:

348 5 / Induction and Recursion Pro

• Page 371 and 372:

350 5 / Induction and Recursion The

• Page 373 and 374:

352 5 / Induction and Recursion Bas

• Page 375 and 376:

354 5 / Induction and Recursion In

• Page 377 and 378:

356 5 / Induction and Recursion If

• Page 379 and 380:

358 5 / Induction and Recursion 7.

• Page 381 and 382:

360 5 / Induction and Recursion ∗

• Page 383 and 384:

362 5 / Induction and Recursion EXA

• Page 385 and 386:

364 5 / Induction and Recursion pro

• Page 387 and 388:

366 5 / Induction and Recursion f 4

• Page 389 and 390:

368 5 / Induction and Recursion alg

• Page 391 and 392:

370 5 / Induction and Recursion by

• Page 393 and 394:

372 5 / Induction and Recursion 5.5

• Page 395 and 396:

374 5 / Induction and Recursion EXA

• Page 397 and 398:

376 5 / Induction and Recursion Let

• Page 399 and 400:

378 5 / Induction and Recursion str

• Page 401 and 402:

380 5 / Induction and Recursion 30.

• Page 403 and 404:

382 5 / Induction and Recursion The

• Page 406 and 407:

C H A P T E R 6 Counting 6.1 The Ba

• Page 408 and 409:

6.1 The Basics of Counting 387 EXAM

• Page 410 and 411:

6.1 The Basics of Counting 389 Soon

• Page 412 and 413:

6.1 The Basics of Counting 391 More

• Page 414 and 415:

6.1 The Basics of Counting 393 THE

• Page 416 and 417:

6.1 The Basics of Counting 395 Winn

• Page 418 and 419:

6.1 The Basics of Counting 397 25.

• Page 420 and 421:

6.2 The Pigeonhole Principle 399 71

• Page 422 and 423:

6.2 The Pigeonhole Principle 401 Th

• Page 424 and 425:

6.2 The Pigeonhole Principle 403 wi

• Page 426 and 427:

6.2 The Pigeonhole Principle 405 pe

• Page 428 and 429:

6.3 Permutations and Combinations 4

• Page 430 and 431:

6.3 Permutations and Combinations 4

• Page 432 and 433:

6.3 Permutations and Combinations 4

• Page 434 and 435:

6.3 Permutations and Combinations 4

• Page 436 and 437:

6.4 Binomial Coefficients and Ident

• Page 438 and 439:

6.4 Binomial Coefficients and Ident

• Page 440 and 441:

6.4 Binomial Coefficients and Ident

• Page 442 and 443:

6.4 Binomial Coefficients and Ident

• Page 444 and 445:

6.5 Generalized Permutations and Co

• Page 446 and 447:

6.5 Generalized Permutations and Co

• Page 448 and 449:

6.5 Generalized Permutations and Co

• Page 450 and 451:

6.5 Generalized Permutations and Co

• Page 452 and 453:

6.5 Generalized Permutations and Co

• Page 454 and 455:

6.5 Generalized Permutations and Co

• Page 456 and 457:

6.6 Generating Permutations and Com

• Page 458 and 459:

6.6 Generating Permutations and Com

• Page 460 and 461:

Review Questions 439 16. Find the p

• Page 462 and 463:

Supplementary Exercises 441 3. A te

• Page 464 and 465:

Supplementary Exercises 443 45. How

• Page 466 and 467:

C H A P T E R 7 Discrete Probabilit

• Page 468 and 469:

7.1 An Introduction to Discrete Pro

• Page 470 and 471:

7.1 An Introduction to Discrete Pro

• Page 472 and 473:

7.1 An Introduction to Discrete Pro

• Page 474 and 475:

7.2 Probability Theory 453 similar

• Page 476 and 477:

7.2 Probability Theory 455 Solution

• Page 478 and 479:

7.2 Probability Theory 457 EXAMPLE

• Page 480 and 481:

7.2 Probability Theory 459 EXAMPLE

• Page 482 and 483:

7.2 Probability Theory 461 Solution

• Page 484 and 485:

7.2 Probability Theory 463 It follo

• Page 486 and 487:

7.2 Probability Theory 465 can use

• Page 488 and 489:

