12.12.2012 Views

– The Approach and Experiences in ICC - Department of Building ...

– The Approach and Experiences in ICC - Department of Building ...

– The Approach and Experiences in ICC - Department of Building ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CPD Technical Sem<strong>in</strong>ar, CIBSE (Hong Kong Branch), ASHRAE<br />

(Hong Kong Chapter) <strong>and</strong> HKIE (BS division)<br />

17, March 2010, Hong Kong<br />

Build<strong>in</strong>g Energy Sav<strong>in</strong>g through Optimization<br />

<strong>and</strong> Life-cycle Commission<strong>in</strong>g<br />

<strong>–</strong> <strong>The</strong> <strong>Approach</strong> <strong>and</strong> <strong>Experiences</strong> <strong>in</strong> <strong>ICC</strong><br />

Shengwei Wang (王盛衛 王盛衛 王盛衛) 王盛衛<br />

Chair Pr<strong>of</strong>essor <strong>of</strong> Build<strong>in</strong>g Services Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>Department</strong> <strong>of</strong> Build<strong>in</strong>g Services Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>The</strong> Hong Kong Polytechnic University<br />

A A Simple Simple View View <strong>of</strong> <strong>of</strong> Energy Energy Sav<strong>in</strong>g Sav<strong>in</strong>g Potentials Potentials for for Build<strong>in</strong>g<br />

Build<strong>in</strong>g<br />

HVAC&R HVAC&R Systems Systems <strong>in</strong> <strong>in</strong> Operation<br />

Operation<br />

- HVAC, light<strong>in</strong>g, lift, …<br />

Design: Configuration,<br />

Components selection, etc.<br />

10~20%<br />

Sav<strong>in</strong>g Potential<br />

System operation <strong>and</strong><br />

Control Optimization<br />

Build<strong>in</strong>g Build<strong>in</strong>g Build<strong>in</strong>g Energy Energy Sav<strong>in</strong>g<br />

Sav<strong>in</strong>g<br />

HVAC&R Systems<br />

Energy Sav<strong>in</strong>g Potential<br />

20~30%<br />

Sav<strong>in</strong>g Potential<br />

System, component <strong>and</strong> BAS<br />

commission<strong>in</strong>g <strong>and</strong> diagnosis


Outl<strong>in</strong>e <strong>of</strong> Presentation<br />

• Introduction to <strong>ICC</strong> build<strong>in</strong>g systems;<br />

• Our roles <strong>in</strong> <strong>ICC</strong> project;<br />

• <strong>The</strong> concept <strong>of</strong> “commission<strong>in</strong>g”<br />

• Examples <strong>of</strong> commission<strong>in</strong>g efforts at design,<br />

<strong>in</strong>stallation, T&C <strong>and</strong> operation stages;<br />

• Sav<strong>in</strong>g Energy through Control Optimization<br />

control strategies implemented<br />

examples <strong>of</strong> control strategies<br />

• Summary <strong>of</strong> energy benefits<br />

• Summary <strong>of</strong> experiences <strong>in</strong> <strong>ICC</strong><br />

International F<strong>in</strong>ance Centre (<strong>ICC</strong>)<br />

Floor Area:<br />

Hotel 70,000 (m 2 )<br />

Office 286,000 (m 2 )<br />

Commercial center<br />

67,000 (m 2 )<br />

Gross 440,000 (m 2 )<br />

Six-star Hotel<br />

High-rank<br />

commercial<br />

<strong>of</strong>fice<br />

Commercial center <strong>and</strong><br />

basement<br />

490 m<br />

118 F


A<br />

D<br />

E<br />

F<br />

G<br />

PCHWP-06-01<br />

EVAPORAROR<br />

WCC-06a-01<br />

(2040 Ton)<br />

COOLING<br />

TOWER 1<br />

FROM PODIUM & BASEMENT<br />

TO PODIUM & BASEMENT<br />

HX HX<br />

(S-B) (S-B)<br />

SCHWP-06-10 to 12<br />

SCHWP-06-01 to 02<br />

COOLING<br />

TOWER 2<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

EVAPORATOR<br />

COOLING<br />

TOWER 3<br />

B<br />

COOLING<br />

TOWER 4<br />

FROM OFF<strong>ICC</strong>E FLOORS(7-41)<br />

TO OFFICE FLOORS(7-41)<br />

EVAPORATOR EVAPORATOR EVAPORATOR EVAPORATOR<br />

COOLING<br />

TOWER 5<br />

COOLING<br />

TOWER 6<br />

HX HX HX HX HX HX HX<br />

PCHWP-06-02 PCHWP-06-03 PCHWP-06-04 PCHWP-06-05 PCHWP-06-06<br />

WCC-06a-02<br />

(2040 Ton)<br />

Secondary water circuit for Zone 1<br />

Secondary water circuit for Zone 2<br />

Secondary water circuit for Zone<br />

3 <strong>and</strong> Zone 4<br />

Primary water circuit<br />

Chiller circuit<br />

Cool<strong>in</strong>g water circuit<br />

Cool<strong>in</strong>g tower circuit<br />

(S-B)<br />

WCC-06a-03<br />

(2040 Ton)<br />

WCC-06a-04<br />

(2040 Ton)<br />

COOLING<br />

TOWER 7<br />

COOLING<br />

TOWER 8<br />

WCC-06a-05<br />

(2040 Ton)<br />

CDWP-06-01 CDWP-06-02 CDWP-06-03 CDWP-06-04<br />

CDWP-06-05 CDWP-06-06<br />

C<br />

COOLING<br />

TOWER 9<br />

FROM OFFICE FLOORS (43-77)<br />

COOLING<br />

TOWER 10<br />

TO OFFICE FLOORS (43-77)<br />

WCC-06a-06<br />

(2040 Ton)<br />

CONDENSER CONDENSER CONDENSER CONDENSER CONDENSER CONDENSER<br />

CT-06a-01 CT-06a-02 CT-06a-03 CT-06a-04 CT-06a-05 CT-06a-06 CTA-06a-01 CTA-06a-02 CTA-06a-03 CTA-06a-04 CTA-06a-05<br />

CTA Towers (without heat<strong>in</strong>g coil)<br />

SCHWP-06-03 to 05<br />

HX<br />

SCHWP-78-01 to 03<br />

PCHWP-78-01 PCHWP-78-02<br />

HX<br />

SCHWP-42-04 to 06<br />

FROM OFFICE FLOORS (79-98)<br />

TO OFFICE FLOORSS (79-98)<br />

PCHWP-78-03<br />

HX<br />

(S-B)<br />

(S-B)<br />

(S-B)<br />

(S-B)<br />

SCHWP-42-01 to 03<br />

PCHWP-42-01 PCHWP-42-02 PCHWP-42-03 PCHWP-42-04 PCHWP-42-05 PCHWP-42-06 PCHWP-42-07<br />

SCHWP-06-06 to 09<br />

CTB Towers (with heat<strong>in</strong>g coil)<br />

Our Our Our Our Our Roles Roles Roles Roles <strong>in</strong> <strong>in</strong> <strong>in</strong> <strong>in</strong> <strong>ICC</strong> <strong>ICC</strong> <strong>ICC</strong> <strong>ICC</strong> Project<br />

Project<br />

Project<br />

Project<br />

� Independent Energy Consultant<br />

(Independent Commission<strong>in</strong>g<br />

Agent)<br />

� Developer <strong>of</strong> HVAC Energy<br />

Optimization System (EOS)<br />

<strong>and</strong> Energy Performance<br />

Diagnosis System (EPDS)<br />

COOLING<br />

TOWER 11


� Summary <strong>of</strong> design power load <strong>of</strong> ma<strong>in</strong> HVAC<br />

equipments<br />

Chiller Pump Cool<strong>in</strong>g Tower Fan PAU Fan AHU Fan Total<br />

Number 6 36 11 29 152 234<br />

Rated Power (kW ) 1346 152<br />

Total load (kW ) 8076 4374 1672 513 4600 19235<br />

Percentage 41.99% 22.74% 8.69% 2.67% 23.91%<br />

� Annual electricity consumption <strong>of</strong> the central<br />

air-condition<strong>in</strong>g system is about 50,000,000 kWh<br />

Pr<strong>in</strong>ciple <strong>of</strong> Commission<strong>in</strong>g<br />

(校核 校核 校核/校校 校核 校核 校核 校核 校核 校校 校校及及及及及及及及改進<br />

校校 校校 校校 校校 校校 改進) 改進 改進 改進 改進 改進 改進<br />

� Commission<strong>in</strong>g is the process throughout the<br />

whole build<strong>in</strong>g lifecycle rather that one-<strong>of</strong>f task.<br />

� Commission<strong>in</strong>g is a valid means for<br />

improv<strong>in</strong>g energy performance <strong>of</strong><br />

build<strong>in</strong>gs <strong>and</strong> HVAC systems<br />

throughout the build<strong>in</strong>g life cycle.


Categories <strong>of</strong> Commission<strong>in</strong>g<br />

� Initial commission<strong>in</strong>g: Applied to a production <strong>of</strong> a new<br />

build<strong>in</strong>g <strong>and</strong>/or an <strong>in</strong>stallation <strong>of</strong> new systems.<br />

� Retro-commission<strong>in</strong>g: <strong>The</strong> first time commission<strong>in</strong>g<br />

implemented <strong>in</strong> an exist<strong>in</strong>g build<strong>in</strong>g <strong>in</strong> which a documented<br />

commission<strong>in</strong>g was not implemented before.<br />

� Re-commission<strong>in</strong>g: Implemented after the <strong>in</strong>itial<br />

commission<strong>in</strong>g or the retro-commission<strong>in</strong>g when the owner hopes to<br />

verify, improve <strong>and</strong> document the performance <strong>of</strong> build<strong>in</strong>g systems.<br />

� On-go<strong>in</strong>g/cont<strong>in</strong>uous commission<strong>in</strong>g: Conducted<br />

cont<strong>in</strong>ually for the purposes <strong>of</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g, improv<strong>in</strong>g <strong>and</strong><br />

optimiz<strong>in</strong>g the performance <strong>of</strong> build<strong>in</strong>g systems after the <strong>in</strong>itial<br />

commission<strong>in</strong>g or the retro-commission<strong>in</strong>g.<br />

Life-Cycle Life ycle Commission<strong>in</strong>g<br />

ommission<strong>in</strong>g<br />

� <strong>The</strong> build<strong>in</strong>g pr<strong>of</strong>ession <strong>in</strong> Northern American <strong>and</strong><br />

European countries has been promot<strong>in</strong>g the new concept <strong>of</strong><br />

life-cycle “Commission<strong>in</strong>g” <strong>and</strong> role <strong>of</strong> “Independent<br />

Commission<strong>in</strong>g Agent” over the last few years.<br />

� Commission<strong>in</strong>g is the process throughout the whole<br />

build<strong>in</strong>g lifecycle rather that one-<strong>of</strong>f task as conventional<br />

“Test <strong>and</strong> Commission<strong>in</strong>g”.<br />

It is performed regularly throughout the whole build<strong>in</strong>g lifecycle from<br />

early plann<strong>in</strong>g, design, construction <strong>and</strong> <strong>in</strong>stallation to operation<br />

for ensur<strong>in</strong>g that systems are designed, <strong>in</strong>stalled, functionally tested<br />

<strong>and</strong> capable <strong>of</strong> be<strong>in</strong>g operated <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>ed properly.<br />

� Commission<strong>in</strong>g is an effective means for improv<strong>in</strong>g<br />

energy performance <strong>of</strong> build<strong>in</strong>gs <strong>and</strong> HVAC systems<br />

throughout the build<strong>in</strong>g life cycle.<br />

• An average payback period for commission<strong>in</strong>g <strong>of</strong> new<br />

build<strong>in</strong>gs is 4.8 years <strong>in</strong> United States.<br />

• Average energy cost sav<strong>in</strong>g for periodical commission<strong>in</strong>g<br />

<strong>of</strong> exist<strong>in</strong>g build<strong>in</strong>g is 15%.


