atw 2015-01

inforum

nucmag.com

2015

1

ISSN · 1431-5254

16.– €

14

Overview of PHARE

Projects Implemented

in Romania

22 ı Operation and New Build

Nuclear Power Plant Olkiluoto 3

Containment Leakage Test

27 ı Energy Policy, Economy and Law

General Safety Requirements for a SFR

Programme

inside

30 ı Research and Innovation

The New Brazilian Multipurpose Research Reactor

66 ı Nuclear Today

Cyber Security in Focus


WIR FÜHREN

KERNENERGIE IN

DIE ZUKUNFT.

MIT SICHERHEIT.

AREVA ist Weltmarktführer in der Kerntechnik und ein führendes

Unternehmen bei den Erneuerbaren Energien. Wir bieten unseren Kunden

innovative Lösungen, damit sie CO 2 -armen Strom erzeugen können.

Für jeden Bedarf haben wir die passenden Produkte und Leistungen.

Alle unsere Leistungen haben dabei eines gemeinsam: Sicherheit steht

immer an erster Stelle. So zählen die deutschen Kernkraftwerke seit

Jahrzehnten zu den sichersten und zuverlässigsten weltweit.

www.areva.de


atw Vol. 60 (2015) | Issue 1 ı January

60

Dear reader,

The number 60 is of major significance for the nuclear energy landscape: Today the recognised and practiced technical

operating time for nuclear power plants consists of 60 years.

Initially commercial plants started operating with an approved

operating time of – at least – 40 years. Technical

reasons and perspectives were less decisive rather than a

solid planning period for the amortization of the investment

in plants. Thus for regulatory purposes the US

Atomic Energy Act for instance determined the initial operating

licence to 40 years with the option of a prolongation

of initially 20 years. In other countries using nuclear

energy, formalities are partially similar or differ completely

by issuing an unlimited operating license if safe operation

is guaranteed. Programs, already initiated in the 1980s, for

the analysis of aging processes of nuclear power plants

demonstrated that together with continuous retrofitting

60 years of operation are technical and safety-related

state-of-the art. On this basis the USA set worldwide the

initial milestone for the operating time of nuclear power

plants with 5 licences for an operation time of 60 years in

2000. In the meantime 75 out one hundred U.S. nuclear

power plants possess such licence and further countries

followed.

For more than 60 years now the atw – International

Journal for Nuclear Power actively accompanies this development

and all further developments in the field of peaceful

use of nuclear energy. atw was initially published called

“die atomwirtschaft” in the year 1956. For the first edition

of the atw its publishers took note “…to report with objective

clarity on all economic questions with regard to nuclear

transformation”. Fifteen years later the range of subjects

was also by name broadened to “atomtechnik”.The atw remains

even today closely related to the guiding principle of

objectivity. International technical contributions, comments

and documentations published in the atw reflect

this in all clarity.

Anniversaries are occasions for retrospective views.

However, 60 years of development for the peaceful use of

nuclear energy can be hardly summarized in just a few

words. Developments vary from country to country. While

the German nuclear energy sector, being globally up to

now the only one, needs to focus on decommissioning and

dismantling of nuclear power plants due to political decisions

after Fukushima, new plants are being built worldwide

which shall increase the nuclear power plant capacity

in a few years by 25 %. Fifteen “Newcomer” states announced

their willingness to enter the field of nuclear energy.

Thus altogether 200 construction projects can be referred

to. Environmental protection, conservation of natural

resources, security of energy supply and affordable

energy cost are not being measured globally on ideological

requirements by the spirit of the times, but by simple, perceptible

realities and contexts.

The editorial department and the publishing house

took “60 years of atw” as an opportunity, to look forward in

first place and to demonstrate it through a visual redesign.

Nevertheless the focus remains on the content of individual

categories – the editorial, comments, technical contributions,

news and notes from the DAtF and the KTG. By

adding a new layout, typography and colours we want to

make the reading of atw more attractive and clear. Colours

will be assigned to each category in order to help the

reader easily identify particular key topics. Atw will remain

as brand supported by a logo that optically underlines

the look ahead.

The historical perspective on the other hand will not be

left aside. Every atw issue in 2015 will be accompanied by

a historical contribution. In this current issue two contributions

are attached the “Foreword” by the publisher from

the first atw issue 1(1956) as well as the contribution “The

Federal Republic of Germany and the international cooperation

in the nuclear field” by former Federal Minister

of Germany Franz Josef Strauss. As both contributions

were originally published in German language, we will be

publishing both the original version and an English translation.

Different stages of the worldwide development of

the nuclear industry right up to today as well as focal

themes such as technology, politics and economy were decisive

in the selection of these topics.

On the occasion of the anniversary we also provide not

only for historically interested persons, but also for today’s

practitioners all atw issues published since 1956 digitalized

and improved on data mediums. While reviewing the

contents of the past years we realised, that already early on

many facets of nuclear energy with a broad pool of helpful

knowledge were dealt with. One example would certainly

be the in times of “energy transition” strongly discussed

“flexibility” in production; nuclear energy was already in

the 1970s treaded in this context. The wheel is already invented

and can be read, as many further topics, in the atw.

We hope, that with the implementation of a new layout

we found a balanced mix of a pleasing appearance and yet

objective seriousness. We would be delighted to receive

your comments, criticism and suggestions.

Christopher Weßelmann

– Editor in Chief –

editorial@atomwirtschaft.com

3

EDITORIAL

Editorial

60 ı 


atw Vol. 60 (2015) | Issue 1 ı January

460

EDITORIAL

Liebe Leserin, lieber Leser,

die Zahl 60 hat für die Kernenergielandschaft eine richtungsweisende Bedeutung: 60 Jahre sind heute die anerkannte

und praktizierte technische Laufzeit von Leistungskernkraftwerken.

Ursprünglich gestartet waren die ersten kommerziellen

Anlagen mit einer genehmigten Betriebszeit von – mindestens

– 40 Jahren. Weniger waren dabei technische Gründe

und Perspektiven leitend, als vielmehr ein gesicherter Planungszeitraum

für die Amortisation in die Investition der

Anlagen. Regulatorisch wurde so z.B. im U.S.-Atomgesetz

die Erstbetriebsgenehmigung auf 40 Jahre festgelegt – mit

der Gesetzesoption einer Verlängerung von zunächst weiteren

20 Jahren. In anderen Kernenergie nutzenden Staaten

sind die Regularien teils ähnlich oder weichen sogar

dahin gehend ab, dass unter der Prämisse eines sicheren

Anlagenbetriebs eine zeitlich unbeschränkte Betriebsgenehmigung

ausgesprochen wird. Schon in den frühen

1980er-Jahren initiierte Programme zur Analyse von Alterungsprozessen

in Kernkraftwerken zeigten, dass gemeinsam

mit der kontinuierlichen Nachrüstung 60 Jahren

Laufzeit technischer und sicherheitstechnischer State-ofthe-Art

sind. Darauf basierend setzten die USA im Jahr

2000 mit gleich fünf Genehmigungen für 60 Jahre Betrieb

weltweit den ersten Meilenstein zu Kernkraftwerkslaufzeiten.

Inzwischen besitzen 75 von 100 U.S.-Kernkraftwerken

eine solche Lizenz und weitere Länder folgten dieser

Praxis.

Seit inzwischen 60 Jahren begleitet die atw – International

Journal for Nuclear Power diese und alle weiteren

Entwicklungen auf dem Gebiet der friedlichen Nutzung

der Kernenergie. Gestartet war die atw als „die atomwirtschaft“

im Januar 1956. Ihre Herausgeber schrieben zum

Ersterscheinen der atw ins Stammbuch, „in sachlicher

Klarheit über alle wirtschaftlichen Fragen der Kernumwandlung“

zu berichten. Fünfzehn Jahre später wurde das

Themenspektrum auch namentlich auf die „atomtechnik“

ausgeweitet. Diesem Leitsatz der Sachlichkeit ist die atw

konsequent verbunden. Die internationalen Fachbeiträge,

Kommentare und Dokumentationen in der atw zeigen dies

in aller Deutlichkeit.

Jubiläen sind Anlässe für Rückblicke. Doch lassen sich

60 Jahre Entwicklung der friedlichen Nutzung der Kernenergie

kaum in wenigen Worten zusammenfassen. Die

Entwicklungen sind doch von Land zu Land zu verschieden.

Während sich die Kernenergie in Deutschland aufgrund

der politischen Beschlüsse nach Fukushima bislang

einzigartig weltweit auf die Außerbetriebnahme und den

Rückbau der Kernkraftwerke konzentrieren muss, sind

weltweit Anlagen in Bau, die die Kernkraftwerksleistung

in wenigen Jahren um 25 % ansteigen lassen werden.

15 „Newcomer“-Staaten angekündigt, in die Kernkraftnutzung

einzusteigen. Insgesamt auf 200 Neubauvorhaben ist

so zu verweisen. Klimaschutz, Ressourcenschonung, Energieversorgungssicherheit

und bezahlbare Energiepreise

werden weltweit nicht an ideologischen Vorgaben eines

Zeitgeistes gemessen, sondern an einfach erkennbaren

Realitäten und Zusammenhängen.

