12.12.2012 Views

Fans in Air-Handling Systems - Trane

Fans in Air-Handling Systems - Trane

Fans in Air-Handling Systems - Trane

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

eng<strong>in</strong>eers newsletter live<br />

Course Outl<strong>in</strong>e<br />

This ENL broadcast will discuss the application of fans <strong>in</strong> air-handl<strong>in</strong>g systems, <strong>in</strong>clud<strong>in</strong>g fan laws,<br />

fan-system <strong>in</strong>teraction, fan performance curves, types of fans, and proper selection, <strong>in</strong>stallation,<br />

and operation of various fan types (efficiency, acoustics, and footpr<strong>in</strong>t).<br />

By attend<strong>in</strong>g this event you will learn how to:<br />

1. Select the proper fan to meet ASHRAE 90.1 efficiency requirements<br />

2. Understand fan modulation <strong>in</strong> order to make proper fan selections<br />

3. Choose the right fan type for a system application<br />

4. Properly connect the fan to the system to m<strong>in</strong>imize fan noise and energy use<br />

Program Outl<strong>in</strong>e:<br />

1) Fan performance curves<br />

a) How developed (lab setup, difference with AHU vs. RTU)<br />

b) What they are for (selection) and not for (predict<strong>in</strong>g field performance)<br />

c) Fan laws<br />

d) Interaction of fans <strong>in</strong> a system (system curve)<br />

2) Fan/unit selection considerations<br />

a) Types of fans (energy – bhp or motor <strong>in</strong>put kW, acoustics, footpr<strong>in</strong>t, ma<strong>in</strong>tenance, redundancy)<br />

b) Impact of system configuration on fan selection<br />

c) System effect (example us<strong>in</strong>g AMCA guide)<br />

d) Acoustics topics<br />

3) Common problems<br />

a) Fan is not deliver<strong>in</strong>g enough airflow<br />

b) Fan is mak<strong>in</strong>g too much noise<br />

4) Meet<strong>in</strong>g ASHRAE 90.1 requirements<br />

a) Option 1 vs. Option 2 (fan power limitation)<br />

b) Lower<strong>in</strong>g bhp/cfm<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 1


<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

Dave Guckelberger | senior pr<strong>in</strong>cipal application eng<strong>in</strong>eer | <strong>Trane</strong><br />

eng<strong>in</strong>eers newsletter live<br />

Presenter Biographies<br />

Dave has a wide range of product and system responsibilities as a <strong>Trane</strong> applications eng<strong>in</strong>eer. His expertise<br />

<strong>in</strong>cludes acoustic analysis and model<strong>in</strong>g of HVAC systems, electrical distribution system design, and the<br />

equipment-room design requirements established by ASHRAE Standard 15. He also provides research and<br />

<strong>in</strong>terpretation on how build<strong>in</strong>g, mechanical, and fire codes impact HVAC equipment and systems. In addition<br />

to traditional applications eng<strong>in</strong>eer<strong>in</strong>g support, Dave has authored a variety of technical articles on subjects<br />

rang<strong>in</strong>g from acoustics to ECM motors to codes.<br />

Dave is a past president of the Wiscons<strong>in</strong> Mechanical Refrigeration Code Council and has served on several<br />

ASHRAE committees at the national level. After graduat<strong>in</strong>g from Michigan Tech with a BSME <strong>in</strong> thermofluids,<br />

he jo<strong>in</strong>ed <strong>Trane</strong> as a development eng<strong>in</strong>eer <strong>in</strong> 1982 and moved <strong>in</strong>to his current position <strong>in</strong> Applications<br />

Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> 1987. Dave is a member of ASHRAE and an associate member of INCE.<br />

Dust<strong>in</strong> Meredith, P.E.| pr<strong>in</strong>cipal application eng<strong>in</strong>eer | <strong>Trane</strong><br />

Dust<strong>in</strong> is an application eng<strong>in</strong>eer with focus on airside products. His expertise <strong>in</strong>cludes sound<br />

predictions, fan selection, and vibration analysis. He also leads development and implementation<br />

projects for new and upcom<strong>in</strong>g air-handl<strong>in</strong>g options. Dust<strong>in</strong> has authored various technical<br />

eng<strong>in</strong>eer<strong>in</strong>g bullet<strong>in</strong>s and applications eng<strong>in</strong>eer<strong>in</strong>g manuals.<br />

Dust<strong>in</strong> is a correspond<strong>in</strong>g member on ASHRAE TC 2.6 – Sound & Vibration Control – and ASHRAE TC<br />

5.1 – <strong>Fans</strong>. After graduat<strong>in</strong>g from the University of Kentucky with BSME, BSCS and MBA degrees, he<br />

jo<strong>in</strong>ed <strong>Trane</strong> as a market<strong>in</strong>g eng<strong>in</strong>eer <strong>in</strong> 2000 and moved <strong>in</strong>to his current position <strong>in</strong> Application Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>in</strong> 2005. Dust<strong>in</strong> is a member of ASHRAE and is the primary <strong>Trane</strong> contact for AMCA.<br />

John Murphy, LEED ® AP| senior application eng<strong>in</strong>eer | <strong>Trane</strong><br />

John has been with <strong>Trane</strong> s<strong>in</strong>ce 1993. His primary responsibility as an applications eng<strong>in</strong>eer is to aid design<br />

eng<strong>in</strong>eers and <strong>Trane</strong> sales personnel <strong>in</strong> the proper design and application of HVAC systems. As a LEED<br />

Accredited Professional, he has helped our customers and local offices on a wide range of LEED projects. His<br />

ma<strong>in</strong> areas of expertise <strong>in</strong>clude energy efficiency, dehumidification, air-to-air energy recovery, psychrometry,<br />

ventilation, and ASHRAE Standards 15, 62.1, and 90.1.<br />

John is the author of numerous <strong>Trane</strong> application manuals and Eng<strong>in</strong>eers Newsletters, and is a frequent<br />

presenter on <strong>Trane</strong>’s Eng<strong>in</strong>eers Newsletter Live series of broadcasts. He also is a member of ASHRAE, has<br />

authored several articles for the ASHRAE Journal, and is a member of ASHRAE’s “Moisture Management <strong>in</strong><br />

Build<strong>in</strong>gs” and “Mechanical Dehumidifiers” technical committees. He was a contribut<strong>in</strong>g author of the<br />

Advanced Energy Design Guide for K-12 Schools and the Advanced Energy Design Guide for Small Hospitals<br />

and Health Care Facilities, and technical reviewer for The ASHRAE Guide for Build<strong>in</strong>gs <strong>in</strong> Hot and Humid<br />

Climates.<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 2


Dennis Stanke | staff application eng<strong>in</strong>eer | <strong>Trane</strong><br />

With a BSME from the University of Wiscons<strong>in</strong>, Dennis jo<strong>in</strong>ed <strong>Trane</strong> <strong>in</strong> 1973, as a controls development<br />

eng<strong>in</strong>eer. He is now a Staff Applications Eng<strong>in</strong>eer specializ<strong>in</strong>g <strong>in</strong> airside systems <strong>in</strong>clud<strong>in</strong>g controls,<br />

ventilation, <strong>in</strong>door air quality, and dehumidification. He has written numerous applications manuals and<br />

newsletters, has published many technical articles and columns, and has appeared <strong>in</strong> many <strong>Trane</strong> Eng<strong>in</strong>eers<br />

Newsletter Live broadcasts.<br />

An ASHRAE Fellow, he recently served as Chairman for SSPC62.1, the ASHRAE committee responsible for<br />

Standard 62.1, “Ventilation for Acceptable Indoor <strong>Air</strong> Quality,” and he serves on the USGBC LEED Technical<br />

Advisory Group for Indoor Environmental Quality (the LEED EQ TAG).<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 3