Life-Cycle Life ycle Commission<strong>in</strong>g<br />

ommission<strong>in</strong>g<br />

� <strong>The</strong> build<strong>in</strong>g pr<strong>of</strong>ession <strong>in</strong> Northern American <strong>and</strong><br />

European countries has been promot<strong>in</strong>g the new concept <strong>of</strong><br />

life-cycle “Commission<strong>in</strong>g” <strong>and</strong> role <strong>of</strong> “Independent<br />

Commission<strong>in</strong>g Agent” over the last few years.<br />

� Commission<strong>in</strong>g <strong>ICC</strong> project is the is one process <strong>of</strong> the throughout very first the whole full scale<br />

build<strong>in</strong>g trial lifecycle <strong>of</strong> the new rather concept that one-<strong>of</strong>f <strong>of</strong> “Commission<strong>in</strong>g”<br />

task as conventional<br />

“Test <strong>and</strong> Commission<strong>in</strong>g”.<br />

<strong>and</strong> “Independent Commission<strong>in</strong>g Agent” <strong>in</strong><br />

It is performed regularly throughout the whole build<strong>in</strong>g lifecycle from<br />

early very plann<strong>in</strong>g, large design, <strong>and</strong> construction complex <strong>and</strong> build<strong>in</strong>g <strong>in</strong>stallation system to operation <strong>in</strong><br />

for ensur<strong>in</strong>g that systems are designed, <strong>in</strong>stalled, functionally tested<br />

<strong>and</strong> Asia. capable It <strong>of</strong> be<strong>in</strong>g is a very operated attractive <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>ed contribution properly. to the<br />

IEA Research programme Annex 47.<br />

� Commission<strong>in</strong>g is an effective means for improv<strong>in</strong>g<br />

energy performance <strong>of</strong> build<strong>in</strong>gs <strong>and</strong> HVAC systems<br />

throughout the build<strong>in</strong>g life cycle.<br />

• An average payback period for commission<strong>in</strong>g <strong>of</strong> new<br />

build<strong>in</strong>gs is 4.8 years <strong>in</strong> United States.<br />

• Average energy cost sav<strong>in</strong>g for periodical commission<strong>in</strong>g<br />

<strong>of</strong> exist<strong>in</strong>g build<strong>in</strong>g is 15%.<br />

Commission<strong>in</strong>g Commission<strong>in</strong>g <strong>and</strong> <strong>and</strong> <strong>and</strong> examples examples <strong>of</strong><br />

<strong>of</strong><br />

efforts efforts at at design, design, design, <strong>in</strong>stallation, <strong>in</strong>stallation, T&C<br />

T&C<br />

<strong>and</strong> <strong>and</strong> operation operation stages<br />

stages


Development <strong>of</strong> Virtual Build<strong>in</strong>g System - Dynamic<br />

simulation platform <strong>of</strong> the complex HVACR system<br />

Load & status <strong>of</strong> AHUs<br />

Zone airflow rates<br />

Load & status <strong>of</strong> AHUs<br />

On/Off<br />

<strong>of</strong> AHUs<br />

On/Off <strong>of</strong> AHUs<br />

TYPE 49<br />

Ma,i&Ta,<strong>in</strong><br />

On/Off <strong>of</strong> AHUs<br />

TYPE 35<br />

On/Off <strong>of</strong> AHUs Ma,i&Ta,<strong>in</strong><br />

On/Off <strong>of</strong> AHUs Ma,i&Ta,<strong>in</strong><br />

Pump & network Mw,i AHUs<br />

TYPE 17 TYPE 63<br />

Mw,i<br />

Pump & network AHUs<br />

TYPE 13 TYPE 21<br />

Freq<br />

Tao,i<br />

PID control PID control<br />

TYPE 43 TYPE 20<br />

VPi<br />

Pump sequence Npu PD<br />

optimizer<br />

TYPE 39<br />

TYPE 7<br />

PDset<br />

Mix<strong>in</strong>g<br />

TYPE 60<br />

Tw,<strong>in</strong> &Mw<br />

HX sequence Nhx HX model<strong>in</strong>g<br />

&mix<strong>in</strong>g<br />

TYPE 39<br />

TYPE 41<br />

Nhx<br />

Pump & network<br />

TYPE 14<br />

Freq Mw,meas<br />

Tw,out<br />

PID control Mw,set PID control<br />

TYPE 43 TYPE 43<br />

Zone 1 Zone 1<br />

Return pipe<br />

TYPE 31<br />

Pump & network Mw,i AHUs<br />

TYPE 12 TYPE 63<br />

Freq<br />

Tao,i<br />

PID control PID control<br />

TYPE 43 TYPE 42<br />

VPi<br />

Pump sequence Npu PD<br />

optimizer<br />

TYPE 39<br />

TYPE 6<br />

PDset<br />

Mix<strong>in</strong>g<br />

Zone 2<br />

TYPE 48<br />

Zone 2<br />

Mw & Tw,rtn Mw & Tw,rtn<br />

Mix<strong>in</strong>g<br />

TYPE 61<br />

Mw,tot & Tw,rtn<br />

Mw & Tw,rtn<br />

Tw,rtn & Mw,tot<br />

Mw,i<br />

Pump & network AHUs<br />

Freq<br />

Tao,i<br />

TYPE 18 TYPE 63<br />

PID control PID control<br />

Freq<br />

Tao,i<br />

TYPE 43 TYPE 42<br />

PID control PID control<br />

VPi<br />

TYPE 43 TYPE 42<br />

Pump sequence Npu PD<br />

VPi<br />

optimizer<br />

TYPE 39 TYPE 62<br />

Pump sequence Npu PD<br />

PDset<br />

optimizer<br />

TYPE 39<br />

TYPE 8<br />

HX sequence Mix<strong>in</strong>g<br />

Load<br />

PDset<br />

TYPE 39 TYPE 47<br />

Nhx<br />

HX sequence Mix<strong>in</strong>g<br />

Pump & network HX model<strong>in</strong>g<br />

Mw &mix<strong>in</strong>g<br />

TYPE 39 Nhx TYPE Zones 47 3&4 3&4<br />

TYPE 15<br />

TYPE 36<br />

Freq Mw,meas<br />

Tw,<strong>in</strong><br />

Pump sequence HX model<strong>in</strong>g<br />

&mix<strong>in</strong>g<br />

TYPE 39<br />

PID control<br />

TYPE 37<br />

TYPE 43<br />

Mw Npu<br />

Tw,sup<br />

Mw,set<br />

&Mw<br />

Pump & network<br />

PID control Mix<strong>in</strong>g &<br />

TYPE 16<br />

TYPE 43<br />

bypass<br />

Freq Mw,meas<br />

Tw,out<br />

TYPE 19<br />

PID control Mw,set PID control<br />

Pump sequence<br />

TYPE 43 TYPE 43<br />

TYPE 39<br />

Tw,rtn & Mw Mix<strong>in</strong>g & bypass<br />

Tw,sup & Mw TYPE 45 Zone 3&4<br />

Tsup Supply pipe<br />

TYPE 31<br />

Mix<strong>in</strong>g & Bypass<br />

TYPE XX: Component type number<br />

TYPE 67<br />

T: Temperature<br />

Tw,sup<br />

Mw & PDmeas<br />

Data Reader<br />

TYPE 9<br />

Twb&Tdb<br />

Mw,tot& Trtn<br />

Mw<br />

Ma,i&Ta,<strong>in</strong><br />

Tsup<br />

Chiller sequence controller<br />

TYPE 50<br />

Cool<strong>in</strong>g tower controller<br />

TYPE 3&54&55<br />

Tw,out,i On/Off,i&Freq,i<br />

On/Off<br />

<strong>of</strong> AHUs<br />

Tw,sup<br />

Mw & PDmeas<br />

Chiller One<br />

TYPE 23<br />

Chiller Two<br />

TYPE 23<br />

Chiller Three<br />

TYPE 23<br />

Chiller Four<br />

TYPE 23<br />

Mix<strong>in</strong>g after chiller condensers<br />

TYPE 4<br />

Chiller Five<br />

TYPE 23<br />

Chiller Six<br />

TYPE 23<br />

CTA One CTA Two CTA Three CTA Four CTA Five CTA Six CTB One CTB Two CTB Three CTB Four CTB Five<br />

