nucmag.com
2015
1
ISSN · 1431-5254
16.– €
14
Overview of PHARE
Projects Implemented
in Romania
22 ı Operation and New Build
Nuclear Power Plant Olkiluoto 3
Containment Leakage Test
27 ı Energy Policy, Economy and Law
General Safety Requirements for a SFR
Programme
inside
30 ı Research and Innovation
The New Brazilian Multipurpose Research Reactor
66 ı Nuclear Today
Cyber Security in Focus
WIR FÜHREN
KERNENERGIE IN
DIE ZUKUNFT.
MIT SICHERHEIT.
AREVA ist Weltmarktführer in der Kerntechnik und ein führendes
Unternehmen bei den Erneuerbaren Energien. Wir bieten unseren Kunden
innovative Lösungen, damit sie CO 2 -armen Strom erzeugen können.
Für jeden Bedarf haben wir die passenden Produkte und Leistungen.
Alle unsere Leistungen haben dabei eines gemeinsam: Sicherheit steht
immer an erster Stelle. So zählen die deutschen Kernkraftwerke seit
Jahrzehnten zu den sichersten und zuverlässigsten weltweit.
www.areva.de
atw Vol. 60 (2015) | Issue 1 ı January
60
Dear reader,
The number 60 is of major significance for the nuclear energy landscape: Today the recognised and practiced technical
operating time for nuclear power plants consists of 60 years.
Initially commercial plants started operating with an approved
operating time of – at least – 40 years. Technical
reasons and perspectives were less decisive rather than a
solid planning period for the amortization of the investment
in plants. Thus for regulatory purposes the US
Atomic Energy Act for instance determined the initial operating
licence to 40 years with the option of a prolongation
of initially 20 years. In other countries using nuclear
energy, formalities are partially similar or differ completely
by issuing an unlimited operating license if safe operation
is guaranteed. Programs, already initiated in the 1980s, for
the analysis of aging processes of nuclear power plants
demonstrated that together with continuous retrofitting
60 years of operation are technical and safety-related
state-of-the art. On this basis the USA set worldwide the
initial milestone for the operating time of nuclear power
plants with 5 licences for an operation time of 60 years in
2000. In the meantime 75 out one hundred U.S. nuclear
power plants possess such licence and further countries
followed.
For more than 60 years now the atw – International
Journal for Nuclear Power actively accompanies this development
and all further developments in the field of peaceful
use of nuclear energy. atw was initially published called
“die atomwirtschaft” in the year 1956. For the first edition
of the atw its publishers took note “…to report with objective
clarity on all economic questions with regard to nuclear
transformation”. Fifteen years later the range of subjects
was also by name broadened to “atomtechnik”.The atw remains
even today closely related to the guiding principle of
objectivity. International technical contributions, comments
and documentations published in the atw reflect
this in all clarity.
Anniversaries are occasions for retrospective views.
However, 60 years of development for the peaceful use of
nuclear energy can be hardly summarized in just a few
words. Developments vary from country to country. While
the German nuclear energy sector, being globally up to
now the only one, needs to focus on decommissioning and
dismantling of nuclear power plants due to political decisions
after Fukushima, new plants are being built worldwide
which shall increase the nuclear power plant capacity
in a few years by 25 %. Fifteen “Newcomer” states announced
their willingness to enter the field of nuclear energy.
Thus altogether 200 construction projects can be referred
to. Environmental protection, conservation of natural
resources, security of energy supply and affordable
energy cost are not being measured globally on ideological
requirements by the spirit of the times, but by simple, perceptible
realities and contexts.
The editorial department and the publishing house
took “60 years of atw” as an opportunity, to look forward in
first place and to demonstrate it through a visual redesign.
Nevertheless the focus remains on the content of individual
categories – the editorial, comments, technical contributions,
news and notes from the DAtF and the KTG. By
adding a new layout, typography and colours we want to
make the reading of atw more attractive and clear. Colours
will be assigned to each category in order to help the
reader easily identify particular key topics. Atw will remain
as brand supported by a logo that optically underlines
the look ahead.
The historical perspective on the other hand will not be
left aside. Every atw issue in 2015 will be accompanied by
a historical contribution. In this current issue two contributions
are attached the “Foreword” by the publisher from
the first atw issue 1(1956) as well as the contribution “The
Federal Republic of Germany and the international cooperation
in the nuclear field” by former Federal Minister
of Germany Franz Josef Strauss. As both contributions
were originally published in German language, we will be
publishing both the original version and an English translation.
Different stages of the worldwide development of
the nuclear industry right up to today as well as focal
themes such as technology, politics and economy were decisive
in the selection of these topics.
On the occasion of the anniversary we also provide not
only for historically interested persons, but also for today’s
practitioners all atw issues published since 1956 digitalized
and improved on data mediums. While reviewing the
contents of the past years we realised, that already early on
many facets of nuclear energy with a broad pool of helpful
knowledge were dealt with. One example would certainly
be the in times of “energy transition” strongly discussed
“flexibility” in production; nuclear energy was already in
the 1970s treaded in this context. The wheel is already invented
and can be read, as many further topics, in the atw.
We hope, that with the implementation of a new layout
we found a balanced mix of a pleasing appearance and yet
objective seriousness. We would be delighted to receive
your comments, criticism and suggestions.
Christopher Weßelmann
– Editor in Chief –
editorial@atomwirtschaft.com
3
EDITORIAL
Editorial
60 ı
atw Vol. 60 (2015) | Issue 1 ı January
460
EDITORIAL
Liebe Leserin, lieber Leser,
die Zahl 60 hat für die Kernenergielandschaft eine richtungsweisende Bedeutung: 60 Jahre sind heute die anerkannte
und praktizierte technische Laufzeit von Leistungskernkraftwerken.
Ursprünglich gestartet waren die ersten kommerziellen
Anlagen mit einer genehmigten Betriebszeit von – mindestens
– 40 Jahren. Weniger waren dabei technische Gründe
und Perspektiven leitend, als vielmehr ein gesicherter Planungszeitraum
für die Amortisation in die Investition der
Anlagen. Regulatorisch wurde so z.B. im U.S.-Atomgesetz
die Erstbetriebsgenehmigung auf 40 Jahre festgelegt – mit
der Gesetzesoption einer Verlängerung von zunächst weiteren
20 Jahren. In anderen Kernenergie nutzenden Staaten
sind die Regularien teils ähnlich oder weichen sogar
dahin gehend ab, dass unter der Prämisse eines sicheren
Anlagenbetriebs eine zeitlich unbeschränkte Betriebsgenehmigung
ausgesprochen wird. Schon in den frühen
1980er-Jahren initiierte Programme zur Analyse von Alterungsprozessen
in Kernkraftwerken zeigten, dass gemeinsam
mit der kontinuierlichen Nachrüstung 60 Jahren
Laufzeit technischer und sicherheitstechnischer State-ofthe-Art
sind. Darauf basierend setzten die USA im Jahr
2000 mit gleich fünf Genehmigungen für 60 Jahre Betrieb
weltweit den ersten Meilenstein zu Kernkraftwerkslaufzeiten.
Inzwischen besitzen 75 von 100 U.S.-Kernkraftwerken
eine solche Lizenz und weitere Länder folgten dieser
Praxis.
Seit inzwischen 60 Jahren begleitet die atw – International
Journal for Nuclear Power diese und alle weiteren
Entwicklungen auf dem Gebiet der friedlichen Nutzung
der Kernenergie. Gestartet war die atw als „die atomwirtschaft“
im Januar 1956. Ihre Herausgeber schrieben zum
Ersterscheinen der atw ins Stammbuch, „in sachlicher
Klarheit über alle wirtschaftlichen Fragen der Kernumwandlung“
zu berichten. Fünfzehn Jahre später wurde das
Themenspektrum auch namentlich auf die „atomtechnik“
ausgeweitet. Diesem Leitsatz der Sachlichkeit ist die atw
konsequent verbunden. Die internationalen Fachbeiträge,
Kommentare und Dokumentationen in der atw zeigen dies
in aller Deutlichkeit.
Jubiläen sind Anlässe für Rückblicke. Doch lassen sich
60 Jahre Entwicklung der friedlichen Nutzung der Kernenergie
kaum in wenigen Worten zusammenfassen. Die
Entwicklungen sind doch von Land zu Land zu verschieden.
Während sich die Kernenergie in Deutschland aufgrund
der politischen Beschlüsse nach Fukushima bislang
einzigartig weltweit auf die Außerbetriebnahme und den
Rückbau der Kernkraftwerke konzentrieren muss, sind
weltweit Anlagen in Bau, die die Kernkraftwerksleistung
in wenigen Jahren um 25 % ansteigen lassen werden.
15 „Newcomer“-Staaten angekündigt, in die Kernkraftnutzung
einzusteigen. Insgesamt auf 200 Neubauvorhaben ist
so zu verweisen. Klimaschutz, Ressourcenschonung, Energieversorgungssicherheit
und bezahlbare Energiepreise
werden weltweit nicht an ideologischen Vorgaben eines
Zeitgeistes gemessen, sondern an einfach erkennbaren
Realitäten und Zusammenhängen.
Redaktion und Verlag haben „60 Jahre atw“ zum Anlass
genommen in der atw, zum einen nach vorne zu schauen
und dies auch mit einem optischen Redesign deutlich zu
machen. Weiterhin stehen die Inhalte der einzelnen Rubriken
– Editorial, Kommentare, Fachartikel, Nachrichten
und Mitteilungen von DAtF und KTG – im Fokus. Mit neuem
Layout, Typografie und Farbe möchten wir die Lektüre
der atw attraktiver und deutlicher gestalten. Den einzelnen
Rubriken sind künftig eindeutige Farben zugeordnet,
sodass Sie als Leser griffig die jeweiligen Schwerpunkte
finden. atw als Marke bleibt erhalten mit einem Logo, das
den Blick nach vorne auch optisch unterstreicht.
Der historische Blickwinkel wird zum anderen nicht
außer Acht gelassen. Jede Ausgabe der atw in 2015 wird
von einem historischen Beitrag begleitet – in dieser Ausgabe
sind dies zwei, die „Geleitworte“ der Herausgeber aus
der atw 1 (1956) sowie der Beitrag „Die Bundesrepublik
und die internationale Zusammenarbeit auf dem Kernenergiegebiet“
vom damaligen Bundesminister Franz Josef
Strauss. Soweit die Beiträge in ihrer historischen Fassung
in deutscher Sprache abgefasst waren, veröffentlichen wir
sowohl das Original als auch eine englische Übersetzung.
Bei der Auswahl der Themen waren die unterschiedlichen
Phasen der weltweiten Kernenergieentwicklung bis heute
sowie Schwerpunkte von Technik, Wirtschaft und Politik
leitend.
Zudem bieten wir anlässlich des Jubiläums nicht nur
für den historisch Interessierten, sondern auch für den
heutigen Praktiker die kompletten Jahrgänge der atw seit
1956 digitalisiert und nachbearbeitet auf Datenträger an.
Bei der Aufarbeitung der Jahrgänge wurde uns deutlich,
dass viele Facetten der Kernenergie schon frühzeitig behandelt
wurden, mit einem breiten Fundus an heute nützlichem
Know-how. Ein Beispiel ist sicherlich die in Zeiten
der „Energiewende“ allenthalben diskutierte „Flexibilität“
in der Erzeugung; die Kernenergie wurde darauf schon in
den 1970er-Jahren darauf getrimmt – dieses Rad ist schon
erfunden und wie viele weitere Themen nachzulesen in
der atw.
Wir hoffen, mit der Umsetzung des neuen Layouts
einen ausgewogenen Mix zwischen gefälligem Erscheinungsbild
und weiterhin sachlicher Seriosität gefunden zu
haben. Über Kommentare, Kritik und Anregungen würden
wir uns sehr freuen!
Christopher Weßelmann
– Chefredakteur –
editorial@atomwirtschaft.com
Editorial
60 ı
Kommunikation und
Training für Kerntechnik
Suchen Sie die passende
Weiterbildungsmaßnahme
im Bereich Kerntechnik?
Nutzen Sie das neue Seminarangebot der INFORUM mit interdisziplinär
relevanten Fragestellungen vermittelt von ausgewiesenen Experten,
die fachliche und didaktische Kompetenz verbinden.
Die INFORUM-Seminare bieten nützliche Kenntnisse, die Sie und Ihre
Mitarbeiterinnen und Mitarbeiter in der täglichen Praxis unterstützen.
Wählen Sie aus folgenden Themen:
a
a
a
Atomrecht
Medien
Wissenstransfer
Seminar Termin Ort
Atomrecht – was Sie
wissen müssen
21.01.2015
24.06.2015
Berlin
Medientraining 03.03. - 04.03.2015 Berlin
Erfolgreicher Wissenstransfer
in der Kerntechnik – Methoden
und praktische Umsetzung
Haben wir Ihr Interesse geweckt?
3 Rufen Sie uns an: +49 30 498555-20
11.03. - 12.03.2015
04.11. - 05.11.2015
Berlin
Kontakt
INFORUM
Verlags- und Verwaltungsgesellschaft
mbH
Robert-Koch-Platz 4
10115 Berlin
Liane Philipp
Fon +49 30 498555-20
Fax +49 30 498555-17
presse@
www. kernenergie.de
atw Vol. 60 (2015) | Issue 1 ı January
6
Issue 1
January 2015
CONTENTS
14
Overview of PHARE
Projects Implemented
in Romania
| | Cover: A frosty cold winter day outside the Forsmark nuclear power plant. In the foreground the biotest basin and in the background
reactor 1 and 2. Forsmark generates approximately one sixth of Sweden’s total electrical energy consumption per year.
(Courtesy: Vattenfall AB)
Editorial
60 3
60 4
Contents 6
Imprint 21
Nuclear Power Plant Olkiluoto 3
Containment Leakage Test Under
Extreme Conditions 22
Tobias Fleckenstein
Abstracts | English 8
Abstracts | German 10
Inside Nuclear with NucNet
EU 2030 Targets “Unachievable”
Without Long-Term Nuclear
Operation 12
23
NucNet and Maria van der Hoeven
Calendar 13
Operation and New Build
Overview of PHARE Projects
Implemented in Romania Between
1997 and 2008 for Enhancing the Nuclear
Safety Level 14
Radian Sanda, Benoit Zerger,
Giustino Manna and Brian Farrar
Spotlight on Nuclear Law
Paradigmenwechsel im Beförderungsrecht
oder am „Flaschenhals“ 25
Paradigm Shift in Transport Legislation
or Rather at the „Bottleneck“ 25
Hanns Näser
| | Measuring equipment to assess tests for Okiluoto 3 project.
(Courtesy: TÜV SÜD Industrie Service GmbH)
Contents
atw Vol. 60 (2015) | Issue 1 ı January
7
Energy Policy, Economy and Law
Completeness Assessment of General
Safety Requirements for Sodium-Cooled
Fast Reactor Nuclear Design Utilizing
Objective Provision Tree 27
Namduk Suh, Moohoon Bae, Yongwon Choi,
Bongsuk Kang and Huichang Yang
KTG Inside 44
60 th year atw
Foreword 50
Zum Geleit 50
Siegfried Balke, Heinrich Freiberger, Karl Hecht,
W. Alexander Menne, Herbert Seidl and Kurt Sauerwein
CONTENTS
26
The Federal Republic of Germany and
the International Cooperation
in the Nuclear Field 51
Die Bundesrepublik und die
internationale Zusammenarbeit
auf dem Kernenergiegebiet 55
Franz Josef Strauß
| | Transport of nuclear material
Research and Innovation
RMB: The New Brazilian Multipurpose
Research Reactor 30
News 59
Market data 64
José Augusto Perrotta and Adalberto Jose Soares
33
63
| | View of the Taishan site in an early stage of construction of
Taishan unit 1. (Courtesy: Areva)
| | Artist view of the RMB nuclear research centre.
AMNT 2014
45 th Annual Meeting on Nuclear Technology:
Key Topic | Reactor Operation, Safety –
Report Part 3 34
Nuclear Today
IAEA Puts Cyber Security in Focus for
Nuclear Facilities in 2015 66
John Shepherd
AMNT 2015
46 th Annual Meeting on Nuclear Technology:
Programme 37
AMNT 2015 Registration Form . . . . . . . . . . . . Insert
Contents
atw Vol. 60 (2015) | Issue 1 ı January
8
ABSTRACTS | ENGLISH
EU 2030 Targets “Unachievable”
Without Long-Term Nuclear
Operation
NucNet and
Maria van der Hoeven | Page 12
Nuclear energy will continue to support
greenhouse gas emission reduction targets
until 2020, but without decisions on longterm
operation of ageing reactors, it will be
difficult for the EU to meet its 2030 targets,
International Energy Agency (IEA) executive
director Maria van der Hoeven, tells
NucNet in an interview.
The IEA has quite a few remarks and questions
related to the EU goals of competitiveness,
security of supply and sustainability.
It is good to have these targets, but up until
now the EU is missing the direct connection
between the three goals. What is
mostly needed to achieve the goals is to finalise
the EU’s internal energy market.
Secondly cost-effective climate and energy
policies are needed because it is not only
about climate and energy, but also about
economic development and competitiveness.
The ageing EU reactor fleet requires country-level
and owner/operator-level decisions
in the short term regarding plant
safety regulations, plant upgrades, uprates,
lifetime extensions and licence renewals.
Upgrading and uprating existing
nuclear plants is one of the cheapest ways
of producing carbon-free electricity in the
EU. Without long-term operation, the IEA
expects nuclear capacity in the EU could
fall by a factor of six by 2030 and that will
make it more difficult to achieve the EU’s
2030 climate targets.
Public opinion is an important topic for
the acceptance of all energy sources and
it is different in all IEA member countries.
Europe is very sensitive to almost all
forms of energy, including wind turbines
and solar panels. This is linked to a lack
of information, so we need more and
better transparency on information for
people.
Overview of PHARE Projects
Implemented in Romania Between
1997 and 2008 for Enhancing the
Nuclear Safety Level
Radian Sanda, Benoit Zerger,
Giustino Manna and
Brian Farrar | Page 14
Through the Poland Hungary Aid for Reconstruction
of the Economy (PHARE) programme,
the European Commission (EC)
supported the transition of the Eastern
European states to the European market
economy. PHARE was a pre-accession financial
assistance programme which involved
countries from Central and Eastern
Europe that applied to become members of
the European Union. The paper presents a
synthesis of the projects carried out in Romania
for enhancing nuclear safety by consolidating
key areas such as Regulatory
Activities, Radioactive Waste Management
and On-Site assistance, in order to fulfil the
requirements for accession to the European
Union.
Statistical considerations on the impact of
the projects are also proposed and an analysis
of the methodology of intervention is
made.
Nuclear Power Plant Olkiluoto 3
Containment Leakage Test Under
Extreme Conditions
Tobias Fleckenstein | Page 22
Modern nuclear power plants place high
demands on the design and execution of
safety checks. TÜV SÜD supported the
containment leakage test for the largestcapacity
third generation nuclear power
plant in the world – Olkiluoto 3 in Finland.
The experts successfully met the challenges
presented by exceptional parameters
of the project. The containment of
Olkiluoto 3 is unique in that the vessel’s
volume is 80,000 m 3 while measurements
were carried out over a period of ten days.
To execute the test, 75 temperature and 15
humidity sensors had to be installed and
correctly interlinked by more than ten
kilometres of cable. These instruments
also needed to withstand an absolute
pressure of 6 bar, ambient temperatures of
30° C and high levels of humidity. These
conditions required comprehensive preparation
and a high amount of qualification
tests. Parts of the qualifications were
carried out at the autoclave system of the
Technical University in Munich, Germany,
where the project test conditions could be
simulated. The software required to determine
the tests was developed by TÜV
SÜD and verified by German’s national
accreditation body DAkkS under ISO
17025.
TÜV SÜD enabled the test schedule to continue
without delay by analysing all recorded
data continuously on site, including
pressure, temperature, humidity and leakage
mass flow curves. With the comprehensive
preparation, data acquisition system
recording measurements continuously
and the on-time result calculation, all components
of the leak-tightness assessment
were successfully completed in accordance
with requirements.
Paradigm Shift in Transport Legislation
or Rather at the „Bottleneck“
Hanns Näser | Page 25
In the year just started significant decisions
with considerable consequences by the
Federal Constitutional Court and the Federal
Administrative Court in the field of
nuclear law are expected. Especially the
decision with regards to „nuclear phaseout“
within the 13th amendment of the
Atomic Energy Act is being eagerly expected,
as with its far-reaching consequences
also fundamental constitutional questions
need to be answered.
The Federal Administrative Court will need
to decide on the question, whether she admits
the appeal against the Brunsbüttel
decision by the Higher Administrative
Court Schleswig-Holstein (HAC), which
from the view of claimant shifted the fundamental
basis of demarcation of responsibilities
between the executive and judiciary
power.
In comparison to these fundamental decisions
the awaited decision by the HAC on
nuclear transport legislation seems of subordinate
importance, although she will
proceed with a paradigm shift in the legal
area. The decision deals with the question
as to whether and when a right of action
from a third party within the nuclear transport
legislation can be accepted or more
precisely under which preconditions a
third party has clear standing against a
nuclear transport authorisation.
As the site selection law (issued on 23 July
2013 BGBI I p. 2552) excludes the recirculation
of vitrified waste block canisters
from reprocessing spent fuel elements to
the transport cask storage facility Gorleben,
the decision by the HAC Lüneburg
for this site will only be relevant for
present unpredictable transportations
from the transport cask storage facility
Gorleben to a final repository. If necessary
interest to seek a declaratory judgment
for declaratory action, in concreto danger
of recurrence will be approved, is another
matter.
Completeness Assessment of
General Safety Requirements for
Sodium-Cooled Fast Reactor Nuclear
Design Utilizing Objective Provision
Tree
Namduk Suh, Moohoon Bae,
Yongwon Choi, Bongsuk Kang and
Huichang Yang | Page 27
A prototype sodium-cooled fast reactor
(SFR) of 150 MWe is under development in
Korea. The designer is planning to apply
the licensing for construction permit by
2020. To prepare the future licensing review,
we are developing general safety requirements
for SFR. The requirements are
developed first by evaluating the applicability
of the current requirements of light
water reactor (LWR) to SFR and then taking
into account other international requirements
available. In this way, we have
developed a draft general safety requirements
with 59 articles. The LWR safety
requirements are coming from the accumulated
experiences of long-year licensing
and operation, but we do not have sufficient
experiences corresponding for SFR,
so we need a systematic and integral approach
to complement our developed requirements
for SFR. For this purpose, we
have developed an objective provision tree
for the safety function of reactivity control
and applied it in assessing the completeness
of our draft requirements developed.
In this way, we could confirm that our
draft requirements include all the requirements
to prevent the mechanisms that
could challenge the safety function of reactivity
control.
Abstracts | English
atw Vol. 60 (2015) | Issue 1 ı January
RMB: The New Brazilian
Multipurpose Research Reactor
José Augusto Perrotta and
Adalberto Jose Soares | Page 30
Brazil has four research reactors (RR) in
operation: IEA-R1, a 5 MW pool type RR;
IPR-R1, a 100 kW TRIGA type RR; ARGO-
NAUTA, a 500 W Argonaut type RR, and
IPEN/MB-01, a 100 W critical facility. The
first three were constructed in the 50’s and
60’s, for teaching, training, and nuclear
research, and for many years they were
the basic infrastructure for the Brazilian
nuclear developing program. The last,
IPEN/MB-01, is the result of a national
project developed specifically for qualification
of reactor physics codes. Considering
the relative low power of Brazilian research
reactors, with exception of IEAR1,
none of the other reactors are feasible for
radioisotope production, and even IEA-R1
has a limited capacity. As a consequence,
since long ago, 100% of the Mo-99 needed
to attend Brazilian nuclear medicine services
has been imported. Because of the
high dependence on external supply, the
international Moly-99 supply crisis that
occurred in 2008/2009 affected significantly
Brazilian nuclear medicine services,
and as presented in previous IAEA events
[1], in 2010 Brazilian government formalized
the decision to build a new research
reactor. The new reactor named RMB
(Brazilian Multipurpose Reactor) will be
a 30 MW open pool type reactor, using
low enriched uranium fuel. The facility
will be part of a new nuclear research
centre, to be built about 100 kilometres
from São Paulo city, in the southern part
of Brazil. The new nuclear research centre
will have several facilities, to use thermal
and cold neutron beams; to produce radioisotopes;
to perform neutron activation
analysis; and to perform irradiations
tests of materials and fuels of interest for
the Brazilian nuclear program. An additional
facility will be used to store, for at
least 100 years, all the fuel used in the reactor.
The paper describes the main characteristics
of the new centre, emphasising
the research reactor and giving a brief
description of the laboratories that will be
constructed, It also presents the status of
the project.
AMNT 2014: Key Topic |
Reactor Operation, Safety –
Report Part 3
| Page 34
Summary report on the following sessions
of the Annual Conference on Nuclear
Technology held in Frankfurt, 6 to 8 May
2014:
• Reactor Operation, Safety: Radiation
Protection (Angelika Bohnstedt)
• Competence, Innovation, Regulation:
Fusion Technology – Optimisation Steps
in the ITER Design (Thomas Mull)
• Competence, Innovation, Regulation:
Education, Expert Knowledge, Knowledge
Transfer (Jörg Starflinger)
The other Sessions of the Key Topics “Reactor
Operation, Safety”, “Competence, Innovation,
Regulation” and “Fuel, Decommissioning
& Disposal” have been covered
in atw 10 and 12 (2015) and will be covered
in further issues of atw.
60 th year atw:
Foreword of the First Issue in 1956
Siegfried Balke, Heinrich Freiberger,
Karl Hecht, W.A. Menne,
Herbert Seidl und
Kurt Sauerwein | Page 50
The present journal will in detail and with
objective clarity report on all economic
questions with regard to nuclear transformation.
The information will be extensive
and concentrated and will cover economic
contexts including news, legal questions
as well as questions on operational
and social safety. Especially its documentation,
which sighted and reliably provides a
pictures of the happenings in Germany and
the most important countries in the world,
will inform the reader quick and briefly in
an intelligible language.
Thus the ATOMWIRTSCHAFT should serve
above all a serious and concentrated reporting
and should be a conscientious advisor
on a new promising field of work of
science and technics beyond German
speaking regions.
The Federal Republic of Germany
and the International Cooperation
in the Nuclear Field
Franz Josef Strauß | Page 51
The questions of international cooperation
in the field of nuclear energy for
peaceful purposes arise the increasing interest
of all political and economic interested
parties of our nation. This rising
sympathy reflects the awareness, that due
to the fast development of nuclear energy,
in detail a hardly assessable process, a new
technical revolution is in the offing which
for the further economic development of
the European states and not least our
country itself will be in view of the current
inferior position in comparison to the
leading nuclear powers, of paramount importance.
By all necessity of catching up
the scientific and technical development
at national level, the conviction is more
and more confirmed that joint efforts both
in the European and global area are necessary
to make full use of the tremendous
possibilities of nuclear energy for peaceful
progress.
It is appropriate and valuable, already for
determining the own point of view for the
further participation in international cooperation
within the nuclear field, to gain
from time to time an overview and to take
stock on existing organisation as well as
different projects and plans. For this purpose
the following lines are intended,
without demanding completeness in all
details. I may initially pay attention to
the entirely or predominant economic
committees for cooperation followed by
bilateral and multilateral facts and projects.
IAEA Puts Cyber Security in Focus for
Nuclear Facilities in 2015
John Shepherd | Page 66
Later in 2015 the International Atomic Energy
Agency (IAEA) will convene a special
conference to discuss computer security,
in the wake of cyber attacks on global financial
institutions and government agencies
that were increasingly in the news.
According to the IAEA, the prevalence of
IT security incidents in recent years involving
the Stuxnet malware “demonstrated
that nuclear facilities can be susceptible
to cyber attack”. The IAEA said
this and other events have significantly
raised global concerns over potential vulnerabilities
and the possibility of a cyber
attack, or a joint cyber-physical attack,
that could impact on nuclear security.
The IAEA has correctly identified that the
use of computers and other digital electronic
equipment in physical protection
systems at nuclear facilities, as well as in
facility safety systems, instrumentation,
information processing and communication,
“continues to grow and presents an
ever more likely target for cyber attack”.
The agency’s Vienna conference, to be
held in June, will review emerging trends
in computer security and areas that may
still need to be addressed. The meeting
follows a declaration of ministers of IAEA
member states in 2013 that called on the
agency to help raise awareness of the
growing threat of cyber attacks and their
potential impact on nuclear security.
The conference is being organised “to
foster international cooperation in computer
security as an essential element of
nuclear security”, the IAEA said.
Details of the IAEA’s ‘International Conference
on Computer Security in a Nuclear
World: Expert Discussion and Exchange’
are on the ‘meetings’ section of the
agency’s web site.
9
ABSTRACTS | ENGLISH
Abstracts | English
atw Vol. 60 (2015) | Issue 1 ı January
10
ABSTRACTS | GERMAN
Interview: EU-2030-Ziele ohne
langfristigen Betrieb der
Kernkraftwerke „unerreichbar“
NucNet und Maria van der Hoeven | Seite 12
Die Kernenergie wird in Europa auch weiterhin,
zumindest bis 2020, einen wichtigen
Anteil bei der Reduktion von Treibhausgasemissionen
leisten. Mit zunehmendem Betriebsalter
der Reaktoren kann es allerdings
problematisch werden, die von der EU proklamierten
2030-Ziele zu erreichen. Dies
fasst die Direktorin der Internationalen Energieagentur
(IEA), Maria van der Hoeven, in
einem Interview mit NucNet zusammen.
Zu den Zielen der EU, Wettbewerbsfähigkeit,
Versorgungssicherheit mit Energie
und Nachhaltigkeit zu erreichen, hat die
IEA einige Anmerkungen und Fragen. Die
Ziele an sich sind gut und richtig, aber es
fehlt bei der Umsetzung eine direkte Koppelung
zwischen den einzelnen Zielen. Vor
allem sieht die IEA in der Realisierung des
Energiebinnenmarktes der Europäischen
Union eine wesentliche Voraussetzung zur
Zielerfüllung. Zweitens ist eine kosteneffiziente
Klima- und Energiepolitik notwendig,
da es nicht allein losgelöst um Klimaund
Energiepolitik geht, sondern auch um
wirtschaftliche und soziale Weiterentwicklung
und Wettbewerbsfähigkeit.
Das zunehmende Betriebsalter der Kernkraftwerke
in der EU erfordert auf Ebene
der Staaten und bei den Anlagenbetreibern
kurzfristige Entscheidungen zum Umgang
mit Sicherheitsanforderungen, Leistungserhöhungen,
Nachrüstungen, Lebensdauer
verlängernden Maßnahmen und möglichen
Verlängerungen von Betriebsgenehmigungen.
Dabei sind Leistungserhöhungen bei
laufenden Kernkraftwerken der kostengünstigste
Weg zur Vermeidung von klimawirksamen
Emissionen in der EU. Ohne
Langfristbetrieb könnte der Anteil der Kernenergie
in der EU bis 2030 erheblich fallen
– bis auf ein Sechstel der heutigen Kapazität
–, was mit erheblichen Problemen bei der
Erreichung der EU-2030-Klimaziele verbunden
sein dürfte.
Die „öffentliche Meinung“ ist ein wichtiges
Thema der Akzeptanz aller Energieträger,
wobei diese in den einzelnen IEA-Mitgliedstaaten
unterschiedlich ausgeprägt ist. Die
Europäer sind inzwischen sehr sensibel in
allen Fragen der Energiegewinnung und
-nutzung, was auch Wind und Sonne mit einschließt.
Eine Ursache sind fehlende Informationen.
Transparenz und Information der
Menschen sind also ein wichtiger Baustein
zum Erfolg der einzelnen Energieträger.
Übersicht der in Rumänien zwischen
1997 und 2008 für die Verbesserung
der nuklearen Sicherheit Ebene
umgesetzten PHARE-Projekte
Radian Sanda, Benoit Zerger,
Giustino Manna und Brian Farrar | Seite 14
Im Rahmen des Programms Poland Hungary
Aid for Reconstruction of the Economy
(PHARE) hat die Europäische Kommission
(EC) die Integration der osteuropäischen
Staaten in das Marktsystem der
Europäischen Union (EU) unterstützt. PHA-
RE war ein finanzielles Konzept für zentral-
und osteuropäische Staaten, die die
Mitgliedschaft in der Union beantragt hatten.
Das Programm unterstützte die Länder
vor ihrem Beitritt zur EU.
Der Beitrag fasst die Projekte zur Unterstützung
der nuklearen Sicherheit in Rumänien
zusammen. Wesentliche Handlungsfelder
waren der Ausbau der regulatorischen Infrastruktur,
der Umgang mit radioaktiven Abfällen
sowie die Vor-Ort-Unterstützung, mit
dem o.o. Ziel, die Voraussetzungen für einen
Beitritt zur EU auf diesem Sektor zu erfüllen.
Unter anderem erfolgt eine statistische
Auswertung der Erfolge der einzelnen Projekte
sowie eine Analyse der angewandten
Methoden bei ihrer Umsetzung.
Kernkraftwerk Olkiluoto 3
Leckagetest für ein Containment
unter extremen Bedingungen
Tobias Fleckenstein | Seite 22
Moderne Kernkraftwerke stellen hohe Anforderungen
an die Planung und Ausführung
von Sicherheitstests. TÜV SÜD hat
den Leckagetest des Sicherheitsbehälters
von Olkiluoto 3 in Finnland begleitet. Das
weltweit größte Kernkraftwerk der dritten
Generation hat einen Sicherheitsbehälter
mit einem Volumen von 80,000 m 3 .
Der Test erforderte 75 Temperatur- und 15
Feuchtigkeitssensoren, die installiert und
mit Kabeln von einer Gesamtlänge von mehr
als zehn Kilometern korrekt verbunden werden
mussten. Weiterhin mussten die Testgeräte
zehn Tage einem absoluten Druck von 6
Bar, Temperaturen von 30° C und einer hohen
Luftfeuchte standhalten. Dies erforderte
eine umfangreiche Vorbereitung und eine
Vielzahl von Qualifizierungstests. Ein Teil
dieser Qualifizierungstests wurde im Autoklav
der Technischen Universität München
vorgenommen, wo die Testbedingungen simuliert
werden konnten. Die für die Durchführung
der Prüfung erforderliche Software
wurde von TÜV SÜD entwickelt und von der
Deutschen Akkreditierungsstelle (DAkkS)
nach ISO 17025 verifiziert.
TÜV SÜD ermöglichte die verzugsfreie
Durchführung des gesamten Prüfablaufs,
da die aufgezeichneten Daten laufend direkt
vor Ort ausgewertet wurden, darunter
Druck, Temperatur, Luftfeuchte und Massenstrom.
Unterstützt durch umfangreiche
Vorbereitung, die kontinuierliche Datenerfassung
sowie der laufenden Auswertung
der Messdaten konnten alle Anforderungen
erfüllt und alle Komponenten des Leckagetests
erfolgreich abgeschlossen werden.
Paradigmenwechsel im Beförderungsrecht
oder am „Flaschenhals“
Hanns Näser | Seite 25
Im gerade begonnenen Jahr sind höchst
bedeutsame Entscheidungen des Bundesverfassungsgerichts
und des Bundesverwaltungsgerichts
auf dem Gebiet des Atomrechts
von erheblicher Tragweite zu erwarten.
Insbesondere die Entscheidung des
Bundesverfassungsgerichts zu dem mit der
13. Novelle zum Atomgesetz erfolgten
„Atomausstieg“ wird mit großer Spannung
erwartet, weil neben den mit den Entscheidungen
verbundenen weitreichenden Folgen
auch grundsätzliche Fragen der Verfassung
zu beantworten sind.
Für das Bundesverwaltungsgericht steht die
Frage zur Entscheidung an, ob sie die Revision
gegen die Brunsbüttel-Entscheidung
des Oberverwaltungsgerichts (OVG) Schleswig-Holstein
zulässt, die aus Sicht der Kläger
wesentliche Grundlagen der Verantwortungsabgrenzung
zwischen Exekutive
und Judikative verschoben hat.
Gegenüber diesen grundlegenden Entscheidungen
ist die erwartete Entscheidung
des OVG Lüneburg zum nuklearen Transportrecht
von untergeordneter Bedeutung, obwohl
sie auf diesem Rechtsgebiet einen Paradigmenwechsel
vollziehen wird. Es geht bei
dieser Entscheidung um die Frage, ob und
wann eine Klagebefugnis eines Dritten im
nuklearen Transportrecht anerkannt werden
kann, genauer, unter welchen Voraussetzungen
ein Dritter gegen eine atomrechtliche
Beförderungsgenehmigung klagebefugt ist.
Da das Standortauswahlgesetz (vom 23. Juli
2013 BGBl I S. 2553) die Rückführung
von Glaskokillen aus der Wiederaufarbeitung
von abgebrannten Brennelementen
zum Transportbehälterlager Gorleben ausschließt,
wird die Entscheidung des OVG
Lüneburg für diesen Standort nur noch für
gegenwärtige nicht absehbare Transporte
vom Transportbehälterlager Gorleben in ein
Endlager Relevanz haben können. Ob damit
das für eine Feststellungsklage erforderliche
Feststellungsinteresse, in concreto
Wiederholungsgefahr bejaht werden kann,
steht auf einem anderen Blatt.
Gesamtbeurteilung der grundlegenden
Sicherheitsanforderungen
für natriumgekühlte Schnelle
Reaktoren unter Einsatz der
Objective-Provision-Tree-Methode
Namduk Suh, Moohoon Bae,
Yongwon Choi, Bongsuk Kang und
Huichang Yang | Seite 27
In der Republik Korea befindet sich der Prototyp
eines natriumgekühlten schnellen Reaktors
(SFR) mit 150 MWe Leistung in der
Entwicklung. Der Entwickler plant, die Genehmigung
für den Bau dieser Anlage bis
zum Jahr 2020 zu beantragen und zu erhalten.
Für den zukünftigen Genehmigungsprozess
wurden grundsätzliche Sicherheitsanforderungen
für SFR-Anlagen entwickelt.
Die Anforderungen berücksichtigen in einem
ersten Schritt die mögliche Übertragung
der vorhandenen Anforderungen für
Leichtwasserreaktoren auf den SFR. Dabei
werden auch internationale Erfahrungen
mit berücksichtigt. Ein erster Entwurf für
die Sicherheitsanforderungen mit 59 Kapiteln
wurde vorgelegt.
Die heutigen Sicherheitsanforderungen für
Leichtwasserreaktoren basieren auch auf
umfassenden Erfahrungen mit Betrieb und
Genehmigung. Solche liegen für SFR-Anlagen
nicht vor. Es wurde daher ein systematischer
und umfassender Ansatz entwickelt,
Abstracts | German
atw Vol. 60 (2015) | Issue 1 ı January
um die Sicherheitsanforderungen für
einen SFR auszuarbeiten.
Für die Reaktivitätskontrolle wurde ein Ereignisbaum
entwickelt und als Grundlage in
die Sicherheitsanforderungen eingearbeitet.
Es konnte gezeigt werden, dass die damit
vorliegenden Anforderungen an die Reaktivitätskontrolle
alle Einflussfaktoren berücksichtigen
und somit ausreichend sind.
Der neue Mehrzweckforschungsreaktor
für Brasilien
José Augusto Perrotta und
Adalberto Jose Soares | Seite 30
Brasilien verfügt derzeit über vier in Betrieb
befindliche Forschungsreaktoren:
IEA-R1, eine 5-MW-Pool-Anlage; IPR-R1,
eine 100-kW-TRIGA-Typ-Anlage; ARGO-
NAUTA, eine 500-W-Argonaut-Anlage und
IPEN/MB-01, eine 100-W-Kritische-Anordnung.
Die drei erstgenannten wurden in
den 1950er- und 1960er-Jahren für Unterrichts-,
Ausbildungs- und Forschungszwecke
gebaut. Sie bilden die Basis der Infrastruktur
des brasilianischen Nuklearprogramms.
Die Anlage IPEN/MB-01 ist national
entwickelt worden, um speziell Reaktorphysik-Codes
zu qualifizieren.
Abgesehen vom IEA-R1 sind aufgrund der
geringen thermischen Leistungen bei den
brasilianischen Anlagen keine Möglichkeiten
zur Herstellung von Radioisotopen vorhanden.
Zudem sind die Produktionskapazitäten
des IEA-R1 begrenzt. Als Konsequenz
wird der Bedarf an Mo-99 in der Nuklearmedizin
zu 100 % durch Importe gedeckt.
Aufgrund dieser hohen Abhängigkeit
und der Mo-99-Versorgungskrise in den
Jahren 2008/2009 hatte die brasilianische
Regierung in 2010 den Beschluss zum Bau
und Betrieb eines neuen Forschungsreaktors
gefasst. Der neue Reaktor mit dem Namen
RMB (Brazilian Multipurpose Reactor)
wird als Pool-Anlage ausgeführt sein, 30
MW thermische Leistung besitzen und
niedrig angereichertes Uran als Kernbrennstoff
nutzen. Der Reaktor wird Teil eines
neuen Forschungszentrums rund 100 km
von Sao Paulo entfernt im südlichen Landesteil
von Brasilien sein. Das neue Forschungszentrum
wird eine Reihe von Einrichtungen
umfassen, um thermische und
kalte Neutronen zu nutzen, Radioisotope
herzustellen, Neutronenaktivierungsanalysen
sowie Bestrahlungstest and Werkstoffen
und Kernbrennstoff durchzuführen. Zudem
wird ein Zwischenlager für den Kernbrennstoff
des Forschungsreaktors eingerichtet.
Der genutzte Kernbrennstoff soll hier für
100 Jahre zwischengelagert werden.
Forschungsreaktor sowie die Einrichtungen
des Forschungszentrums werden detailliert
vorgestellt.
Jahrestagung Kerntechnik 2014:
Berichterstattung zu den
Tech nischen Sitzungen – Teil 3
| Seite 34
Zusammenfassende Berichte zu den Technischen
Sitzungen der Jahrestagung Kerntechnik
2014 (Frankfurt, 6. bis 8. Mai
2014) der Technischen Sitzungen
• Reactor Operation, Safety: Radiation
Protection (Angelika Bohnstedt)
• Competence, Innovation, Regulation:
Fusion Technology – Optimisation Steps
in the ITER Design (Thomas Mull)
• Competence, Innovation, Regulation:
Education, Expert Knowledge, Knowledge
Transfer (Jörg Starflinger)
Berichte zu den weiteren Key Topics “Reactor
Operation, Safety”, “Competence, Innovation,
Regulation” and “Fuel, Decommissioning
& Disposal” sind in den Ausgabe
10 und 12 (2014) der atw erschienen
bzw. werden in späteren Ausgaben der atw
veröffentlicht.