<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

Cont<strong>in</strong>u<strong>in</strong>g Education Credit<br />

� This program is registered with the AIA/CES and<br />

USGBC for LEED ® cont<strong>in</strong>u<strong>in</strong>g professional<br />

education. Credit earned on completion of this<br />

program will be reported to CES Records for AIA<br />

members.<br />

� The U.S. Green Build<strong>in</strong>g Council (USGBC) has<br />

approved the technical and <strong>in</strong>structional quality of<br />

this course for 1.5 GBCI CE hours towards the<br />

LEED Credential Ma<strong>in</strong>tenance Program.<br />

Certificates of Completion for LEED ® credential<strong>in</strong>g<br />

available on request.<br />

2<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 4


Copyrighted Materials<br />

This presentation is protected by U.S. and <strong>in</strong>ternational<br />

copyright laws. Reproduction, distribution, display, and<br />

use of the presentation without written permission of<br />

<strong>Trane</strong> is prohibited.<br />

© 2010 <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll-Rand. All rights reserved.<br />

3<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

Today’s Topics<br />

� Fan fundamentals<br />

• Performance curves<br />

� Fan/unit selection considerations<br />

• Fan types<br />

• Impact of system configuration<br />

• System effect<br />

• Acoustics<br />

� Common problems<br />

� ASHRAE 90.1 requirements<br />

4<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 5


Today’s Presenters<br />

5<br />

Dennis Stanke<br />

Staff Applications<br />

Eng<strong>in</strong>eer<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Today’s Presenters<br />

6<br />

John Murphy<br />

Applications<br />

Eng<strong>in</strong>eer<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Dave Guckelberger<br />

Applications<br />

Eng<strong>in</strong>eer<br />

Dust<strong>in</strong> Meredith<br />

Applications<br />

Eng<strong>in</strong>eer<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 6


8<br />

<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Fundamentals<br />

Fan Performance Curves<br />

AMCA 210/ASHRAE 51<br />

“Laboratory Methods of Test<strong>in</strong>g <strong>Fans</strong> for<br />

Aerodynamic Performance Rat<strong>in</strong>g”<br />

Static Pressure: … that portion of the air pressure which<br />

exists by virtue of the degree of compression only.<br />

Velocity Pressure: … that portion of the air pressure which<br />

exists by virtue of the rate of motion only.<br />

Total Pressure: … the algebraic sum of the velocity pressure<br />

and the static pressure at a po<strong>in</strong>t.<br />

P � P � P<br />

t<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 7<br />

v<br />

s


Fan Curves<br />

total static pressure (<strong>in</strong> H2O)<br />

9<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

airflow (cfm)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

ANSI/ASHRAE 51(AMCA 210-07), Figure 12<br />

“Outlet Chamber Setup-Multiple Nozzles<br />

<strong>in</strong> Chamber”<br />

10<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Test chamber<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 8<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Brake horsepower (bhp)


AHRI 430<br />

“Performance Rat<strong>in</strong>g of Central Station<br />

<strong>Air</strong> Handl<strong>in</strong>g Units”<br />

11<br />

12<br />

C C<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Fan Performance Test<br />

total static pressure (<strong>in</strong> H2O)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

blocked off<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

restricted<br />

less restricted<br />

Unit test<br />

wide open<br />

0<br />

0<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

airflow (cfm)<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 9<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Brake horsepower (bhp)


Fan Laws for Incompressible Flow<br />

� Fan total efficiency (D-1)<br />

� <strong>Air</strong>flow rate (D-2)<br />

� Fan total pressure (D-3)<br />

� Fan power <strong>in</strong>put (D-4)<br />

� Fan velocity pressure (D-5)<br />

� Fan static pressure (D-6)<br />

� Fan static efficiency (D-7)<br />

13<br />

total static pressure (<strong>in</strong> H2O)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Fan Curves<br />

14<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

� ��<br />

t 2 t1<br />

3<br />

� D � � �<br />

2 N2<br />

Q � ��<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

�<br />

2 Q1<br />

� D1<br />

� � N1<br />

�<br />

2<br />

2<br />

� D � � � � �<br />

2 N2<br />

�2<br />

P � ��<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

�<br />

t2<br />

Pt<br />

1<br />

� D1<br />

� � N1<br />

� � �1<br />

�<br />

5 3<br />

� D � � � � �<br />

2 N2<br />

�2<br />

H � ��<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

�<br />

2 H1<br />

� D1<br />

� � N1<br />

� � �1<br />

�<br />

2<br />

2<br />

� D � � � � �<br />

2 N2<br />

�2<br />

P � ��<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

�<br />

v2<br />

Pv<br />

1<br />

� D1<br />

� � N1<br />

� � �1<br />

�<br />

P � P � P<br />

s2<br />

t2<br />

v2<br />

� P � s2<br />

� � �<br />

�<br />

�<br />

�<br />

�<br />

s2<br />

�t1<br />

� Pt<br />

2 �<br />

Where<br />

η t = total efficiency<br />

η s = static efficiency<br />

ρ = density<br />

D = diameter<br />

H = horsepower<br />

N = speed<br />

P s = static press<br />

P t = total pressure<br />

P v = velocity press<br />

Q = airflow<br />

D-2:<br />

Q2 = Q1*N2/N1<br />

= 7500*1000/1200<br />

= 6250 cfm<br />

D-3, D-5, D-6:<br />

Ps2 = Ps1*(N2/N1)^2<br />

= 3.9*(1000/1200) 2<br />

= 2.7 <strong>in</strong> wc<br />

0<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

airflow (cfm)<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 10


static pressure relative to outdoors<br />

total static pressure (<strong>in</strong> H2O)<br />

Complete Family of Fan Curves<br />

15<br />

16<br />

+<br />

0<br />

-<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1500 rpm<br />

1400 rpm<br />

1300 rpm<br />

1200 rpm<br />

1100 rpm<br />

1000 rpm<br />

900 rpm<br />

800 rpm<br />

700 rpm<br />

600 rpm<br />

500 rpm<br />

1.00 bhp<br />

1.50 bhp<br />

0<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

airflow (cfm)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

grilles duct<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

supply<br />

fan<br />

3.00 bhp<br />

5.00 bhp<br />

7.00 bhp<br />

10.00 bhp<br />

Fan static efficiency:<br />

Ns = Q*Ps/(6356*H)<br />

VAV<br />

term<strong>in</strong>al<br />

unit<br />

zone ceil<strong>in</strong>g<br />

air handl<strong>in</strong>g<br />

supply<br />

runout<br />

zone<br />

plenum<br />

unit<br />

ductwork<br />

ductwork<br />

A<br />

filter return-air return air<br />

coil<br />

damper<br />

B<br />

Fan Static<br />

Pressure<br />

Inlet Velocity<br />

Pressure<br />

Total Static<br />

Pressure<br />

diffusers<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 11


total static pressure (<strong>in</strong> H2O)<br />

Complete Family of Fan Curves<br />

17<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

DO NOT SELECT<br />

1500 rpm<br />

1400 rpm<br />

1300 rpm<br />

1200 rpm<br />

1100 rpm<br />

1000 rpm<br />

900 rpm<br />

800 rpm<br />

700 rpm<br />

600 rpm<br />

500 rpm<br />

1.00 bhp<br />

1.50 bhp<br />

0<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

airflow (cfm)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Summary of Fan Basics<br />

18<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

3.00 bhp<br />

5.00 bhp<br />

7.00 bhp<br />

10.00 bhp<br />

system curve<br />

P<br />

2<br />

2<br />

2 1 �<br />

1<br />

�<br />

� �<br />

� ��<br />

�<br />

Q<br />

s Ps<br />

Q<br />

� Accurate fan performance curves are generated <strong>in</strong><br />

the lab accord<strong>in</strong>g to <strong>in</strong>dustry standards<br />

• AMCA 210 (ASHRAE 51)<br />

• AHRI 430<br />

� Use fan laws to predict fan parameters<br />

� System resistance curves characterize air systems <strong>in</strong><br />

terms of static pressure and airflow<br />

� “Do Not Select” or “Surge” l<strong>in</strong>e limits the range of fan<br />

operation at low flow conditions<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 12<br />

�<br />


20<br />

<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g Units<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Fan/Unit<br />

