Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
eng<strong>in</strong>eers newsletter live<br />
Course Outl<strong>in</strong>e<br />
This ENL broadcast will discuss the application of fans <strong>in</strong> air-handl<strong>in</strong>g systems, <strong>in</strong>clud<strong>in</strong>g fan laws,<br />
fan-system <strong>in</strong>teraction, fan performance curves, types of fans, and proper selection, <strong>in</strong>stallation,<br />
and operation of various fan types (efficiency, acoustics, and footpr<strong>in</strong>t).<br />
By attend<strong>in</strong>g this event you will learn how to:<br />
1. Select the proper fan to meet ASHRAE 90.1 efficiency requirements<br />
2. Understand fan modulation <strong>in</strong> order to make proper fan selections<br />
3. Choose the right fan type for a system application<br />
4. Properly connect the fan to the system to m<strong>in</strong>imize fan noise and energy use<br />
Program Outl<strong>in</strong>e:<br />
1) Fan performance curves<br />
a) How developed (lab setup, difference with AHU vs. RTU)<br />
b) What they are for (selection) and not for (predict<strong>in</strong>g field performance)<br />
c) Fan laws<br />
d) Interaction of fans <strong>in</strong> a system (system curve)<br />
2) Fan/unit selection considerations<br />
a) Types of fans (energy – bhp or motor <strong>in</strong>put kW, acoustics, footpr<strong>in</strong>t, ma<strong>in</strong>tenance, redundancy)<br />
b) Impact of system configuration on fan selection<br />
c) System effect (example us<strong>in</strong>g AMCA guide)<br />
d) Acoustics topics<br />
3) Common problems<br />
a) Fan is not deliver<strong>in</strong>g enough airflow<br />
b) Fan is mak<strong>in</strong>g too much noise<br />
4) Meet<strong>in</strong>g ASHRAE 90.1 requirements<br />
a) Option 1 vs. Option 2 (fan power limitation)<br />
b) Lower<strong>in</strong>g bhp/cfm<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 1
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
Dave Guckelberger | senior pr<strong>in</strong>cipal application eng<strong>in</strong>eer | <strong>Trane</strong><br />
eng<strong>in</strong>eers newsletter live<br />
Presenter Biographies<br />
Dave has a wide range of product and system responsibilities as a <strong>Trane</strong> applications eng<strong>in</strong>eer. His expertise<br />
<strong>in</strong>cludes acoustic analysis and model<strong>in</strong>g of HVAC systems, electrical distribution system design, and the<br />
equipment-room design requirements established by ASHRAE Standard 15. He also provides research and<br />
<strong>in</strong>terpretation on how build<strong>in</strong>g, mechanical, and fire codes impact HVAC equipment and systems. In addition<br />
to traditional applications eng<strong>in</strong>eer<strong>in</strong>g support, Dave has authored a variety of technical articles on subjects<br />
rang<strong>in</strong>g from acoustics to ECM motors to codes.<br />
Dave is a past president of the Wiscons<strong>in</strong> Mechanical Refrigeration Code Council and has served on several<br />
ASHRAE committees at the national level. After graduat<strong>in</strong>g from Michigan Tech with a BSME <strong>in</strong> thermofluids,<br />
he jo<strong>in</strong>ed <strong>Trane</strong> as a development eng<strong>in</strong>eer <strong>in</strong> 1982 and moved <strong>in</strong>to his current position <strong>in</strong> Applications<br />
Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> 1987. Dave is a member of ASHRAE and an associate member of INCE.<br />
Dust<strong>in</strong> Meredith, P.E.| pr<strong>in</strong>cipal application eng<strong>in</strong>eer | <strong>Trane</strong><br />
Dust<strong>in</strong> is an application eng<strong>in</strong>eer with focus on airside products. His expertise <strong>in</strong>cludes sound<br />
predictions, fan selection, and vibration analysis. He also leads development and implementation<br />
projects for new and upcom<strong>in</strong>g air-handl<strong>in</strong>g options. Dust<strong>in</strong> has authored various technical<br />
eng<strong>in</strong>eer<strong>in</strong>g bullet<strong>in</strong>s and applications eng<strong>in</strong>eer<strong>in</strong>g manuals.<br />
Dust<strong>in</strong> is a correspond<strong>in</strong>g member on ASHRAE TC 2.6 – Sound & Vibration Control – and ASHRAE TC<br />
5.1 – <strong>Fans</strong>. After graduat<strong>in</strong>g from the University of Kentucky with BSME, BSCS and MBA degrees, he<br />
jo<strong>in</strong>ed <strong>Trane</strong> as a market<strong>in</strong>g eng<strong>in</strong>eer <strong>in</strong> 2000 and moved <strong>in</strong>to his current position <strong>in</strong> Application Eng<strong>in</strong>eer<strong>in</strong>g<br />
<strong>in</strong> 2005. Dust<strong>in</strong> is a member of ASHRAE and is the primary <strong>Trane</strong> contact for AMCA.<br />
John Murphy, LEED ® AP| senior application eng<strong>in</strong>eer | <strong>Trane</strong><br />
John has been with <strong>Trane</strong> s<strong>in</strong>ce 1993. His primary responsibility as an applications eng<strong>in</strong>eer is to aid design<br />
eng<strong>in</strong>eers and <strong>Trane</strong> sales personnel <strong>in</strong> the proper design and application of HVAC systems. As a LEED<br />
Accredited Professional, he has helped our customers and local offices on a wide range of LEED projects. His<br />
ma<strong>in</strong> areas of expertise <strong>in</strong>clude energy efficiency, dehumidification, air-to-air energy recovery, psychrometry,<br />
ventilation, and ASHRAE Standards 15, 62.1, and 90.1.<br />
John is the author of numerous <strong>Trane</strong> application manuals and Eng<strong>in</strong>eers Newsletters, and is a frequent<br />
presenter on <strong>Trane</strong>’s Eng<strong>in</strong>eers Newsletter Live series of broadcasts. He also is a member of ASHRAE, has<br />
authored several articles for the ASHRAE Journal, and is a member of ASHRAE’s “Moisture Management <strong>in</strong><br />
Build<strong>in</strong>gs” and “Mechanical Dehumidifiers” technical committees. He was a contribut<strong>in</strong>g author of the<br />
Advanced Energy Design Guide for K-12 Schools and the Advanced Energy Design Guide for Small Hospitals<br />
and Health Care Facilities, and technical reviewer for The ASHRAE Guide for Build<strong>in</strong>gs <strong>in</strong> Hot and Humid<br />
Climates.<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 2
Dennis Stanke | staff application eng<strong>in</strong>eer | <strong>Trane</strong><br />
With a BSME from the University of Wiscons<strong>in</strong>, Dennis jo<strong>in</strong>ed <strong>Trane</strong> <strong>in</strong> 1973, as a controls development<br />
eng<strong>in</strong>eer. He is now a Staff Applications Eng<strong>in</strong>eer specializ<strong>in</strong>g <strong>in</strong> airside systems <strong>in</strong>clud<strong>in</strong>g controls,<br />
ventilation, <strong>in</strong>door air quality, and dehumidification. He has written numerous applications manuals and<br />
newsletters, has published many technical articles and columns, and has appeared <strong>in</strong> many <strong>Trane</strong> Eng<strong>in</strong>eers<br />
Newsletter Live broadcasts.<br />
An ASHRAE Fellow, he recently served as Chairman for SSPC62.1, the ASHRAE committee responsible for<br />
Standard 62.1, “Ventilation for Acceptable Indoor <strong>Air</strong> Quality,” and he serves on the USGBC LEED Technical<br />
Advisory Group for Indoor Environmental Quality (the LEED EQ TAG).<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 3
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
Cont<strong>in</strong>u<strong>in</strong>g Education Credit<br />
� This program is registered with the AIA/CES and<br />
USGBC for LEED ® cont<strong>in</strong>u<strong>in</strong>g professional<br />
education. Credit earned on completion of this<br />