TYPE 1 TYPE 1 TYPE 1 TYPE 1 TYPE 1 TYPE 1 TYPE 2 TYPE 2 TYPE 2 TYPE 2 TYPE 2<br />

Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw<br />

Mix<strong>in</strong>g after cool<strong>in</strong>g towers<br />

TYPE 5<br />

Tw,sup<br />

On/Off<br />

<strong>of</strong> AHUs<br />

Tw,ch,out Tw,ch,out Tw,ch,out Tw,ch,out Tw,ch,out Tw,ch,out<br />

Nch On/Off On/Off On/Off On/Off On/Off On/Off<br />

Nch Tw,cd,out Tw,cd,out Tw,cd,out Tw,cd,out Tw,cd,out Tw,cd,out<br />

Mw,tot&Tw,ct,<strong>in</strong><br />

Mw,tot&Tw,ct,out<br />

Tw,cd,out<br />

Load<br />

Nhx<br />

Mw<br />

On/Off<br />

<strong>of</strong> AHUs<br />

Tw,cd,<strong>in</strong><br />

Tw,sup<br />

Mw & Tw,<strong>in</strong><br />

Mw & PDmeas<br />

Mw<br />

Npu<br />

M:<br />

Load:<br />

Freq:<br />

N:<br />

VP:<br />

PD:<br />

Subscript<br />

w:<br />

ao:<br />

<strong>in</strong>:<br />

rtn:<br />

cd:<br />

ct:<br />

hx:<br />

wb:<br />

Water<br />

Air outlet<br />

Inlet<br />

Return<br />

Nhx<br />

Tw,out<br />

Number<br />

Condenser<br />

Tw,rtn& Mw<br />

Water or air flow rate<br />

Cool<strong>in</strong>g load<br />

Frequency<br />

Valve position<br />

meas: Measurement<br />

Pressure differential<br />

Cool<strong>in</strong>g tower<br />

Heat exchanger<br />

Wet-bulb<br />

a:<br />

i:<br />

Air<br />

tot: Total<br />

pu: Pump<br />

sup: Supply<br />

Mw,&w,<strong>in</strong><br />

Tw,rtn& Mw<br />

Individual<br />

set: Set-po<strong>in</strong>t<br />

ch: Chiller<br />

out: Outlet<br />

db: Dry-bulb<br />

Development <strong>of</strong> Virtual Build<strong>in</strong>g System - Dynamic<br />

simulation platform <strong>of</strong> the complex HVACR system<br />

Load & status <strong>of</strong> AHUs<br />

Zone airflow rates<br />

Load & status <strong>of</strong> AHUs<br />

On/Off<br />

<strong>of</strong> AHUs<br />

On/Off <strong>of</strong> AHUs<br />

TYPE 49<br />

Ma,i&Ta,<strong>in</strong><br />

On/Off <strong>of</strong> AHUs<br />

Mw,i<br />

Pump & network AHUs<br />

Pump & network Mw,i<br />

TYPE 13 TYPE 21<br />

AHUs<br />

Freq<br />

Tao,i<br />

TYPE 12 TYPE 63<br />

PID control PID control<br />

Freq<br />

Tao,i<br />

TYPE 43 TYPE 20<br />

PID control PID control<br />

VPi<br />

TYPE 43 TYPE 42<br />

PD<br />

VPi<br />

Pump sequence Npu<br />

optimizer<br />

TYPE 39<br />

TYPE 7<br />

Pump sequence Npu PD<br />

optimizer<br />

PDset<br />

TYPE 39<br />

TYPE 6<br />

Mix<strong>in</strong>g<br />

PDset<br />

TYPE 60<br />

Tw,<strong>in</strong> &Mw<br />

Mix<strong>in</strong>g<br />

HX sequence Nhx HX model<strong>in</strong>g Zone 2<br />

&mix<strong>in</strong>g<br />

TYPE 48<br />

TYPE 39<br />

TYPE 41<br />

Nhx<br />

Zone Zone 2<br />

Pump & network<br />

Mw & Tw,rtn Mw & Tw,rtn<br />

TYPE 14<br />

Freq Mw,meas<br />

Tw,out<br />

PID control Mw,set PID control<br />

TYPE 43 TYPE 43<br />

Mix<strong>in</strong>g<br />

Zone 1<br />

TYPE 61<br />

Zone 1<br />

Mw,tot & Tw,rtn<br />

Mw & Tw,rtn<br />

Return pipe<br />

Tw,rtn & Mw,tot<br />

TYPE 31<br />

On/Off <strong>of</strong> AHUs Ma,i&Ta,<strong>in</strong><br />

TYPE 35<br />

Pump & network Mw,i AHUs<br />

On/Off <strong>of</strong> AHUs Ma,i&Ta,<strong>in</strong><br />

TYPE 17 TYPE 63<br />

Mw,i<br />

Pump & network AHUs<br />

Freq<br />

Tao,i<br />

TYPE 18 TYPE 63<br />

PID control PID control<br />

Freq<br />

Tao,i<br />

TYPE 43 TYPE 42<br />

PID control PID Virtual<br />

control<br />

VPi<br />

TYPE 43 TYPE 42<br />

Pump sequence Npu PD<br />

VPi<br />

optimizer<br />

TYPE 39 TYPE 62<br />

Pump sequence Npu PD<br />

PDset<br />

optimizer<br />

TYPE 39<br />

TYPE 8<br />

HX sequence Mix<strong>in</strong>g<br />

Load<br />

PDset<br />

TYPE 39 TYPE 47<br />

Nhx<br />

HX sequence Mix<strong>in</strong>g<br />

Pump & network HX model<strong>in</strong>g Build<strong>in</strong>g Mw &mix<strong>in</strong>g<br />

TYPE 39 Nhx TYPE Zones 47 3&4<br />

TYPE 15<br />

TYPE 36<br />

Freq Mw,meas<br />

Tw,<strong>in</strong><br />

Pump sequence HX model<strong>in</strong>g<br />

&mix<strong>in</strong>g<br />

TYPE 39<br />

PID control<br />

TYPE 37<br />

TYPE 43<br />

Mw Npu<br />

Tw,sup<br />

Mw,set<br />

&Mw<br />

Pump & network<br />

PID control Mix<strong>in</strong>g &<br />

TYPE 16<br />

TYPE 43<br />

bypass<br />

Freq Mw,meas<br />

Tw,out<br />

TYPE 19 System<br />

PID control Mw,set PID control<br />

Pump sequence<br />

TYPE 43 TYPE 43<br />

TYPE 39<br />

Tw,rtn & Mw Mix<strong>in</strong>g & bypass<br />

Tw,sup & Mw TYPE 45 Zone 3&4<br />

Tsup Supply pipe<br />

TYPE 31<br />

Mix<strong>in</strong>g & Bypass<br />

TYPE XX: Component type number<br />

TYPE 67<br />

T: Temperature<br />

Tw,sup<br />

Mw & PDmeas<br />

Mw,tot& Trtn<br />

Mw<br />

Ma,i&Ta,<strong>in</strong><br />

Tsup<br />

On/Off<br />

<strong>of</strong> AHUs<br />

Tw,sup<br />

Mw & PDmeas<br />

Tw,sup<br />

On/Off<br />

<strong>of</strong> AHUs<br />

Data Reader<br />

Tw,ch,out Tw,ch,out Tw,ch,out Tw,ch,out Tw,ch,out Tw,ch,out<br />

M: Water or air flow rate<br />

TYPE 9<br />

Chiller sequence controller Nch<br />

TYPE 50<br />

Nch<br />

Cool<strong>in</strong>g tower controller<br />

TYPE 3&54&55<br />

Tw,out,i On/Off,i&Freq,i<br />

Chiller One Chiller Two Chiller Three Chiller Four Chiller Five Chiller Six<br />

Load: Cool<strong>in</strong>g load<br />

TYPE 23 TYPE 23 TYPE 23 TYPE 23 TYPE 23 TYPE 23<br />

Freq: Frequency<br />

On/Off On/Off On/Off On/Off On/Off On/Off<br />

N: Number<br />

Tw,cd,<strong>in</strong> VP: Valve position<br />

Tw,cd,out Tw,cd,out Tw,cd,out Tw,cd,out Tw,cd,out Tw,cd,out<br />

PD: Pressure differential<br />

Mix<strong>in</strong>g after chiller condensers (updated throughout<br />

Subscript<br />

TYPE 4<br />

Mw,tot&Tw,ct,<strong>in</strong><br />

Tw,cd,out<br />

w: Water<br />

a: Air<br />

meas: Measurement i: Individual<br />

ao: Air outlet tot: Total<br />

<strong>in</strong>: Inlet<br />

pu: Pump<br />

CTA One CTA Two CTA Three CTA Four CTA Five CTA Six CTB One CTB Two CTB Three the CTB Fourentire<br />

CTB Five process)<br />

rtn: Return set: Set-po<strong>in</strong>t<br />

TYPE 1 TYPE 1 TYPE 1 TYPE 1 TYPE 1 TYPE 1 TYPE 2 TYPE 2 TYPE 2 TYPE 2 TYPE 2<br />

cd: Condenser ch: Chiller<br />

Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw Tw,out & Mw<br />

ct: Cool<strong>in</strong>g tower out: Outlet<br />

Mix<strong>in</strong>g after cool<strong>in</strong>g towers<br />

hx: Heat exchanger sup: Supply<br />

TYPE 5<br />

Mw,tot&Tw,ct,out<br />

wb: Wet-bulb db: Dry-bulb<br />

Twb&Tdb<br />

Load<br />

Nhx<br />

Mw<br />

On/Off<br />

<strong>of</strong> AHUs<br />

Tw,sup<br />

Mw & Tw,<strong>in</strong><br />

Mw & PDmeas<br />

Mw<br />

Simulated<br />

Npu<br />

Nhx<br />

Tw,out<br />

Tw,rtn& Mw<br />

Mw,&w,<strong>in</strong><br />

Tw,rtn& Mw<br />

Tw,sup<br />

Tw,sup


A<br />

D<br />

E<br />

F<br />

Design Commission<strong>in</strong>g<br />

<strong>The</strong> design commission<strong>in</strong>g ma<strong>in</strong>ly concerns the<br />

future operation <strong>and</strong> control performance <strong>of</strong> HVAC<br />

systems, <strong>and</strong> <strong>in</strong>cludes:<br />

• Verification the system configuration <strong>and</strong> component<br />

selection <strong>in</strong>clud<strong>in</strong>g the chiller system, water system<br />

(primary/secondary system), heat rejection system<br />

(cool<strong>in</strong>g towers), fresh air system etc.<br />

• Verification <strong>of</strong> the meter<strong>in</strong>g system for proper local<br />

control, <strong>and</strong> the orig<strong>in</strong>al proposed control logics at the<br />

design stage.<br />

• Proposal <strong>of</strong> additional meter<strong>in</strong>g system for implement<strong>in</strong>g<br />

supervisory control strategies <strong>and</strong> diagnosis strategies<br />

<strong>and</strong> related facilities for implement<strong>in</strong>g these strategies<br />

( This is a typical energy-sav<strong>in</strong>g implementation from<br />

the earlier design <strong>and</strong> <strong>in</strong>stallation phase)<br />