Considerations<br />

types of fans<br />

Characteristics of Centrifugal <strong>Fans</strong><br />

housed centrifugal fan<br />

� Shape of fan blades<br />

(FC, BC, BI, AF)<br />

� Housed versus<br />

unhoused (plenum)<br />

� Belt-driven versus<br />

direct-driven<br />

� S<strong>in</strong>gle fan versus<br />

a multiple-fan array<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 13


21<br />

static pressure<br />

Forward Curved (FC) Fan<br />

22<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Forward Curved (FC) Fan<br />

rpm<br />

30%<br />

wocfm<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

h s<br />

typical<br />

application<br />

range<br />

airflow<br />

static<br />

efficiency<br />

50 to 65%<br />

80%<br />

wocfm<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 14


23<br />

static pressure<br />

Backward Curved (BC) and<br />

Backward Incl<strong>in</strong>ed (BI) <strong>Fans</strong><br />

24<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Backward Incl<strong>in</strong>ed (BI) Fan<br />

rpm<br />

40%<br />

wocfm<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

h s<br />

typical<br />

application<br />

range<br />

airflow<br />

static<br />

efficiency<br />

65 to 75%<br />

85%<br />

wocfm<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 15


25<br />

static pressure<br />

<strong>Air</strong>foil (AF) Fan<br />

26<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

<strong>Air</strong>foil (AF) Fan<br />

rpm<br />

50%<br />

wocfm<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

h s<br />

typical<br />

application<br />

range<br />

airflow<br />

static<br />

efficiency<br />

80 to 85%<br />

85%<br />

wocfm<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 16


Impact of Blade Shape on Fan Input Power<br />

Fan type and Input power, Rotational speed,<br />

wheel diameter bhp rpm<br />

Housed FC, 25 <strong>in</strong>. 13.0 775<br />

Housed AF, 25 <strong>in</strong>. 11.8 1320<br />

27<br />

28<br />

Based on a typical VAV air-handl<strong>in</strong>g unit configuration (OA/RA mix<strong>in</strong>g box, high-efficiency filter, hot-water heat<strong>in</strong>g coil,<br />

chilled-water cool<strong>in</strong>g coil, and draw-thru supply fan with a s<strong>in</strong>gle discharge open<strong>in</strong>g off the fan section) operat<strong>in</strong>g<br />

at 13,000 cfm and a 3.8 <strong>in</strong>. H 2 O total static pressure drop.<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

summary<br />

Shape of Fan Blades<br />

� FC fans are typically the lowest cost and are often the<br />

most forgiv<strong>in</strong>g (wide application range, less severe<br />

surge characteristics)<br />

• Very popular <strong>in</strong> packaged units and light commercial<br />

equipment, where less attention is given to duct<br />

connections and layout<br />

� AF fans are typically the most efficient, but require<br />

more attention to avoid surge<br />

• More common <strong>in</strong> larger packaged rooftops and airhandl<strong>in</strong>g<br />

units, where more attention is given to proper<br />

duct connections and layout<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 17


Housed Versus Unhoused<br />

29<br />

housed centrifugal fan unhoused centrifugal<br />

(plenum) fan<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Direct-Drive Plenum Fan<br />

30<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 18


31<br />

AHU with a housed centrifugal fan<br />

(s<strong>in</strong>gle front discharge open<strong>in</strong>g)<br />

AHU with an unhoused centrifugal (plenum) fan<br />

(s<strong>in</strong>gle front discharge open<strong>in</strong>g)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

example #1<br />

S<strong>in</strong>gle Outlet Into Straight Duct<br />

Fan type and Input power, Rotational speed,<br />

wheel diameter bhp rpm<br />

Housed FC, 25 <strong>in</strong>. 13.0 775<br />

Housed AF, 25 <strong>in</strong>. 11.8 1320<br />

Belt-drive plenum AF, 35.56 <strong>in</strong>. 14.0 1050<br />

Direct-drive plenum AF, 30 <strong>in</strong>. 12.8 1320<br />

32<br />

Based on a typical VAV air-handl<strong>in</strong>g unit configuration (OA/RA mix<strong>in</strong>g box, high-efficiency filter, hot-water heat<strong>in</strong>g coil,<br />

chilled-water cool<strong>in</strong>g coil, and draw-thru supply fan with a s<strong>in</strong>gle discharge open<strong>in</strong>g off the fan section) operat<strong>in</strong>g<br />

at 13,000 cfm and 2 <strong>in</strong>. H 2 O of external static pressure drop.<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 19


example #1<br />

S<strong>in</strong>gle Outlet Into Straight Duct<br />

discharge sound power (Lw), dB ref 10-12 W<br />

(per AHRI Standard 260)<br />

33<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

housed FC 25 <strong>in</strong>.<br />

housed AF 25 <strong>in</strong>.<br />

belt-drive plenum AF 35.56 <strong>in</strong>.<br />

direct-drive plenum AF 30 <strong>in</strong>.<br />

63 125 250 500 1000 2000 4000 8000<br />

octave band center frequency, Hz<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

example #2<br />

Discharge Plenum with Multiple Outlets<br />

34<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 20


example #2<br />

Discharge Plenum with Multiple Outlets<br />

Fan type and Input power, Rotational speed,<br />

wheel diameter bhp rpm<br />

Housed AF, 25 <strong>in</strong>. + discharge plenum 13.2 1380<br />

Belt-drive plenum AF, 35.56 <strong>in</strong>. 14.0 1050<br />

Direct-drive plenum AF, 30 <strong>in</strong>. 12.8 1320<br />

35<br />

36<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

example #2<br />

Discharge Plenum with Multiple Outlets<br />

discharge sound power (Lw), dB ref 10-12 W<br />

(per AHRI Standard 260)<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

housed AF 25 <strong>in</strong>. (s<strong>in</strong>gle, straight discharge)<br />

housed AF 25 <strong>in</strong>. + discharge plenum (two duct connections)<br />

belt-drive plenum AF 35.56 <strong>in</strong>. (two duct connections)<br />

direct-drive plenum AF 30 <strong>in</strong>. (two duct connections)<br />

63 125 250 500 1000 2000 4000 8000<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

octave band center frequency, Hz<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 21


Plenum Fan Can Reduce Overall Length<br />

37<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

example #3<br />

F<strong>in</strong>al Filters<br />

Fan type and Input power, Rotational speed,<br />

wheel diameter bhp rpm<br />

Housed AF, 25 <strong>in</strong>. + diffuser section 15.0 1450<br />

Belt-drive plenum AF, 35.56 <strong>in</strong>. 15.4 1090<br />

Direct-drive plenum AF, 30 <strong>in</strong>. 14.1 1370<br />

38<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 22


summary<br />

Housed vs. Plenum <strong>Fans</strong><br />

� When discharg<strong>in</strong>g <strong>in</strong>to a s<strong>in</strong>gle, sufficiently-long, straight section<br />

of duct that is about the same size as the fan outlet, a housed<br />

fan will likely require less power than a plenum fan, but a plenum<br />

fan will likely have lower discharge sound levels.<br />

� If a discharge plenum is added downstream of a housed fan to<br />

reduce sound levels or to allow for discharge flexibility, a directdrive<br />

plenum fan will likely require less power than a housed<br />

airfoil fan, with similar discharge sound levels. But the plenum<br />

fan will likely result <strong>in</strong> a shorter air-handl<strong>in</strong>g unit.<br />