program will be reported to CES Records for AIA<br />
members.<br />
� The U.S. Green Build<strong>in</strong>g Council (USGBC) has<br />
approved the technical and <strong>in</strong>structional quality of<br />
this course for 1.5 GBCI CE hours towards the<br />
LEED Credential Ma<strong>in</strong>tenance Program.<br />
Certificates of Completion for LEED ® credential<strong>in</strong>g<br />
available on request.<br />
2<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 4
Copyrighted Materials<br />
This presentation is protected by U.S. and <strong>in</strong>ternational<br />
copyright laws. Reproduction, distribution, display, and<br />
use of the presentation without written permission of<br />
<strong>Trane</strong> is prohibited.<br />
© 2010 <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll-Rand. All rights reserved.<br />
3<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
Today’s Topics<br />
� Fan fundamentals<br />
• Performance curves<br />
� Fan/unit selection considerations<br />
• Fan types<br />
• Impact of system configuration<br />
• System effect<br />
• Acoustics<br />
� Common problems<br />
� ASHRAE 90.1 requirements<br />
4<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 5
Today’s Presenters<br />
5<br />
Dennis Stanke<br />
Staff Applications<br />
Eng<strong>in</strong>eer<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Today’s Presenters<br />
6<br />
John Murphy<br />
Applications<br />
Eng<strong>in</strong>eer<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Dave Guckelberger<br />
Applications<br />
Eng<strong>in</strong>eer<br />
Dust<strong>in</strong> Meredith<br />
Applications<br />
Eng<strong>in</strong>eer<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 6
8<br />
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Fundamentals<br />
Fan Performance Curves<br />
AMCA 210/ASHRAE 51<br />
“Laboratory Methods of Test<strong>in</strong>g <strong>Fans</strong> for<br />
Aerodynamic Performance Rat<strong>in</strong>g”<br />
Static Pressure: … that portion of the air pressure which<br />
exists by virtue of the degree of compression only.<br />
Velocity Pressure: … that portion of the air pressure which<br />
exists by virtue of the rate of motion only.<br />
Total Pressure: … the algebraic sum of the velocity pressure<br />
and the static pressure at a po<strong>in</strong>t.<br />
P � P � P<br />
t<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 7<br />
v<br />
s
Fan Curves<br />
total static pressure (<strong>in</strong> H2O)<br />
9<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
0<br />
0<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
airflow (cfm)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
ANSI/ASHRAE 51(AMCA 210-07), Figure 12<br />
“Outlet Chamber Setup-Multiple Nozzles<br />
<strong>in</strong> Chamber”<br />
10<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Test chamber<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 8<br />
14<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
Brake horsepower (bhp)
AHRI 430<br />
“Performance Rat<strong>in</strong>g of Central Station<br />
<strong>Air</strong> Handl<strong>in</strong>g Units”<br />
11<br />
12<br />
C C<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Fan Performance Test<br />
total static pressure (<strong>in</strong> H2O)<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
blocked off<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
restricted<br />
less restricted<br />
Unit test<br />
wide open<br />
0<br />
0<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
airflow (cfm)<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 9<br />
14<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
Brake horsepower (bhp)
Fan Laws for Incompressible Flow<br />
� Fan total efficiency (D-1)<br />
� <strong>Air</strong>flow rate (D-2)<br />
� Fan total pressure (D-3)<br />
� Fan power <strong>in</strong>put (D-4)<br />
� Fan velocity pressure (D-5)<br />
� Fan static pressure (D-6)<br />
� Fan static efficiency (D-7)<br />
13<br />
total static pressure (<strong>in</strong> H2O)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Fan Curves<br />
14<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
� ��<br />
t 2 t1<br />
3<br />
� D � � �<br />
2 N2<br />
Q � ��<br />
�<br />
�<br />
� ��<br />
�<br />
�<br />
�<br />
2 Q1<br />
� D1<br />
� � N1<br />
�<br />
2<br />
2<br />
� D � � � � �<br />
2 N2<br />
�2<br />
P � ��<br />
�<br />
�<br />
� ��<br />
�<br />
�<br />
� ��<br />
�<br />
�<br />
�<br />
t2<br />
Pt<br />
1<br />
� D1<br />
� � N1<br />
� � �1<br />
�<br />
5 3<br />
� D � � � � �<br />
2 N2<br />
�2<br />
H � ��<br />
�<br />
�<br />
� ��<br />
�<br />
�<br />
� ��<br />
�<br />
�<br />
�<br />
2 H1<br />
� D1<br />
� � N1<br />
� � �1<br />
�<br />
2<br />
2<br />
� D � � � � �<br />
2 N2<br />
�2<br />
P � ��<br />
�<br />
�<br />
� ��<br />
�<br />
�<br />
� ��<br />
�<br />
�<br />
�<br />
v2<br />
Pv<br />
1<br />
� D1<br />
� � N1<br />
� � �1<br />
�<br />
P � P � P<br />
s2<br />
t2<br />
v2<br />
� P � s2<br />
� � �<br />
�<br />
�<br />
�<br />
�<br />
s2<br />
�t1<br />
� Pt<br />
2 �<br />
Where<br />
η t = total efficiency<br />
η s = static efficiency<br />
ρ = density<br />
D = diameter<br />
H = horsepower<br />
N = speed<br />
P s = static press<br />
P t = total pressure<br />
P v = velocity press<br />
Q = airflow<br />
D-2:<br />
Q2 = Q1*N2/N1<br />
= 7500*1000/1200<br />
= 6250 cfm<br />
D-3, D-5, D-6:<br />
Ps2 = Ps1*(N2/N1)^2<br />
= 3.9*(1000/1200) 2<br />
= 2.7 <strong>in</strong> wc<br />
0<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
airflow (cfm)<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 10
static pressure relative to outdoors<br />
total static pressure (<strong>in</strong> H2O)<br />
Complete Family of Fan Curves<br />
15<br />
16<br />
+<br />
0<br />
-<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
1500 rpm<br />
1400 rpm<br />
1300 rpm<br />
1200 rpm<br />
1100 rpm<br />
1000 rpm<br />
900 rpm<br />
800 rpm<br />
700 rpm<br />
600 rpm<br />
500 rpm<br />
1.00 bhp<br />
1.50 bhp<br />
0<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
airflow (cfm)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
grilles duct<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
supply<br />
fan<br />
3.00 bhp<br />
5.00 bhp<br />
7.00 bhp<br />
10.00 bhp<br />
Fan static efficiency:<br />
Ns = Q*Ps/(6356*H)<br />
VAV<br />
term<strong>in</strong>al<br />
unit<br />
zone ceil<strong>in</strong>g<br />
air handl<strong>in</strong>g<br />
supply<br />
runout<br />
zone<br />
plenum<br />
unit<br />
ductwork<br />
ductwork<br />
A<br />
filter return-air return air<br />
coil<br />
damper<br />
B<br />
Fan Static<br />
Pressure<br />
Inlet Velocity<br />
Pressure<br />
Total Static<br />
Pressure<br />
diffusers<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 11
total static pressure (<strong>in</strong> H2O)<br />
Complete Family of Fan Curves<br />
17<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
DO NOT SELECT<br />
1500 rpm<br />
1400 rpm<br />
1300 rpm<br />
1200 rpm<br />
1100 rpm<br />
1000 rpm<br />
900 rpm<br />
800 rpm<br />
700 rpm<br />
600 rpm<br />
500 rpm<br />
1.00 bhp<br />
1.50 bhp<br />
0<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
airflow (cfm)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Summary of Fan Basics<br />
18<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
3.00 bhp<br />
5.00 bhp<br />
7.00 bhp<br />
10.00 bhp<br />
system curve<br />
P<br />
2<br />
2<br />
2 1 �<br />
1<br />
�<br />
� �<br />
� ��<br />
�<br />
Q<br />
s Ps<br />
Q<br />
� Accurate fan performance curves are generated <strong>in</strong><br />
the lab accord<strong>in</strong>g to <strong>in</strong>dustry standards<br />
• AMCA 210 (ASHRAE 51)<br />
• AHRI 430<br />
� Use fan laws to predict fan parameters<br />
� System resistance curves characterize air systems <strong>in</strong><br />