Redaktion und Verlag haben „60 Jahre atw“ zum Anlass

genommen in der atw, zum einen nach vorne zu schauen

und dies auch mit einem optischen Redesign deutlich zu

machen. Weiterhin stehen die Inhalte der einzelnen Rubriken

– Editorial, Kommentare, Fachartikel, Nachrichten

und Mitteilungen von DAtF und KTG – im Fokus. Mit neuem

Layout, Typografie und Farbe möchten wir die Lektüre

der atw attraktiver und deutlicher gestalten. Den einzelnen

Rubriken sind künftig eindeutige Farben zugeordnet,

sodass Sie als Leser griffig die jeweiligen Schwerpunkte

finden. atw als Marke bleibt erhalten mit einem Logo, das

den Blick nach vorne auch optisch unterstreicht.

Der historische Blickwinkel wird zum anderen nicht

außer Acht gelassen. Jede Ausgabe der atw in 2015 wird

von einem historischen Beitrag begleitet – in dieser Ausgabe

sind dies zwei, die „Geleitworte“ der Herausgeber aus

der atw 1 (1956) sowie der Beitrag „Die Bundesrepublik

und die internationale Zusammenarbeit auf dem Kernenergiegebiet“

vom damaligen Bundesminister Franz Josef

Strauss. Soweit die Beiträge in ihrer historischen Fassung

in deutscher Sprache abgefasst waren, veröffentlichen wir

sowohl das Original als auch eine englische Übersetzung.

Bei der Auswahl der Themen waren die unterschiedlichen

Phasen der weltweiten Kernenergieentwicklung bis heute

sowie Schwerpunkte von Technik, Wirtschaft und Politik

leitend.

Zudem bieten wir anlässlich des Jubiläums nicht nur

für den historisch Interessierten, sondern auch für den

heutigen Praktiker die kompletten Jahrgänge der atw seit

1956 digitalisiert und nachbearbeitet auf Datenträger an.

Bei der Aufarbeitung der Jahrgänge wurde uns deutlich,

dass viele Facetten der Kernenergie schon frühzeitig behandelt

wurden, mit einem breiten Fundus an heute nützlichem

Know-how. Ein Beispiel ist sicherlich die in Zeiten

der „Energiewende“ allenthalben diskutierte „Flexibilität“

in der Erzeugung; die Kernenergie wurde darauf schon in

den 1970er-Jahren darauf getrimmt – dieses Rad ist schon

erfunden und wie viele weitere Themen nachzulesen in

der atw.

Wir hoffen, mit der Umsetzung des neuen Layouts

einen ausgewogenen Mix zwischen gefälligem Erscheinungsbild

und weiterhin sachlicher Seriosität gefunden zu

haben. Über Kommentare, Kritik und Anregungen würden

wir uns sehr freuen!

Christopher Weßelmann

– Chefredakteur –

editorial@atomwirtschaft.com

Editorial

60 ı 


Kommunikation und

Training für Kerntechnik

Suchen Sie die passende

Weiterbildungsmaßnahme

im Bereich Kerntechnik?

Nutzen Sie das neue Seminarangebot der INFORUM mit interdisziplinär

relevanten Fragestellungen vermittelt von ausgewiesenen Experten,

die fachliche und didaktische Kompetenz verbinden.

Die INFORUM-Seminare bieten nützliche Kenntnisse, die Sie und Ihre

Mitarbeiterinnen und Mitarbeiter in der täglichen Praxis unterstützen.

Wählen Sie aus folgenden Themen:

a

a

a

Atomrecht

Medien

Wissenstransfer

Seminar Termin Ort

Atomrecht – was Sie

wissen müssen

21.01.2015

24.06.2015

Berlin

Medientraining 03.03. - 04.03.2015 Berlin

Erfolgreicher Wissenstransfer

in der Kerntechnik – Methoden

und praktische Umsetzung

Haben wir Ihr Interesse geweckt?

3 Rufen Sie uns an: +49 30 498555-20

11.03. - 12.03.2015

04.11. - 05.11.2015

Berlin

Kontakt

INFORUM

Verlags- und Verwaltungsgesellschaft

mbH

Robert-Koch-Platz 4

10115 Berlin

Liane Philipp

Fon +49 30 498555-20

Fax +49 30 498555-17

presse@

www. kernenergie.de


atw Vol. 60 (2015) | Issue 1 ı January

6

Issue 1

January 2015

CONTENTS

14

Overview of PHARE

Projects Implemented

in Romania

| | Cover: A frosty cold winter day outside the Forsmark nuclear power plant. In the foreground the biotest basin and in the background

reactor 1 and 2. Forsmark generates approximately one sixth of Sweden’s total electrical energy consumption per year.

(Courtesy: Vattenfall AB)

Editorial

60 3

60 4

Contents 6

Imprint 21

Nuclear Power Plant Olkiluoto 3

Containment Leakage Test Under

Extreme Conditions 22

Tobias Fleckenstein

Abstracts | English 8

Abstracts | German 10

Inside Nuclear with NucNet

EU 2030 Targets “Unachievable”

Without Long-Term Nuclear

Operation 12

23

NucNet and Maria van der Hoeven

Calendar 13

Operation and New Build

Overview of PHARE Projects

Implemented in Romania Between

1997 and 2008 for Enhancing the Nuclear

Safety Level 14

Radian Sanda, Benoit Zerger,

Giustino Manna and Brian Farrar

Spotlight on Nuclear Law

Paradigmenwechsel im Beförderungsrecht

oder am „Flaschenhals“ 25

Paradigm Shift in Transport Legislation

or Rather at the „Bottleneck“ 25

Hanns Näser

| | Measuring equipment to assess tests for Okiluoto 3 project.

(Courtesy: TÜV SÜD Industrie Service GmbH)

Contents


atw Vol. 60 (2015) | Issue 1 ı January

7

Energy Policy, Economy and Law

Completeness Assessment of General

Safety Requirements for Sodium-Cooled

Fast Reactor Nuclear Design Utilizing

Objective Provision Tree 27

Namduk Suh, Moohoon Bae, Yongwon Choi,

Bongsuk Kang and Huichang Yang

KTG Inside 44

60 th year atw

Foreword 50

Zum Geleit 50

Siegfried Balke, Heinrich Freiberger, Karl Hecht,

W. Alexander Menne, Herbert Seidl and Kurt Sauerwein

CONTENTS

26

The Federal Republic of Germany and

the International Cooperation

in the Nuclear Field 51

Die Bundesrepublik und die

internationale Zusammenarbeit

auf dem Kernenergiegebiet 55

Franz Josef Strauß

| | Transport of nuclear material

Research and Innovation

RMB: The New Brazilian Multipurpose

Research Reactor 30

News 59

Market data 64

José Augusto Perrotta and Adalberto Jose Soares

33

63

| | View of the Taishan site in an early stage of construction of

Taishan unit 1. (Courtesy: Areva)

| | Artist view of the RMB nuclear research centre.

AMNT 2014

45 th Annual Meeting on Nuclear Technology:

Key Topic | Reactor Operation, Safety –

Report Part 3 34

Nuclear Today

IAEA Puts Cyber Security in Focus for

Nuclear Facilities in 2015 66

John Shepherd

AMNT 2015

46 th Annual Meeting on Nuclear Technology:

Programme 37

AMNT 2015 Registration Form . . . . . . . . . . . . Insert

Contents


atw Vol. 60 (2015) | Issue 1 ı January

8

ABSTRACTS | ENGLISH

EU 2030 Targets “Unachievable”

Without Long-Term Nuclear

Operation

NucNet and

Maria van der Hoeven | Page 12

Nuclear energy will continue to support

greenhouse gas emission reduction targets

until 2020, but without decisions on longterm

operation of ageing reactors, it will be

difficult for the EU to meet its 2030 targets,

International Energy Agency (IEA) executive

director Maria van der Hoeven, tells

NucNet in an interview.

The IEA has quite a few remarks and questions

related to the EU goals of competitiveness,

security of supply and sustainability.

It is good to have these targets, but up until

now the EU is missing the direct connection

between the three goals. What is

mostly needed to achieve the goals is to finalise

the EU’s internal energy market.

Secondly cost-effective climate and energy

policies are needed because it is not only

about climate and energy, but also about

economic development and competitiveness.

The ageing EU reactor fleet requires country-level

and owner/operator-level decisions

in the short term regarding plant

safety regulations, plant upgrades, uprates,

lifetime extensions and licence renewals.

Upgrading and uprating existing

nuclear plants is one of the cheapest ways

of producing carbon-free electricity in the

EU. Without long-term operation, the IEA

expects nuclear capacity in the EU could

fall by a factor of six by 2030 and that will

make it more difficult to achieve the EU’s

2030 climate targets.

Public opinion is an important topic for

the acceptance of all energy sources and

it is different in all IEA member countries.

Europe is very sensitive to almost all

forms of energy, including wind turbines

and solar panels. This is linked to a lack

of information, so we need more and

better transparency on information for

people.

