Views
1 year ago

Discrete Mathematics and its Applications (Rosen)7th ed McGraw Hill 2012-- csc 245

Discrete Mathematics and its Applications (Rosen)7th ed McGraw Hill 2012-- csc

Kenneth H. Rosen Discrete Mathematics and Its Applications SEVENTH EDITION

  • Page 2 and 3: Discrete Mathematics and Its Applic
  • Page 4 and 5: Contents About the Author vi Prefac
  • Page 6 and 7: Contents v 10 Graphs ..............
  • Page 8 and 9: Preface In writing this book, I was
  • Page 10 and 11: Preface ix Separate chapters now p
  • Page 12 and 13: Preface xi FLEXIBILITY This text ha
  • Page 14 and 15: Preface xiii instructor. A two-term
  • Page 16 and 17: Preface xv Darrell Minor Columbus S
  • Page 18 and 19: The Companion Website xvii covering
  • Page 20 and 21: To the Student xix percentage of th
  • Page 22 and 23: C H A P T E R 1 The Foundations: Lo
  • Page 24 and 25: 1.1 Propositional Logic 3 conventio
  • Page 26 and 27: 1.1 Propositional Logic 5 The use o
  • Page 28 and 29: 1.1 Propositional Logic 7 You might
  • Page 30 and 31: 1.1 Propositional Logic 9 EXAMPLE 9
  • Page 32 and 33: 1.1 Propositional Logic 11 Preceden
  • Page 34 and 35: 1.1 Propositional Logic 13 5. What
  • Page 36 and 37: 1.1 Propositional Logic 15 24. Writ
  • Page 38 and 39: 1.2 Applications of Propositional L
  • Page 40 and 41: 1.2 Applications of Propositional L
  • Page 42 and 43: 1.2 Applications of Propositional L
  • Page 44 and 45: 1.2 Applications of Propositional L
  • Page 46 and 47: 1.3 Propositional Equivalences 25 1
  • Page 48 and 49: 1.3 Propositional Equivalences 27 T
  • Page 50 and 51: 1.3 Propositional Equivalences 29 E
  • Page 52 and 53:

    1.3 Propositional Equivalences 31 s

  • Page 54 and 55:

    1.3 Propositional Equivalences 33 T

  • Page 56 and 57:

    1.3 Propositional Equivalences 35 c

  • Page 58 and 59:

    1.4 Predicates and Quantifiers 37 N

  • Page 60 and 61:

    1.4 Predicates and Quantifiers 39 E

  • Page 62 and 63:

    1.4 Predicates and Quantifiers 41 T

  • Page 64 and 65:

    1.4 Predicates and Quantifiers 43 T

  • Page 66 and 67:

    1.4 Predicates and Quantifiers 45 T

  • Page 68 and 69:

    1.4 Predicates and Quantifiers 47 T

  • Page 70 and 71:

    1.4 Predicates and Quantifiers 49 I

  • Page 72 and 73:

    1.4 Predicates and Quantifiers 51 S

  • Page 74 and 75:

    1.4 Predicates and Quantifiers 53 E

  • Page 76 and 77:

    1.4 Predicates and Quantifiers 55 3

  • Page 78 and 79:

    1.5 Nested Quantifiers 57 62. Let P

  • Page 80 and 81:

    1.5 Nested Quantifiers 59 and both

  • Page 82 and 83:

    1.5 Nested Quantifiers 61 Solution:

  • Page 84 and 85:

    1.5 Nested Quantifiers 63 [Note tha

  • Page 86 and 87:

    1.5 Nested Quantifiers 65 given at

  • Page 88 and 89:

    1.5 Nested Quantifiers 67 c) The su

  • Page 90 and 91:

    1.6 Rules of Inference 69 1.6 Rules

  • Page 92 and 93:

    1.6 Rules of Inference 71 Rules of

  • Page 94 and 95:

    1.6 Rules of Inference 73 EXAMPLE 5

  • Page 96 and 97:

    1.6 Rules of Inference 75 EXAMPLE 9

  • Page 98 and 99:

    1.6 Rules of Inference 77 EXAMPLE 1

  • Page 100 and 101:

    1.6 Rules of Inference 79 10. For e

  • Page 102 and 103:

    1.7 Introduction to Proofs 81 theor

  • Page 104 and 105:

    1.7 Introduction to Proofs 83 DEFIN

  • Page 106 and 107:

    1.7 Introduction to Proofs 85 EXAMP

  • Page 108 and 109:

    1.7 Introduction to Proofs 87 We ha

  • Page 110 and 111:

    1.7 Introduction to Proofs 89 Mista

  • Page 112 and 113:

    1.7 Introduction to Proofs 91 Exerc

  • Page 114 and 115:

    1.8 Proof Methods and Strategy 93 E

  • Page 116 and 117:

    1.8 Proof Methods and Strategy 95 C

  • Page 118 and 119:

    1.8 Proof Methods and Strategy 97 B

  • Page 120 and 121:

    1.8 Proof Methods and Strategy 99 (

  • Page 122 and 123:

    1.8 Proof Methods and Strategy 101

  • Page 124 and 125:

    1.8 Proof Methods and Strategy 103

  • Page 126 and 127:

    1.8 Proof Methods and Strategy 105

  • Page 128 and 129:

    1.8 Proof Methods and Strategy 107

  • Page 130 and 131:

    Key Terms and Results 109 33. Adapt

  • Page 132 and 133:

    Supplementary Exercises 111 RESULTS

  • Page 134 and 135:

    Supplementary Exercises 113 23. Fin

  • Page 136 and 137:

    C H A P T E R 2 Basic Structures: S

  • Page 138 and 139:

    2.1 Sets 117 (Note that some people

  • Page 140 and 141:

    2.1 Sets 119 Subsets It is common t

  • Page 142 and 143:

    2.1 Sets 121 Showing Two Sets are E

  • Page 144 and 145:

    2.1 Sets 123 Many of the discrete s

  • Page 146 and 147:

    2.1 Sets 125 Truth Sets and Quantif

  • Page 148 and 149:

    2.2 Set Operations 127 2.2 Set Oper

  • Page 150 and 151:

    2.2 Set Operations 129 U U A B A A

  • Page 152 and 153:

    2.2 Set Operations 131 EXAMPLE 11 U

  • Page 154 and 155:

    2.2 Set Operations 133 EXAMPLE 15 L

  • Page 156 and 157:

    2.2 Set Operations 135 Solution: Th

  • Page 158 and 159:

    2.2 Set Operations 137 30. Can you

  • Page 160 and 161:

    2.3 Functions 139 Adams Chou Goodfr

  • Page 162 and 163:

    2.3 Functions 141 DEFINITION 3 Let

  • Page 164 and 165:

    2.3 Functions 143 a b c d FIGURE 4

  • Page 166 and 167:

    2.3 Functions 145 Suppose that f :

  • Page 168 and 169:

    2.3 Functions 147 ( f g)(a) g(a) f(

  • Page 170 and 171:

    2.3 Functions 149 DEFINITION 12 The

  • Page 172 and 173:

    2.3 Functions 151 We first consider

  • Page 174 and 175:

    2.3 Functions 153 7. Find the domai

  • Page 176 and 177:

    2.3 Functions 155 59. How many byte

  • Page 178 and 179:

    2.4 Sequences and Summations 157 DE

  • Page 180 and 181:

    2.4 Sequences and Summations 159 EX

  • Page 182 and 183:

    2.4 Sequences and Summations 161 Wh

  • Page 184 and 185:

    2.4 Sequences and Summations 163 fr

  • Page 186 and 187:

    2.4 Sequences and Summations 165 To

  • Page 188 and 189:

    2.4 Sequences and Summations 167 SO

  • Page 190 and 191:

    2.4 Sequences and Summations 169 a)

  • Page 192 and 193:

    2.5 Cardinality of Sets 171 1 2 3 4

  • Page 194 and 195:

    2.5 Cardinality of Sets 173 Terms n

  • Page 196 and 197:

    2.5 Cardinality of Sets 175 Because

  • Page 198 and 199:

    2.6 Matrices 177 18. Show that if A

  • Page 200 and 201:

    2.6 Matrices 179 We now discuss mat

  • Page 202 and 203:

    2.6 Matrices 181 DEFINITION 6 EXAMP

  • Page 204 and 205:

    2.6 Matrices 183 DEFINITION 10 Let

  • Page 206 and 207:

    Key Terms and Results 185 24. a) Sh

  • Page 208 and 209:

    Supplementary Exercises 187 7. Expl

  • Page 210:

    Computer Projects 189 Computer Proj

  • Page 213 and 214:

    192 3 / Algorithms The term algorit

  • Page 215 and 216:

    194 3 / Algorithms of the terms of

  • Page 217 and 218:

    196 3 / Algorithms Algorithm 3 proc

  • Page 219 and 220:

    198 3 / Algorithms is not less than

  • Page 221 and 222:

    200 3 / Algorithms Proof: We will u

  • Page 223 and 224:

    202 3 / Algorithms Input Program P

  • Page 225 and 226:

    204 3 / Algorithms 51. When a list

  • Page 227 and 228:

    206 3 / Algorithms THE HISTORY OF B

  • Page 229 and 230:

    208 3 / Algorithms Cg(x) f (x) g(x)

  • Page 231 and 232:

    210 3 / Algorithms where C =|a n |+

  • Page 233 and 234:

    212 3 / Algorithms USEFUL BIG-O EST

  • Page 235 and 236:

    214 3 / Algorithms EXAMPLE 8 Give a

  • Page 237 and 238:

    216 3 / Algorithms One useful fact

  • Page 239 and 240:

    218 3 / Algorithms 59. (Requires ca

  • Page 241 and 242:

    220 3 / Algorithms EXAMPLE 2 Descri

  • Page 243 and 244:

    222 3 / Algorithms using a summatio

  • Page 245 and 246:

    224 3 / Algorithms multiplications

  • Page 247 and 248:

    226 3 / Algorithms TABLE 1 Commonly

  • Page 249 and 250:

    228 3 / Algorithms For more informa

  • Page 251 and 252:

    230 3 / Algorithms a) Show that thi

  • Page 253 and 254:

    232 3 / Algorithms Key Terms and Re

  • Page 255 and 256:

    234 3 / Algorithms 21. Find all pai

  • Page 257 and 258:

    236 3 / Algorithms 9. Given an orde

  • Page 259 and 260:

    238 4 / Number Theory and Cryptogra

  • Page 261 and 262:

    240 4 / Number Theory and Cryptogra

  • Page 263 and 264:

    242 4 / Number Theory and Cryptogra

  • Page 265 and 266:

    244 4 / Number Theory and Cryptogra

  • Page 267 and 268:

    246 4 / Number Theory and Cryptogra

  • Page 269 and 270:

    248 4 / Number Theory and Cryptogra

  • Page 271 and 272:

    250 4 / Number Theory and Cryptogra

  • Page 273 and 274:

    252 4 / Number Theory and Cryptogra

  • Page 275 and 276:

    254 4 / Number Theory and Cryptogra

  • Page 277 and 278:

    256 4 / Number Theory and Cryptogra

  • Page 279 and 280:

    258 4 / Number Theory and Cryptogra

  • Page 281 and 282:

    260 4 / Number Theory and Cryptogra

  • Page 283 and 284:

    262 4 / Number Theory and Cryptogra

  • Page 285 and 286:

    264 4 / Number Theory and Cryptogra

  • Page 287 and 288:

    266 4 / Number Theory and Cryptogra

  • Page 289 and 290:

    268 4 / Number Theory and Cryptogra

  • Page 291 and 292:

    270 4 / Number Theory and Cryptogra

  • Page 293 and 294:

    272 4 / Number Theory and Cryptogra

  • Page 295 and 296:

    274 4 / Number Theory and Cryptogra

  • Page 297 and 298:

    276 4 / Number Theory and Cryptogra

  • Page 299 and 300:

    278 4 / Number Theory and Cryptogra

  • Page 301 and 302:

    280 4 / Number Theory and Cryptogra

  • Page 303 and 304:

    282 4 / Number Theory and Cryptogra

  • Page 305 and 306:

    284 4 / Number Theory and Cryptogra

  • Page 307 and 308:

    286 4 / Number Theory and Cryptogra

  • Page 309 and 310:

    288 4 / Number Theory and Cryptogra

  • Page 311 and 312:

    290 4 / Number Theory and Cryptogra

  • Page 313 and 314:

    292 4 / Number Theory and Cryptogra

  • Page 315 and 316:

    294 4 / Number Theory and Cryptogra

  • Page 317 and 318:

    296 4 / Number Theory and Cryptogra

  • Page 319 and 320:

    298 4 / Number Theory and Cryptogra

  • Page 321 and 322:

    300 4 / Number Theory and Cryptogra

  • Page 323 and 324:

    302 4 / Number Theory and Cryptogra

  • Page 325 and 326:

    304 4 / Number Theory and Cryptogra

  • Page 327 and 328:

    306 4 / Number Theory and Cryptogra

  • Page 329 and 330:

    308 4 / Number Theory and Cryptogra

  • Page 331 and 332:

    310 4 / Number Theory and Cryptogra

  • Page 333 and 334:

    312 5 / Induction and Recursion We

  • Page 335 and 336:

    314 5 / Induction and Recursion FIG

  • Page 337 and 338:

    316 5 / Induction and Recursion EXA

  • Page 339 and 340:

    318 5 / Induction and Recursion EXA

  • Page 341 and 342:

    320 5 / Induction and Recursion tha

  • Page 343 and 344:

    322 5 / Induction and Recursion ste

  • Page 345 and 346:

    324 5 / Induction and Recursion IND

  • Page 347 and 348:

    326 5 / Induction and Recursion to

  • Page 349 and 350:

    328 5 / Induction and Recursion To

  • Page 351 and 352:

    330 5 / Induction and Recursion 9.

  • Page 353 and 354:

    332 5 / Induction and Recursion of

  • Page 355 and 356:

    334 5 / Induction and Recursion two

  • Page 357 and 358:

    336 5 / Induction and Recursion We

  • Page 359 and 360:

    338 5 / Induction and Recursion IND

  • Page 361 and 362:

    340 5 / Induction and Recursion a b

  • Page 363 and 364:

    342 5 / Induction and Recursion par

  • Page 365 and 366:

    344 5 / Induction and Recursion ∗

  • Page 367 and 368:

    346 5 / Induction and Recursion EXA

  • Page 369 and 370:

    348 5 / Induction and Recursion Pro

  • Page 371 and 372:

    350 5 / Induction and Recursion The

  • Page 373 and 374:

    352 5 / Induction and Recursion Bas

  • Page 375 and 376:

    354 5 / Induction and Recursion In

  • Page 377 and 378:

    356 5 / Induction and Recursion If

  • Page 379 and 380:

    358 5 / Induction and Recursion 7.

  • Page 381 and 382:

    360 5 / Induction and Recursion ∗

  • Page 383 and 384:

    362 5 / Induction and Recursion EXA

  • Page 385 and 386:

    364 5 / Induction and Recursion pro

  • Page 387 and 388:

    366 5 / Induction and Recursion f 4

  • Page 389 and 390:

    368 5 / Induction and Recursion alg

  • Page 391 and 392:

    370 5 / Induction and Recursion by

  • Page 393 and 394:

    372 5 / Induction and Recursion 5.5

  • Page 395 and 396:

    374 5 / Induction and Recursion EXA

  • Page 397 and 398:

    376 5 / Induction and Recursion Let

  • Page 399 and 400:

    378 5 / Induction and Recursion str

  • Page 401 and 402:

    380 5 / Induction and Recursion 30.