HX-06<br />

PCHWP-06-01<br />

EVAPORAROR<br />

WCC-06a-01<br />

(2040 Ton)<br />

FROM PODIUM & BASEMENT<br />

TO PODIUM & BASEMENT<br />

HX-06<br />

(S-B) (S-B)<br />

A Secondary water circuit for Zone 1 C<br />

B Secondary water circuit for Zone 2<br />

C<br />

D Primary water circuit<br />

E Chiller circuit<br />

F Cool<strong>in</strong>g water circuit<br />

B<br />

EVAPORATOR<br />

FROM OFF<strong>ICC</strong>E FLOORS(7-41)<br />

TO OFFICE FLOORS(7-41)<br />

HX-42<br />

PCHWP-06-02 PCHWP-06-03 PCHWP-06-04 PCHWP-06-05 PCHWP-06-06<br />

WCC-06a-02<br />

(2040 Ton)<br />

Secondary water circuit for Zone<br />

3 <strong>and</strong> Zone 4<br />

(S-B)<br />

EVAPORATOR EVAPORATOR EVAPORATOR EVAPORATOR<br />

WCC-06a-03<br />

(2040 Ton)<br />

WCC-06a-04<br />

(2040 Ton)<br />

WCC-06a-05<br />

(2040 Ton)<br />

FROM OFFICE FLOORS (43-77)<br />

TO OFFICE FLOORS (43-77)<br />

CDWP-06-01 CDWP-06-02 CDWP-06-03 CDWP-06-04<br />

CDWP-06-05 CDWP-06-06<br />

(S-B)<br />

WCC-06a-06<br />

(2040 Ton)<br />

CONDENSER CONDENSER CONDENSER CONDENSER CONDENSER CONDENSER<br />

From cool<strong>in</strong>g towers<br />

SCHWP-06-10 to 12<br />

SCHWP-06-01 to 02<br />

System Design Verification -<br />

Secondary water loop systems <strong>of</strong> 3rd <strong>and</strong> 4 th zones<br />

SCHWP-06-03 to 05<br />

HX-78<br />

SCHWP-78-01 to 03<br />

PCHWP-78-01 PCHWP-78-02<br />

HX-78<br />

SCHWP-42-04 to 06<br />

FROM OFFICE FLOORS (79-98)<br />

TO OFFICE FLOORSS (79-98)<br />

PCHWP-78-03<br />

HX-78<br />

(S-B)<br />

(S-B)<br />

(S-B)<br />

SCHWP-42-01 to 03<br />

PCHWP-42-01 PCHWP-42-02 PCHWP-42-03 PCHWP-42-04 PCHWP-42-05 PCHWP-42-06 PCHWP-42-07<br />

HX-42 HX-42 HX-42 HX-42 HX-42 HX-42<br />

SCHWP-06-06 to 09<br />

Orig<strong>in</strong>al Orig<strong>in</strong>al Orig<strong>in</strong>al Orig<strong>in</strong>al System System System System<br />

HX-78<br />

SCHWP-78-01 to 03<br />

HX-78<br />

SCHWP-42-04 to 06<br />

HX-78<br />

FROM OFFICE FLOORS (79-98)<br />

(S-B)<br />

TO OFFICE FLOORSS (79-98)<br />

HX-42 HX-42 HX-42 HX-42 HX-42 HX-42 HX-42<br />

From Zone 3&4<br />

SCHWP-06-06 to 09<br />

To cool<strong>in</strong>g towers<br />

Primary pumps are omitted<br />

(S-B)<br />

To Zone 3&4<br />

(S-B)<br />

FROM OFFICE FLOORS (43-77)<br />

(S-B)<br />

TO OFFICE FLOORS (43-77)<br />

SCHWP-42-01 to 03<br />

Revised Revised Revised Revised System System System System<br />

(operation (operation (operation (operation mode) mode) mode) mode)<br />

Flow meter<br />

Bypass valve


Pump power (kW )<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Comparison between Two systems<br />

Orig<strong>in</strong>al design<br />

Alternative design<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24<br />

Time (h )<br />

Typical sunnysummer<br />

day<br />

Annual Pump<br />

Energy Sav<strong>in</strong>g is<br />

1M kWh<br />

System Design Verification-<br />

Verification<br />

Cool<strong>in</strong>g tower system<br />

• A very special cool<strong>in</strong>g tower with large heat rejection<br />

capacity <strong>and</strong> a very large dimension (4*10*9)<br />

• High pressure drop through fill pack<strong>in</strong>g <strong>and</strong> silencer<br />

• Energy consumption is about 3.6 million a year with<br />

<strong>in</strong>tended two-stage control<br />

Annual sav<strong>in</strong>g potential <strong>of</strong> us<strong>in</strong>g variable speed<br />

cool<strong>in</strong>g towers is 2.4M compared with that<br />

us<strong>in</strong>g constant speed towers. It is 1.4M<br />

compared with that us<strong>in</strong>g two speed towers.<br />

• Energy consumption is about 2.6<br />

million a year with <strong>in</strong>tended<br />

VFD control from PolyU<br />

• However, energy consumption<br />

will <strong>in</strong>crease greatly to about 5.0<br />

million when s<strong>in</strong>gle-stage is used<br />

Silencer<br />

100 Pa<br />

Fill pack<strong>in</strong>g<br />

300 Pa 50 Pa<br />

Pressure drop<br />

From chiller<br />

To chiller


Example <strong>of</strong> CO 2 Sensor<br />

Installation<br />

Morgan<br />

Stanley<br />

CO CO22<br />

CO CO22<br />

CO CO22<br />

CO CO22<br />

CO CO22<br />

CO CO22<br />

AHU<br />

Flow stations<br />

CO CO2 2<br />

CO CO22<br />

CO CO22<br />

CO CO22<br />

CO CO22<br />

AHU<br />

CO CO22<br />

CO CO22<br />

CO CO22 CO2 CO2<br />

Kaish<strong>in</strong>g<br />

� CO 2 sensor calibration <strong>and</strong> commission<strong>in</strong>g<br />

CO2 concentration (ppm)<br />

Measurement accuracy <strong>of</strong> CO 2 sensors directly affects<br />

<strong>in</strong>door air quality <strong>and</strong> energy performance <strong>of</strong> air side<br />

system, which is therefore essential for implement<strong>in</strong>g<br />

optimal ventilation control strategy.<br />

700<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

Before calibration<br />

Fresh air (Measured) Return air (Measured)<br />

Supply air (Measured) Supply air (Calculated)<br />

200<br />

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00<br />

Simple time (h)<br />

CO2 concentration (ppm)<br />

700<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

Empty<br />

IC<br />

After calibration<br />

CO CO22<br />

CO CO22<br />

Fresh air (Measured) Return air (Measured)<br />

Supply air (Measured) Supply air (Calculated)<br />

CO CO22<br />

BB<br />

CO CO22<br />

CO CO22<br />

Empty<br />

Empty<br />

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00<br />

Sample time (h)


∆P<br />

Q = A ⋅ v = A ⋅ 2∆P<br />

Example <strong>of</strong> air flow<br />

station Installation<br />

Cool<strong>in</strong>g Cool<strong>in</strong>g tower tower site site operation operation issue issue<br />

• We suggest all the cool<strong>in</strong>g tower fans are equipped with<br />

VFD for significant energy sav<strong>in</strong>gs, <strong>and</strong> the variable<br />

frequency range is from 50 Hz to 25 Hz at least.<br />

• At the test stage, the manufacture<br />

stated the m<strong>in</strong>imum frequency is 37<br />

Hz for cool<strong>in</strong>g requirement <strong>of</strong> the<br />

<strong>in</strong>side motor.<br />

• <strong>The</strong> manufacture f<strong>in</strong>ally confirmed the<br />

m<strong>in</strong>imum frequency is 20 Hz ensur<strong>in</strong>g<br />

the normal operation <strong>of</strong> the fan.<br />

This This This This low low low low frequency frequency frequency frequency <strong>in</strong>creases <strong>in</strong>creases <strong>in</strong>creases <strong>in</strong>creases the the the the<br />

energy energy energy energy sav<strong>in</strong>g sav<strong>in</strong>g sav<strong>in</strong>g sav<strong>in</strong>g potential potential potential potential greatly greatly greatly greatly<br />

at at at at partial partial partial partial load load load load conditions conditions conditions conditions !<br />

! ! !


Cool<strong>in</strong>g Cool<strong>in</strong>g tower tower site site operation operation issue issue<br />

• We suggest all the cool<strong>in</strong>g tower fans are equipped with<br />

VFD for significant energy sav<strong>in</strong>gs, <strong>and</strong> the variable<br />

frequency range is from 50 Hz to 25 Hz at least.<br />

• At the test stage, the manufacture<br />

stated the m<strong>in</strong>imum frequency is 37<br />

Hz <strong>The</strong> for cool<strong>in</strong>g sav<strong>in</strong>gs requirement is about 607,000 <strong>of</strong> the kWh , 2.86% <strong>of</strong><br />

<strong>in</strong>side motor.<br />

annual energy consumption <strong>of</strong> chillers <strong>and</strong><br />

cool<strong>in</strong>g towers due to the lower frequency limit.<br />

• <strong>The</strong> manufacture f<strong>in</strong>ally confirmed the<br />

m<strong>in</strong>imum frequency is 20 Hz ensur<strong>in</strong>g<br />

the normal operation <strong>of</strong> the fan.<br />

This This This This low low low low frequency frequency frequency frequency <strong>in</strong>creases <strong>in</strong>creases <strong>in</strong>creases <strong>in</strong>creases the the the the<br />

energy energy energy energy sav<strong>in</strong>g sav<strong>in</strong>g sav<strong>in</strong>g sav<strong>in</strong>g potential potential potential potential greatly greatly greatly greatly<br />

at at at at partial partial partial partial load load load load conditions conditions conditions conditions ! ! ! !<br />

Low Delta-T Central Plant Syndrome<br />

� Nearly all large primary-secondary chilled water<br />

systems suffer from low chilled water temperature<br />

difference, known as low delta-T central plant<br />

syndrome, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>efficient operation.<br />

� When the low delta-T syndrome exists, a series <strong>of</strong><br />

operation problems will be resulted<br />

� <strong>The</strong> <strong>in</strong>ability to sufficiently<br />

load chillers;<br />

� Excess water flow dem<strong>and</strong>;<br />

� An <strong>in</strong>crease <strong>in</strong> pump energy;<br />

� Either an <strong>in</strong>crease <strong>in</strong> chiller<br />

energy or a failure to meet<br />

cool<strong>in</strong>g load; etc.<br />

Water flow rate (L/s)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

-500<br />

Temp. difference after decouple<br />

Water flow<br />

Chiller operat<strong>in</strong>g number<br />

0 12 24 36 48 60 72 84 96 108 120 132 144 156<br />

0<br />

168<br />

Sample time (hour)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Chiller number <strong>and</strong> Temp. difference