Overview of PHARE Projects

Implemented in Romania Between

1997 and 2008 for Enhancing the

Nuclear Safety Level

Radian Sanda, Benoit Zerger,

Giustino Manna and

Brian Farrar | Page 14

Through the Poland Hungary Aid for Reconstruction

of the Economy (PHARE) programme,

the European Commission (EC)

supported the transition of the Eastern

European states to the European market

economy. PHARE was a pre-accession financial

assistance programme which involved

countries from Central and Eastern

Europe that applied to become members of

the European Union. The paper presents a

synthesis of the projects carried out in Romania

for enhancing nuclear safety by consolidating

key areas such as Regulatory

Activities, Radioactive Waste Management

and On-Site assistance, in order to fulfil the

requirements for accession to the European

Union.

Statistical considerations on the impact of

the projects are also proposed and an analysis

of the methodology of intervention is

made.

Nuclear Power Plant Olkiluoto 3

Containment Leakage Test Under

Extreme Conditions

Tobias Fleckenstein | Page 22

Modern nuclear power plants place high

demands on the design and execution of

safety checks. TÜV SÜD supported the

containment leakage test for the largestcapacity

third generation nuclear power

plant in the world – Olkiluoto 3 in Finland.

The experts successfully met the challenges

presented by exceptional parameters

of the project. The containment of

Olkiluoto 3 is unique in that the vessel’s

volume is 80,000 m 3 while measurements

were carried out over a period of ten days.

To execute the test, 75 temperature and 15

humidity sensors had to be installed and

correctly interlinked by more than ten

kilometres of cable. These instruments

also needed to withstand an absolute

pressure of 6 bar, ambient temperatures of

30° C and high levels of humidity. These

conditions required comprehensive preparation

and a high amount of qualification

tests. Parts of the qualifications were

carried out at the autoclave system of the

Technical University in Munich, Germany,

where the project test conditions could be

simulated. The software required to determine

the tests was developed by TÜV

SÜD and verified by German’s national

accreditation body DAkkS under ISO

17025.

TÜV SÜD enabled the test schedule to continue

without delay by analysing all recorded

data continuously on site, including

pressure, temperature, humidity and leakage

mass flow curves. With the comprehensive

preparation, data acquisition system

recording measurements continuously

and the on-time result calculation, all components

of the leak-tightness assessment

were successfully completed in accordance

with requirements.

Paradigm Shift in Transport Legislation

or Rather at the „Bottleneck“

Hanns Näser | Page 25

In the year just started significant decisions

with considerable consequences by the

Federal Constitutional Court and the Federal

Administrative Court in the field of

nuclear law are expected. Especially the

decision with regards to „nuclear phaseout“

within the 13th amendment of the

Atomic Energy Act is being eagerly expected,

as with its far-reaching consequences

also fundamental constitutional questions

need to be answered.

The Federal Administrative Court will need

to decide on the question, whether she admits

the appeal against the Brunsbüttel

decision by the Higher Administrative

Court Schleswig-Holstein (HAC), which

from the view of claimant shifted the fundamental

basis of demarcation of responsibilities

between the executive and judiciary

power.

In comparison to these fundamental decisions

the awaited decision by the HAC on

nuclear transport legislation seems of subordinate

importance, although she will

proceed with a paradigm shift in the legal

area. The decision deals with the question

as to whether and when a right of action

from a third party within the nuclear transport

legislation can be accepted or more

precisely under which preconditions a

third party has clear standing against a

nuclear transport authorisation.

As the site selection law (issued on 23 July

2013 BGBI I p. 2552) excludes the recirculation

of vitrified waste block canisters

from reprocessing spent fuel elements to

the transport cask storage facility Gorleben,

the decision by the HAC Lüneburg

for this site will only be relevant for

present unpredictable transportations

from the transport cask storage facility

Gorleben to a final repository. If necessary

interest to seek a declaratory judgment

for declaratory action, in concreto danger

of recurrence will be approved, is another

matter.

Completeness Assessment of

General Safety Requirements for

Sodium-Cooled Fast Reactor Nuclear

Design Utilizing Objective Provision

Tree

Namduk Suh, Moohoon Bae,

Yongwon Choi, Bongsuk Kang and

Huichang Yang | Page 27

A prototype sodium-cooled fast reactor

(SFR) of 150 MWe is under development in

Korea. The designer is planning to apply

the licensing for construction permit by

2020. To prepare the future licensing review,

we are developing general safety requirements

for SFR. The requirements are

developed first by evaluating the applicability

of the current requirements of light

water reactor (LWR) to SFR and then taking

into account other international requirements

available. In this way, we have

developed a draft general safety requirements

with 59 articles. The LWR safety

requirements are coming from the accumulated

experiences of long-year licensing

and operation, but we do not have sufficient

experiences corresponding for SFR,

so we need a systematic and integral approach

to complement our developed requirements

for SFR. For this purpose, we

have developed an objective provision tree

for the safety function of reactivity control

and applied it in assessing the completeness

of our draft requirements developed.

In this way, we could confirm that our

draft requirements include all the requirements

to prevent the mechanisms that

could challenge the safety function of reactivity

control.

Abstracts | English


atw Vol. 60 (2015) | Issue 1 ı January

RMB: The New Brazilian

Multipurpose Research Reactor

José Augusto Perrotta and

Adalberto Jose Soares | Page 30

Brazil has four research reactors (RR) in

operation: IEA-R1, a 5 MW pool type RR;

IPR-R1, a 100 kW TRIGA type RR; ARGO-

NAUTA, a 500 W Argonaut type RR, and

IPEN/MB-01, a 100 W critical facility. The

first three were constructed in the 50’s and

60’s, for teaching, training, and nuclear

research, and for many years they were

the basic infrastructure for the Brazilian

nuclear developing program. The last,

IPEN/MB-01, is the result of a national

project developed specifically for qualification

of reactor physics codes. Considering

the relative low power of Brazilian research

reactors, with exception of IEAR1,

none of the other reactors are feasible for

radioisotope production, and even IEA-R1

has a limited capacity. As a consequence,

since long ago, 100% of the Mo-99 needed

to attend Brazilian nuclear medicine services

has been imported. Because of the

high dependence on external supply, the

international Moly-99 supply crisis that

occurred in 2008/2009 affected significantly

Brazilian nuclear medicine services,

and as presented in previous IAEA events

[1], in 2010 Brazilian government formalized

the decision to build a new research

reactor. The new reactor named RMB

(Brazilian Multipurpose Reactor) will be

a 30 MW open pool type reactor, using

low enriched uranium fuel. The facility

will be part of a new nuclear research

centre, to be built about 100 kilometres

from São Paulo city, in the southern part

of Brazil. The new nuclear research centre

will have several facilities, to use thermal

and cold neutron beams; to produce radioisotopes;

to perform neutron activation

analysis; and to perform irradiations

tests of materials and fuels of interest for

the Brazilian nuclear program. An additional

facility will be used to store, for at

least 100 years, all the fuel used in the reactor.

The paper describes the main characteristics

of the new centre, emphasising

the research reactor and giving a brief

description of the laboratories that will be

constructed, It also presents the status of

the project.

AMNT 2014: Key Topic |

Reactor Operation, Safety –

Report Part 3

| Page 34

Summary report on the following sessions

of the Annual Conference on Nuclear

Technology held in Frankfurt, 6 to 8 May

2014:

• Reactor Operation, Safety: Radiation

Protection (Angelika Bohnstedt)

• Competence, Innovation, Regulation:

Fusion Technology – Optimisation Steps

in the ITER Design (Thomas Mull)

• Competence, Innovation, Regulation:

Education, Expert Knowledge, Knowledge

Transfer (Jörg Starflinger)

The other Sessions of the Key Topics “Reactor

Operation, Safety”, “Competence, Innovation,

Regulation” and “Fuel, Decommissioning

& Disposal” have been covered

in atw 10 and 12 (2015) and will be covered

in further issues of atw.

60 th year atw:

Foreword of the First Issue in 1956

Siegfried Balke, Heinrich Freiberger,

Karl Hecht, W.A. Menne,

Herbert Seidl und

Kurt Sauerwein | Page 50

The present journal will in detail and with

objective clarity report on all economic

questions with regard to nuclear transformation.

The information will be extensive

and concentrated and will cover economic

contexts including news, legal questions

as well as questions on operational

and social safety. Especially its documentation,

which sighted and reliably provides a

pictures of the happenings in Germany and

the most important countries in the world,

will inform the reader quick and briefly in

an intelligible language.

Thus the ATOMWIRTSCHAFT should serve

above all a serious and concentrated reporting

and should be a conscientious advisor

on a new promising field of work of

science and technics beyond German

speaking regions.

The Federal Republic of Germany

and the International Cooperation

in the Nuclear Field

Franz Josef Strauß | Page 51

The questions of international cooperation

in the field of nuclear energy for

peaceful purposes arise the increasing interest

of all political and economic interested

parties of our nation. This rising

sympathy reflects the awareness, that due

to the fast development of nuclear energy,

in detail a hardly assessable process, a new

technical revolution is in the offing which

for the further economic development of

the European states and not least our

country itself will be in view of the current

inferior position in comparison to the

leading nuclear powers, of paramount importance.