terms of static pressure and airflow<br />
� “Do Not Select” or “Surge” l<strong>in</strong>e limits the range of fan<br />
operation at low flow conditions<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 12<br />
�<br />
�
20<br />
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g Units<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Fan/Unit<br />
Considerations<br />
types of fans<br />
Characteristics of Centrifugal <strong>Fans</strong><br />
housed centrifugal fan<br />
� Shape of fan blades<br />
(FC, BC, BI, AF)<br />
� Housed versus<br />
unhoused (plenum)<br />
� Belt-driven versus<br />
direct-driven<br />
� S<strong>in</strong>gle fan versus<br />
a multiple-fan array<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 13
21<br />
static pressure<br />
Forward Curved (FC) Fan<br />
22<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Forward Curved (FC) Fan<br />
rpm<br />
30%<br />
wocfm<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
h s<br />
typical<br />
application<br />
range<br />
airflow<br />
static<br />
efficiency<br />
50 to 65%<br />
80%<br />
wocfm<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 14
23<br />
static pressure<br />
Backward Curved (BC) and<br />
Backward Incl<strong>in</strong>ed (BI) <strong>Fans</strong><br />
24<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Backward Incl<strong>in</strong>ed (BI) Fan<br />
rpm<br />
40%<br />
wocfm<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
h s<br />
typical<br />
application<br />
range<br />
airflow<br />
static<br />
efficiency<br />
65 to 75%<br />
85%<br />
wocfm<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 15
25<br />
static pressure<br />
<strong>Air</strong>foil (AF) Fan<br />
26<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
<strong>Air</strong>foil (AF) Fan<br />
rpm<br />
50%<br />
wocfm<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
h s<br />
typical<br />
application<br />
range<br />
airflow<br />
static<br />
efficiency<br />
80 to 85%<br />
85%<br />
wocfm<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 16
Impact of Blade Shape on Fan Input Power<br />
Fan type and Input power, Rotational speed,<br />
wheel diameter bhp rpm<br />
Housed FC, 25 <strong>in</strong>. 13.0 775<br />
Housed AF, 25 <strong>in</strong>. 11.8 1320<br />
27<br />
28<br />
Based on a typical VAV air-handl<strong>in</strong>g unit configuration (OA/RA mix<strong>in</strong>g box, high-efficiency filter, hot-water heat<strong>in</strong>g coil,<br />
chilled-water cool<strong>in</strong>g coil, and draw-thru supply fan with a s<strong>in</strong>gle discharge open<strong>in</strong>g off the fan section) operat<strong>in</strong>g<br />
at 13,000 cfm and a 3.8 <strong>in</strong>. H 2 O total static pressure drop.<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
summary<br />
Shape of Fan Blades<br />
� FC fans are typically the lowest cost and are often the<br />
most forgiv<strong>in</strong>g (wide application range, less severe<br />
surge characteristics)<br />
• Very popular <strong>in</strong> packaged units and light commercial<br />
equipment, where less attention is given to duct<br />
connections and layout<br />
� AF fans are typically the most efficient, but require<br />
more attention to avoid surge<br />
• More common <strong>in</strong> larger packaged rooftops and airhandl<strong>in</strong>g<br />
units, where more attention is given to proper<br />
duct connections and layout<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 17
Housed Versus Unhoused<br />
29<br />
housed centrifugal fan unhoused centrifugal<br />
(plenum) fan<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Direct-Drive Plenum Fan<br />
30<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 18
31<br />
AHU with a housed centrifugal fan<br />
(s<strong>in</strong>gle front discharge open<strong>in</strong>g)<br />
AHU with an unhoused centrifugal (plenum) fan<br />
(s<strong>in</strong>gle front discharge open<strong>in</strong>g)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
example #1<br />
S<strong>in</strong>gle Outlet Into Straight Duct<br />
Fan type and Input power, Rotational speed,<br />
wheel diameter bhp rpm<br />
Housed FC, 25 <strong>in</strong>. 13.0 775<br />
Housed AF, 25 <strong>in</strong>. 11.8 1320<br />
Belt-drive plenum AF, 35.56 <strong>in</strong>. 14.0 1050<br />
Direct-drive plenum AF, 30 <strong>in</strong>. 12.8 1320<br />
32<br />
Based on a typical VAV air-handl<strong>in</strong>g unit configuration (OA/RA mix<strong>in</strong>g box, high-efficiency filter, hot-water heat<strong>in</strong>g coil,<br />
chilled-water cool<strong>in</strong>g coil, and draw-thru supply fan with a s<strong>in</strong>gle discharge open<strong>in</strong>g off the fan section) operat<strong>in</strong>g<br />
at 13,000 cfm and 2 <strong>in</strong>. H 2 O of external static pressure drop.<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 19
example #1<br />
S<strong>in</strong>gle Outlet Into Straight Duct<br />
discharge sound power (Lw), dB ref 10-12 W<br />
(per AHRI Standard 260)<br />
33<br />
110<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
housed FC 25 <strong>in</strong>.<br />
housed AF 25 <strong>in</strong>.<br />
belt-drive plenum AF 35.56 <strong>in</strong>.<br />
direct-drive plenum AF 30 <strong>in</strong>.<br />
63 125 250 500 1000 2000 4000 8000<br />
octave band center frequency, Hz<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
example #2<br />
Discharge Plenum with Multiple Outlets<br />
34<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 20
example #2<br />
Discharge Plenum with Multiple Outlets<br />
Fan type and Input power, Rotational speed,<br />
wheel diameter bhp rpm<br />
Housed AF, 25 <strong>in</strong>. + discharge plenum 13.2 1380<br />
Belt-drive plenum AF, 35.56 <strong>in</strong>. 14.0 1050<br />
Direct-drive plenum AF, 30 <strong>in</strong>. 12.8 1320<br />
35<br />
36<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
example #2<br />
Discharge Plenum with Multiple Outlets<br />
discharge sound power (Lw), dB ref 10-12 W<br />
(per AHRI Standard 260)<br />
110<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
housed AF 25 <strong>in</strong>. (s<strong>in</strong>gle, straight discharge)<br />
housed AF 25 <strong>in</strong>. + discharge plenum (two duct connections)<br />
belt-drive plenum AF 35.56 <strong>in</strong>. (two duct connections)<br />
direct-drive plenum AF 30 <strong>in</strong>. (two duct connections)<br />
63 125 250 500 1000 2000 4000 8000<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
octave band center frequency, Hz<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 21
Plenum Fan Can Reduce Overall Length<br />
37<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
example #3<br />
F<strong>in</strong>al Filters<br />
Fan type and Input power, Rotational speed,<br />
wheel diameter bhp rpm<br />
Housed AF, 25 <strong>in</strong>. + diffuser section 15.0 1450<br />
Belt-drive plenum AF, 35.56 <strong>in</strong>. 15.4 1090<br />
Direct-drive plenum AF, 30 <strong>in</strong>. 14.1 1370<br />
38<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 22
summary<br />
Housed vs. Plenum <strong>Fans</strong><br />
� When discharg<strong>in</strong>g <strong>in</strong>to a s<strong>in</strong>gle, sufficiently-long, straight section<br />
of duct that is about the same size as the fan outlet, a housed<br />
fan will likely require less power than a plenum fan, but a plenum<br />
fan will likely have lower discharge sound levels.<br />
� If a discharge plenum is added downstream of a housed fan to<br />
reduce sound levels or to allow for discharge flexibility, a directdrive<br />
plenum fan will likely require less power than a housed<br />
airfoil fan, with similar discharge sound levels. But the plenum<br />
fan will likely result <strong>in</strong> a shorter air-handl<strong>in</strong>g unit.<br />