� With downstream sections (such as a discharge plenum, f<strong>in</strong>al<br />

filter, gas heater, or even a blow-thru cool<strong>in</strong>g coil), a direct-drive<br />

plenum fan will likely require less power than either a housed or<br />

belt-driven plenum fan.<br />

39<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

direct-drive plenum fan<br />

Selection Parameters<br />

40<br />

diameter<br />

speed<br />

width<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 23


Flexible-Speed Selection<br />

Synchronous Speed<br />

� Fan speed (rpm)<br />

is held constant<br />

� Wheel diameter and<br />

width are varied<br />

41<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Flexible Speed<br />

� Fan wheel width<br />

is held constant<br />

� Wheel diameter and<br />

speed are varied<br />

• <strong>Trane</strong> VFDs and motors can<br />

operate to at least 90 Hz<br />

Flexible-speed DDP fan selections are typically more efficient<br />

and quieter than synchronous-speed selections.<br />

example<br />

Flexible-Speed Selection<br />

Fan type and Wheel width, Fan rpm Motor speed, Input power,<br />

wheel diameter % of nom<strong>in</strong>al rpm bhp<br />

Direct-drive plenum AF, 30 <strong>in</strong>.<br />

(synchronous-speed selection)<br />

57% 1780 1800 15.4<br />

Direct-drive plenum AF, 30 <strong>in</strong>.<br />

(flexible-speed selection)<br />

100% 1320 1200 12.8<br />

42<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 24


example<br />

Flexible-Speed Selection<br />

discharge sound power (Lw), dB ref 10-12 W<br />

(per AHRI Standard 260)<br />

43<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

63 125 250 500 1000 2000 4000 8000<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

octave band center frequency, Hz<br />

Multiple <strong>Fans</strong> (Fan Array)<br />

44<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

direct-drive plenum AF 30 <strong>in</strong>.<br />

(synchronous-speed selection)<br />

direct-drive plenum AF 30 <strong>in</strong>.<br />

(flexible-speed selection)<br />

upstream (<strong>in</strong>let) side downstream (outlet) side<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 25


fan array<br />

Reduced Unit Length<br />

Smaller fan wheel diameters (D) result <strong>in</strong> shorter<br />

component-to-<strong>in</strong>let (A) and discharge-to-component<br />

(C) required spac<strong>in</strong>g<br />

A = 45° or 1D, whichever is greater<br />

B = ½D m<strong>in</strong>imum<br />

C = 1D<br />

D = fan wheel diameter<br />

45<br />

46<br />

upstream<br />

component<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

45°<br />

45°<br />

A<br />

B<br />

B<br />

D<br />

takeoff past<br />

plane of the impeller<br />

C<br />

downstream<br />

component<br />

fan array<br />

There is a Limit to the Length Reduction<br />

� M<strong>in</strong>imum service clearance for access doors, people,<br />

ladders, or a hoist<br />

� For top, bottom, or side <strong>in</strong>let or discharge connections,<br />

additional space may be needed for proper airflow<br />

distribution<br />

� If backdraft or isolation dampers are provided, they<br />

typically add length to the fan section<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 26


example length reduction<br />

S<strong>in</strong>gle Fan Versus Fan Array<br />

Upstream Upstream Upstream<br />

Qty Diameter, spac<strong>in</strong>g req’d, service clear, total,<br />

<strong>in</strong>. <strong>in</strong>. <strong>in</strong>. <strong>in</strong>.<br />

1 33 19.8 12 19.8<br />

2 24.5 14.7 12 14.7<br />

3 20 12.0 12 12.0<br />

4 18.75 11.0 12 12.0<br />

47<br />

48<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

example length reduction<br />

S<strong>in</strong>gle Fan Versus Fan Array<br />

Downstream Length of Downstream Downstream<br />

Qty Diameter, spac<strong>in</strong>g req’d, fan + motor, service clear, total,<br />

<strong>in</strong>. <strong>in</strong>. <strong>in</strong>. <strong>in</strong>. <strong>in</strong>.<br />

1 33 50.5 54.3 + 0 54.3<br />

2 24.5 38.8 42.0 + 0 42.0<br />

3 20 33.1 35.3 + 18 53.3<br />

4 18.75 29.9 31.4 + 18 49.4<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 27


49<br />

50<br />

AHU fan section with<br />

s<strong>in</strong>gle fan wheel<br />

19.8 + 54.3 = 74.1 <strong>in</strong>.<br />

AHU fan section with<br />

two fan wheels<br />

14.7 + 42.0 = 56.7 <strong>in</strong>.<br />

AHU fan section with<br />

three fan wheels<br />

12.0 + 53.3 = 65.3 <strong>in</strong>.<br />

AHU fan section with<br />

four fan wheels<br />

12.0 + 49.4 = 61.4 <strong>in</strong>.<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

example<br />

Provid<strong>in</strong>g Redundancy with a Fan Array<br />

Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />

runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />

<strong>in</strong>. cfm bhp bhp hp<br />

2 24.5 Design 7500 6.55 13.10 7.5<br />

1 24.5 100% 15000 16.13 16.13 20 (change from 7.5 to 20 hp motors)<br />

1 24.5 70% 10500 7.13 7.13 7.5 (no change <strong>in</strong> motor sizes)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 28


example<br />

Provid<strong>in</strong>g Redundancy with a Fan Array<br />

Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />

runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />

<strong>in</strong>. cfm bhp bhp hp<br />

2 24.5 Design 7500 6.55 13.10 7.5<br />

1 24.5 100% 15000 16.13 16.13 20 (change from 7.5 to 20 hp motors)<br />

1 24.5 70% 10500 7.13 7.13 7.5 (no change <strong>in</strong> motor sizes)<br />

Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />

runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />

<strong>in</strong>. cfm bhp bhp hp<br />

3 20 Design 5000 4.68 14.04 7.5<br />

2 20 100% 7500 7.43 14.86 7.5 (no change <strong>in</strong> motor sizes)<br />

Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />

runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />

<strong>in</strong>. cfm bhp bhp hp<br />

4 18.25 Design 3750 3.53 14.12 5<br />

3 18.25 100% 5000 4.71 14.13 5 (no change <strong>in</strong> motor sizes)<br />

51<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Provid<strong>in</strong>g Redundancy with a Fan Array<br />

� Two fans can often provide 100% redundancy and<br />

results <strong>in</strong> the lowest total power when all fans are<br />

operat<strong>in</strong>g, but may require larger fan motors to be<br />

provided.<br />

• If less than 100% is acceptable, two fans may not need<br />

to <strong>in</strong>crease motor sizes.<br />

� Three or four fans can typically provide 100%<br />

redundancy without significant changes <strong>in</strong> motor size.<br />

52<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 29


for more <strong>in</strong>formation<br />

Direct-Drive Plenum <strong>Fans</strong> and Fan Arrays<br />

� “Direct-Drive Plenum <strong>Fans</strong> for<br />

<strong>Trane</strong> Climate Changer <strong>Air</strong><br />

Handlers,” <strong>Trane</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

bullet<strong>in</strong>, CLCH-PRB021-EN<br />

53<br />

54<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

summary<br />

S<strong>in</strong>gle Fan Versus a Fan Array<br />

AHU footpr<strong>in</strong>t<br />

Redundancy<br />

Serviceability<br />

AHU cost<br />

Efficiency<br />

AHU acoustics<br />

Fan reliability<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

S<strong>in</strong>gle<br />

DDP Fan<br />

�<br />

none<br />

�<br />

���<br />

���<br />

���<br />

���<br />

Multiple DDP <strong>Fans</strong><br />

(Fan Array)<br />

Fewer <strong>Fans</strong> More <strong>Fans</strong><br />

�� ���<br />

��� ���<br />

�� ���<br />

�� �<br />

�� �<br />

�� �<br />

�� �<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 30


summary<br />

S<strong>in</strong>gle Fan Versus a Fan Array<br />

� Benefits of us<strong>in</strong>g a fan array<br />

• Reduction <strong>in</strong> overall length of air-handl<strong>in</strong>g unit<br />