By all necessity of catching up

the scientific and technical development

at national level, the conviction is more

and more confirmed that joint efforts both

in the European and global area are necessary

to make full use of the tremendous

possibilities of nuclear energy for peaceful

progress.

It is appropriate and valuable, already for

determining the own point of view for the

further participation in international cooperation

within the nuclear field, to gain

from time to time an overview and to take

stock on existing organisation as well as

different projects and plans. For this purpose

the following lines are intended,

without demanding completeness in all

details. I may initially pay attention to

the entirely or predominant economic

committees for cooperation followed by

bilateral and multilateral facts and projects.

IAEA Puts Cyber Security in Focus for

Nuclear Facilities in 2015

John Shepherd | Page 66

Later in 2015 the International Atomic Energy

Agency (IAEA) will convene a special

conference to discuss computer security,

in the wake of cyber attacks on global financial

institutions and government agencies

that were increasingly in the news.

According to the IAEA, the prevalence of

IT security incidents in recent years involving

the Stuxnet malware “demonstrated

that nuclear facilities can be susceptible

to cyber attack”. The IAEA said

this and other events have significantly

raised global concerns over potential vulnerabilities

and the possibility of a cyber

attack, or a joint cyber-physical attack,

that could impact on nuclear security.

The IAEA has correctly identified that the

use of computers and other digital electronic

equipment in physical protection

systems at nuclear facilities, as well as in

facility safety systems, instrumentation,

information processing and communication,

“continues to grow and presents an

ever more likely target for cyber attack”.

The agency’s Vienna conference, to be

held in June, will review emerging trends

in computer security and areas that may

still need to be addressed. The meeting

follows a declaration of ministers of IAEA

member states in 2013 that called on the

agency to help raise awareness of the

growing threat of cyber attacks and their

potential impact on nuclear security.

The conference is being organised “to

foster international cooperation in computer

security as an essential element of

nuclear security”, the IAEA said.

Details of the IAEA’s ‘International Conference

on Computer Security in a Nuclear

World: Expert Discussion and Exchange’

are on the ‘meetings’ section of the

agency’s web site.

9

ABSTRACTS | ENGLISH

Abstracts | English


atw Vol. 60 (2015) | Issue 1 ı January

10

ABSTRACTS | GERMAN

Interview: EU-2030-Ziele ohne

langfristigen Betrieb der

Kernkraftwerke „unerreichbar“

NucNet und Maria van der Hoeven | Seite 12

Die Kernenergie wird in Europa auch weiterhin,

zumindest bis 2020, einen wichtigen

Anteil bei der Reduktion von Treibhausgasemissionen

leisten. Mit zunehmendem Betriebsalter

der Reaktoren kann es allerdings

problematisch werden, die von der EU proklamierten

2030-Ziele zu erreichen. Dies

fasst die Direktorin der Internationalen Energieagentur

(IEA), Maria van der Hoeven, in

einem Interview mit NucNet zusammen.

Zu den Zielen der EU, Wettbewerbsfähigkeit,

Versorgungssicherheit mit Energie

und Nachhaltigkeit zu erreichen, hat die

IEA einige Anmerkungen und Fragen. Die

Ziele an sich sind gut und richtig, aber es

fehlt bei der Umsetzung eine direkte Koppelung

zwischen den einzelnen Zielen. Vor

allem sieht die IEA in der Realisierung des

Energiebinnenmarktes der Europäischen

Union eine wesentliche Voraussetzung zur

Zielerfüllung. Zweitens ist eine kosteneffiziente

Klima- und Energiepolitik notwendig,

da es nicht allein losgelöst um Klimaund

Energiepolitik geht, sondern auch um

wirtschaftliche und soziale Weiterentwicklung

und Wettbewerbsfähigkeit.

Das zunehmende Betriebsalter der Kernkraftwerke

in der EU erfordert auf Ebene

der Staaten und bei den Anlagenbetreibern

kurzfristige Entscheidungen zum Umgang

mit Sicherheitsanforderungen, Leistungserhöhungen,

Nachrüstungen, Lebensdauer

verlängernden Maßnahmen und möglichen

Verlängerungen von Betriebsgenehmigungen.

Dabei sind Leistungserhöhungen bei

laufenden Kernkraftwerken der kostengünstigste

Weg zur Vermeidung von klimawirksamen

Emissionen in der EU. Ohne

Langfristbetrieb könnte der Anteil der Kernenergie

in der EU bis 2030 erheblich fallen

– bis auf ein Sechstel der heutigen Kapazität

–, was mit erheblichen Problemen bei der

Erreichung der EU-2030-Klimaziele verbunden

sein dürfte.

Die „öffentliche Meinung“ ist ein wichtiges

Thema der Akzeptanz aller Energieträger,

wobei diese in den einzelnen IEA-Mitgliedstaaten

unterschiedlich ausgeprägt ist. Die

Europäer sind inzwischen sehr sensibel in

allen Fragen der Energiegewinnung und

-nutzung, was auch Wind und Sonne mit einschließt.

Eine Ursache sind fehlende Informationen.

Transparenz und Information der

Menschen sind also ein wichtiger Baustein

zum Erfolg der einzelnen Energieträger.

Übersicht der in Rumänien zwischen

1997 und 2008 für die Verbesserung

der nuklearen Sicherheit Ebene

umgesetzten PHARE-Projekte

Radian Sanda, Benoit Zerger,

Giustino Manna und Brian Farrar | Seite 14

Im Rahmen des Programms Poland Hungary

Aid for Reconstruction of the Economy

(PHARE) hat die Europäische Kommission

(EC) die Integration der osteuropäischen

Staaten in das Marktsystem der

Europäischen Union (EU) unterstützt. PHA-

RE war ein finanzielles Konzept für zentral-

und osteuropäische Staaten, die die

Mitgliedschaft in der Union beantragt hatten.

Das Programm unterstützte die Länder

vor ihrem Beitritt zur EU.

Der Beitrag fasst die Projekte zur Unterstützung

der nuklearen Sicherheit in Rumänien

zusammen. Wesentliche Handlungsfelder

waren der Ausbau der regulatorischen Infrastruktur,

der Umgang mit radioaktiven Abfällen

sowie die Vor-Ort-Unterstützung, mit

dem o.o. Ziel, die Voraussetzungen für einen

Beitritt zur EU auf diesem Sektor zu erfüllen.

Unter anderem erfolgt eine statistische

Auswertung der Erfolge der einzelnen Projekte

sowie eine Analyse der angewandten

Methoden bei ihrer Umsetzung.

Kernkraftwerk Olkiluoto 3

Leckagetest für ein Containment

unter extremen Bedingungen

Tobias Fleckenstein | Seite 22

Moderne Kernkraftwerke stellen hohe Anforderungen

an die Planung und Ausführung

von Sicherheitstests. TÜV SÜD hat

den Leckagetest des Sicherheitsbehälters

von Olkiluoto 3 in Finnland begleitet. Das

weltweit größte Kernkraftwerk der dritten

Generation hat einen Sicherheitsbehälter

mit einem Volumen von 80,000 m 3 .

Der Test erforderte 75 Temperatur- und 15

Feuchtigkeitssensoren, die installiert und

mit Kabeln von einer Gesamtlänge von mehr

als zehn Kilometern korrekt verbunden werden

mussten. Weiterhin mussten die Testgeräte

zehn Tage einem absoluten Druck von 6

Bar, Temperaturen von 30° C und einer hohen

Luftfeuchte standhalten. Dies erforderte

eine umfangreiche Vorbereitung und eine

Vielzahl von Qualifizierungstests. Ein Teil

dieser Qualifizierungstests wurde im Autoklav

der Technischen Universität München

vorgenommen, wo die Testbedingungen simuliert

werden konnten. Die für die Durchführung

der Prüfung erforderliche Software

wurde von TÜV SÜD entwickelt und von der

Deutschen Akkreditierungsstelle (DAkkS)

nach ISO 17025 verifiziert.

TÜV SÜD ermöglichte die verzugsfreie

Durchführung des gesamten Prüfablaufs,

da die aufgezeichneten Daten laufend direkt

vor Ort ausgewertet wurden, darunter

Druck, Temperatur, Luftfeuchte und Massenstrom.

Unterstützt durch umfangreiche

Vorbereitung, die kontinuierliche Datenerfassung

sowie der laufenden Auswertung

der Messdaten konnten alle Anforderungen

erfüllt und alle Komponenten des Leckagetests

erfolgreich abgeschlossen werden.

Paradigmenwechsel im Beförderungsrecht

oder am „Flaschenhals“

Hanns Näser | Seite 25

Im gerade begonnenen Jahr sind höchst

bedeutsame Entscheidungen des Bundesverfassungsgerichts

und des Bundesverwaltungsgerichts

auf dem Gebiet des Atomrechts

von erheblicher Tragweite zu erwarten.

Insbesondere die Entscheidung des

Bundesverfassungsgerichts zu dem mit der

13. Novelle zum Atomgesetz erfolgten

„Atomausstieg“ wird mit großer Spannung

erwartet, weil neben den mit den Entscheidungen

verbundenen weitreichenden Folgen

auch grundsätzliche Fragen der Verfassung

zu beantworten sind.