� With downstream sections (such as a discharge plenum, f<strong>in</strong>al<br />
filter, gas heater, or even a blow-thru cool<strong>in</strong>g coil), a direct-drive<br />
plenum fan will likely require less power than either a housed or<br />
belt-driven plenum fan.<br />
39<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
direct-drive plenum fan<br />
Selection Parameters<br />
40<br />
diameter<br />
speed<br />
width<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 23
Flexible-Speed Selection<br />
Synchronous Speed<br />
� Fan speed (rpm)<br />
is held constant<br />
� Wheel diameter and<br />
width are varied<br />
41<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Flexible Speed<br />
� Fan wheel width<br />
is held constant<br />
� Wheel diameter and<br />
speed are varied<br />
• <strong>Trane</strong> VFDs and motors can<br />
operate to at least 90 Hz<br />
Flexible-speed DDP fan selections are typically more efficient<br />
and quieter than synchronous-speed selections.<br />
example<br />
Flexible-Speed Selection<br />
Fan type and Wheel width, Fan rpm Motor speed, Input power,<br />
wheel diameter % of nom<strong>in</strong>al rpm bhp<br />
Direct-drive plenum AF, 30 <strong>in</strong>.<br />
(synchronous-speed selection)<br />
57% 1780 1800 15.4<br />
Direct-drive plenum AF, 30 <strong>in</strong>.<br />
(flexible-speed selection)<br />
100% 1320 1200 12.8<br />
42<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 24
example<br />
Flexible-Speed Selection<br />
discharge sound power (Lw), dB ref 10-12 W<br />
(per AHRI Standard 260)<br />
43<br />
110<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
63 125 250 500 1000 2000 4000 8000<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
octave band center frequency, Hz<br />
Multiple <strong>Fans</strong> (Fan Array)<br />
44<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
direct-drive plenum AF 30 <strong>in</strong>.<br />
(synchronous-speed selection)<br />
direct-drive plenum AF 30 <strong>in</strong>.<br />
(flexible-speed selection)<br />
upstream (<strong>in</strong>let) side downstream (outlet) side<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 25
fan array<br />
Reduced Unit Length<br />
Smaller fan wheel diameters (D) result <strong>in</strong> shorter<br />
component-to-<strong>in</strong>let (A) and discharge-to-component<br />
(C) required spac<strong>in</strong>g<br />
A = 45° or 1D, whichever is greater<br />
B = ½D m<strong>in</strong>imum<br />
C = 1D<br />
D = fan wheel diameter<br />
45<br />
46<br />
upstream<br />
component<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
45°<br />
45°<br />
A<br />
B<br />
B<br />
D<br />
takeoff past<br />
plane of the impeller<br />
C<br />
downstream<br />
component<br />
fan array<br />
There is a Limit to the Length Reduction<br />
� M<strong>in</strong>imum service clearance for access doors, people,<br />
ladders, or a hoist<br />
� For top, bottom, or side <strong>in</strong>let or discharge connections,<br />
additional space may be needed for proper airflow<br />
distribution<br />
� If backdraft or isolation dampers are provided, they<br />
typically add length to the fan section<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 26
example length reduction<br />
S<strong>in</strong>gle Fan Versus Fan Array<br />
Upstream Upstream Upstream<br />
Qty Diameter, spac<strong>in</strong>g req’d, service clear, total,<br />
<strong>in</strong>. <strong>in</strong>. <strong>in</strong>. <strong>in</strong>.<br />
1 33 19.8 12 19.8<br />
2 24.5 14.7 12 14.7<br />
3 20 12.0 12 12.0<br />
4 18.75 11.0 12 12.0<br />
47<br />
48<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
example length reduction<br />
S<strong>in</strong>gle Fan Versus Fan Array<br />
Downstream Length of Downstream Downstream<br />
Qty Diameter, spac<strong>in</strong>g req’d, fan + motor, service clear, total,<br />
<strong>in</strong>. <strong>in</strong>. <strong>in</strong>. <strong>in</strong>. <strong>in</strong>.<br />
1 33 50.5 54.3 + 0 54.3<br />
2 24.5 38.8 42.0 + 0 42.0<br />
3 20 33.1 35.3 + 18 53.3<br />
4 18.75 29.9 31.4 + 18 49.4<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 27
49<br />
50<br />
AHU fan section with<br />
s<strong>in</strong>gle fan wheel<br />
19.8 + 54.3 = 74.1 <strong>in</strong>.<br />
AHU fan section with<br />
two fan wheels<br />
14.7 + 42.0 = 56.7 <strong>in</strong>.<br />
AHU fan section with<br />
three fan wheels<br />
12.0 + 53.3 = 65.3 <strong>in</strong>.<br />
AHU fan section with<br />
four fan wheels<br />
12.0 + 49.4 = 61.4 <strong>in</strong>.<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
example<br />
Provid<strong>in</strong>g Redundancy with a Fan Array<br />
Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />
runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />
<strong>in</strong>. cfm bhp bhp hp<br />
2 24.5 Design 7500 6.55 13.10 7.5<br />
1 24.5 100% 15000 16.13 16.13 20 (change from 7.5 to 20 hp motors)<br />
1 24.5 70% 10500 7.13 7.13 7.5 (no change <strong>in</strong> motor sizes)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 28
example<br />
Provid<strong>in</strong>g Redundancy with a Fan Array<br />
Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />
runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />
<strong>in</strong>. cfm bhp bhp hp<br />
2 24.5 Design 7500 6.55 13.10 7.5<br />
1 24.5 100% 15000 16.13 16.13 20 (change from 7.5 to 20 hp motors)<br />
1 24.5 70% 10500 7.13 7.13 7.5 (no change <strong>in</strong> motor sizes)<br />
Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />
runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />
<strong>in</strong>. cfm bhp bhp hp<br />
3 20 Design 5000 4.68 14.04 7.5<br />
2 20 100% 7500 7.43 14.86 7.5 (no change <strong>in</strong> motor sizes)<br />
Qty Level of <strong>Air</strong>flow Input power Input power Motor size<br />
runn<strong>in</strong>g Diameter, redundancy (each fan), (each fan), (total), (each fan),<br />
<strong>in</strong>. cfm bhp bhp hp<br />
4 18.25 Design 3750 3.53 14.12 5<br />
3 18.25 100% 5000 4.71 14.13 5 (no change <strong>in</strong> motor sizes)<br />
51<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Provid<strong>in</strong>g Redundancy with a Fan Array<br />
� Two fans can often provide 100% redundancy and<br />
results <strong>in</strong> the lowest total power when all fans are<br />
operat<strong>in</strong>g, but may require larger fan motors to be<br />
provided.<br />
• If less than 100% is acceptable, two fans may not need<br />
to <strong>in</strong>crease motor sizes.<br />
� Three or four fans can typically provide 100%<br />
redundancy without significant changes <strong>in</strong> motor size.<br />
52<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 29
for more <strong>in</strong>formation<br />
Direct-Drive Plenum <strong>Fans</strong> and Fan Arrays<br />
� “Direct-Drive Plenum <strong>Fans</strong> for<br />
<strong>Trane</strong> Climate Changer <strong>Air</strong><br />
Handlers,” <strong>Trane</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />
bullet<strong>in</strong>, CLCH-PRB021-EN<br />
53<br />
54<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
summary<br />
S<strong>in</strong>gle Fan Versus a Fan Array<br />
AHU footpr<strong>in</strong>t<br />
Redundancy<br />
Serviceability<br />
AHU cost<br />
Efficiency<br />
AHU acoustics<br />
Fan reliability<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
S<strong>in</strong>gle<br />
DDP Fan<br />
�<br />
none<br />
�<br />
���<br />
���<br />
���<br />
���<br />
Multiple DDP <strong>Fans</strong><br />
(Fan Array)<br />
Fewer <strong>Fans</strong> More <strong>Fans</strong><br />
�� ���<br />
��� ���<br />
�� ���<br />
�� �<br />
�� �<br />
�� �<br />
�� �<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 30
summary<br />
S<strong>in</strong>gle Fan Versus a Fan Array<br />
� Benefits of us<strong>in</strong>g a fan array<br />
• Reduction <strong>in</strong> overall length of air-handl<strong>in</strong>g unit<br />