7.2 Probability Theory 467 10. What

• Page 490 and 491:

7.3 Bayes’ Theorem 469 this disea

• Page 492 and 493:

7.3 Bayes’ Theorem 471 EXAMPLE 2

• Page 494 and 495:

7.3 Bayes’ Theorem 473 We will de

• Page 496 and 497:

7.3 Bayes’ Theorem 475 event that

• Page 498 and 499:

7.4 Expected Value and Variance 477

• Page 500 and 501:

7.4 Expected Value and Variance 479

• Page 502 and 503:

7.4 Expected Value and Variance 481

• Page 504 and 505:

7.4 Expected Value and Variance 483

• Page 506 and 507:

7.4 Expected Value and Variance 485

• Page 508 and 509:

7.4 Expected Value and Variance 487

• Page 510 and 511:

7.4 Expected Value and Variance 489

• Page 512 and 513:

7.4 Expected Value and Variance 491

• Page 514 and 515:

7.4 Expected Value and Variance 493

• Page 516 and 517:

7.4 Expected Value and Variance 495

• Page 518 and 519:

Supplementary Exercises 497 b) What

• Page 520 and 521:

Supplementary Exercises 499 ∗36.

• Page 522 and 523:

C H A P T E R 8 Advanced Counting T

• Page 524 and 525:

8.1 Applications of Recurrence Rela

• Page 526 and 527:

8.1 Applications of Recurrence Rela

• Page 528 and 529:

8.1 Applications of Recurrence Rela

• Page 530 and 531:

8.1 Applications of Recurrence Rela

• Page 532 and 533:

8.1 Applications of Recurrence Rela

• Page 534 and 535:

8.1 Applications of Recurrence Rela

• Page 536 and 537:

8.2 Solving Linear Recurrence Relat

• Page 538 and 539:

8.2 Solving Linear Recurrence Relat

• Page 540 and 541:

8.2 Solving Linear Recurrence Relat

• Page 542 and 543:

8.2 Solving Linear Recurrence Relat

• Page 544 and 545:

8.2 Solving Linear Recurrence Relat

• Page 546 and 547:

8.2 Solving Linear Recurrence Relat

• Page 548 and 549:

8.3 Divide-and-Conquer Algorithms a

• Page 550 and 551:

8.3 Divide-and-Conquer Algorithms a

• Page 552 and 553:

8.3 Divide-and-Conquer Algorithms a

• Page 554 and 555:

8.3 Divide-and-Conquer Algorithms a

• Page 556 and 557:

8.3 Divide-and-Conquer Algorithms a

• Page 558 and 559:

8.4 Generating Functions 537 8.4 Ge

• Page 560 and 561:

8.4 Generating Functions 539 Remark

• Page 562 and 563:

8.4 Generating Functions 541 Using

• Page 564 and 565:

8.4 Generating Functions 543 This f

• Page 566 and 567:

8.4 Generating Functions 545 EXAMPL

• Page 568 and 569:

8.4 Generating Functions 547 Solvin

• Page 570 and 571:

8.4 Generating Functions 549 Exerci

• Page 572 and 573:

8.4 Generating Functions 551 35. Us

• Page 574 and 575:

8.5 Inclusion-Exclusion 553 Section

• Page 576 and 577:

8.5 Inclusion-Exclusion 555 1 1 1 1

• Page 578 and 579:

8.5 Inclusion-Exclusion 557 Therefo

• Page 580 and 581:

8.6 Applications of Inclusion-Exclu

• Page 582 and 583:

8.6 Applications of Inclusion-Exclu

• Page 584 and 585:

8.6 Applications of Inclusion-Exclu

• Page 586 and 587:

Key Terms and Results 565 11. In ho

• Page 588 and 589:

Supplementary Exercises 567 b) How

• Page 590 and 591:

Supplementary Exercises 569 31. (Re

• Page 592:

Computations and Explorations 571 9

• Page 595 and 596:

574 9 / Relations (Jason Goodfriend

• Page 597 and 598:

576 9 / Relations EXAMPLE 6 How man

• Page 599 and 600:

578 9 / Relations EXAMPLE 12 Is the

• Page 601 and 602:

580 9 / Relations DEFINITION 6 Let

• Page 603 and 604:

582 9 / Relations A relation R is c

• Page 605 and 606:

584 9 / Relations school are sophom

• Page 607 and 608:

586 9 / Relations EXAMPLE 6 Is the

• Page 609 and 610:

588 9 / Relations TABLE 5 Teaching_

• Page 611 and 612:

590 9 / Relations 9. The 5-tuples i

• Page 613 and 614:

592 9 / Relations Solution: Because

• Page 615 and 616:

594 9 / Relations The matrix repres

• Page 617 and 618:

596 9 / Relations Because loops are

• Page 619 and 620:

598 9 / Relations of R with respect

• Page 621 and 622:

600 9 / Relations The term path als

• Page 623 and 624:

602 9 / Relations x i+2 x i+1 x j-2

• Page 625 and 626:

604 9 / Relations a EXAMPLE 8 b are

• Page 627 and 628:

606 9 / Relations LEMMA 2 Let W k =

• Page 629 and 630:

608 9 / Relations uppercase or lowe

• Page 631 and 632:

610 9 / Relations EXAMPLE 6 In Exam

• Page 633 and 634:

612 9 / Relations Equivalence Class

• Page 635 and 636:

614 9 / Relations Solution: The sub

• Page 637 and 638:

616 9 / Relations In Exercises 21-2

• Page 639 and 640:

618 9 / Relations ∗58. Each bead

• Page 641 and 642:

620 9 / Relations EXAMPLE 6 The pos

• Page 643 and 644:

622 9 / Relations EXAMPLE 10 EXAMPL

• Page 645 and 646:

624 9 / Relations 8 12 8 12 8 12 4

• Page 647 and 648:

626 9 / Relations EXAMPLE 19 Find t

• Page 649 and 650:

628 9 / Relations cannot be started

• Page 651 and 652:

630 9 / Relations Exercises 1. Whic

• Page 653 and 654:

632 9 / Relations 40. a) Show that

• Page 655 and 656:

634 9 / Relations lexicographic ord

• Page 657 and 658:

636 9 / Relations 15. a) Give an ex

• Page 659 and 660:

638 9 / Relations ∗48. Show that

• Page 662 and 663:

C H A P T E R 10 Graphs 10.1 Graphs

• Page 664 and 665:

10.1 Graphs and Graph Models 643 Ch

• Page 666 and 667:

10.1 Graphs and Graph Models 645 Ed

• Page 668 and 669:

10.1 Graphs and Graph Models 647 fi

• Page 670 and 671:

10.1 Graphs and Graph Models 649 Te

• Page 672 and 673:

10.2 Graph Terminology and Special

• Page 674 and 675:

10.2 Graph Terminology and Special

• Page 676 and 677:

10.2 Graph Terminology and Special

• Page 678 and 679:

10.2 Graph Terminology and Special

• Page 680 and 681:

10.2 Graph Terminology and Special

• Page 682 and 683:

10.2 Graph Terminology and Special

• Page 684 and 685:

10.2 Graph Terminology and Special

• Page 686 and 687:

10.2 Graph Terminology and Special

• Page 688 and 689:

10.2 Graph Terminology and Special

• Page 690 and 691:

10.3 Representing Graphs and Graph

• Page 692 and 693:

10.3 Representing Graphs and Graph

• Page 694 and 695:

10.3 Representing Graphs and Graph

• Page 696 and 697:

10.3 Representing Graphs and Graph

• Page 698 and 699:

10.3 Representing Graphs and Graph

• Page 700 and 701:

10.4 Connectivity 679 A formal defi

• Page 702 and 703:

10.4 Connectivity 681 TABLE 1 The N

• Page 704 and 705:

10.4 Connectivity 683 Sometimes the

• Page 706 and 707:

10.4 Connectivity 685 The graph G 2

• Page 708 and 709:

10.4 Connectivity 687 GSCC followin

• Page 710 and 711:

10.4 Connectivity 689 there are exa

• Page 712 and 713:

10.4 Connectivity 691 22. Use paths

• Page 714 and 715:

10.5 Euler and Hamilton Paths 693

• Page 716 and 717:

10.5 Euler and Hamilton Paths 695 a

• Page 718 and 719:

10.5 Euler and Hamilton Paths 697 a

• Page 720 and 721:

10.5 Euler and Hamilton Paths 699 (

• Page 722 and 723:

10.5 Euler and Hamilton Paths 701 i

• Page 724 and 725:

10.5 Euler and Hamilton Paths 703 T

• Page 726 and 727:

10.5 Euler and Hamilton Paths 705 2

• Page 728 and 729:

10.6 Shortest-Path Problems 707 A k

• Page 730 and 731:

10.6 Shortest-Path Problems 709 DIS

• Page 732 and 733:

10.6 Shortest-Path Problems 711 To

• Page 734 and 735:

10.6 Shortest-Path Problems 713 b

• Page 736 and 737:

10.6 Shortest-Path Problems 715 Rou

• Page 738 and 739:

10.6 Shortest-Path Problems 717 17.

• Page 740 and 741:

10.7 Planar Graphs 719 FIGURE 2 Gra

• Page 742 and 743:

10.7 Planar Graphs 721 R 1 a 1 b 1

• Page 744 and 745:

10.7 Planar Graphs 723 G 1 a b G 2

• Page 746 and 747:

10.7 Planar Graphs 725 a e j f g b

• Page 748 and 749:

10.8 Graph Coloring 727 A B C D E F

• Page 750 and 751:

10.8 Graph Coloring 729 b e b e a d

• Page 752 and 753:

10.8 Graph Coloring 731 Next, let n

• Page 754 and 755:

10.8 Graph Coloring 733 3. 11. e h

• Page 756 and 757:

Key Terms and Results 735 ∗37. Le

• Page 758 and 759:

Review Questions 737 chromatic numb

• Page 760 and 761:

Supplementary Exercises 739 10. Let

• Page 762 and 763:

Supplementary Exercises 741 38. Bec

• Page 764 and 765:

Writing Projects 743 18. Given the

• Page 766 and 767:

C H A P T E R 11 Trees 11.1 Introdu

• Page 768 and 769:

11.1 Introduction to Trees 747 Proo

• Page 770 and 771:

11.1 Introduction to Trees 749 Solu

• Page 772 and 773:

11.1 Introduction to Trees 751 Pres

• Page 774 and 775:

11.1 Introduction to Trees 753 THEO

• Page 776 and 777:

11.1 Introduction to Trees 755 Then

• Page 778 and 779:

11.2 Applications of Trees 757 The

• Page 780 and 781:

11.2 Applications of Trees 759 ALGO

• Page 782 and 783:

11.2 Applications of Trees 761 1 2

• Page 784 and 785:

11.2 Applications of Trees 763 Each

• Page 786 and 787:

11.2 Applications of Trees 765 0.08

• Page 788 and 789:

11.2 Applications of Trees 767 (a)

• Page 790 and 791:

11.2 Applications of Trees 769 each

• Page 792 and 793:

11.2 Applications of Trees 771 27.

• Page 794 and 795:

11.3 Tree Traversal 773 0 1 2 3 4 5

• Page 796 and 797:

11.3 Tree Traversal 775 r Step 2: V

• Page 798 and 799:

11.3 Tree Traversal 777 r Step n +1

• Page 800 and 801:

11.3 Tree Traversal 779 ALGORITHM 2

• Page 802 and 803:

11.3 Tree Traversal 781 + - * 2 3 5

• Page 804 and 805:

11.3 Tree Traversal 783 Exercises I

• Page 806 and 807:

11.4 Spanning Trees 785 Herman Etna

• Page 808 and 809:

11.4 Spanning Trees 787 Source IP n

• Page 810 and 811:

11.4 Spanning Trees 789 explore fro

• Page 812 and 813:

11.4 Spanning Trees 791 ALGORITHM 2

• Page 814 and 815:

11.4 Spanning Trees 793 X X X X X X

• Page 816 and 817:

11.4 Spanning Trees 795 links at th

• Page 818 and 819:

11.5 Minimum Spanning Trees 797 41.

• Page 820 and 821:

11.5 Minimum Spanning Trees 799 San

• Page 822 and 823:

11.5 Minimum Spanning Trees 801 e 3

• Page 824 and 825:

Key Terms and Results 803 15. Find

• Page 826 and 827:

Supplementary Exercises 805 root, t

• Page 828 and 829:

Supplementary Exercises 807 33. d a

• Page 830:

Writing Projects 809 5. Define quad

• Page 833 and 834:

812 12 / Boolean Algebra The comple

• Page 835 and 836:

814 12 / Boolean Algebra TABLE 3 Th

• Page 837 and 838:

816 12 / Boolean Algebra complement

• Page 839 and 840:

818 12 / Boolean Algebra Exercises

• Page 841 and 842:

820 12 / Boolean Algebra DEFINITION

• Page 843 and 844:

822 12 / Boolean Algebra Exercises

• Page 845 and 846:

824 12 / Boolean Algebra x y xy xy

• Page 847 and 848:

826 12 / Boolean Algebra x y z x y

• Page 849 and 850:

828 12 / Boolean Algebra 5. x y z x

• Page 851 and 852:

830 12 / Boolean Algebra second pro

• Page 853 and 854:

832 12 / Boolean Algebra yz yz yz y

• Page 855 and 856:

834 12 / Boolean Algebra yz yz yz y

• Page 857 and 858:

836 12 / Boolean Algebra EXAMPLE 7

• Page 859 and 860:

838 12 / Boolean Algebra TABLE 2 Mi

• Page 861 and 862:

840 12 / Boolean Algebra 4. Determi

• Page 863 and 864:

842 12 / Boolean Algebra c) x y z x

• Page 865 and 866:

844 12 / Boolean Algebra An identit

• Page 867 and 868:

846 12 / Boolean Algebra ∗7. Give

• Page 869 and 870:

848 13 / Modeling Computation to an

• Page 871 and 872:

850 13 / Modeling Computation EXAMP

• Page 873 and 874:

852 13 / Modeling Computation lengt

• Page 875 and 876:

854 13 / Modeling Computation that

• Page 877 and 878:

856 13 / Modeling Computation adjec

• Page 879 and 880:

858 13 / Modeling Computation Sever

• Page 881 and 882:

860 13 / Modeling Computation R, n

• Page 883 and 884:

862 13 / Modeling Computation Start

• Page 885 and 886:

864 13 / Modeling Computation c) f

• Page 887 and 888:

866 13 / Modeling Computation DEFIN

• Page 889 and 890:

868 13 / Modeling Computation We ca

• Page 891 and 892:

870 13 / Modeling Computation (b) O

• Page 893 and 894:

872 13 / Modeling Computation a 1,

• Page 895 and 896:

874 13 / Modeling Computation Start

• Page 897 and 898:

876 13 / Modeling Computation 15. G

• Page 899 and 900:

878 13 / Modeling Computation or bo

• Page 901 and 902:

880 13 / Modeling Computation Solut

• Page 903 and 904:

882 13 / Modeling Computation (a) T

• Page 905 and 906:

884 13 / Modeling Computation Start

• Page 907 and 908:

886 13 / Modeling Computation Alan

• Page 909 and 910:

888 13 / Modeling Computation 20. S

• Page 911 and 912:

890 13 / Modeling Computation (a) s

• Page 913 and 914:

892 13 / Modeling Computation the s

• Page 915 and 916:

894 13 / Modeling Computation Many

• Page 917 and 918:

896 13 / Modeling Computation COMPU

• Page 919 and 920:

898 13 / Modeling Computation 3. Wh

• Page 921 and 922:

900 13 / Modeling Computation decis

• Page 923 and 924:

902 13 / Modeling Computation and t

• Page 926 and 927:

A P P E N D I X 1 Axioms for the Re

• Page 928 and 929:

Appendix 1 / Axioms for the Real Nu

• Page 930 and 931:

Appendix 1 / Axioms for the Real Nu

• Page 932 and 933:

A P P E N D I X 2 Exponential and L

• Page 934:

Appendix 2 / Exponential and Logari

• Page 937 and 938:

A-12 Appendix 3 / Pseudocode For ex

• Page 939 and 940:

A-14 Appendix 3 / Pseudocode Loop C

• Page 941 and 942:

A-16 Appendix 3 / Pseudocode Exerci

• Page 943 and 944:

• Page 945 and 946:

• Page 947 and 948:

B-6 Suggested Reading [Ha93] John P

• Page 949 and 950:

B-8 Suggested Reading [SePi89] J. S

• Page 951 and 952:

• Page 953 and 954:

• Page 955 and 956:

• Page 957 and 958:

• Page 959 and 960:

• Page 961 and 962:

• Page 963 and 964:

• Page 965 and 966:

• Page 967 and 968:

• Page 969 and 970:

• Page 971 and 972:

• Page 973 and 974:

• Page 975 and 976:

• Page 977 and 978:

• Page 979 and 980:

• Page 981 and 982:

• Page 983 and 984:

• Page 985 and 986:

• Page 987 and 988:

• Page 989 and 990:

• Page 991 and 992:

• Page 993 and 994:

• Page 995 and 996:

• Page 997 and 998:

• Page 999 and 1000:

• Page 1001 and 1002:

• Page 1003 and 1004:

• Page 1005 and 1006:

• Page 1007 and 1008:

• Page 1009 and 1010:

• Page 1011 and 1012:

• Page 1013 and 1014:

• Page 1015 and 1016:

• Page 1017 and 1018:

• Page 1019 and 1020:

• Page 1021 and 1022:

• Page 1023 and 1024:

• Page 1025 and 1026:

• Page 1027 and 1028:

• Page 1029 and 1030:

• Page 1031 and 1032:

• Page 1033 and 1034:

• Page 1035 and 1036:

• Page 1037 and 1038:

• Page 1039 and 1040:

• Page 1041 and 1042:

• Page 1043 and 1044:

• Page 1045 and 1046:

• Page 1047 and 1048:

Photo Credits CHAPTER 1 Page 2: ©

• Page 1049 and 1050:

Index of Biographies Ada, Augusta (

• Page 1051 and 1052:

Index I-3 Antisymmetric relation, 5

• Page 1053 and 1054:

Index I-5 Climbing rock, 163 Clique

• Page 1055 and 1056:

Index I-7 Diagrams Hasse, 622-626,

• Page 1057 and 1058:

Index I-9 Folder empty, 118 Forbidd

• Page 1059 and 1060:

Index I-11 Identification number si

• Page 1061 and 1062:

Index I-13 Linear array, 662 Linear

• Page 1063 and 1064:

Index I-15 Notation big-O, 205, 232

• Page 1065 and 1066:

Index I-17 Millennium Prize, 227 Ne

• Page 1067 and 1068:

Index I-19 S k -tree, 806 Same pari

• Page 1069 and 1070:

Index I-21 Summation index of, 163

• Page 1071:

Index I-23 Vertex (vertices)—Cont

Discrete Mathematics Applications
Discrete Mathematics..
Rosen_Discrete_Mathematics_and_Its_Applications_7th_Edition
Discrete Mathematics Demystified
The Discrete Charm of Discrete Mathematics
Discrete Mathematics
Discrete Mathematics Graphs
Discrete Mathematics - Department of Mathematical Sciences
Discrete Mathematics (D1)
Applicable Analysis and Discrete Mathematics ON THE SPECTRAL ...
Discrete Mathematics University of Kentucky CS 275 Spring ... - MGNet
PCA101: Discrete Mathematical Structures
Applicable Analysis and Discrete Mathematics EDGE ...
Discrete Mathematics Homomorphisms of triangle-free graphs ... - Etsu
Applicable Analysis and Discrete Mathematics GROUPIES IN ...
Discrete Mathematics - Computer Science Department
3, s - Applicable Analysis and Discrete Mathematics (AADM)
Discrete Mathematics University of Kentucky CS 275 Spring ... - MGNet
K - Discrete Mathematics & Theoretical Computer Science
Applicable Analysis and Discrete Mathematics HARARY INDEX OF ...
Discrete Mathematics Assignment 11
Discrete mathematics - HomeL
Chapter 3: Discrete Mathematics
ECE 203S Ã¢Â€Â” Discrete Mathematics Instructions 1. /20 2. /10 3. /10 4 ...
Math 55: Discrete Mathematics
Discrete Mathematics On b-coloring of the Kneser graphs
ECE 203S Ã¢Â€Â” Discrete Mathematics Instructions 1. /14 2. /14 3. /10 4 ...