  • Page 403 and 404:

    382 5 / Induction and Recursion The

  • Page 406 and 407:

    C H A P T E R 6 Counting 6.1 The Ba

  • Page 408 and 409:

    6.1 The Basics of Counting 387 EXAM

  • Page 410 and 411:

    6.1 The Basics of Counting 389 Soon

  • Page 412 and 413:

    6.1 The Basics of Counting 391 More

  • Page 414 and 415:

    6.1 The Basics of Counting 393 THE

  • Page 416 and 417:

    6.1 The Basics of Counting 395 Winn

  • Page 418 and 419:

    6.1 The Basics of Counting 397 25.

  • Page 420 and 421:

    6.2 The Pigeonhole Principle 399 71

  • Page 422 and 423:

    6.2 The Pigeonhole Principle 401 Th

  • Page 424 and 425:

    6.2 The Pigeonhole Principle 403 wi

  • Page 426 and 427:

    6.2 The Pigeonhole Principle 405 pe

  • Page 428 and 429:

    6.3 Permutations and Combinations 4

  • Page 430 and 431:

    6.3 Permutations and Combinations 4

  • Page 432 and 433:

    6.3 Permutations and Combinations 4

  • Page 434 and 435:

    6.3 Permutations and Combinations 4

  • Page 436 and 437:

    6.4 Binomial Coefficients and Ident

  • Page 438 and 439:

    6.4 Binomial Coefficients and Ident

  • Page 440 and 441:

    6.4 Binomial Coefficients and Ident

  • Page 442 and 443:

    6.4 Binomial Coefficients and Ident

  • Page 444 and 445:

    6.5 Generalized Permutations and Co

  • Page 446 and 447:

    6.5 Generalized Permutations and Co

  • Page 448 and 449:

    6.5 Generalized Permutations and Co

  • Page 450 and 451:

    6.5 Generalized Permutations and Co

  • Page 452 and 453:

    6.5 Generalized Permutations and Co

  • Page 454 and 455:

    6.5 Generalized Permutations and Co

  • Page 456 and 457:

    6.6 Generating Permutations and Com

  • Page 458 and 459:

    6.6 Generating Permutations and Com

  • Page 460 and 461:

    Review Questions 439 16. Find the p

  • Page 462 and 463:

    Supplementary Exercises 441 3. A te

  • Page 464 and 465:

    Supplementary Exercises 443 45. How

  • Page 466 and 467:

    C H A P T E R 7 Discrete Probabilit

  • Page 468 and 469:

    7.1 An Introduction to Discrete Pro

  • Page 470 and 471:

    7.1 An Introduction to Discrete Pro

  • Page 472 and 473:

    7.1 An Introduction to Discrete Pro

  • Page 474 and 475:

    7.2 Probability Theory 453 similar

  • Page 476 and 477:

    7.2 Probability Theory 455 Solution

  • Page 478 and 479:

    7.2 Probability Theory 457 EXAMPLE

  • Page 480 and 481:

    7.2 Probability Theory 459 EXAMPLE

  • Page 482 and 483:

    7.2 Probability Theory 461 Solution

  • Page 484 and 485:

    7.2 Probability Theory 463 It follo

  • Page 486 and 487:

    7.2 Probability Theory 465 can use

  • Page 488 and 489:

    7.2 Probability Theory 467 10. What

  • Page 490 and 491:

    7.3 Bayes’ Theorem 469 this disea

  • Page 492 and 493:

    7.3 Bayes’ Theorem 471 EXAMPLE 2

  • Page 494 and 495:

    7.3 Bayes’ Theorem 473 We will de

  • Page 496 and 497:

    7.3 Bayes’ Theorem 475 event that

  • Page 498 and 499:

    7.4 Expected Value and Variance 477

  • Page 500 and 501:

    7.4 Expected Value and Variance 479

  • Page 502 and 503:

    7.4 Expected Value and Variance 481

  • Page 504 and 505:

    7.4 Expected Value and Variance 483

  • Page 506 and 507:

    7.4 Expected Value and Variance 485

  • Page 508 and 509:

    7.4 Expected Value and Variance 487

  • Page 510 and 511:

    7.4 Expected Value and Variance 489

  • Page 512 and 513:

    7.4 Expected Value and Variance 491

  • Page 514 and 515:

    7.4 Expected Value and Variance 493

  • Page 516 and 517:

    7.4 Expected Value and Variance 495

  • Page 518 and 519:

    Supplementary Exercises 497 b) What

  • Page 520 and 521:

    Supplementary Exercises 499 ∗36.

  • Page 522 and 523:

    C H A P T E R 8 Advanced Counting T

  • Page 524 and 525:

    8.1 Applications of Recurrence Rela

  • Page 526 and 527:

    8.1 Applications of Recurrence Rela

  • Page 528 and 529:

    8.1 Applications of Recurrence Rela

  • Page 530 and 531:

    8.1 Applications of Recurrence Rela

  • Page 532 and 533:

    8.1 Applications of Recurrence Rela

  • Page 534 and 535:

    8.1 Applications of Recurrence Rela

  • Page 536 and 537:

    8.2 Solving Linear Recurrence Relat

  • Page 538 and 539:

    8.2 Solving Linear Recurrence Relat

  • Page 540 and 541:

    8.2 Solving Linear Recurrence Relat

  • Page 542 and 543:

    8.2 Solving Linear Recurrence Relat

  • Page 544 and 545:

    8.2 Solving Linear Recurrence Relat

  • Page 546 and 547:

    8.2 Solving Linear Recurrence Relat

  • Page 548 and 549:

    8.3 Divide-and-Conquer Algorithms a

  • Page 550 and 551:

    8.3 Divide-and-Conquer Algorithms a

  • Page 552 and 553:

    8.3 Divide-and-Conquer Algorithms a

  • Page 554 and 555:

    8.3 Divide-and-Conquer Algorithms a

  • Page 556 and 557:

    8.3 Divide-and-Conquer Algorithms a

  • Page 558 and 559:

    8.4 Generating Functions 537 8.4 Ge

  • Page 560 and 561:

    8.4 Generating Functions 539 Remark

  • Page 562 and 563:

    8.4 Generating Functions 541 Using

  • Page 564 and 565:

    8.4 Generating Functions 543 This f

  • Page 566 and 567:

    8.4 Generating Functions 545 EXAMPL

  • Page 568 and 569:

    8.4 Generating Functions 547 Solvin

  • Page 570 and 571:

    8.4 Generating Functions 549 Exerci

  • Page 572 and 573:

    8.4 Generating Functions 551 35. Us

  • Page 574 and 575:

    8.5 Inclusion-Exclusion 553 Section

  • Page 576 and 577:

    8.5 Inclusion-Exclusion 555 1 1 1 1

  • Page 578 and 579:

    8.5 Inclusion-Exclusion 557 Therefo

  • Page 580 and 581:

    8.6 Applications of Inclusion-Exclu

  • Page 582 and 583:

    8.6 Applications of Inclusion-Exclu

  • Page 584 and 585:

    8.6 Applications of Inclusion-Exclu

  • Page 586 and 587:

    Key Terms and Results 565 11. In ho

  • Page 588 and 589:

    Supplementary Exercises 567 b) How

  • Page 590 and 591:

    Supplementary Exercises 569 31. (Re

  • Page 592:

    Computations and Explorations 571 9

  • Page 595 and 596:

    574 9 / Relations (Jason Goodfriend

  • Page 597 and 598:

    576 9 / Relations EXAMPLE 6 How man

  • Page 599 and 600:

    578 9 / Relations EXAMPLE 12 Is the

  • Page 601 and 602:

    580 9 / Relations DEFINITION 6 Let

  • Page 603 and 604:

    582 9 / Relations A relation R is c

  • Page 605 and 606:

    584 9 / Relations school are sophom

  • Page 607 and 608:

    586 9 / Relations EXAMPLE 6 Is the

  • Page 609 and 610:

    588 9 / Relations TABLE 5 Teaching_

  • Page 611 and 612:

    590 9 / Relations 9. The 5-tuples i

  • Page 613 and 614:

    592 9 / Relations Solution: Because

  • Page 615 and 616:

    594 9 / Relations The matrix repres

  • Page 617 and 618:

    596 9 / Relations Because loops are

  • Page 619 and 620:

    598 9 / Relations of R with respect

  • Page 621 and 622:

    600 9 / Relations The term path als

  • Page 623 and 624:

    602 9 / Relations x i+2 x i+1 x j-2

  • Page 625 and 626:

    604 9 / Relations a EXAMPLE 8 b are

  • Page 627 and 628:

    606 9 / Relations LEMMA 2 Let W k =

  • Page 629 and 630:

    608 9 / Relations uppercase or lowe

  • Page 631 and 632:

    610 9 / Relations EXAMPLE 6 In Exam

  • Page 633 and 634:

    612 9 / Relations Equivalence Class

  • Page 635 and 636:

    614 9 / Relations Solution: The sub

  • Page 637 and 638:

    616 9 / Relations In Exercises 21-2

  • Page 639 and 640:

    618 9 / Relations ∗58. Each bead

  • Page 641 and 642:

    620 9 / Relations EXAMPLE 6 The pos

  • Page 643 and 644:

    622 9 / Relations EXAMPLE 10 EXAMPL

  • Page 645 and 646:

    624 9 / Relations 8 12 8 12 8 12 4

  • Page 647 and 648:

    626 9 / Relations EXAMPLE 19 Find t

  • Page 649 and 650:

    628 9 / Relations cannot be started

  • Page 651 and 652:

    630 9 / Relations Exercises 1. Whic

  • Page 653 and 654:

    632 9 / Relations 40. a) Show that

  • Page 655 and 656:

    634 9 / Relations lexicographic ord

  • Page 657 and 658:

    636 9 / Relations 15. a) Give an ex

  • Page 659 and 660:

    638 9 / Relations ∗48. Show that

  • Page 662 and 663:

    C H A P T E R 10 Graphs 10.1 Graphs

  • Page 664 and 665:

    10.1 Graphs and Graph Models 643 Ch

  • Page 666 and 667:

    10.1 Graphs and Graph Models 645 Ed

  • Page 668 and 669:

    10.1 Graphs and Graph Models 647 fi

  • Page 670 and 671:

    10.1 Graphs and Graph Models 649 Te

  • Page 672 and 673:

    10.2 Graph Terminology and Special

  • Page 674 and 675:

    10.2 Graph Terminology and Special

  • Page 676 and 677:

    10.2 Graph Terminology and Special

  • Page 678 and 679:

    10.2 Graph Terminology and Special

  • Page 680 and 681:

    10.2 Graph Terminology and Special

  • Page 682 and 683:

    10.2 Graph Terminology and Special

  • Page 684 and 685:

    10.2 Graph Terminology and Special

  • Page 686 and 687:

    10.2 Graph Terminology and Special

  • Page 688 and 689:

    10.2 Graph Terminology and Special

  • Page 690 and 691:

    10.3 Representing Graphs and Graph

  • Page 692 and 693:

    10.3 Representing Graphs and Graph

  • Page 694 and 695:

    10.3 Representing Graphs and Graph

  • Page 696 and 697:

    10.3 Representing Graphs and Graph

  • Page 698 and 699:

    10.3 Representing Graphs and Graph

  • Page 700 and 701:

    10.4 Connectivity 679 A formal defi

  • Page 702 and 703:

    10.4 Connectivity 681 TABLE 1 The N

  • Page 704 and 705:

    10.4 Connectivity 683 Sometimes the

  • Page 706 and 707:

    10.4 Connectivity 685 The graph G 2

  • Page 708 and 709:

    10.4 Connectivity 687 GSCC followin

  • Page 710 and 711:

    10.4 Connectivity 689 there are exa

  • Page 712 and 713:

    10.4 Connectivity 691 22. Use paths

  • Page 714 and 715:

    10.5 Euler and Hamilton Paths 693

  • Page 716 and 717:

    10.5 Euler and Hamilton Paths 695 a

  • Page 718 and 719:

    10.5 Euler and Hamilton Paths 697 a

  • Page 720 and 721:

    10.5 Euler and Hamilton Paths 699 (

  • Page 722 and 723:

    10.5 Euler and Hamilton Paths 701 i

  • Page 724 and 725:

    10.5 Euler and Hamilton Paths 703 T

  • Page 726 and 727:

    10.5 Euler and Hamilton Paths 705 2

  • Page 728 and 729:

    10.6 Shortest-Path Problems 707 A k

  • Page 730 and 731:

    10.6 Shortest-Path Problems 709 DIS

  • Page 732 and 733:

    10.6 Shortest-Path Problems 711 To

  • Page 734 and 735:

    10.6 Shortest-Path Problems 713 b

  • Page 736 and 737:

    10.6 Shortest-Path Problems 715 Rou

  • Page 738 and 739:

    10.6 Shortest-Path Problems 717 17.

  • Page 740 and 741:

    10.7 Planar Graphs 719 FIGURE 2 Gra

  • Page 742 and 743:

    10.7 Planar Graphs 721 R 1 a 1 b 1

  • Page 744 and 745:

    10.7 Planar Graphs 723 G 1 a b G 2

  • Page 746 and 747:

    10.7 Planar Graphs 725 a e j f g b

  • Page 748 and 749:

    10.8 Graph Coloring 727 A B C D E F

  • Page 750 and 751:

    10.8 Graph Coloring 729 b e b e a d

  • Page 752 and 753:

    10.8 Graph Coloring 731 Next, let n

  • Page 754 and 755:

    10.8 Graph Coloring 733 3. 11. e h

  • Page 756 and 757:

    Key Terms and Results 735 ∗37. Le

  • Page 758 and 759:

    Review Questions 737 chromatic numb

  • Page 760 and 761:

    Supplementary Exercises 739 10. Let

  • Page 762 and 763:

    Supplementary Exercises 741 38. Bec

  • Page 764 and 765:

    Writing Projects 743 18. Given the

  • Page 766 and 767:

    C H A P T E R 11 Trees 11.1 Introdu

  • Page 768 and 769:

    11.1 Introduction to Trees 747 Proo

  • Page 770 and 771:

    11.1 Introduction to Trees 749 Solu

  • Page 772 and 773:

    11.1 Introduction to Trees 751 Pres

  • Page 774 and 775:

    11.1 Introduction to Trees 753 THEO

  • Page 776 and 777:

    11.1 Introduction to Trees 755 Then

  • Page 778 and 779:

    11.2 Applications of Trees 757 The

  • Page 780 and 781:

    11.2 Applications of Trees 759 ALGO

  • Page 782 and 783:

    11.2 Applications of Trees 761 1 2

  • Page 784 and 785:

    11.2 Applications of Trees 763 Each

  • Page 786 and 787:

    11.2 Applications of Trees 765 0.08

  • Page 788 and 789:

    11.2 Applications of Trees 767 (a)

  • Page 790 and 791:

    11.2 Applications of Trees 769 each

  • Page 792 and 793:

    11.2 Applications of Trees 771 27.

  • Page 794 and 795:

    11.3 Tree Traversal 773 0 1 2 3 4 5

  • Page 796 and 797:

    11.3 Tree Traversal 775 r Step 2: V

  • Page 798 and 799:

    11.3 Tree Traversal 777 r Step n +1

  • Page 800 and 801:

    11.3 Tree Traversal 779 ALGORITHM 2

  • Page 802 and 803:

    11.3 Tree Traversal 781 + - * 2 3 5

  • Page 804 and 805:

    11.3 Tree Traversal 783 Exercises I

  • Page 806 and 807:

    11.4 Spanning Trees 785 Herman Etna

  • Page 808 and 809:

    11.4 Spanning Trees 787 Source IP n

  • Page 810 and 811:

    11.4 Spanning Trees 789 explore fro

  • Page 812 and 813:

    11.4 Spanning Trees 791 ALGORITHM 2

  • Page 814 and 815:

    11.4 Spanning Trees 793 X X X X X X

  • Page 816 and 817:

    11.4 Spanning Trees 795 links at th

  • Page 818 and 819:

    11.5 Minimum Spanning Trees 797 41.

  • Page 820 and 821:

    11.5 Minimum Spanning Trees 799 San

  • Page 822 and 823:

    11.5 Minimum Spanning Trees 801 e 3

  • Page 824 and 825:

    Key Terms and Results 803 15. Find

  • Page 826 and 827:

    Supplementary Exercises 805 root, t

  • Page 828 and 829:

    Supplementary Exercises 807 33. d a

  • Page 830:

    Writing Projects 809 5. Define quad

  • Page 833 and 834:

    812 12 / Boolean Algebra The comple

  • Page 835 and 836:

    814 12 / Boolean Algebra TABLE 3 Th

  • Page 837 and 838:

    816 12 / Boolean Algebra complement

  • Page 839 and 840:

    818 12 / Boolean Algebra Exercises

  • Page 841 and 842:

    820 12 / Boolean Algebra DEFINITION

  • Page 843 and 844:

    822 12 / Boolean Algebra Exercises

  • Page 845 and 846:

    824 12 / Boolean Algebra x y xy xy

  • Page 847 and 848:

    826 12 / Boolean Algebra x y z x y

  • Page 849 and 850:

    828 12 / Boolean Algebra 5. x y z x

  • Page 851 and 852:

    830 12 / Boolean Algebra second pro

  • Page 853 and 854:

    832 12 / Boolean Algebra yz yz yz y

  • Page 855 and 856:

    834 12 / Boolean Algebra yz yz yz y

  • Page 857 and 858:

    836 12 / Boolean Algebra EXAMPLE 7

  • Page 859 and 860:

    838 12 / Boolean Algebra TABLE 2 Mi

  • Page 861 and 862:

    840 12 / Boolean Algebra 4. Determi

  • Page 863 and 864:

    842 12 / Boolean Algebra c) x y z x

  • Page 865 and 866:

    844 12 / Boolean Algebra An identit

  • Page 867 and 868:

    846 12 / Boolean Algebra ∗7. Give

  • Page 869 and 870:

    848 13 / Modeling Computation to an

  • Page 871 and 872:

    850 13 / Modeling Computation EXAMP

  • Page 873 and 874:

    852 13 / Modeling Computation lengt

  • Page 875 and 876:

    854 13 / Modeling Computation that

  • Page 877 and 878:

    856 13 / Modeling Computation adjec

  • Page 879 and 880:

    858 13 / Modeling Computation Sever

  • Page 881 and 882:

    860 13 / Modeling Computation R, n

  • Page 883 and 884:

    862 13 / Modeling Computation Start

  • Page 885 and 886:

    864 13 / Modeling Computation c) f

  • Page 887 and 888:

    866 13 / Modeling Computation DEFIN

  • Page 889 and 890:

    868 13 / Modeling Computation We ca

  • Page 891 and 892:

    870 13 / Modeling Computation (b) O

  • Page 893 and 894:

    872 13 / Modeling Computation a 1,

  • Page 895 and 896:

    874 13 / Modeling Computation Start

  • Page 897 and 898:

    876 13 / Modeling Computation 15. G

  • Page 899 and 900:

    878 13 / Modeling Computation or bo

  • Page 901 and 902:

    880 13 / Modeling Computation Solut

  • Page 903 and 904:

    882 13 / Modeling Computation (a) T

  • Page 905 and 906:

    884 13 / Modeling Computation Start

  • Page 907 and 908:

    886 13 / Modeling Computation Alan

  • Page 909 and 910:

    888 13 / Modeling Computation 20. S

  • Page 911 and 912:

    890 13 / Modeling Computation (a) s

  • Page 913 and 914:

    892 13 / Modeling Computation the s

  • Page 915 and 916:

    894 13 / Modeling Computation Many

  • Page 917 and 918:

    896 13 / Modeling Computation COMPU

  • Page 919 and 920:

    898 13 / Modeling Computation 3. Wh

  • Page 921 and 922:

    900 13 / Modeling Computation decis

  • Page 923 and 924:

    902 13 / Modeling Computation and t

  • Page 926 and 927:

    A P P E N D I X 1 Axioms for the Re

  • Page 928 and 929:

    Appendix 1 / Axioms for the Real Nu

  • Page 930 and 931:

    Appendix 1 / Axioms for the Real Nu

  • Page 932 and 933:

    A P P E N D I X 2 Exponential and L

  • Page 934:

    Appendix 2 / Exponential and Logari

  • Page 937 and 938:

    A-12 Appendix 3 / Pseudocode For ex

  • Page 939 and 940:

    A-14 Appendix 3 / Pseudocode Loop C

  • Page 941 and 942:

    A-16 Appendix 3 / Pseudocode Exerci

  • Page 943 and 944:

    B-2 Suggested Reading and Pomerance

  • Page 945 and 946:

    B-4 Suggested Reading [AiZiHo09] Ma

  • Page 947 and 948:

    B-6 Suggested Reading [Ha93] John P

  • Page 949 and 950:

    B-8 Suggested Reading [SePi89] J. S

  • Page 951 and 952:

    S-2 Answers to Odd-Numbered Exercis

  • Page 953 and 954:

    S-4 Answers to Odd-Numbered Exercis

  • Page 955 and 956:

    S-6 Answers to Odd-Numbered Exercis

  • Page 957 and 958:

    S-8 Answers to Odd-Numbered Exercis

  • Page 959 and 960:

    S-10 Answers to Odd-Numbered Exerci

  • Page 961 and 962:

    S-12 Answers to Odd-Numbered Exerci

  • Page 963 and 964:

    S-14 Answers to Odd-Numbered Exerci

  • Page 965 and 966:

    S-16 Answers to Odd-Numbered Exerci

  • Page 967 and 968:

    S-18 Answers to Odd-Numbered Exerci

  • Page 969 and 970:

    S-20 Answers to Odd-Numbered Exerci

  • Page 971 and 972:

    S-22 Answers to Odd-Numbered Exerci

  • Page 973 and 974:

    S-24 Answers to Odd-Numbered Exerci

  • Page 975 and 976:

    S-26 Answers to Odd-Numbered Exerci

  • Page 977 and 978:

    S-28 Answers to Odd-Numbered Exerci

  • Page 979 and 980:

    S-30 Answers to Odd-Numbered Exerci

  • Page 981 and 982:

    S-32 Answers to Odd-Numbered Exerci

  • Page 983 and 984:

    S-34 Answers to Odd-Numbered Exerci

  • Page 985 and 986:

    S-36 Answers to Odd-Numbered Exerci

  • Page 987 and 988:

    S-38 Answers to Odd-Numbered Exerci

  • Page 989 and 990:

    S-40 Answers to Odd-Numbered Exerci

  • Page 991 and 992:

    S-42 Answers to Odd-Numbered Exerci

  • Page 993 and 994:

    S-44 Answers to Odd-Numbered Exerci

  • Page 995 and 996:

    S-46 Answers to Odd-Numbered Exerci

  • Page 997 and 998:

    S-48 Answers to Odd-Numbered Exerci

  • Page 999 and 1000:

    S-50 Answers to Odd-Numbered Exerci

  • Page 1001 and 1002:

    S-52 Answers to Odd-Numbered Exerci

  • Page 1003 and 1004:

    S-54 Answers to Odd-Numbered Exerci

  • Page 1005 and 1006:

    S-56 Answers to Odd-Numbered Exerci

  • Page 1007 and 1008:

    S-58 Answers to Odd-Numbered Exerci

  • Page 1009 and 1010:

    S-60 Answers to Odd-Numbered Exerci

  • Page 1011 and 1012:

    S-62 Answers to Odd-Numbered Exerci

  • Page 1013 and 1014:

    S-64 Answers to Odd-Numbered Exerci

  • Page 1015 and 1016:

    S-66 Answers to Odd-Numbered Exerci

  • Page 1017 and 1018:

    S-68 Answers to Odd-Numbered Exerci

  • Page 1019 and 1020:

    S-70 Answers to Odd-Numbered Exerci

  • Page 1021 and 1022:

    S-72 Answers to Odd-Numbered Exerci

  • Page 1023 and 1024:

    S-74 Answers to Odd-Numbered Exerci

  • Page 1025 and 1026:

    S-76 Answers to Odd-Numbered Exerci

  • Page 1027 and 1028:

    S-78 Answers to Odd-Numbered Exerci

  • Page 1029 and 1030:

    S-80 Answers to Odd-Numbered Exerci

  • Page 1031 and 1032:

    S-82 Answers to Odd-Numbered Exerci

  • Page 1033 and 1034:

    S-84 Answers to Odd-Numbered Exerci

  • Page 1035 and 1036:

    S-86 Answers to Odd-Numbered Exerci

  • Page 1037 and 1038:

    S-88 Answers to Odd-Numbered Exerci

  • Page 1039 and 1040:

    S-90 Answers to Odd-Numbered Exerci

  • Page 1041 and 1042:

    S-92 Answers to Odd-Numbered Exerci

  • Page 1043 and 1044:

    S-94 Answers to Odd-Numbered Exerci

  • Page 1045 and 1046:

    S-96 Answers to Odd-Numbered Exerci

  • Page 1047 and 1048:

    Photo Credits CHAPTER 1 Page 2: ©

  • Page 1049 and 1050:

    Index of Biographies Ada, Augusta (

  • Page 1051 and 1052:

    Index I-3 Antisymmetric relation, 5

  • Page 1053 and 1054:

    Index I-5 Climbing rock, 163 Clique

  • Page 1055 and 1056:

    Index I-7 Diagrams Hasse, 622-626,

  • Page 1057 and 1058:

    Index I-9 Folder empty, 118 Forbidd

  • Page 1059 and 1060:

    Index I-11 Identification number si

  • Page 1061 and 1062:

    Index I-13 Linear array, 662 Linear

  • Page 1063 and 1064:

    Index I-15 Notation big-O, 205, 232

  • Page 1065 and 1066:

    Index I-17 Millennium Prize, 227 Ne

  • Page 1067 and 1068:

    Index I-19 S k -tree, 806 Same pari

  • Page 1069 and 1070:

    Index I-21 Summation index of, 163

  • Page 1071:

    Index I-23 Vertex (vertices)—Cont

Discrete Mathematics Applications
Rosen_Discrete_Mathematics_and_Its_Applications_7th_Edition
Undergraduate Texts in Mathematics
Undergraduate Texts in Mathematics
Discrete Mathematics
Discrete Mathematics - Department of Mathematical Sciences
Applicable Analysis and Discrete Mathematics EDGE ...
Applicable Analysis and Discrete Mathematics GROUPIES IN ...
Discrete Mathematics - Computer Science Department
Discrete Mathematics University of Kentucky CS 275 Spring ... - MGNet
Discrete Mathematics University of Kentucky CS 275 Spring ... - MGNet
Applicable Analysis and Discrete Mathematics ON THE SPECTRAL ...
K - Discrete Mathematics & Theoretical Computer Science
PCA101: Discrete Mathematical Structures
Applicable Analysis and Discrete Mathematics HARARY INDEX OF ...
Discrete Mathematics Homomorphisms of triangle-free graphs ... - Etsu
3, s - Applicable Analysis and Discrete Mathematics (AADM)
Discrete mathematics - HomeL
ECE 203S — Discrete Mathematics Instructions 1. /14 2. /14 3. /10 4 ...
ECE 203S — Discrete Mathematics Instructions 1. /20 2. /10 3. /10 4 ...
Applicable Analysis and Discrete Mathematics ... - doiSerbia