Für das Bundesverwaltungsgericht steht die

Frage zur Entscheidung an, ob sie die Revision

gegen die Brunsbüttel-Entscheidung

des Oberverwaltungsgerichts (OVG) Schleswig-Holstein

zulässt, die aus Sicht der Kläger

wesentliche Grundlagen der Verantwortungsabgrenzung

zwischen Exekutive

und Judikative verschoben hat.

Gegenüber diesen grundlegenden Entscheidungen

ist die erwartete Entscheidung

des OVG Lüneburg zum nuklearen Transportrecht

von untergeordneter Bedeutung, obwohl

sie auf diesem Rechtsgebiet einen Paradigmenwechsel

vollziehen wird. Es geht bei

dieser Entscheidung um die Frage, ob und

wann eine Klagebefugnis eines Dritten im

nuklearen Transportrecht anerkannt werden

kann, genauer, unter welchen Voraussetzungen

ein Dritter gegen eine atomrechtliche

Beförderungsgenehmigung klagebefugt ist.

Da das Standortauswahlgesetz (vom 23. Juli

2013 BGBl I S. 2553) die Rückführung

von Glaskokillen aus der Wiederaufarbeitung

von abgebrannten Brennelementen

zum Transportbehälterlager Gorleben ausschließt,

wird die Entscheidung des OVG

Lüneburg für diesen Standort nur noch für

gegenwärtige nicht absehbare Transporte

vom Transportbehälterlager Gorleben in ein

Endlager Relevanz haben können. Ob damit

das für eine Feststellungsklage erforderliche

Feststellungsinteresse, in concreto

Wiederholungsgefahr bejaht werden kann,

steht auf einem anderen Blatt.

Gesamtbeurteilung der grundlegenden

Sicherheitsanforderungen

für natriumgekühlte Schnelle

Reaktoren unter Einsatz der

Objective-Provision-Tree-Methode

Namduk Suh, Moohoon Bae,

Yongwon Choi, Bongsuk Kang und

Huichang Yang | Seite 27

In der Republik Korea befindet sich der Prototyp

eines natriumgekühlten schnellen Reaktors

(SFR) mit 150 MWe Leistung in der

Entwicklung. Der Entwickler plant, die Genehmigung

für den Bau dieser Anlage bis

zum Jahr 2020 zu beantragen und zu erhalten.

Für den zukünftigen Genehmigungsprozess

wurden grundsätzliche Sicherheitsanforderungen

für SFR-Anlagen entwickelt.

Die Anforderungen berücksichtigen in einem

ersten Schritt die mögliche Übertragung

der vorhandenen Anforderungen für

Leichtwasserreaktoren auf den SFR. Dabei

werden auch internationale Erfahrungen

mit berücksichtigt. Ein erster Entwurf für

die Sicherheitsanforderungen mit 59 Kapiteln

wurde vorgelegt.

Die heutigen Sicherheitsanforderungen für

Leichtwasserreaktoren basieren auch auf

umfassenden Erfahrungen mit Betrieb und

Genehmigung. Solche liegen für SFR-Anlagen

nicht vor. Es wurde daher ein systematischer

und umfassender Ansatz entwickelt,

Abstracts | German


atw Vol. 60 (2015) | Issue 1 ı January

um die Sicherheitsanforderungen für

einen SFR auszuarbeiten.

Für die Reaktivitätskontrolle wurde ein Ereignisbaum

entwickelt und als Grundlage in

die Sicherheitsanforderungen eingearbeitet.

Es konnte gezeigt werden, dass die damit

vorliegenden Anforderungen an die Reaktivitätskontrolle

alle Einflussfaktoren berücksichtigen

und somit ausreichend sind.

Der neue Mehrzweckforschungsreaktor

für Brasilien

José Augusto Perrotta und

Adalberto Jose Soares | Seite 30

Brasilien verfügt derzeit über vier in Betrieb

befindliche Forschungsreaktoren:

IEA-R1, eine 5-MW-Pool-Anlage; IPR-R1,

eine 100-kW-TRIGA-Typ-Anlage; ARGO-

NAUTA, eine 500-W-Argonaut-Anlage und

IPEN/MB-01, eine 100-W-Kritische-Anordnung.

Die drei erstgenannten wurden in

den 1950er- und 1960er-Jahren für Unterrichts-,

Ausbildungs- und Forschungszwecke

gebaut. Sie bilden die Basis der Infrastruktur

des brasilianischen Nuklearprogramms.

Die Anlage IPEN/MB-01 ist national

entwickelt worden, um speziell Reaktorphysik-Codes

zu qualifizieren.

Abgesehen vom IEA-R1 sind aufgrund der

geringen thermischen Leistungen bei den

brasilianischen Anlagen keine Möglichkeiten

zur Herstellung von Radioisotopen vorhanden.

Zudem sind die Produktionskapazitäten

des IEA-R1 begrenzt. Als Konsequenz

wird der Bedarf an Mo-99 in der Nuklearmedizin

zu 100 % durch Importe gedeckt.

Aufgrund dieser hohen Abhängigkeit

und der Mo-99-Versorgungskrise in den

Jahren 2008/2009 hatte die brasilianische

Regierung in 2010 den Beschluss zum Bau

und Betrieb eines neuen Forschungsreaktors

gefasst. Der neue Reaktor mit dem Namen

RMB (Brazilian Multipurpose Reactor)

wird als Pool-Anlage ausgeführt sein, 30

MW thermische Leistung besitzen und

niedrig angereichertes Uran als Kernbrennstoff

nutzen. Der Reaktor wird Teil eines

neuen Forschungszentrums rund 100 km

von Sao Paulo entfernt im südlichen Landesteil

von Brasilien sein. Das neue Forschungszentrum

wird eine Reihe von Einrichtungen

umfassen, um thermische und

kalte Neutronen zu nutzen, Radioisotope

herzustellen, Neutronenaktivierungsanalysen

sowie Bestrahlungstest and Werkstoffen

und Kernbrennstoff durchzuführen. Zudem

wird ein Zwischenlager für den Kernbrennstoff

des Forschungsreaktors eingerichtet.

Der genutzte Kernbrennstoff soll hier für

100 Jahre zwischengelagert werden.

Forschungsreaktor sowie die Einrichtungen

des Forschungszentrums werden detailliert

vorgestellt.

Jahrestagung Kerntechnik 2014:

Berichterstattung zu den

Tech nischen Sitzungen – Teil 3

| Seite 34

Zusammenfassende Berichte zu den Technischen

Sitzungen der Jahrestagung Kerntechnik

2014 (Frankfurt, 6. bis 8. Mai

2014) der Technischen Sitzungen

• Reactor Operation, Safety: Radiation

Protection (Angelika Bohnstedt)

• Competence, Innovation, Regulation:

Fusion Technology – Optimisation Steps

in the ITER Design (Thomas Mull)

• Competence, Innovation, Regulation:

Education, Expert Knowledge, Knowledge

Transfer (Jörg Starflinger)

Berichte zu den weiteren Key Topics “Reactor

Operation, Safety”, “Competence, Innovation,

Regulation” and “Fuel, Decommissioning

& Disposal” sind in den Ausgabe

10 und 12 (2014) der atw erschienen

bzw. werden in späteren Ausgaben der atw

veröffentlicht.

60 th year atw:

Zum Geleit der ersten Ausgabe 1956

Siegfried Balke, Heinrich Freiberger,

Karl Hecht, W.A. Menne,

Herbert Seidl und Kurt Sauerwein | Seite 50

Die vorliegende Zeitschrift will in sachlicher

Klarheit umfassend über alle wirtschaftlichen

Fragen der Kernumwandlung

berichten. Die Unterrichtung wird umfassend

und konzentriert sein und sich von

der Behandlung der wirtschaftlichen Zusammenhänge

einschließlich der Nachrichtengebung

bis zu den Fragen der

Rechtsordnung und der betrieblichen wie

sozialen Sicherheit erstrecken. Insbesondere

ihre Dokumentation, die gesichtet

und zuverlässig ein Bild des Geschehens in

Deutschland und in den wichtigsten Ländern

der Welt gibt, wird den Leser schnell

und knapp in verständlicher Sprache

unterrichten.

So soll DIE ATOMWIRTSCHAFT der ernsthaften

und vor allem konzentrierten Berichterstattung

dienen und über das deutsche

Sprachgebiet hinaus ein gewissenhafter Berater

auf einem neuen, zukunftsreichen

Arbeitsfeld von Wirtschaft und Technik sein.

Die Bundesrepublik und die

internationale Zusammenarbeit

auf dem Kernenergiegebiet

Franz Josef Strauß | Seite 55

Den Fragen internationaler Zusammenarbeit

auf dem Gebiete der Kernenergie für

friedliche Zwecke wendet sich in steigendem

Maße das Interesse aller politisch und

wirtschaftlich interessierten Kreise unseres

Volkes zu. Diese wachsende Anteilnahme

entspricht der Erkenntnis, daß sich durch

die Entwicklung der Kernenergie in raschem,

im einzelnen kaum übersehbarem

Ablauf eine neue technische Revolution

anbahnt, die für die weitere wirtschaftliche

Entwicklung der europäischen Staaten

und dabei nicht zuletzt unseres Vaterlandes

angesichts des augenblicklichen Rückstandes

gegenüber den führenden Atommächten

von ausschlaggebender Bedeutung

sein wird.