Low Delta-T Central Plant Syndrome<br />

� Nearly all large primary-secondary chilled water<br />

systems suffer from low chilled water temperature<br />

difference, known as low delta-T central plant<br />

syndrome, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>efficient operation.<br />

Each phase <strong>in</strong> the life cycle <strong>of</strong> air-condition<strong>in</strong>g<br />

systems, <strong>in</strong>clud<strong>in</strong>g design, equipment selection,<br />

commission<strong>in</strong>g, operation <strong>and</strong> ma<strong>in</strong>tenance,<br />

may result <strong>in</strong> low delta-T problems.<br />

� When the low delta-T syndrome exists, a series <strong>of</strong><br />

operation problems will be resulted<br />

� <strong>The</strong> <strong>in</strong>ability to sufficiently<br />

load chillers;<br />

� Excess water flow dem<strong>and</strong>;<br />

� An <strong>in</strong>crease <strong>in</strong> pump energy;<br />

� applications.<br />

Either an <strong>in</strong>crease <strong>in</strong> chiller<br />

energy or a failure to meet<br />

cool<strong>in</strong>g load; etc.<br />

Temp. difference after decouple<br />

400<br />

300<br />

Water flow<br />

Some causes can be avoided, 200 but some<br />

100<br />

0<br />

<strong>of</strong> them cannot be avoided <strong>in</strong> some<br />

-100<br />

� Potential solutions<br />

Water flow rate (L/s)<br />

500<br />

-200<br />

-300<br />

-400<br />

-500<br />

Chiller operat<strong>in</strong>g number<br />

0 12 24 36 48 60 72 84 96 108 120 132 144 156<br />

0<br />

168<br />

Sample time (hour)<br />

� <strong>The</strong> use <strong>of</strong> variable primary-only systems;<br />

� <strong>The</strong> use <strong>of</strong> pressure-<strong>in</strong>dependent modulat<strong>in</strong>g<br />

control valves;<br />

� <strong>The</strong> use <strong>of</strong> bypass check valves;<br />

� Advanced control <strong>and</strong> operation strategies.<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Chiller number <strong>and</strong> Temp. difference


System Improvement by us<strong>in</strong>g a Check Valve<br />

Check valve<br />

Primary<br />

pumps 01-06<br />

CHILLER 01<br />

CHILLER 02<br />

CHILLER 03<br />

CHILLER 04<br />

CHILLER 05<br />

CHILLER 06<br />

FM<br />

Secondary water<br />

circuit for Zone 1<br />

AHU<br />

AHU<br />

AHU<br />

Secondary<br />

Pumps 01-02<br />

Secondary water<br />

circuit for Zone 2<br />

Secondary water<br />

circuit for Zone 3&4<br />

� Experimental validation prior to a check valve is really<br />

<strong>in</strong>stalled<br />

� by us<strong>in</strong>g a ‘conceptual’ check valve <strong>in</strong> the chiller<br />

decouple ---- through fully clos<strong>in</strong>g down one <strong>of</strong> the<br />

isolation valves <strong>in</strong> the chiller decouple when the<br />

deficit flow was observed.<br />

AHU<br />

AHU<br />

AHU<br />

Secondary<br />

pumps 03-05<br />

� Summary <strong>of</strong> experimental results<br />

Outlet air temp. <strong>of</strong> AHU 1 <strong>in</strong> L15 (°C)<br />

Deficit flow (L/S)<br />

12.5<br />

12<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

10:09:59<br />

10:24:58<br />

10:42:56<br />

10:58:57<br />

10:00:58<br />

10:17:58<br />

Clos<strong>in</strong>g the valve <strong>in</strong><br />

the decouple<br />

10:36:58<br />

10:51:59<br />

11:10:59<br />

11:06:59<br />

11:19:04<br />

5.5 °C set-po<strong>in</strong>t<br />

11:23:01<br />

11:39:01<br />

12:03:03<br />

12:21:03<br />

12:35:00<br />

13:00:01<br />

11:32:56<br />

11:54:58<br />

12:14:56<br />

12:29:58<br />

13:14:04<br />

12:48:56<br />

13:07:58<br />

Reopen the valve<br />

<strong>in</strong> the decouple<br />

5.0 °C set-po<strong>in</strong>t<br />

13:29:01<br />

13:43:58<br />

13:56:59<br />

14:13:58<br />

14:38:58<br />

14:52:04<br />

15:02:58<br />

15:16:57<br />

15:33:04<br />

15:47:59<br />

16:06:59<br />

16:23:01<br />

13:24:59<br />

Time<br />

13:37:59<br />

13:50:59<br />

14:08:59<br />

14:34:00<br />

14:44:56<br />

14:58:58<br />

15:10:56<br />

15:29:01<br />

15:39:00<br />

15:57:59<br />

16:15:58<br />

Cool<strong>in</strong>g load <strong>of</strong> chiller(kW)<br />

7000<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

4000<br />

200<br />

0<br />

10:17:58<br />

10:36:58<br />

Clos<strong>in</strong>g the valve<br />

<strong>in</strong> the decouple<br />

10:51:59<br />

11:06:59<br />

11:19:04<br />

11:32:56<br />

11:54:58<br />

12:14:56<br />

12:29:58<br />

12:48:56<br />

Reset supply water<br />

temp. set po<strong>in</strong>t from<br />

5.5°C to 5 °C<br />

13:07:58<br />

13:24:59<br />

13:37:59<br />

13:50:59<br />

AHU<br />

AHU<br />

AHU<br />

Secondary<br />

pumps 06-08<br />

14:08:59<br />

14:34:00<br />

Reopen the valve <strong>in</strong><br />

the decouple<br />

Time<br />

Time<br />

Test procedure Cool<strong>in</strong>g energy <strong>of</strong> chillers<br />

Clos<strong>in</strong>g the valve<br />

Reset supply water<br />

Annual energy Reopen the valve <strong>in</strong><br />

<strong>in</strong> the decouple<br />

temp. set po<strong>in</strong>t from sav<strong>in</strong>g potential by us<strong>in</strong>g the check<br />

the decouple<br />

1800<br />

5.5°C to 5 °C<br />

16<br />

1600<br />

15.5 valve <strong>in</strong> <strong>ICC</strong> is about 325,800 1400kWh<br />

when compared<br />

15<br />

14.5<br />

1200<br />

1000<br />

to that without us<strong>in</strong>g the check valve.<br />

14<br />

800<br />

13.5<br />

600<br />

Us<strong>in</strong>g 'conceptual' check valve<br />

with similar weather condition<br />

by without us<strong>in</strong>g the check<br />

13<br />

400<br />

valve<br />

Total power (kW)<br />

14:44:56<br />

14:58:58<br />

15:10:56<br />

15:29:01<br />

15:39:00<br />

15:57:59<br />

16:15:58<br />

11:19:56<br />

11:30:02<br />

11:42:58<br />

11:52:59<br />

12:05:56<br />

12:16:58<br />

12:32:03<br />

12:46:56<br />

12:57:00<br />

13:07:04<br />

13:17:59<br />

13:31:59<br />

13:48:03<br />

13:56:01<br />

14:09:57<br />

14:28:03<br />

14:39:56<br />

14:48:00<br />

14:57:59<br />

Supply air temperature Energy consumptions<br />

Time


Onl<strong>in</strong>e performance test<strong>in</strong>g <strong>of</strong> control<br />

optimizers <strong>and</strong> diagnostic tools on the<br />

simulated virtual system<br />

Control optimizers <strong>and</strong> diagnostic tools should be tested on the virtual<br />

systems prior to site implementation<br />

Virtual Plants<br />

Simulated<br />

Communication<br />

Interfaces<br />

IBmanager<br />

Sav<strong>in</strong>g Energy through<br />

Control Optimization<br />

System Control Optimizer<br />

Simplified<br />

Models<br />

Optimization<br />

Strategies<br />

Performance<br />

Models<br />

Diagnosis<br />

Strategies<br />

Performance<br />

Prediction<br />

Diagnostic Tool<br />

Performance<br />

Prediction


Optimization for HVAC&R systems<br />

Optimization allows the <strong>of</strong> HVAC&R systems<br />

provide expected quality <strong>of</strong> services (comfort <strong>and</strong><br />

health environment) with reduced energy<br />

consumption by means <strong>of</strong> :<br />

• Optimiz<strong>in</strong>g design configuration;<br />

• Optimiz<strong>in</strong>g the selection <strong>and</strong> siz<strong>in</strong>g;<br />

• Optimal operation <strong>and</strong> control.<br />

Optimal control strategies for central<br />

air-condition<strong>in</strong>g air condition<strong>in</strong>g systems<br />

� Chiller sequence, optimal start<br />

Optimal chiller sequence - based on a more accurate cool<strong>in</strong>g load<br />

prediction us<strong>in</strong>g data fusion method, <strong>and</strong> consider<strong>in</strong>g dem<strong>and</strong> limit<strong>in</strong>g<br />

Adaptive onl<strong>in</strong>e strategy for optimal start - based on simplified subsystem<br />

dynamic models<br />

� Ventilation strategy for multi-zone air-condition<strong>in</strong>g<br />

system<br />

Optimal ventilation control strategy - based on ventilation needs <strong>of</strong><br />

<strong>in</strong>dividual zones <strong>and</strong> the energy benefits <strong>of</strong> fresh air <strong>in</strong>take<br />

� Peak dem<strong>and</strong> limit<strong>in</strong>g <strong>and</strong> global electricity cost<br />

management


Optimal control strategies for central<br />

air-condition<strong>in</strong>g air condition<strong>in</strong>g systems (cont’d) (cont d)<br />

� Chilled water system optimization<br />

Optimal pressure differential set po<strong>in</strong>t reset strategy<br />

Optimal pump sequence logic<br />

Optimal heat exchanger sequence logic<br />

Optimal control strategy for pumps <strong>in</strong> the cold water side <strong>of</strong> heat<br />

exchangers<br />

Optimal chilled water supply temperature set-po<strong>in</strong>t reset strategy<br />

� Cool<strong>in</strong>g water system optimization<br />

Optimal condenser <strong>in</strong>let water temperature set po<strong>in</strong>t reset strategy<br />

Optimal cool<strong>in</strong>g tower sequence<br />

Optimal control <strong>of</strong> condenser<br />

cool<strong>in</strong>g water systems


Optimal control <strong>of</strong> condenser cool<strong>in</strong>g water systems (cont’d) (cont d)<br />