• Redundancy<br />
• Easier to replace fans and motors<br />
� Drawbacks of us<strong>in</strong>g a fan array<br />
• Increased air-handl<strong>in</strong>g unit cost<br />
• Higher <strong>in</strong>put power<br />
• Higher sound levels<br />
� When a fan array is desired, us<strong>in</strong>g fewer larger fans will<br />
typically be a better overall solution than us<strong>in</strong>g many<br />
smaller fans<br />
55<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
www.trane.com\en<br />
56<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 31
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
constant volume (CV)<br />
Basic System<br />
1,500 cfm<br />
OA<br />
58<br />
MA<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
C<br />
7,500 cfm<br />
RA<br />
9,000 cfm<br />
constantspeed<br />
fan<br />
Impact of System<br />
Configuration on Fan<br />
Selection<br />
SA<br />
T<br />
space<br />
a size 14 unit with a 16.5 FC fan might work<br />
Pressure drops<br />
@ 9,000 cfm/7,500 cfm<br />
Device Low High<br />
SA duct 2.0 2.0<br />
RA duct 0.5 0.5<br />
MERV13 0.4 1.2<br />
Coil 0.6 0.9<br />
Total 3.5 4.6<br />
EA<br />
1,500 cfm<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 32
14B 16.5 FC<br />
Fan Application Limits<br />
total static pressure (<strong>in</strong> H 2 O)<br />
59<br />
total static pressure (<strong>in</strong> H2O)<br />
60<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
Max rpm<br />
DO NOT SELECT<br />
1500 rpm<br />
Max static<br />
1400 rpm<br />
Fan<br />
surge l<strong>in</strong>e<br />
1300 rpm<br />
1200 rpm<br />
1100 rpm<br />
1000 rpm<br />
900 rpm<br />
800 rpm<br />
700 rpm<br />
selection<br />
envelope<br />
1<br />
0<br />
600 rpm<br />
500 rpm<br />
M<strong>in</strong> bhp<br />
Max airflow<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
airflow (cfm)<br />
1.00 bhp<br />
1.50 bhp<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
1500 rpm<br />
1400 rpm<br />
1300 rpm<br />
1200 rpm<br />
1100 rpm<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
3.00 bhp<br />
5.00 bhp<br />
Max bhp<br />
14B 16.5” FC<br />
CV System 1: Is the fan too small?<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
DO NOT SELECT<br />
1000 rpm<br />
900 rpm<br />
800 rpm<br />
700 rpm<br />
600 rpm<br />
500 rpm<br />
1.00 bhp<br />
1.50 bhp<br />
D<br />
Dirty and wet<br />
3.00 bhp<br />
A B<br />
C<br />
5.00 bhp<br />
0<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
7.00 bhp<br />
7.00 bhp<br />
10.00 bhp<br />
Clean and dry<br />
10.00 bhp<br />
airflow (cfm)<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 33
14B 16.5 FC<br />
CV System 2: Is the fan too big?<br />
total static pressure (<strong>in</strong> H2O)<br />
61<br />
62<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
0<br />
DO NOT SELECT<br />
1500 rpm<br />
1400 rpm<br />
1300 rpm<br />
1200 rpm<br />
1100 rpm<br />
1000 rpm<br />
900 rpm<br />
800 rpm<br />
700 rpm<br />
600 rpm<br />
500 rpm<br />
C<br />
A<br />
Dirty and wet<br />
B<br />
1.00 bhp<br />
1.50 bhp<br />
0 2500 5000 7500 10000 12500 15000 17500 20000 22500<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Clean and dry<br />
3.00 bhp<br />
5.00 bhp<br />
7.00 bhp<br />
10.00 bhp<br />
airflow (cfm)<br />
Multiple-Zone VAV With Relief Fan<br />
1,500 cfm<br />
EA<br />
RA<br />
OA MA T SA<br />
supply air temp<br />
determ<strong>in</strong>es AHU<br />
cool<strong>in</strong>g capacity<br />
7,500 cfm<br />
9,000 cfm<br />
variablespeed<br />
fan<br />
space<br />
space<br />
T<br />
T<br />
EA<br />
1,500 cfm<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 34
Static Pressure Drops<br />
� At 9,000 cfm supply airflow<br />
� At 7,500 cfm return airflow<br />
� Assume path through<br />
zone 1 has highest<br />
static pressure loss<br />
63<br />
64<br />
total static pressure (<strong>in</strong> H2O)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
15.0<br />
12.5<br />
10.0<br />
7.5<br />
5.0<br />
2.5<br />
0<br />
E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
3100 RPM<br />
DO 3000 NOT RPM SELECT<br />
2800 RPM<br />
2600 RPM<br />
2400 RPM<br />
2200 RPM<br />
2000 RPM<br />
1800 RPM<br />
1600 RPM<br />
1400 RPM<br />
1200 RPM<br />
1000 RPM<br />
800 RPM<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
40 %WO<br />
50 %WO<br />
Device Low High<br />
RA plen 0.5 0.5<br />
RA duct 0.2 0.2<br />
RA damp 0.2 0.2<br />
MERV13 0.4 1.2<br />
Coil 0.6 0.9<br />
SA duct 2.0 2.0<br />
VAV box 1 0.4 0.4<br />
Runout 1 0.4 0.4<br />
Total 4.7 5.8<br />
0 2500 5000 7500 10000 12500 15000<br />
A<br />
airflow (cfm)<br />
60 %WO<br />
Dirty and wet<br />
70 %WO<br />
Clean and dry<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 35<br />
B<br />
80 %WO<br />
90 %WO
65<br />
66<br />
total static pressure (<strong>in</strong> H2O)<br />
total static pressure (<strong>in</strong> H2O)<br />
15.0<br />
12.5<br />
10.0<br />
7.5<br />
5.0<br />
2.5<br />
0<br />
E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
3100 RPM<br />
DO 3000 NOT RPM SELECT<br />
2800 RPM<br />
2600 RPM<br />
2400 RPM<br />
2200 RPM<br />
2000 RPM<br />
1800 RPM<br />
1600 RPM<br />
1400 RPM<br />
1200 RPM<br />
1000 RPM<br />
800 RPM<br />
0 2500 5000 7500 10000 12500 15000<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
15.0<br />
12.5<br />
10.0<br />
7.5<br />
5.0<br />
2.5<br />
1.3<br />
0<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
40 %WO<br />
50 %WO<br />
highest resistance<br />
A<br />
lowest resistance<br />
airflow (cfm)<br />
B<br />
60 %WO<br />
part load<br />
E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
3100 RPM<br />
DO 3000 NOT RPM SELECT<br />
2800 RPM<br />
2600 RPM<br />
2400 RPM<br />
2200 RPM<br />
2000 RPM<br />
1800 RPM<br />
1600 RPM<br />
1400 RPM<br />
1200 RPM<br />
1000 RPM<br />
800 RPM<br />
40 %WO<br />
50 %WO<br />
highest resistance<br />
Ps = Pc + (Pd - Pc)*(Q/Qd)^2<br />
Ps = 1.3 + (5.8-1.3)*(5000/9000)^2<br />
Ps = 2.7<br />
70 %WO<br />
80 %WO<br />
0 2500 5000 7500 10000 12500 15000<br />
A<br />
airflow (cfm)<br />
60 %WO<br />
70 %WO<br />
lowest resistance<br />
80 %WO<br />
90 %WO<br />
Ps = Pc + (Pd - Pc)*(Q/Qd)^2<br />
Ps = 1.3 + (5.8-1.3)*(5000/9000)^2<br />
Ps = 2.7<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 36<br />
90 %WO<br />
11.5<br />
5.8<br />
4.5<br />
2.7
67<br />
68<br />
total static pressure (<strong>in</strong> H2O)<br />
total static pressure (<strong>in</strong> H2O)<br />
15.0<br />
12.5<br />
10.0<br />
7.5<br />
5.0<br />
2.5<br />
0<br />
E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
3100 RPM<br />
DO 3000 NOT RPM SELECT<br />
2800 RPM<br />
2600 RPM<br />
2400 RPM<br />
2200 RPM<br />
2000 RPM<br />
1800 RPM<br />
1600 RPM<br />
1400 RPM<br />
1200 RPM<br />
1000 RPM<br />
800 RPM<br />
0 2500 5000 7500 10000 12500 15000<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
15.0<br />
12.5<br />
10.0<br />
7.5<br />
5.0<br />
2.5<br />
0<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
40 %WO<br />
50 %WO<br />
airflow (cfm)<br />
60 %WO<br />
E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
3100 RPM<br />
DO 3000 NOT RPM SELECT<br />
2800 RPM<br />
2600 RPM<br />
2400 RPM<br />
2200 RPM<br />
2000 RPM<br />
1800 RPM<br />
1600 RPM<br />
1400 RPM<br />
1200 RPM<br />
1000 RPM<br />
800 RPM<br />
40 %WO<br />
50 %WO<br />
70 %WO<br />
80 %WO<br />
0 2500 5000 7500 10000 12500 15000<br />
airflow (cfm)<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 37<br />
A<br />
part load<br />
B<br />
60 %WO<br />
70 %WO<br />
80 %WO<br />
90 %WO<br />
90 %WO
69<br />
total static pressure (<strong>in</strong> H2O)<br />
15.0<br />
12.5<br />
10.0<br />
7.5<br />
5.0<br />
2.5<br />
0<br />
E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
3100 RPM<br />
DO 3000 NOT RPM SELECT<br />
2800 RPM<br />
2600 RPM<br />
2400 RPM<br />
2200 RPM<br />
2000 RPM<br />
1800 RPM<br />
1600 RPM<br />
1400 RPM<br />
1200 RPM<br />