• Redundancy<br />

• Easier to replace fans and motors<br />

� Drawbacks of us<strong>in</strong>g a fan array<br />

• Increased air-handl<strong>in</strong>g unit cost<br />

• Higher <strong>in</strong>put power<br />

• Higher sound levels<br />

� When a fan array is desired, us<strong>in</strong>g fewer larger fans will<br />

typically be a better overall solution than us<strong>in</strong>g many<br />

smaller fans<br />

55<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

www.trane.com\en<br />

56<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 31


<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

constant volume (CV)<br />

Basic System<br />

1,500 cfm<br />

OA<br />

58<br />

MA<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

C<br />

7,500 cfm<br />

RA<br />

9,000 cfm<br />

constantspeed<br />

fan<br />

Impact of System<br />

Configuration on Fan<br />

Selection<br />

SA<br />

T<br />

space<br />

a size 14 unit with a 16.5 FC fan might work<br />

Pressure drops<br />

@ 9,000 cfm/7,500 cfm<br />

Device Low High<br />

SA duct 2.0 2.0<br />

RA duct 0.5 0.5<br />

MERV13 0.4 1.2<br />

Coil 0.6 0.9<br />

Total 3.5 4.6<br />

EA<br />

1,500 cfm<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 32


14B 16.5 FC<br />

Fan Application Limits<br />

total static pressure (<strong>in</strong> H 2 O)<br />

59<br />

total static pressure (<strong>in</strong> H2O)<br />

60<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Max rpm<br />

DO NOT SELECT<br />

1500 rpm<br />

Max static<br />

1400 rpm<br />

Fan<br />

surge l<strong>in</strong>e<br />

1300 rpm<br />

1200 rpm<br />

1100 rpm<br />

1000 rpm<br />

900 rpm<br />

800 rpm<br />

700 rpm<br />

selection<br />

envelope<br />

1<br />

0<br />

600 rpm<br />

500 rpm<br />

M<strong>in</strong> bhp<br />

Max airflow<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

airflow (cfm)<br />

1.00 bhp<br />

1.50 bhp<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

1500 rpm<br />

1400 rpm<br />

1300 rpm<br />

1200 rpm<br />

1100 rpm<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

3.00 bhp<br />

5.00 bhp<br />

Max bhp<br />

14B 16.5” FC<br />

CV System 1: Is the fan too small?<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

DO NOT SELECT<br />

1000 rpm<br />

900 rpm<br />

800 rpm<br />

700 rpm<br />

600 rpm<br />

500 rpm<br />

1.00 bhp<br />

1.50 bhp<br />

D<br />

Dirty and wet<br />

3.00 bhp<br />

A B<br />

C<br />

5.00 bhp<br />

0<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

7.00 bhp<br />

7.00 bhp<br />

10.00 bhp<br />

Clean and dry<br />

10.00 bhp<br />

airflow (cfm)<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 33


14B 16.5 FC<br />

CV System 2: Is the fan too big?<br />

total static pressure (<strong>in</strong> H2O)<br />

61<br />

62<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

DO NOT SELECT<br />

1500 rpm<br />

1400 rpm<br />

1300 rpm<br />

1200 rpm<br />

1100 rpm<br />

1000 rpm<br />

900 rpm<br />

800 rpm<br />

700 rpm<br />

600 rpm<br />

500 rpm<br />

C<br />

A<br />

Dirty and wet<br />

B<br />

1.00 bhp<br />

1.50 bhp<br />

0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Clean and dry<br />

3.00 bhp<br />

5.00 bhp<br />

7.00 bhp<br />

10.00 bhp<br />

airflow (cfm)<br />

Multiple-Zone VAV With Relief Fan<br />

1,500 cfm<br />

EA<br />

RA<br />

OA MA T SA<br />

supply air temp<br />

determ<strong>in</strong>es AHU<br />

cool<strong>in</strong>g capacity<br />

7,500 cfm<br />

9,000 cfm<br />

variablespeed<br />

fan<br />

space<br />

space<br />

T<br />

T<br />

EA<br />

1,500 cfm<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 34


Static Pressure Drops<br />

� At 9,000 cfm supply airflow<br />

� At 7,500 cfm return airflow<br />

� Assume path through<br />

zone 1 has highest<br />

static pressure loss<br />

63<br />

64<br />

total static pressure (<strong>in</strong> H2O)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

0<br />

E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

3100 RPM<br />

DO 3000 NOT RPM SELECT<br />

2800 RPM<br />

2600 RPM<br />

2400 RPM<br />

2200 RPM<br />

2000 RPM<br />

1800 RPM<br />

1600 RPM<br />

1400 RPM<br />

1200 RPM<br />

1000 RPM<br />

800 RPM<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

40 %WO<br />

50 %WO<br />

Device Low High<br />

RA plen 0.5 0.5<br />

RA duct 0.2 0.2<br />

RA damp 0.2 0.2<br />

MERV13 0.4 1.2<br />

Coil 0.6 0.9<br />

SA duct 2.0 2.0<br />

VAV box 1 0.4 0.4<br />

Runout 1 0.4 0.4<br />

Total 4.7 5.8<br />

0 2500 5000 7500 10000 12500 15000<br />

A<br />

airflow (cfm)<br />

60 %WO<br />

Dirty and wet<br />

70 %WO<br />

Clean and dry<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 35<br />

B<br />

80 %WO<br />

90 %WO


65<br />

66<br />

total static pressure (<strong>in</strong> H2O)<br />

total static pressure (<strong>in</strong> H2O)<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

0<br />

E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

3100 RPM<br />

DO 3000 NOT RPM SELECT<br />

2800 RPM<br />

2600 RPM<br />

2400 RPM<br />

2200 RPM<br />

2000 RPM<br />

1800 RPM<br />

1600 RPM<br />

1400 RPM<br />

1200 RPM<br />

1000 RPM<br />

800 RPM<br />

0 2500 5000 7500 10000 12500 15000<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

1.3<br />

0<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

40 %WO<br />

50 %WO<br />

highest resistance<br />

A<br />

lowest resistance<br />

airflow (cfm)<br />

B<br />

60 %WO<br />

part load<br />

E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

3100 RPM<br />

DO 3000 NOT RPM SELECT<br />

2800 RPM<br />

2600 RPM<br />

2400 RPM<br />

2200 RPM<br />

2000 RPM<br />

1800 RPM<br />

1600 RPM<br />

1400 RPM<br />

1200 RPM<br />

1000 RPM<br />

800 RPM<br />

40 %WO<br />

50 %WO<br />

highest resistance<br />

Ps = Pc + (Pd - Pc)*(Q/Qd)^2<br />

Ps = 1.3 + (5.8-1.3)*(5000/9000)^2<br />

Ps = 2.7<br />

70 %WO<br />

80 %WO<br />

0 2500 5000 7500 10000 12500 15000<br />

A<br />

airflow (cfm)<br />

60 %WO<br />

70 %WO<br />

lowest resistance<br />

80 %WO<br />

90 %WO<br />

Ps = Pc + (Pd - Pc)*(Q/Qd)^2<br />

Ps = 1.3 + (5.8-1.3)*(5000/9000)^2<br />

Ps = 2.7<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 36<br />

90 %WO<br />

11.5<br />

5.8<br />

4.5<br />

2.7


67<br />

68<br />

total static pressure (<strong>in</strong> H2O)<br />

total static pressure (<strong>in</strong> H2O)<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

0<br />

E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

3100 RPM<br />

DO 3000 NOT RPM SELECT<br />

2800 RPM<br />

2600 RPM<br />

2400 RPM<br />

2200 RPM<br />

2000 RPM<br />

1800 RPM<br />

1600 RPM<br />

1400 RPM<br />

1200 RPM<br />

1000 RPM<br />

800 RPM<br />

0 2500 5000 7500 10000 12500 15000<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

0<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

40 %WO<br />

50 %WO<br />

airflow (cfm)<br />

60 %WO<br />

E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

3100 RPM<br />

DO 3000 NOT RPM SELECT<br />

2800 RPM<br />

2600 RPM<br />

2400 RPM<br />

2200 RPM<br />

2000 RPM<br />

1800 RPM<br />

1600 RPM<br />

1400 RPM<br />

1200 RPM<br />

1000 RPM<br />

800 RPM<br />

40 %WO<br />

50 %WO<br />

70 %WO<br />

80 %WO<br />

0 2500 5000 7500 10000 12500 15000<br />

airflow (cfm)<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 37<br />

A<br />

part load<br />

B<br />

60 %WO<br />

70 %WO<br />

80 %WO<br />

90 %WO<br />

90 %WO


69<br />

total static pressure (<strong>in</strong> H2O)<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