60 th year atw:
Zum Geleit der ersten Ausgabe 1956
Siegfried Balke, Heinrich Freiberger,
Karl Hecht, W.A. Menne,
Herbert Seidl und Kurt Sauerwein | Seite 50
Die vorliegende Zeitschrift will in sachlicher
Klarheit umfassend über alle wirtschaftlichen
Fragen der Kernumwandlung
berichten. Die Unterrichtung wird umfassend
und konzentriert sein und sich von
der Behandlung der wirtschaftlichen Zusammenhänge
einschließlich der Nachrichtengebung
bis zu den Fragen der
Rechtsordnung und der betrieblichen wie
sozialen Sicherheit erstrecken. Insbesondere
ihre Dokumentation, die gesichtet
und zuverlässig ein Bild des Geschehens in
Deutschland und in den wichtigsten Ländern
der Welt gibt, wird den Leser schnell
und knapp in verständlicher Sprache
unterrichten.
So soll DIE ATOMWIRTSCHAFT der ernsthaften
und vor allem konzentrierten Berichterstattung
dienen und über das deutsche
Sprachgebiet hinaus ein gewissenhafter Berater
auf einem neuen, zukunftsreichen
Arbeitsfeld von Wirtschaft und Technik sein.
Die Bundesrepublik und die
internationale Zusammenarbeit
auf dem Kernenergiegebiet
Franz Josef Strauß | Seite 55
Den Fragen internationaler Zusammenarbeit
auf dem Gebiete der Kernenergie für
friedliche Zwecke wendet sich in steigendem
Maße das Interesse aller politisch und
wirtschaftlich interessierten Kreise unseres
Volkes zu. Diese wachsende Anteilnahme
entspricht der Erkenntnis, daß sich durch
die Entwicklung der Kernenergie in raschem,
im einzelnen kaum übersehbarem
Ablauf eine neue technische Revolution
anbahnt, die für die weitere wirtschaftliche
Entwicklung der europäischen Staaten
und dabei nicht zuletzt unseres Vaterlandes
angesichts des augenblicklichen Rückstandes
gegenüber den führenden Atommächten
von ausschlaggebender Bedeutung
sein wird.
Immer mehr vertieft sich auch die Überzeugung,
daß – bei aller Notwendigkeit, den
Anschluß an die wissenschaftliche und technische
Entwicklung im nationalen Bereich
weitmöglichst zu gewinnen – sowohl im
europäischen als auch im weltweiten Raum
gemeinsame Anstrengungen notwendig
sind, um die ungeheueren Möglichkeiten
der Kernenergie für den friedlichen Fortschritt
voll auszuschöpfen.
Es ist, schon um den eigenen Standpunkt für
die weitere Beteiligung an der internationalen
Zusammenarbeit auf dem Kernenergiegebiet
festzulegen, zweckmäßig und wertvoll,
von Zeit zu Zeit einen Überblick über
die bestehenden Einrichtungen sowie die
verschiedenen Vorhaben und Pläne zu gewinnen
und eine gewisse Zwischenbilanz zu
ziehen. Diesem Zwecke sollen, ohne Anspruch
auf Vollständigkeit in allen Einzelheiten
zu erheben, die nachstehenden Zeilen
dienen. Ich darf dabei zunächst auf die
ganz oder überwiegend wissenschaftlichen
Gremien der Zusammenarbeit und sodann
auf die bilateralen und multilateralen Gegebenheiten
und Vorhaben eingehen.
Cyber Security von Nuklearanlagen
in 2015 im Fokus der IAEO
John Shepherd | Seite 66
Im Jahresverlauf 2015 wird die Internationale
Atomenergie-Organisation (IAEO) zu
einer speziellen Konferenz zum Thema
„Computersicherheit“ einladen. Die IAEA
sieht aufgrund von Cyber-Attacken auf Finanzeinrichtungen
und Regierungsbehörden
bei diesem Thema auch für den Nuklearsektor
einen besonderen Bedarf.
Die IAEO führt dazu an, dass in den vergangenen
Jahren Ereignisse mit Beeinträchtigung
der IT-Sicherheit bei Nuklearanlagen,
wie der STUXNET-Attacke, gezeigt
haben, dass auch diese für Cyber-Angriffe
anfällig sein können.
Entsprechend sieht die IAEO einen wachsenden
Handlungsbedarf, da kerntechnische
Anlagen bei weiter zunehmenden Anwendungen
von Computersystemen und
weiteren digitalen Einrichtungen vermehrt
zum möglichen Ziel von Cyber-Attacken
oder kombinierten Cyber-Physischen-Attacken
werden können.
Die für Juni 2015 in Wien geplante Konferenz
soll sich mit den aktuellen Trends der
Computersicherheit sowie möglichen zukünftigen
Themen und Handlungsfeldern
beschäftigen. Sie ist auch eine Antwort auf
die Erklärung der Minister der IAEO-Mitgliedsstaaten
aus dem Jahr 2013, die auf
die wachsende Bedrohung durch Cyber-Attacken
und deren Möglichkeiten von Auswirkungen
auf die nukleare Sicherheit verwies.
Laut IAEO ist er ein weiteres Ziel der Konferenz,
die internationale Zusammenarbeit
auf dem Gebiet der Computersicherheit als
ein wichtiges Element der nuklearen Sicherheit
zu fördern.
Die IAEO wird Einzelheiten zur „Internationalen
Konferenz zu Computersicherheit in
der kerntechnischen Welt: Fachgespräche
und Expertenaustausch“ auf ihren Webseiten
veröffentlichen.
11
ABSTRACTS | GERMAN
Abstracts | German
atw Vol. 60 (2015) | Issue 1 ı January
12
EU 2030 Targets “Unachievable”
Without Long-Term Nuclear Operation
INSIDE NUCLEAR WITH NUCNET
NucNet
Nuclear energy will continue to support
greenhouse gas emission reduction targets until
2020, but without decisions on long-term
operation of ageing reactors, it will be difficult
for the EU to meet its 2030 targets, International
Energy Agency (IEA) executive director
Maria van der Hoeven, tells NucNet.
NucNet: Do you think EU energy policy addresses its goals
of competitiveness, security of supply and sustainability?
Maria van der Hoeven: At the IEA we have quite a few questions
about this. It is good to have these targets, but up until
now the EU is missing the direct connection between the three
goals. What is mostly needed to achieve the goals is to finalise
the EU’s internal energy market. Secondly, if you have a functioning
energy market, you need cost-effective climate and
energy policies because it is not only about climate and energy,
but also about economic development and competitiveness.
When you look into the EU climate and energy package,
which sets the target of reducing greenhouse gas emissions by
40 percent by 2030 compared to 1990, increasing the share
of renewable energy sources to 27 percent and increasing energy
efficiency by at least 27 percent, it is a European package.
What I mean by that is that these EU targets are not
translated into national targets. What has to be done is to
ensure there is a governance framework to monitor how these
Europe-wide targets are going to be achieved. I think it will be
interesting to see how the new Commission will do this and
how energy security and especially security of electricity supply
will be improved.
NucNet: What do you think is the role of nuclear energy in
these plans?
Maria van der Hoeven: It is important to realise that nuclear
has been very important when it comes to the reduction of
greenhouse gas emissions. Nuclear is one of the biggest lowcarbon
electricity sources and this should not be forgotten. It
provides 27 percent of the EU’s electricity and it will continue
to support the EU’s emission reduction goals until 2020.
However, after 2020 we are expecting the shutdown of the
German nuclear fleet, with Belgium and Switzerland following.
By that time, decisions will need to be taken. We have an
ageing EU reactor fleet which requires country-level and
owner/operator-level decisions in the short term regarding
plant safety regulations, plant upgrades, uprates, lifetime extensions
and licence renewals. I think upgrading and uprating
existing nuclear plants is one of the cheapest ways of producing
carbon-free electricity in the EU. Without long-term
operation, we expect nuclear capacity in the EU could fall by
a factor of six by 2030 and that will make it more difficult to
achieve the EU’s 2030 targets.
designs. We are in favour of an EU-wide nuclear design approval
process, combined with appropriate market mechanisms
to help investment decisions. In our view, the EU should
ensure that those member states that wish to maintain the
nuclear option can invest in new nuclear. They should benefit
from the same incentives as other low-carbon generating
technologies. Nuclear should not be put at a disadvantage under
the new state aid rules.
NucNet: What are the biggest challenges the EU faces related
to nuclear energy in the coming decades?
Maria van der Hoeven: The biggest challenge will be the decommissioning.
The primary issue with this is waste management.
There is no nuclear repository in place for long-lived
nuclear waste. Another challenge is the risk to energy security.
Particular attention should be paid to investments in new
nuclear power plants to be built in the EU using third-country
technology providers to ensure that these plants are not
bound to one supplier of nuclear fuel. The possibility of fuel
supply diversification, ensured by the Euratom Supply
Agency, should be a condition for any new investment. This
would contribute to a diversified portfolio of fuel supply in the
interest of all EU plant operators.
NucNet: Why do you think there is still a “sensitivity” regarding
nuclear in European public opinion?
Maria van der Hoeven: We want to acknowledge that there
is considerable sensitivity around nuclear energy. The same is
true for shale gas and carbon capture and storage. This sensitivity
to nuclear is not on the same level in all IEA member
countries. For example, Austria and the Czech Republic
clearly do not share the same view.
Europe is very sensitive to almost all forms of energy, including
wind turbines and solar panels. This is linked to a lack of
information, so we need more and better transparency on information
for people. Because of differences in the perception
of costs, benefits and risks, each member state closely guards
its sovereignty over its nuclear power industry. The EU should
contribute to transparency across the Union.
Background
The IEA report “Energy Policies of IEA Countries: European
Union – 2014” was published on 1 December 2014. Recommendations
in the report build on lessons learned since the
first IEA in-depth review of the European Union in 2008.
An executive summary of the report is online: www.iea.
org/Textbase/npsum/EU2014SUM.pdf
Maria van der Hoeven became executive director of the IEA
on 1 September 2011. Previously, Ms. Van der Hoeven
served as a minister in the government of the Netherlands
from 2002 to 2010.
NucNet: What role does the EU have to play in ensuring
more investment in new nuclear?
Maria van der Hoeven: If the EU’s ageing reactor fleet is going
to be decommissioned, then a decision has to be taken as
to whether investments in new nuclear will be made. To help
these investment decisions we need changes. For instance,
there is no EU-wide licencing of new nuclear power plant
Author
NucNet
The World’s Independent Communications Network
for Nuclear Energy and Ionising Radiation
Editor responsible for this story: Lubomir Mitev
Avenue des Arts 56
1000 Brussels/Belgium
www.nucnet.org
Inside Nuclear with NucNet
EU 2030 Targets “Unachievable” Without Long-Term Nuclear Operation ı NucNet
atw Vol. 60 (2015) | Issue 1 ı January
Calendar
2015
13.-01.-15.01.2015
World Nuclear Spotlight 2015 and Working
Group Meetings: Beijing, China.
World Nuclear Association.
www.etouches.com/ehome/105915/235404/
01.02.-04.02.2015
CONTE 2015 – Conference on Nuclear Training and
Education. Jacksonville, FL, USA. American Nuclear
Society – ANS, www.ans.org
09.02.-13.02.2015
32 nd Short Courses on Multiphase Flow 2015. Zurich,
Switzerland. ETH Zurich, Institut für Energietechnik,
www.lke.mavt.ethz.ch
18.02.-19.02.2015
Nuclear Decommissioning & Waste Management
Summit. London, UK. Active Communications
International, www.wplgroup.com
01.03.-04.03.2015
PIME 2015 – Public Information Materials Exchange.
Bratislava, Slovakia. European Nuclear Society –
ENS, www.euronuclear.org
03.03.2015
Nuclear energy in the UK: priorities for new build,
funding and developing the supply chain.
Central London, UK. Westminster Energy,
Environment & Transport Forum.
www.westminsterforumprojects.co.uk/forums/
event.php?eid=935&t= 7870
05.03.2015
4. Fachgespräch Endlagerbergbau. Essen, Germany.
DMT GmbH & Co. KG, www.dmt.de
15.03.-19.03.2015
WM2015 Conference. Phoenix, AZ, USA.
www.wmsym.org
16.03.-20.03.2015
SUNCOP BF 2015 Seminar: BEPU Methodologies
and Applications for FSAR in Nuclear Reactor
Safety Technology. College Station, TX/USA. Nuclear
Research Group of San Piero a Grado (GRNSPG) of
the University of Pisa (UNIPI), the Department of
Nuclear Engineering of Texas A&M (Texas A&M),
the Network of Nuclear Engineering and Energy
Services (NNEES). www.grnspg.ing.unipi.it/suncopbf/
19.03.-20.03.2015
Istanbul Nuclear Power Plants Summit.
Istanbul, Turkey.
www.nuclearpowerplantssummit.com/
13.04.-14.04.2015
2015 JAIF Annual Conference. Tokyo, Japan. Japan
Atomic Industry Forum. www.jaif.or.jp
19.04.-23.04.2015
RRFM 2015 – European Research Reactor Conference.
Bucharest, Romania. European Nuclear Society – ENS,
www.euronuclear.org
05.05.-07.05.2015
46 th AMNT – Annual Meeting on Nuclear Technology
2015 | Jahrestagung Kerntechnik (AMNT 2015).
Berlin, Germany.
DAtF – Deutsches Atomforum e.V.
(German Atomic Forum) and
Kerntechnische Gesellschaft e.V.
(German Nuclear Society). Programme,
www.nucleartech-meeting.com
17.05.-20.05.2015
ICONE 23 – Nuclear Power – Reliable Global Energy.
Chiba, Japan. Japan Society of Mechanical Engineers
(JSME), American Society of Mechanical Engineers
(ASME) and Chinese Nuclear Society (CNS).
www.icone23.org
19.05.-21.05.2015
RAMTrans 2015 – Radioactive Materials Transport
and Storage Conference and Exhibition. Oxford, UK.
Nuclear Institute, www.ramtransport2015.com
31.05.-03.06.2015
Canadian Nuclear Society 35 th Annual Conference –
Nuclear Innovation Through Collaboration. Saint
John, Canada. Canadian Nuclear Society.
www.cnsconference2015.org
01.06.-03.06.2015
ATOMEXPO 2015. Moscow, Russia. Rosatom,
www.atomexpo.com
07.06.-11.06.2015
2015 ANS Annual Meeting – Nuclear Technology:
An Essential Part of the Solution. San Antonio, TX/
USA. ANS – American Nuclear Society,
www.ans.org
09.06.-11.06.2015
Power-Gen Europe – Secure Power for a Sustainable
Economy. Amsterdam, The Netherlands. PennWell.
www.powergeneurope.com
14.06.-20.06.2015
CRETE 15 – International Conference in Applications
of Nuclear Techniques. Crete, Greece.
www.crete15.org
15.06.-19.06.2015
International Conference on Management of Spent
Fuel from Nuclear Power Reactors – An Integrated
Approach to the Back-End of the Fuel Cycle.
Vienna, Austria.
International Atomic Energy Agency – IAEA.
www.iaea.org
18.06.-19.06.2015
Neue Entwicklungen im Strahlenschutz und ihre
Anwendungen in der Praxis. Munich, Germany.
TÜV SÜD Industrie Service GmbH and
TÜV SÜD Akademie GmbH,
www.tuev-sued.de
22.06.-25.06.2015
ENYGF 2015 -European Nuclear Young Generation
Forum 2015. Paris, France. ENS YGN,
www.nygf2015.org
19.08.-28.08.2015
Frédéric Joliot/Otto Hahn Summer School on Nuclear
Reactors ‘Physics, Fuels, and Systems’ – Enhanced
Reactor Safety – Design and Simulation of Evolutionary
LWR Cores. Karlsruhe, Germany. Nuclear Energy
Division of the Commissariat à l´Énergie Atomique
(CEA/DEN, France) and Karlsruher Institut für Technologie,
KIT. www.fjohss.eu
24.08.-28.08.2015
23 rd WiN Global Annual Conference: Women in
Nuclear Meet Atoms for Peace. Vienna, Austria.
WiN Global and the WiN IAEA Chapter, IAEA.
www.women-in-nuclear.de, www.win-global.org/
01.09.-03.09.2015
Power-Gen Asia – Investing in a Sustainable
Tomorrow. Bangkok, Thailand. PennWell.
www.powergenasia.com
09.09.-10.09.2015
VGB Congress “Power Plants 2015”
Vienna, Austria. www.vgb.org
09.09.-11.09.2015
WNA Symposium 2015. London, United Kingdom.
World Nuclear Association,
www.wna-symposium.org
13.09.-17.09.2015
TopFuel 2015. Zurich, Switzerland. European Nuclear
Society – ENS, www.euronuclear.org
14.09.-18.09.2015
IAEA General Conference. Vienna, Austria.
International Atomic Energy Agency – IAEA.
www.iaea.org
20.09.-24.09.2015
GLOBAL 2015 – 21 st International Conference &
Exhibition: Nuclear Fuel Cycle for a Low-Carbon
Future. Paris, France. www.sfen.fr or www.sfen.org
05.10.-09.10.2015
Jahrestagung des Fachverbandes Strahlenschutz 2015.
Baden near Vienna, Austria. Österreichischer Verband
für Strahlenschutz (ÖVS), Deutsch-Schweizerischer
Fachverband für Strahlenschutz e. V. (FS).
www.strahlenschutztagung.at
08.11.-12.11.2015
2015 ANS Winter Meeting and Nuclear Technology
Expo. Washington DC, USA. ANS – American
Nuclear Society, www.ans.org
30.11.-11.12.2015
COP 21 – 21 st session of the Conference of the Parties.
Paris, France. United Nations Framework Convention
on Climate Change – UNFCCC,
www: http://www.unfccc.int
09.12.-11.12.2015
Power-Gen International and Nuclear Power International.
Orlando, Florida, USA. PennWell.
www.power-gen.com,
www.nuclearpowerinternational.com
13
CALENDAR
21.04.-23.04.2015
world nuclear fuel cycle. Prague, Czech Republic.
World Nuclear Association – WNE, NEI – Nuclear
Energy Institute. www.nei.org,
www.world-nuclear.org
23.04.-24.04.2015
Emergency Power Systems at Nuclear Power Plants.
Munich, Germany. TÜV SÜD Industrie Service GmbH
and TÜV SÜD Akademie GmbH, www.tuev-sued.de
23.06.-26.06.2015
International Conference on Operational Safety.
Vienna, Austria. International Atomic Energy Agency
– IAEA. www.iaea.org
10.08.-14.08.2015
SMiRT-23 – Structural Mechanics in
Reactor Technology. Manchester, UK.
SMiRT. www.smirt23.org
Calendar
atw Vol. 60 (2015) | Issue 1 ı January
OPERATION AND NEW BUILD 14
Overview of PHARE Projects Implemented
in Romania Between 1997 and 2008 for
Enhancing the Nuclear Safety Level
Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
1. Framework of PHARE programme and
projects list
Reconstruction of the economy of each member state is a
major asset for the European Union (EU) global community.
Since 1991, through the Poland Hungary Aid for Reconstruction
of the Economy (PHARE) programme, the
European Commission (EC) supported the transition of the
Eastern European states to the European market economy.
PHARE was a pre-accession financial assistance programme
which involved countries from Central and Eastern
Europe that applied to become members of the
European Union. The programme helped to carry out the
reforms required for membership and to equip the partner
countries to benefit from EU funds on accession.
Romania was the first country of post-communist
Europe to have official relations with the European Community.
It was included in the Community’s Generalized
System of Preferences from 1974. After December 1989
when the Romanian Revolution occurred, successive Romanian
Governments shared a common main goal to gain
EU membership. After Hungary and Poland, Romania was
the third Eastern European country to sign its Europe
Agreement (1993) and submitted its official application for
membership of the EU in 1995. During the 2000s, Romania
implemented a large number of reforms to prepare for EU
accession. Part of the costs was covered using the PHARE
Programme.
One of the fundamental priority areas of the PHARE
funding was nuclear safety. Regarding this area, Romania,
member of the EU since 1 st January 2007, received funds
(more than 8 million euro) from the EC from 1998 in order
to align its legislation and practices to the level of requirements
imposed by the EU.
Currently, Romania is operating two CANDU 6 type reactors
located at Cernavodă site. A CANDU 6 type reactor is
based on Canadian technology, and is a Pressurized Heavy
Water moderated and cooled Reactor (PHWR). Romania is
the only country which operates such type of reactors
within the EU, and it is the only one within the Eastern
European states operating only power reactors based on
Western technology.
In the period covered by this study, 16 PHARE projects
were implemented in Romania (see Table 1). In general,
these projects were aimed at improving the relevant institutional
capabilities while dealing with nuclear safety issues.
More specifically, the topics covered were:
• Regulatory Activities (RA) (8 projects);
• Radioactive Waste Management (RWM) (7 projects);
• On-Site Assistance (OSA) – this means that direct support
was given to the NPP in order to improve nuclear
safety and to transfer the know-how of European power
plant operators (1 project).
2. Projects related to regulatory activities
The projects concerned mainly the national nuclear safety
authority “Comisia Naţională pentru Controlul Activităţilor
Nucleare” (the National Commission for Nuclear Activities
Control (CNCAN)) but also other specialized units and services
within the Ministry of Administration and Interior, the
Ministry of Environment and Waters Management, the Ministry
of Education and Research or by another National Agencies.
Figure 1 shows the implementation timeline of the
PHARE projects related to RA.
Enhancement of the regulatory regime
There were three projects dealing with the Regulatory Regime
Enhancement: RO/RA/01 and RO/RA/02 “Transfer
of Western European Methodology to the Nuclear Safety
Authority of Romania”, RO.01.10.01 “Nuclear Safety Regulatory
Regime Consolidation” and 2005/017-519.03.03
“Development of CNCAN capabilities regarding the regulatory
aspects of Naturally Occurring Radioactive Materials
(NORM) and Technologically Enhanced Naturally Occurring
Radioactive Materials (TENORM) related activities”.
The first project was implemented in two phases, with a
pause of more than 4 years between the phases. Both
phases addressed the areas needing enhancement with the
highest priority in the framework of the accession process
and for which the transfer of Western European methods
and practices was deemed to be most appropriate. The
main objective of the project was to strengthen and enhance
the effectiveness of the Romanian Nuclear Regulatory
Authority and to improve its competence and independent
technical assessment capability. Other topics
covered were: Quality Management System (QMS) within
the CNCAN organization, CNCAN performance on inspection
practice and emergency preparedness, assistance in
elaboration/implementation of regulations/norms/guides
in accordance with European legislation, Western practice
and taking into account the IAEA requirements.
The second project, “Nuclear Safety Regulatory Regime
Consolidation”, continued the work carried out in the first
project, and it was intended primarily to revise and develop
a new set of regulations in line with the practices of
the regulatory bodies who were members of the Consortium
of Western Regulators (CWR) which undertook the
project. In addition to the work carried out to improve the
QMS, CNCAN was in the process of implementing the acquis
communautaire related to the Council Directives
96/29/EURATOM and 97/43/EURATOM. During the project,
assistance was provided for the revision of the final
version of the regulations on radiation safety in the areas
of radiotherapy, radio diagnosis, industry and nuclear
medicine and the codes of practice for Dosimetry. In addition,
the project resulted in the improvement of the norms
regulating the safeguards and physical protection areas,
and a new set of norms on radioactive waste management
was developed, covering: the classification of the radioactive
waste, the principles of radioactive waste management,
clearance levels for radioactive waste and radioactive effluents
and the authorization process of pre-treatment,
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
Nr. Original Project Title Type of activity Project Code
1
2
Support for Regulatory Authority staff to improve its
capabilities with the view of Probabilistic Safety
Assessment
Development of CNCAN capabilities regarding the
regulatory aspects of Naturally Occurring Radioactive
Materials (NORM) and Technologically Enhanced
Naturally Occurring Radioactive Materials (TENORM)
related activities
2005/017-519.03.01
2005/017-519.03.03
3 Romanian Regulatory Emergency Response Center 5812.06.01
4 Early warning system – Cernavoda Regulatory Activities PH6.01/99 (Lot 1 and 2)
5 Nuclear Safety Regulatory Regime Consolidation RO.01.10.01
6
7
Support to the Romanian Nuclear Regulatory Authority
(CNCAN) in the licensing review of Fire Protection, Overpressure
Protection of Reactor Primary Circuit and Main
Steam Line Design Safety Issues in Cernavoda 1 NPP
Transfer of Western European Methodology to the
Nuclear Safety Authority of Romania
RO.01.10.02
8 Support to CNCAN – seismic evaluation – Cernavoda NPP RO/TS/01
9
Safety Assessment of the Radioactive X-Waste Repository
of Baita Bihor
RO/RA/01 and RO/RA/02
006-RO/PHARE-SCR/A6-01
OPERATION AND NEW BUILD 15
10
Preliminary Safety Analysis Report for the Low-Level
Radioactive Waste Repository Baita Bihor, Romania
632.08.01
11
12
Up-Grading of the Baita-Bihor Repository for
Institutional Radioactive Waste in Romania
Technical assistance to Romania in establishing the activity
of National Agency for Radioactive Waste (ANDRAD)
Radioactive Waste
Management
5812.06.03
5812.06.02
13
Technical Basis and Methodological Approach for Waste
Acceptance Criteria
PH4.10/94
14
Management of Spent Sealed Radioactive Sources in
Central and Eastern Europe
SSRS/P01
15 Characterization of radioactive waste at Cernavoda NPP 5812.06.04
16
Modernisation Project for Cernavoda NPP2 –
Environmental Impact Assessment
On-Site Assistance
009-RO/PHARE-SCR/A6-C
| | Tab. 1.
PHARE projects implemented in Romania.
| | Fig. 1.
The timetable of PHARE projects related to Regulatory Authority.
treatment, conditioning and packaging of radioactive
waste. Last but not least, CNCAN staff was trained in various
other areas such as: practical implementation of Quality
Management requirements in the regulatory activities;
specific procedures for issuing type approval in case of
shipments; PHARE project management.
The last PHARE project was also the shortest project implemented
in support of RA. This project improved the
CNCAN technical capabilities in the framework of radioactive
waste management. In fact, this project assured the
implementation in Romania of the Council Directive
96/29/EURATOM which required for the first time that
workplaces in the non-nuclear industry also need to be
subject to regulatory control if the presence of natural radiation
sources, that can lead to a significant exposure of
workers or members of the public, cannot be disregarded
from the radiation protection point of view. Such workplaces
are found in industries using or processing types of
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
OPERATION AND NEW BUILD 16
minerals or rocks containing significant amounts of natural
radioactive elements (NORM industry). Other operations
such as storage, application or disposal of residues resulting
from the NORM or other industries containing enhanced
concentrations of naturally occurring radionuclides also
had to be included in the control. Title VII of 96/29/
EURATOM encompasses all kinds of natural radiation
sources and the resulting increase in exposure. The focus of
the project, on the other hand, was on materials (raw materials
with increased radioactivity, NORM and TENORM
residues) so that aircraft operation and radon in homes and
workplaces (spas, caves etc.) were beyond the scope of this
assignment. However, it was emphasized that the enforcement
of NORM/TENORM regulations depends critically on
the level of knowledge of the regulatory authorities.
Enhancement of the licensing capabilities
Three PHARE projects were related to the enhancement of
the licensing capabilities of the regulatory authority:
RO.01.10.02 „Support to the Romanian Nuclear Regulatory
Authority (CNCAN) in the licensing review of Fire Protection,
Overpressure Protection of Reactor Primary Circuit
and Main Steam Line Design Safety Issues in
Cernavoda 1-NPP”, RO/TS/01 “Support to CNCAN – seismic
evaluation – Cernavoda NPP” and 2005/017-519.03.01
“Support to Regulatory Authority Staff to improve its Capabilities
with the View of Probabilistic Safety Assessment”.
The project RO.01.10.02 started at the same time as the
“Nuclear Safety Regulatory Regime Consolidation” project
(01/01/2002) and was aimed at strengthening and enhancing
the effectiveness of the CNCAN and to improve its
competence in the licensing review of fire protection, water
hammer safety analysis, overpressure protection of the
reactor primary circuit and main steam line design safety
issues in Unit 1 of Cernavoda NPP. The Fire Protection Programme,
CNCAN’s Norm on specific requirements on fire
protection in NPP, documentation covering the overpressure
protection in Safety Systems and Reactor Primary Circuit
and the Main Steam Line Stress Analyses were reviewed
during the implementation of this project. This
work benefited CNCAN in the decision making related to
the Cernavoda NPP Unit 1 licensing process, in the resolution
of open safety issues and provided technical and
methodological support during the CNCAN independent
review process of the plant modifications safety assessment
submitted by the utility.
The project “Support to CNCAN – seismic evaluation –
Cernavoda NPP” was requested in order for the Regulatory
Authority to receive assistance in the safety related seismic
evaluation of the Cernavoda NPP. Under the project several
seismic safety assessment studies performed for Cernavoda
NPP were considered and evaluated. CNCAN was assisted
in the establishment of procedures and practices for addressing
seismic hazards evaluation and setting relevant
regulatory requirements.
The last PHARE project connected to the enhancement
of the licensing activities was the project “Support to Regulatory
Authority Staff to improve its Capabilities with the
View of Probabilistic Safety Assessment”. This project required
very high quality work to be carried out both by
CNCAN personnel and by the sub-contractors responsible
for the implementation of the project. The entire project
(approx. 1.5 years) consisted in the provision of training to
CNCAN staff responsible for PSA analysis. The training was
aimed at equipping the staff of CNCAN with the necessary
skills to determine to what extent the existing plant specific
Probabilistic Safety Assessment (PSA) for Cernavoda
Unit 1 could be used in supporting decisions related to nuclear
safety, as well as at establishing a framework that
would assure that the present and future PSAs could be
relied upon. For knowledge management reasons, CNCAN
developed a draft final version of the “Procedure on the review
of PSA” (Level 1 for internal initiators as well as for
internal and external hazards) that will be used in the future.
Also, the final version of the “Norm on Regulatory
Requirements for PSA” was developed, and it can be used
by the utility staff in the preparation of the Licensee’s request
for changes in the licensing basis and by regulatory
staff in the evaluation of such submittals.
Emergency response
There were two PHARE projects implemented in Romania
which were related to emergency response: PH6.01/99 (Lot
1 and 2) “Early warning system – Cernavoda” and 5812.06.01
“Romanian Regulatory Emergency Response Center”.
The first PHARE project related to this topic was the
project “Early warning system – Cernavoda”. This project,
although related to RA, had, however, other beneficiaries
than CNCAN: the Ministry of Administration and Interior
(MI) and the Ministry of Environment and Waters Management
(MEWM) as well as an extended scope: to not only
provide a notification system for Cernavoda city and NPP,
but also one for accidents with trans-boundary effects. At
the end of this project, besides the enhancement of the existent
Early Warning System around Cernavoda NPP and
the establishment of a system designed for real time data
acquisition and data transfer to the National Central Emergency
Situation Centre, an Early Warning system around
Kozloduy NPP (but within the Environmental Protected
Zone on Romanian territory) was installed and a Regional
Emergency Centre in the city of Bechet (close to Romanian/
Bulgarian border on the Danube river) was established.
The second project, “Romanian Regulatory Emergency
Response Center”, continued the work performed by the
previous PHARE project. The difference was that this project
was aimed at improving the regulatory body (CNCAN)
competences in emergency management. The project
provided the appropriate equipping of the CNCAN Emergency
Response Centre. By the end of the project, CNCAN
was provided with technical means for emergency response
and sample analysis, and also with the necessary
training for raising the skills and knowledge of the staff responsible
for emergency response. Besides, CNCAN developed
a comprehensive set of technical specifications for
the tendering and procurement of the necessary equipment
– and the scope was extended from the acquisition of
analysis equipment to all the equipment needed for the establishment
of a network for transferring data to other national
and international Emergency Response authorities.
3. Projects related to radioactive waste
management
The PHARE projects implemented in Romania in support of
RWM focussed on improving the quality of services and the
skills and knowledge at institutional level of the institutions
considered the major players in the radioactive waste
management area. The beneficiaries of these projects
were: CNCAN, the Ministry of Education and Research
(MER), the National Agency for Radioactive Waste (AN-
DRAD), the Romanian National Electrical Company (Societatea
Nationala “Nuclearelectrica” (SNN)) and the “Regia
Autonoma pentru Metale Rare” (Rare Metals Autonomous
Authority – RMAR). Figure 2 illustrates the timeframes of
these projects.
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
| | Fig. 2.
The timetable of PHARE projects related to Radwaste Management.
Radioactive waste repository
There were 4 projects in connection to the Radioactive
Waste Repository.
Three of them were intended to support the establishment
of the national Low-Level Radioactive Waste Repository
at Baita, in Bihor County. These projects were, chronologically,
006-RO/PHARE-SCR/A6-01 “Safety Assessment
of the Radioactive X-Waste Repository of Baita Bihor”,
5812.06.03 “Up-Grading of the Baita-Bihor Repository for
Institutional Radioactive Waste in Romania” and 632.08.01
“Preliminary Safety Analysis Report for the Low-Level Radioactive
Waste Repository Baita Bihor, Romania”.
The first project focused on providing technical assistance
to the CNCAN experts in order to improve their techniques
of overall safety assessment of the Low-Level Radioactive
Waste Repository Baita Bihor. The project considered
the technical characteristics of the waste disposal
site (i.e. the inflow rate, the sorption on backfill) and delivered
a thorough Integrated Performance Assessment
(IPA) based on code simulations, in order to verify the uncertainty
of hypotheses and to identify worst case scenarios
(i.e. the rock cover has been totally eroded). The IPA
was performed in collaboration with IRSN (France) and
GRS (Germany) specialists for establishing a reliable
strategy for the future (i.e. for defining the maximum
waste content of the repository and of waste acceptance
criteria). It should be noted that the assessment was performed
under the regulatory and technical point of view,
and, at the end, a preliminary list of base case scenarios
was established. These scenarios included particular features,
events and processes (FEP) defined in the so-called
simplified FEP lists drawn up by experts and screened out
on the basis of appropriate justifications.
The second project, “Up-Grading of the Baita-Bihor Repository
for Institutional Radioactive Waste in Romania”,
continued on the same activities started in the first project.
This project targeted the application of best EU practices in
the upgrading and licensing of Baita-Bihor Repository for
institutional radioactive waste in Romania, in order to improve
the radiological protection of the operational staff,
population and environment with regards to radioactive
waste disposal activities in Romania. For this project, the
beneficiaries were both the Ministry of Education and Research
and CNCAN. The project aimed, within the framework
of the Institutional Radioactive Waste, to assess the
situation at Baita Bihor placing emphasis on the most urgent
actions to be implemented for the complete refurbishment
and modernisation of the repository.
The third project treating the establishment of the Low-
Level Radioactive Waste Repository was the longest one.
The project “Preliminary Safety Analysis Report for the
Low-Level Radioactive Waste Repository Baita Bihor, Romania“
was a clear continuation of the efforts performed
during the implementation of the project regarding the
safety assessment of the repository. Not only CNCAN, but
also the Ministry of Education and Research (MER) were
the project beneficiaries, although the results were
mainly used by CNCAN during the licensing process of
the repository operations. The work was carried out to
ensure that the activities related to the Baita Bihor repository
corresponded to the European Union practices and
strategies. During the project implementation the Preliminary
Safety Assessment Report based on in-depth
analysis of the operational radioprotection and post-closure
radiological safety of the repository was developed,
including the assessment of the associated uncertainties.
In order to undertake future safety analysis, local skills
were developed as well, in parallel with the definition of
a programme focused on site characterization and experimental
work in order to further improve the knowledge
of the site and reduce the uncertainties underlying the
assessed doses.
National Agency for Radioactive Waste
One project (5812.06.02) dealt with “Technical assistance
to Romania in establishing the activity of National
Agency for Radioactive Waste (ANDRAD)”, and started at
the same time as the project related to the up-grading
of the repository. This project was needed to help Romania
to establish in detail the responsibilities of the National
Agency for Radioactive Waste, which was formally
set up in January 2003 (following the Governmental Ordinance
No.11/2003). ANDRAD was assisted to develop a
national strategy for safe management of spent fuel and
radioactive waste and to define the appropriate financing
scheme for radioactive waste disposal. During this project
the recommendations from the 2004 Country Report
regarding the progress made by Romania in the accession
perspective were implemented; they concerned
the clear delineation of responsibilities between CNCAN,
ANDRAD and Nuclear Agency (AN) because of the need
for continuation of efforts to implement the measures to
improve the management of institutional radioactive
waste. The transfer of the National Repository of Radioactive
Waste Baita-Bihor to ANDRAD responsibility was
following the recommendations of the (Romanian) Country’s
Supreme Defence Council Resolution no. 108/2005
on the establishment of the necessary financial resources
for decommissioning and the management of radioactive
waste.
OPERATION AND NEW BUILD 17
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
OPERATION AND NEW BUILD 18
Waste acceptance criteria
The PHARE project PH4.10/94 had beneficiaries from multiple
countries. In Romania, the beneficiary was the “Regia
Autonoma pentru Metale Rare” (Rare Metals Autonomous
Authority – RMAR). The other co-beneficiaries were institutions
from Czech Republic, Estonia, Hungary, Latvia,
Lithuania, Poland, Slovakia and Slovenia. The project
provided the beneficiary country with comprehensive information
on accepted EU practices in radioactive waste
management and disposal, critical assessment of the methods
employed in the beneficiary’s countries and methodology
for the development of radioactive Waste Acceptance
Criteria (WAC) for waste packages to ensure their safe
transportation, handling, storage and disposal. The technical
assistance provided for Romania covered the following:
a presentation of the waste packages acceptance criteria
methodology for all operating disposal facilities in
the countries of the European Union; the performance of a
technical study covering relevant aspects to define the
waste packages acceptance criteria; and the development
of the waste package acceptance criteria approach that
will be applied to the planned disposal facilities.
Waste characterization at Cernavoda NPP
The project 5812.06.04 was the last PHARE project implemented
in Romania in support of RWM activities. This project
was also the only project in support of RWM having as
beneficiary the nuclear operator: the Romanian National
Electrical Company (Societatea Nationala “Nuclearelectrica”
(SNN)). The project covered the aspects related to on-site
radioactive waste characterisation in order to achieve the
required level for accession to the European Union. The
activities carried out were concise and referred to: the classification
system based on physical form of the wastes
(solid, organic liquid, inflammable solid-liquid mixes); the
identification system, for each type of radioactive waste,
based on their source, substance, radionuclide content and
contact dose rate; and the on-site disposal facilities for each
type of radioactive waste. The project resulted in the setting
up of measuring equipment for waste characterisation,
the development of methodologies for characterising the
radionuclide content in low and intermediate level waste,
the establishment of a database based on the waste characterisation
system and the improvement of the capability of
personnel of Cernavoda NPP to implement the characterisation
programme. Last, but not least, a waste segregation
management according to disposal route was implemented
(e.g. free release, disposal in a landfill, disposal in a
near-surface repository, and long-term storage pending the
availability of a deep geological repository).
Spent Sealed Radioactive Sources (SSRS)
There was only one project implemented in Romania in respect
of the management of the SSRS: SSRS/P01 “Management
of Spent Sealed Radioactive Sources in Central
and Eastern Europe”. This project was the shortest project
in support of the RWM activities (12 months), and was
also an international one having five beneficiary countries.
During the project implementation, a study was performed
to consider the situation relating to the regulation and
management of spent sealed radioactive sources (SSRS) in
five of the Central and Eastern European (C&EE) countries
that were being considered for admission to the EU,
namely, Bulgaria, Latvia, Lithuania, Romania and Slovakia
(two previous studies had considered the situation in the
current EU member states and in the Czech Republic, Estonia,
Hungary, Poland and Slovenia). It should be noted
that, at the date of the project, Romania was the only country
in the study that manufactured SRS and had one national
radioactive waste disposal facility that could accept
SSRS. In addition, there were two interim storage facilities
for SSRS. The project concluded that all the countries were
proceeding with their radioactive waste management
plans, taking account (to varying degrees) of international
standards and practices relating to acceptable dose uptakes,
environmental impact, etc. Such a situation was
similar to that relating to the EU member states that had
been studied, which had also not developed specific prescriptive
disposal criteria for universal application across
all states. Many improvements for radioactive waste management
were recommended to the states and the implementation
of these was expected to serve to further improve
the situation and provide a long-term safe environment
for the management of SSRS. In fact, the technical
assistance offered for Romania covered the following: detection
of radioactive material at the entrance of metal
scrap facilities and at national borders; understanding of
the full life-cycle of SRS, from manufacture through to disposal
in order to avoid accidental inclusion of SSRS in consignments
of scrap metal; development of the current regulations
in order to include waste categorisation, facility
licensing and SSRS disposal; and transferring of the old
database that included SRS and related information, kept
by CNCAN, to a new more practical one.
4. Projects related to On-Site Assistance
The project with reference 009-RO/PHARE-SCR/A6-C
was titled “Modernisation Project for Cernavoda NPP2 –
Environmental Impact Assessment“. It should be noted
that the aim of the project was not the assessment of the
safety of the power plant design itself, but of the manner in
which the safety-related, radiation protection and emergency
response systems already were or would be realised
at Cernavoda, and their compliance with Western standards
and practices as far as relevant to the EIA.
It was underlined that the overall radiation protection
situation at the current Unit 1, which was assumed to be
identical to that to be applied at Unit 2, was considered to
be in compliance with relevant international standards and
practices regarding the protection of both staff and population.
The significance of some minor deviations was considered
to be low and, additionally, they were understood
to be resolved before the Unit 2 was put into operation.
Furthermore, many design changes in the Cernavoda
Unit 2 were observed with respect to its reference Unit, the
Cernavoda Unit 1. Of these design improvements, the majority
were related to safety and the mitigation of postulated
accidents. Therefore, the dose estimates made for the
Unit 1 could be assumed to be conservative for the Unit 2.
The list of major changes planned for this unit included a
number of the components and systems, such as the Heat
Transport System (HTS) and its components, heat transport
auxiliary systems, safety systems, instrumentation
and control systems and the control room. Improvements
had also been recommended by the consultant (HPC AG –
the engineer enterprise) for safety analysis methodologies.
5. Discussion
The projects in support of the Regulatory Authority targeted
the areas considered as highest priority in the accession
process with the aim of enhancing the effectiveness of
the Romanian Nuclear Regulatory Authority and improving
its competence and independent technical assessment capability.
The type of intervention accomplished considered
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
both the organisational and human dimensions of the Regulatory
Authority, intervening on its operating procedures,
capacity to equip itself with adequate Quality Management
System and Procedures, and on the processes affecting
the output of the Regulatory Authority activities.