1000 RPM<br />
800 RPM<br />
0 2500 5000 7500 10000 12500 15000<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
40 %WO<br />
50 %WO<br />
airflow (cfm)<br />
Morn<strong>in</strong>g warm-up operation<br />
70<br />
total static pressure (<strong>in</strong> H2O)<br />
15.0<br />
12.5<br />
10.0<br />
7.5<br />
5.0<br />
2.5<br />
0<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
A<br />
B<br />
60 %WO<br />
E14 draw-thru; 18-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
3100 RPM<br />
DO 3000 NOT RPM SELECT<br />
2800 RPM<br />
2600 RPM<br />
2400 RPM<br />
2200 RPM<br />
2000 RPM<br />
1800 RPM<br />
1600 RPM<br />
1400 RPM<br />
1200 RPM<br />
1000 RPM<br />
800 RPM<br />
C<br />
40 %WO<br />
50 %WO<br />
70 %WO<br />
New Part Load<br />
80 %WO<br />
0 2500 5000 7500 10000 12500 15000<br />
B<br />
airflow (cfm)<br />
60 %WO<br />
80%-open boxes<br />
A<br />
70 %WO<br />
80 %WO<br />
90 %WO<br />
90 %WO<br />
Wide-open boxes<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 38
Multiple-Zone VAV with Return Fan<br />
0 cfm<br />
6,000 cfm<br />
0 cfm<br />
0 cfm<br />
8,000 cfm<br />
1,500 cfm<br />
71<br />
EA<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
RA<br />
7,500 cfm<br />
6,000 cfm<br />
??? cfm<br />
OA MA<br />
SA<br />
Design<br />
Economizer<br />
Morn<strong>in</strong>g warm up<br />
??? cfm<br />
8,000 cfm<br />
9,000 cfm<br />
variablespeed<br />
fan<br />
space<br />
space<br />
T<br />
T<br />
System Effect<br />
EA<br />
1,500 cfm<br />
2,000 cfm<br />
0 cfm<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 39
Develop<strong>in</strong>g a Uniform Velocity Profile<br />
73<br />
fan<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Common System Effects<br />
74<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
uniform<br />
velocity<br />
profile<br />
� Elbow, branch, turn<strong>in</strong>g vanes, or damper located too<br />
close to the fan outlet<br />
� Elbow, turn<strong>in</strong>g vanes, air straightener, or other<br />
obstruction located too close to the fan <strong>in</strong>let<br />
� Pre-swirl<strong>in</strong>g the air prior to it enter<strong>in</strong>g the fan wheel<br />
� Use of an <strong>in</strong>let plenum or cab<strong>in</strong>et<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 40
AMCA Publication 201, <strong>Fans</strong> and <strong>Systems</strong><br />
75<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
example<br />
System Effect<br />
76<br />
Position D<br />
<strong>in</strong>let<br />
� Prediction of common<br />
System Effect Factors<br />
Position C<br />
Position A<br />
Position B<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Source: <strong>Air</strong> Movement and Control Association. 2002. <strong>Fans</strong> and <strong>Systems</strong>, Publication 201. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 41
example<br />
System Effect<br />
77<br />
78<br />
blast area outlet area discharge duct<br />
Centrifugal<br />
fan<br />
25%<br />
50%<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Example<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
75%<br />
100% effective duct length<br />
Source: <strong>Air</strong> Movement and Control<br />
Association. 2002. <strong>Fans</strong> and <strong>Systems</strong>,<br />
Publication 201. Arl<strong>in</strong>gton Heights, IL:<br />
AMCA.<br />
100% Effective<br />
Duct Length<br />
� 2.5 duct diameters<br />
for 2500 fpm<br />
(or less)<br />
� Add 1 duct diameter<br />
for each additional<br />
1000 fpm<br />
Source: <strong>Air</strong> Movement and Control Association.<br />
2002. <strong>Fans</strong> and <strong>Systems</strong>, Publication 201.<br />
Arl<strong>in</strong>gton Heights, IL: AMCA.<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 42
79<br />
80<br />
total static pressure (<strong>in</strong> H2O)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
3.0<br />
2.5<br />
2.0<br />
1.5<br />
1.0<br />
0.5<br />
0.0<br />
14A Draw-thru; 18.25-<strong>in</strong>ch FC; without <strong>in</strong>let vanes<br />
942 RPM<br />
2.25 <strong>in</strong>.<br />
6.1 bhp, 875 rpm 2<br />
system effect factor<br />
5.3 bhp, 800 rpm<br />
1.8 <strong>in</strong>.<br />
1<br />
600 RPM<br />
500 RPM<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
25 %WO 50 %WO<br />
9000 cfm<br />
Source: <strong>Air</strong> Movement and Control Association.<br />
2002. <strong>Fans</strong> and <strong>Systems</strong>, Publication 201.<br />
Arl<strong>in</strong>gton Heights, IL: AMCA.<br />
0 2500 5000 7500 10000 12500 15000<br />
airflow<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 43<br />
3.50 bhp<br />
60 %WO<br />
5.00 bhp<br />
70 %WO<br />
7.50 bhp
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
Propeller <strong>Fans</strong><br />
� Reduce propeller fan sound by<br />
• Choos<strong>in</strong>g the low noise fan option<br />
• Attenuat<strong>in</strong>g the path<br />
82<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Fan Acoustics<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 44
Fan Sound<br />
� Sound generation is <strong>in</strong>fluenced by<br />
• Fan type<br />
•Flow rate<br />
• Total pressure<br />
• Efficiency<br />
• Flow <strong>in</strong>to and out of the fan<br />
83<br />
84<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
AHRI 260<br />
� Includes unit impact on<br />
fan sound<br />
• Negative flow impacts<br />
• Benefits of plenums<br />
and l<strong>in</strong><strong>in</strong>g<br />
� Provides for “apples to<br />
apples” comparison<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 45
AHRI 260<br />
See Sound Rat<strong>in</strong>gs<br />
and ARI Standard<br />
260 newsletter for<br />
additional <strong>in</strong>formation<br />
85<br />
86<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Selection Program<br />
� Provides a convenient way to access sound data<br />
� Shows acoustical impact of<br />
• Chang<strong>in</strong>g operat<strong>in</strong>g po<strong>in</strong>t<br />
• Chang<strong>in</strong>g fan type<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 46
87<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Rules of Thumb<br />
88<br />
� Lower tip speed<br />
does not equal<br />
lower sound<br />
� Improved efficiency<br />
does result <strong>in</strong><br />
lower sound<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 47
static pressure<br />
89<br />
static pressure<br />
90<br />
Constant Speed Curve<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Constant Speed Curve<br />
VAV Modulation<br />
Curve<br />
30% WO<br />
40% WO<br />
50% WO<br />
volumetric flow rate<br />
30% WO<br />
Note that as unit modulates down<br />
can enter the unstable region<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
High level<br />
unstable<br />
acoustics<br />
40% WO<br />
High level<br />
unstable<br />
acoustics<br />
volumetric flow rate<br />
Acoustic<br />
predictions<br />
possible<br />
50% WO<br />
Acoustic<br />
predictions<br />
possible<br />
Acoustic Stall<br />
60% WO<br />
Acoustic Stall<br />
60% WO<br />
70% WO<br />
80% WO<br />
90% WO<br />
Design po<strong>in</strong>t is <strong>in</strong> stable region<br />
80% WO<br />
90% WO<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 48
Selection tips<br />
� Accurate sound data is a must<br />
� Review all fan and unit options<br />
� Avoid “rules-of-thumb”<br />
91<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g Units<br />
Common Problems:<br />
Not Deliver<strong>in</strong>g Enough<br />
<strong>Air</strong>flow<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 49
Fan System Problems<br />
� Most common compla<strong>in</strong>ts<br />
• Insufficient airflow<br />
• Excessive noise/vibration<br />
� Common causes for <strong>in</strong>sufficient airflow<br />
• Underestimated system resistance<br />
• Poor account<strong>in</strong>g for system effect<br />