Immer mehr vertieft sich auch die Überzeugung,

daß – bei aller Notwendigkeit, den

Anschluß an die wissenschaftliche und technische

Entwicklung im nationalen Bereich

weitmöglichst zu gewinnen – sowohl im

europäischen als auch im weltweiten Raum

gemeinsame Anstrengungen notwendig

sind, um die ungeheueren Möglichkeiten

der Kernenergie für den friedlichen Fortschritt

voll auszuschöpfen.

Es ist, schon um den eigenen Standpunkt für

die weitere Beteiligung an der internationalen

Zusammenarbeit auf dem Kernenergiegebiet

festzulegen, zweckmäßig und wertvoll,

von Zeit zu Zeit einen Überblick über

die bestehenden Einrichtungen sowie die

verschiedenen Vorhaben und Pläne zu gewinnen

und eine gewisse Zwischenbilanz zu

ziehen. Diesem Zwecke sollen, ohne Anspruch

auf Vollständigkeit in allen Einzelheiten

zu erheben, die nachstehenden Zeilen

dienen. Ich darf dabei zunächst auf die

ganz oder überwiegend wissenschaftlichen

Gremien der Zusammenarbeit und sodann

auf die bilateralen und multilateralen Gegebenheiten

und Vorhaben eingehen.

Cyber Security von Nuklearanlagen

in 2015 im Fokus der IAEO

John Shepherd | Seite 66

Im Jahresverlauf 2015 wird die Internationale

Atomenergie-Organisation (IAEO) zu

einer speziellen Konferenz zum Thema

„Computersicherheit“ einladen. Die IAEA

sieht aufgrund von Cyber-Attacken auf Finanzeinrichtungen

und Regierungsbehörden

bei diesem Thema auch für den Nuklearsektor

einen besonderen Bedarf.

Die IAEO führt dazu an, dass in den vergangenen

Jahren Ereignisse mit Beeinträchtigung

der IT-Sicherheit bei Nuklearanlagen,

wie der STUXNET-Attacke, gezeigt

haben, dass auch diese für Cyber-Angriffe

anfällig sein können.

Entsprechend sieht die IAEO einen wachsenden

Handlungsbedarf, da kerntechnische

Anlagen bei weiter zunehmenden Anwendungen

von Computersystemen und

weiteren digitalen Einrichtungen vermehrt

zum möglichen Ziel von Cyber-Attacken

oder kombinierten Cyber-Physischen-Attacken

werden können.

Die für Juni 2015 in Wien geplante Konferenz

soll sich mit den aktuellen Trends der

Computersicherheit sowie möglichen zukünftigen

Themen und Handlungsfeldern

beschäftigen. Sie ist auch eine Antwort auf

die Erklärung der Minister der IAEO-Mitgliedsstaaten

aus dem Jahr 2013, die auf

die wachsende Bedrohung durch Cyber-Attacken

und deren Möglichkeiten von Auswirkungen

auf die nukleare Sicherheit verwies.

Laut IAEO ist er ein weiteres Ziel der Konferenz,

die internationale Zusammenarbeit

auf dem Gebiet der Computersicherheit als

ein wichtiges Element der nuklearen Sicherheit

zu fördern.

Die IAEO wird Einzelheiten zur „Internationalen

Konferenz zu Computersicherheit in

der kerntechnischen Welt: Fachgespräche

und Expertenaustausch“ auf ihren Webseiten

veröffentlichen.

11

ABSTRACTS | GERMAN

Abstracts | German


atw Vol. 60 (2015) | Issue 1 ı January

12

EU 2030 Targets “Unachievable”

Without Long-Term Nuclear Operation

INSIDE NUCLEAR WITH NUCNET

NucNet

Nuclear energy will continue to support

greenhouse gas emission reduction targets until

2020, but without decisions on long-term

operation of ageing reactors, it will be difficult

for the EU to meet its 2030 targets, International

Energy Agency (IEA) executive director

Maria van der Hoeven, tells NucNet.

NucNet: Do you think EU energy policy addresses its goals

of competitiveness, security of supply and sustainability?

Maria van der Hoeven: At the IEA we have quite a few questions

about this. It is good to have these targets, but up until

now the EU is missing the direct connection between the three

goals. What is mostly needed to achieve the goals is to finalise

the EU’s internal energy market. Secondly, if you have a functioning

energy market, you need cost-effective climate and

energy policies because it is not only about climate and energy,

but also about economic development and competitiveness.

When you look into the EU climate and energy package,

which sets the target of reducing greenhouse gas emissions by

40 percent by 2030 compared to 1990, increasing the share

of renewable energy sources to 27 percent and increasing energy

efficiency by at least 27 percent, it is a European package.

What I mean by that is that these EU targets are not

translated into national targets. What has to be done is to

ensure there is a governance framework to monitor how these

Europe-wide targets are going to be achieved. I think it will be

interesting to see how the new Commission will do this and

how energy security and especially security of electricity supply

will be improved.

NucNet: What do you think is the role of nuclear energy in

these plans?

Maria van der Hoeven: It is important to realise that nuclear

has been very important when it comes to the reduction of

greenhouse gas emissions. Nuclear is one of the biggest lowcarbon

electricity sources and this should not be forgotten. It

provides 27 percent of the EU’s electricity and it will continue

to support the EU’s emission reduction goals until 2020.

However, after 2020 we are expecting the shutdown of the

German nuclear fleet, with Belgium and Switzerland following.

By that time, decisions will need to be taken. We have an

ageing EU reactor fleet which requires country-level and

owner/operator-level decisions in the short term regarding

plant safety regulations, plant upgrades, uprates, lifetime extensions

and licence renewals. I think upgrading and uprating

existing nuclear plants is one of the cheapest ways of producing

carbon-free electricity in the EU. Without long-term

operation, we expect nuclear capacity in the EU could fall by

a factor of six by 2030 and that will make it more difficult to

achieve the EU’s 2030 targets.

designs. We are in favour of an EU-wide nuclear design approval

process, combined with appropriate market mechanisms

to help investment decisions. In our view, the EU should

ensure that those member states that wish to maintain the

nuclear option can invest in new nuclear. They should benefit

from the same incentives as other low-carbon generating

technologies. Nuclear should not be put at a disadvantage under

the new state aid rules.

NucNet: What are the biggest challenges the EU faces related

to nuclear energy in the coming decades?

Maria van der Hoeven: The biggest challenge will be the decommissioning.

The primary issue with this is waste management.

There is no nuclear repository in place for long-lived

nuclear waste. Another challenge is the risk to energy security.

Particular attention should be paid to investments in new

nuclear power plants to be built in the EU using third-country

technology providers to ensure that these plants are not

bound to one supplier of nuclear fuel. The possibility of fuel

supply diversification, ensured by the Euratom Supply

Agency, should be a condition for any new investment. This

would contribute to a diversified portfolio of fuel supply in the

interest of all EU plant operators.

NucNet: Why do you think there is still a “sensitivity” regarding

nuclear in European public opinion?

Maria van der Hoeven: We want to acknowledge that there

is considerable sensitivity around nuclear energy. The same is

true for shale gas and carbon capture and storage. This sensitivity

to nuclear is not on the same level in all IEA member

countries. For example, Austria and the Czech Republic

clearly do not share the same view.

Europe is very sensitive to almost all forms of energy, including

wind turbines and solar panels. This is linked to a lack of

information, so we need more and better transparency on information

for people. Because of differences in the perception

of costs, benefits and risks, each member state closely guards

its sovereignty over its nuclear power industry. The EU should

contribute to transparency across the Union.

Background

The IEA report “Energy Policies of IEA Countries: European

Union – 2014” was published on 1 December 2014. Recommendations

in the report build on lessons learned since the

first IEA in-depth review of the European Union in 2008.

An executive summary of the report is online: www.iea.

org/Textbase/npsum/EU2014SUM.pdf

Maria van der Hoeven became executive director of the IEA

on 1 September 2011. Previously, Ms. Van der Hoeven

served as a minister in the government of the Netherlands

from 2002 to 2010.

NucNet: What role does the EU have to play in ensuring

more investment in new nuclear?

Maria van der Hoeven: If the EU’s ageing reactor fleet is going

to be decommissioned, then a decision has to be taken as

to whether investments in new nuclear will be made. To help

these investment decisions we need changes. For instance,

there is no EU-wide licencing of new nuclear power plant

Author

NucNet

The World’s Independent Communications Network

for Nuclear Energy and Ionising Radiation

Editor responsible for this story: Lubomir Mitev

Avenue des Arts 56

1000 Brussels/Belgium

www.nucnet.org

Inside Nuclear with NucNet

EU 2030 Targets “Unachievable” Without Long-Term Nuclear Operation ı NucNet


atw Vol. 60 (2015) | Issue 1 ı January

Calendar

2015

13.-01.-15.01.2015

World Nuclear Spotlight 2015 and Working

Group Meetings: Beijing, China.