The intervention on the human dimension, i.e. the staff,
of the Regulator was done by means of the implementation
of targeted training. The transfer of know-how took place
not only in theoretical terms but by exploiting opportunities
of “learning by doing”, which allowed the staff to develop
their skills and competences whilst approaching the
open issues they were called to analyse and tackle. For example,
the PHARE assistance for the implementation of the
two Council Directives inherent radiation protection were
combined with assistance for the revision of the regulations
on radiation safety in the areas of radiotherapy, radio diagnosis,
industry and nuclear medicine and the codes of
practice for Dosimetry – in other words, the staff learned
what the purposes and the meaning of the Council Directives
were, while they were mentored on how to implement
them. Furthermore, the assistance also supported CNCAN
in enhancing its competences with respect to the tasks inherent
in the Cernavoda NPP Unit 1 licensing process, the
safety related seismic evaluation of the Cernavoda NPP, and
the analysis of the of PSA for Cernavoda Unit 1.
The projects which improved the Regulatory Authority
competences in emergency management highlighted the
need to consider the inter-institutional links whilst carrying
out certain interventions. For this reason, the project
on the early warning system for Cernavoda not only benefited
the Regulatory Authority, but also the Ministry of
Administration and Interior (MI) and the Ministry of Environment
and Waters Management (MEWM). The PHARE
projects also emphasised the need for attention to the
trans-boundary effects of accidents.
The projects also provided tools for the improvement of
the Quality Management System of CNCAN, of the working
methodology and performances of the Authority in inspection
practices and emergency preparedness and in the conception
and implementation of regulations, considering
the relevant international and Western practices and legislation.
The PHARE projects in support of radioactive waste
management targeted several institutions, including
CNCAN, all involved in the radioactive waste management
area. These projects benefited from the opportunity to exploit
synergies by addressing radioactive waste management
issues which were a common denominator among
the considered accession countries. The methodology adopted
was similar to that followed in the implementation
of the support to the Regulatory Authority, in the sense that
the transfer of the EU knowledge and practices took place
within the process of revision of the methods and practices
adopted in the beneficiary’s country. Moreover, some projects
focusing on the repository of Baita Bihor, provided
direct guidance in the Safety Assessment for the Repository,
the application of best EU practices in the upgrading
and licensing of Baita-Bihor Repository, and its Preliminary
Safety Analysis Report.
Furthermore, the PHARE interventions aimed at supporting
the establishment of the National Agency for Radioactive
Waste (ANDRAD) and provided assistance to the
implementation of the necessary separation of tasks and
responsibilities between this Agency, CNCAN and the Nuclear
Agency.
The projects also provided training for developing the
local skills, including those of the nuclear operator.
While observing that in general there were 7 institutions
involved in the projects’ implementation, the main
beneficiary was the National Nuclear Regulatory Authority
(CNCAN). CNCAN was involved not only in all the RA supporting
projects, but also in four other PHARE projects supporting
RWM. SNN was involved in two projects: the OSA
project and one of the RWM projects. The other players
were involved in one project each. The overall involvement
distribution is illustrated in Figure 3.
Although in each of the three improvement areas targeted
by the projects there were pauses – for example, two
pauses while implementing the PHARE projects in support
of RA and RWM – at the country level the effort was much
more continuous and extended to a period of 12 years (see
Figure 4). It is worth to consider that in order to horizontally
transfer the knowledge obtained by the implementing
a project, some time is needed after the project is completed.
After the 1 January 2007 (the day of Romania’s accession
to the EU) there were two more PHARE projects implemented
in Romania. Both of them addressed the field of RA
– one of them aimed at improving the quality of the PSA
| | Fig. 3.
Distribution of beneficiaries among the PHARE projects.
OPERATION AND NEW BUILD 19
| | Fig. 4.
PHARE projects implementation timeline (red: Regulatory Authority; green: Radwaste Management; blue: On-Site Assistance).
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
OPERATION AND NEW BUILD 20
analysis performed by the CNCAN’s staff and the other one
aimed at improving CNCAN’s capabilities regarding the regulatory
aspects of NORM and TENORM related activities.
As for the staff training strategy, while observing the
chronology of project implementation, it can be easily seen
that the majority of the effort was directed at training of
the staff of the CNCAN. In fact, the CNCAN’s staffs were
trained continuously, on relevant topics, during the whole
period of implementation of the PHARE projects. Only for
specific activities the training of the personnel focussed on
staff from other agencies, i.e. RMAR staff was trained for
the development of radioactive WAC for waste packages
to ensure their safe transportation, handling, storage and
disposal. Similarly, staff from MI and from MEWM was
trained on how to develop and use a notification system
not only for accidents affecting Cernavoda city and NPP,
but also one for accidents with trans-boundary effects. The
licensee’s staff also received important training on how to
characterize radioactive waste at the plant, on understanding
the environmental impact of their activities and
regarding the current level of radioprotection for staff,
public and environment. The scientists from MER were involved
in performing different calculations using various
codes while preparing the PSAR for the Low-Level Radioactive
Waste Repository Baita Bihor.
6. Conclusions
During the phase of accession to the European Union, Romania
benefited of a number of PHARE projects aiming at
improving the nuclear safety in the country. The implementation
of the projects covered a period of about 12
years and was carried out following a clear strategy of intervention.
The projects targeted areas identified as having
high-priority and highly impacting the nuclear safety of
the country: Regulatory framework, Radioactive Waste
Management and also Operation.
In particular, the projects focused on the Regulatory
framework and contributed both to its institutional development
and to the enhancement of the skills and competences
of the staff of the Safety Authority, which had the
opportunity to acquire the western and international
know-how and practices and incorporate them into its own
practices while applying them to the issues the staff were
called upon to deal with in their regulatory duties. The
knowledge and skills acquired will be further used for continuously
improving the in-house capabilities of the organisations
involved in carrying out and controlling the nuclear
activities in Romania.
Together with the institutional consolidation of the
Regulatory Authority, the PHARE projects produced as
spin-off a series of technical documents to be used as reference
in the future activities of the Safety Authorities and of
the nuclear actors of the countries.
This review of the selected PHARE projects has shown
that the intervention on the nuclear safety of the country
followed a systematic approach, with projects carried out
sometimes in parallel, sometimes in series, and allowing –
in the latter case – adequate time between the sequential
projects for the absorption and further development of
knowledge and know-how. In this way, the conception of
the follow-up project was started considering a new basis.
The PHARE interventions highlighted the specific inter-institutional
dimension of nuclear safety in Romania
improving the compatibility of the regulatory system with
the country’s regulatory commitment and institutional
and human resources endowment, stressing also the trans-
boundary effects of some specific accidents. It is important
to recognise also the role of PHARE in bringing together a
number of accession countries for considering the common
nuclear safety issues they were called to tackle, for
example those related to Radioactive Waste Management,
and identifying opportunities for cooperation; this uncovers
another side of the European added value of the programme.
Finally, the review of the PHARE projects has highlighted
that the regulatory activities, the nuclear safety,
the safety of radioactive sources, the radioprotection and
the radioactive waste management programmes were addressed
and enhanced during the implementation of the
projects.
Acknowledgements
The success of the PHARE projects was based on the efforts
of various stakeholders involved: the European Commission
staff involved in managing the projects, the Western
contractors and Eastern subcontractors that carried out
the work with professionalism, achieving the successful
results. It should be noted that the success of such projects
is also in direct relationship with the involvement of the
beneficiary organisation. All their work and efforts are appreciated
and acknowledged.
The PHARE programme was managed by the European
Commission Directorate General for Enlargement (DG
ELARG).
Abbreviations
AN Agentia Nucleara (Nuclear Agency)
ANDRAD Agentia Nationala pentru Deseuri Radioactive
(National Agency for Radioactive Waste)
CANDU Canada Deuterium Uranium
CNCAN Comisia Nationala pentru Controlul
Activitatilor Nucleare (National Commission
for Nuclear Activities Control)
CWR Consortium of Western Regulators
C&EEC Central and East-European Countries
EC European Commission
EIA Environmental Impact Assessment
EU European Union
EURATOM European Atomic Energy Community
FEP Features, Events and Processes
GRS Gesellschaft für anlagen-und Reaktor
Sicherheit mbH
HTS Heat Transport System
IAEA International Atomic Energy Agency
IPA Integrated Performance Assessment
IRSN Institut de Radioprotection et de Sûreté
Nucléaire
MER Ministry of Education end Research
MI Minister of Interior
MEWM Ministry of Environment and Water
Management
NORM Naturally Occurring Radioactive Materials
NPP Nuclear Power Plant
OSA On-Site Assistance
PHARE Poland, Hungary Aid for Reconstruction
PHWR Pressurized Heavy Water Reactor
PSA Probabilistic Safety Assessment
PSAR Preliminary Safety Assessment Report
QA Quality Assurance
QMS Quality Management System
RA Regulatory Activities
RMAR Rare Metal Autonomous Authority
(Regia Autonoma pentru Metale Rare)
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
RWM
SNN
SRS
SSRS
TENORM
TSO
WAC
References
Radioactive Waste Management
Societatea Nationala “Nuclearelectrica“
(National Society “Nuclearelectrica“)
Sealed Radioactive Source
Spent Sealed Radioactive Source
Technologically Enhanced Naturally
Occurring Radioactive Materials
Technical Support Organization
Waste Acceptance Criteria
| | PHARE report: Support for Regulatory Authority Staff to improve
its Capabilities with the View of Probabilistic Safety Assessment,
number 2005/017-519.03.01. Restricted
| | PHARE report: Development of CNCAN capabilities regarding the
regulatory aspects of Naturally Occurring Radioactive Materials
(NORM) and Technologically Enhanced Naturally Occurring Radioactive
Materials (TENORM) related activities, number 2005/017-
519.03.03. Restricted
| | PHARE report: Romanian Regulatory Emergency Response Centre,
number 5812.06.01. Restricted
| | PHARE report: Early warning system – Cernavoda, number
PH6.01/99(Lot 1 and 2). Restricted
| | PHARE report: Nuclear Safety Regulatory Regime Consolidation,
number RO.01.10.01. Restricted
| | PHARE report: Support to the Romanian Nuclear Regulatory
Authority (CNCAN) in the licensing review of Fire Protection,
Overpressure Protection of Reactor Primary Circuit and Main Steam
Line Design Safety Issues in Cernavoda 1-NPP, number
RO.01.10.02. Restricted
| | PHARE report: Transfer of Western European Methodology to the
Nuclear Safety Authority of Romania (2nd Phase),
number RO/RA/02. Restricted
| | PHARE report: Support to CNCAN – seismic evaluation –
Cernavoda NPP, number RO/TS/01. Restricted
| | PHARE report: Safety Assessment of the Radioactive X-Waste
Repository of Baita Bihor, number 006-RO/PHARE-SCR/A6-01.
Restricted
| | PHARE report: Preliminary Safety Analysis Report for the Low-Level
Radioactive Waste Repository Baita Bihor, Romania, number
632.08.01. Restricted
| | PHARE report: Up-Grading of the Baita-Bihor Repository for Institutional
Radioactive Waste in Romania, number 5812.06.03.
Restricted
| | PHARE report: Technical assistance to Romania in establishing the
activity of National Agency for Radioactive Waste (ANDRAD),
number 5812.06.02. Restricted
| | PHARE report: Technical Basis and Methodological Approach for
Waste Acceptance Criteria, number PH4.10/94. Restricted
| | PHARE report: Management of Spent Sealed Radioactive Sources
in Central and Eastern Europe – Interim Repor“, number SSRS/P01.
Restricted
| | PHARE report: Characterization of radioactive waste at Cernavoda
NPP, number 5812.06.04. Restricted
| | PHARE report: Modernisation Project for Cernavoda NNP2 –
Environmental Impact Assessment, number 009-RO/PHARE-SCR/
A6-C. Restricted
Authors
Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
Joint Research Centre (JRC) of the European Commission (EC)
Westerduinweg 3
1755 ZG Petten/The Netherlands
OPERATION AND NEW BUILD 21
Imprint
| | Editorial Advisory Board
Prof. Dr. Dr.-Ing. e. h. Adolf Birkhofer
Dr. Peter Fritz
Dipl.-Ing. Ulrich Gräber
Dr. Ralf Güldner
Dr. Ulrich Hartmann
Dr. Norbert Haspel
Dr. Walter Hohlefelder
Prof. Dr. Gerd Jäger
Dipl.-Ing. Ulf Kutscher
Jörg Michels
Dr. Joachim Ohnemus
Dr. Astrid Petersen
Prof. Dr. Winfried Petry
Dr. Wolfgang Steinwarz
Prof. Dr. Bruno Thomauske
Stefan vom Scheidt
Dr. Hannes Wimmer
Ernst Michael Züfle
| | Editorial
Christopher Weßelmann
Im Tal 121, 45529 Hattingen, Germany
Phone +49 2324-4397723,
Fax +49 2324-4397724
E-mail: editorial@atomwirtschaft.com
| | Publisher
INFORUM Verlags- und
Verwaltungsgesellschaft mbH
Robert-Koch-Platz 4, 10115 Berlin, Germany
Phone: +49 30 498555-0, Fax: +49 30 498555-19
www.nucmag.com
| | General Manager
Christian Wößner, Berlin, Germany
| | Advertising and Subscription
Sibille Wingens
Robert-Koch-Platz 4, 10115 Berlin, Germany
Phone: +49 30 498555-10, Fax: +49 30 498555-19
E-mail: sibille.wingens@nucmag.com
| | Prize List for Advertisement
Valid as of 1 January 2015
Published monthly, 11 issues per year
Germany:
Per issue/copy (incl. VAT, excl. postage) 16.- €
Annual subscription (incl. VAT and postage) 176.- €
All EU member states without VAT number:
Per issue/copy (incl. VAT, excl. postage) 16.- €
Annual subscription (incl. VAT, excl. postage)176.- €
EU member states with VAT number
and all other countries:
Per issues/copy (no VAT, excl. postage) 14.95 €
Annual subscription (no VAT, excl. postage)164.49 €
| | Copyright
The journal and all papers and photos contained in
it are protected by copyright. Any use made thereof
outside the Copyright Act without the consent of
the publisher, INFORUM Verlags- und Verwaltungsgesellschaft
mbH, is prohibited. This applies to reproductions,
translations, microfilming and the input
and incorporation into electronic systems. The
individual author is held responsible for the contents
of the respective paper. Please address letters
and manuscripts only to the Editorial Staff and not
to individual persons of the association´s staff. We
do not assume any responsibility for unrequested
contributions.
Signed articles do not necessarily represent the
views of the editorial.
| | Setting
Waltraud Zimmer, Bonn, Germany
Phone: +49 228 2428867, Fax: +49 228 2428967
E-Mail: w.zimmer@atomwirtschaft.de
| | Printing
in puncto druck + medien GmbH, Bonn
ISSN 1431-5254
Operation and New Build
Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar
atw Vol. 60 (2015) | Issue 1 ı January
OPERATION AND NEW BUILD 22
Nuclear Power Plant Olkiluoto 3 –
Containment Leakage Test Under
Extreme Conditions
Tobias Fleckenstein
Modern nuclear power plants place high demands on the design and execution of safety checks. TÜV SÜD specialists
supported the containment leakage test for the largest-capacity third generation nuclear power plant in the world –
Olkiluoto 3 in Finland. The experts successfully met the challenges presented by exceptional parameters of vessel
volume and pressure.
To test a nuclear containment vessel
for pressure-resistance and leak-tightness,
it is filled with compressed air
while temporarily installed instruments
monitor a number of parameters,
including any potential drops in
pressure. Although these examinations
are routinely performed all over
the world, the test of the Finnish reactor
Olkiluoto 3 in February 2014 set
a new benchmark: It was the first pressure
and leak-tightness test ever conducted
on an EPR unit, and the first
pre-operational test of a reactor containment
conducted in Europe since
2001.
The EPR reactor is a third generation
pressurized water reactor (PWR),
designed and built by French supplier
AREVA. The construction to date has
used about 200,000 m 3 of concrete,
and at the height of the project there
were 700 sub-contractors and up to
4,300 workers from 60 countries at the
site. In order to prepare for the safety
check, TÜV SÜD experts carried out
careful planning and logistics both onsite
and off-site, and in close cooperation
with AREVA and with TVO, the
Finnish owner company of Olkiluoto 3.
and includes a steel liner, which ensures
a continuous surface, including
the basemat. Inside the containment
are many of the reactor’s key components:
the whole reactor coolant system,
the core catcher, the reactor pressure
vessel, the steam generators, the
in-containment refuelling water storage
tank and part of the main feedwater
lines.
The inner containment shell is
the final barrier in the EPR reactor’s
defence strategy and designed to
withstand high pressures. It is intended
to effectively contain without
leakage the total primary coolant
system inventory released into the
containment volume. Containment
leak rate tests are mandatory to specifically
assure two aspects of a power
plant’s safety. Firstly, that the leakage
through the containment itself or
through the components that penetrate
it, doesn’t exceed specified allowable
leakage rates. Secondly, that the
integrity of the containment structure
is maintained during its service
life.
Acceptance criteria for leak rates
are determined so as to demonstrate
that the leak rate assumed in the
plant’s safety analysis and approved
by the regulatory agency will be maintained
throughout the plant’s operating
lifetime.
The containment of Olkiluoto 3 is
unique in that the vessel’s volume is
80,000 m 3 and the test pressure
reached up to 6 bar while measurements
were carried out over a period
of ten days. The demands that these
parameters placed on the test instruments
were so extreme that none
of the involved manufacturers were
able to provide assurance that their
sensors would withstand these extreme
conditions and retain their accuracy.
However, high accuracy is necessary
for sufficient data quality and
data safety, and ultimately for a reliable
measurement of the leakage
rate.
To add to the challenge, the conventional
method of passing the individual
signal transmission lines of the
instruments through the reactor walls
Unique containment
parameters
While the outer containment shell
provides protection against external
hazards, such as an airplane crash, the
inner containment is designed to confine
the mass of radioactive materials
inside the structure. If an accident
causes radioactive steam to escape the
internal system, then the containment
shell plays a critical role in preventing
the release of radioactive material into
the environment. It typically consists
of a structure enclosing the reactor
pressure vessel, equipment access
hatches, air lock doors, seals, isolation
valves, mechanical and electrical penetrations,
and a suppression pool.
The inner containment of Olkiluoto
3 is made of pre-stressed concrete
| | Fig. 1.
TÜV SÜD specialists used the autoclave system of the Technical University in Munich,
Germany, to simulate the project test conditions. Courtesy: TÜV SÜD Industrie Service GmbH.
Operation and New Build
Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein
atw Vol. 60 (2015) | Issue 1 ı January
could not be used at Olkiluoto 3. Instead,
the electronic data recording
systems had to be placed inside the
containment vessel for the entire test
period and had been connected via
three co-axial cables to the analysing
laptop located outside the containment.
The systems inside the containment
were thus also exposed to an
absolute pressure of over 6 bar, in addition
to ambient temperatures of
around 30 °C and high levels of humidity.
Careful preparations
are key
To execute the test, 75 temperature
sensors and 15 humidity sensors, connected
by ten kilometres of cable, had
to be installed and correctly interlinked.
They also had to be able to
withstand the extreme test pressure
for the entire test period. Previous
leak testing had only been performed
at significantly lower pressures, and
some materials used for electronic insulation
are known to undergo
changes, bearing a risk for short-circuits
and fires. The architecture of the
measurement system had to be designed
in such a way that the testing
could continue even if there was a
fault in the coaxial cables used to communicate
with the data recording system
and for the transmission of data.
To ensure the efficient and effective
execution of the Okiluoto 3 test,
the TÜV SÜD specialists completed a
thorough preparation phase prior to
the project test. The objective was to
determine how the equipment would
handle pressures of 6 bar, whether
the measurement precision would be
| | Fig. 2.
Measuring equipment is being placed inside the autoclave system in order to assess how the equipment
will handle the extreme conditions of the Okiluoto 3 project environment.
Courtesy: TÜV SÜD Industrie Service GmbH.
compromised, and how the architecture
of the system needed to be configured.
Parts of the preparation phase
were carried out at the autoclave system
of the Technical University in Munich,
Germany, where the project test
conditions could be simulated.
The on-site test preparation began
with the set-up of the measurement
system. In the process, TÜV SÜD specialists
used more than ten kilometres
of cables to connect all of the sensors
to the data acquisition system and
computers. Once the system was set
up, the specialists undertook a pretest
quality check. In order to further
reduce uncertainty of the containment
leak test, the air in the containment
shell was homogenised by running
four compressor units with dryers
and filters for 24 hours prior to the
execution of the test.
Using information
technology to achieve
higher safety integrity
In addition to setting up and configuring
the hardware, the software required
to run the tests needed to be
developed to accommodate the extreme
parameters. On-site engineers
of TÜV SÜD would have to be able to
quantify leakage volumes and monitor
the real-time values of pressure,
temperature, humidity, mass flow and
leak rates. This data would allow for
the source of a leak to be identified.
The software was successfully developed
by TÜV SÜD and verified
by Germany’s national accreditation
body DAkkS under ISO 17025. It included
an emergency plan for on-site
engineers in case measurement devices
stopped working or a loss of data
occurred. Furthermore, it covered the
analysis of a number of what-if scenarios
and a simulation of potential failures
under laboratory conditions. It
was thus aligned to the requirements
of the project test, including the number
of measurement points and additional
evaluation stages.
To achieve higher standards of
safety integrity, the hardware architecture
was guided by the principle of
diverse redundancy. Redundancy
refers to the duplication of systems,
which enables the overall process
to continue even if one system fails.
In addition, diversity reduces the
impact of so-called common cause
failures, whereby multiple sensors
may fail simultaneously due to a common
cause. To reduce this type of risk,
different configurations and operating
principles are used across the
sensors.
TÜV SÜD experts set up all instruments
as redundant and diverse systems,
including three co-axial cables
provided by the plant supplier AREVA.
If an instrument inside the containment
shell failed, the communication
could be switched to an alternative
device, which would also use a
different communication protocol.
The overall architecture was designed
to allow for measurements to continue
without interruption, even in
the case of instrument failure. The
measurement accuracy was also
found to be within the required tolerance
range.
Executing the leakage test
Once the quality check and containment
homogenisation had been completed,
the project test could finally
begin. The signals from all measuring
devices were processed by two data
acquisition units, which recorded the
data of all sensors at a minimum rate
of ten times per hour. These devices
used internal digital multi-metres and
transferred their data to two separate
computers, one of which was configured
as a backup unit. The data
was stored in its raw format (ohms,
volts, Hz) and subsequently converted
using an online software, which
also applied calibration curves for all
pressure, temperature and humidity
sensors.
To execute the test, the TÜV SÜD
specialists determined a range of variables:
• The free gas volume of the containment
shell: This parameter was
one of the key requirements to
later calculate the leakage volume.
OPERATION AND NEW BUILD 23
Operation and New Build
Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein
atw Vol. 60 (2015) | Issue 1 ı January
OPERATION AND NEW BUILD 24
| | Fig. 3.
TÜV SÜD specialists calibrate the inlet pipe – a requirement to accurately determine the free volume.
Courtesy: TÜV SÜD Industrie Service GmbH.
Although it can, in principle, be
calculated, the TÜV SÜD specialists
opted to measure it to reduce
uncertainty and further increase
the accuracy of the test results.
All of the variables necessary to
determine the incoming mass
flow for pressurisation were measured
every ten seconds. These included
the ambient pressure and
the temperature behind the flow
section. The differential pressure
across the flow section and the
gauge pressure in front of the
nozzle were measured twice using
independent pressure transmitters,
connected to defined tappings.
• Temperature and humidity: The
vapour pressure inside the containment
shell was measured using
twelve relative humidity sensors
and three dew-point mirrors. To
determine the dry-bulb temperature
of the containment air, TÜV
SÜD specialist employed four-wire
resistance temperature device.
• The absolute pressure inside the
containment.
Using high standards to
guide testing
The ANSI/ANS 56.8-2002 standard of
the American Nuclear Society outlines
the standards for the containment
leakage testing requirements of
Olkiluoto 3. It provides a basis for determining
leakage rates through the
primary reactor containment system
of light-water-cooled nuclear power
plants. Together with the testing instructions
of the system construction
company, the standard guided the
work of the TÜV SÜD specialists, and
evaluations were completed at various
levels during testing.
The standards for the leak test
were also in line with the safety recommendations
and requirements
used in the design of Olkiluoto 3.
These include the European utility requirements
defined by European
power companies as well as the safety
and quality recommendations of the
International Atomic Energy Agency
(IAEA). In Finland, nuclear safety instructions
are issued by the Finnish
Radiation and Nuclear Safety Authority
(STUK), which also controls compliance
with them.
In the Olkiluoto 3 project, TÜV
SÜD experts enabled further testing
to continue without delay by analysing
all recorded data on site. This included
pressure, temperature, humidity
and leakage mass flow curves
for all evaluation levels. With the
data acquisition system recording
measurements continuously, all components
of the leak-tightness assessment
were successfully completed in
accordance with requirements:
• The first Loss of Coolant Accident
test (LOCA);
• The design pressure test;
• The Initial Structural Integrity Test
(ISIT); and
• The second LOCA test.
Conclusion
Pressure and leak-tightness tests play
an important role in assessing nuclear
safety and form a significant milestone
in the completion of the Olkiluoto
3 project. As it is one of the
largest industrial projects ever carried
out in Northern Europe, the design,
setup and execution of the tests place
high demands on the expertise of engineers
and specialists. Critical to the
success of the measurement process
were careful preparations and logistics,
carried out both on-site and offsite
prior to the project test.
Author
Tobias Fleckenstein,
Plant Engineering,
TÜV SÜD Industrie Service GmbH
Measurement Technology
Department
Westendstraße 199
80686 Munich/Germany
Operation and New Build
Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein
atw Vol. 60 (2015) | Issue 1 ı January
Paradigmenwechsel im Beförderungsrecht oder
am „Flaschenhals“
Hanns Näser
Im gerade begonnenen Jahr sind höchst bedeutsame Entscheidungen des Bundesverfassungsgerichts und des Bundesverwaltungsgerichts
auf dem Gebiet des Atomrechts von erheblicher Tragweite zu erwarten. Insbesondere die
Entscheidung des Bundesverfassungsgerichts zu dem mit der 13. Novelle zum Atomgesetz (vom 31.07.2011 Bundesgesetzblatt
(BGBl) I 1704) erfolgten „Atomausstieg“ wird mit großer Spannung erwartet, weil neben den mit den
Entscheidungen verbundenen weitreichenden Folgen auch grundsätzliche Fragen der Verfassung insbesondere zum
Art. 12 Abs. 1 Grundgesetz (GG) und Art. 14 GG zu beantworten sind.
Für das Bundesverwaltungsgericht steht die Frage zur Entscheidung
an, ob sie die Revision gegen die Brunsbüttel-
Entscheidung des Oberverwaltungsgerichts (OVG) Schleswig-Holstein
zulässt, die aus Sicht der Kläger wesentliche
Grundlagen der Verantwortungsabgrenzung zwischen Exekutive
und Judikative verschoben hat.
Gegenüber diesen grundlegenden Entscheidungen ist
die erwartete Entscheidung des OVG Lüneburg zum nuklearen
Transportrecht von untergeordneter Bedeutung,
obwohl sie auf diesem Rechtsgebiet einen Paradigmenwechsel
vollziehen wird. Es geht bei dieser Entscheidung
um die Frage, ob und wann eine Klagebefugnis eines Dritten
im nuklearen Transportrecht anerkannt werden kann,
genauer, unter welchen Voraussetzungen ein Dritter gegen
eine atomrechtliche Beförderungsgenehmigung nach § 4
Abs. 1 Atomgesetz (AtG) klagebefugt ist.
Zur komplexen und vielschichtigen Vorgeschichte, die
nicht leicht zu entwirren ist:
Über Jahrzehnte hatte das Verwaltungsgericht (VG)
Braunschweig als das nach § 52 Nr. 2 Satz 1 VwGO örtlich
zuständige Gericht für Anfechtungsklagen gegen Beförderungsgenehmigungen
nach § 4 AtG, die vom Bundesamt
für Strahlenschutz (BfS) mit Sitz in Salzgitter (früher von
der Physikalisch-Technischen Bundesanstalt (PTB) mit Sitz
in Braunschweig), erteilt werden, die Zulässigkeit derartiger
Klagen wegen fehlender Klagebefugnis verneint. Das
OVG Lüneburg als Berufungsgericht hatte diese Auffassung
geteilt.
Gegenstand der zur Entscheidung anstehenden Klage
ist eine atomrechtliche Beförderungsgenehmigung des
Bundesamts für Strahlenschutz aus dem Jahre 2003 zur Beförderung
von HAW-Glaskokillen (HAW: High Active Waste)
aus der Wiederaufarbeitungsanlage La Hague in das
Transportbehälterlager Gorleben. Nach Durchführung des
Transports im Dezember 2003 haben die Kläger die Feststellung
der Rechtswidrigkeit dieser Beförderungsgenehmigung
beantragt. Eine derartige Feststellungsklage ist
zulässig, wenn ein besonderes Rechtsschutzinteresse besteht.
Ein Kläger ist Eigentümer eines von ihm bewohnten
Hauses, das ca. 650 m von der Umschlagsanlage in Dannenberg
entfernt ist. Der andere Kläger ist Miteigentümer
eines von ihm bewohnten Hauses, das in unmittelbarer Nähe
der Transportstrecke von Dannenberg zum Transportbehälterlager
Gorleben liegt. Diese örtliche Beziehung der
Kläger zur Transportroute ist der wichtige Beurteilungsmaßstab
für die Klagebefugnis, hierauf wird zurückzukommen
sein.
Das Verwaltungsgericht Braunschweig hat entsprechend
seiner ständigen Rechtsprechung die Klagen als unzulässig
zurückgewiesen. Die Anträge der Kläger auf Zulassung der
Berufung hat das OVG Lüneburg abgelehnt. Das Bundesverfassungsgericht
hat die Beschlüsse über die Nichtzulassung
der Berufung aufgehoben und die Streitsachen an das OVG
Lüneburg zurückverwiesen, weil durch diese Entscheidungen
die Kläger in ihrem Grundrecht auf effektiven Rechtschutz
aus Art. 19 Abs. 4 Satz 1 GG verletzt seien (https://
www.bundesverfassungs-gericht.de/entscheidungen/rk20
090121_1bvr252406.html). Das OVG Lüneburg habe die
Anforderungen an die Zulassung der Berufung überspannt
und sei in der Begründung nur unzureichend auf die von
den Klägern geltend gemachten Argumente eingegangen.
Das OVG Lüneburg hat entsprechend den Vorgaben des
Bundesverfassungsgerichts die Berufung zugelassen, allerdings
an seiner bisherigen Rechtsprechung festgehalten,
die Unzulässigkeit der Klagen festgestellt und die Revision
zugelassen.
Das Bundesverwaltungsgericht hat den Revisionen der
Kläger stattgegeben mit der Entscheidung vom 14.03.2013
(http://www.bverwg.de/entscheidungen/verwan-dte_dokumente.php?az=BVerwG+7+C+34.11).
Das Bundesverwaltungsgericht
geht zwar wie das OVG Lüneburg davon
aus, dass das Gefahrgutrecht als solches keinen Drittschutz
gewährt. Die unterschiedlichen Schutzkonzepte
für ortsfeste Anlagen und Einrichtungen in der Strahlenschutzverordnung
(effektive Dosis am ungünstigsten Ort)
und für Beförderungen im Gefahrgutrecht (effektive Dosis
an der Außenfläche des Gefahrguts) sind aus Sicht des
Gerichts nicht ausschlaggebend für eine unterschiedliche
Bewertung des Drittschutzes. Diesen leitet es vielmehr
aus den mit sicherheitsrechtlichen Vorgaben angereicherten
Genehmigungsvoraussetzungen zur Beförderung von
Kernbrennstoffen ab, und zwar der Gewährleistung der
erforderlichen Vorsorge gegen Schäden und des erforderlichen
Schutzes gegen Störmaßnahmen oder sonstigen
Einwirkungen Dritter. Unter Verweis auf die vergleichbaren
Regelungsgehalte der § 6 Abs. 2 Nr. 2 und 3 AtG für die
Zwischenlagerung von Kernbrennstoffen und § 7 Abs. 2
Nr. 3 AtG und 5 AtG für Kernkraftwerke mit den Genehmigungsvoraussetzungen
des § 4 Abs. 2 Nr. 3 und 5 AtG
für die Beförderung von Kernbrennstoffen weitet es den
für ortsfeste Einrichtungen (§ 6 AtG) und für das Anlagengenehmigungsrecht
(§ 7 AtG) seit langem bestehenden
Drittschutz nunmehr auch auf das Beförderungsrecht
aus.
Worum geht es beim Drittschutz? Anknüpfend an Art.
19 Abs. 4 GG gewährt das Verwaltungsprozessrecht im
Grundsatz subjektiven Rechtsschutz. Eine Klage ist danach
nur zulässig, wenn der Kläger die Möglichkeit der Verletzung
eigener Rechtspositionen geltend macht. Beruft er
sich hingegen auf die Verletzung objektiven Rechts, wäre
die Klage grundsätzlich unzulässig.
Die Möglichkeit der Verletzung eigener Rechtsposition
kann beispielsweise neben dem Adressaten eines Verwaltungsakts
auch ein Dritter geltend machen, sofern er durch
den Verwaltungsakt in seinen Rechten beeinträchtigt
sein kann. Der betreffende Verwaltungsakt muss danach
Rechtswirkungen auch gegenüber dem Dritten entfalten
SPOTLIGHT ON NUCLEAR LAW 25
Spotlight on Nuclear Law
Paradigm Shift in Transport Legislation or Rather at the “Bottleneck” ı Hanns Näser
atw Vol. 60 (2015) | Issue 1 ı January
SPOTLIGHT ON NUCLEAR LAW 26
| | Transport von Kernmaterial
(sog. mehrpoliges Rechtsverhältnis). Beispiele hierfür sind
umwelt- und atomrechtliche Genehmigungen, die den Genehmigungsinhaber
begünstigen und Nachbarn in ihren
Rechten beeinträchtigen können.
Eine Beeinträchtigung subjektiver Rechte kann allerdings
nur dann bestehen, wenn ein durch die Genehmigung
potenziell beeinträchtigter Dritter sich auf eine
Rechtsnorm berufen kann – deren Verletzung er rügt – die
nicht nur dem allgemeinen Interesse dient, sondern auch
seinen Individualinteressen zu dienen bestimmt ist.
Wann eine Rechtsnorm auch Individualinteressen
dient, ist durch Auslegung der Norm zu ermitteln. Dabei
ist insbesondere zu bewerten, ob die Norm individualisierende
Tatbestandsmerkmale enthält,
d.h. neben der Allgemeinheit
auch den Schutz eines bestimmten
abgrenzbaren Personenkreises intendiert
(sog. Schutznormtheorie). Die
Schutznormtheorie wird zunehmend
durch europarechtliche Einflüsse
und Vorgaben zurückgedrängt.
So haben inzwischen bestimmte anerkannte
Vereinigungen Klagebefugnis
bei wichtigen umweltrechtlichen
Großvorhaben, ohne die Verletzung
eigener Rechte geltend machen zu
müssen (Umweltrechtsbehelfsgesetz
vom 07.12.2006 in der Fassung vom
07.08.2013 http://www.gesetze-iminternet.de/umwrg/).
Die Vorgaben des Bundesverwaltungsgerichts,
an die das OVG Lüneburg
gebunden ist, bedeuten allerdings
keine Abkehr von der Schutznormtheorie.
Das Bundesverwaltungsgericht
hat vielmehr den Drittschutz
wegen der Wortgleichheit der o.g. Genehmigungsvoraussetzungen
auch auf die Beförderung von Kernbrennstoffen
ausgedehnt und den Individualrechtsschutz
aus der übergeordneten Schutzzweckbestimmung des § 1
Abs. 1 Nr. 2 AtG abgeleitet. Nach dieser Bestimmung bezieht
sich der Schutzzweck des Atomgesetzes auch auf den
Schutz des Lebens, der Gesundheit und von Sachgütern
vor den Gefahren der Kernenergie. Dieser Schutzzweck
schließt das Beförderungsrecht ein. Allerdings ist bei Beförderungsvorgängen,
anders als bei ortsfesten Anlagen
und Einrichtungen, der abgrenzbare geschützte Personenkreis
nur schwer zu bestimmen. Dies gilt erst recht dann,
wenn die Beförderungsstrecke, wie im Regelfall, nicht in
der Genehmigungsentscheidung festgelegt ist. Denn für
die Abgrenzung vom geschützten zum nicht geschützten
Personenkreis ist wesentliches Kriterium die räumliche Beziehung.
Für die Anerkennung des Drittschutzes ausschlaggebend
ist aus Sicht des Bundesverwaltungsgerichts im konkreten
Fall, dass ein Kläger in der näheren Umgebung der
stationären Verladestelle in Dannenberg zum notwendigen
Umschlag der Transportbehälter von der Schiene auf
die Straße und der andere Kläger in einer „nahezu zwangsläufig
zu benutzenden Strecke“ wohnt; damit verenge sich
die Vielzahl möglicher Transportwege „nach Art eines Flaschenhalses“.
Mit anderen Worten ist bei Beförderungen
im Hinblick auf den Drittschutz zwischen potenziellen Anliegern
einer bescheidmäßig nicht festgelegten Beförderungsstrecke,
bei denen das Transportgut „in einem mehr
oder weniger flüchtigen Beförderungsvorgang vorbeigeführt
wird“ und Anliegern an Transportstrecken zu unterscheiden,
auf die der Transportvorgang angewiesen ist.
Auch ist zu berücksichtigen, dass beim Umschlag in Dannenberg
die Verweildauer nicht unerheblich ist.
Damit ist der Drittschutz bei nuklearen Beförderungsvorgängen
nur unter engen Voraussetzungen anerkannt.
Im Regelfall werden derartige Zwangspunkte nicht bestehen,
insbesondere wenn verschiedene Streckenführungen
denkbar sind. Entscheidend ist danach der jeweilige
Einzelfall.
Da das Standortauswahlgesetz (vom 23. Juli 2013 BGBl
I S. 2553) durch Einführung des § 9a Abs. 2a AtG die Rückführung
von Glaskokillen aus der Wiederaufarbeitung von
abgebrannten Brennelementen zum Transportbehälterlager
Gorleben ausschließt, wird die Entscheidung des OVG
Lüneburg für diesen Standort nur noch für gegenwärtige
nicht absehbare Transporte vom Transportbehälterlager
Gorleben in ein Endlager Relevanz haben können. Ob damit
das für eine Feststellungsklage erforderliche Feststellungsinteresse,
in concreto Wiederholungsgefahr bejaht
werden kann, steht auf einem anderen Blatt.
Author
Hanns Näser
GNS Gesellschaft für Nuklear-Service mbH
Frohnhauser Straße 67
45127 Essen/Germany
Spotlight on Nuclear Law
Paradigm Shift in Transport Legislation or Rather at the “Bottleneck” ı Hanns Näser
atw Vol. 60 (2015) | Issue 1 ı January
Completeness Assessment of General
Safety Requirements for Sodium-Cooled
Fast Reactor Nuclear Design Utilizing
Objective Provision Tree
Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang
1. Introduction The Korea Atomic Energy Research Institute (KAERI) is developing a Prototype Gen-IV Sodiumcooled
Fast Reactor (PGSFR) of 150 MWe size with a plan to apply the construction permit by 2020. The Korea Institute
of Nuclear Safety (KINS) is performing a regulatory research to prepare the licensing of this future reactor, developing
regulatory requirements and safety analyses methodologies.
The development of regulatory requirements
is needed because in a
prescriptive regulatory framework adopted
by the countries like United
States or Korea, licensing review of
nuclear power plant is performed
evaluating whether the design satisfies
the prescriptive design criteria or
regulatory requirements previously
established. For this, U.S. Nuclear Regulatory
Commission (NRC) has the
well established General Design Criteria
(GDC) [1] for Light Water Reactor
(LWR) that served for many decades
in assuring the safety of the nuclear
power plant. The GDC is top level
regulatory requirements enforced by
law. The corresponding regulatory requirements
for LWR are stipulated in
the Korean “Regulations on Technical
Standards for Nuclear Reactor Facilities”
which has the same level of binding
force and similar contents with
those of GDC. Thus, preparing the licensing
of PGSFR requires first of all a
development of GDC like General
Safety Requirements (GSR) for SFR.
The approach we use in developing
the GSR for SFR is 1) to evaluate the
applicability of the current LWR GSR
to SFR and 2) to reflect the other
safety requirements for SFR, developed
by Gen-IV International
Forum (GIF) or American Nuclear Society
(ANS). Following this approach
we have developed a draft version of
SFR GSR with 59 articles. The next
step is to assess the draft versions for
its completeness and the normal approach
is to depend on the engineering
judgement of experts. The NRC’s
GDC is developed also based on the
accumulated experiences of LWR licensing
and operation, but unfortunately
the similar experiences are not
available for SFR. To assure that the
developed GSR includes all the necessary
requirements and guarantee the
safety of SFR from Defence-in-Depth
(DID) point of view, we have decided
to utilize the Objective Provision Tree
(OPT) methodology developed by International
Atomic Energy Agency
(IAEA) [2]. We found that this methodology
provides a systematic and integral
approach in complementing the
GSR developed referencing the current
requirements of similar kind.
The OPT is a methodology to ensure
and document the provision of
essential “lines of protection” for successful
prevention, control or mitigation
of phenomena that could potentially
damage the nuclear system.
[2,3] The OPT is normally developed
by designer to confirm whether the
design fulfills the DID concept, but we
have developed the OPT to apply it in
assessing whether there is missing
safety requirements in our GSR under
development from DID concept. In the
following section, we first describe the
strategy of GSR development for SFR
and the next section presents the development
of OPT. Then, the completeness
assessment on the requirements
of nuclear design utilizing the
“reactivity control” safety function is
presented in the following section.
Through out this paper, we will use a
terminology GSR for common understanding,
instead of GDC or Technical
Standards which are used in the regulation
of United States and Republic of
Korea, respectively.
2. Development of general
safety requirements
for SFR
This section describes the position of
general safety requirements in the
framework of Korean atomic law system
and then how we have developed
the draft version of the SFR GSR. The
current Korean legal framework for
nuclear safety regulation has 4 levels.