• Unanticipated <strong>in</strong>stallation modifications<br />
• Hence, poor fan selection<br />
93<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
AMCA 201<br />
“<strong>Fans</strong> and <strong>Systems</strong>”<br />
� Lists possible causes for low flow, <strong>in</strong>clud<strong>in</strong>g:<br />
• Improper <strong>in</strong>let duct design<br />
• Improper outlet duct design<br />
• Improper fan <strong>in</strong>stallation<br />
• Unexpected system resistance characteristics<br />
• Improper allowance for fan system effect<br />
• Dirty filters, ducts, coils<br />
• “Performance” determ<strong>in</strong>ed us<strong>in</strong>g uncerta<strong>in</strong> field measurement<br />
techniques<br />
� Includes much help for system effect corrections<br />
94<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 50
AMCA 202<br />
“Troubleshoot<strong>in</strong>g”<br />
� Lists possible causes for low airflow, <strong>in</strong>clud<strong>in</strong>g:<br />
• Improper fan <strong>in</strong>stallation or assembly<br />
• Damage <strong>in</strong> handl<strong>in</strong>g or transit<br />
• System design error<br />
• Deterioration of system<br />
• Faulty controls<br />
• Poor fan selection<br />
� Includes detailed troubleshoot<strong>in</strong>g checklists<br />
95<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
AMCA 203<br />
“Field Performance Measurement of Fan <strong>Systems</strong>”<br />
96<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Your duct system?<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 51
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g Units<br />
Causes of Noise<br />
� Fan / unit defect<br />
� Acoustics ignored dur<strong>in</strong>g selection<br />
� Duct system flow problems<br />
98<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Common Problems:<br />
Too Much Noise<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 52
Sound Transmission Paths<br />
return<br />
airborne<br />
supply<br />
airborne<br />
99<br />
100<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
roof<br />
transmission<br />
supply<br />
breakout<br />
Acoustical analysis: Source–path–receiver model<br />
Path Analysis Tools<br />
� Determ<strong>in</strong>e build<strong>in</strong>g acoustics<br />
� Use to select equipment<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 53
101<br />
Duct Design<br />
� ASHRAE algorithms<br />
� Available for common duct components<br />
� Used to predict acoustic impact<br />
102<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Duct Design<br />
� Poor design creates turbulence<br />
� Turbulence generates low frequency noise<br />
� Low frequency sound<br />
• Passes through ducts<br />
• Moves lightweight components<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 54
103<br />
Duct Guidel<strong>in</strong>es<br />
� <strong>Air</strong> leav<strong>in</strong>g the unit is turbulent<br />
� Use straight duct at discharge<br />
� Length = 3 times largest<br />
discharge dimension<br />
104<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Duct Guidel<strong>in</strong>es<br />
� Utilize factory plenums<br />
air-handl<strong>in</strong>g unit<br />
w/ discharge plenum<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
large rooftop unit<br />
w/ special curb<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 55
105<br />
Duct Guidel<strong>in</strong>es<br />
� Avoid close coupled fitt<strong>in</strong>gs<br />
noisiest better<br />
Source: A Practical Guide To Noise and Vibration Control For HVAC <strong>Systems</strong>, ASHRAE, 1991. Figure 1-23<br />
106<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Summary<br />
� Successful acoustics requires<br />
• Build<strong>in</strong>g analysis<br />
• Equipment selection<br />
• Duct design<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
quietest<br />
15° max.<br />
15° max.<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 56
ASHRAE Standard 90.1-2007<br />
Fan System Power Limitation<br />
108<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
ASHRAE 90.1<br />
Requirements<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 57
ASHRAE 90.1-2007: Fan System Power Limitation<br />
Option 1: Motor Nameplate Horsepower<br />
109<br />
example: 30,000 cfm VAV system<br />
allowable nameplate motor hp ≤ 45 (30,000 � 0.0015)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
ASHRAE 90.1-2007: Fan System Power Limitation<br />
Option 2: Fan System Brake Horsepower<br />
110<br />
example: 30,000 cfm VAV system<br />
allowable fan system bhp ≤ 39 (30,000 � 0.0013)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 58
ASHRAE 90.1-2007: Fan System Power Limitation<br />
Option 2: Pressure Drop Adjustments<br />
111<br />
112<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Option 2 Example<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 59
8,000 cfm<br />
10,000 cfm<br />
113<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
8,000 cfm<br />
MERV 13<br />
MERV 13 filter<br />
� Particulate filtration credit (MERV 13) = 0.9 <strong>in</strong>. H 2 O<br />
� A filter = 0.9 <strong>in</strong>. H 2 O × 30,000 cfm / 4131 = 6.5 bhp<br />
10,000 cfm<br />
114<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
MERV 13<br />
30,000 cfm<br />
30,000 cfm<br />
Total-energy wheel (supply side)<br />
� Supply-side pressure drop (10,000 cfm) = 0.8 <strong>in</strong>. H 2 O<br />
� A supply-side = 0.8 <strong>in</strong>. H 2 O × 10,000 cfm / 4131 = 1.9 bhp<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 60
8,000 cfm<br />
10,000 cfm<br />
115<br />
116<br />
Total-energy wheel (exhaust side)<br />
� Supply-side pressure drop (8,000 cfm) = 0.7 <strong>in</strong>. H 2 O<br />
� A exhaust-side = 0.7 <strong>in</strong>. H 2 O × 8,000 cfm / 4131 = 1.4 bhp<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Option 2 Example<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
MERV 13<br />
MERV 13 filter<br />
� A filter = 0.9 <strong>in</strong>. H 2 O × 30,000 cfm / 4131 = 6.5 bhp<br />
Total-energy wheel<br />
� A supply-side = 0.8 <strong>in</strong>. H 2 O × 10,000 cfm / 4131 = 1.9 bhp<br />
� A exhaust-side = 0.7 <strong>in</strong>. H 2 O × 8,000 cfm / 4131 = 1.4 bhp<br />
30,000 cfm<br />
A = 6.5 + 1.9 + 1.4 = 9.8 bhp<br />
allowable fan system bhp ≤ 48.8 (30,000 � 0.0013 + 9.8)<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 61
total static pressure (<strong>in</strong> H2O)<br />
117<br />
11<br />
10<br />
9<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
0<br />
Ways to Reduce Fan Power<br />
1. Reduce airflow<br />
• Reduce cool<strong>in</strong>g loads (better envelope, fewer and<br />
better w<strong>in</strong>dows, more efficient light<strong>in</strong>g)<br />
• Colder supply-air temperature<br />
2. Reduce airside pressure loss<br />
• Efficient duct fitt<strong>in</strong>gs<br />
• Larger ductwork<br />
• Larger air-handl<strong>in</strong>g unit<br />
• Low pressure drop filters and coils<br />
3. Select a higher-efficiency fan (if you have the choice)<br />
118<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
30B Draw-thru; 22.375-<strong>in</strong>ch FC; without <strong>in</strong>let vanes<br />
1273 RPM<br />
1200 RPM<br />
1100 RPM<br />
1000 RPM<br />
900 RPM<br />
800 RPM<br />
700 RPM<br />
600 RPM<br />
500 RPM<br />
400 RPM<br />
25 %WO<br />
0 5000 10000 15000 20000 25000 30000 35000 40000 45000<br />
airflow (cfm)<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
B 15.2 bhp<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 62<br />
50 %WO<br />
60 %WO<br />
70 %WO<br />
80 %WO<br />
90 %WO
total static pressure (<strong>in</strong> H2O)<br />
total static pressure (<strong>in</strong> H2O)<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
119<br />
D30 Draw-thru; 25-<strong>in</strong>ch AF; without <strong>in</strong>let vanes<br />
1650 RPM<br />
1600 RPM<br />
1500 RPM<br />
1400 RPM<br />
1300 RPM<br />
1200 RPM<br />
1100 RPM<br />
1000 RPM<br />