World Nuclear Association.

www.etouches.com/ehome/105915/235404/

01.02.-04.02.2015

CONTE 2015 – Conference on Nuclear Training and

Education. Jacksonville, FL, USA. American Nuclear

Society – ANS, www.ans.org

09.02.-13.02.2015

32 nd Short Courses on Multiphase Flow 2015. Zurich,

Switzerland. ETH Zurich, Institut für Energietechnik,

www.lke.mavt.ethz.ch

18.02.-19.02.2015

Nuclear Decommissioning & Waste Management

Summit. London, UK. Active Communications

International, www.wplgroup.com

01.03.-04.03.2015

PIME 2015 – Public Information Materials Exchange.

Bratislava, Slovakia. European Nuclear Society –

ENS, www.euronuclear.org

03.03.2015

Nuclear energy in the UK: priorities for new build,

funding and developing the supply chain.

Central London, UK. Westminster Energy,

Environment & Transport Forum.

www.westminsterforumprojects.co.uk/forums/

event.php?eid=935&t= 7870

05.03.2015

4. Fachgespräch Endlagerbergbau. Essen, Germany.

DMT GmbH & Co. KG, www.dmt.de

15.03.-19.03.2015

WM2015 Conference. Phoenix, AZ, USA.

www.wmsym.org

16.03.-20.03.2015

SUNCOP BF 2015 Seminar: BEPU Methodologies

and Applications for FSAR in Nuclear Reactor

Safety Technology. College Station, TX/USA. Nuclear

Research Group of San Piero a Grado (GRNSPG) of

the University of Pisa (UNIPI), the Department of

Nuclear Engineering of Texas A&M (Texas A&M),

the Network of Nuclear Engineering and Energy

Services (NNEES). www.grnspg.ing.unipi.it/suncopbf/

19.03.-20.03.2015

Istanbul Nuclear Power Plants Summit.

Istanbul, Turkey.

www.nuclearpowerplantssummit.com/

13.04.-14.04.2015

2015 JAIF Annual Conference. Tokyo, Japan. Japan

Atomic Industry Forum. www.jaif.or.jp

19.04.-23.04.2015

RRFM 2015 – European Research Reactor Conference.

Bucharest, Romania. European Nuclear Society – ENS,

www.euronuclear.org

05.05.-07.05.2015

46 th AMNT – Annual Meeting on Nuclear Technology

2015 | Jahrestagung Kerntechnik (AMNT 2015).

Berlin, Germany.

DAtF – Deutsches Atomforum e.V.

(German Atomic Forum) and

Kerntechnische Gesellschaft e.V.

(German Nuclear Society). Programme,

www.nucleartech-meeting.com

17.05.-20.05.2015

ICONE 23 – Nuclear Power – Reliable Global Energy.

Chiba, Japan. Japan Society of Mechanical Engineers

(JSME), American Society of Mechanical Engineers

(ASME) and Chinese Nuclear Society (CNS).

www.icone23.org

19.05.-21.05.2015

RAMTrans 2015 – Radioactive Materials Transport

and Storage Conference and Exhibition. Oxford, UK.

Nuclear Institute, www.ramtransport2015.com

31.05.-03.06.2015

Canadian Nuclear Society 35 th Annual Conference –

Nuclear Innovation Through Collaboration. Saint

John, Canada. Canadian Nuclear Society.

www.cnsconference2015.org

01.06.-03.06.2015

ATOMEXPO 2015. Moscow, Russia. Rosatom,

www.atomexpo.com

07.06.-11.06.2015

2015 ANS Annual Meeting – Nuclear Technology:

An Essential Part of the Solution. San Antonio, TX/

USA. ANS – American Nuclear Society,

www.ans.org

09.06.-11.06.2015

Power-Gen Europe – Secure Power for a Sustainable

Economy. Amsterdam, The Netherlands. PennWell.

www.powergeneurope.com

14.06.-20.06.2015

CRETE 15 – International Conference in Applications

of Nuclear Techniques. Crete, Greece.

www.crete15.org

15.06.-19.06.2015

International Conference on Management of Spent

Fuel from Nuclear Power Reactors – An Integrated

Approach to the Back-End of the Fuel Cycle.

Vienna, Austria.

International Atomic Energy Agency – IAEA.

www.iaea.org

18.06.-19.06.2015

Neue Entwicklungen im Strahlenschutz und ihre

Anwendungen in der Praxis. Munich, Germany.

TÜV SÜD Industrie Service GmbH and

TÜV SÜD Akademie GmbH,

www.tuev-sued.de

22.06.-25.06.2015

ENYGF 2015 -European Nuclear Young Generation

Forum 2015. Paris, France. ENS YGN,

www.nygf2015.org

19.08.-28.08.2015

Frédéric Joliot/Otto Hahn Summer School on Nuclear

Reactors ‘Physics, Fuels, and Systems’ – Enhanced

Reactor Safety – Design and Simulation of Evolutionary

LWR Cores. Karlsruhe, Germany. Nuclear Energy

Division of the Commissariat à l´Énergie Atomique

(CEA/DEN, France) and Karlsruher Institut für Technologie,

KIT. www.fjohss.eu

24.08.-28.08.2015

23 rd WiN Global Annual Conference: Women in

Nuclear Meet Atoms for Peace. Vienna, Austria.

WiN Global and the WiN IAEA Chapter, IAEA.

www.women-in-nuclear.de, www.win-global.org/

01.09.-03.09.2015

Power-Gen Asia – Investing in a Sustainable

Tomorrow. Bangkok, Thailand. PennWell.

www.powergenasia.com

09.09.-10.09.2015

VGB Congress “Power Plants 2015

Vienna, Austria. www.vgb.org

09.09.-11.09.2015

WNA Symposium 2015. London, United Kingdom.

World Nuclear Association,

www.wna-symposium.org

13.09.-17.09.2015

TopFuel 2015. Zurich, Switzerland. European Nuclear

Society – ENS, www.euronuclear.org

14.09.-18.09.2015

IAEA General Conference. Vienna, Austria.

International Atomic Energy Agency – IAEA.

www.iaea.org

20.09.-24.09.2015

GLOBAL 2015 – 21 st International Conference &

Exhibition: Nuclear Fuel Cycle for a Low-Carbon

Future. Paris, France. www.sfen.fr or www.sfen.org

05.10.-09.10.2015

Jahrestagung des Fachverbandes Strahlenschutz 2015.

Baden near Vienna, Austria. Österreichischer Verband

für Strahlenschutz (ÖVS), Deutsch-Schweizerischer

Fachverband für Strahlenschutz e. V. (FS).

www.strahlenschutztagung.at

08.11.-12.11.2015

2015 ANS Winter Meeting and Nuclear Technology

Expo. Washington DC, USA. ANS – American

Nuclear Society, www.ans.org

30.11.-11.12.2015

COP 21 – 21 st session of the Conference of the Parties.

Paris, France. United Nations Framework Convention

on Climate Change – UNFCCC,

www: http://www.unfccc.int

09.12.-11.12.2015

Power-Gen International and Nuclear Power International.

Orlando, Florida, USA. PennWell.

www.power-gen.com,

www.nuclearpowerinternational.com

13

CALENDAR

21.04.-23.04.2015

world nuclear fuel cycle. Prague, Czech Republic.

World Nuclear Association – WNE, NEI – Nuclear

Energy Institute. www.nei.org,

www.world-nuclear.org

23.04.-24.04.2015

Emergency Power Systems at Nuclear Power Plants.

Munich, Germany. TÜV SÜD Industrie Service GmbH

and TÜV SÜD Akademie GmbH, www.tuev-sued.de

23.06.-26.06.2015

International Conference on Operational Safety.

Vienna, Austria. International Atomic Energy Agency

– IAEA. www.iaea.org

10.08.-14.08.2015

SMiRT-23 – Structural Mechanics in

Reactor Technology. Manchester, UK.

SMiRT. www.smirt23.org

Calendar


atw Vol. 60 (2015) | Issue 1 ı January

OPERATION AND NEW BUILD 14

Overview of PHARE Projects Implemented

in Romania Between 1997 and 2008 for

Enhancing the Nuclear Safety Level

Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar

1. Framework of PHARE programme and

projects list

Reconstruction of the economy of each member state is a

major asset for the European Union (EU) global community.

Since 1991, through the Poland Hungary Aid for Reconstruction

of the Economy (PHARE) programme, the

European Commission (EC) supported the transition of the

Eastern European states to the European market economy.

PHARE was a pre-accession financial assistance programme

which involved countries from Central and Eastern

Europe that applied to become members of the

European Union. The programme helped to carry out the

reforms required for membership and to equip the partner

countries to benefit from EU funds on accession.

Romania was the first country of post-communist

Europe to have official relations with the European Community.