The nuclear safety act positions at the
highest level and then follows, sequentially,
enforcement decree of the
nuclear safety act, enforcement regulation
of the nuclear safety act, regulations
on technical standards for nuclear
reactor facilities. Basic concept
and role of act and decrees are the
following:
1) Nuclear safety act stipulates the basic
principles concerning nuclear
safety
2) Enforcement decree of the nuclear
safety act stipulates the particulars
entrusted by the act
3) Enforcement regulation of the nuclear
safety act stipulates the particulars
entrusted by the Act and/or
Decree and necessary for their enforcement
(including detailed procedures
and format of documents)
4) Regulations on Technical Standards
for Nuclear Reactor Facilities
stipulate conceptual technical
standards as entrusted by the Act
and/or Decree. It contains also the
details on technical standards, procedures
or format as entrusted by
the Act, Decree and/or Regulations
Thus, the GSR which corresponds
to LWR GDC of U.S. NRC is the regulations
on Technical Standards in
Korean atomic legal framework. This
GSR for SFR is developed referencing
the LWR GSR, so the first step is to
evaluate the applicability of the LWR
GSR to SFR. Performing the evaluation
we could classify the requirements
of LWR GSR into 3 groups, i.e.,
1) LWR requirements which are not
applicable to SFR, thus need to be excluded,
2) requirements applicable to
SFR as it is, 3) requirements needed to
be revised/amended. In addition to
this, taking into account the SFR specific
features, there are requirements
to be newly added. The overall
strategy and process are depicted in
Figure 1.
In revising/amending the current
LWR requirements and to identify
ENERGY POLICY, ECONOMY AND LAW 27
Energy Policy, Economy and Law
Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang
atw Vol. 60 (2015) | Issue 1 ı January
ENERGY POLICY, ECONOMY AND LAW 28
| | Fig. 1.
Strategy of GSR Development for SFR.
Art. Title Art. Title Art. Title
1 Definition 21 Use of qualified equipment 41 I&C system
2 Radiation Protection 22 Human factors 42 Electric power system
3 Defense-in-Depth 23 Prevention of harmful effects
between systems
4 Interfaces of safety with
security and safeguards
5 Physical Protection / Safeguards
24 Protection against sodium
reactions
6 Proven technologies 26 Inherent protection of
reactor
| | Tab. 1.
General Safety Requirements (Articles of Technical Standards) for SFR.
43 Control room, etc.
44 Alarm devices, etc.
25 Reactor design 45 Optimization of radiation
protection
7 Assessment of Design Safety 27 Suppression of reactor power
oscillation
8 Construction and operating
experiences
46 Radioactive waste processing
& storage systems
47 Radiation protection
provision
28 Reactor core, etc. 48 Fuel handling & storage
facilities
9 Decommissioning 29 Fuel rod and assembly 49 Auxiliary systems
10 Postulated initiating events 30 Protection against flow
blockage
50 Power conversion system
11 Design bases accidents 31 Reactivity control system 51 Emergency response facilities
and equipment
12 Design extension conditions 32 Reactor protection system 52 Intermediate cooling system
13 Safety classes and standards 33 Use of computerized system 53 Liquid sodium handling
system
14 External events design bases 34 Diverse protection system 54 Sodium heating system
15 Fire protection 35 Reactor coolant boundary 55 Protection against sodium
freezing
16 Design bases for environmental
effects
36 Reactor cooling system 56 Purification control of cover
gas and supply
17 Reliability 37 Overpressure protection 57 Operating experiences and
safety research
18 Sharing of facilities 38 Residual heat removal
system
19 calibration / test / inspection/
maintenance
20 Startup, shutdown, and low
power operation
58 Limiting conditions for
operation
39 Ultimate heat sink 59 Initial tests
40 Reactor containment, etc.
new requirements to be added, we
have referenced the international documents
like IAEA SSR-2/1, Safety Design
Criteria of GIF and draft version
of SFR GDC under development by
ANS. Fukushima action items and applicability
of Risk Informed Regulation(RIR)
are also considered. Utilizing
this strategy and process, we have
developed a draft version of SFR GSR
containing 59 articles. The title of the
articles are listed in Table 1.
3. Development of OPT for
SFR reactivity control
safety function
The OPT is a top-down method with a
tree structure for each DID level describing
objectives and barriers, safety
function, challenges to maintain
safety functions, mechanisms of safety
function degradation, and provisions
for each degradation or failure mechanisms
to maintain safety functions.
Reference [2] describes conceptually
how to apply this methodology to development
of safety requirements for
innovative reactors, specifically for
the modular high temperature gas
cooled reactors. In general, we have
three safety functions to fulfill the
safety objectives, i.e., control of reactivity,
core heat removal and containment
integrity. Among these three
safety functions, we have developed
the OPT for the safety function of “reactivity
control”. Because the design of
PGSFR is not mature yet, we have developed
the OPT modelling the KA-
LIMER-600 [4] reactor which is conceptually
designed by KAERI and is an
SFR of 600 MWe size. OPT is a qualitative
methodology whose development
relies mainly on experiences of
experts using the design documents
like probabilistic safety assessment report.
Because the SFR GSR we are developing
is a general one which should
not be reactor or design specific, we
have developed the OPT for KALIMER
even if the target reactor to apply the
GSR in reviewing is the PGSFR. The
detailed description of the system is
not included in this paper since it is not
necessary to understand the developed
OPT. Example of the Level 3
OPT we have developed for the safety
function of “reactivity control” is
shown in Figure 2.
In Figure 2, safety function means
the essential function necessary to ensure
the safety objectives by maintaining
DID and barrier integrity. Challenge
is the phenomenon which
threatens the successful achievement
of the safety function and the possible
challenges to the safety function
Energy Policy, Economy and Law
Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang
atw Vol. 60 (2015) | Issue 1 ı January
| | Fig. 2.
Developed Level 3 OPT for “reactivity control” safety function.
are dealt with by the provisions (inherent
characteristics, safety margins,
systems, provisions). Mechanism is
defined as “specific reason, process or
situation whose consequence might
create challenge to the performance
of safety function.” [3]
4. Completeness
assessment of the
developed general
safety requirements
The draft GSR developed, referencing
the LWR GDC, SDC of GIF RSWG and
ANS GDC for SFR is assessed from the
DID point of view utilizing the OPT.
The process is mainly to identify and
check whether the mechanisms in the
OPT are included in the draft GSR. In
Figure 2, we have 4 challenges to the
safety function of “reactivity control”
and 6 mechanisms that could induce
the challenges. For example fuel cladding
chemical interaction (FCCI) is a
mechanism that could induce the
change in core geometry. Because the
GSR is a top level requirement enforced
by law, the contents are rather
qualitative description, so the prevention
of this mechanism and the ensuing
challenge needs to be translated
into requirements of GSR. On the
other hand, how to achieve this mechanism
should be handled in specific
design by provisions, so the contents
of provisions in Figure 2 need to be
described in a lower level regulatory
documents like review guides. The
assessment whether the requirement
to prevent this mechanism is included
in the GSR or not is done as following:
• Mechanism; Fuel-cladding chemical
interaction.
• Assessment; The paragraph (3) of
Article 25 “reactor design” in our
draft GSR stipulates that “the property
change by the irradiation of
the main core structure materials
like control rod driving mechanism,
core support structure etc.
should not impair the structural
integrity”. Thus the paragraph of
Article 25 is the requirement to
prevent mechanism of “fuel-cladding
chemical interaction”.
• Result; Requirement to prevent the
FCCI is well implemented in the
draft GSR.
Another example we present is the
mechanism of “control rod withdrawal
from subcritical state” that
challenges ‘the inability to maintain
subcriticality”:
• Mechanism; Control rod withdrawal
from subcritical state.
• Assessment; The subparagraph 5
under the paragraph 2 of Article 32
“reactor protection system” stipulates
that “the protection system
shall be designed to assure that the
specified acceptable fuel design
limits are not exceeded for any
single malfunction of the reactivity
control systems such as an accidental
withdrawal of control rods.”
Thus, the subparagraph of Article
35 is the requirement to prevent
the mechanism of “control rod
withdrawal from subcritical state”.
• Result; Requirement to prevent the
control rod withdrawal from subcritical
state is well implemented in
the draft GSR.
In this way, we have confirmed that
the draft GSR has all the requirements
to prevent the challenges and mechanisms
for the “reactivity control”
safety function. We found no requirements
to be added or revised by assessing
this “reactivity control” safety
function, but we expect that we might
be able to find some requirements to
be revised or added by assessing this
way and it might confirm the utility of
our approach. We found that utilizing
the OPT in this way is a systematic and
integral way to complement the development
of GSR. We will continue to
work for other two safety functions in
a future.
5. Conclusion
The draft version of GSR for SFR was
developed, first by evaluating the applicability
of the current LWR GSR to
SFR and then taking into account
other international requirements for
SFR. The current requirements including
the LWR GDC are coming
from the long-year accumulated experiences
of licensing and operation,
but there are not enough experiences
for SFR, so even if it is possible to develop
a draft version of SFR GSR referencing
the currently available requirements,
there is need of a systematic
and integral methodology to complement
the developed GSR for SFR. The
application of OPT is a good way to
achieve the requirements. So the OPT
have been developed for a safety function
of reactivity control and applied
in complementing the draft GSR. Assessing
the completeness of the GSR
in view of DID concept utilizing the
OPT, it was found that the draft GSR
includes all the requirements necessary
to prevent the mechanisms which
could challenge the safety function.
The developed GSR will be applied in
licensing review of PGSFR under
ENERGY POLICY, ECONOMY AND LAW 29
Energy Policy, Economy and Law
Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang
atw Vol. 60 (2015) | Issue 1 ı January
RESEARCH AND INNOVATION 30
development in Korea which the designer
plans to apply the licensing for
construction permit by 2020. The revision
and refinement of the draft GSR
for SFR will continue further.
REFERENCES
| | [1] Code of Federal Regulation, Title 10,
Part 50, Domestic Licensing of Production
and Utilization of Facilities, Appendix
A, General Design Criteria for
Nuclear Power Plants, U.S. Nuclear Regulatory
Commission, Washington D.C.
| | [2] IAEA-TECDOC-1366, Considerations
in the development of safety requirements
for innovative reactors : Application
to modular high temperature gas
cooled reactors, IAEA, August 2003.
| | [3] GIF/RSWG, An Integrated Safety Assessment
Methodology (ISAM) for Generation
IV Nuclear Systems, 2011.
| | [4] Korea Atomic Energy Research Institute,
KALIMER-600 Conceptual Design
Report, KAERI/TR-3381, 2007.
Authors
Namduk Suh, Moohoon Bae, and
Yongwon Choi
Korea Institute of Nuclear Safety
62 Gwahak-ro, Yuseong-gu
Daejon/Republic of Korea.
Bongsuk Kang and Huichang Yang
TÜV Rheinland Korea Ltd.
Goro-dong 197-28, Guro-gu
Seoul/Republic of Korea.
RMB: The New Brazilian Multipurpose
Research Reactor
José Augusto Perrotta and Adalberto Jose Soares
1. Introduction In 2009, pushed by the international Moly-99 supply crisis that occurred in 2008/2009, and
that affected significantly the nuclear medicine services in the world, Brazilian government, decided to carry out a sustainability
study, to decide about the feasibility to construct a new research reactor in the country. As demonstrated in
reference [2], the result of the study, which was done following IAEA’s recommendation presented on reference [3],
was favourable to the construction of the new reactor, and Brazilian professionals started analysing its conceptual
design.
| | Fig. 1.
Top view of reactor core (left) and reflector vessel (right).
In 2010, following recommendations
of COBEN (Bi-national Commission on
Nuclear Energy), a committee responsible
for a bi-national cooperative
agreement between Brazil and Argentina,
a decision was taken to adopt, for
the new Research Reactors of Brazil
(RMB) and Argentina (RA10), a conceptual
model based on INVAP designed
OPAL research reactor, as a reference
for radioisotope production
and neutron beams utilization.
For the Brazilian RMB research reactor,
in addition to radioisotope production
and neutron beams utilization,
two other requirements were established.
The first one was the capability
to test fuels and materials for the
Brazilian nuclear program, and the
second was the requirement to have,
around the reactor building, the necessary
infrastructure to allow the interim
storage, for at least 100 years, of
all spent nuclear fuel used in the reactor.
Details of these two characteristics
will be given in the next sections.
Research and Innovation
RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares
2. Description of the
reactor
RMB is a MTR open pool type reactor
that uses beryllium and heavy water
as reflector, and light water as moderator
and cooling fluid. The power of
the reactor is 30 MW, and its main requirements,
established during the
feasibility study, are: radioisotope
production, to attend national demand
beyond 2020; production of
thermal and cold neutron beams for
research and application in all areas;
development of materials and nuclear
fuels for the Brazilian nuclear program;
neutron activation analysis;
and silicon transmutation doping.
The core of the reactor is a 5 x 5
matrix, containing 23 MTR fuel elements,
and leaving 2 positions available
for materials irradiation tests.
Each fuel element has 21 plates, with a
meat made of low enriched (19.75 %)
Uranium Silicide-Aluminium dispersion
(U 3 Si 2 -Al) clad with Aluminium.
Dimensions of the fuel element are
80.5 mm x 80.5 mm x 1,045 mm,
and meat dimensions are 0.61 mm x
65 mm x 615 mm.
Three sides of the core are surrounded
by a reflector vessel, filled with
heavy water that acts as reflector for
the neutrons produced in the core.
The reflection on the fourth side is
done with the utilization of removable
beryllium blocks. These beryllium
blocks are needed to allow RMB to be
used as a tool for the Brazilian nuclear
program. Figure 1 shows a top view of
atw Vol. 60 (2015) | Issue 1 ı January
the reactor core and the reflector
vessel.
The core is designed to have a
cycle length of 28 days. To accomplish
with this cycle, the fuel element is
poisoned with Cadmium wires which
are depleted together with the fuel
element. Each fuel element has 42
Cadmium wires, which are placed on
the fuel element alongside the fuel
plates, one on each side of the plate.
The Cadmium wires are 0.4 mm in
diameter and 615 mm long. The core
has also 6 independent Hafnium control
plates, which move parallel to the
fuel plates.
3. Reflector vessel
The reflector vessel is made of zircaloy,
and it is installed in the bottom
of the reactor pool, about 10.5 meters
below water surface level. Filled with
heavy water, it has an internal diameter
equal to 2.6 meters and an internal
height equal to 1.0 meter. It has
5 positions for neutron transmutation
doping; 14 positions for pneumatic irradiation
(9 with 3 vertical positions
each and 5 with 2 vertical positions
each); about 20 positions for bulk irradiation;
one cold neutron source; 2
cold neutron beams; 2 thermal beams,
1 neutrongraphy beam and one position
for fuel irradiation testing, where
up to 2 rigs can be installed simultaneously.
As explained before this fuel
irradiation position constitutes one of
the main differences between RMB
and the reference reactor. The position
has a 5 x 5 grid where beryllium
blocks are placed to reflect the neutrons
produced in the core when there
is no fuel being tested. When used, the
fuel irradiation position allows testing
of fuel prototypes, simulating steady
state and dynamic conditions (ramp
tests and load following).
At least 10 of the bulk irradiation
positions in the reflector vessel can be
used to irradiate rigs with low enriched
fuel miniplates, to produce
Mo-99. Each rig is designed to produce,
after 7 days irradiation, between
2,400 and ,3000 Ci of Mo-99, which
will correspond to 400 and 500 Ci, respectively,
after 6 days calibration.
On the lower part of the reflector
vessel there is a skirt, whose interior is
divided into two parts. The central
part is used as water inlet for the
primary reactor cooling system, and
the outer section, between the central
part and the wall of the skirt, is used
as water outlet for the reactor pool
cooling system. Figure 2 shows a perspective
and a cutaway view of the reflector
vessel.
| | Fig. 2.
Perspective (left) and cutaway (right) views of the reflector vessel.
4. Reactor and service
pools
The reactor pool is a 5.1 meters diameter,
14 meters high cylindrical tank
made of stainless steel, filled with water
up to the 12.6 meters level. It
houses the reflector vessel, a small
spent fuel storage rack, with capacity
to store up to 32 fuel elements; the
bundles of tubes used for pneumatic
irradiation; the internal piping that
form the inlet and outlet of the
primary and pool cooling systems;
nuclear and process instrumentation;
auxiliary support and mechanical
structures, and the water inventory,
required for the pool cooling system to
perform its functions. The tank is embedded
in a concrete block, anchored
to the concrete by a set of reinforcement
rings and clamps at the bottom.
The bottom of the pool has 5 penetrations,
one for the control plates driving
mechanisms, and four for the
heavy water system. One of the heavy
water connections is used for drainage
of the reflector vessel, two are used as
inlet and outlet of the heavy water
cooling system; and the forth connection
is used as an alternative system to
shut down the reactor. This connection
has a set of valves that once open,
removes about 50 % of the heavy water
in less than 15 seconds, assuring
that the reactor is kept shutdown,
even after returning to normal temperature.
Adjacent to the reactor pool there is
the service pool, a 9.0 meters high rectangular
stainless steel structure, with
maximum water level equal to 7.6
meters. The service pool houses a spent
fuel storage rack with capacity to 600
spent fuel elements, the equivalent to
10 years of operation; some containers
specially designed to store damaged
fuel assemblies; a basket for solid waste
storage; a transport cask platform; a
structure to store the reactor isolation
gate; internal piping of the pool cooling
system; pool lighting supports; and
racks used for decay of materials irradiated
in the reactor and that needs
further processing, like Silicon, the
miniplates for Mo-99 production, etc.,
The service pool also is the entrance of
an elevator, which connects the service
pool to a hot cell, named Moly Hot Cell,
which is part of a system used to transfer
the miniplates to a transport cask.
The service pool is connected to the reactor
pool by a transfer channel. The
transfer channel, also made of stainless
steel, has a 5.0 meters layer of water,
which works as biological shielding
when the spent fuel, or any material
irradiated in the core, is transferred
from the reactor pool to the service
pool. A sliding gate, when installed in a
| | Fig. 3.
Perspective view of the reactor and service pools.
groove of the transfer channel, allows
maintenance of one pool without the
need to empty the other pool. Figure 3
shows a perspective view of the reactor
and service pools.
5. Reactor and pools cooling
systems
Light water is used for cooling the reactor
core and the internals of the
RESEARCH AND INNOVATION 31
Research and Innovation
RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares
atw Vol. 60 (2015) | Issue 1 ı January
RESEARCH AND INNOVATION 32
reactor and service pools. The water
used in the reactor primary cooling
system enters the reactor pool through
two pipes installed about one meter
below the transfer channel, and flows
down to enter in the lower part of the
reflector vessel, then flows upward
through the reactor core, and through
a riser installed on top of the reflector
vessel, leaving the reactor pool
through a single pipe also installed below
the transfer channel, as shown in
Figure 3. The volume of water that
flows through the core represents
90 % or the total flow in primary cooling
system. The other 10 % comes from
the top of the reactor pool. It enters the
top of the raiser and flows down to the
outlet piping. By using this design, all
N-16 produced in the water, when it
passes through the reactor core, goes
directly to the N-16 decay tank, installed
below the service pool.
The primary cooling system has 3
circuits. Each circuit has a pump, with
inertia flywheel, and a plate type heat
exchanger with capacity to remove
50 % of the heat generated in the reactor
core. One of the circuits remains
in standby during normal operation.
In addition to the 10 % of water
that flows in the primary cooling system,
the reactor pool has another
equivalent volume of coolant that
flows downward in the reactor pool,
passes through the radioisotope production
and silicon irradiation rigs,
and enters a plenum between the
primary cooling inlet region and the
external wall of the skirt installed on
the lower part of the reflector vessel,
as shown in Figure 2. The water
leaves the plenum through a pipe
that goes upward, leaving the reactor
pool close to the transfer channel.
The inlet and outlet pipes of
both cooling systems, the primary
cooling system and the pools cooling
system, have siphon brake and
| | Fig. 4.
The temporary spent fuel storage and the handling and dismantling pools.
flap valves on their top positions. The
siphon brake valves are installed to
prevent the accidental loss of water
as a consequence of a siphon effect
following the unlikely rupture of a
pipe outside the pool, and the flap
valves are installed to allow the establishment
of the natural circulation
process, to cool the reactor core, following
the reactor shutdown.
A 1.5 m thick hot layer on top or the
reactor and service pools, provides a
non-activated stable water layer over
the pools. It prevents active particles
from reaching the surface of the pools,
reducing significantly the radiation
dose to reactor operators. The hot
layer temperature is 8 ºC higher than
the pool water temperature.
6. Reactor control and
shutdown systems
Six independent Hafnium control
plates are used to control the fission
process in the RMB research rector.
Each control plate has an extension
which has a magnetic disc at the end,
and is driven by an independent
mechanism installed in a sealed compartment
below the reactor pool. The
driving mechanism is based on a system
known as “rack-pinion”, having
on its extremity an electromagnetic
assembly. When active, an electric
current passes through the electromagnetic
assembly and engages the
magnetic disc, allowing the movement
of the respective control plate.
The movement is upwards for removal
from the core, and downwards for insertion.
Once the electric current is
interrupted, the magnetic disc automatically
disengages from the eelectromagnetic
assembly, and the control
plate falls by gravity. Compressed air,
from a pneumatic cylinder, helps to
accelerate the introduction of the control
plate into the reactor core.
The negative reactivity inserted by
any combination of five control plates
is enough to keep the reactor shutdown,
and if for some reason, following
a “scram signal” it is detected that
two control plates have not reached to
bottom position, a second “scram signal”
is generated. This second “scram
signal” is used to open a series of valves
that result in the removal of about 50
% of the heavy water from the reflector
vessel; quantity enough to assure keeping
the reactor shutdown even when it
returns to ambient temperature.
7. The spent fuel storage
building
To comply with the requirement to allow
the interim storage, for at least
100 years of all spent nuclear fuel
used in the reactor; a building, named
“Spent Fuel Storage Building”, was
designed adjacent to the reactor
building. This building, which can be
accessed directly from the reactor
building, will have two additional
pools, one for temporary wet storage
of the spent fuel used in the reactor,
and the other for handling and dismantling
rigs that were used for material
and fuel irradiation tests.
The temporary spent fuel storage
pool is a stainless steel structure, similar
to the service pool. The pool has
only three items, the spent fuel storage
rack, the inlet piping from the
pool cooling system, and the pool
lighting system. The spent fuel storage
rack has a capacity to store 1,200
spent fuel elements, the equivalent to
20 years of reactor operation. In order
to improve water distribution injection
and water circulation through the
fuel assemblies, the diffuser of the
pool cooling system is placed below
the storage rack. The pool cooling system
has a derivation that is used to
continuously purify the water, before
it returns to the pool.
The handling and dismantling pool
is also a stainless steel structure. It
houses several racks, with capacity to
store 4 in-core irradiation rigs, 2 used
cold neutron sources, 1 fuel irradiation
loop, and 2 isolation gates, one for the
temporary storage pool and the other
to isolate the pools from a “delivery
transfer channel”, that connects the
two pools with the service pool, located
in the reactor building. The pool
has also the pool lighting system, the
piping of the cooling and purification
system, and a transport cask platform,
needed to receive a cask that will be
used to transfer the spent fuel to a dry
storage position. Figure 4 shows the
temporary spent fuel storage pool and
the handling and dismantling pool.
The two pools of the spent fuel
storage building plus the reactor pool
and the service pool, these last two
located in the reactor building, form a
stainless steel structure embedded in
a concrete block, as shown in Figure
5. Three hot cells located in the
reactor building and one hot cell in
the spent fuel storage building complement
the concrete block.
According to the conceptual design
of the spent fuel storage building,
after 20 year of decay, the spent
nuclear fuel shall be transferred from
the storage pool to a dry storage position,
located in the level -6,00 of the
building. For this operation, a dual
purpose cask (for transport and stor-
Research and Innovation
RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares
atw Vol. 60 (2015) | Issue 1 ı January
age) is lowered in the transport cask
platform, installed in the handling
and dismantling pool. After being
filled with spent fuel assemblies, the
cask is taken to an area where it will be
properly dried, and then transferred
to level -6,00 of the building, where
150 dual purpose casks can be stored
for at least 100 years.
A system comprising two ante cameras
and two isolation gates, maintain
the physical and environmental separation
between the reactor and the
spent fuel storage buildings.
8. The research and production
nucleus
The reactor and spent fuel storage
buildings are the centre of what is
called the “research and production
nucleus”, which includes a radioisotope
production facility and three
laboratories, one for research utilizing
neutron beams, one for neutron activation
analysis and the third one for
post irradiation analysis of irradiated
materials and nuclear fuels.
The radioisotope production facility
will have two lines of hot cells, the
first one for production of radioisotopes,
like Mo-99 and I-131, and the
second one for “sealed sources”, like
Ir-192 and I-125, for industrial and
medical applications. According to the
established requirement, it will have
the capacity to produce radioisotopes
and sealed sources to attend the national
needs beyond 2020.
The neutron beams laboratory will
have lines of thermal neutrons, for experiments
like high resolution diffractometry,
high intensity diffractometry,
Laue diffractometry, residual
stress diffractometry, and neutrongraphy;
and lines of cold neutrons,
for experiments like small angle neutron
scattering (SANS), reflectometry,
prompt gamma analysis and others
that are under analysis.
The radiochemistry laboratory will
have two pneumatic connections to receive
long life irradiated samples, plus
five pneumatic tubes connected directly
to the reflector vessel, for cyclic
irradiations of short life products and
delayed neutron activation analysis.
The post irradiation laboratory is
the facility that, together with the reactor,
allows irradiation tests of materials
and fuels needed for the
Brazilian nuclear program.
Seven more facilities complement
the research and production nucleus,
the reactor auxiliary building, the
cooling tower complex, the electrical
supply and distribution building, a radioactive
waste management facility,
a workshop, an operator’s support
building, and a researcher’s building.
Figure 6 shows the main facilities of
the research and production nucleus.
9. The RMB nuclear
research and production
centre
RMB is a new nuclear research and
production centre that will be built in
a city about 100 kilometres from Sao
Paulo city, in the southern part of
Brazil. The centre will have, in addition
to the research and production
nucleus, an administrative centre and
an infrastructure centre to attend all
the needs of the centre. The administrative
centre will have a library, an administration
building, a hotel, a restaurant,
an ambulatory, and a training
centre. The infrastructure centre will
have a water treatment plant, a warehouse,
a workshop, a facility for the fire
brigade, a garage, a sewage treatment
station, a chemical treatment plant, a
meteorological station, the main gate,
and the electrical substation. Shown in
Figure 7, RMB Centre has an area of
about 2 millions square meters.
10. Status of the project
In 2011, the Ministry of Science Technology
and Innovation allocated R$ 50
Mill. (about US$ 25 Mill.) for the conceptual
and basic designs of the complex.
It allowed, in 2012, the signature
of a contract, with a Brazilian company,
to develop the engineering work for the
conceptual and basic design phases of
all buildings and facilities of the centre,
excluding the reactor and connected
systems; and in 2013 the signature of
the contract with INVAP for the work
related to the preliminary engineering
of the reactor and connected systems.
Conclusion of both contracts is planned
for the middle of 2014.
Also in 2012, a contract was signed,
with a Brazilian company with tradition
in environmental studies, to perform
environmental and site studies.
| | Fig. 5.
Pools embedded in the concrete block.
| | Fig. 6.
Plant (left) and perspective view (right) of the RMB research and production nucleus.
The report was finished by middle
2013, allowing the starting of environmental
and nuclear licensing processes,
with presentation of site and local reports,
requirements for first license.
They were also the basis for the three
public hearings, done in October 2013.
Site topography was already surveyed;
geological sampling completed,
and a meteorological tower was
installed and it is operational since
2012.
Next steps are: conclusion of the basic
and preliminary engineering, development
of detailed design, manu-
| | Fig 7.
Artist view of the RMB nuclear research centre.
RESEARCH AND INNOVATION 33
Research and Innovation
RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares
atw Vol. 60 (2015) | Issue 1 ı January
34
AMNT 2014
Paper
presented
at the RRFM 2014
facturing, construction, assembling
and management. These phases will be
carried out by national and international
companies, and for these activities,
a provision was made in the national
budget, but not yet confirmed.
Total project remaining time span is
estimated in 5 years after contract signature
and subject to availability of
funds.
11. References
| | [1] I. J. A. Perrotta, J. Obadia, “The RMB
project development status”, on Proceedings
of the 2011 International Conference
on Research Reactors: Safe Management
and Effective Utilization, held in
Rabat, Morocco, 14-18 November 2011;
International Atomic Energy Agency, Vienna,
Austria (2012), available at: http://
www-pub.iaea.org/MTCD/Publications/
PDF/P1575_CD_web/datasets/abstracts/
C6Perrotta.html.
| | [2] I. J. Obadia, J. A. Perrotta, “A sustainability
analysis of the Brazilian Multipurpose
Reactor Project”, on Transaction of
14 th International Topical Meeting on Research
Reactor Fuel Management
(RRFM-2010), held in Marrakesh, Morocco,
21-25 March 2010; European
Nuclear Society, Brussels, Belgium
(2010), ISBN 978-92-95064-10-2, available
at: http://www.euronuclear.org/
meetings/rrfm2010/transactions/
RRFM2010-transactions-s6.pdf.
| | [3] International Atomic Energy Agency,
“Specific Considerations and Milestones
for a Research Reactor Project”, Nuclear
Energy Series NP-T-5.1, IAEA, Vienna,
(2012), ISBN: 978–92–0–127610–0, Available
at: - http://www-pub.iaea.org/MTCD/
publications/PDF/Pub1549_web.pdf.
Authors
José Augusto Perrotta and
Adalberto Jose Soares
Comissão Nacional de Energia
Nuclear (CNEN)
Avenida Prof. Lineu Prestes 2242
05508-000, Brazil
45 th Annual Meeting on Nuclear Technology: Key Topic |
Reactor Operation, Safety – Report Part 3
The following reports summarise the presentations of the Technical Sessions “Reactor Operation, Safety: Radiation
Protection”, “Competence, Innovation, Regulation: Fusion Technology” and “Competence, Innovation, Regulation:
Education, Expert Knowledge, Knowledge Transfer” presented at the 45 th AMNT 2014, Frankfurt, 6 to 8 May
2014.
The other Key Topics and Technical Sessions have been covered in previous issues of atw and will be covered in further
issues of atw.
Reactor Operation, Safety:
Radiation Protection
Angelika Bohnstedt
Due to different circumstances the amount of presentations in the
technical session “Radiation Protection” was at the Annual
Meeting actually reduced to three lectures. But this gave the audience
with about 23 to 27 participants the opportunity to have a
lively discussion after each presentation, not only with the lecturer
but also with other colleagues in the public. So the whole
session was a fruitful exchange of interesting information and
knowledge.
The session was chaired by Dr. Angelika Bohnstedt, Karlsruhe
Institute of Technology (KIT).
The first presentation “Optimisation of Clearance Measurements
According to DIN 25457 Taking Account of Type A and
Type B Uncertainties” was hold by S. Thierfeld (co-author:
S. Wörlen; both Brenk Systemplanung GmbH). In the beginning
S. Thierfeld gave an overview of the DIN 25457, the widely applied
standard for clearance measurements. He showed the evolvement
from the fundamentals in 1993 via the Part 4 about contaminated
and activated metal scrap, to the Part 6 of building rubbles and the
latest Part 7 of the DIN about nuclear sites. And he emphasized
that the primary aim is to get a reliable yes/no decision about the
compliance with clearance levels. At the next step S. Thierfeld explained
the incorporation of DIN ISO 11929, the standard for
dealing with uncertainties in measurements, into DIN 25457. The
consideration of Type A and Type B uncertainties for measurements
and their calibrations was discussed. For different factors,
influencing measurement and calibration, a conservative approach,
taking only Type A uncertainties into account, and a realistic
approach, combining Type A and Type B uncertainties, is possible.
S. Thierfeld elucidated how to check step by step in the measurement
and the calibration procedure which approach of uncertainty
determination will be more reasonable for each respective
factor. He concluded that finally a combination of all conservative
and realistic approaches has to be done in a way to reach clearance
measurements as precisely as necessary. At the end S. Thierfeld
pointed out that the higher effort to reduce uncertainties will
bring a decreased effort for decontamination work.
The following presentation “Optimization of Handling Components
and Large Scale Shielding Calculations with the Deterministic
Code ATTILA” was given by S. Boehlke (co-author:
M. Mielisch; both STEAG Energy Services GmbH), who started with
the statement that in general shielding components are designed
with conservative assumptions and boundary conditions which
cover all possibly occurring situations. This can result in an overestimated
shielding and the goal of an optimization procedure is to
decrease on one hand the radiation level in accessible areas but on
the other hand to decrease the amount of avoidable shielding material.
S. Boehlke noted that for this optimization the calculation of
the shielding geometry as well as the calculation of the dose rate
distribution was done with the code ATTILA. He explained the different
features of ATTILA, e.g. intuitive graphical user interface
and the possibility to integrate simplified CAD geometries etc., and
demonstrated in the following the use of ATTILA with 2 examples:
a large scale dose rate mapping and the optimization of the shielding
material of a handling machine for canisters of vitrified glass.
For the large scale model (situation in a storage building) several
aspects like superposition of all sources, the scattering of walls
etc. and the scattering through openings was taken into account.
As result S. Boehlke showed an overview about the shielding situation
in the whole building. The second example was the calculation
of the dose rate at the surface of a handling machine for canisters.
Here S. Boehlke could demonstrate as consequence of the
calculations a change in the design of the machine with the success
that regions where the dose rate limit was exceeded before
vanished and on the material site the reduction of used lead was
about 30 % and the overall mass reduction of the machine was of
about 10 %.
AMNT 2014
Key Topic | Reactor Operation, Safety – Report Part 3
atw Vol. 60 (2015) | Issue 1 ı January
In the third lecture “Shielding Factors of Newly Designed
Ventilation Screws” H. Niegoth (co-authors: S. Boehlke, W. Stratmann
and M. Bock; all STEAG Energy Services GmbH) presented the
novel design of a shielding screw. He started with a short explanation
that for a hot cell – to handle spent fuel and other sources of
high radiation- there are two opposing requirements: on one hand
sufficient ventilation is necessary but an effective radiation shielding
has to be guaranteed on the other hand. Known construction
solutions are Z-shaped channels, not able to penetrate a wall
straight, and ventilation screws made of cast iron where the shielding
is restricted to gammy radiation. Next H. Niegoth demonstrated
a new approach for a screw design. This design bases upon a sandwich
construction of several layers of winged discs where each individual
element can vary in the numbers of wings, in the thickness
and in the type of shielding material. H. Niegoth pointed out
that because of different materials the shielding possibility is not
restricted to gamma radiation but also neutron shielding can be
achieved by using disc elements of polyethylene. He presented
shielding calculations, performed with the ATTILA code, for
screws with variations in the diameter, the length and the number
of wings for each disc and in the number of turns per screw. In addition
pressure loss coefficients have to be calculated for different
screw parameters with CFD methods. At the end H. Niegoth summarized
that the sandwich concept of the novel screw allows a
flexible adaption of the shielding requirements with regard to the
ventilation requirements for individual application cases.
Competence, Innovation, Regulation:
Fusion Technology
Optimisation Steps in the ITER Design
Thomas Mull
ITER is the International Thermonuclear Experimental Reactor
which is presently under construction at Cadarache in Southern
France. This reactor is meant to demonstrate the feasibility of
maintaining a burning fusion plasma – magnetically confined and
producing a fusion power of 500 MW – in a steady state for several
minutes and to investigate the possibility of breeding Tritium,
which is needed for fuel, at a technical/industrial scale.
The first presentation with the title “Effect of Diagnostic
Apertures on Shut-Down Dose in ITER Upper Port Plug #18”
was given by Arkady Serikov (Karlsruhe Institute of Technology,
KIT). His co-authors were U. Fischer, B. Weinhorst (both KIT) and
L. Bertalot, A. Suarez and S. Pak (all three: ITER Organisation).
Shut-Down Dose Rates (SDDR) are a key condition for ITER
maintainability. Dr. Serikov and his colleagues had focused on one
of the port plugs, namely the Diagnostics Upper Port Plug (UPP) #
18. This port plug is hosting three diagnostic systems: vacuum ultra-violet
(VUV) spectrometer, vertical neutron camera (VNC)
and neutron activation system (NAS).
The SDDRs are calculated in a multi-step process. The first step
calculates the neutron and gamma flux in the plug volume during
ITER operation, based on a prediction of the strength and spatial
distribution of the power release of the ITER fusion plasma and
shielding effects. The second step calculates the (space-resolved)
activation of the materials in the plug, based on these radiation
fluxes and assumptions for the preceding ITER operation time. A
last step calculates the gamma dose rates due to these activated
materials, based on a certain shutdown time before access (typically
106 s, i.e.: approx. 12 days).
The parameters to be varied are choices for materials, presence
or absence of filler materials and general geometry (where
the real geometry is rather closely defined but for sake of simplicity
there are calculations with a “homogenized” plug).
Dr. Serikov and his colleagues found out that the SDDR directly
behind the UPP under consideration could be reduced with respect
to the current design by a factor of approx. 2 by proper
choice of geometry and materials. Moreover they collected experience
with radiation streaming effects inside the gaps which are
surrounding the plugs inevitably and due to the apertures required
by the spectrometers. This experience can be transferred to
many other components.
The following three contributions were all dealing with properties
of tungsten which is foreseen as the plasma-facing material
for the ITER divertor. The speakers (and main authors) of all these
contributions were from Forschungszentrum Jülich GmbH (FZJ).
Isabel Steudel presented her works on “Thermal Shock Behaviour
of Tungsten Under Different Simulation Methods”. Her
co-authors were A. Huber, J. Linke, G. Sergienko and M. Wirtz.
Forged tungsten has a heterogeneous grain structure with grains
flattened corresponding to the forging forces. I. Steudel had investigated
the resistance of tungsten samples with different surface grain
orientation to the impact of electron beams and Nd:YAG laser beams
(with these beams simulating peak power impacts due to so-called
edge-localized modes of the plasma, ELMs, which reach up to 1 GW/
m 2 and which are way higher than the “normal” irradiation due to a
burning plasma which reaches “only” up to 20 MW/m 2 ). The experiments
were starting from base temperatures of 20 °C and 400 °C,
respectively. Mrs. Steudel explained that ELMs are unlikely to occur
in operation states where the wall temperatures are below 200 °C.
The results of these experiments show that there are different
kinds of surface modifications and damages which are referable to
two mechanisms. The transient heat loads and the related temperature
increase leads to a local expansion that induces compressive
stresses due to the cooler surrounding material. After the thermal
shock event the material quickly cools down and compressive
stresses are converted into tensile stresses. If the material is
ductile these stresses can be compensated by plastic deformation.
Otherwise cracks or crack networks occur.
The damage behaviour strongly depends on the impacting
power density and on the base temperature. A damage threshold
was identified between 0.19 and 0.38 GW/m 2 for both base temperatures,
for recrystallised material even between 0.38 and 0.76
GW/m 2 if starting at room temperature.
An important conclusion from the experiments is that both
simulation methods are capable to provide similar thermal loading
conditions and that the damage patterns such as roughening
and cracking are similar and show only minor deviations.
Nathan Lemahieu reported on “Resistance of Tungsten with
Yttrium Doping to ELM-Like Thermal Shocks”. His co-authors
were J. Linke, G. Pintsuk, M. Wirtz (all three FZJ) as well as G. Van
Oost (Ghent University, Belgium) and Z. Zhou (University of Science
and Technology Beijing, China).
The thermal shock resistance of spark plasma sintered tungsten
grades, containing between 0.25 weight% and 1 weight% yttrium,
was investigated under fusion relevant ELM-like loading conditions.
The tungsten samples were cyclically tested at room temperature
using a Nd:YAG laser beam and the electron beam facility
JUDITH 1. Heat pulses with durations of 1 ms were applied to the
samples leading to absorbed power densities between 0.37 GW/m 2
and 1.14 GW/m 2 . Furthermore, at a temperature of 400 °C, three
samples were tested as well with the highest available power density
of 1.14 GW/m 2 . The characterization of the samples before and
after exposure shows that the thermal shock resistance improves
with increasing yttrium content. However, in contrast to pure
tungsten, for a base temperature of 400 °C there is still brittle behaviour
for the yttrium-doped tungsten.
These works clearly showed that tungsten-yttrium grades have
benefits and should be considered as plasma facing materials
(PFM). However, an observed rise in the ductile to brittle transition
temperature (DBTT) could be a real draw-back. Therefore,
future studies should include more tests at elevated base temperatures,
higher than 400 °C to determine this DBTT and to exclude
other drawbacks. A second approach to future research could include
optimizing the yttrium content.
35
AMNT 2014
AMNT 2014
Key Topic | Reactor Operation, Safety – Report Part 3
atw Vol. 60 (2015) | Issue 1 ı January
36
AMNT 2014
Bruno Jasper explained “The Powder Metallurgical Route to
Tungsten-Fiber Reinforced Tungsten”. His co-authors were J.W.
Coenen, Ch. Linsmeier (both FZJ) and J. Riesch and J.-H. You
(Max-Planck-Institut für Plasmaphysik, Garching, Germany) as
well as A. Mohr (Ruhr Universität Bochum, Germany).
Tungsten structures can withstand high temperatures but
tungsten is a relatively brittle material. Tungsten-fiber reinforced
tungsten (Wf/W) composites are supposed to enable enhanced
toughness due to extrinsic energy dissipation mechanisms such as
interface debonding and plastic deformation of fibers. So far
Wf/W has been produced by Chemical Vapor Infiltration (CVI).
The crucial property of this material is a certain ability of the
fibers to move microscopically with respect to the surrounding
tungsten bulk. This feature is secured by very thin coatings of the
tungsten fibers, e.g. by erbium oxide. CVI does not damage neither
the fibers nor their coating. Unfortunately, CVI is limited to rather
small production rates.
B. Jasper and his colleagues are investigating alternative
methods, namely powder metallurgical routes of Wf/W production:
Hot Isostatic Pressing (HIP) and Electro Discharge Sintering
(EDS). The advantage of such a procedure could be much larger
production rates. It is, however, a big challenge not do damage
the fibers and their coatings during these new production processes
which impose high thermal and mechanical stresses onto
the fibers.
In this context, EDS might be the preferable process. During
EDS a powder is placed between two electrodes and then compacted
by a short but high energy pulse. In addition an axial pressure
is applied to increase the density even further.
First pure W samples showed high values for the relative density.
Investigations on samples including fibers are ongoing, supported
by comprehensive modelling efforts.
The Technical Session was chaired by Thomas Mull (AREVA
GmbH).
Competence, Innovation, Regulation:
Education, Expert Knowledge, Knowledge
Transfer
Jörg Starflinger
Design and Development of Training for Managers of a Nuclear
Operator (Anna Starynska, Spider Management Technologies
Ukraine; Ronald Landefeld, Christian Schönfelder and Robert Geisser,
AREVA GmbH): AREVA with their subcontractor Spider Management
Technologies Ukraine are currently implementing a consultancy
project with the objective to complete a management
training center of a nuclear operator. As an important milestone,
the development as well as the training needs analysis of managers
has been completed recently, and accepted by executive
management of the operator. In the paper the methodology used
has been described, the connection of development needs with
the strategic reorientation of the operator and the contribution of
management training to achieving the strategic goals of the utility,
in particular improvement of nuclear safety. The highest priority
of all activities of a nuclear operator shall be given to establish a
mechanism of permanent improvement of safety culture according
to IAEA-Safety Series No. 75-INSAG-4.