� Formulation <strong>of</strong> the optimal control strategy<br />

It is designed us<strong>in</strong>g a model-based method<br />

• <strong>The</strong> overall structure <strong>of</strong> the optimal control strategy<br />

T wb, Q ev, N ch<br />

Def<strong>in</strong>e the search ranges<br />

for T w,cd,sup <strong>and</strong> N ct<br />

T w,cd,sup& N ct<br />

Onl<strong>in</strong>e measurements<br />

<strong>and</strong> control signals<br />

Measurement filter<br />

Simplified CTA <strong>and</strong><br />

Performance prediction<br />

CTB tower models<br />

Tw,cd,sup, NCTA, NCTB, Ma,, Pct , Freq<br />

Cost estimation & optimization algorithm<br />

Supervisory control strategy<br />

Simplified chiller<br />

model<br />

Optimal control sett<strong>in</strong>gs & cost<br />

(T w,cd,sup , N CTA , N CTB , Freq , P ch +P ct ) Optimization process<br />

N CTA<br />

T w,cd,sup<br />

N CTB<br />

Interface<br />

N ch &T wb<br />

T w,cd,sup<br />

Chiller plant control system<br />

(BAS)<br />

T w,cd,out<br />

P ch<br />

Freq<br />

Q ev , N ch , T w,ev,<strong>in</strong><br />

It consists <strong>of</strong> :<br />

Performance Performance predictor predictor<br />

predictor<br />

Cost Cost estimator estimator<br />

estimator<br />

Optimization Optimization tool<br />

tool<br />

Supervisory Supervisory strategy<br />

strategy<br />

• Objective function<br />

N ⎛ ch NCTA<br />

NCTB<br />

J = m<strong>in</strong>W<br />

= ⎜<br />

tot m<strong>in</strong>⎜∑<br />

Wch,<br />

k + ∑WCTA,<br />

i + ∑W<br />

Tw,<br />

cd , sup<br />

Tw,<br />

cd , sup ⎝ k=<br />

1 i=<br />

1<br />

j=<br />

1<br />

CTB,<br />

i<br />

Optimal control <strong>of</strong> condenser cool<strong>in</strong>g water systems (cont’d) (cont d)<br />

• Parameters to be optimized<br />

� <strong>The</strong> condenser water supply temperature set-po<strong>in</strong>t<br />

� <strong>The</strong> number <strong>of</strong> CTA towers operat<strong>in</strong>g<br />

� <strong>The</strong> number <strong>of</strong> CTB towers operat<strong>in</strong>g<br />

• Optimization tool ---HQS (hybrid quick search) method<br />

T<br />

T<br />

n,<br />

o<br />

w,<br />

cd , sup<br />

n,<br />

o<br />

w,<br />

cd,<br />

sup<br />

= h<br />

0<br />

+ h T<br />

1<br />

wb<br />

− ∆T<br />

≤ T<br />

⎛ Q<br />

+ h ⎜ 2 ⎜<br />

⎝ Qev,<br />

w,<br />

cd,<br />

sup<br />

ev<br />

≤ T<br />

des<br />

⎞<br />

⎟<br />

⎠<br />

n.<br />

o<br />

w,<br />

cd,<br />

sup<br />

• Operat<strong>in</strong>g constra<strong>in</strong>ts<br />

+ ∆T<br />

Control sett<strong>in</strong>g<br />

Upper limit<br />

Search range<br />

+Δx<br />

-Δx<br />

Low limit Search center (near optimal)<br />

� basic energy <strong>and</strong> mass balances (i.e., flow, heat, etc.)<br />

� mechanical limitations (i.e., fan speed, temperature, etc.)<br />

Time<br />

⎞<br />

⎟<br />


Temperature (°C )<br />

Optimal control <strong>of</strong> condenser cool<strong>in</strong>g water systems (cont’d) (cont d)<br />

� Performance tests <strong>and</strong> evaluation<br />

• Evaluation <strong>of</strong> control accuracy <strong>and</strong> computation performance<br />

32.00<br />

29.00<br />

26.00<br />

23.00<br />

20.00<br />

17.00<br />

14.00<br />

� Comparison between the HQS <strong>and</strong> GA-based strategies<br />

Items<br />

Seasons<br />

Spr<strong>in</strong>g Mild-summer Sunny-summer<br />

Typical work<strong>in</strong>g conditions<br />

Qload (kW) 25520.11 31213.61 37547.74<br />

Nch 4 5 6<br />

Tw,ev,<strong>in</strong> (°C) 9.92 9.82 9.83<br />

Tw,ev,out (°C) 5.50 5.50 5.50<br />

Tdb (°C) 22.55 27.76 33.66<br />

Twb (°C) 15.86 20.11 24.99<br />

Mw,cd (L/s) 410.10 410.10 410.10<br />

Items Tools<br />

HQS GA HQS GA HQS GA<br />

Optimization results<br />

Wch (kW) 3628.07 3644.90 5004.21 4994.37 6794.24 6799.59<br />

Wct (kW) 285.74 268.91 386.11 396.08 538.74 533.42<br />

Wch+Wct (kW) 3913.81 3913.81 5390.32 5390.45 7332.98 7333.01<br />

Optimal Tw,cd,sup (°C) 21.85 21.88 26.65 26.64 31.80 31.80<br />

NCTA 6 6 6 6 6 6<br />

NCTB 5 5 5 5 5 5<br />

Freq (Hz) 25.99 25.35 29.33 29.62 33.39 33.26<br />

Computational cost(s) 0.152 3.610 0.144 3.512 0.134 3.589<br />

<strong>The</strong> computational cost sav<strong>in</strong>g is 96.0%<br />

Dry-bulb Temp.<br />

Wet-bulb Temp.<br />

Optimal Temp. set-po<strong>in</strong>t<br />

Near optimal Temp. set-po<strong>in</strong>t<br />

Upper limit <strong>of</strong> set-po<strong>in</strong>t<br />

Low limit <strong>of</strong> set-po<strong>in</strong>t<br />

Optimal control <strong>of</strong> condenser cool<strong>in</strong>g water systems (cont’d) (cont d)<br />

• Evaluation <strong>of</strong> the Energy Performance<br />

� Comparison <strong>of</strong> condenser water supply temperature setpo<strong>in</strong>ts<br />

us<strong>in</strong>g HQS-based strategy <strong>and</strong> near optimal strategy<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Time (h )<br />

Optimal temperature set-po<strong>in</strong>t<br />

Spr<strong>in</strong>g Spr<strong>in</strong>g case case<br />

38.00 Dry-bulb Temp.<br />

Wet-bulb Temp. Sunny<br />

Optimal Temp. set-po<strong>in</strong>t<br />

35.00 Near optimal Temp. set-po<strong>in</strong>t<br />

Upper limit <strong>of</strong> set-po<strong>in</strong>t<br />

32.00 Low limit <strong>of</strong> set-po<strong>in</strong>t<br />

Temperature (°C)<br />

29.00<br />

26.00<br />

23.00<br />

20.00<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Time (h )<br />

Near-optimal temperature set-po<strong>in</strong>t<br />

Sunny-summer summer case case<br />

case


Power difference ( kW )<br />

Optimal control <strong>of</strong> condenser cool<strong>in</strong>g water systems (cont’d) (cont d)<br />

� Comparison <strong>of</strong> the hourly-based power consumptions us<strong>in</strong>g<br />

different control methods<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

Optimal strategy<br />

Near optimal strategy<br />

Fixed approach<br />

-30<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Time (h )<br />

HQS-based strategy<br />

Spr<strong>in</strong>g case<br />

Spr<strong>in</strong>g case 210<br />

Optimal strategy Sunny<br />

180 Near optimal strategy<br />

Power difference ( kW )<br />

150<br />

120<br />

90<br />

60<br />

30<br />

0<br />

-30<br />

Fixed<br />

approach<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Time (h )<br />

Near optimal strategy<br />

Sunny-summer summer case<br />

case<br />

Optimal control <strong>of</strong> condenser cool<strong>in</strong>g water systems (cont’d) (cont d)<br />

� Comparison <strong>of</strong> daily <strong>and</strong> annual power consumptions <strong>of</strong> the<br />

condenser cool<strong>in</strong>g water system us<strong>in</strong>g different control methods<br />

• Daily power consumptions<br />

Operation<br />

Strategies<br />

Fixed approach<br />

Wct+Wch<br />

(kWh)<br />

Near optimal strategy<br />

Wct+Wch Sav<strong>in</strong>g Sav<strong>in</strong>g<br />

(kWh) (kWh) (%)<br />

HQS-based strategy<br />

Wct+Wch Sav<strong>in</strong>g Sav<strong>in</strong>g<br />

(kWh) (kWh) (%)<br />

Spr<strong>in</strong>g 51,738 51,623 114.53 0.221 51,404 334.30 0.646<br />

Mild-summer 71,289 70,668 621.49 0.872 70,560 729.36 1.023<br />

Sunnysummer<br />

91,653 90,878 775.44 0.846 90,356 1,297.50 1.416<br />

• Annual power consumptions<br />

Operation<br />

strategies<br />

Wch<br />

(kWh)<br />

Wct<br />

(kWh)<br />

Wcd,pu<br />

(kWh)<br />

Wtot<br />

(kWh)<br />

Sav<strong>in</strong>g<br />

(kWh)<br />

Sav<strong>in</strong>g<br />

(%)<br />

Fixed approach 18,464,812 1,882,583 4,210,690 24,558,085 --- ---<br />

Near optimal 18,715,458 1,501,701 4,210,690 24,427,849 130,236 0.530<br />

HQS-based 18,715,134 1,448,765 4,210,690 24,374,589 183,496 0.747


Operation modes<br />

Plume Control <strong>and</strong> Energy Benefits<br />

Decision<br />

maker<br />

Platform for predict<strong>in</strong>g<br />

plume occurr<strong>in</strong>g possibility<br />

Cool<strong>in</strong>g<br />

Water<br />

Temp Setpo<strong>in</strong>t<br />

Operat<strong>in</strong>g Condition Power Consumption<br />

Cool<strong>in</strong>g<br />

Tower<br />

Number<br />

Cool<strong>in</strong>g<br />

Tower<br />

Freq<br />

Normal operation when there is<br />

no predicted plume occurs<br />

At first-level warn<strong>in</strong>g, <strong>in</strong>crease airflow rate<br />

by 20% when plume potential is marg<strong>in</strong>al<br />

At second-level warn<strong>in</strong>g, <strong>in</strong>crease airflow<br />

by 40% when plume potential is high<br />

Start heat<strong>in</strong>g us<strong>in</strong>g heat pumps when<br />

visual plume is observed<br />

Chiller<br />

Power<br />

Cool<strong>in</strong>g<br />

Tower<br />

Power<br />

Additional energy consumption for<br />

plume control could be reduced from<br />

Total<br />

Power<br />

Difference<br />

°C - Hz kW kW kW kW %<br />

Reference<br />

First-level warn<strong>in</strong>g<br />

22.7 3 26.51 856.2 59.1 32.8% to 5.5% or 1.5% at low Load<br />

21.3 3 30.74 836.2 93.0<br />

915.35<br />

929.2<br />

--<br />

14.0<br />

--<br />

1.5<br />

Second-level warm<strong>in</strong>g 20.1 3 35.52 819.9 145.9 965.8 50.6 5.5<br />