900 RPM<br />
800 RPM<br />
700 RPM<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
45 %WO<br />
50 %WO<br />
3 13.9 bhp<br />
0<br />
0 5000 10000 15000 20000 25000<br />
11<br />
10<br />
9<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
0<br />
120<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
airflow (cfm)<br />
60 %WO<br />
30B Draw-thru; 22.375-<strong>in</strong>ch FC; without <strong>in</strong>let vanes<br />
1273 RPM<br />
1200 RPM<br />
1100 RPM<br />
1000 RPM<br />
900 RPM<br />
800 RPM<br />
700 RPM<br />
600 RPM<br />
500 RPM<br />
400 RPM<br />
7.3 bhp 1<br />
25 %WO<br />
B 15.2 bhp<br />
2 13.0 bhp<br />
50 %WO<br />
60 %WO<br />
0 5000 10000 15000 20000 25000 30000 35000 40000 45000<br />
airflow (cfm)<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 63<br />
70 %WO<br />
70 %WO<br />
80 %WO<br />
80 %WO<br />
90 %WO<br />
90 %WO
example<br />
Ways to Reduce Fan Power<br />
121<br />
Basel<strong>in</strong>e fan selection 15.2 bhp<br />
� Reduce airflow (colder air) 7.3 bhp<br />
� Reduce airside pressure loss 13.0 bhp<br />
� Select<strong>in</strong>g a higher-efficiency fan 13.9 bhp<br />
122<br />
Implement all three 5.7 bhp<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
summary<br />
ASHRAE 90.1 Fan Power Limitation<br />
� Prescriptive limits apply to sum of all fans that operate<br />
at peak design conditions<br />
� Two options for compliance:<br />
• Option 1 (nameplate power) is simpler<br />
• Option 2 (brake horsepower) is more flexible, but be<br />
sure to make use of the adjustments<br />
� To reduce fan power:<br />
• Reduce airflow (reduce loads, colder supply air)<br />
• Reduce airside pressure loss<br />
• Select a higher-efficiency fan<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 64
summary<br />
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g <strong>Systems</strong><br />
� The right fan depends on the application, and is often<br />
based on balanc<strong>in</strong>g efficiency, acoustics, and cost.<br />
� It is important to understand how the fan will <strong>in</strong>teract<br />
with<strong>in</strong> the system.<br />
• Dirty filters and wet cool<strong>in</strong>g coils<br />
• Fan modulation <strong>in</strong> a VAV system<br />
• System effect<br />
� Sound data taken <strong>in</strong> accordance with AHRI 260<br />
provides the best <strong>in</strong>dication of sound produced by the<br />
entire air-handl<strong>in</strong>g unit.<br />
123<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
References for This Broadcast<br />
Where to Learn More<br />
124<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
www.trane.com/EN<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 65
Watch Past Broadcasts<br />
ENL Archives<br />
125<br />
126<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
2010 ENL Broadcasts<br />
� May<br />
Central Geothermal <strong>Systems</strong><br />
� October<br />
ASHRAE Standard 90.1-2010<br />
© 2010 <strong>Trane</strong> a bus<strong>in</strong>ess of Ingersoll-Rand<br />
Insightful topics on HVAC system design:<br />
• Chilled-water plants<br />
• <strong>Air</strong> distribution<br />
• Refrigerant-to-air systems<br />
• Control strategies<br />
• Industry standards and LEED<br />
• Energy and the environment<br />
• Acoustics<br />
• Ventilation<br />
• Dehumidification<br />
www.trane.com/ENL<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 66
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g<br />
<strong>Systems</strong><br />
eng<strong>in</strong>eers newsletter live<br />
Bibliography<br />
Industry Standards and Handbooks<br />
available to purchase from < www.ashrae.org/bookstore > or<br />
< www.amca.org/store ><br />
<strong>Air</strong>-Condition<strong>in</strong>g, Heat<strong>in</strong>g, and Refrigeration Institute. 2001. AHRI Standard<br />
260-2001: Sound Rat<strong>in</strong>g of Ducted <strong>Air</strong> Mov<strong>in</strong>g and Condition<strong>in</strong>g<br />
Equipment. Arl<strong>in</strong>gton, VA: AHRI.<br />
<strong>Air</strong> Movement and Control Association International, Inc. 1995. <strong>Air</strong> <strong>Systems</strong>.<br />
Publication 200. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />
<strong>Air</strong> Movement and Control Association International, Inc. 2002. <strong>Fans</strong> and<br />
<strong>Systems</strong>. Publication 201. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />
<strong>Air</strong> Movement and Control Association International, Inc. 1998.<br />
Troubleshoot<strong>in</strong>g. Publication 202. Arl<strong>in</strong>gton Heights, IL: AMCA.<br />
<strong>Air</strong> Movement and Control Association International, Inc. 1990. Field<br />
Performance Measurement of Fan <strong>Systems</strong>. Publication 203. Arl<strong>in</strong>gton<br />
Heights, IL: AMCA.<br />
American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />
2007. ANSI/ASHRAE Standard 51-2007: Laboratory Methods of Test<strong>in</strong>g<br />
<strong>Fans</strong> for Aerodynamic Performance Rat<strong>in</strong>g. Atlanta, GA: ASHRAE.<br />
American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />
2007. ANSI/ASHRAE/IESNA Standard 90.1-2007: Energy Standard for<br />
Build<strong>in</strong>gs Except Low-Rise Residential Build<strong>in</strong>gs. Atlanta, GA: ASHRAE.<br />
American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />
2007. ASHRAE Handbook—HVAC Applications, Chapter 47 (Sound and<br />
Vibration Control). Atlanta, GA: ASHRAE.<br />
American Society of Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g, and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers.<br />
2008. ASHRAE Handbook—HVAC <strong>Systems</strong> and Equipment, Chapter 20<br />
(<strong>Fans</strong>). Atlanta, GA: ASHRAE.<br />
Schaffer, M. 2005. Practical Guide to Noise and Vibration Control for HVAC<br />
<strong>Systems</strong>. Atlanta, GA: ASHRAE.<br />
<strong>Trane</strong> Publications<br />
available to purchase from <br />
<strong>Trane</strong>. “<strong>Air</strong> Condition<strong>in</strong>g <strong>Fans</strong>” <strong>Air</strong> Condition<strong>in</strong>g Cl<strong>in</strong>ic. TRG-TRC013-EN.<br />
March 2004.<br />
Murphy, J. and B. Bakkum. Chilled-Water VAV <strong>Systems</strong> application manual.<br />
SYS-APM008-EN. September 2009.<br />
Murphy, J. and J. Harshaw. Rooftop VAV <strong>Systems</strong> application manual. SYS-<br />
APM007-EN. November 2009.<br />
Guckelberger, D. and B. Bradley. Acoustics <strong>in</strong> <strong>Air</strong> Condition<strong>in</strong>g application<br />
manual. ISS-APM001-EN. April 2006.<br />
<strong>Trane</strong>. <strong>Fans</strong> and Their Application <strong>in</strong> <strong>Air</strong> Condition<strong>in</strong>g application manual. ED-<br />
FAN. August 1982.<br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 67
eng<strong>in</strong>eers newsletter live<br />
Bibliography<br />
<strong>Fans</strong> <strong>in</strong> <strong>Air</strong>-Handl<strong>in</strong>g<br />
<strong>Systems</strong> <strong>Trane</strong> Eng<strong>in</strong>eers Newsletters<br />
available to download from <br />
Meredith, D., J. Murphy, and J. Harshaw. “Direct-Drive Plenum <strong>Fans</strong> and Fan<br />
Arrays” Eng<strong>in</strong>eers Newsletter 39-1. 2010.<br />
Guckelberger, D. and B. Bradley. “Sound Rat<strong>in</strong>gs and ARI Standard 260”<br />
Eng<strong>in</strong>eers Newsletter 29-1. 2000.<br />
<strong>Trane</strong> Product Eng<strong>in</strong>eer<strong>in</strong>g Bullet<strong>in</strong>s<br />
Direct-Drive Plenum <strong>Fans</strong> for <strong>Trane</strong> Climate Changer <strong>Air</strong> Handlers, CLCH-<br />
PRB021-EN (2009).<br />
Analysis Software<br />
<strong>Trane</strong> Acoustics Program (TAP).<br />
Available at < www.trane.com/Commercial/DNA/View.aspx?i=1245 ><br />
© <strong>Trane</strong>, a bus<strong>in</strong>ess of Ingersoll Rand 68