Based on a management competence model, a special tool –
the Individual Training and Development Plan – was elaborated
for managers’ appraisal, identification of training needs, elaboration
of individual plans for development of managers and trainers,
and monitoring of the personal development process.
In summary, the utilization of the competence model allows
establishing, forming and developing preferable behaviour of
managers in the context of creation of necessary operation culture.
Individual training and development plans for managers are
an efficient and effective tool of implementation of the operator’s
middle and long term strategy.
Support of an University Nuclear Master Course by a Nuclear
Supplier (Tomas Bajer, AREVA NP Controls, s.r.o.; Vladimir
Slugen, Slovak University of Technology; Stefan Glaubrecht and
Christian Schönfelder, AREVA GmbH): The cooperation between
the Institute of Nuclear and Physical Engineering FEI STU, University
of Bratislava, Slovak Republic, and AREVA has been presented. This
cooperation is considered as a win-win arrangement for all stakeholders,
the university, students and AREVA. The university can
rely on state-of-the-art technologies for its education activities,
expand its lecture offer and establish an international scope. Students
will gain a deeper comprehension of current issues in nuclear
Instrumentation&Control and they will be better prepared for
their future job positions and career perspectives. AREVA will profit
from the students’ enhanced specific knowledge on nuclear technology
and access to well-educated and motivated graduates.
As an example the preparation and delivery of specialized lectures
and practical exercises for an upcoming new subject “Measurement
and control in nuclear power plants”, focusing on stateof-the-art
technologies, especially TELEPERM ® XS (TXS), which
is also used in Slovak NPPs of VVER-440 type. AREVA contributed
to four of the twelve lectures of the university course.
This cooperation will be formalized in the near future by concluding
an agreement detailing the scope of the cooperation. The
cooperation could also be extended in the future, e.g. by expanding
the number of lectures and lab works that are supported by
AREVA, by organizing student internship and Master theses in
AREVA facilities, or even by performing joint R&D projects.
Practical Implementation Methodologies of Preserving
Competence in Nuclear Power Plants (Michael Burkhard, GiS -
Gesellschaft für integrierte Systemplanung mbH): To preserve competence
and knowledge in nuclear power plants, professional tools
are in use in the area of maintenance and operations, so-called “Enterprise
Asset and Operations Management Solution (EAM)”. Such
a system contains operational data, maintenance instructions,
technical specifications, historical data, etc. It can be extended to a
Knowledge Preservation System (KPS), which contributes to prevent
the loss of knowledge, that processes can be optimized by utilizing
experience and to extend of the power plant’s life cycle. If the
KPS is established in a very early stage, information is inserted in a
less filtered way. That way it is possible not only to learn from best
practices but also to prevent doing the same mistakes twice. As soon
as this is achieved, learning from best practices as well as learning
from mistakes, it is very likely that the power plant is optimally prepared
for a technically and economically optimized future.
The main target and the focus has to be on gathering data in a
sufficient way whilst enabling users to get those information attached
directly to their actual work so they get the information
they need at the right time, in the right context and in the appropriate
details. Such system has been applied successfully in several
nuclear power plants in Germany and Switzerland.
Authors:
Angelika Bohnstedt
Karlsruher Institut für Technologie (KIT)
Programm Nukleare Sicherheitsforschung (NUKLEAR)
KIT Campus Nord, Gebäude 433
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen/Germany
Thomas Mull
AREVA GmbH
Nuclear Fusion, HTR and Transverse Issues (PTDH-G)
Paul-Gossen-Straße 100
91052 Erlangen/Germany
Prof. Dr.-Ing. Jörg Starflinger
Institutsleiter
Universität Stuttgart
Institut für Kernenergetik und Energiesysteme (IKE)
Pfaffenwaldring 31, 70569 Stuttgart/Germany
AMNT 2014
Key Topic | Reactor Operation, Safety – Report Part 3
The International Expert Conference on Nuclear Technology
Estrel Convention
Center Berlin
5–7 May
2015
Germany
Key Topics
Outstanding Know-How &
Sustainable Innovations
Enhanced Safety &
Operation Excellence
Decommissioning Experience &
Waste Management Solutions
Programme
3 Gold Sponsor
3 Silver Sponsors
www.nucleartech-meeting.com
Fuel
atw Vol. 60 (2015) | Issue 1 ı January
AMNT 2015 38
Plenary Session
Tuesday ı May 5 th 2015
Welcome and Opening
Address
Dr. Ralf Güldner, President of DAtF,
Germany
Policy
German Energiewende and European Energy
Market – Risk or Opportunity?
Thorsten Herdan, Head of the Department
Energy Policy, Federal Ministry for Economic
Affairs and Energy, Germany
International Developments
Representative of EU Member State
Economy
E.ON’s Strategy: Managing Regulation and
Political Uncertainty
Dr.-Ing. Leonhard Birnbaum, Member of the
Board of Management – Markets,
Services, E.ON SE, Germany
Vattenfall’s Visions Concerning Climate
Policy and the Place of Nuclear
Mats Ladeborn, Head of Nuclear Power
Development, Vattenfall AB, Sweden
Long-Term Stability and Profitability in
Electricity Generation
Jacek Cichosz, Vicepresident and Member of
the Board, PGE EJ1, Poland
Communications
Pragmatism and Ideology: Opinion Shaping
in Nuclear
Ann S. Bisconti, PhD, President, Bisconti
Research, Inc., USA
Why Miracles Come From Nuclear?
Nuclear Communications Beyond Energy
Dr. John Barrett, President and Chief
Executive Officer, Canadian Nuclear
Association, Canada
Waste Management
Re-Start of the Selection Process for a HAW
Final Repository in Germany – a Snapshot of
the Status-Quo
Key Note: Ursula Heinen-Esser, Chairperson
of the Commission “Storage of High-Level
Radioactive Waste Materials”, German
Bundestag
Panel
• Ursula Heinen-Esser, Chairperson of the
Commission
• Prof. Dr. Dirk Bosbach, Director of the Institute
of Energy and Climate Research
IEK-6: Nuclear Waste Management and
Reactor Safety, Forschungszentrum Jülich
GmbH
• Jochen Stay, Spokesperson of anti-nuclear
organisation .ausgestrahlt
• Dr. Hannes Wimmer, Chairman of the
Board of Managing Directors, GNS Gesellschaft
für Nuklear-Service mbH, Germany
Moderator: (Tba)
Competence
From Enhanced Safety to Advanced Designs
Panel
• Yves Brachet, PhD, President EMEA Region,
Westinghouse Electric Company,
Belgium
• Nick Hanigan, Director of Waste Management
and Decommissioning National
Nuclear Laboratory, UK
• Stefan vom Scheidt, CEO AREVA GmbH,
Germany
• Tba, China National Nuclear Corporation
(CNNC), China
Moderator: Chairperson KTG (tba), Germany
Outlook AMNT 2016
Chairperson KTG (tba)
Social Evening
All contributions translated simultaneously
in English/German.
The DAtF-President and the KTG-Chairperson
will lead through the programme.
Key Topic
Outstanding Know-How
& Sustainable
Innovations
Focus Session
Implementing New Safety
Requirements in Europe
Wednesday ı May 6 th 2015
Coordinators: Dr. Christian Raetzke, CONLAR
Consulting on Nuclear Law, Licensing and
Regulation, Germany
The revision of the EU Nuclear Safety Directive
has been adopted by the Council. WENRA
will complete the revision of its Reference
Levels by 2014. The IAEA is pursuing a number
of post-Fukushima actions and programmes.
These developments and their impact
on design and operation of nuclear installations
will be presented and discussed by
high-level speakers from relevant institutions
and companies.
The Revised EU Nuclear Safety Directive
Massimo Garribba, European Commission,
Luxembourg
The Revision of WENRA Reference Levels and
their Implementation by WENRA Regulators
Dr. Hans Wanner, ENSI (Eidgenössisches
Nuklearsicherheitsinspektorat), Switzerland
IAEA Activities Concerning Nuclear Safety
After the Fukushima Accident
Gustavo Caruso, International Atomic
Energy Agency (IAEA), Austria
The Revision of the German Regulations in
the Light of Developments in the EU and
Worldwide
Tba, Anlagen- und Reaktorsicherheit GRS
mbH, Germany (tbc)
The Impact of New Safety Requirements on
the Operation of Existing Installations in the
Czech Republic
Milan Sýkora, CEZ, a. s., Czech Republic
The Impact of New Safety Requirements on
the Design of New Nuclear Power Plants in
the EU on the Example of EPR
Jürgen Wirkner, AREVA GmbH, Germany
Topical Session
Nuclear Know-How Beyond
Power Generation
Wednesday ı May 6 th 2015
Coordinator: Dr. Stefan Nießen,
AREVA GmbH, Germany
FRM II: Neutrons for Industrial and Medical
Applications
Dr. Anton Kastenmüller, Technische
Universität München, Germany
Thermohydraulic Codes Applied to Wind
Power and Combustion Engines
Prof. Dr. Andreas Class, Karlsruher Institute of
Technology, Germany
Radioisotope Battery Technology in Space
Marie-Claire Perkinson, European Aeronautic
Defence and Space Company (EADS), United
Kingdom
Dr. Richard Ambrosi, University of Leicester,
United Kingdom
Gamma Irradiation an Indispensable Tool for
Sterilization
Reiner Eidenberger, Synergy Health
Allershausen GmbH, Germany
Naturally Occurring Radioactive Materials
(NORM): A Comparison Between Geothermal
Energy, Fracking and Uranium Mining
Overburden
Prof. Dr. Thorsten Schäfer, Karlsruher Institute
of Technology, Germany
Industry Applications of Nuclear Safety
Based Non-Destructive Examination
Technology
Friedrich Mohr, iNDT GmbH, Germany
AMNT 2015
Programme
atw Vol. 60 (2015) | Issue 1 ı January
Topical Session
CFD Simulations for Reactor
Safety Relevant Objectives
Thursday ı May 7 th 2015
Coordinator: Dr. Andreas Schaffrath, Martina
Scheuerer, Gesellschaft für Anlagen- und
Reaktorsicherheit GRS mbH, Germany
This session demonstrates the progress as
well as its potential for their application regulatory
practice. Current developments, examples
(e.g. flow in PWR fuel assemblies,
vortex formation at pump inlets, condensation
induced water hammer, containment
flows) and future needs are presented by
worldwide leading technical experts in this
area.
CFD Application in Nuclear Reactor Safety
Martina Scheuerer, Gesellschaft für
Anlagen- und Reaktorsicherheit GRS mbH,
Germany
Current Developments in CFD Codes
Dr. Thomas Frank, ANSYS/ MFBU –
Mechanical-Fluids Business Unit, Germany
LES Analysis of Flow in a Simplified PWR
Assembly with Mixing Grid
Dr. Ulrich Bieder, CEA/Centre de SACLAY,
France
Modelling of Passive Auto-Catalytic
Recombiner Operational Behaviour with
the Coupled REKODIREKT-CFX Approach
Dr. Stephan Kelm, Forschungszentrum
Jülich GmbH, Germany
Investigation of Surface Vortex Formation at
Pump Intakes in PWR
Peter Pandazis, Dr. Andreas Schaffrath,
Gesellschaft für Anlagen- und Reaktorsicherheit
GRS mbH,
Dr. Frank Blömeling, TÜV NORD SysTec
GmbH & Co. KG, Germany
CFD Simulations of Condensation Induced
Water Hammer
Dr. Sabin Ceuca (tbc), Technische Universität
München, Germany
CFD Simulations of Containment Flows
Dr. Ed Komen (tbc), NRG, The Netherlands
CFD for Two-Phase Flows: Status, Recent
Trends and Future Needs
Dr. Dirk Lucas, Helmholtz-Zentrum
Dresden-Rossendorf, Germany
Prof. Dr. Eckhart Laurien, University of
Stuttgart, Germany
Technical Session
Reactor Physics, Thermo and
Fluid Dynamics
Topical Neutron Kinetics
and Thermal Hydraulic
Developments and
Applications
Wednesday ı May 6 th 2015
Chair: Dr. Birgit Wortmann, STEAG Energy
Services GmbH, Germany
The Use of Neutron Fluence Analyses as
Verification of Reactor Pressure Vessel
Shielding Design
Lars Ackermann, AREVA GmbH, Germany
Validation of MCNP for Skyshine Calculation
Luc Schlomer, WTI GmbH, Germany
VENUS 7: A Recent Evaluation for the IRPhE
Handbook
Dr. Winfried Zwermann, Gesellschaft fur
Anlagen- und Reaktorsicherheit (GRS) mbH,
Germany
Nuclear Data Uncertainty Analysis With
Perturbation Theory and Random Sampling
Dr. Winfried Zwermann, Gesellschaft für
Anlagen- und Reaktorsicherheit (GRS) mbH,
Germany
Depletion Calculations for a Fast Spectrum
Fuel Assembly
Alexander Aures, Gesellschaft fur Anlagenund
Reaktorsicherheit (GRS) mbH, Germany
Neutronic Modeling of a PWR Konvoi Type
Reactor Using PARCS With Few Group Cross
Section Generated With SCALE and SERPENT
Joaquin Ruben Basualdo Perello, Karlsruhe
Institute of Technology, Germany
Monte Carlo Neutronics Investigations of
VVER-1000 Fuel Assemblies
Luigi Mercatali, Karlsruhe Institue of
Technology, Germany
Fundamentals of Heat Removal Accuracy ans
Application Limits of Analytical and
Numerical Calculation Methods: Examples
from Nuclear Applications
Dr. Andre Leber, WTI GmbH, Germany
Technical Session
Know-How, New Build and
Innovations
Innovative Concepts in Nuclear
Technology
Thursday ı May 7 th 2015
Chair: Dr. Dietrich Knoche, Westinghouse
Electric Germany GmbH, Germany
Advanced Reactor Concepts and Sustainable
Nuclear Energy Strategy –Russian Trends
Dr. Andrey Gagarinskiy, National Research
Centre, Russia
On the Use of a Molten Salt Fast Reactor for
Transmutation Fulfilling the Requests of the
Nuclear Phase Out Decision
Dr. Bruno Merk, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Germany
Modeling SFR Diagrid Expansion Reactivity
Feedback by Coordinate Transformation of
the Diffusion Equation
Dr. Armin Seubert, Gesellschaft fur Anlagenund
Reaktorsicherheit (GRS) mbH, Germany
AREVA‘s Worldwide Contributions to Safety
Improvement
Marina Welker, AREVA GmbH, Germany
AREVA‘s Alternative Way for Spare Parts
Management
Ulrich Kizak, AREVA GmbH, Germany
Development of a Moderator System for a
High-Brilliant Cold and Thermal Neutron
Source
Jan Philipp DabruckRWTH Aachen University,
Germany
Regulatory and Computerised
Improvements
Chair: Dr. Matthias Lamm, AREVA GmbH,
Germany
Training in a Plant Modernization Project
Christof Pudelko, AREVA GmbH, Germany
Supports for Equipment Components and
Piping of Nuclear Power Plants: Advances in
the Russian Regulatory Basis
Dr. Yury Spirochkin Engineering Center of
Nuclear Equipment Strength, Russia
Design of Nuclear Building Structures and
Components With Respect to Service Life
and Reliability
Dr. Rudiger Meiswinkel, TU Kaiserslautern,
Germany
Assessment of Containment Reinforced
Concrete Structures Exposed to the
Accidental Flooding by Using Abaqus FEA-
Software: Solutions and Lessons-Learned
Ulf Ricklefs, Welstinghouse Electric Germany
GmbH, Germany
Thermal and Mechanical Design of the
Plasma Core CXRS Diagnostics of the ITER
Nuclear Fusion Reactor
Frank Giese, WTI GmbH, Germany
AMNT 2015 39
AMNT 2015
Programme
atw Vol. 60 (2015) | Issue 1 ı January
AMNT 2015 40
Fast Neutron Detection With sic Semicoductor
Detector at Elevated Temperatures
Dora Szalkai, Karlsruhe Institute of
Technology, Germany
Surface Finish Influence on the Thermal
Shock Performance of Beryllium
Benjamin Spilker, Forschungszentrum Julich
GmbH, Germany
Creep Irradiation Testing of Copper Alloy for
the ITER First Wall Panels
Christoph Pohl, TUV Rheinland Industrie
Service GmbH, Germany
Campus Nuclear Energie
Wednesday ı May 6 th 2015
Workshop Preserving
Competence
Wednesday ı May 6 th 2015 &
Thursday ı May 7 th 2015
Key Topic
Enhanced Safety &
Operation Excellence
Topical Session
Sustainable Reactor
Operation Management –
Safe, Efficient and Valuable
Tuesday ı May 5 th 2015
Coordinator: Dr. Erwin Fischer, E.ON Kernkraft
GmbH, Germany
Every operator of a nuclear power plant
worldwide strives for safety, efficiency and
adding value. But what are the key factors to
achieve these goals? For sure, the technological
standards and herewith continuous investments
in maintenance and technological
development are essential. Of course, a strict
and sound regulation with an independent
authority of highest expertise is crucial, too.
In this context this session provides an overview
over best practices and state of the art
scientific findings on the relevant topics in
the field of efficient organization and responsible
human performance. Questions of
management systems, organizational setup
are being presented and discussed as well as
aspects of incorporating lessons learned and
training.
Organisational and Regulatory
Background
Welcome/Opening Remarks
Dr. Erwin Fischer
E.ON Kernkraft GmbH, Germany
Management System and Organisational
Setup as Determinants for a Successful
Performance of Plant Staff
Jürgen Schwarzin, E.ON Kernkraft GmbH,
Germany
Health, Safety and Environment – First!
Matthias Röhrborn , RWE Power AG,
Germany
Environmental Management – How to Deal
with EMAS and OSAS?
Dr. Johann Oswald, NPP Isar, E.ON Kernkraft
GmbH, Germany
Procedures Incorporating
Lessons Learned
The Process of Evolving Improvement with
Feedback of Experience in a NPP
Ulrich Sander, NPP Neckarwestheim, EnBW
Kernkraft GmbH, Germany
German Information Notices – Interdisciplinary
Event Assessment Resulting in
Recommendations
Dr. Dagmar Sommer, Gesellschaft für Anlagenund
Reaktorsicherheit (GRS) mbH, Germany
The “Human Factor”
Developing and Preserving Requisite
Qualification – Training at a Simulator
Jochen Kruip, KSG Kraftwerks-Simulator-
Gesellschaft mbH, GfS Gesellschaft für
Simulatorschulung mbH, Germany
Tools Supporting Human Performance
Dr. Stephan Rahlfs, NPP Philippsburg, EnBW
Kernkraft GmbH
Frank Heinrich, E.ON Kernkraft GmbH,
Germany
Focus Session
Radiation Protection
Tuesday ı May 5 th 2015
Coordinator: Erik Baumann, AREVA GmbH,
Germany
Radiation Protection – a century of safety
benefit for jobholders, public and environment.
The development of protection principles
is a long lasting process. It started with
the increasing industrial application of X-rays
more than 100 years ago. Today, there is a
large number of national and international
organization and governmental institutions
dealing with the protection of occupationally
exposed workers, of members of the public
and of the general environment. This session
presents the most recent status of discussions
and developments in the fields of radiation
protection during decommissioning,
development of codes, standards and regulations.
In Fact, it Protection of Human Beings and
the Environment Against Ionizing Radiation
– Some Historical Insights
Erik Baumann, AREVA GmbH, Germany
ALARA – How Much Radiation Protection is
Reasonable?
Dr. Gerhard Frank, Karlsruher Institut of Technology
(KIT), Germany
Radiological Protection Targets and
Performance Indicators
Gabriele Hampel, AXPO Power AG,
NPP Beznau, Switzerland
Dose Rate Measurements at the Presence of
Surface-near Sources
Sinisa Simic, TO.M.MA.S GmbH, Germany
Incorporation Monitoring of Intakes During
the Dismantling of Nuclear Facilities
Martina Froning, Forschungszentrum Jülich
GmbH, Germany
Decommissioning Aspects – EC and IAEA
Guidance on Exemption and Clearance Levels
and Implications on Clearance in Germany
Dr. Stefan Thierfeldt (tbc), Brenk
Systemplanung GmbH, Germany
Topical Session
Fuel Management During the
Last Cycles and Beyond
Wednesday ı May 6 th 2015
Coordinators: Ulf Benjaminsson,
Carina Önneby, Westinghouse Electric
Sweden AB, Sweden
Many utilities are currently facing a situation
where the fuel and core components are to be
effectively managed during the last cycles of
operation and beyond. A key aspect is the experiences
and strategies for core and fuel optimization
with regard to flexibility and fuel
cycle costs. With the completion of the operation,
utilities must consider whether to reuse or
dispose any residual fresh fuel assemblies. Disposal
of other core components, such as control
rods and BWR fuel channels is also to be
performed. Moreover, damaged fuel rods remaining
at the plant are to be prepared for safe
transportation and disposal. Finally, fuel suppliers
and utilities jointly have to ensure that the
depleted fuel assemblies can be safely stored in
dry storage facilities before final disposal.
Fuel Related Experiences and Lessons Learend
from Barsebäck 1 and 2.
Fredrik Winge (tbc), Vattenfall/Ringhals, Sweden
Strategies and experiences from using the
fuel as effectively as possible within EKK
Wolfgang Faber, E.ON Kernkraft GmbH,
Germany
AMNT 2015
Programme
atw Vol. 60 (2015) | Issue 1 ı January
Evaluation of Intermediate Term Dry Storage
of Fuel
Björn Andersson, Westinghouse Electric
Sweden AB, Sweden
Experiences from Potential Reuse Versus
Disposal of Fresh BWR Fuel Assemblies
Tba, Vattenfall Europe Nuclear Energy GmbH
Tbd
Sylvia Choihtramani Becerra/Robert
Schneider, GNF ENUSA Nuclear Fuel S.A.
Topical Session
Current Issues and Learnings
from the International
Experience of Reactor
Operation
Thursday ı May 7 th 2015
Technical Session
Operation and Safety of
Nuclear Installations, Fuel
Operation and Maintenace
Wednesday ı May 6 th 2015
Chair: Dr. Jürgen Sydow, TÜV NORD SysTec
GmbH & Co. KG, Germany
Pipe Robots for Internal Inspection,
Non-Destructive Testing and Machining of
Pipeline Systems in Nuclear Power Stations
Alexander Reiss, Inspector Systems
Rainer Hitzel GmbH, Germany
Lessons Learned From Operational
Accompanying Temperature Measurements
Dr. Sven H. Reese, E.ON Kernkraft GmbH,
Germany
Quality Assurance for Industrialization of
Rodlet Refabrication for Power Ramps,
in LECA-STAR Facility
Cedric Plantegenest, CEA – Cadarache, France
Examination of the Irradiated Mixed Carbide
and Nitride Fuels as Part of Their Safety
Evaluation
Paul David William Bottomley, European
Commission-JRC-Institute für Transurane,
Germany
Special Issues
Chair: Dr. Anke Traichel, NUKEM Technologies
Engineering Services GmbH, Germany
Concept of Modular Heat Exchanger for
Spent Fuel Pool Cooling
Dr. Nader Ben Said, Westinghouse Electric
Germany GmbH, Germany
AMNT 2015 41
Coordinator: Dr. Ludger Mohrbach, VGB
PowerTech e.V., Germany
Continuous improvement is the intrinsic target
of day-to-day operation of nuclear power
plants. Thus, global nuclear safety progressed
by a factor of ten every ten years. The section
highlights in-depth insights in seven persentations
into current operational issues from
seven countries.
Commissioning of Atucha-2 and Taishan-1
Tba
Material Defects in Belgian Reactor Vessels
Rene Delporte (tbc), Electrabel, Belgium
Security of Supply in Central Europe after
Shut-down of Grafenrheinfeld
Tba, TenneT TSO GmbH, Germany
New Energy Policy in France
Gilbert Moritz (tbc), EDF Electricité de France,
France
Backfitting Measures at Swiss Nuclear Power
Plants
Martin Richner, AXPO Power AG, Switzerland
Challenges of the Post-operational Period for
Nuclear Power Plants
Wittmann
Operation of Nuclear Power Plants in the
Spanish Grid
Jose Antonio Prieto, Almaraz-Trillo Nuclear
Power Plants, Spain
NUGENIA: a Non Profit International Organization
to Promote R&D for the Safe Long
Term Operation of GENII and III Nuclear
Power Plants
Dr. Abderrahim Al Mazouzi, EDF – EDF R&D,
France
Control Room Technology
Uwe Kimmeskamp, Bilfinger Mauell GmbH,
Germany
Statistical Analysis of Fatigue Data for
Austenitic Stainless Steels in Water
Environments
Paul Wilhelm, AREVA GmbH, Germany
PSA
Replacement of RPV Head Spray System in
NPP RH1
Thomas Glaab, AREVA GmbH, Germany
A Novel Approach for the Seismic Probabiistic
Safety Assessment During the Design
Stage of Non-Reactor Nuclear Facilities
Maxi Mummert, NUKEM Technologies
Engineering Services GmbH, Germany
Modeling Software Failures of Digital I&C in
Probabilistic Safety Analyses
Dr. Mariana Jockenhövel-Barttfeld, AREVA
GmbH, Germany
Analysis of the Spent Fuel Pool of a Nuclear
Power Plant, Taking Into Account Tolerable
Down Times
Dr. Günter Becker, RISA Sicherheitsanalysen
GmbH, Germany
Fuel
Chair: Patrick Raymond, Commissariat
à l‘énergie atomique et aux énergies
alternatives (CEA), France
Status of the Low Enriched Uranium UMo
Dispersion Fuel Development for High
Performance Research Reactors
Dr. Leo Sannen, SCK-CEN, Belgium
Advanced Statistical Design and Evaluation
Method
Steffen Kaefer, Westinghouse Electric
Germany GmbH, Germany
A Vision for Nuclear Reactor Safety
Prof. Francesco D‘Auria, University of Pisa, Italy
Emergency Response Exercises with
Comprehensive aAccident Scenarios at
Nuclear Power Plants
Ole Staack, ESN Sicherheit und
Zertifizierung GmbH, Germany
On a New Method for the Diagnosis of the
State of the Reactor Pressure Vessel
Inventory During Severe Accidents
Daniel Fiß, Hochschule Zittau/Görlitz,
Germany
Further Investigation on Light Gas Layer Erosion
Using the Current ASTEC Model Basis
Vera Koppers, Ruhr-Universität Bochum,
Germany
Assessment of Fission Product Release
From Ex-Vessel Molten Pools Based on ACE
Experiments
Kathrin Agethen, Ruhr Universität Bochum,
Germany
SA: WASA-BOSS + CESAM
Chair: Dr. Thorsten Hollands, Gesellschaft für
Anlagen- und Reaktorsicherheit (GRS) mbH,
Germany
QUENCH-11 Simulations With the Severe Accident
Analysis Code ASTEC V2.0 in CESAM
Florian Gremme, Ruhr-Universität Bochum,
Germany
CESAM: Simulation of a Large Break LOCA
Sequence in a German PWR Konvoi with the
Severe Accident Code ASTEC
Ignacio Gómez García-Torano, Karlsruhe
Institute of Technology, Germany
QUENCH-11 Simulations With the Severe Accident
Analysis Code ASTEC V2.0 in CESAM
Florian Gremme, Ruhr-Universität Bochum,
Germany
AMNT 2015
Programme
atw Vol. 60 (2015) | Issue 1 ı January
AMNT 2015 42
CESAM: Simulation of a Large Break LOCA
Sequence in a German PWR Konvoi with the
Severe Accident Code ASTEC
Ignacio Gómez García-Torano, Karlsruhe
Institute of Technology, Germany
Parametric Study on a KONVOI MB-LOCA
Scenario for the Determination of Coolability
Parameters
Ailine Trometer, University of Stuttgart,
Germany
WASA-BOSS: Athlet-CD Model for Severe Accident
Analysis for a Generic Konvoi Reactor
Polina Tusheva, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Germany
WASA-BOSS: Expansion of the Model-Basis
in MELCOR
Philipp Dietrich, Karlsruhe Institute of
Technology, Germany
WASA-BOSS: Investigation of the Coolability
of Partly-Damaged BWR Core by Water
Injection Into the RPV
Dr. Valentino Di Marcello, Karlsruhe Institute
of Technology, Germany
Simulation of the Fukushima-Daiichi Unit 3
Accident With ATHLET-CD as Part of the
Collaborative Research Project WASA-BOSS
Mathias Hoffmann, Ruhr-Universität
Bochum, Germany
Contributions for „WASA-BOSS“: Study of
Containment Film Cooling With an Advanced
Water Film Model
Xi Huang, Karlsruhe Institute of Technology,
Germany
Key Topics
Decommissioning
Experience & Waste
Management Solutions
Welcome/Introduction
Dr. Erich Gerhards, E.ON Kernkraft GmbH,
Germany
Status Quo and Future
Challenges
Decommissioning Projects in Germany –
Perspectives From the Federal Level
Dr. Bernhard Massing, Federal Ministry for
the Environment, Nature Conservation, Building
and Nuclear Safety (BMUB), Germany
The Decision Regarding the “Right” Decommissioning
and Dismantling Concept
Dr. Ralf Versemann, RWE Power AG, Germany
Factors for Successful
Decommissioning
Staff – A Key Component for Successful
Decommissioning and Efficient Dismantling
Ernst-Michael Züfle, Senior Advisor to CEO,
Vattenfall GmbH, Germany
Construction and Process Organization in a
Nuclear Power Plant – A Constant Change?
Dr. Walter Glöckle, Ministry of the
Environment, Climate Protection and the
Energy Sector, Baden-Württemberg, Germany
Successful Interface Management Among
the Remaining Operation, Dismantling and
Recycling Management
Andreas Ehlert, Energietechnische
Gesellschaft im VDE (ETG), Germany
Remaining Operation and Waste
Management
Safety Classifications and Reclassification of
Systems
Dr. Heinz-Walter Drotleff, Entsorgungskommission
(ESK), Germany
Efficient Recycling and Waste Management
Frank Bolles, Burkhard Hartmann, EnBW
Kernkraft GmbH, Germany
qualification of old packages that have accumulated
over decades.
Involving representatives of the waste producers,
responsible authorities and experts, this
session will elaborate means and potentials
for improvement and acceleration of the
qualification process to deliver an annual
amount of 10.000 m³ of radioactive waste
starting from 2023.
Welcome/Opening Remarks
Presentations: Boundary Conditions for
Waste and Disposal
National Waste Management Plan
Federal Ministry for the Environment, Nature
Conservation, Building and Nuclear Safety
(BMUB), (tbc)
Final Repository Konrad – What Still Has to
be Done
Bundesamt für Strahlenschutz (BfS), (tbc)
Task and Duties of the Coordinators
GNS Gesellschaft für Nuklear-Service mbH /
Energiewerke Nord GmbH (EWN), (tba)
Panel Discussion: Final Disposal of 10.000 m³
of Radioactive Waste per Year – A Joint
Challenge
Introduction by Moderator
Panel Discussion
Panelists: Authorities and independent
experts, waste producers of public and
private sector
Key Topics: Qualification of waste packages
– rules and regulations, standards and
specific solutions, experiences gained and
lessons learned
Topical Session
End of Life Applications and
Infrastructure – Experiences and
Way Forward
Wednesday ı May 6 th 2015
Focus Session
Experiences on Postoperation
and Decommissioning in Germany
Tuesday ı May 5 th 2015
Coordinator: Dr. Erich Gerhards,
E.ON Kernkraft GmbH, Germany
This session provides an overview of current
developments and best practices in Germany.
Essential questions regarding the decision for
the “right” decommissioning and dismantling
concept, success factors of an efficient
decommissioning as well as the state-of-theart
amongst others during the waste treatment
will be discussed. The session adresses
representatives of international and national
service providers, public authorities and TSOs
as well as operators.
Focus Session
Qualification for Konrad –
What Is to Be Done?
Tuesday ı May 5 th 2015
Coordinators: Iris Graffunder, Energiewerke
Nord GmbH, Germany
Dr. Astrid Petersen, GNS Gesellschaft für
Nuklear-Service mbH, Germany
Since 2002, regulations with binding conditions
for final disposal of ILW/LLW in the Konrad
repository exist. Still, there is uncertainty
among the responsible waste producers concerning
the qualification process of waste
packages for final disposal. This comprises
both the fabrication of new packages and the
Coordinator: Thomas Seipolt, NUKEM
Technologies Engineering Services GmbH,
Germany
This session is going to cover the “after-life”
of nuclear facilities as well as decommissioning-
related programs in Germany and in
Europe with emphasis on European countries.
European countries not only have
shown different levels of progress in that
perspective, but have chosen different ways
to deal with the issue depending on their
specifics. This session covers topics such us
decommissioning know-how transfer, legal
framework, support programs as well as reuse
concepts.
AMNT 2015
Programme
atw Vol. 60 (2015) | Issue 1 ı January
Decommissioning Documents and Pilot
Dismantling – Support for the Armenian NPP
Ronald Rieck, NUKEM Technologies
Engineering Services GmbH, Germany
IAEA Decommissioning Programs and
Support
Vladimir Michal, International Atomic Energy
Agency, Vienna International Centre, Austria
Second Life of a Nuclear Site – Experiences
and Lessons Learned
Dr. Markus Storcz, RWE Power AG, Germany
INPP Decommissioning: Progress and Future
Challenges
Darius Janulevicius, State Enterprise Ignalina,
Italy
Engineering 3D Models for Decommissioning
Alexandr Kanishev, Vladislav Tikhonovsky,
CJSC NEOLANT, Russia
Topical Session
Comprehensive Solutions
for Waste and Spent Fuel
Management: The Key to
Public Acceptance from
New Build to Phase Out
Thursday ı May 7 th 2015
Coordinator: Dr. Jürgen Skrzyppek,
Stefan Weber, GNS Gesellschaft für
Nuklear-Service mbH, Germany
Today, solutions for the disposal of radioactive
waste from operating and dismantling of
NPPs do not only have to be technically
feasible, but must be communicable to the
public. Especially for planned new builds,
the issue of disposal has become a key
factor in public acceptance. This session will
offer international comparison of the challenges
and advances of waste management
as well as disposal and its relevance to the
situation of nuclear energy in the respective
country.
Obtaining Completely Fuel Free Reactors as
a Precondition for Dismantling
Tba, RWE/ NPP Biblis, Germany
Safe Dismantling Together with Reliable
Waste Management of Nuclear Power Plants
of the First Generation ‐ A Key Factor for
Acceptance of New Build Projects
Tba
Public Acceptance for a Repository Site and
its Simultaneous Influence on Decisions for
the Extension of Nuclear Power
Tba, Posiva Oy, Finland
Early Engagement of all Stakeholders Along
Potential Transport Routes to a Repository
Site
Tba, NWMO, Canada
Ensuring Dismantling and Disposal Projects
in the Long Term – Governmental
Responsibility
Tba, NDA, United Kingdom
Technical Session
Radioactive Waste Management,
Storage and Disposal
Characterisation
Wednesday ı May 6 th 2015
Chair: Werner Stratmann, STEAG Energy
Services GmbH, Germany
Gamma-Induced Radiation Damage in Spent
Nuclear Fuel
Christian Herold, RWTH Aachen, Germany
Progress in the Non-Destructive Analysis of
Radioactive Waste Drums to Fulfil Storage
Acceptance Criteria
Dr. Marina Sokcic-Kostic, NUKEM Technologies
Engineering Services, Germany
ANNA - A New Flexible Code for Best-
Estimate Neutron Activation Calculations
Lars Ackermann, AREVA GmbH, Germany
Monte-Carlo Calculations of the Radiation
Field in a Rock Salt Horizontal Emplacement
Gallery of an Underground Nuclear Waste
Disposal Facility
Héctor Saurí Suárez, Karlsruher Institut für
Technologie (KIT), Germany
Treatment Disposal I
Chair: Klaus Büttner, NUKEM Technologies
Engineering Services GmbH, Germany
Pyrohydrolysis: A Universal Tool for the
Treatment of Organic Radwaste
Dr. Georg Braehler, NUKEM Technologies
Engineering Services GmbH, Germany
Sorbents for Sr-90-Removal
Dr. Alexander Zulauf, NUKEM Technologies
Engineering Services, Germany
Qualification Procedure for the Konrad
Repository on Example of Disposal of
Activated Components of the Forschungs-
Neutronenquelle Heinz Maier-Leibnitz
(FRM II)
Patrick Halama, EWN GmbH, Germany
Treatment Disposal II
Chair: Klaus Büttner, NUKEM Technologies
Engineering Services GmbH, Germany
Lessons Learned from 1000 CASTOR
Dispatches
Wolfgang Reuter, GNS Gesellschaft für
Nuklear-Service mbH, Germany
Ageing of Elastomeric Seals for Storage
Containers
Anja Kömmling, Federal Institute for
Materials Research, Germany
Results and Conclusions From the German
P&T Study – a View of the Contributing
Helmholtz Research Centres
Dr. Bruno Merk, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Germany
Technical Session
Decommissioning of Nuclear
Installations
Decommissioning of Nuclear
Facilities – Challenges and
Solutions
Thursday ı May 7 th 2015
Chair: Stefan Klute, Siempelkamp
Nukleartechnik GmbH, Germany
Source Term Reduction Prior to Decommissioning
and Dismantling AREVA‘ s
Decontamination Technology
Dr. Christian Topf, AREVA GmbH, Germany
Detection of Contaminations in Pipes With
OSL-Dosimetry: Test Measurements
Uwe Reichelt, TU Dresden, Germany
Dismantling of SVAFO Research Reactors
R2&R2-0
Hans-Uwe Arnold , AREVA GmbH, Germany
Further Dismantling Activities of the
Obrigheim NPP Reactor
Dr. Ralf Borchardt, Energiewerke Nord
GmbH, Germany
Sorbents for Sr-90-Removal
Dr. Alexander Zulauf, NUKEM Technologies
Engineering Services, Germany
Characterization and Remediation of Contaminated
Concrete at Nuclear Power Plants
Richard Mcgrath, USA
AMNT 2015 43
AMNT 2015
Programme
atw Vol. 60 (2015) | Issue 1 ı January
44
KTG INSIDE
Inside
Liebe Leserinnen und Leser, im Jahr 2014 sind vier neue Kernkraftwerke weltweit ans Netz gegangen, davon
drei allein in China. Weitere 26 sind dort im Bau. Das Land mit dem größten Wachstumspotenzial und Energiehunger
setzt verstärkt auf Kernenergie, um die Umweltverschmutzung durch die Kohleverstromung und die damit verbundenen
gesundheitlichen Gefahren nachhaltig zu reduzieren. Und auch im Rahmen der internationalen Bemühungen um Klimaschutz
und CO 2 -Reduktionen ist Kernenergie inzwischen eine Option für den Weltklimarat.
In Deutschland zeigt sich derweil immer deutlicher die
Tragweite von nicht zu Ende gedachten politischen Entscheidungen.
Der Kernenergieausstieg lässt die ehrgeizigen
CO 2 -Ziele der Bundesregierung wanken. „Dreckige“ Kohlekraftwerke
ersetzen in der Grundlastversorgung die Kernenergie,
weil die entsprechenden CO 2 -Zertifikate so billig
sind. Der EU-Emissionshandel liegt wegen politischer Eingriffe
und falscher Rahmenbedingungen am Boden. Und
damit rechnet sich selbst der Einsatz moderner und umweltfreundlicher
Gas- und Kohlekraftwerke nicht mehr.
Während die Erneuerbaren zeitweise im Überfluss ins
Netz drücken, leidet insgesamt die Versorgungssicherheit.
Auf Veranlassung des Netzbetreibers musste beispielsweise
2014 das Kernkraftwerk Brokdorf die Revision verschieben.
Gleichzeitig ergreifen die europäischen Nachbarn im
Osten technische Maßnahmen, um die ungebremste
Stromeinspeisung aus Deutschland zu Spitzenzeiten der
regenerativen Erzeugung zu verhindern. Erforderliche Infrastrukturinvestitionen
in Deutschland bleiben hingegen
aus: zu wenig Planungssicherheit und jede Menge regionale
Widerstände. Und die technische Umsetzung von Großspeichern
ist nach wie vor nicht gelöst. Die „Dunkelflaute“
wird bei weiter steigendem Anteil der Regenerativen immer
mehr zum Problem, technisch wie auch wirtschaftlich.
Fazit: Der Energiemarkt funktioniert nicht mehr.
Gleichzeitig versucht die Bundesregierung die durch
ihre aktionistischen Eingriffe selbst verursachten Probleme
bei Energieversorgung und Klimaschutz auf die Industrie
und damit letztlich alle Bürger abzuwälzen. Das betrifft
in gleichem Maße den vom Erneuerbare-Energie-Gesetz
(EEG) beeinflussten hohen Strompreis – dem inzwischen
in Europa nach Dänemark mit Abstand zu anderen
EU-Staaten zweithöchsten – wie den verordneten Zwang
zur Häuserdämmung. Und für die weitere Entsorgung
werden neue zusätzliche Zwischenlagergenehmigungen
für Abfälle aus der Wiederaufarbeitung gefordert, weil
diese politisch motiviert nicht mehr in das dafür vorgesehene
zentrale und genehmigte Lager dürfen.
Die Bundesregierung zeigt sich dennoch überrascht,
dass ihre Eingriffe mit Konsequenzen insbesondere für die
großen Energieversorger verbunden sind und diese unter
wirtschaftlichen Gesichtspunkten zum Handeln gezwungen
werden. Das über Jahrzehnte gesamtgesellschaftlich
eingeschwungene System zwischen Industrie, Politik und
Gesellschaft ist aus dem Takt.
Mich persönlich erstaunt bei diesen Entwicklungen in
Deutschland am meisten, dass die politisch Verantwortlichen
immer wieder von Konsequenzen überrascht werden,
die doch eigentlich recht gut im Voraus zu berechnen
waren. Ein Beispiel dafür ist die Diskussion um die Entsorgungskosten.
Auf Basis geprüfter Konzepte wurden
über Jahrzehnte Rückstellungen aufgebaut und bestätigt.
Für den Wegfall von Planungs- und Geschäftsgrundlagen
kann man die Unternehmen der Energiewirtschaft aber
tatsächlich nicht verantwortlich machen; weder für den
um Jahrzehnte verschobenen Bau eines Endlagers für
hochradioaktive Abfälle noch für die gesetzliche „Enteignung“
ihrer Kraftwerke und den damit verbundenen wirtschaftlichen
Verlust.