0<br />

E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

3100 RPM<br />

DO 3000 NOT RPM SELECT<br />

2800 RPM<br />

2600 RPM<br />

2400 RPM<br />

2200 RPM<br />

2000 RPM<br />

1800 RPM<br />

1600 RPM<br />

1400 RPM<br />

1200 RPM<br />

1000 RPM<br />

800 RPM<br />

0 2500 5000 7500 10000 12500 15000<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

40 %WO<br />

50 %WO<br />

airflow (cfm)<br />

Morn<strong>in</strong>g warm-up operation<br />

70<br />

total static pressure (<strong>in</strong> H2O)<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

0<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

A<br />

B<br />

60 %WO<br />

E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

3100 RPM<br />

DO 3000 NOT RPM SELECT<br />

2800 RPM<br />

2600 RPM<br />

2400 RPM<br />

2200 RPM<br />

2000 RPM<br />

1800 RPM<br />

1600 RPM<br />

1400 RPM<br />

1200 RPM<br />

1000 RPM<br />

800 RPM<br />

C<br />

40 %WO<br />

50 %WO<br />

70 %WO<br />

New Part Load<br />

80 %WO<br />

0 2500 5000 7500 10000 12500 15000<br />

B<br />

airflow (cfm)<br />

60 %WO<br />

80%-open boxes<br />

A<br />

70 %WO<br />

80 %WO<br />

90 %WO<br />

90 %WO<br />

Wide-open boxes<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 38


Multiple-Zone VAV with Return Fan<br />

0 cfm<br />

6,000 cfm<br />

0 cfm<br />

0 cfm<br />

8,000 cfm<br />

1,500 cfm<br />

71<br />

EA<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

RA<br />

7,500 cfm<br />

6,000 cfm<br />

??? cfm<br />

OA MA<br />

SA<br />

Design<br />

Economizer<br />

Morn<strong>in</strong>g warm up<br />

??? cfm<br />

8,000 cfm<br />

9,000 cfm<br />

variablespeed<br />

fan<br />

space<br />

space<br />

T<br />

T<br />

System Effect<br />

EA<br />

1,500 cfm<br />

2,000 cfm<br />

0 cfm<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 39


Develop<strong>in</strong>g a Uniform Velocity Profile<br />

73<br />

fan<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Common System Effects<br />

74<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

uniform<br />

velocity<br />

profile<br />

� Elbow, branch, turn<strong>in</strong>g vanes, or damper located too<br />

close to the fan outlet<br />

� Elbow, turn<strong>in</strong>g vanes, air straightener, or other<br />

obstruction located too close to the fan <strong>in</strong>let<br />

� Pre-swirl<strong>in</strong>g the air prior to it enter<strong>in</strong>g the fan wheel<br />

� Use of an <strong>in</strong>let plenum or cab<strong>in</strong>et<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 40


AMCA Publication 201, <strong>Fans</strong> and <strong>Systems</strong><br />

75<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

example<br />

System Effect<br />

76<br />

Position D<br />

<strong>in</strong>let<br />

� Prediction of common<br />

System Effect Factors<br />

Position C<br />

Position A<br />

Position B<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Source: <strong>Air</strong> Movement and Control Association. 2002. <strong>Fans</strong> and <strong>Systems</strong>, Publication 201. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 41


example<br />

System Effect<br />

77<br />

78<br />

blast area outlet area discharge duct<br />

Centrifugal<br />

fan<br />

25%<br />

50%<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Example<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

75%<br />

100% effective duct length<br />

Source: <strong>Air</strong> Movement and Control<br />

Association. 2002. <strong>Fans</strong> and <strong>Systems</strong>,<br />

Publication 201. Arl<strong>in</strong>gton Heights, IL:<br />

AMCA.<br />

100% Effective<br />

Duct Length<br />

� 2.5 duct diameters<br />

for 2500 fpm<br />

(or less)<br />

� Add 1 duct diameter<br />

for each additional<br />

1000 fpm<br />

Source: <strong>Air</strong> Movement and Control Association.<br />

2002. <strong>Fans</strong> and <strong>Systems</strong>, Publication 201.<br />

Arl<strong>in</strong>gton Heights, IL: AMCA.<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 42


79<br />

80<br />

total static pressure (<strong>in</strong> H2O)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

14A Draw-thru; 18.25-<strong>in</strong>ch FC; without <strong>in</strong>let vanes<br />

942 RPM<br />

2.25 <strong>in</strong>.<br />

6.1 bhp, 875 rpm 2<br />

system effect factor<br />

5.3 bhp, 800 rpm<br />

1.8 <strong>in</strong>.<br />

1<br />

600 RPM<br />

500 RPM<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

25 %WO 50 %WO<br />

9000 cfm<br />

Source: <strong>Air</strong> Movement and Control Association.<br />

2002. <strong>Fans</strong> and <strong>Systems</strong>, Publication 201.<br />

Arl<strong>in</strong>gton Heights, IL: AMCA.<br />

0 2500 5000 7500 10000 12500 15000<br />

airflow<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 43<br />

3.50 bhp<br />

60 %WO<br />

5.00 bhp<br />

70 %WO<br />

7.50 bhp


<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

Propeller <strong>Fans</strong><br />

� Reduce propeller fan sound by<br />

• Choos<strong>in</strong>g the low noise fan option<br />

• Attenuat<strong>in</strong>g the path<br />

82<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Fan Acoustics<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 44


Fan Sound<br />

� Sound generation is <strong>in</strong>fluenced by<br />

• Fan type<br />

•Flow rate<br />

• Total pressure<br />

• Efficiency<br />

• Flow <strong>in</strong>to and out of the fan<br />

83<br />

84<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

AHRI 260<br />

� Includes unit impact on<br />

fan sound<br />

• Negative flow impacts<br />

• Benefits of plenums<br />

and l<strong>in</strong><strong>in</strong>g<br />

� Provides for “apples to<br />

apples” comparison<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 45


AHRI 260<br />

See Sound Rat<strong>in</strong>gs<br />

and ARI Standard<br />

260 newsletter for<br />

additional <strong>in</strong>formation<br />

85<br />

86<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Selection Program<br />

� Provides a convenient way to access sound data<br />

� Shows acoustical impact of<br />

• Chang<strong>in</strong>g operat<strong>in</strong>g po<strong>in</strong>t<br />

• Chang<strong>in</strong>g fan type<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 46


87<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Rules of Thumb<br />

88<br />

� Lower tip speed<br />

does not equal<br />

lower sound<br />

� Improved efficiency<br />

does result <strong>in</strong><br />

lower sound<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 47


static pressure<br />

89<br />

static pressure<br />

90<br />

Constant Speed Curve<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Constant Speed Curve<br />

VAV Modulation<br />

Curve<br />

30% WO<br />

40% WO<br />

50% WO<br />

volumetric flow rate<br />

30% WO<br />

Note that as unit modulates down<br />

can enter the unstable region<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

High level<br />

unstable<br />

acoustics<br />

40% WO<br />

High level<br />

unstable<br />

acoustics<br />

volumetric flow rate<br />

Acoustic<br />

predictions<br />

possible<br />

50% WO<br />

Acoustic<br />

predictions<br />

possible<br />

Acoustic Stall<br />

60% WO<br />

Acoustic Stall<br />

60% WO<br />

70% WO<br />

80% WO<br />

90% WO<br />

Design po<strong>in</strong>t is <strong>in</strong> stable region<br />

80% WO<br />

90% WO<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 48


Selection tips<br />

� Accurate sound data is a must<br />

� Review all fan and unit options<br />

� Avoid “rules-of-thumb”<br />

91<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g Units<br />

Common Problems:<br />

Not Deliver<strong>in</strong>g Enough<br />

<strong>Air</strong>flow<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 49