Us<strong>in</strong>g heat pumps 22.7 3CT+1HP 26.51 856.2 59.1 1215.2 300 32.8<br />

Chiller Plant Sequenc<strong>in</strong>g Control<br />

<strong>of</strong> Enhanced Robustness<br />

Us<strong>in</strong>g Data Fusion Technique


Types <strong>of</strong> chiller sequenc<strong>in</strong>g control<br />

� Return chilled water temperature based sequenc<strong>in</strong>g<br />

control<br />

Background (1)<br />

Chiller sequenc<strong>in</strong>g control<br />

� Aims to determ<strong>in</strong>e how many <strong>and</strong> which chillers are to be<br />

put <strong>in</strong>to operation accord<strong>in</strong>g to build<strong>in</strong>g cool<strong>in</strong>g load<br />

� Plays a significant role for build<strong>in</strong>g energy efficiency<br />

� Bypass flow based sequenc<strong>in</strong>g control<br />

� Direct power based sequenc<strong>in</strong>g control<br />

� Total cool<strong>in</strong>g load based sequenc<strong>in</strong>g control<br />

Background (2)<br />

Total cool<strong>in</strong>g load based chiller sequenc<strong>in</strong>g control<br />

� Build<strong>in</strong>g cool<strong>in</strong>g load measurement<br />

� Maximum cool<strong>in</strong>g capacity<br />

� Optimal number <strong>of</strong> chillers to be put <strong>in</strong>to operation<br />

N c = φ(Q cl, Q max)<br />

Problems<br />

� Build<strong>in</strong>g cool<strong>in</strong>g load cannot be measured accurately<br />

� Chiller maximum cool<strong>in</strong>g capacity vary with the<br />

operat<strong>in</strong>g conditions


Fused Cool<strong>in</strong>g Load Measurement<br />

Cool<strong>in</strong>g load measurement<br />

� Direct measurement <strong>of</strong> build<strong>in</strong>g cool<strong>in</strong>g load<br />

Q dm = c pwρ wM w(T w,rtn-T w,sup)<br />

where c pw is the water specific thermal capacity; ρ w is the<br />

water density; M w is water flow rate; T w,rtn,T w,sup are<br />

chilled water return/supply temp.<br />

� Indirect measurement <strong>of</strong> build<strong>in</strong>g cool<strong>in</strong>g load<br />

Q im = f(P com,T cd,T ev)<br />

where f is the chiller <strong>in</strong>verse model; P com is chiller power<br />

consumption; T cd,T ev are chiller condens<strong>in</strong>g/evaporat<strong>in</strong>g<br />

temperature<br />

Robust build<strong>in</strong>g cool<strong>in</strong>g load measurement technique<br />

� Data fusion to merge “Direct measurement” <strong>and</strong><br />

“Indirect measurement” improv<strong>in</strong>g the accuracy <strong>and</strong><br />

reliability <strong>of</strong> build<strong>in</strong>g cool<strong>in</strong>g load measurement<br />

T sup<br />

Advanced s<strong>of</strong>t measurement system<br />

Q dm<br />

Direct<br />

measurement<br />

T rtn M w<br />

Chiller<br />

Model 1<br />

Chiller<br />

Model 1<br />

Q im,1<br />

P com,1 T ev,1 ,T cd,1<br />

Data Fusion<br />

Eng<strong>in</strong>e<br />

+<br />

…<br />

Q im,n<br />

P com,n,T ev,n,T cd,n<br />

Central Chill<strong>in</strong>g Plant<br />

Chiller<br />

Model n<br />

Chiller<br />

Model n<br />

Q f<br />

γ f


Robust Chiller Sequenc<strong>in</strong>g Control Build<strong>in</strong>g Cool<strong>in</strong>g Load<br />

Measurement Technique<br />

Direct<br />

measurement<br />

Parameters<br />

sett<strong>in</strong>g<br />

Periodical<br />

analysis<br />

Central chill<strong>in</strong>g<br />

plant<br />

Indirect<br />

Measurement<br />

Data Fusion<br />

Eng<strong>in</strong>e<br />

Robust Cool<strong>in</strong>g Load<br />

Measurement<br />

Build<strong>in</strong>g Automation<br />

System<br />

Alarm<strong>in</strong>g<br />

subsystem<br />

Chiller sequenc<strong>in</strong>g<br />

control<br />

Temperature<br />

set-po<strong>in</strong>t<br />

Database<br />

Optimal Control <strong>of</strong> Variable Speed Pumps<br />

� Speed control <strong>of</strong> pumps distribut<strong>in</strong>g water to<br />

To term<strong>in</strong>al<br />

units<br />

heat exchangers<br />

� Orig<strong>in</strong>al implemented<br />

strategy --- differential<br />

pressure controller by<br />

resort<strong>in</strong>g to the<br />

modulat<strong>in</strong>g valve<br />

Secondary side <strong>of</strong> HX Primary side <strong>of</strong> HX<br />

From term<strong>in</strong>al units<br />

Temperature<br />

set-po<strong>in</strong>t<br />

TM T<br />

Temperature<br />

controller<br />

HX<br />

HX<br />

Water flow<br />

set-po<strong>in</strong>t<br />

TM<br />

Water flow<br />

controller<br />

From cool<strong>in</strong>g<br />

source<br />

To cool<strong>in</strong>g<br />

source<br />

Temperature Temperature<br />

set-po<strong>in</strong>t controller<br />

Modulat<strong>in</strong>g<br />

valves<br />

Secondary side <strong>of</strong> HX Primary side <strong>of</strong> HX<br />

From term<strong>in</strong>al units<br />

To term<strong>in</strong>al<br />

units<br />

T<br />

T<br />

Temperature<br />

controller<br />

HX<br />

HX<br />

M<br />

M<br />

Pressure<br />

differential set-po<strong>in</strong>t<br />

ΔP<br />

Differential<br />

pressure<br />

controller<br />

From cool<strong>in</strong>g<br />

source<br />

To cool<strong>in</strong>g<br />

source<br />

� Proposed strategy<br />

--- cascade controller<br />

without us<strong>in</strong>g any<br />

modulat<strong>in</strong>g valve


� Performance test <strong>and</strong> evaluation<br />

� Site practically test showed that the proposed<br />

strategy can provide stable <strong>and</strong> reliable control.<br />

Compared to orig<strong>in</strong>al implemented strategy, about<br />

22.0% sav<strong>in</strong>gs for pumps before heat exchangers <strong>in</strong><br />

Zone 1 was achieved.<br />

� Due to the low load <strong>of</strong> Zone 1 <strong>in</strong> <strong>ICC</strong> at current<br />

stage, a simulation test <strong>of</strong> annual energy sav<strong>in</strong>gs by<br />

us<strong>in</strong>g PolyU strategy is performed.<br />

Pumps<br />

Number<br />

(st<strong>and</strong>by)<br />

Energy consumption (kWh)<br />

Orig<strong>in</strong>al<br />

strategy<br />

(kWh)<br />

Energy sav<strong>in</strong>g <strong>of</strong> primary pumps before<br />

heat exchanges due to the use <strong>of</strong><br />

PolyU strategy is about 250000 kWh.<br />

Alternative<br />

Strategy<br />

(kWh)<br />

Sav<strong>in</strong>g<br />

(kWh)<br />

Primary pumps <strong>in</strong> Zone 1 1(1) 528,008 456,132 71,876<br />

Primary pumps for Zones 3&4 3(1) 921,235 795,830 125,405<br />

Primary pumps <strong>in</strong> Zone 4 2(1) 401,008 346,420 54,588<br />

Total sav<strong>in</strong>g <strong>of</strong> the primary pumps 251,869<br />

Optimal Outdoor air Ventilation Control<br />

Static pressure<br />

set po<strong>in</strong>t<br />

Static pressure<br />

Static pressure<br />

controller<br />

P<br />

<strong>The</strong> 7 th floor<br />

………….<br />

<strong>The</strong> 1 st floor<br />

Outdoor air<br />

controller<br />

Set po<strong>in</strong>t<br />

Adaptive DCV<br />

strategy<br />

Model-based<br />

outdoor air flow rate<br />

Control strategy


W<br />

Energy-based outdoor air flow rate set-po<strong>in</strong>t<br />

resett<strong>in</strong>g scheme<br />

cost<br />

= W<br />

fan<br />

Q<br />

+<br />

COP<br />

outdoor<br />

Iterative<br />

algorithm<br />

= C<br />

k<br />

v<br />

⋅ M<br />

k<br />

out,<br />

set<br />

Outdoor Air Optimal Scheme<br />

+<br />

Least Square Algorithm<br />

Set po<strong>in</strong>t trails<br />

Cost function<br />

estimator<br />

Optimal set po<strong>in</strong>t Range <strong>of</strong> set po<strong>in</strong>t<br />

Supervisor Constra<strong>in</strong>s<br />

Parameter estimators<br />

Parameter identification <strong>of</strong> the fan model<br />

Real process <strong>of</strong> the multi-zone<br />

air condition<strong>in</strong>g system<br />

M<br />

Model-based<br />

predictor<br />

k<br />

out,<br />

set<br />

⋅(<br />

H<br />

k<br />

out<br />

COP<br />

− H<br />

� Site Implementation <strong>and</strong> Validation <strong>of</strong> Optimal<br />

Ventilation Strategy for Fresh Air Control<br />

� CO2-based occupancy detection<br />

Number <strong>of</strong> occupancy<br />

� Site count<strong>in</strong>g the number <strong>of</strong><br />

occupancy <strong>in</strong> the typical floor<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Dem<strong>and</strong>-controlled Ventilation control<br />

Counted<br />

Predicted<br />

0<br />

8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30<br />

Time (hour)<br />

k<br />

rtn<br />

� Comparison<br />

between counted<br />

<strong>and</strong> predicted<br />

occupancies<br />

)