Liebe Leserinnen und Leser, ich möchte mich weder vom
bisherigen Bild der ingenieurtechnisch geprägten und innovativen
Bundesrepublik verabschieden, noch vom Wirtschaftsstandort.
Die Erkenntnisse des Bundeswirtschaftsministers
lassen mich hier ein wenig hoffen. Schließlich hat
er die Komplexität der Energiewende erkannt und auch das
EEG als ungeeignetes Mittel zur Steuerung der Energiesysteme
adressiert. Wir dürfen dennoch gespannt sein, wie die
übergeordneten energiepolitischen Ziele Wirtschaftlichkeit,
Versorgungssicherheit und Umweltverträglichkeit in
Deutschland wieder gleichermaßen Einzug halten.
Ich wünsche Ihnen und uns allen für das Jahr 2015,
dass wir auch weiterhin unsere Kompetenz und unser Engagement
im Dienste der friedlichen Nutzung der Kernenergie
zum Einsatz bringen können – in Deutschland und
weit darüber hinaus!
Ihre
Dr. Astrid Petersen
Vorsitzende der KTG e.V.
KTG-Newsletter Nr. 4
* Der vollständige
Newsletter, u.a. mit
detaillierten Informationen
zu Vorstand
und Aktivitäten der
KTG-Sektionen ist
auf den Webseiten
der KTG verfügbar
unter www.ktg.org |
Service
Liebe Leserinnen und Leser, wir haben in der Mitgliederversammlung der Kerntechnischen Gesellschaft e. V.
(KTG) am 6. Mai 2014 einstimmig eine neue Satzung verabschiedet, die u.a. eine Vereinfachung der Struktur vorsieht.
Die Fusion der bisher 10 Ortssektionen zu den 5 Sektionen – Nord, Süd, West, Ost und Südwest – ist inzwischen
umgesetzt. Informationen darüber, aber auch über die konstituierende Sitzung des KTG-Beirats und vieles mehr
finden sie in diesem Newsletter*.
Weiterhin ist es uns sehr wichtig, dass der KTG-Newsletter
insbesondere durch Beiträge von IHNEN – den KTG-
Mitgliedern – lebt, daher gilt nach wie vor: Ihr Feedback
aber auch Ihr Input ist ausdrücklich erwünscht. Lob, Kritik
und Verbesserungsvorschläge, aktuelle Themen, interessante
Beiträge und News aus der Welt der Kerntechnik
senden Sie gerne an: newsletter-input@ktg.org.
Die nächste Ausgabe des Newsletters ist für das
II. Quartal 2015 geplant mit Einsendeschluss für Beiträge
28. Februar 2015. Ihr Redaktionsteam
KTG Inside
Unsere Jahrestagung – die gemeinsame Fachkonferenz von KTG und DAtF
5.–7. Mai 2015 Estrel Convention Center Berlin ı Deutschland
Frühbucherrabatt!
Bis zum 31. Januar 2015
registrieren und
bis zu 170 EUR sparen!
Key Topics
Kompetenz & Innovation
Sicherheitsstandards & Betriebsexzellenz
Rückbauerfahrung & Entsorgungslösungen
Stilllegung und Entsorgung im Fokus
Unsere Jahrestagung bietet mit einer Vielzahl an Vorträgen und
Diskussionen in Plenarsitzung, Technischen Sitzungen, Fach- und
Fokussitzungen ein zweieinhalbtägiges Programm der Extraklasse.
Experten aus Theorie und Praxis diskutieren aktuelle Fragestellungen
und neueste Erkenntnisse.
3 Gold Sponsor
3 Silber Sponsoren
Aktuelle Top-Themen
3 Stilllegung
3 Nachbetrieb
3 Rückbau
3 Abfallmanagement
3 Konditionierung
3 Transporte
3 Zwischenlagerung
3 Endlagerung
Unsere Jahrestagung – das Original seit 45 Jahren.
Hier trifft sich die Branche.
www.unserejahrestagung.de
atw Vol. 60 (2015) | Issue 1 ı January
46
KTG INSIDE
Aktuelles und Kernenergie-News
Neuformierung der KTG‐Sektionen
Im Rahmen der Strukturvereinfachung der KTG wurden
die bisherigen 10 Ortssektionen wie folgt fusioniert:
• Erlangen/Nürnberg und München bilden die Sektion
Süd
• Karlsruhe-Mannheim-Stuttgart und Rhein-Main bilden
die Sektion Süd-West
• Berlin/Brandenburg/Greifswald und Sachsen bilden
die Sektion Ost
• Rheinland und Rhein-Ruhr bilden die Sektion West
• Hannover/Braunschweig und Norddeutschland bilden
die Sektion Nord
Sektion Süd
Nach dem Zusammenschluss der KTG-Ortssektionen Erlangen/Nürnberg
und München vereint die Sektion Süd ca. 600
Mitglieder – vorrangig aus den Kernkraftwerken Gundremmingen,
Isar und Grafenrheinfeld sowie den Unternehmen
GRS, AREVA, dem TÜV Süd und der TU München (FRM II).
Neben dem „internen“ Erfahrungsaustausch und der
Vernetzung der Mitglieder in den einzelnen Unternehmen
sowie regelmäßigen Vortragsveranstaltungen an den jeweiligen
Standorten sollen zukünftig auch gemeinsame
Veranstaltungen durchgeführt werden.
Wenn passend, sollen aber auch „externe“ Veranstaltungen
dazu beitragen, das Wissen über und die sachliche
Auseinandersetzung mit kerntechnischen Themen zu erhöhen.
Außerdem zeigen die Mitglieder der Sektion durch
ihr berufliches und persönliches Engagement, dass sie als
Experten in allen Bereichen der Kernenergie verantwortungsvoll
und nachhaltig handeln. Auf diese Weise möchten
sie zur Versachlichung des Themas in Deutschland beitragen.
Auch weiterhin sollen Exkursionen – u.a. im Rahmen
von Veranstaltungen an den jeweiligen Standorten – für
die Mitglieder angeboten werden. Wichtig ist dem Vorstand,
den Erfahrungsaustausch mit den anderen neu gegründeten
Sektionen sowie den Fachgruppen zu intensivieren.
Informationen auf der neu zu gestaltenden Internetseite
der Sektion sollen zukünftig aktuell und vielseitig
gestaltet werden.
Sektion Südwest
Die Sektion Südwest ist mit derzeit ca. 790 Mitgliedern die
mitgliederstärkste Sektion der KTG. Sie ist im Jahr 2014
aus den beiden Ortssektionen Karlsruhe-Mannheim-Stuttgart
und Rhein-Main entstanden.
In ihrer Region (Baden-Württemberg und Hessen) befinden
sich neben den (teils bereits abgeschalteten) Kernkraftwerken
Biblis, Neckarwestheim, Obrigheim und Philippsburg
zahlreiche Firmen und Forschungseinrichtungen
mit energietechnischen/kerntechnischen Kompetenzen.
Zu ihnen zählen z.B. AREVA Deutschland, Kraftanlagen Heidelberg,
NUKEM, NIS sowie Westinghouse Electric Germany
GmbH. Vertreten sind auch die Universitäten Frankfurt,
Darmstadt und Stuttgart sowie Forschungseinrichtungen
wie das GSI Helmholtzzentrum für Schwerionenforschung in
Darmstadt und das Karlsruher Institut für Technologie
(KIT).
Die Mitglieder der Sektion Südwest, die sich hauptsächlich
aus den oben genannten Einrichtungen und Unternehmen
rekrutieren, sind sehr reisefreudig, weshalb technische
Exkursionen – nicht nur zum Thema Kerntechnik –
einen wichtigen Bestandteil der Vereinsarbeit bilden. Die
Diskussionsfreudigkeit der Mitglieder kann auch bei Vortragsveranstaltungen
mit anschließenden sogenannten
Stammtischen ausgelebt werden.
Besonders in den Forschungseinrichtungen aber auch
bei den Firmen finden bisweilen interessante Vorträge und
Vortragsreihen statt, auf die besonders aufmerksam gemacht
wird.
Sektion Ost
Die Sektion Ost ist im Oktober 2014 aus den bisherigen Sektionen
Berlin/Brandenburg/Greifswald und Sachsen hervorgegangen.
Mit einer Mitgliederzahl von ca. 160 ist die
Sektion Ost die kleinste aller Sektionen.
Hauptsächlich stammen die Mitglieder (von Nord
nach Süd) von den EWN mit den Standorten Lubmin und
Rheinsberg über eine ganze Reihe Ingenieurbüros in Berlin
und Sachsen bis zu den drei großen öffentlichen Einrichtungen
in Sachsen: Technische Universität Dresden,
Forschungsstandort Dresden-Rossendorf (Sitz vom Helmholtz-Zentrum
Dresden-Rossendorf und Verein für Kernverfahrenstechnik
und Analytik Rossendorf) sowie der Hochschule
Zittau/Görlitz (alle 4 KOMPOST KOMPetenzzentrum
OST).
Wir bieten unseren Mitgliedern und externen Gästen
regelmäßig:
• Vortragsveranstaltungen und Diskussionsrunden zu
aktuellen Themen,
• Kolloquien in Zusammenarbeit mit dem VDI/GET und
dem KOMPOST,
• Exkursionen zu kerntechnischen und Kerntechnik nahen
Einrichtungen,
• Verbindungen zu anderen Sektionen der KTG in
Deutschland und
• lockere Gemeinschaftsabende an.
Sektion West
Die KTG-Sektion West ist aus den bisherigen Ortssektionen
Rheinland und Rhein-Ruhr hervorgegangen.
Die Mitglieder des Vorstandes der Sektion West sehen
die Information über die friedliche Nutzung der Kernenergie
in verschiedenen Technologiefeldern als ihre wichtigsten
Ziele der Vorstandsarbeit an.
Neben dem „internen“ Erfahrungsaustausch und den
Netzwerken der Mitglieder sollen auch „externe“ Veranstaltungen
dazu beitragen, das Wissen über und die sachliche
Auseinandersetzung mit kerntechnischen Themen
zu erhöhen. Zudem soll durch das persönliche und berufliche
Engagement der Mitglieder der Sektion deutlich werden,
dass hinter der Kernenergie Fachleute und verantwortungsvoll
handelnde Menschen stehen, die als Teil
dieser Gesellschaft sich für die Versachlichung einer über
viele Jahre in Deutschland stark emotionalisierten Debatte
einsetzen.
Neben regelmäßigen Vortragsveranstaltungen werden
auch jährlich Exkursionen für die Mitglieder angeboten.
Wichtig ist dem Vorstand, den Erfahrungsaustausch mit
den anderen Sektionen und Fachgruppen zu intensivieren.
Informationen auf den Internetseiten der Sektionen
sollen zukünftig noch aktueller und vielseitiger gestaltet
werden.
Mit einem interessanten Angebot der Sektion West will
der Vorstand die Sektion, die aktuell ca. 530 Mitglieder
umfasst, für neue Mitglieder attraktiv machen.
Konstituierende Sitzung des Beirats
Am 5. November 2014 fand in Berlin die konstituierende
Sitzung des KTG-Beirats statt. Die anwesenden Beiratsmitglieder
haben Dr. Wolfgang Steinwarz (Siempelkamp
KTG Inside
atw Vol. 60 (2015) | Issue 1 ı January
Nukleartechnik GmbH & Sprecher der Sektion West) zum
Vorsitzenden des Beirates und Iris Graffunder (EWN
GmbH, Betriebsstätte Karlsruhe & Sprecherin Fachgruppe
Stilllegung und Entsorgung) zur stellvertretenden Vorsitzenden
des Beirates gewählt. In der Sitzung wurden Vorschläge
für den neu zu wählenden KTG-Vorstand diskutiert
und das nächste Beiratstreffen für 29. Januar 2015
geplant.
Neuer Vorstand bei Women in
Nuclear (WiN) Germany
Auf der diesjährigen Mitgliederversammlung von WiN
Germany am 14. November 2014 bei der Westinghouse
Electric GmbH in Mannheim waren die WiNners aufgerufen,
einen neuen Vorstand sowie die Präsidentin zu wählen.
Die bisherige Präsidentin Jutta Jené wurde mit großer
Zustimmung in ihrem Amt für weitere zwei Jahre
bestätigt.
Ihr zur Seite stehen im Vorstand zukünftig Marika Didonaki
(Budgetbeauftragte), Hedjeh Emami-Far (Leiterin
AG Kommunikation), Karin Reiche (AG Messen & Veranstaltungen),
Maxi Mummert (AG Internet), Dr. Christien Zedler
(AG Bildung), Beate Scheffler (AG Networking) und Yvonne
Broy (Sponsoring-Beauftragte).
Die bisherige Leiterin der AG-Bildung, Birgit Felgenhauer,
stand wegen beruflicher Veränderung nicht mehr zur
Wiederwahl. Ihr folgt Christien Zedler ins Amt. „Wir danken
Birgit Felgenhauer ganz herzlich für ihr Engagement im
WiN-Vorstand und für die AG-Bildung und freuen uns auf
die Zusammenarbeit mit Christien Zedler“, sagte Präsidentin
Jutta Jené.
Auch wenn in Deutschland der Ausstieg aus der Kernenergie
beschlossen worden ist, wollen die deutschen
WiNners nicht nur das „interne“ Networking pflegen, sondern
sich auch weiterhin aktiv im internationalen Rahmen
– WiN Europe bzw. WiN Global – betätigen. Nächste Gelegenheit:
WiN Global Conference vom 24. bis 28. August
2015 in Wien.
Zum vierten Mal hatte der Verein den WiN-Germany-
Preis ausgeschrieben, der als eine besondere Anerkennung
für den Nachwuchs in der Nukleartechnik vergeben
wird. Aus den von jungen Wissenschaftlerinnen bzw. Ingenieurinnen
eingereichten Arbeiten nahm eine Jury vorab
in einem ersten Auswahlverfahren aus allen eingegangenen
Bewerbungen drei Kandidatinnen in die engere
Wahl – darunter auch Christine Schumacher vom Forschungszentrum
Jülich. Mit ihrem Vortrag „Entwicklung
einer Trennmethode für Radionuklide in wässrigen Umweltproben
mit einem automatisierten Trennsäulensystem“
überzeugte sie dann auch die „große“ Jury – die Teilnehmerinnen
der Mitgliederversammlung, die mehrheitlich
die Arbeit und den Vortrag von Christine Schumacher
würdigten.
Neben einer Urkunde und einer Geldprämie erhält
Christine Schumacher – ebenso wie die beiden Platzierten
Frances Viereckl (NUKEM) und Madeleine Weber (KIT) – die
Möglichkeit, ihre Arbeit beim Workshop Kompetenzerhaltung
anlässlich der Jahrestagung Kerntechnik 2015 einzureichen.
Nachwuchstagung der Jungen Generation
Zur diesjährigen Nachwuchstagung der Jungen Generation
haben sich ca. 40 Teilnehmer im Informationszentrum des
Kernkraftwerks Isar getroffen, um über die wirtschaftlichen
Auswirkungen der Energiewende zu diskutieren. Als
durch die Abschaltung eines Blockes direkt „Betroffene“
konnten der Anlagenleiter Isar, Dr. Kohlpainter, sowie Frau
Zimmermann in ihrem Vortrag „Herausforderung an Betrieb
und Rückbau“ auch aus ganz persönlicher Erfahrung
berichten. Wie andere Standorte und Betreiber sich dieser
Aufgabe stellen, neben der Ausrichtung auf eine neue
Marktsituation, aber auch, wie die Mitarbeiter motiviert
und mitgenommen werden sollen stellten Reinhold Scheuring
(Kraftwerksleiter Kernkraftwerk Grafenrheinfeld) und
Christoph Heil (Technischer Geschäftsführer der EnBW
Kernkraft GmbH) dar. Dass mit dem Ausstiegsbeschluss
auch die Entsorgungsfrage mehr in den Fokus rückt, zeigte
Thomas Seipolt (Geschäftsführer der NUKEM Technologies
Engineering Services GmbH). Er thematisierte insbesondere
die zukunftssichere Behandlung radioaktiver Abfälle.
Gleich zwei Vorträge hielt Detlef Fischer (Verband der Bayerische
Energie- und Wasserwirtschaft e.V.). Er vertrat
Dr. Kießling von E.ON mit dem Vortrag zur Stilllegung von
Kraftwerken und dem derzeit viel diskutierten Kapazitätsmarkt.
Zunächst hielt er jedoch einen wahrlich launigen
Vortrag über die Energiewende. Darüber hinaus wurde die
Situation der Netze von Ralf Schwarz (Bayernwerk AG) sowie
die Energiebeschaffung/Bilanzkreismanagement von
Thomas Darda (EnSo) beleuchtet.
Abgerundet wurde die Veranstaltung mit einem Vortrag
der KTG-Vorsitzenden, Dr. Astrid Petersen, die auf die
neue, eher zurückhaltende Rolle der Kernenergie in Politik
und Medien einging sowie mit dem Besuch der Papierfabrik
UPM Plattling. Dieser Standort gehört zu den größten
Energieverbrauchern der Region und ist aufgrund seiner
Wettbewerbssituation auf dem internationalen Markt nur
durch die Vergünstigungen überlebensfähig.
Die Junge Generation bedankt sich bei E.ON Kernkraft
sowie dem Kernkraftwerk Isar für die freundliche Unterstützung
bei der Durchführung der Tagung.
Splitter aus der Energiewelt
• Leitartikel aus der Welt vom 17.11.2014: Ökologisch
entsorgtes Geld
Bei der Energiepolitik gefährden die abrupten Kurswechsel
der großen Koalition den Energiestandort
Deutschland. Überforderte Öko-Populisten sind zunehmend
mit der Korrektur eigener Fehler beschäftigt
…
• Schweinfurter Tagblatt, 05.11.2014 zum Thema „Erfolgreicher
Rückbau bei E.ON“: Ein leerer Sarkophag
aus Beton
Zum Thema Abschluss atomrechtlicher Rückbau Kernkraftwerk
Würgassen mit Bildern & Interview von Dr.
Ralf Güldner Vorsitzender der Geschäftsführung der
E.ON-Kernkraft GmbH …
• Spiegel Online vom 01.12.2014: Hier bekommen Sie
reine Kernkraft
Ein Augsburger Energieunternehmen will punkten, indem
es einen Strom anbietet, der ausschließlich aus
Kernkraft gewonnen wird. Kurios: Die Firma will nicht
Nuklearfans ansprechen, sondern fortschrittliche Klimaschützer
…
Glosse
Bemühungen für eine Laufzeitverlängerung der Camerata
Nucleare endgültig gescheitert: Das Sinfonieorchester der
Deutschen Energiewirtschaft stellt den Betrieb nach
einem Konzert im Kloster Wettenhausen bei Günzburg
endgültig ein.
Denkt man an die großen Aktivitäten der Musiker in
den vergangenen 28 Jahren seit der Gründung der
Camerata Nucleare und die Kontamination weiter Landstriche
mit einer hohen Dosis an klassischen Werken, die
47
KTG INSIDE
KTG Inside
atw Vol. 60 (2015) | Issue 1 ı January
48
KTG INSIDE
regelmäßig zu Strahlung in den Gesichtern der Zuhörerschaft
geführt haben, drängen sich uns Nukleartechnikern
einige Fragen förmlich auf:
• Benötigen wir für die Camerata Nucleare nicht eine
Stilllegungsgenehmigung? Und falls ja, welche Behörde
wäre hierfür eigentlich zuständig?
• Müssen die Werkzeuge (Instrumente), die vielen Stunden
hohen Aktivitäten ausgesetzt waren, jetzt einer Abklinglagerung
zugeführt werden?
• Was passiert mit den „Abfallprodukten“ aus langjähriger
Produktion, den mit Tönen aktivierten silbernen
Plastikscheiben?
Doch lassen Sie uns hier und heute mit solchen Fragen
keine schlafenden Hunde wecken, sondern lassen
Sie uns hoffen, dass unsere Kollegen ihre Werkzeuge
jetzt nicht dem „Sicheren Einschluss“ zuführen. Sie haben
uns seit der Gründung des Orchesters 1986 viel
Freude bereitet, und deshalb akzeptieren wir die Beendigung
des „bestimmungsgemäßen Betriebs“ und sagen
einfach nochmals:
Herzlichen Dank den Mitgliedern der Camerata Nucleare
und weiterhin alles Gute!!
Kontakt
Bernd Gulich
Sprecher der Arbeitsgruppe Kommunikation
bernd.gulich@eon.com
Herzlichen
Glückwunsch
Januar 2015
95 Jahre wird im Januar
9. Dr. Josef Fassbender, Jülich
88 Jahre werden im Januar
1. Prof. Dr. Werner Oldekop,
Braunschweig
3. Dipl.-Ing. Walter Jäger,
Engelskirchen
86 Jahre wird im Januar
20. Dr. Devana Lavrencic-Cannata,
Rom/I
85 Jahre wird im Januar
10. Dipl.-Ing. Hans-Peter Schmidt,
Weinheim
84 Jahre wird im Januar
12. Dr. Rolf Hüper, Karlsruhe
83 Jahre wird im Januar
3. Dipl.-Ing. Fritz Kohlhaas, Kahl/M.
82 Jahre werden im Januar
7. Dr. Willi Biermann, Bergisch
Gladbach
9. Prof. Dr. Hellmut Wagner,
Karlsruhe
16. Heinz Fleischhacker, Lingen/Ems
80 Jahre werden im Januar
10. Dipl.-Ing. Walter Diefenbacher,
Karlsruhe
17. Dipl.-Ing. Helge Dyroff, Alzenau
24. Theodor Himmel, Bad Honnef
79 Jahre werden im Januar
5. Obering. Peter Vetterlein,
Oberursel
11. Dipl.-Ing. Ulrich Moritz, Bergisch
Gladbach
23. Prof. Dr. Hartmut Schmoock,
Norderstedt
27. Dr. Peter Weimar, Karlsruhe
30. Dipl.-Phys. Wolfgang Borkowetz,
Rüsselsheim
30. Dipl.-Ing. Friedrich Morgenstern,
Essen
78 Jahre werden im Januar
7. Dipl.-Ing. Albrecht Müller,
Niederrodenbach
9. Dipl.-Ing. Werner Rossbach,
Bergisch Gladbach
10. Dipl.-Ing. Klaus Lehmann,
Erlangen
14. Dr. Angelika Hecker, Philippsburg
25. Dipl.-Ing. (FH) Heinz Wolf,
Philippsburg
77 Jahre werden im Januar
7. Dipl.-Ing. (FH) Manfred Schirra,
Stutensee
8. Dipl.-Ing. Wolfgang Repke,
Waldshut
10. Dr. Dieter Türck, Dieburg
12. Dipl.-Ing. Hans Dieter Adami,
Rösrath
17. Dr. Dieter Fleischhammer, Dießen
18. Dr. Werner Katscher, Jülich
22. Dr. Franz Müller, Erlangen
28. Dipl.-Ing. Erhard Müller, Gründau
76 Jahre werden im Januar
11. Dipl.-Ing. Gerwin H. Rasche,
Hasloch
13. Dr. Udo Wehmann, Hildesheim
16. Dr. Wolfgang Kersting, Blieskastel
21. Prof. Dr. Detlef Filges, Langerwehe
23. Dipl.-Phys. Wolfram Gaide, Jülich
28. Dr. Sigwart Hiller, Lauf
75 Jahre wird im Januar
4. Dipl.-Ing. Wolfgang Schemenau,
Laudenbach
70 Jahre wird im Januar
6. Dr. Bruno Keck, Alzenau
65 Jahre werden im Januar
3. Dipl.-Ing. Christian Sauer, Hessheim
10. Sten Adin, Västeras/S
15. Dipl.-Ing. Andreas Hüttmann,
Oering
29. Dipl.-Ing. Hans-Jürgen Schartz,
Waghäusel
31. Dr. Bernd Lorenz, Essen
60 Jahre werden im Januar
8. Dr. Peer Dräger, München
21. Dr. Christian Krause, Bonn
25. Heinz-Ulrich Kraft,
Schwanstetten
28. Dr. Joachim Runkel MdL, Suthfeld
50 Jahre werden im Januar
9. Michael Lüdeke, Neuenkirchen
11. Dr. Ben Volmert, Birmensdorf/CH
23. Dipl.-Ing. Matthias Topp, Wiesloch
24. Gero Spitzner, Fürth
25. Dr. Guido Caspary, Aldenhoven
31. Dipl.-Ing. Eckhard Stengert,
Worms
Februar 2015
87 Jahre werden im Februar
10. Dipl.-Ing. Hans-Peter Schabert,
Erlangen
24. Dr. Dietrich Hiller, Wiesbaden
86 Jahre wird im Februar
20. Dr. Helmut Hübel, Bensberg
85 Jahre wird im Februar
5. Dr. Eberhard Teuchert,
Leverkusen
84 Jahre wird im Februar
14. Dipl.-Ing. Heinrich Kahlow,
Rheinsberg
82 Jahre wird im Februar
11. Dr. Rudolf Büchner, Dresden
81 Jahre werden im Februar
9. Dr. Horst Keese, Rodenbach
12. Dipl.-Ing. Horst Krause, Radebeul
23. Prof. Dr. Adolf Birkhofer, Grünwald
79 Jahre werden im Februar
6. Dr. Ashu-T. Bhattacharyya,
Erkelenz
17. Dr. Helfrid Lahr, Wedemark
KTG Inside
atw Vol. 60 (2015) | Issue 1 ı January
78 Jahre werden im Februar
5. Prof. Dr. Arnulf Hübner, Berlin
6. Dipl.-Ing. Heinrich Moers,
Florida/USA
11. Dr. Günter Keil, Sankt Augustin
11. Reiner Lembcke, Bad Vilbel
18. Dipl.-Ing. Hans Wölfel,
Heidelberg
21. Dipl.-Ing. Hubert Andrae, Rösrath
77 Jahre werden im Februar
5. Dr. Friedrich-Peter Heigl,
Frankfurt/M.
15. Dr. Heiner Krug, Saarbrücken
27. Dr. Klaus Wolfert, Ottobrunn
76 Jahre werden im Februar
3. Dr. Roland Bieselt, Kürten
8. Dr. Joachim Madel, Sankt Ingbert
8. Dr. Herbert Spierling, Dietzenbach
22. Dr. Manfred Schwarz, Dresden
15. Dipl.-Ing. Nicolaus Porschek,
Hamburg
23. Dipl.-Ing. Victor Teschendorff,
München
24. Dipl.-Ing. Ing. grad. Anton Scheuer,
Kerpen
28. Dr. Günther Dietrich, Holzwickede
65 Jahre wird im Februar
12. Dipl.-Ing. (TU) Karl-Heinz Durst,
Hessdorf
60 Jahre werden im Februar
1. Dipl.-Ing. Wolfgang Filbert, Peine
23. Dipl.-Ing. Wolfgang Storr,
Möhrenfeld
50 Jahre werden im Februar
6. Dr. Ronald Hepper, Würzburg
15. Joachim Dux, Bürstadt
18. Sven Lahmann, Adenbüttel
13. Oktober
Prof. em Dr.-Ing
Wolfgang Lischke
Dresden
13. November 2014
Prof. Dr. Horst Böhm
Karlsruhe
24. November 2014
Dr. Werner Meyer-Jungnick
49
KTG INSIDE
75 Jahre werden im Februar
8. Dipl.-Phys. Tadas D. Urbas,
Neustadt
9. Dr. Gerhard Preusche,
Herzogenaurach
13. Dr. Hans-Ulrich Fabian, Gehrden
14. Kurt Ebbinghaus, Bergisch
Gladbach
21. Dr. Jürgen Langeheine, Gauting
23. Dr. Gerhard Heusener, Bruchsal
25. Prof. Dr. Sigmar Wittig, Karlsruhe
70 Jahre werden im Februar
1. Prof. Dr. Alfred Voß, Aidlingen
11. Dipl.-Ing. Hans-Dieter Wallerius,
Frankenthal
Die Kerntechnische Gesellschaft e. V.
gratuliert ihren Mitgliedern sehr
herzlich zum Geburtstag
und wünscht ihnen weiterhin
alles Gute.
KTG Inside
Verantwortlich für den Inhalt:
Die Autoren.
Lektorat: Sibille Wingens,
Kerntechnische Gesellschaft e.V.
Robert-Koch-Platz 4
10115 Berlin
Tel.: +49 30 498555-10, Fax: -19
E-Mail: s.wingens@ktg.org
Internet: www.ktg.org
Willich
Die KTG verliert in ihnen langjährige
Mitglieder, denen sie ein ehrendes
Andenken bewahren wird.
Ihren Familien gilt
unsere Anteilnahme.
KTG Inside
atw Vol. 60 (2015) | Issue 1 ı January
60 TH YEAR ATW 50
die atomwirtschaft
Vol. I
Issue 1
January 1956
Foreword
The idea of the atomic structure of matter came from philosophic speculations and was proven by theoretical and experimental
research. Its results provide to mankind an energy form of its strongest concentration. In its practical use it
initially served war technology. This use woke the emotional defence of mankind feeling threatened as well as the desire
to use this power source for peacefully purposes and to exploit it for the economic sector.
Already today nuclear energy is an important replenishment
of the world energy potential which exists alongside
classical energy sources. An increasing number of companies
of different businesses need continuous information
about the intentions of nuclear energy use: the chemical
industry, the electrical industry, the energy industry, the
measuring instruments industry and all branches of mechanical
engineering, which are part of this new development
from exploitation of minerals to reactor constructions.
Added to this are all companies and specialists that pay
attention to the allocation of isotopes. While there exists to
necessary degree scientific literature for nuclear physics
and related fields, there is a lack of a systematically handling
of newly arising economic problems. It thereby appears
irrational to split information and news into different
specialist journals.
The present journal will in detail and with objective
clarity report on all economic questions with regard to
nuclear transformation. Scientific and chemical engineering
topics are only to the extend part of the programme as
long as they are being essential to the understanding of
economic questions. The information will be extensive and
concentrated and will cover economic contexts including
news, legal questions as well as questions on operational
and social safety.
With the editorial experience by the publisher the
journal will concentrate and rationalize the reading mater.
Especially its documentation, which sighted and reliably
provides a pictures of the happenings in Germany and the
most important countries in the world, will inform the
reader quick and briefly in an intelligible language.
Thus the ATOMWIRTSCHAFT should serve above all a
serious and concentrated reporting and should be a conscientious
advisor on a new promising field of work of science
and technics beyond German speaking regions.
The Publisher
Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne,
Herbert Seidl and Kurt Sauerwein
Zum Geleit
Die Vorstellung vom atomaren Aufbau der Materie erwuchs aus philosophischer Spekulation und wurde durch theoretische
und experimentelle Forschungen erwiesen. Ihre Ergebnisse stellen der Menschheit eine Energieform in stärkster
Konzentration zur Verfügung. In ihrer praktischen Verwendung diente sie zunächst der Kriegstechnik. Diese Anwendung
weckte die seelische Abwehr der sich bedroht fühlenden Menschheit, wie auch den Drang, diese Kraftquelle für friedliche
Zwecke zu verwenden, sie im ökonomischen Bereich nutzbar zu machen. Schon heute steht offensichtlich in der Atomenergie
eine wertvolle Ergänzung des Energiepotentials der Welt bereit, die neben die klassischen Energiequellen tritt.
die atomwirtschaft
Jahrgang I
Nr. 1
Januar 1956
Eine wachsende Zahl von Unternehmen der verschiedenartigsten
Wirtschaftskreise braucht eine fortlaufende Unterrichtung
über die Aussichten bei der Nutzung der Atomkraft:
die chemische Industrie, die Elektroindustrie, die
Energiewirtschaft, die Industrie der Meßgeräte und alle
Zweige des Maschinenbaus, die von der Erzgewinnung bis
zum Reaktorenbau an dieser neuen Entwicklung beteiligt
sind. Hinzu treten alle Unternehmen und Fachleute, die
sich mit dem Einsatz von Isotopen beschäftigen. Während
die wissenschaftliche Literatur für die Kernphysik und die
ihr verwandten Gebiete in ausreichendem Maße verfügbar
ist, fehlt es an einer systematischen Bearbeitung der neu
auftretenden wirtschaftlichen Probleme. Dabei erscheint
eine Aufsplitterung der Nachrichtengebung in die verschiedensten
Fachzeitschriften unrationell.
Die vorliegende Zeitschrift will in sachlicher Klarheit
umfassend über alle wirtschaftlichen Fragen der Kernumwandlung
berichten. Wissenschaftliche und verfahrenstechnische
Themen gehören nur insoweit zu ihrem Programm,
als sie zum Verständnis der wirtschaftlichen Fragen
unerläßlich sind. Die Unterrichtung wird umfassend
und konzentriert sein und sich von der Behandlung der
wirtschaftlichen Zusammenhänge einschließlich der
Nachrichtengebung bis zu den Fragen der Rechtsordnung
und der betrieblichen wie sozialen Sicherheit erstrecken.
Unter Verwertung der redaktionellen Erfahrungen des
Verlages wird die Zeitschrift eine Konzentration und damit
eine Rationalisierung des Lesestoffes bringen. Insbesondere
ihre Dokumentation, die gesichtet und zuverlässig ein
Bild des Geschehens in Deutschland und in den wichtigsten
Ländern der Welt gibt, wird den Leser schnell und
knapp in verständlicher Sprache unterrichten.
So soll DIE ATOMWIRTSCHAFT der ernsthaften und vor
allem konzentrierten Berichterstattung dienen und über
das deutsche Sprachgebiet hinaus ein gewissenhafter Berater
auf einem neuen, zukunftsreichen Arbeitsfeld von
Wirtschaft und Technik sein.
Die Herausgeber
Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne,
Herbert Seidl und Kurt Sauerwein
60 th year atw
Foreword ı Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne, Herbert Seidl and Kurt Sauerwein
atw Vol. 60 (2015) | Issue 1 ı January
The Federal Republic of Germany and
the International Cooperation
in the Nuclear Field
Franz Josef Strauß
The questions of international cooperation in the field of nuclear energy for peaceful purposes arise the increasing
interest of all political and economic interested parties of our nation. This rising sympathy reflects the awareness,
that due to the fast development of nuclear energy, in detail a hardly assessable process, a new technical revolution
is in the offing which for the further economic development of the European states and not least our country itself
will be in view of the current inferior position in comparison to the leading nuclear powers, of paramount importance.
By all necessity of catching up the scientific and technical development at national level, the conviction is more
and more confirmed that joint efforts both in the European and global area are necessary to make full use of the tremendous
possibilities of nuclear energy for peaceful progress.
60 TH YEAR ATW 51
It is appropriate and valuable, already for determining
the own point of view for the further participation in international
cooperation within the nuclear field, to gain
from time to time an overview and to take stock on existing
organisation as well as different projects and plans.
For this purpose the following lines are intended, without
demanding completeness in all details. I may initially pay
attention to the entirely or predominant economic committees
for cooperation followed by bilateral and multilateral
facts and projects.
Scientific organisations
1. CERN
On 1 July 1953, in a purely scientific field, with little attention
paid by the public, twelve west and southern
European countries, amongst them the Federal Republic
of Germany, joint together in Paris the so-called “European
Organization for Nuclear Research“ (CERN). The organisation
especially wants to serve basic research. For
this purpose she built an international laboratory for research
in the field of highly accelerated particles including
cosmic radiation in Meyrin Geneva. The laboratory
comprises apart from its respective buildings, equipment
etc. a synchrocyclotron with a proton acceleration capacity
of approx. 600 billion electron volts, which currently
is being constructed.
In addition, the construction of a high performance
proton synchrotron is planned, which should be commissioned
in 1960. Beside the construction and operation of
these installations, CERN wants to serve international scientific
cooperation in the nuclear field through the exchange
of scientists, training of researchers, dissemination
of information and cooperation with national research
institutions. In order to throw light on the activities
of CERN at a practical example, it shall be indicated,
that a symposium about high-energy physics will take
place in Geneva in June this year, to which approximately
200 nuclear scientists from different countries, among
them as well leading German experts, will attend.
Besides a representation within the organisation of
CERN and an objective and personal participation
through constant transfer of researchers as well as financing
the organisation, the Federal Republic of Germany is
behind Great Britain and France in third place. At present
she bears approximately 18 % of the overall costs. The
contribution scheme of each member will be determined
as of 1957 based on the net public income.
2. European Atomic Energy Society
The “European Atomic Energy Society“ (Europäische Atomenergie-Gesellschaft)
serves research as well as the practical
use and utilization of nuclear energy for friendly
purposes. She was established on 15 June 1954. Currently
besides the Federal Republic of Germany, who
joint the society in February 1956, countries such as
Great Britain, France, Italy, Belgium, Sweden, Norway,
the Netherlands and Switzerland belong to her.
The member states are represented by their supreme
national atomic energy agencies. The society’s object is
especially in the context of the loose merger of a scientific
union the exchange and dissemination of scientific information,
the standardisation of technical terms, the
promotion of safety measures for the population, the
publication of scientific papers and as far as possible the
publication of an international journal with regards to
nuclear science.
She especially defines her duty in the promotion of direct
exchange of ideas between scientists, and engineers
through regular conferences and meetings in different
member states. As an example for the work of the society
the recent conference of rector scientists and practitioner
in Naples should be pointed out, to which also decisive
German personalities in this area were represented. Furthermore
this year, symposiums with regards to questions
of disposal of nuclear waste, the chemical processing of
enriched fuels as well as metallurgical issues and theoretical
nuclear physics are intended.
The Federal Ministry for Nuclear Affairs tries to delegate
on a regular basis all respective experts from the field
of science, economy as well as from the ministry itself to
the conventions of those institutions, which achieved and
contributed with valuable results. Professor Heisenberg
represents the Federal Republic of Germany within the
permanent council, within the permanent working group
she is represented by several members from different scientific
areas. The chairmanship of the council holds the
President of the British Atomic Energy Research Establishment,
Sir John Cockcroit. A permanent financial contribution
by all members is not intended. They burden their
participations costs at the councils meetings and conventions
themselves.
English translation of
the original text
published in:
die atomwirtschaft
Vol. I
Issue 6
June 1956
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
60 TH YEAR ATW 52
Bilateral cooperation
The agreement with the USA
In the area of bilateral cooperation between the Federal
Republic of Germany and other countries, up to now
only the so-called standard agreement with the USA
exists, which has been concluded in essentially similar
form with altogether 30 states of the western world. The
agreement concluded in February 1956 came into
force on 23 April this year. It intends – only mentioning
the relevant points – the leasing of at the most 6 kg
Uranium-235 in an up at best 20 % enriched condition
for the operation of research reactors in the Federal Republic
of Germany.
Delivered single fuel items need to be returned unchanged
or exchanged for new delivered pieces after the
machining operation. In addition, according to the agreement,
contracting partners shall exchange each other on
issues such as the planning, construction and operation
of research reactors, health and safety problems with regards
to operation and usage of such reactors as well as
on the usage of radioactive isotopes within physical and
biological research, medicine, agriculture and industry.
The exchange of confidential information is not intended.
According to the agreement and on the basis of special
arrangements by the Federal Republic of Germany, the
USA are allowed to sell or lease reactor materials which
are necessary for the construction and operation of research
reactors.
The agreement provides different safety guarantees
against the misuse of nuclear fuels or rather reactor materials
for other purposes than agreed on. Thus among
others representatives of the American Nuclear Committee
are allowed upon request to observe the condition and
usage of leased nuclear fuels as well as the efficiency of
the reactor, for which they are being used. The agreement
remains in force, subject to a mutual agreed extension,
for a period of five years. The Federal Republic o Germany
hopes that due to the standard agreement concluded
with the USA first research reactors will be put to
operation in the foreseeable future. Negotiations on the
execution of the agreement and the purchase of research
reactors in the USA should be completed shortly. It remains
hope that beyond this standard agreement further
agreement with the United States for the delivery of nuclear
fuels, if possible also for the operation of nuclear
power plants, can be concluded.
Preliminary discussions with Great Britain about the
conclusion of a British-German Nuclear agreement are
currently on-going, about possibilities of further bilateral
nuclear agreements with other states can not be concretely
reported yet.
Multilateral Projects
1. International Atomic
Energy Agency
From the projects of multilateral cooperation in the nuclear
field for peaceful purposes I would firstly like to emphasise
on the international planning on establishing an
International Atomic Energy Agency. After President Eisenhower
presented at the UN General Assembly his plan
“Atoms for Peace“ in December 1953, negotiations took
place in the following period in the bosom of the UN concerning
an International Atomic Energy Agency, which resulted
very difficult due to the political differences
between west and east.
Now on 18 April this year, the draft of constitution for
a future International Atomic Energy Agency was accepted
by a conference to which Australia, Belgium, Brazil,
France, Great Britain, India, Canada, Portugal, the Soviet
Union, the South African Union, Czechoslovakia and the
USA belong. The draft shall be discussed during a major
conference in New York among all considered countries
in September this year. It is expected, to lay down the
statues during this conference in order to establish the
International Atomic Energy Agency within the next
years.
The Federal Republic of Germany did not yet express
an opinion on the recently received draft of the statute.
She will, of course, be represented at the conference.
The draft of statute concerns itself in comprehensive
manner with the responsibilities and targets of the authority
as well as with its executive bodies and their functions.
Only the main points can be pointed out here
broadly. The authority should in particular be responsible
to promote and support to the greatest extend possible
research and development of nuclear energy and its usage
for peaceful purposes in all member states. For this
purpose she shall be authorised to seize all necessary
measures to fulfil these targets and to build all required
institutions and plants.
In particular she shall take care of the availability of
necessary nuclear material required for research and its
practical usage, support the exchange of scientific and
technical information as well as support the exchange of
scientists and experts, provide safety measures against
the misuse of nuclear fuel for other than friendly purpose
and supervise the adherence to these measures as well as
to elaborate regulations for employment and population
protection and to guarantee obedience to these regulations.
Members of the Agency should be all member states of
the United Nations and its affiliate organisations, which
sign the final statute within a certain period. Due to its
membership at the UNESCO, the Federal Republic of Germany
already has access to the International Atomic Energy
Agency.
A General Conference, a Board of Governers and a department
with an executive director and respective civil
service are intended for the executive bodies of the
Agency. The General Conference, which consists of a representative
of each member state, takes decision by
simple majority. She has among other things the right to
decide on the budget and is able to provide recommendations
to the Board of Governers with respect to all atomic
authority related questions. Besides she also decides on
approval and suspension of members. The Board of Governers
should consist of 23 members.
Five members are the leading nuclear powers (USA,
the Soviet Union, Great Britain, France and Canada), five
seats are allocated to the representatives of specific regional
groups (e.g. Latin America, southern Asia, Pacific
regions); 2 members are producers of source materials
(Belgium, Poland, Czechoslovakia, Portugal), whereas
both seats should alternate on a yearly basis between east
and west; 1 seat is allocated for countries which can only
provide technical knowledge. The General Conference
shall elect at least ten further members of the Board of
Governers from countries that are neither nuclear powers
nor provide raw material or nuclear material or technical
knowledge.