Fan System Problems<br />

� Most common compla<strong>in</strong>ts<br />

• Insufficient airflow<br />

• Excessive noise/vibration<br />

� Common causes for <strong>in</strong>sufficient airflow<br />

• Underestimated system resistance<br />

• Poor account<strong>in</strong>g for system effect<br />

• Unanticipated <strong>in</strong>stallation modifications<br />

• Hence, poor fan selection<br />

93<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

AMCA 201<br />

“<strong>Fans</strong> and <strong>Systems</strong>”<br />

� Lists possible causes for low flow, <strong>in</strong>clud<strong>in</strong>g:<br />

• Improper <strong>in</strong>let duct design<br />

• Improper outlet duct design<br />

• Improper fan <strong>in</strong>stallation<br />

• Unexpected system resistance characteristics<br />

• Improper allowance for fan system effect<br />

• Dirty filters, ducts, coils<br />

• “Performance” determ<strong>in</strong>ed us<strong>in</strong>g uncerta<strong>in</strong> field measurement<br />

techniques<br />

� Includes much help for system effect corrections<br />

94<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 50


AMCA 202<br />

“Troubleshoot<strong>in</strong>g”<br />

� Lists possible causes for low airflow, <strong>in</strong>clud<strong>in</strong>g:<br />

• Improper fan <strong>in</strong>stallation or assembly<br />

• Damage <strong>in</strong> handl<strong>in</strong>g or transit<br />

• System design error<br />

• Deterioration of system<br />

• Faulty controls<br />

• Poor fan selection<br />

� Includes detailed troubleshoot<strong>in</strong>g checklists<br />

95<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

AMCA 203<br />

“Field Performance Measurement of Fan <strong>Systems</strong>”<br />

96<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Your duct system?<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 51


<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g Units<br />

Causes of Noise<br />

� Fan / unit defect<br />

� Acoustics ignored dur<strong>in</strong>g selection<br />

� Duct system flow problems<br />

98<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Common Problems:<br />

Too Much Noise<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 52


Sound Transmission Paths<br />

return<br />

airborne<br />

supply<br />

airborne<br />

99<br />

100<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

roof<br />

transmission<br />

supply<br />

breakout<br />

Acoustical analysis: Source–path–receiver model<br />

Path Analysis Tools<br />

� Determ<strong>in</strong>e build<strong>in</strong>g acoustics<br />

� Use to select equipment<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 53


101<br />

Duct Design<br />

� ASHRAE algorithms<br />

� Available for common duct components<br />

� Used to predict acoustic impact<br />

102<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Duct Design<br />

� Poor design creates turbulence<br />

� Turbulence generates low frequency noise<br />

� Low frequency sound<br />

• Passes through ducts<br />

• Moves lightweight components<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 54


103<br />

Duct Guidel<strong>in</strong>es<br />

� <strong>Air</strong> leav<strong>in</strong>g the unit is turbulent<br />

� Use straight duct at discharge<br />

� Length = 3 times largest<br />

discharge dimension<br />

104<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Duct Guidel<strong>in</strong>es<br />

� Utilize factory plenums<br />

air-handl<strong>in</strong>g unit<br />

w/ discharge plenum<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

large rooftop unit<br />

w/ special curb<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 55


105<br />

Duct Guidel<strong>in</strong>es<br />

� Avoid close coupled fitt<strong>in</strong>gs<br />

noisiest better<br />

Source: A Practical Guide To Noise and Vibration Control For HVAC <strong>Systems</strong>, ASHRAE, 1991. Figure 1-23<br />

106<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Summary<br />

� Successful acoustics requires<br />

• Build<strong>in</strong>g analysis<br />

• Equipment selection<br />

• Duct design<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

quietest<br />

15° max.<br />

15° max.<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 56


ASHRAE Standard 90.1-2007<br />

Fan System Power Limitation<br />

108<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

ASHRAE 90.1<br />

Requirements<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 57


ASHRAE 90.1-2007: Fan System Power Limitation<br />

Option 1: Motor Nameplate Horsepower<br />

109<br />

example: 30,000 cfm VAV system<br />

allowable nameplate motor hp ≤ 45 (30,000 � 0.0015)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

ASHRAE 90.1-2007: Fan System Power Limitation<br />

Option 2: Fan System Brake Horsepower<br />

110<br />

example: 30,000 cfm VAV system<br />

allowable fan system bhp ≤ 39 (30,000 � 0.0013)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 58


ASHRAE 90.1-2007: Fan System Power Limitation<br />

Option 2: Pressure Drop Adjustments<br />

111<br />

112<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Option 2 Example<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 59


8,000 cfm<br />

10,000 cfm<br />

113<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

8,000 cfm<br />

MERV 13<br />

MERV 13 filter<br />

� Particulate filtration credit (MERV 13) = 0.9 <strong>in</strong>. H 2 O<br />

� A filter = 0.9 <strong>in</strong>. H 2 O × 30,000 cfm / 4131 = 6.5 bhp<br />

10,000 cfm<br />

114<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

MERV 13<br />

30,000 cfm<br />

30,000 cfm<br />

Total-energy wheel (supply side)<br />

� Supply-side pressure drop (10,000 cfm) = 0.8 <strong>in</strong>. H 2 O<br />

� A supply-side = 0.8 <strong>in</strong>. H 2 O × 10,000 cfm / 4131 = 1.9 bhp<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 60


8,000 cfm<br />

10,000 cfm<br />

115<br />

116<br />

Total-energy wheel (exhaust side)<br />

� Supply-side pressure drop (8,000 cfm) = 0.7 <strong>in</strong>. H 2 O<br />

� A exhaust-side = 0.7 <strong>in</strong>. H 2 O × 8,000 cfm / 4131 = 1.4 bhp<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Option 2 Example<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

MERV 13<br />

MERV 13 filter<br />

� A filter = 0.9 <strong>in</strong>. H 2 O × 30,000 cfm / 4131 = 6.5 bhp<br />

Total-energy wheel<br />

� A supply-side = 0.8 <strong>in</strong>. H 2 O × 10,000 cfm / 4131 = 1.9 bhp<br />

� A exhaust-side = 0.7 <strong>in</strong>. H 2 O × 8,000 cfm / 4131 = 1.4 bhp<br />

30,000 cfm<br />

A = 6.5 + 1.9 + 1.4 = 9.8 bhp<br />

allowable fan system bhp ≤ 48.8 (30,000 � 0.0013 + 9.8)<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 61


total static pressure (<strong>in</strong> H2O)<br />

117<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Ways to Reduce Fan Power<br />

1. Reduce airflow<br />

• Reduce cool<strong>in</strong>g loads (better envelope, fewer and<br />

better w<strong>in</strong>dows, more efficient light<strong>in</strong>g)<br />

• Colder supply-air temperature<br />

2. Reduce airside pressure loss<br />

• Efficient duct fitt<strong>in</strong>gs<br />

• Larger ductwork<br />

• Larger air-handl<strong>in</strong>g unit<br />

• Low pressure drop filters and coils<br />

3. Select a higher-efficiency fan (if you have the choice)<br />

118<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

30B Draw-thru; 22.375-<strong>in</strong>ch FC; without <strong>in</strong>let vanes<br />

1273 RPM<br />

1200 RPM<br />

1100 RPM<br />

1000 RPM<br />

900 RPM<br />

800 RPM<br />

700 RPM<br />

600 RPM<br />

500 RPM<br />

400 RPM<br />

25 %WO<br />

0 5000 10000 15000 20000 25000 30000 35000 40000 45000<br />

airflow (cfm)<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

B 15.2 bhp<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 62<br />

50 %WO<br />

60 %WO<br />

70 %WO<br />

80 %WO<br />

90 %WO


total static pressure (<strong>in</strong> H2O)<br />

total static pressure (<strong>in</strong> H2O)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

119<br />

D30 Draw-thru; 25-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />

1650 RPM<br />

1600 RPM<br />

1500 RPM<br />

1400 RPM<br />

1300 RPM<br />

1200 RPM<br />

1100 RPM<br />

1000 RPM<br />

900 RPM<br />

800 RPM<br />

700 RPM<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

45 %WO<br />

50 %WO<br />

3 13.9 bhp<br />

0<br />

0 5000 10000 15000 20000 25000<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