� Practically test <strong>and</strong> validation <strong>of</strong> the ventilation<br />

control strategy<br />

Tests aimed at validat<strong>in</strong>g the actual operational performance <strong>of</strong> the<br />

ventilation control strategy <strong>and</strong> also for verify<strong>in</strong>g whether the control<br />

sett<strong>in</strong>gs provided by PolyU strategy can be properly sent to the ATC<br />

system <strong>and</strong> further be used <strong>in</strong> practical control.<br />

AHU1<br />

AHU2<br />

Study cases<br />

Control strategy<br />

Fixed flow PolyU Fixed flow PolyU<br />

About 662,000 Primary fan energy kWh consumption energy sav<strong>in</strong>gs can be<br />

612.29 607.99 794.60<br />

761.92<br />

Site test case<br />

(kWh)<br />

(PolyU strategy achieved only applied to by Primary us<strong>in</strong>g fan energy sav<strong>in</strong>g PolyU (%) - ventilation +0.70 - control +4.11<br />

typical floor)<br />

(Nov., 2009)<br />

Energy saved due to fresh air<br />

7.90 3.04 4.96<br />

2.81<br />

strategy for all cool<strong>in</strong>g floors (kWh) per year <strong>in</strong> Zone 2!<br />

Estimation case<br />

(PolyU strategy applied to all<br />

floors <strong>in</strong> Zone 2)<br />

Summer case<br />

(PolyU strategy applied to all<br />

floors <strong>in</strong> Zone 2)<br />

Primary fan energy consumption<br />

(kWh)<br />

Primary fan energy sav<strong>in</strong>g (%)<br />

Primary fan energy consumption<br />

(kWh)<br />

Fresh air cool<strong>in</strong>g energy<br />

consumption (kWh)<br />

Total energy consumption (kWh)<br />

Total energy sav<strong>in</strong>g (%)<br />

612.29<br />

-<br />

612.29<br />

4754.4<br />

5366.7<br />

-<br />

288.3<br />

+52.9<br />

288.3<br />

1915.2<br />

2203.5<br />

+58.9<br />

794.60<br />

-<br />

794.60<br />

2985.6<br />

3780.2<br />

Site Implementation <strong>of</strong> <strong>The</strong><br />

Control Strategies<br />

-<br />

324.5<br />

+59.2<br />

324.5<br />

1725.6<br />

2050.1<br />

+45.8


Implementation Strategy <strong>of</strong> Optimal Control <strong>and</strong> Diagnosis<br />

Tools <strong>in</strong> <strong>ICC</strong><br />

BACnet SDK<br />

Control<br />

Parameters<br />

Optimizer<br />

Control Sett<strong>in</strong>g<br />

from PolyU<br />

Diagnosis<br />

Control Sett<strong>in</strong>g<br />

from ATC<br />

Decision Supervisor<br />

ATC<br />

VAV Box<br />

Overall KVA, etc.<br />

Manual<br />

Control<br />

Chiller Plant Control Optimizer<br />

<strong>and</strong> Diagnosis<br />

LAN<br />

Supply air control<br />

optimizer<br />

IBmanager<br />

AHU PAU<br />

Build<strong>in</strong>g<br />

Management<br />

System<br />

Fresh air control<br />

optimizer<br />

Fresh air<br />

term<strong>in</strong>al<br />

Intelligent build<strong>in</strong>g management system<br />

-- based on IBmanager<br />

� IBmanager is an open <strong>and</strong> <strong>in</strong>tegrated management platform. It<br />

employs st<strong>and</strong>ard middleware <strong>and</strong> web-service technologies to<br />

support the <strong>in</strong>tegration <strong>and</strong> <strong>in</strong>teroperation among distributed BASs.


Summary <strong>of</strong> Energy Benefits<br />

• 1,000,000 kWh energy consumption is saved due to the<br />

modification on the secondary water loops <strong>of</strong> Zone 3 & 4;<br />

• 2,360,000 kWh , (about 5.1% <strong>of</strong> annual energy<br />

consumption <strong>of</strong> chillers <strong>and</strong> cool<strong>in</strong>g towers) <strong>of</strong> the cool<strong>in</strong>g<br />

system can be sav<strong>in</strong>g due to the change from s<strong>in</strong>gle speed<br />

to variable speed us<strong>in</strong>g VFD.<br />

• 607,000 kWh , (about 2.8% <strong>of</strong> annual energy consumption<br />

<strong>of</strong> chillers <strong>and</strong> cool<strong>in</strong>g towers) <strong>of</strong> the cool<strong>in</strong>g system will<br />

be wasted when the lowest frequency is limited at 37 Hz.<br />

• 3, 500,000 kWh (about 7%) <strong>of</strong> the total energy<br />

consumption <strong>of</strong> HVAC system) can be saved us<strong>in</strong>g PoyU<br />

control strategies based on the orig<strong>in</strong>al design;<br />

Summary <strong>of</strong> Energy Benefits<br />

• 1,000,000 Sav<strong>in</strong>g Sav<strong>in</strong>g Sav<strong>in</strong>g Sav<strong>in</strong>g by by by by kWh Commission<strong>in</strong>g Commission<strong>in</strong>g<br />

Commission<strong>in</strong>g<br />

Commission<strong>in</strong>g energy consumption (Improv<strong>in</strong>g (Improv<strong>in</strong>g (Improv<strong>in</strong>g (Improv<strong>in</strong>g is saved the the the the due system system system system to the<br />

modification on the secondary water loops <strong>of</strong> Zone 3 & 4;<br />

configuration configuration configuration configuration <strong>and</strong> <strong>and</strong> <strong>and</strong> <strong>and</strong> selection selection selection selection <strong>–</strong> compared with the<br />

• 2,360,000 kWh , (about 5.1% <strong>of</strong> annual energy<br />

orig<strong>in</strong>al design.<br />

consumption <strong>of</strong> chillers <strong>and</strong> cool<strong>in</strong>g towers) <strong>of</strong> the cool<strong>in</strong>g<br />

system can be sav<strong>in</strong>g due to the change from s<strong>in</strong>gle speed<br />

to variable speed us<strong>in</strong>g VFD.<br />

• 607,000 kWh , (about 2.8% <strong>of</strong> annual energy consumption<br />

<strong>of</strong> chillers <strong>and</strong> cool<strong>in</strong>g towers) <strong>of</strong> the cool<strong>in</strong>g system will<br />

be wasted when the lowest frequency is limited at 37 Hz.<br />

• 3, Sav<strong>in</strong>g Sav<strong>in</strong>g Sav<strong>in</strong>g 500,000 by by by kWh Control Control Control (about Optimization<br />

Optimization<br />

Optimization 7%) <strong>of</strong> the total energy<br />

consumption <strong>of</strong> HVAC system) can be saved us<strong>in</strong>g PoyU<br />

case<br />

control<br />

when<br />

strategies<br />

the HVAC<br />

based<br />

system<br />

on the orig<strong>in</strong>al<br />

operates<br />

design;<br />

correctly<br />

Sav<strong>in</strong>g by Control Optimization <strong>–</strong> compared with the<br />

accord<strong>in</strong>g to the orig<strong>in</strong>al design <strong>in</strong>tend.


Summary <strong>of</strong> Energy Benefits<br />

• 1,000,000 Sav<strong>in</strong>g Sav<strong>in</strong>g Sav<strong>in</strong>g Sav<strong>in</strong>g by by by by kWh Commission<strong>in</strong>g Commission<strong>in</strong>g<br />

Commission<strong>in</strong>g<br />

Commission<strong>in</strong>g energy consumption (Improv<strong>in</strong>g (Improv<strong>in</strong>g (Improv<strong>in</strong>g (Improv<strong>in</strong>g is saved the the the the due system system system system to the<br />

modification on the secondary water loops <strong>of</strong> Zone 3 & 4;<br />

configuration configuration configuration configuration <strong>and</strong> <strong>and</strong> <strong>and</strong> <strong>and</strong> selection selection selection selection <strong>–</strong> compared with the<br />

• 2,360,000 kWh , (about 5.1% <strong>of</strong> annual energy<br />

orig<strong>in</strong>al design.<br />

consumption <strong>of</strong> chillers <strong>and</strong> cool<strong>in</strong>g towers) <strong>of</strong> the cool<strong>in</strong>g<br />

system can be sav<strong>in</strong>g due to the change from s<strong>in</strong>gle speed<br />

to variable speed us<strong>in</strong>g VFD.<br />

<strong>The</strong> annual total energy<br />

• 607,000 kWh , (about 2.8% <strong>of</strong> annual energy consumption<br />

<strong>of</strong> chillers sav<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g is towers) about <strong>of</strong> the 7.0M cool<strong>in</strong>g kWh system will !<br />

be wasted when the lowest frequency is limited at 37 Hz.<br />

• 3, Sav<strong>in</strong>g Sav<strong>in</strong>g Sav<strong>in</strong>g 500,000 by by by kWh Control Control Control (about Optimization<br />

Optimization<br />

Optimization 7%) <strong>of</strong> the total energy<br />

consumption <strong>of</strong> HVAC system) can be saved us<strong>in</strong>g PoyU<br />

case<br />

control<br />

when<br />

strategies<br />

the HVAC<br />

based<br />

system<br />

on the orig<strong>in</strong>al<br />

operates<br />

design;<br />

correctly<br />

Sav<strong>in</strong>g by Control Optimization <strong>–</strong> compared with the<br />

accord<strong>in</strong>g to the orig<strong>in</strong>al design <strong>in</strong>tend.<br />

Summary <strong>of</strong> Experience <strong>in</strong> <strong>ICC</strong><br />

• Significant energy sav<strong>in</strong>g can be achieved by<br />

allow<strong>in</strong>g the system as good as the design <strong>in</strong>tention<br />

by identify<strong>in</strong>g <strong>and</strong> correct<strong>in</strong>g the errors at different<br />

stages;<br />

• Significant energy sav<strong>in</strong>g can be achieved by<br />

mak<strong>in</strong>g the system better than the design <strong>in</strong>tention<br />

by enhanc<strong>in</strong>g <strong>and</strong> optimiz<strong>in</strong>g the systems at different<br />

stages;<br />

• <strong>The</strong> <strong>in</strong>volvement <strong>of</strong> a pr<strong>of</strong>essional energy consultant<br />

(commission<strong>in</strong>g agent) does not <strong>in</strong>troduce troubles<br />

to the build<strong>in</strong>g construction project, but <strong>in</strong>stead it<br />

facilitates different parties <strong>in</strong>volved to support each<br />

other to do their jobs smoothly <strong>and</strong> correctly.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!