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
The relation between the International Atomic Energy
Agency and the UN has been for a long time subject of intense
political controversy. According to the draft of
statue, the agency shall report to the UN General Assembly
and “when appropriate” to the Security Council.
Future relations between the Agency and the UN shall be
guaranteed in conjunction with the UN General Assembly
along with the General Conference of the agency. In practice
it is regulated that the agency is an independent organisation
from the UN, which nevertheless is responsible
to inform the UN about her activities. With regards to
the position of the Agency towards its members it needs
to be highlighted, that the member state sovereignty
needs to be considered.
2. The OEEC-Project
The Council of Ministers of the seventeen OEEC-member
states decided within a meeting on 29 February 1956
with the participation of representatives from the USA
and Canada, to appoint a selected committee for nuclear
energy, which should rework within three month the
report of the working party No. 10, in order to create a
fundament for a concrete and speedy cooperation of
OEEC- members in the nuclear field of nuclear field. Due
to the details of the report No. 10, of the so-called OEECplan,
it can be referred to – even to avoid repetitions –
the report in February 1956 issue no. 2 of the “Atomwirtschaft”.
The selected committee appointed four task
forces for the performance of its tasks. One team for
common enterprises, one for security control, one for
the adaptation of legislation and one for the training of
specialists.
The task force for “common enterprises” is responsible
to evaluate technical and other requirements for the construction
of a joint isotope separation plant for uranium,
a chemical plant for processing enriched fuels, a plant for
the production of heavy water and common operation of
experimental reactors. The task force for “security matters”
should elaborate recommendations for the special
committee of a control system within the OEEC-countries
for preventing misuse of source material and nuclear
fuels, especially for military purposes.
The task force for “the adaptation of legislation” is responsible
to ascertain the possibility to harmonise national
atomic legislations with related legislations (e.g.
mining codes, standards for employment and population
protection) and the task force for “training of specialists”
shall evaluate the current situation of the training sector
of each single member state and thus highlight ways to
overcome the significant lack of well trained specialists
within the nuclear field (scientists and engineers).
Besides the actual task forces of the special committee
on nuclear energy, a mixed group together with the
OEEC-Board of Governers “Committee on trade“ elaborates
the possibilities and requirements for an economic
and custom policy moratorium and the following establishment
of a nuclear common market of the OEEC-countries.
The moratorium shall prevent obstacles, which
could stand in the way for the future liberalisation on
trade of source material, nuclear fuels as well as of nuclear
equipment.
A subgroup of the OEEC-committee responsible for insurance
questions gives attention to the extremely complex
and difficult questions of insurance against nuclear
risks and a far-reaching adaptation of the required national
laws. The work of these committees is now near
completion. The soon expected reports will be part of the
agenda during the concluding meeting on 23 until 30
June of the special committee on nuclear energy.
The special committee will deal especially with the
question of establishing a steering committee on nuclear
energy its constitution and responsibilities as well as with
questions on cooperation with the USA and with all other
supranational institution or rather activities. It is expected
to present its final report with recommendations on a
practical definition of the cooperation of the seventeen
OEEC-member states to the Council of Ministers on 17
July. Even if it is not possible to provide at present any
precise forecasts, it can be nevertheless expected that the
decisions of the Ministerial Council will bring the plans
for cooperation in the nuclear field within the OEEC
closer to its realisation.
The Federal Republic is present in all mentioned committees
and groups and promotes their activities best possible.
She has always emphasized and proved its willingness
to collaborate on both OEEC and EURATOM-level. I
nevertheless consider a non-existent or only little coordinated
cooperation of both projects and even a kind of
„competition“ between both as incorrect. Certain coordination
already arises due to the fact that all six coals
and steel countries are at the same time OEEC-members.
Moreover, it seems attractive to me, to entrust a special
committee with the responsibility to adapt both plans to
one another as far as possible, wherever it seems appropriate
– e.g. at certain common companies, in terms of
security check.
3. EURATOM
A task force appointed by the government committee in
Brussels chaired by L.M. Armand (France) presented a detailed
report with a plan for cooperation in the nuclear
field on the level of the six member states of the European
Coal and Steel Community in November 1955(so-called
EURATOM-plan). Due to its history and details of this
plan it can again be referred to the detailed report in February
1956 issue no. 2 “Atomwirtschaft” p.1 ff.
The government committee in Brussels reworked the
Armand-report subsequently. On April 1956 the government
committee now presented the “Report of the Heads
of Delegation to the Foreign Ministers”. Beside of very
extensive explanations about the establishment of a general
European common market it contains also recommendations
for the structure of EURATOM within its
second main part. The report ties in to a large extend to
the Armand-report but deviates from it – in a general liberal
tendency – not insignificantly in certain points. In
what follows only the most important aspects will be
mentioned.
The report strongly underlines, that EURATOM shall
be open to all European states, which accept the community
rules. The establishment of a close liaison with
Great Britain should be further attempted in any event.
The report also noticed, that the EURATOM and OEECplan
do not show any contradictions but rather complete
and support each other.
Within the field of research it is explicitly noticed, that
besides the recommendation for common research activities
in the context of EURATOM the major part of the research
results should be still carried out by public or
private research bodies within the member states. Research
cannot be planned. A centralisation of research
seems principally flawed.
60 TH YEAR ATW 53
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
60 TH YEAR ATW 54
On the question of law of inventions, private property
and private initiative is generally recognised. In exceptional
cases, however, which cannot be discussed in detail
at this point, the possibility of non-exclusive compulsory
licenses on full compensation are intended. All decision if
challenged shall be reviewed by court.
In the field of labour and population protection the report
regards an elaboration of binding minimum standards
for the members of the community as necessary. The
respective control of plants, which machine and process
fuel material is essentially considered. However, the periodical
monitoring of the safety requirements, should be
left to the member states with a certain right of control by
the community.
The major part of investments in the nuclear field
should remain within the responsibility of the public and
private sector in the member states in the same way as
research carried out by the EURATOM should only represent
a supplement to the entire research work. The initiative
of enterprises should be supported by illustrative programs,
the dissemination of research results and if necessary
financial assistance.
Even if the development projects in the nuclear field
shall be forwarded to the commission for a statement, the
report also underlines, that the organisation should
neither possess the right of investment decisions nor the
right to comment on their economic justification or on
the facilities location.
The recommendation about the supply of source material
and fuels within the report seems of special economic
and political importance. In this respect a purchase
priority by EURATOM is planned, which shall provide
these materials in standardised and non-discriminating
conditions to consumers. An exception takes merely place
if the organisation declares not being able to deliver. An
ownership monopoly is not recommended. Under certain
conditions, in case of strongly enriched nuclear fuels,
only a leasing form of commodities is intended.
In order to guarantee prevention of misuse of ores and
nuclear fuels, the report recommends far-reaching control
and in particular the return of nuclear fuels to t he
community bodies at the end of a conversion process.
The report states an immediate establishment of a
nuclear common market that later on shall give way to a
general common market.
In order to accomplish all responsibilities of EURATOM,
a European Atomic Energy Commission with its own power
and common mandate as permanent body for the on-going
management of the community was recommended.
Certain committees shall support the European Atomic
Energy Commission in order to achieve her tasks e.g. an
expert’ forum for science and economy and a mixed committee
of producers and consumers. In order to perform
its functions towards common institutions, an administrative
unit for the industrial administration and an
agency for special coverage obligations with a commercial
management should be established. The complete
report by the head of delegation is – as it needs to be emphasized,
an expert report dedicated to governments. But
at the same time the report is not binding. Thus suggestions
by the participating governments in all detailed
questions are subjected to alternations.
During the conference of the Foreign Ministers of the
European Coal and Steel countries from 29 to 30 May in
Venice, the ministers agreed on using the report as basis
for an intergovernmental conference, which is convened
on 26 June in Brussels. This conference shall elaborate
necessary individual contracts for the establishment of a
common European market and by EURATOM into a whole
comprehensive treaty.
Two questions of high political importance, however,
were reserved for a special consultation. This concerns in
this respect the inclusion of overseas territories into the
treaty placed for discussion by France and the question of
the military usage of nuclear energy. It is obvious, that
especially problems, which result from military use of
one or more member states in the nuclear field, have significant
influence on the cooperation development in the
field of research and usage of nuclear energy for peaceful
purposes.
In this context it is necessary to remind, that the Federal
Republic of Germany refused within the Paris Treaty
the production of nuclear arms. After all it is necessary to
point out the welcoming decision by the conference in
Venice, at which the Belgian Foreign Minister Spaak was
appointed to inform allied European countries as well as
European organisations about the activities of the upcoming
intergovernmental conference and to explicitly
invite them for a participation in efforts of the six
countries.
Author
Franz Josef Strauß
Federal Minister of Germany for Nuclear Affairs
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
Die Bundesrepublik und die
internationale Zusammenarbeit
auf dem Kernenergiegebiet
Franz Josef Strauß
Den Fragen internationaler Zusammenarbeit auf dem Gebiete der Kernenergie für friedliche Zwecke wendet sich in
steigendem Maße das Interesse aller politisch und wirtschaftlich interessierten Kreise unseres Volkes zu. Diese wachsende
Anteilnahme entspricht der Erkenntnis, daß sich durch die Entwicklung der Kernenergie in raschem, im einzelnen
kaum übersehbarem Ablauf eine neue technische Revolution anbahnt, die für die weitere wirtschaftliche Entwicklung
der europäischen Staaten und dabei nicht zuletzt unseres Vaterlandes angesichts des augenblicklichen Rückstandes
gegenüber den führenden Atommächten von ausschlaggebender Bedeutung sein wird.
60 TH YEAR ATW 55
Immer mehr vertieft sich auch die Überzeugung, daß – bei
aller Notwendigkeit, den Anschluß an die wissenschaftliche
und technische Entwicklung im nationalen Bereich
weitmöglichst zu gewinnen – sowohl im europäischen als
auch im weltweiten Raum gemeinsame Anstrengungen
notwendig sind, um die ungeheueren Möglichkeiten der
Kernenergie für den friedlichen Fortschritt voll auszuschöpfen.
Es ist, schon um den eigenen Standpunkt für die weitere
Beteiligung an der internationalen Zusammenarbeit auf
dem Kernenergiegebiet festzulegen, zweckmäßig und
wertvoll, von Zeit zu Zeit einen Überblick über die bestehenden
Einrichtungen sowie die verschiedenen Vorhaben
und Pläne zu gewinnen und eine gewisse Zwischenbilanz
zu ziehen. Diesem Zwecke sollen, ohne Anspruch auf Vollständigkeit
in allen Einzelheiten zu erheben, die nachstehenden
Zeilen dienen. Ich darf dabei zunächst auf die ganz
oder überwiegend wissenschaftlichen Gremien der Zusammenarbeit
und sodann auf die bilateralen und multilateralen
Gegebenheiten und Vorhaben eingehen.
Organisationen der Wissenschaft
1. CERN
Auf rein wissenschaftlichem Gebiet haben sich, in der Öffentlichkeit
wenig beachtet, am 1. Juli 1953 in Paris zwölf
west- und südeuropäische Staaten, darunter die Bundesrepublik,
zur sogenannten „Europäischen Organisation für
Kernphysikalische Forschung” (CERN) zusammengeschlossen.
Die Organisation will insbesondere der Grundlagenforschung
dienen. Sie errichtet zu diesem Zweck in Meyrin
bei Genf ein internationales Laboratorium für Forschungen
auf dem Gebiete hochbeschleunigter Teilchen einschließlich
der kosmischen Strahlung. Das Laboratorium
wird neben den entsprechenden Gebäuden, Gerätschaften
usw. ein Synchrozyklotron mit einem Protonen-Beschleunigungsvermögen
von etwa 600 Mill. Elektronenvolt umfassen,
das bereits im Bau ist. Daneben ist die Errichtung
eines Protonen-Synchrotrons von großer Leistungsstärke
geplant, das 1960 in Betrieb genommen werden soll. Neben
der Errichtung und dem Betrieb dieser Anlagen will
die CERN der internationalen wissenschaftlichen Zusammenarbeit
auf dem Kernenergiegebiet durch Austausch
von Wissenschaftlern, Ausbildung von Forschern, Verbreitung
von Informationen und Zusammenarbeit mit nationalen
Forschungseinrichtungen dienen. Um die Aktivität
der CERN an einem praktischen Beispiel zu beleuchten,
darf darauf hingewiesen werden, daß im Juni dieses Jahres
in Genf ein Symposion über Hochenergiephysik stattfindet,
an dem etwa 200 Kernwissenschaftler aus verschiedenen
Ländern, darunter auch führende deutsche Gelehrte,
teilnehmen.
Die Bundesrepublik steht, neben einer Vertretung in
den Organen der CERN und einer sachlichen und persönlichen
Beteiligung durch ständige Abordnung von Forschern,
auch in der Finanzierung der Organisation hinter
Großbritannien und Frankreich an dritter Stelle. Sie trägt
gegenwärtig etwa 18 % der Kosten. Der Beteiligungsschlüssel
der einzelnen Mitglieder wird ab 1957 auf der Grundlage
des Nettovolkseinkommens neu festgelegt werden.
2. Europäische
Atomenergie-Gesellschaft
Sowohl der Forschung als auch der praktischen Verwertung
und Nutzbarmachung der Kernenergie für friedliche
Zwecke dient die „Europäische Atomenergie-Gesellschaft“
(European Atomic Energy Society). Sie ist am 15. Juni 1954
gegründet worden. Gegenwärtig gehören ihr neben der
Bundesrepublik Deutschland, die im Februar 1956 beigetreten
ist, die Länder Großbritannien, Frankreich, Italien,
Belgien, Schweden, Norwegen, die Niederlande und die
Schweiz an. Die Mitgliedsländer sind durchweg durch ihre
obersten nationalen Atombehörden vertreten. Die Gesellschaft
bezweckt im Rahmen des lockeren Zusammenschlusses
einer wissenschaftlichen Vereinigung insbesondere
den Austausch und die Verbreitung von Informationen
wissenschaftlicher Art, die Vereinheitlichung von
Fachbegriffen, die Förderung von Schutzmaßnahmen für
die Bevölkerung, die Publizierung wissenschaftlicher Werke
und nach Möglichkeit die Herausgabe einer internationalen
kernwissenschaftlichen Zeitschrift. Vor allem sieht
sie ihre Aufgabe in der Förderung des unmittelbaren Gedankenaustausches
von Wissenschaftlern und Technikern
durch regelmäßige Tagungen und Zusammenkünfte in
den verschiedenen Mitgliedsländern. Als Beispiel für die
Arbeit der Gesellschaft sei auf die kürzliche Konferenz von
Reaktor-Wissenschaftlern und -Praktikern in Neapel hingewiesen,
bei der auch maßgebliche deutsche Persönlichkeiten
auf diesem Sachgebiet vertreten waren. Ferner sind
für dieses Jahr Symposien über Fragen der Beseitigung von
Atomabfall, der chemischen Aufbereitung angereicherter
Brennstoffe, metallurgische Fragen und theoretische Kernphysik
vorgesehen.
Das Bundesministerium für Atomfragen ist bemüht, zu
den Tagungen der Gesellschaft, die bisher wertvolle Ergebnisse
erzielt haben, regelmäßig die entsprechenden
die atomwirtschaft
Vol. I
Ausgabe 6
Juni 1956
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
60 TH YEAR ATW 56
Sachverständigen aus Wissenschaft und Wirtschaft sowie
aus dem Ministerium selbst zu delegieren. Im ständigen
Rat der Gesellschaft (Council) ist die Bundesrepublik durch
Professor Heisenberg, im ständigen Arbeitsausschuß (Working
Group) durch mehrere Mitglieder für verschiedene
wissenschaftliche Sachgebiete vertreten. Den Vorsitz der
Gesellschaft hat der Präsident des British Atomic Energy
Research Establishment, Sir John Cockcroit. Eine ständige
finanzielle Beteiligung der Mitglieder ist nicht vorgesehen;
diese tragen vielmehr die Kosten ihrer Teilnahme an den
Sitzungen und Tagungen der Gesellschaft selbst.
Bilaterale Zusammenarbeit
Der Vertrag mit den USA
Auf dem Gebiet bilateraler Zusammenarbeit zwischen der
Bundesrepublik und anderen Staaten ist bisher lediglich
das sog. Standardabkommen mit den USA zu verzeichnen,
das von diesen bisher mit insgesamt 30 Staaten der westlichen
Welt im wesentlichen in gleicher Form abgeschlossen
worden ist. Das im Februar 1956 unterzeichnete Abkommen
ist am 23. April dieses Jahres in Kraft getreten. Es sieht
– um nur die wesentlichsten Punkte anzusprechen – die
Verpachtung von im Höchstfall 6 kg Uran-235 in einem bis
zu höchstens 20 % angereicherten Zustand zum Betrieb
von Forschungsreaktoren in der Bundesrepublik vor. Die
gelieferten Brennstoffeinzelstücke müssen nach dem Bearbeitungsvorgang
unverändert zurückgegeben bzw. gegen
andere, neu zu liefernde Stücke ausgetauscht werden. Daneben
sollen nach dem Abkommen die Vertragspartner gegenseitig
Informationen über Planung, Bau und Betrieb
von Forschungsreaktoren, über die Probleme von Gesundheit
und Sicherheit im Zusammenhang mit dem Betrieb
und der Benutzung solcher Reaktoren sowie über die Verwendung
radioaktiver Isotope in der physikalischen und
biologischen Forschung, in der Medizin, Landwirtschaft
und Industrie austauschen. Ein Austausch von Geheiminformationen
ist nicht vorgesehen. Nach dem Abkommen
können auf Grund besonderer Vereinbarungen der Bundesrepublik
Reaktormaterialien, die für den Bau und den Betrieb
von Forschungsreaktoren erforderlich sind, durch die
USA verkauft oder verpachtet werden. Das Abkommen
sieht verschiedene Sicherheitsgarantien gegen den Mißbrauch
des Kernbrennstoffes bzw. des Reaktormaterials zu
anderen als mit dem Abkommen beabsichtigten Zwecken
vor. So muß u.a. Vertretern der Atomkommission der Vereinigten
Staaten auf Verlangen gestattet werden, Zustand
und Verwendung des verpachteten Kernbrennstoffes sowie
die Leistung des Reaktors, in dem er verwendet wird, zu
beobachten. Das Abkommen bleibt vorbehaltlich einer gegenseitig
zu vereinbarenden Verlängerung für fünf Jahre in
Kraft. Die Bundesregierung hofft, daß auf Grund des Standardabkommens
mit den USA die ersten Forschungsreaktoren
in absehbarer Zeit in Betrieb genommen werden können.
Verhandlungen über die Ausführung des Abkommens
und den Kauf von Forschungsreaktoren in den USA stehen
vor dem Abschluß. Es besteht die Hoffnung, daß über dieses
erste Standardabkommen hinaus weitere Abkommen
mit den Vereinigten Staaten zur Lieferung von Kernbrennstoffen,
nach Möglichkeit auch zum Betriebe von Kraftreaktoren,
abgeschlossen werden können.
Mit Großbritannien sind bereits Vorbesprechungen
über den Abschluß eines britisch-deutschen Atomabkommens
im Gange, über sonstige Möglichkeiten für bilaterale
Atomabkommen mit anderen Staaten läßt sich gegenwärtig
noch nichts Konkretes berichten.
Multilaterale Vorhaben
1. Die Internationale Atomagentur
Von den multilateralen Vorhaben einer Zusammenarbeit
auf dem Kernenergiegebiet zu friedlichen Zwecken möchte
ich zunächst auf die weltweite Planung der Errichtung
einer Internationalen Atomagentur eingehen. Nachdem
im Dezember 1953 Präsident Eisenhower der Vollversammlung
der UN seinen Plan „Atoms for Peace“ vorgelegt hatte,
fanden in der Folgezeit im Schöße der UN Verhandlungen
über eine weltweite Atomenergiebehörde statt, die sich
nicht zuletzt wegen der politischen Gegensätze zwischen
West und Ost sehr schwierig gestalteten. Nunmehr ist jedoch
am 18. April dieses Jahres durch eine Konferenz, der
Australien, Belgien, Brasilien, Frankreich, Großbritannien,
Indien, Kanada, Portugal, Sowjetunion, Südafrikanische
Union, Tschechoslowakei und die USA angehören,
der Entwurf einer Satzung für die künftige Internationale
Atomagentur (International Atomic Energy Agency) angenommen
worden. Er soll noch im September dieses Jahres
in New York auf einer großen Konferenz aller in Betracht
kommenden Mitglieder beraten werden. Man hofft, in dieser
Konferenz die Statuten endgültig festlegen zu können,
um so schon im nächsten Jahre die Internationale Atomagentur
aufbauen zu können.
Die Bundesregierung hat zu dem erst kürzlich zugegangenen
Satzungsentwurf noch nicht Stellung genommen. Sie
wird selbstverständlich auf der Konferenz vertreten sein.
Der Satzungsentwurf befaßt sich in sehr umfassender
Form mit den Aufgaben und Zielen der Behörde sowie ihren
Organen und deren Funktionen. Es kann hier nur in
großen Zügen auf die wichtigsten Gesichtspunkte hingewiesen
werden. Die Behörde soll vor allem die Aufgabe haben,
die Erforschung und Entwicklung der Atomenergie
und ihre Nutzung zu friedlichen Zwecken in allen Mitgliedsstaaten
weitmöglichst zu fördern und zu unterstützen.
Zu diesem Zwecke soll sie befugt sein, alle für die Erreichung
dieses Zieles notwendigen Maßnahmen zu ergreifen
und die erforderlichen Institutionen und Anlagen zu
errichten. Insbesondere soll sie für die Bereitstellung des
für die Forschung und die praktische Verwertung notwendigen
Kernmaterials sorgen, den Austausch wissenschaftlicher
und technischer Informationen sowie von Wissenschaftlern
und Fachleuten fördern, Schutzmaßnahmen gegen
Mißbrauch der Kernbrennstoffe zu anderen als friedlichen
Zwecken vorsehen und über ihre Einhaltung wachen
sowie Vorschriften für Arbeits- und Bevölkerungsschutz
ausarbeiten und ihre Beachtung sicherstellen.
Mitglieder der Agentur sollen alle Mitgliedsstaaten der
Vereinten Nationen und ihrer Tochterorganisationen sein,
die innerhalb einer bestimmten Frist das endgültige Statut
unterzeichnen. Die Bundesrepublik hat somit schon über
ihre Mitgliedschaft in der UNESCO Zugang zur Internationalen
Atomagentur.
An Organen der Agentur ist eine Allgemeine Konferenz
(General Conference), ein Direktorium (Board of Governers)
und ein Stab mit einem Generaldirektor und einer
entsprechenden Beamtenschaft vorgesehen. Die Allgemeine
Konferenz, die sich aus je einem Vertreter aller Mitgliedsstaaten
zusammensetzt, entscheidet mit einfacher
Mehrheit. Sie hat u.a. das sog. Budgetrecht und kann in
allen die Atombehörde betreffenden Fragen dem Direktorium
Empfehlungen geben. Außerdem entscheidet sie
über die Zulassung und Suspendierung von Mitgliedern.
Das Direktorium soll sich aus 23 Mitgliedern zusammensetzen.
5 Mitglieder sind die führenden Atommächte
(USA, Sowjetunion, Großbritannien, Frankreich und
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
Kanada); 5 Sitze gehen an Vertreter bestimmter regionaler
Gruppen (z.B. Lateinamerika, Südasien, Pazifische Region);
2 Mitglieder sind den Produzenten von Ausgangsstoffen
zu entnehmen (Belgien, Polen, Tschechoslowakei, Portugal),
wobei diese beiden Sitze alljährlich zwischen Ost
und West abwechseln sollen; für die Länder, die im wesentlichen
nur technische Kenntnisse zur Verfügung stellen
können, ist 1 Sitz vorgesehen; schließlich sollen weitere
10 Mitglieder des Direktoriums durch die Allgemeine
Konferenz aus den Ländern gewählt werden, die weder
Atommächte sind noch Grundstoffe oder Kernmaterial
oder technische Kenntnisse zur Verfügung stellen können.
Das Verhältnis der Internationalen Atomagentur zu den
UN war lange Zeit Gegenstand heftiger politischer Kontroversen.
Nach dem Satzungsentwurf ist nunmehr vorgesehen,
daß die Agentur der Generalversammlung der UN
und, „when appropriate”, dem Sicherheitsrat Bericht zu
erstatten hat. Die künftigen Beziehungen zwischen der
Agentur und den UN sollen im Zusammenwirken der Vollversammlung
der UN mit der Allgemeinen Konferenz der
Agentur gewährleistet werden. In der Praxis geht die Regelung
dahin, daß die Agentur eine von der UN unabhängige
Organisation ist, die allerdings die Verpflichtung übernimmt,
die UN über ihre Tätigkeit zu unterrichten. Hinsichtlich
der Stellung der Agentur gegenüber ihren Mitgliedern
ist hervorzuheben, daß die Souveränität der Mitgliedsstaaten
beachtet werden muß.
2. Das OEEC-Projekt
Der Ministerrat der 17 Mitgliedsstaaten der OEEC hat unter
Beteiligung von Vertretern der USA und Kanadas in seiner
Sitzung vom 29. Februar 1956 beschlossen, einen Sonderausschuß
für Kernenergie einzusetzen, der möglichst
innerhalb von drei Monaten den Bericht der Arbeitsgruppe
Nr. 10 überarbeiten soll, um die Grundlage für eine baldige
konkrete Zusammenarbeit der OEEC-Mitglieder auf dem
Kernergiegebiet zu schaffen. Wegen der Einzelheiten des
Berichts Nr. 10, des sog. OEEC-Planes, darf – schon um
Wiederholungen zu vermeiden – auf die Ausführungen in
Heft Nr. 2 der „Atomwirtschaft” vom Februar 1956, S. 1 ff.
verwiesen werden. Der Sonderausschuß hat zur Erfüllung
seiner Aufgaben vier Arbeitsgruppen eingesetzt, nämlich
für gemeinschaftliche Unternehmen, Sicherheitskontrolle,
Anpassung der Gesetzgebung und Ausbildung von Fachkräften.
Die Arbeitsgruppe „gemeinschaftliche Unternehmen”
hat den Auftrag, die technischen und sonstigen Voraussetzungen
für die Errichtung einer gemeinsamen Isotopentrennungsanlage
für Uran, einer chemischen Anlage
zur Aufbereitung angereicherter Brennstoffe, einer Anlage
zur Erzeugung von Schwerem Wasser und für den gemeinsamen
Betrieb von Versuchsreaktoren zu prüfen. Die Arbeitsgruppe
„Sicherheitsfragen” soll dem Sonderausschuß
Vorschläge für ein Kontrollsystem innerhalb der OEEC-
Länder zur Verhinderung des Mißbrauchs von Ausgangsstoffen
und Kernbrennstoffen, insbes. für militärische
Zwecke, unterbreiten. Die Arbeitsgruppe „Anpassung der
Gesetzgebung” hat den Auftrag, die Möglichkeiten einer
Harmonisierung der nationalen Atomgesetzgebungen und
der verwandten Gesetzgebungen (z.B. Berggesetze, Normen
für den Arbeits- und Bevölkerungsschutz) zu ergründen,
und die Arbeitsgruppe „Ausbildung von Fachkräften”
schließlich soll die derzeitige Lage in den einzelnen Mitgliedsländern
auf dem Ausbildungssektor prüfen und Wege
zur Überwindung des allenthalben für besonders
schwerwiegend erachteten Mangels an ausgebildeten
Fachkräften auf dem Kernenergiegebiet (von Wissenschaftlern
und Technikern) aufzeigen. Neben diesen eigentlichen
Arbeitsgruppen des Sonderausschusses für
Kernenergie befaßt sich eine zusammen mit dem Handelsdirektorium
der OEEC gebildete gemischte Gruppe „Ausschuß
für Handelsfragen“ mit den Möglichkeiten und Voraussetzungen
für ein wirtschafts- und zollpolitisches Stillhalteabkommen
und die spätere Errichtung eines gemeinsamen
Atommarktes der OEEC-Länder. Das Stillhalteabkommen
soll die Aufrichtung von Hemmnissen verhindern,
die einer späteren Liberalisierung des Handels mit Ausgangs-
und Kernbrennstoffen sowie mit Atomausrüstungsgegenständen
(equipment) entgegenstehen könnten. Eine
Untergruppe des Ausschusses der OEEC für Versicherungsfragen
befaßt sich mit den äußerst vielschichtigen und
schwierigen Fragen der Versicherung gegen das Atomrisiko
und einer weitmöglichen Anpassung der insoweit zu schaffenden
nationalen Gesetze. Die Arbeiten all dieser Gremien
stehen vor dem Abschluß. Die demnächst zu erwartenden
Berichte werden Gegenstand der für den 28. bis 30. Juni angesetzten,
voraussichtlich abschließenden Sitzung des Sonderausschusses
für Kernenergie sein. Der Sonderausschuß
wird sich außerdem insbesondere auch mit der Frage der
Errichtung eines Direktoriums für Kernenergie (steering
committee) und dessen Zusammensetzung und Zuständigkeiten
sowie mit Fragen der Zusammenarbeit mit den USA
und mit anderen übernationalen Institutionen bzw. Vorhaben
zu befassen haben. Er wird seinen Abschlußbericht mit
Vorschlägen für die praktische Ausgestaltung der Zusammenarbeit
der 17 Mitgliedsstaaten der OEEC voraussichtlich
am 17. Juli dem Ministerrat vorlegen. Wenn auch im
gegenwärtigen Zeitpunkt noch keine genauen Prognosen
gestellt werden können, so darf doch erwartet werden, daß
die Beschlüsse des Ministerrats die Pläne für eine Zusammenarbeit
auf dem Kernenergiegebiet innerhalb der OEEC
der Verwirklichung ein gutes Stück näherbringen werden.
Die Bundesrepublik ist in allen genannten Ausschüssen
und Gruppen vertreten und fördert deren Arbeiten nach
Kräften. Sie hat stets ihre Bereitschaft betont und in der
Praxis bewiesen, sowohl auf der OEEC- als auch auf der
EURATOM-Ebene mitzuarbeiten. Ich halte allerdings ein
nicht oder nur wenig koordiniertes Nebeneinander der
beiden Projekte oder gar eine Art „Wettlauf” zwischen ihnen
für verfehlt. Eine gewisse Koordinierung ergibt sich
zwar schon aus der Tatsache, daß die sechs Montanstaaten
gleichzeitig Mitglieder der OEEC sind. Darüber hinaus
aber scheint es mir wünschenswert, ein bestimmtes Gremium
ausdrücklich mit der Aufgabe zu betrauen, die beiden
Pläne dort, wo dies sinnvoll ist – z.B. bei gewissen gemeinschaftlichen
Unternehmen, in der Frage der Sicherheitskontrolle
– soweit wie möglich einander anzupassen.
3. EURATOM
Auf der Ebene der sechs Mitgliedsstaaten der Montanunion
hat eine vom Regierungsausschuß in Brüssel eingesetzte
Arbeitsgruppe unter dem Vorsitz von L. M. Armand (Frankreich)
im November 1955 einen eingehenden Bericht mit
einem Plan für eine Zusammenarbeit auf dem Kernenergiegebiet
vorgelegt (sog. EURATOM-Plan). Wegen der Vorgeschichte
und der Einzelheiten dieses Planes darf wiederum
auf die eingehende Darstellung in der „Atomwirtschaft”, Nr.
2, Febr. 1956, S. 1 ff., verwiesen werden,
Der Armand-Bericht wurde in der Folgezeit vom Regierungsausschuß
in Brüssel überarbeitet. Der Regierungsausschuß
hat nunmehr, am 21. April 1956, den „Bericht
der Delegationsleiter an die Außenminister“ vorgelegt. Er
enthält neben sehr umfangreichen Ausführungen über die
60 TH YEAR ATW 57
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
60 TH YEAR ATW 58
Schaffung eines allgemeinen gemeinsamen europäischen
Marktes in seinem zweiten Hauptteil Vorschläge für die Ausgestaltung
von EURATOM. Der Bericht knüpft zwar weitgehend
an den Armand-Bericht an, er weicht aber – in einer
allgemein etwas liberalen Grundtendenz – in einzelnen
Punkten nicht unwesentlich von diesem ab. Im folgenden
können nur die wichtigsten Gesichtspunkte angesprochen
werden.
Der Bericht betont zunächst mit großem Nachdruck,
daß EURATOM allen europäischen Staaten offenstehen
solle, welche die Regeln der Gemeinschaft annehmen. Die
Herstellung einer besonders engen Verbindung mit Großbritannien
soll auf jeden Fall versucht werden. Der Bericht
bemerkt ferner, daß EURATOM- und OEEC-Plan keine Gegensätze
darstellen, sondern sich vielmehr gegenseitig ergänzen
und fördern.
Auf dem Gebiet der Forschung wird neben den Vorschlägen
für eine gemeinsame Forschungstätigkeit im
Rahmen von EURATOM ausdrücklich bemerkt, daß der
größte Teil der Forschungsarbeiten weiterhin durch öffentliche
oder private Forschungsträger in den Mitgliedsländern
durchgeführt werden müsse. Forschung könne
nicht „geplant” werden. Eine Zentralisierung der Forschung
erscheine grundsätzlich verfehlt.
In der Frage der Erfinderrechte wird Privateigentum
und Privatinitiative grundsätzlich anerkannt. In Ausnahmefällen
allerdings, auf die hier nicht im einzelnen eingegangen
werden kann, ist die Möglichkeit von nichtausschließlichen
Zwangslizenzen unter voller Entschädigung
vorgesehen. Alle Entscheidungen sollen insoweit der Anfechtung
vor einem Gerichtshof unterliegen.
Auf dem Gebiete des Arbeits- und Bevölkerungsschutzes
bezeichnet der Bericht die Aufstellung von verbindlichen
Mindestnormen für die Mitglieder der Gemeinschaft
als erforderlich. Eine entsprechende Kontrolle der Anlagen,
in denen Kernbrennstoffe be- oder verarbeitet werden,
wird als notwendig erachtet. Hierbei soll jedoch den
Mitgliedsstaaten selbst die regelmäßige Überwachung der
Sicherheitsbedingungen unter einem gewissen Kontrollrecht
der Gemeinschaft überlassen bleiben.
Ebenso wie die von EURATOM durchgeführten Forschungsarbeiten
nur eine Ergänzung der gesamten Forschungstätigkeit
darstellen sollen, soll auch der größte Teil
der Investitionen auf dem Atomgebiet weiterhin Aufgabe
der öffentlichen und privaten Hand in den Mitgliedsländern
bleiben. Die Initiative der Unternehmen soll durch
hinweisende Programme, die Verbreitung von Forschungsergebnissen
und erforderlichenfalls durch finanzielle Mitwirkung
gefördert werden. Wenn auch die Entwicklungsprojekte
auf dem Gebiete der Atomenergie der Kommission
zur Stellungnahme übersandt werden sollen, so betont
doch der Bericht, daß die Organisation weder das Recht
der Investitionslenkung noch das der Stellungnahme zu
deren wirtschaftlicher Begründung oder dem Standort der
Einrichtungen haben solle.
Von besonderer wirtschaftlicher und auch politischer
Bedeutung erscheint der Vorschlag des Berichts über die
Versorgung mit Ausgangsstoffen und Kernbrennstoffen.
Insoweit ist eine Einkaufspriorität von EURATOM vorgesehen,
das seinerseits den Verbrauchern diese Stoffe zu einheitlichen
und nichtdiskriminierenden Bedingungen zur
Verfügung stellen soll. Eine Ausnahme von der Einkaufspriorität
soll unter noch festzulegenden Bedingungen nur
dann Platz greifen, wenn die Organisation erklärt, selbst
nicht liefern zu können. Ein Eigentumsmonopol der Organisation
wird in dem Bericht nicht vorgeschlagen. Unter
gewissen Voraussetzungen, so bei stark angereicherten
Kernbrennstoffen, ist allerdings nur eine pachtweise Überlassung
vorgesehen.
Um die Sicherheit vor Mißbrauch von Erzen und Kernbrennstoffen
zu gewährleisten, wird in dem Bericht eine
weitgehende Kontrolle und insbesondere der Rücklauf von
Kernbrennstoffen am Ende eines Umwandlungszyklus in
die Einrichtungen der Gemeinschaft vorgeschlagen.
Der Bericht sieht ferner die unverzügliche Schaffung
eines gemeinsamen Atommarktes vor, der später in dem
allgemeinen gemeinsamen Markt aufgehen soll.
Zur Erfüllung der Aufgaben von EURATOM wird eine Europäische
Atomenergiekommission mit eigenen Befugnissen
und einem gemeinsamen Mandat als ständiges Organ
für die laufende Verwaltung der Gemeinschaft vorgeschlagen.
Die Kommission soll einer parlamentarischen Kontrolle
durch eine gemeinsame Versammlung und einer richterlichen
Kontrolle durch einen Gerichtshof unterliegen. In
Fragen der allgemeinen Politik sowie bei gewissen Entscheidungen
von besonders weittragender Bedeutung soll der
Ministerrat nach noch festzusetzenden Bestimmungen mitwirken.
Der Europäischen Atomenergiekommission sollen
für die Erfüllung ihrer Aufgaben gewisse Gremien zur Seite
stehen, z.B. ein Sachverständigenbeirat für Wissenschaft
und Wirtschaft und ein gemischter Ausschuß der Produzenten
und Verbraucher. Für die Ausübung ihrer Funktionen
gegenüber gemeinsamen Unternehmen soll eine Dienststelle
für industrielle Verwaltung und für die Versorgungsaufgaben
eine Agentur mit kaufmännischer Geschäftsführung
eingerichtet werden. Der Bericht der Delegationsleiter ist in
seiner Gesamtheit, wie betont werden muß, ein Sachverständigenbericht
an die Regierungen. Er ist für diese somit
nicht verbindlich. Allen beteiligten Regierungen sind daher
Änderungsvorschläge in allen Einzelfragen Vorbehalten.
Auf der Konferenz der Außenminister der Montanunionstaaten
am 29. und 30. Mai in Venedig sind die Minister
übereingekommen, den Bericht zur Grundlage der Beratungen
einer Regierungskonferenz zu machen, die für den 26.
Juni nach Brüssel einberufen ist. Diese Konferenz soll die
notwendigen Einzelverträge für die Schaffung eines gemeinsamen
europäischen Marktes und von EURATOM in einem
als einheitliches Ganzes anzusehenden Vertragswerk
ausarbeiten.
Zwei Fragen von hochpolitischer Bedeutung sind allerdings
gesonderten Beratungen der Außenminister Vorbehalten
worden. Es handelt sich insoweit um die von Frankreich
zur Erörterung gestellte Einbeziehung der überseeischen
Gebiete in das Vertragswerk und um die Frage der militärischen
Verwendung der Atomenergie. Es liegt auf der Hand,
daß gerade die Probleme, die sich aus einer militärischen
Betätigung eines oder mehrerer Mitgliedsstaaten auf dem
Atomgebiet ergeben, erheblichen Einfluß auf die Ausgestaltung
der Zusammenarbeit auf dem Gebiet der Erforschung
und Nutzung der Kernenergie zu friedlichen Zwecken ausüben.
In diesem Zusammenhang muß daran erinnert werden,
daß die Bundesrepublik in den Pariser Verträgen auf
die Herstellung von Atomwaffen verzichtet hat. Schließlich
ist noch auf die erfreuliche Entschließung der Konferenz in
Venedig hinzuweisen, nach der der belgische Außenminister
Spaak beauftragt worden ist, befreundete europäische Länder
sowie die europäischen Organisationen über die Arbeiten
der kommenden Regierungskonferenz in Brüssel zu unterrichten
und sie zu einer Beteiligung an den Bemühungen
der Sechs ausdrücklich einzuladen.
Autor:
Franz Josef Strauß
Bundesminister für Atomfragen
60 th year atw
The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß
atw Vol. 60 (2015) | Issue 1 ı January
Top
Energy experts agree climate
change threat needs nuclear
solution
(nei) The U.S. Environmental Protection
Agency’s proposed rule regulating
carbon emissions from existing
power plants is the first time the
agency has ever included nuclear energy
as a solution to an air pollution
problem, former EPA Deputy Administrator
Bob Perciasepe said.
Now president of the Center for
Climate and Energy Solutions (C2ES),
Perciasepe told a gathering of energy
experts in Washington, D.C., that the
pro-nuclear sentiment behind EPA’s
Clean Power Plan is a “threshold
change worth noting.”
The plan, also known as the
“111(d) rule” after the applicable section
of the Clean Air Act, contains provisions
to give states and regions
credit for avoided carbon emissions if
they preserve existing nuclear plants
considered to be at risk of premature
closure. It also seeks ways to provide
credit for nuclear plants now under
construction.
The industry has criticized both
provisions as being “right in intent but
wrong on methodology”.
Perciasepe acknowledged that
EPA’s first draft of the plan was “not
the most elegant” but was “a way to
get started” while juggling competing
interests and complicated interstate
electricity issues. He said EPA recognized
from the start that meeting
President Obama’s near-term goal of a
26 percent to 28 percent reduction in
carbon from 2005 levels by 2025
would be difficult to achieve without
existing and new nuclear plants.
The bottom line, Perciasepe said, is
that “nuclear energy cannot be ignored
as a solution to the health of the
planet.” He said EPA has received 1.5
million comments on the draft 111(d)
rule and expressed confidence that the
agency will be responsive to the concerns
of the industry as it works toward
finalizing the rule by June 2015.
Other speakers at the event, conducted
by the Howard Baker Forum,
also referenced nuclear energy. Jessica
Lovering, senior analyst at the
Breakthrough Institute, compared
other countries’ recent experiences
with nuclear energy – especially those
of France, Germany and Japan.
Lovering noted that in the nearly
four years that Japan put its 50 operable
reactors on hiatus after the
Fukushima accident and greatly increased
its use of fossil fuels, there
have been 4,000 additional deaths per
year from air pollution as well as
40,000 serious illnesses and 1 million
minor illnesses.
Contrasting France and Germany’s
divergent energy policies, Lovering
said France’s 80 percent share of nuclear
energy gives it the cleanest air in
Europe – including half Germany’s carbon
intensity – as well as the lowest
electricity prices in Europe. Germany,
meanwhile, is essentially burning dirty
brown coal to replace its nuclear capacity
while not markedly increasing its
use of renewables. This has resulted in
greatly increased carbon emissions as
well as higher electricity costs.
She said France’s policy choice
shows that a country does not have to
make expensive sacrifices to move toward
clean energy. In France, “the
clean option IS the cheapest option,”
she said.