120<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

airflow (cfm)<br />

60 %WO<br />

30B Draw-thru; 22.375-<strong>in</strong>ch FC; without <strong>in</strong>let vanes<br />

1273 RPM<br />

1200 RPM<br />

1100 RPM<br />

1000 RPM<br />

900 RPM<br />

800 RPM<br />

700 RPM<br />

600 RPM<br />

500 RPM<br />

400 RPM<br />

7.3 bhp 1<br />

25 %WO<br />

B 15.2 bhp<br />

2 13.0 bhp<br />

50 %WO<br />

60 %WO<br />

0 5000 10000 15000 20000 25000 30000 35000 40000 45000<br />

airflow (cfm)<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 63<br />

70 %WO<br />

70 %WO<br />

80 %WO<br />

80 %WO<br />

90 %WO<br />

90 %WO


example<br />

Ways to Reduce Fan Power<br />

121<br />

Basel<strong>in</strong>e fan selection 15.2 bhp<br />

� Reduce airflow (colder air) 7.3 bhp<br />

� Reduce airside pressure loss 13.0 bhp<br />

� Select<strong>in</strong>g a higher-efficiency fan 13.9 bhp<br />

122<br />

Implement all three 5.7 bhp<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

summary<br />

ASHRAE 90.1 Fan Power Limitation<br />

� Prescriptive limits apply to sum of all fans that operate<br />

at peak design conditions<br />

� Two options for compliance:<br />

• Option 1 (nameplate power) is simpler<br />

• Option 2 (brake horsepower) is more flexible, but be<br />

sure to make use of the adjustments<br />

� To reduce fan power:<br />

• Reduce airflow (reduce loads, colder supply air)<br />

• Reduce airside pressure loss<br />

• Select a higher-efficiency fan<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 64


summary<br />

<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />

� The right fan depends on the application, and is often<br />

based on balanc<strong>in</strong>g efficiency, acoustics, and cost.<br />

� It is important to understand how the fan will <strong>in</strong>teract<br />

with<strong>in</strong> the system.<br />

• Dirty filters and wet cool<strong>in</strong>g coils<br />

• Fan modulation <strong>in</strong> a VAV system<br />

• System effect<br />

� Sound data taken <strong>in</strong> accordance with AHRI 260<br />

provides the best <strong>in</strong>dication of sound produced by the<br />

entire air-handl<strong>in</strong>g unit.<br />

123<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

References for This Broadcast<br />

Where to Learn More<br />

124<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

www.trane.com/EN<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 65


Watch Past Broadcasts<br />

ENL Archives<br />

125<br />

126<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

2010 ENL Broadcasts<br />

� May<br />

Central Geothermal <strong>Systems</strong><br />

� October<br />

ASHRAE Standard 90.1-2010<br />

© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />

Insightful topics on HVAC system design:<br />

• Chilled-water plants<br />

• <strong>Air</strong> distribution<br />

• Refrigerant-to-air systems<br />

• Control strategies<br />

• Industry standards and LEED<br />

• Energy and the environment<br />

• Acoustics<br />

• Ventilation<br />

• Dehumidification<br />

www.trane.com/ENL<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 66


<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g<br />

<strong>Systems</strong><br />

eng<strong>in</strong>eers newsletter live<br />

Bibliography<br />

Industry Standards and Handbooks<br />

available to purchase from < www.ashrae.org/bookstore > or<br />

< www.amca.org/store ><br />

<strong>Air</strong>-Condition<strong>in</strong>g, Heat<strong>in</strong>g, and Refrigeration Institute. 2001. AHRI Standard<br />

260-2001: Sound Rat<strong>in</strong>g of Ducted <strong>Air</strong> Mov<strong>in</strong>g and Condition<strong>in</strong>g<br />

Equipment. Arl<strong>in</strong>gton, VA: AHRI.<br />

<strong>Air</strong> Movement and Control Association International, Inc. 1995. <strong>Air</strong> <strong>Systems</strong>.<br />

Publication 200. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />

<strong>Air</strong> Movement and Control Association International, Inc. 2002. <strong>Fans</strong> and<br />

<strong>Systems</strong>. Publication 201. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />

<strong>Air</strong> Movement and Control Association International, Inc. 1998.<br />

Troubleshoot<strong>in</strong>g. Publication 202. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />

<strong>Air</strong> Movement and Control Association International, Inc. 1990. Field<br />

Performance Measurement of Fan <strong>Systems</strong>. Publication 203. Arl<strong>in</strong>gton<br />

Heights, IL: AMCA.<br />

American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />

2007. ANSI/ASHRAE Standard 51-2007: Laboratory Methods of Test<strong>in</strong>g<br />

<strong>Fans</strong> for Aerodynamic Performance Rat<strong>in</strong>g. Atlanta, GA: ASHRAE.<br />

American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />

2007. ANSI/ASHRAE/IESNA Standard 90.1-2007: Energy Standard for<br />

Build<strong>in</strong>gs Except Low-Rise Residential Build<strong>in</strong>gs. Atlanta, GA: ASHRAE.<br />

American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />

2007. ASHRAE Handbook—HVAC Applications, Chapter 47 (Sound and<br />

Vibration Control). Atlanta, GA: ASHRAE.<br />

American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />

2008. ASHRAE Handbook—HVAC <strong>Systems</strong> and Equipment, Chapter 20<br />

(<strong>Fans</strong>). Atlanta, GA: ASHRAE.<br />

Schaffer, M. 2005. Practical Guide to Noise and Vibration Control for HVAC<br />

<strong>Systems</strong>. Atlanta, GA: ASHRAE.<br />

<strong>Trane</strong> Publications<br />

available to purchase from <br />

<strong>Trane</strong>. “<strong>Air</strong> Condition<strong>in</strong>g <strong>Fans</strong>” <strong>Air</strong> Condition<strong>in</strong>g Cl<strong>in</strong>ic. TRG-TRC013-EN.<br />

March 2004.<br />

Murphy, J. and B. Bakkum. Chilled-Water VAV <strong>Systems</strong> application manual.<br />

SYS-APM008-EN. September 2009.<br />

Murphy, J. and J. Harshaw. Rooftop VAV <strong>Systems</strong> application manual. SYS-<br />

APM007-EN. November 2009.<br />

Guckelberger, D. and B. Bradley. Acoustics <strong>in</strong> <strong>Air</strong> Condition<strong>in</strong>g application<br />

manual. ISS-APM001-EN. April 2006.<br />

<strong>Trane</strong>. <strong>Fans</strong> and Their Application <strong>in</strong> <strong>Air</strong> Condition<strong>in</strong>g application manual. ED-<br />

FAN. August 1982.<br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 67


eng<strong>in</strong>eers newsletter live<br />

Bibliography<br />

<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g<br />

<strong>Systems</strong> <strong>Trane</strong> Eng<strong>in</strong>eers Newsletters<br />

available to download from <br />

Meredith, D., J. Murphy, and J. Harshaw. “Direct-Drive Plenum <strong>Fans</strong> and Fan<br />

Arrays” Eng<strong>in</strong>eers Newsletter 39-1. 2010.<br />

Guckelberger, D. and B. Bradley. “Sound Rat<strong>in</strong>gs and ARI Standard 260”<br />

Eng<strong>in</strong>eers Newsletter 29-1. 2000.<br />

<strong>Trane</strong> Product Eng<strong>in</strong>eer<strong>in</strong>g Bullet<strong>in</strong>s<br />

Direct-Drive Plenum <strong>Fans</strong> for <strong>Trane</strong> Climate Changer <strong>Air</strong> Handlers, CLCH-<br />

PRB021-EN (2009).<br />

Analysis Software<br />

<strong>Trane</strong> Acoustics Program (TAP).<br />

Available at < www.trane.com/Commercial/DNA/View.aspx?i=1245 ><br />

© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!