Installed nuclear energy capacity
worldwide could nearly triple from
today’s 375 gigawatts to as much as
1,092 gigawatts by 2050 if nations recognize
it as the best and least expensive
means to address the threat of climate
change, a new International
Atomic Energy Agency report says.
The report, “Climate Change and
Nuclear Power 2014,” says its analysis
“indicates that nuclear power represents
the largest single mitigation potential
at the lowest average costs.”
The Intergovernmental Panel on Climate
Change notes that raising the
percentage of global nuclear energy
capacity from 16 percent in 2005 to 18
percent in 2030 could avoid 1.9 billion
metric tons of carbon dioxide-equivalence
per year.
IAEA notes that even its high projection,
based on the International Energy
Agency’s stringent “450 Scenario,”
is achievable in the timeframe
noted. As the chart shows, the nuclear
industry was able to increase global
net capacity 20 times from 1970 to
1990, lending plausibility to the IEA’s
forecast of 126 percent capacity
growth through 2030.
| | www.nei.org, 6598
World
Power-hungry emerging
countries look to nuclear
energy to meet demand
(gd) Emerging markets will play a major
role in the expansion of global nuclear
installed capacity, which will increase
from 371 GW in 2013 to
517 GW by 2025, at a Compound Annual
Growth Rate (CAGR) of 2.5 %,
according to research and consulting
firm GlobalData.
The company’s latest report* states
that while the world’s nuclear power
generation decreased in 2011 and
2012 in the aftermath of the
Fukushima meltdown, the market is
gradually recovering, with large-scale
capacity additions expected in the
Asia-Pacific (APAC) region.
Pranav Srivastava, GlobalData’s
Associate Analyst covering Nuclear
Power, says: “The after-effects of the
Fukushima meltdown go beyond the
decline of nuclear power generation
in Japan.
“Germany and Switzerland are
now planning to phase out nuclear
power, while others, such as China,
Japan, France and the UK, have developed
strong frameworks for nuclear
safety and performed stress tests
on their existing nuclear reactors to
ensure safe operations.”
Despite this more cautious global
approach, GlobalData states that the
emerging nuclear countries in the
APAC region are building more than
20 nuclear reactors and are planning
to add 13.8 GW of nuclear power by
2030, led by 6.8 GW of additions in
Vietnam.
Srivastava explains: “High electricity
demand is a key driver for nuclear
power development in Vietnam. The
country plans to construct 10 new reactors
by 2030 and has signed a number
of co-operative governmental
agreements regarding the peaceful use
of nuclear energy with Russia, China,
India, South Korea and Argentina.
“Russia received a construction
deal to build the first two reactors in
2009, while Japan won the deal for
the third and fourth reactors the following
year.”
GlobalData’s report states that despite
anti-nuclear public opinion and
safety concerns, there are a number of
factors boosting demand for nuclear
power.
The analyst concludes: “Nuclear
power has the capacity to produce
large amounts of electricity and therefore
meet the growing demand for
power. It is also seen as a way of counteracting
concerns over volatile fossil
fuel prices, oil reserve shortages and
rising carbon emissions.”
| | www.globaldata.com, 6596
NEA Director-General opened
the Northeast Asia Nuclear
Safety Symposium
(nea) On 26 November 2014, the NEA
Director-General opened the Northeast
Asia Nuclear Safety Symposium
* Emerging Nuclear
Power Countries –
Market Forecast,
Key Companies and
Development Analysis
to 2030
59
NEWS
News
atw Vol. 60 (2015) | Issue 1 ı January
Operating Results October 2014
60
Plant name
Nominal
capacity
gross
[MW]
net
[MW]
Operating
time
enerator
[h]
Energy generated. gross
[MWh]
Month Year 1) Since
commissioning
Time availability
[%]
Energy availability Energy utilisation
[%] *) [%] *)
Month Year 1) Month Year 1) Month Year 1)
NEWS
KBR Brokdorf 1480 1410 745 1 073 558 9 462 011 309 654 875 100.00 96.79 96.79 91.23 97.32 87.48
KKE Emsland 6) 1406 1335 745 1 041 037 9 492 725 299 885 849 100.00 94.27 94.27 94.17 99.44 92.77
KKG Grafenrheinfeld 1345 1275 745 979 090 8 521 034 326 996 325 100.00 90.70 90.70 89.47 97.37 86.39
KWG Grohnde 1430 1360 745 1 000 954 8 142 281 335 701 952 100.00 81.72 81.72 81.54 93.29 77.53
KRB B Gundremmingen B 1344 1284 745 1 009 087 8 024 701 298 775 953 100.00 82.41 82.41 81.61 100.55 81.47
KRB C Gundremmingen C 1344 1288 745 1 002 395 8 569 143 288 935 646 100.00 88.50 88.50 87.74 99.52 86.80
KKI 2 Isar 2 1485 1410 745 1 070 136 9 322 809 304 877 887 100.00 94.39 94.39 88.55 96.37 85.63
GKN II Neckarwestheim II 1400 1310 735 999 500 9 307 200 284 934 314 98.63 91.70 91.70 91.46 97.12 90.39
KKP 2 Philippsburg 2 1468 1402 745 1 087 192 8 101 803 323 550 677 100.00 78.58 78.58 78.44 98.21 74.50
*)
Net-based values
1)
Refueling
2)
Inspection
3)
Repair
4)
Stretch-out-operation
5)
Stretch-in-operation
6)
New nameplate capacity
as of 2014:
KKE Emsland from
July 2014:
1 406 MW (gross),
1 335 MW (net)
Source: VGB
(2 nd TRM+) in Seoul, Korea. During
his presentation, he stressed the importance
of the human dimension in
nuclear safety and finding mechanisms
to implement safety culture concepts
effectively in different national
contexts. He noted that the NEA is in a
very good position to help facilitate
further nuclear safety discussions in
the region, and assured participants
of the NEA’s support for that interaction.
In closing, he recalled that “All
problems have solutions, and working
together we can overcome any challenge.”
| | www.oecd-nea.org, 6597
| | ITER construction site: The B2 slab, which will support some 400,000 tons
of building and equipment (including the 23,000-ton ITER Tokamak),
is now in place.
ITER Tokamak complex will
begin to rise
(iter) The ITER Organization and the
European Domestic Agency for ITER,
Fusion for Energy, issued statements to
mark the completion of Tokamak Complex
foundations and the beginning of
a new phase of ITER construction.
In the centre of the vast excavated
area that will house the principal
buildings of the ITER scientific facility,
workers have started to frame out the
lower walls of the Tokamak Complex,
a first step toward realizing the senstorey
structure that will house the
ITER fusion experiments.
This milestone comes on the heels
of the August completion of the Tokamak
Complex basemat – the heavily
reinforced “B2 slab” that will support
some 400,000 tons of building and
equipment, including the 23,000-ton
ITER Tokamak.
“The start of pouring activities for
the massive Tokamak Complex is an
important and exciting moment for
the ITER Project,” declared ITER Director-General
Osamu Motojima.
“Years of hard work by all ITER Members
are bearing fruit as the ITER facility
takes shape in France and as the
manufacturing of the systems and
components advances. ITER is progressing
on all fronts.”
The imminent start of concrete
pouring for the walls will mark the beginning
of the second phase of ITER
construction. Four years were necessary
to complete the first phase – the
creation of a ground support structure
for the Tokamak Complex. From August
2010 to August 2014, workers excavated
the 17-metre- deep, 90 x 130
metre Tokamak Complex Seismic Pit;
created a ground-level basemat and
retaining walls; installed 493 seismic
columns and pads; and poured the B2
foundation slab.
All works have been carried out by
the European Domestic Agency “Fusion
for Energy” which, as part of its
contribution to ITER, is responsible
for the financial contribution and
technical supervision linked to the
construction of 39 scientific buildings
and dedicated areas on the ITER platform.
The Director of Fusion for Energy,
Henrik Bindslev, stressed that “Europe
is taking ITER construction to the next
level. The basemat is … where scientific
work and industrial know-how
will come together and be deployed to
seize the power of fusion energy.”
The Tokamak Complex will dominate
the ITER platform when it is completed.
The seven-storey structure will
house not only the ITER Tokamak, but
also more than 30 different plant systems
including cooling systems and
electrical power supplies. Eighty
metres tall, 120 metres long and 80
metres wide, the Tokamak Complex
will require 16,000 tons of rebar,
150,000 m 3 of concrete and 7,500 tons
of steel for the building structure.
The contract for Tokamak Complex
construction was awarded in December
2012 by Fusion for Energy to the
French-Spanish consortium VFR
(made up of French companies VINCI
Construction Grands Projets, Razel-
Bec, Dodin Campenon Bernard,
Campenon Bernard Sud-Est, GTM
Sud and Chantiers Modernes Sud, and
the Spanish firm Ferrovial Agroman).
The EUR 300-million contract also
includes the construction of the ITER
Assembly Building; the radio frequency
heating building; areas for
heating, ventilation and air conditioning;
a cleaning facility and site services
buildings; the cryoplant compressor
and coldbox building; the control
buildings; the fast discharge and
switching network resistor building;
and three bridges.
In the years to come, the number of
workers involved in ITER construction
will rise from 300, currently, to more
than 2,000.
| | www.iter.org, 6605
World Energy Outlook warns
nuclear industry on
decommissioning and disposal
(nucnet) The nuclear energy industry
needs to be ready to manage “an unprecedented
rate” of decommissioning
with almost 200 of the 434 react-
News
atw Vol. 60 (2015) | Issue 1 ı January
ors that were operating commercially
at the end of 2013 to be retired by
2040, a report by the International
Energy Agency says.
The World Energy Outlook 2014
(WEO) says “the vast majority” of
these reactor retirements will be in the
European Union, the US, Russia and
Japan.
The industry will need to manage
this unprecedented rate of decommissioning,
while also building substantial
new capacity for those reactors
that are replaced, WEO says. The IEA
estimates the cost of decommissioning
plants that are retired to be more
than $100 billion. But WEO warns
that “considerable uncertainties” remain
about these costs, reflecting the
relatively limited experience to date in
dismantling and decontaminating reactors
and restoring sites for other
uses. Regulators and utilities need to
continue to ensure that adequate
funds are set aside to cover these future
expenses, WEO says. It also warns
that all countries which have ever had
nuclear generation facilities have an
obligation to develop solutions for
long-term storage.
In one scenario examined in WEO,
the cumulative amount of spent nuclear
fuel that has been generated
(a significant portion of which becomes
high-level radioactive waste)
more than doubles, reaching 705,000
tonnes in 2040.
Today – 60 years since the first nuclear
reactor started operating – no
country has yet established permanent
facilities for the disposal of highlevel
radioactive waste from commercial
reactors, which continues to build
up in temporary storage, WEO says.
It says nuclear power is one of the
few options available at scale to reduce
carbon dioxide emissions while
providing or displacing other forms of
baseload generation. Nuclear has
avoided the release of an estimated 56
gigatonnes of CO 2 since 1971, or almost
two years of total global emissions
at current rates. Policies concerning
nuclear power will remain an
essential feature of national energy
strategies, even in countries which are
committed to phasing out the technology
and that must provide for alternatives,
WEO says.
In WEO’s central scenario, global
nuclear power capacity increases by
almost 60 percent from 392 gigawatts
in 2013 to more than 620 GW in 2040.
However, its share of global electricity
generation, which peaked almost two
decades ago, rises by just one percentage
point to 12 percent. This growth is
concentrated in just four countries –
China, India, South Korea and Russia.
These are markets where electricity is
supplied at regulated prices, utilities
have state backing or governments act
to facilitate private investment. Of the
growth in nuclear generation to 2040,
China accounts for 45 percent while
India, South Korea and Russia collectively
make up a further 30 percent.
Generation increases by 16 percent in
the US, rebounds in Japan – although
not to levels seen before the Fukushima-Daiichi
accident – and falls by 10
percent in the European Union.
WEO says despite the challenges
nuclear faces, it has specific characteristics
that underpin the commitment
of some countries to maintain it as a
future option. “Nuclear plants can
contribute to the reliability of the
power system where they increase the
diversity of power generation technologies
in the system. For countries that
import energy, it can reduce their dependence
on foreign supplies and
limit their exposure to fuel price
movements in international markets.”
Although the upfront costs to build
new nuclear plants are high and, often,
uncertain, nuclear power can offer
economic benefits by adding stability
to electricity costs and improving
balance of payments, WEO says.
| | www.iea.org, www.nucnet.org,
6606
Europe
New Commissioner lays out
plans for European ‘Energy
Union’
(nucnet) Momentum is building for a
European Energy Union like never before,
but if progress is to be made
member states will need to stop thinking
of markets as national territories
and be willing to explore the common
buying of gas, the new European Commissioner
for Energy Union has said.
In a speech at the Tatra Summit in
Slovakia yesterday, Maroš Šefčovič
laid out his vision for an Energy Union
– an idea that was first aired in 2009
– saying it needs to be built on “security,
solidarity and trust”.
“We need to integrate,” he said.
“We need to explore the common purchasing
of gas. We will need to diversify
our energy sources and routes,
and reduce high energy dependency
on several of our member states.”
He said geopolitical events – notably
in Ukraine and Russia – worldwide
energy competition and the impact
of climate change are triggering a
“mind switch” in terms of the EU’s energy
and climate strategy.
Mr Šefčovič, who supported the
European Commission’s decision to
approve a contract for the proposed
Hinkley Point C nuclear plant in the
UK, said transparency is needed as to
how member states are negotiating
with third country suppliers. The EC
should be involved in these negotiations.
Similarly, no member state
should modify its energy system
without consultation because this
may have “huge consequences” for another
member state’s systems.
Building a European Energy Union
is one of the EC’s most pressing challenges,
he said. The EU imports 53
percent of its energy at a cost of more
than €400 billion a year, making it the
biggest energy customer in the world.
Mr Šefčovič said one of his key
goals is to finalise an internal energy
market. He said a “transparent and
competitive” energy market will be the
backbone of the Energy Union, bringing
real benefits to households through
affordable energy prices and industry
through greater competitiveness.
In a progress report on the internal
energy market published last month,
the EC said there are still challenges
that need to be addressed.
The report said more investment is
needed in infrastructure including
smart grids. It said Europe needs to
implement a set of simple, harmonised
rules for gas and electricity trading.
Mr Šefčovič said the Third Energy
Package – a legislative package that
entered into force in 2009 aimed at
producing a more harmonised internal
gas and electricity market –
must be “fully implemented and applied”
through strict monitoring and
with assistance for any member states
experiencing problems with implementation.
The package includes measures
such as the ‘Unbundling Provision’,
which says organisations involved in
electricity and gas transmission cannot
also be involved in generation and
supply. The aim of the legislation is to
eliminate any potential conflict of interest.
Mr Šefčovič intends to produce a
short policy paper within months with
concrete proposals for an Energy
Union.
The idea of a European Energy
Union dates to a December 2009 declaration
by Jerzy Buzek, president of
the European Parliament at the time,
who said a “European Energy Community”
could become the next big EU
project.
61
NEWS
News
atw Vol. 60 (2015) | Issue 1 ı January
62
NEWS
In May 2010, Mr Buzek signed a
declaration which explained the
concept of energy community and
called for “a radical shift” in the way
Europe produces and consumes energy.
One of his proposals was that the
EU must have the ability to pool its
supply capacities and engage in “coordinated
energy purchasing”. In the
long term, if the EU is faced with a major
energy crisis, common strategic
reserves must be available.
In September, when he was still
prime minister of Poland, the new EC
president Donald Tusk urged other EU
leaders to create an Energy Union in
order to reduce Europe’s dependence
upon Russian gas imports.
Poland has decided to build new
nuclear reactors to move away from its
heavy reliance on coal and gas. The
first unit is expected to come into commercial
operation by 2025.
| | europa.eu, www.nucnet.org, 6607
China
Hongyanhe-3 achieves first
criticality
(nucnet) The Hongyanhe-3 nuclear
unit in Liaoning province, northeastern
China, has achieved first criticality,
the China Nuclear Energy Agency
(CNEA) has said.
The Chinese-designed Generation
II CPR-1000 pressurised water reactor
(PWR) unit reached first criticality on
27 October 2014, CNEA said. All parameters
were “normal” and “reasonable”,
CNEA said.
The unit is undergoing physical
testing to validate the performance of
the reactor core and the performance
of the instrumentation and control
(I&C) system.
The next step is to start the turbine
on the secondary, non-nuclear side of
the unit and test whether it can operate
at full speed.
Hongyanhe has two commercially
operational units and two under construction,
all of the domestic CPR-
1000 design.
Hongyanhe-1 and -2 entered commercial
operation in June 2013 and
October 2013. Construction of
Hongyanhe-3 and -4 started in March
and August 2009.
According to the International
Atomic Energy Agency’s Power Reactor
Information System (Pris) database,
China has 22 nuclear units in
commercial operation and 27 units
under construction.
| | www.cnecc.com, 6604
Research
IAEA-led project solves mystery
of how helium enters the
atmosphere
(iaea) How helium – the light noble
gas that sends balloons floating in the
air – enters the atmosphere has
wracked the brains of scientists for
generations. Now the mystery has
been solved, as an unexpected side benefit
of research done by a group of
scientists in an IAEA-led project to
study groundwater in South America.
The Guarani Aquifer is one of the
world’s largest water systems, and
Pradeep Aggarwal, Head of the IAEA’s
Isotope Hydrology Section and a
group of other scientists set out to
study this aquifer to learn how it can
be better managed and protected.
“In effect, this aquifer, under Argentina,
Brazil, Paraguay and Uruguay,
is a huge natural laboratory
where we were able to infer for the
first time that helium from deep in the
earth reaches the atmosphere along
with the discharging ground water,”
said Pradeep Aggarwal.
Helium is produced as uranium
and thorium in the earth’s crust decay.
Until this study it was unclear how it
entered the atmosphere.
The results of the findings, following
three years of study, has been published
in Nature Geoscience. Aggarwal
is the lead author with two other
IAEA experts and nine contributors
from five institutions in Brazil, the
United States and Switzerland who
took part in the study. They used a
laser-cooling and atom-trapping technique
at the Argonne National Laboratory
in the United States for measuring
the rare, radioactive krypton isotope
(Kr-81). In this technique, specific
lasers are used to slow down and
count individual Kr-81 atoms, which
are only a few among more than a trillion
atoms of stable krypton (Kr-84).
The reduced number of Kr-81 atoms in
groundwater compared to the atmospheric
krypton allowed the estimation
of the age of water, which established
the link between groundwater
and the passage of helium. Krypton-81
has a half-life of about 229,000 years
and is used for dating old (about
50,000 to one million year-old)
groundwater.
The IAEA Guarani project aimed to
provide more knowledge about the
aquifer.
“The Agency is working with its international
partners to improve our
understanding of groundwater systems
so that we can better protect and
manage this vital freshwater resource,”
said Aggarwal.
“As part of this process we need to
continue to better understand earth’s
physical systems. In pursuing the
Guarani project, we found out more
than we expected, but that is the
nature of scientific exploration.”
Helium is quite rare on earth but is
widely used in industry. The gas is important
to the electronics industry and
for cooling super-conducting magnets
such as those used in magnetic resonance
imaging (MRI). Most helium is
obtained from natural gas drilling in
the United States.
| | www.iaea.org, 6599
FRM II: New hall for cooling
systems of ultra-cold neutron
source
(frmii) South of the Maier-Leibnitz
Laboratory a hall in wood construction
is currently being built. From next year
on, it will house the mock-up for the
cooling systems of the ultracold neutron
source at the FRM II. The hall will
be ready at the end of November 2014.
The hall was necessary in order to
be able to test the large cooling systems
the source of ultracold neutrons
in non-nuclear operation. Only after a
year of testing the compressors and
gas tanks will be taken to the neutron
source for the preparation of ultracold
neutrons.
The foundations for three gas
tanks, filled with the coolants nitrogen
and helium, are already poured.
The 70 square metres wide and 3.70
metres high hall consists of a wooden
structure. It will house the compressors
of the refrigerator, which is
to ensure the cooling of the neutrons.
The ultracold neutrons are slowed
down so much that they have a velocity
of only about 20 kilometers an
hour. Planned experiments with ultracold
neutrons include the measurement
of the lifetime of free neutrons
and the search for an electric dipole
moment of the neutron.
| | www.frm2.tum.de, 6603
Company News
Successful commissioning of
Taishan EPR reactors full-scope
simulator
(areva) CORYS, a company co-owned
by AREVA and EDF, announced the
successful installation and commissioning
of the Taishan plant’s full scope
simulator at the on-site training center,
in the Guangdong province, in China.
News
atw Vol. 60 (2015) | Issue 1 ı January
| | View of the Taishan site in an early stage of construction of Taishan unit 1. (Courtesy: Areva)
This marks an important milestone for
the project as plant’s staff will now
start training to prepare the plant’s
commissioning and operation phases.
The simulator will provide enhanced
training to the customer’s 100
operators for the two EPR units in construction
in Taishan.
Developed through CORYS’ stateof-the-art
simulation workshop
ALICES © , the simulator offers a very
high level of realism. In addition,
thanks to its unequalled calculation
capacity, the device is very reactive
and its behaviors are extremely
faithful to those of the reference
plant.
“This commissioning adds to
Flamanville 3 EPR’s full-scope simulator
supplied by CORYS”, said Ralf
Gathmann, CORYS CEO. “With this
second validation, we become leaders
in the segment of the GEN3 Full-
Scope simulator.”
“With the Taishan full scope simulator
in service, a major milestone for
the plant construction project has
been successfully achieved,” said
Zhou Weichang, Head of the Taishan
training centre, for TNPJVC*. “We
are grateful to the CORYS project
team who made this project a success.”
| | www.areva.com, 6600
Rusatom Overseas welcomes
Fortum’s decision to enter
Hanhikivi 1 NPP project
(rus) Rusatom Overseas welcomes the
conditional decision of the Finnish energy
company Fortum on entering the
Hanhikivi 1 nuclear power plant project
by purchasing up to 15 per cent of
Voimaosakeyhtiö SF shares. Fortum’s
purchase of a minority stake in the
project implemented by Fennovoima
will allow to meet the requirement of
the Ministry of Employment and the
Economy of Finland in accordance
with which at least 60 per cent of the
shares should be in the Finnish ownership.
Kirill Komarov, Deputy CEO for
Corporate Development and International
Business of Rosatom Corporation
said: “Russian nuclear industry
has been cooperating with Fortum for
more than 40 years, and we are happy
that our cooperation is entering a new
phase. Fortum’s readiness to participate
in our joint project with Fennovoima
is a truly positive signal. If
Fortum becomes a shareholder, the
Hanhikivi 1 project will have access to
the competences of one of the leading
energy experts in Finland.”
In December 2013, Rusatom Overseas
and Fennovoima signed the EPC
Contract for Hanhikivi 1 nuclear
power plant in the region of Northern
Ostrobothnia, Finland. In March 2014,
RAOS Voima Oy, subsidiary of Rusatom
Overseas, purchased a 34-percent
share in Fennovoima.
| | www.rosatom.ru
Westinghouse inks multi-party
agreement to develop nuclear
power in Turkey
(westn) Westinghouse Electric Company,
China’s State Nuclear Power
Technology Corporation (SNPTC) and
Electricity Generation Company
(EÜAŞ), the largest electric power
company in Turkey, announced an
agreement to enter into exclusive negotiation
to develop and construct a
four-unit nuclear power plant site in
the Republic of Turkey based on
AP1000 ® reactor technology.
The project also covers all life cycle
activities including operations, nuclear
fuel, maintenance, engineering,
plant services and decommissioning.
“We are excited to expand into the
Republic of Turkey and provide our
cutting-edge technology and innovative
passive safety systems,” said Danny
Roderick, Westinghouse president
and CEO. “We are confident that our
partnering relationship with SNPTC
and the leadership they have demonstrated
in China will provide the
greatest value to the customers in the
Republic of Turkey.”
Eight AP1000 units are currently
under construction worldwide: two
each at the Vogtle and V.C. Summer
sites in the U.S. and the Sanmen and
Haiyang sites in China. In addition,
shareholder agreements have been
signed in the past few months for the
development of AP1000 plants at the
Moorside site in the United Kingdom
and the Kozloduy site in Bulgaria.
Westinghouse Electric Company, a
group company of Toshiba Corporation
(TKY:6502), is the world’s pioneering
nuclear energy company and is
a leading supplier of nuclear plant
products and technologies to utilities
throughout the world. Westinghouse
supplied the world’s first pressurized
water reactor in 1957 in Shippingport,
Pa., U.S. Today, Westinghouse technology
is the basis for approximately
one-half of the world’s operating nuclear
plants. AP1000 is a trademark of
Westinghouse Electric Company LLC.
All rights reserved.
State Nuclear Power Technology
Corporation (SNPTC) is the general
contractor of the first four AP1000
units in the world being built in China.
By working together with overseas
partners, SNPTC is working on providing
safe, clean, economic and reliable
energy by advanced nuclear technology,
products and services.
Electricity Generation Company
(EÜAS) is a state owned company
which was founded to generate electricity
in compliance with the energy
and economic policies of the state and
| | View of the AP1000 construction site in Sanmen, China. Eight AP1000
units are currently under construction worldwide. Negotiations to develop
and construct a four-unit nuclear power plant site in the Republic of Turkey
have started. (Courtesy: Westinghouse)
63
NEWS
News
atw Vol. 60 (2015) | Issue 1 ı January
64
Uranium
Prize range: Spot market [USD*/lb(US) U 3O 8]
140.00
) 1
Uranium
Prize range: Spot market [USD*/lb(US) U 3O 8]
140.00
) 1
120.00
120.00
100.00
100.00
80.00
80.00
NEWS
60.00
40.00
Prices in real USD, base: US prices (1982 to1984) *
60.00
40.00
20.00
20.00
0.00
Year
* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2014
2014
0.00
* Actual nominal USD prices, not real prices referring to a base year. Year
Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2014
Jan. 2012
Jan. 2013
Jan. 2014
Jan. 2015
| | Uranium spot market prices from 1980 to 2014 and from 2004 to 2014. The price range is shown.
In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.
Separative work:
Spot market price range [USD*/kg UTA]
180.00
) 1
Conversion:
Spot conversion price range [USD*/kgU]
14.00
) 1
160.00
12.00
140.00
120.00
10.00
100.00
8.00
80.00
6.00
60.00
40.00
4.00
20.00
2.00
0.00
* Actual nominal USD prices, not real prices referring to a base year.
Year
Jan. 2012
Jan. 2013
Jan. 2014
Jan. 2015
Source: Energy Intelligence, Nukem; Bild/Figure: atw 2014
0.00
* Actual nominal USD prices, not real prices referring to a base year. Year
Source: Energy Intelligence, Nukem; Bild/Figure: atw 2014
Jan. 2012
Jan. 2013
Jan. 2014
Jan. 2015
| | Separative work and conversion market price ranges from 2004 to 2014. The price range is shown.
)1
In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.
in accordance with the principles of
efficiency and profitability.
| | www.westinghousenuclear.com,
6601
People
Luc Oursel passed away
Luc Oursel, president and CEO of
AREVA, passed away on 3 December
2014.
| | www.areva.com
Market data
(All information is supplied without
guarantee.)
Nuclear fuel supply market data
Information in current (nominal)
U.S.-$. No inflation adjustment of
prices with respect to a base year. Separative
work data for the formerly
„secondary market”. Uranium prices
[US-$/lb U 3 O 8 ; 1 lb = 453.53 g; 1 lb
U 3 O 8 = 0.385 kg U]. Conversion
prices [US-$/kg U], Separative work
[US-$/SWU (Separative work unit)].
January to December: 2012
• Uranium: 40.25–53.00
• Conversion: 6.25–10.50
• Separative work: 118.00–147.00
January to December 2013:
• Uranium: 34.00–43.50
• Conversion: 9.25–11.50
• Separative work: 98.00–127.00
January to July 2014:
• Uranium: 28.10–36.00
• Conversion: 7.75–11.00
• Separative work: 89.00–98.00
August 2014:
• Uranium: 28.60–32.50
• Conversion: 7.75–10.50
• Separative work: 89.00–92.00
September 2014:
• Uranium: 32.00–36.50
• Conversion: 7.75–10.00
• Separative work: 86.00–92.00
| | Source: Energy Intelligence,
www.energyintel.com
Cross-border price for hard coal
Cross-border price for hard coal in
[€/t TCE] and orders in [t TCE] for
use in power plants (TCE: tonnes of
coal equivalent, German border):
2010: 85.33; 23,795,158
2011: 106.97; 26,513,704
2012: 93.02; 27,453,635
2013: 79.12, 31,637,166
2014:
I. quarter: 75.16; 8,446,794
II. quarter: 71.18; 6,374,963
| | Source: BAFA, some data provisional
EEX Trading Results in
September 2014
(eex) In September 2014, the total
volume in power derivatives on the
European Energy Exchange (EEX)
amounted to 154.3 TWh. This represents
the highest volume that has been
traded on this market so far in 2014.
The French Power Futures volume increased
by 265 percent to 7.3 TWh
compared to the previous year
(September 2013: 2.0 TWh). This represents
the highest monthly volume
that has been traded and registered
for clearing at EEX since the launch of
this product. The volume in Italian
Power Futures increased by 49 percent
to 12.7 TWh compared to the previous
month (August 2014: 8.5 TWh).
In September, 71.7 TWh were registered
at EEX for clearing. Clearing
and settlement of all transactions was
executed by European Commodity
Clearing (ECC).
News
atw Vol. 60 (2015) | Issue 1 ı January
The base load price for the year
2015 in the Phelix Future product
(market area Germany/Austria) was
quoted at EUR 34.72 per MWh on
30 September 2014. The peak load
price for 2015 in the Phelix Future
product was quoted at EUR 43.58
per MWh.
On the EEX Market for Emission Allowances,
a total volume of 44.9 million
tonnes of CO 2 was traded in
September, compared with 108.3 million
tonnes of CO 2 in September 2013.
During the month, Primary Market
Auctions contributed 37.3 million
tonnes of CO 2 to the total volume. In
September, the first Primary Market
Auction for EU Aviation Allowances
(EUAA) in 2014 was conducted by
EEX with a volume of 1.64 million
tonnes of CO 2 .
In September, the monthly average
of the ECarbix (European Carbon Index)
amounted to EUR 5.99 per EUA.
On the EUA Derivatives Market, the
daily settlement price in the front year
contract (Dec-2014) varied between
EUR 5.68 per EUA and EUR 6.42 per
EUA.
The Power Derivatives Market
volumes for September 2014 are
broken down as follows: (September
2013 in brackets):
• Total trading volume:
154,260,536 MWh
(177,867,019 MWh)
• Phelix Futures: 133,165,765 MWh
(170,410,054 MWh)
• French Futures: 7,318,397 MWh
(1,970,645743 MWh)
• Italian Futures: 12,708,494 MWh
• Dutch Futures: 74,705 MWh
• Belgian Futures: 184,655 MWh
• Spanish Futures
(Trade registration): 183,655 MWh
• Phelix Options: 807,520
(5,486,320 MWh)
| | www.eex.com
MWV crude oil/product prices:
August 2014
According to information and calculations
by the Association of the German
Petroleum Industry MWV e.V in
August 2014 the prices for mineral oil
products such as super, diesel fuel
and fuel oil developed inconsistently
compared to the previous month
(July 2014) in Germany. The average
gas station prices for Euro super consisted
of 155.10 €Cent (July 2014:
158.63 €Cent, approx. -2.23 % in
brackets: each information for previous
month or rather previous month
comparison), for diesel fuel of
136.542 €Cent (136.76; -0.18 %) and
for heating oil (HEL) of 78.33 €Cent
(78.01; +0.41 %).
The tax share for super with a.m.
consumer price of 155.10 €Cent
(158.63 €Cent) consisted of 65.45
€Cent (42.2 %, 65.45 €Cent) for
the current constant mineral oil
tax share and 24.76 €Cent (current
rate: 19.0 % = const., 25.33 €Cent)
for the valued-added tax. The
product price (notation Rotterdam)
consisted of 55.84 €Cent (35.2 %,
56.77 €Cent) and the gross margin
consisted of 11.63 €Cent (7.5 %;
12.01 €Cent). Thus the overall tax
share for super results of 61.2 %
(60.3).
Worldwide crude oil prices
(monthly average price PEC/Brent/
WTI) were approx. -5.41 % (-2.90 %)
lower in August 2014 compared to
July 2014: each in US-$/bbl: OPEC
basket: 100.75 (105.61); UK-Brent:
101.61 (106.77); West Texas Intermediate
(WTI): 96.54 (103.59).
| | www.mwv.de
Publications
Proceedings of AMNT 2014
(inforum) As one of Europe‘s biggest
and most prestigious nuclear energy
conferences the AMNT features a
wide range programme with 200 expert
lectures relating to the three Key
Topics:
• Reactor Operation, Safety
• Competence, Innovation, Regulation
• Fuel, Decommissioning & Disposal
Advantages of the Proccedings CD:
• Presentations of Topcial Sessions
and Focus Sessions
• Abstracts of Technical Sessions
and Workshop Preserving Competence
• List of all autors and committee
members
• Practical search function and userfriendly
structure
| | www.kernenergie.de, 228
Energiemarkt Deutschland –
Jahrbuch 2015
Hans-Wilhelm Schiffer
Zahlen, Daten, Fakten gehören zum
Handwerkzeug; auch und gerade in
einer so mit Realitäten verbundenen
Branche, wie der Energiewirtschaft.
Von daher zählt das von Hans-Wilhelm
Schiffer herausgegebene Jahrbuch
“Energiemarkt Deutschland”
auch in seiner Auflage für das Jahr
2015 zu den unverzichtbaren Werke
für alle, die bei der Energieversorgung
mitreden wollen.
Das Jahrbuch „Energiemarkt
Deutschland 2015“ liefert auf 636 Seiten
einen fundierten und aktuellen
Überblick über die Struktur und Entwicklung
des deutschen Energiemarktes
und das Handeln seiner Teilnehmer.
Das Buch befasst sich eingehend
mit den Märkten und einzelnen Teilmärkten
für Mineralöl, Braunkohle,
Steinkohle, Erdgas und Elektrizität.
Den erneuerbaren Energien ist ein
eigenes Kapitel gewidmet.
Es präsentiert Daten und Fakten
zu Angebot und Nachfrage, erläutert
Preisbildungsmechanismen für Erdöl,
Kohle, Erdgas und Strom und
beschreibt die nationalen und europäischen
rechtlichen Rahmenbedingungen.
Eigens erörtert werden die internationalen
Klimaschutzvereinbarungen
und die Umsetzung des Treibhausgas-
Emissionshandels in Deutschland.
Alle wichtigen Zusammenhänge
des Energiemarktes sind in 130 Tabellen
und 190 Abbildungen anschaulich
aufbereitet.
Käufer des Buches haben die Möglichkeit,
die Grafiken von einer eigenen
Website herunterzuladen und bei
Angabe der Quelle ihren eigenen Präsentationen
oder Dokumenten einzubinden.
Schiffer, Hans-Wilhelm: Energiemarkt
Deutschland Jahrbuch 2015
(2014), Köln:
TÜV Media, 636 Seiten mit zahlreichen
farbigen Abbildungen und Tabellen,
ISBN: 978-3-8249-1849-2, 99,- €,
| | www.tuev-media.de, 229
65
NEWS
News
atw Vol. 60 (2015) | Issue 1 ı January
NUCLEAR TODAY 66
IAEA Puts Cyber Security in Focus for
Nuclear Facilities in 2015
John Shepherd
Later this year, the International Atomic Energy Agency
(IAEA) will convene a special conference to discuss computer
security, in the wake of cyber attacks on global financial
institutions and government agencies that were increasingly
in the news in 2014.
In common with other industrial and commercial sectors,
computer security at facilities handling nuclear and other
radioactive material, in addition to related activities such
as transport, represents what the IAEA has said are “a
unique set of challenges”.
According to the IAEA, the prevalence of IT security incidents
in recent years involving the Stuxnet malware
“demonstrated that nuclear facilities can be susceptible to
cyber attack”. The IAEA said this and other events have significantly
raised global concerns over potential vulnerabilities
and the possibility of a cyber attack, or a joint cyber-physical
attack, that could impact on nuclear security.
The IAEA has correctly identified that the use of computers
and other digital electronic equipment in physical
protection systems at nuclear facilities, as well as in facility
safety systems, instrumentation, information processing
and communication, “continues to grow and presents an
ever more likely target for cyber attack”.
According to the IAEA, computer systems and networks
supporting nuclear facility operations include many
non-standard information technology systems in terms of
architecture, configuration, or performance requirements.
“These systems can include specialised industrial control
systems, access control systems, alarm and tracking systems,
and information systems pertaining to safety and
security and emergency response,” the IAEA said.
The agency’s Vienna conference, to be held in June, will
review emerging trends in computer security and areas
that may still need to be addressed. The meeting follows a
declaration of ministers of IAEA member states in 2013
that called on the agency to help raise awareness of the
growing threat of cyber attacks and their potential impact
on nuclear security.
The conference is being organised “to foster international
cooperation in computer security as an essential element
of nuclear security”, the IAEA said.
The US Nuclear Energy Institute (NEI) explained recently
that a cyber attack on the country’s nuclear plants
“cannot prevent critical systems in a nuclear energy facility
from performing their safety functions”. The NEI said nuclear
plant safety systems are “completely isolated from the
internet and, even if cyber security were breached, the reactors
are designed to shut down safely if necessary”.
The NEI stressed that nuclear plants are also designed
to automatically disconnect from the power grid if there is
a disturbance that could be caused by a cyber attack.
The US Nuclear Regulatory Commission requires power
reactor licensees and those seeking permission to build
and operate new reactors to prove that their digital computer
and communication systems and networks are protected
against cyber attacks, including those systems and
networks associated with safety-related and important-
to-safety functions and emergency preparedness functions,
including offsite communications, and support systems
and equipment important to safety and security.
Figures from the US Federal Bureau of Investigation
(FBI) highlight why ongoing attention to the potential
threats to digital systems is needed. According to the FBI,
cyber attacks are an increasing risk for the US electric sector
and have eclipsed terrorism as the primary threat. The
FBI said its industrial control systems cyber emergency response
team responded to 256 incidents that targeted critical
infrastructure sectors in fiscal year 2013, and 59 percent
of those incidents involved the energy sector.
The UK’s Nuclear Decommissioning Authority (NDA) said
towards the end of 2014 that its network is subject to
30,000 automated cyber attacks or scans every day – which
the NDA said was “not unusual”.
The NDA, which warned that networks in its supply chain
were also at risk of attack, said suppliers bidding for certain
contracts involving sensitive and personal information are
now required to provide assurance of compliance with the
requirements of the UK’s Cyber Essentials (CE) programme.
CE “defines a focused set of controls which provide
cost-effective basic security for organisations of all sizes”,
the NDA said. In particular, it focuses on threats “which require
low levels of attacker skill, and which are widely available
online”.
An advocacy body for the global software industry, the
US-based BSA / The Software Alliance, said last November
that there is an “uneven landscape” for cyber security readiness
in Europe which should be tackled by investing in
critical infrastructure.
BSA said a draft EU network and information security
directive should focus on “Europe’s most critical networks
and infrastructure, such as transport, energy and banking,
in order to establish a foundation for cyber security readiness
first and foremost in those areas where disruption
would have major security and public safety impacts”.
However, as important and necessary as activities to
combat potential threats to cyber security are, it will be especially
important to ensure that these efforts make clear
that risks of cyber attacks are not unique to nuclear facilities
and infrastructure.
Indeed, it will be important for industry leaders and all
involved to highlight the cyber security issue as one of importance
to the global energy sector (among others) as a
whole, and not something that should encourage a new and
unbalanced focus, on the nuclear energy industry alone.
Details of the IAEA’s ‘International Conference on Computer
Security in a Nuclear World: Expert Discussion and Exchange’
are on the ‘meetings’ section of the agency’s web site.
Author
John Shepherd
nuclear 24
24 Charlotte Street
Brighton BN2 1A6/United Kongdom
Nuclear Today
IAEA Puts Cyber Security in Focus for Nuclear Facilities in 2015 ı John Shepherd
nucmag.com
The Whole Story of
Nuclear Power
– 50 Years on Disc
atw-digital | 50 years: 1956 to 2005
atw-digital
| 50 years: 1956 to 2005
Single User License
nucmag.com
© INFORUM ı Berlin | 2014
p
p
p
p
Expert’s articles, reports, interviews and news covering all
technical, economic and political topics of nuclear power
and technology.
Read the articles on your computer or print them out.
Navigate quickly to the desired papers with a few mouse clicks.
Convenient search function in all papers as full-text search
and/or deliberate search for authors and documents titles.
I would like to order (single user license),
payment by invoice:
P atw-digital 799.– €*
| 50 years: 1956 to 2005 599.– €*
Also available on Disc:
u | 2006 to 2010 199.– €*
149.– €*
u | 2011, 2012, 2013 or 2014 69.– €*
49.– €*
Surname, First Name
Organization/Order no.
DAtF-/KTG-Member (yes/no)*
Street
Postal Code City Country
Please send your order to:
INFORUM Verlags- und
Verwaltungsgesellschaft mbH
Robert-Koch-Platz 4
10115 Berlin, Germany
Fax-No. +49 30 498555-19
or order online: www.nucmag.com
Prices excluding postage.
Prices including 19% VAT for Germany and all EU member states
without VAT number. For EU member states with VAT number and
all other countries VAT will not be added.
Telephone/E-mail
VAT no. (EU countries except Germany)
I order atw-digital | 50 years: 1956 to 2005 and agree
to the terms and cancellation rights referred to below.
Date
Signature
Cancellation: This order may be cancelled within 14 days. A notice
must be sent to INFORUM Verlags- und Verwaltungsgesellschaft mbH,
Robert-Koch-Platz 4, 10115 Berlin, Germany, within this period.
The deadline will be observed by due mailing. Prompt dispatch of the
notification is sufficient for compliance with the cancellation conditions.
*
Special price for DAtF- and KTG-Members.
The International Expert Conference on Nuclear Technology
Estrel Convention
Center Berlin
5–7 May
2015
Germany
Early Bird Discount!
Register by 31 January 2015
and save up to EUR 170
3 Gold Sponsor
3 Key Topics – 1 Event
Outstanding Know-How &
Sustainable Innovations
Enhanced Safety &
Operation Excellence
Decommissioning Experience &
Waste Management Solutions
Highlights
3 More than 2 days comprehensive programme on each key topic
3 200 expert presentations from high-level professional speakers
3 Around 1,000 participants from around 30 countries
3 About 40 international exhibitors and sponsors
3 Networking with experts and decision-makers
3 Up-to-date developments and innovations
3 Silver Sponsors
Don’t miss this key event of the global nuclear energy community.
www.nucleartech-meeting.com