It was included in the Community’s Generalized

System of Preferences from 1974. After December 1989

when the Romanian Revolution occurred, successive Romanian

Governments shared a common main goal to gain

EU membership. After Hungary and Poland, Romania was

the third Eastern European country to sign its Europe

Agreement (1993) and submitted its official application for

membership of the EU in 1995. During the 2000s, Romania

implemented a large number of reforms to prepare for EU

accession. Part of the costs was covered using the PHARE

Programme.

One of the fundamental priority areas of the PHARE

funding was nuclear safety. Regarding this area, Romania,

member of the EU since 1 st January 2007, received funds

(more than 8 million euro) from the EC from 1998 in order

to align its legislation and practices to the level of requirements

imposed by the EU.

Currently, Romania is operating two CANDU 6 type reactors

located at Cernavodă site. A CANDU 6 type reactor is

based on Canadian technology, and is a Pressurized Heavy

Water moderated and cooled Reactor (PHWR). Romania is

the only country which operates such type of reactors

within the EU, and it is the only one within the Eastern

European states operating only power reactors based on

Western technology.

In the period covered by this study, 16 PHARE projects

were implemented in Romania (see Table 1). In general,

these projects were aimed at improving the relevant institutional

capabilities while dealing with nuclear safety issues.

More specifically, the topics covered were:

• Regulatory Activities (RA) (8 projects);

• Radioactive Waste Management (RWM) (7 projects);

• On-Site Assistance (OSA) – this means that direct support

was given to the NPP in order to improve nuclear

safety and to transfer the know-how of European power

plant operators (1 project).

2. Projects related to regulatory activities

The projects concerned mainly the national nuclear safety

authority “Comisia Naţională pentru Controlul Activităţilor

Nucleare” (the National Commission for Nuclear Activities

Control (CNCAN)) but also other specialized units and services

within the Ministry of Administration and Interior, the

Ministry of Environment and Waters Management, the Ministry

of Education and Research or by another National Agencies.

Figure 1 shows the implementation timeline of the

PHARE projects related to RA.

Enhancement of the regulatory regime

There were three projects dealing with the Regulatory Regime

Enhancement: RO/RA/01 and RO/RA/02 “Transfer

of Western European Methodology to the Nuclear Safety

Authority of Romania”, RO.01.10.01 “Nuclear Safety Regulatory

Regime Consolidation” and 2005/017-519.03.03

“Development of CNCAN capabilities regarding the regulatory

aspects of Naturally Occurring Radioactive Materials

(NORM) and Technologically Enhanced Naturally Occurring

Radioactive Materials (TENORM) related activities”.

The first project was implemented in two phases, with a

pause of more than 4 years between the phases. Both

phases addressed the areas needing enhancement with the

highest priority in the framework of the accession process

and for which the transfer of Western European methods

and practices was deemed to be most appropriate. The

main objective of the project was to strengthen and enhance

the effectiveness of the Romanian Nuclear Regulatory

Authority and to improve its competence and independent

technical assessment capability. Other topics

covered were: Quality Management System (QMS) within

the CNCAN organization, CNCAN performance on inspection

practice and emergency preparedness, assistance in

elaboration/implementation of regulations/norms/guides

in accordance with European legislation, Western practice

and taking into account the IAEA requirements.

The second project, “Nuclear Safety Regulatory Regime

Consolidation”, continued the work carried out in the first

project, and it was intended primarily to revise and develop

a new set of regulations in line with the practices of

the regulatory bodies who were members of the Consortium

of Western Regulators (CWR) which undertook the

project. In addition to the work carried out to improve the

QMS, CNCAN was in the process of implementing the acquis

communautaire related to the Council Directives

96/29/EURATOM and 97/43/EURATOM. During the project,

assistance was provided for the revision of the final

version of the regulations on radiation safety in the areas

of radiotherapy, radio diagnosis, industry and nuclear

medicine and the codes of practice for Dosimetry. In addition,

the project resulted in the improvement of the norms

regulating the safeguards and physical protection areas,

and a new set of norms on radioactive waste management

was developed, covering: the classification of the radioactive

waste, the principles of radioactive waste management,

clearance levels for radioactive waste and radioactive effluents

and the authorization process of pre-treatment,

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

Nr. Original Project Title Type of activity Project Code

1

2

Support for Regulatory Authority staff to improve its

capabilities with the view of Probabilistic Safety

Assessment

Development of CNCAN capabilities regarding the

regulatory aspects of Naturally Occurring Radioactive

Materials (NORM) and Technologically Enhanced

Naturally Occurring Radioactive Materials (TENORM)

related activities

2005/017-519.03.01

2005/017-519.03.03

3 Romanian Regulatory Emergency Response Center 5812.06.01

4 Early warning system – Cernavoda Regulatory Activities PH6.01/99 (Lot 1 and 2)

5 Nuclear Safety Regulatory Regime Consolidation RO.01.10.01

6

7

Support to the Romanian Nuclear Regulatory Authority

(CNCAN) in the licensing review of Fire Protection, Overpressure

Protection of Reactor Primary Circuit and Main

Steam Line Design Safety Issues in Cernavoda 1 NPP

Transfer of Western European Methodology to the

Nuclear Safety Authority of Romania

RO.01.10.02

8 Support to CNCAN – seismic evaluation – Cernavoda NPP RO/TS/01

9

Safety Assessment of the Radioactive X-Waste Repository

of Baita Bihor

RO/RA/01 and RO/RA/02

006-RO/PHARE-SCR/A6-01

OPERATION AND NEW BUILD 15

10

Preliminary Safety Analysis Report for the Low-Level

Radioactive Waste Repository Baita Bihor, Romania

632.08.01

11

12

Up-Grading of the Baita-Bihor Repository for

Institutional Radioactive Waste in Romania

Technical assistance to Romania in establishing the activity

of National Agency for Radioactive Waste (ANDRAD)

Radioactive Waste

Management

5812.06.03

5812.06.02

13

Technical Basis and Methodological Approach for Waste

Acceptance Criteria

PH4.10/94

14

Management of Spent Sealed Radioactive Sources in

Central and Eastern Europe

SSRS/P01

15 Characterization of radioactive waste at Cernavoda NPP 5812.06.04

16

Modernisation Project for Cernavoda NPP2 –

Environmental Impact Assessment

On-Site Assistance

009-RO/PHARE-SCR/A6-C

| | Tab. 1.

PHARE projects implemented in Romania.

| | Fig. 1.

The timetable of PHARE projects related to Regulatory Authority.

treatment, conditioning and packaging of radioactive

waste. Last but not least, CNCAN staff was trained in various

other areas such as: practical implementation of Quality

Management requirements in the regulatory activities;

specific procedures for issuing type approval in case of

shipments; PHARE project management.

The last PHARE project was also the shortest project implemented

in support of RA. This project improved the

CNCAN technical capabilities in the framework of radioactive

waste management. In fact, this project assured the

implementation in Romania of the Council Directive

96/29/EURATOM which required for the first time that

workplaces in the non-nuclear industry also need to be

subject to regulatory control if the presence of natural radiation

sources, that can lead to a significant exposure of

workers or members of the public, cannot be disregarded

from the radiation protection point of view. Such workplaces

are found in industries using or processing types of

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

OPERATION AND NEW BUILD 16

minerals or rocks containing significant amounts of natural

radioactive elements (NORM industry). Other operations

such as storage, application or disposal of residues resulting

from the NORM or other industries containing enhanced

concentrations of naturally occurring radionuclides also

had to be included in the control. Title VII of 96/29/

EURATOM encompasses all kinds of natural radiation

sources and the resulting increase in exposure. The focus of

the project, on the other hand, was on materials (raw materials

with increased radioactivity, NORM and TENORM

residues) so that aircraft operation and radon in homes and

workplaces (spas, caves etc.) were beyond the scope of this

assignment. However, it was emphasized that the enforcement

of NORM/TENORM regulations depends critically on

the level of knowledge of the regulatory authorities.

Enhancement of the licensing capabilities

Three PHARE projects were related to the enhancement of

the licensing capabilities of the regulatory authority:

RO.01.10.02 „Support to the Romanian Nuclear Regulatory

Authority (CNCAN) in the licensing review of Fire Protection,

Overpressure Protection of Reactor Primary Circuit

and Main Steam Line Design Safety Issues in

Cernavoda 1-NPP”, RO/TS/01 “Support to CNCAN – seismic

evaluation – Cernavoda NPP” and 2005/017-519.03.01

“Support to Regulatory Authority Staff to improve its Capabilities

with the View of Probabilistic Safety Assessment”.

The project RO.01.10.02 started at the same time as the

“Nuclear Safety Regulatory Regime Consolidation” project

(01/01/2002) and was aimed at strengthening and enhancing

the effectiveness of the CNCAN and to improve its

competence in the licensing review of fire protection, water

hammer safety analysis, overpressure protection of the

reactor primary circuit and main steam line design safety

issues in Unit 1 of Cernavoda NPP. The Fire Protection Programme,

CNCAN’s Norm on specific requirements on fire

protection in NPP, documentation covering the overpressure

protection in Safety Systems and Reactor Primary Circuit

and the Main Steam Line Stress Analyses were reviewed

during the implementation of this project. This

work benefited CNCAN in the decision making related to

the Cernavoda NPP Unit 1 licensing process, in the resolution

of open safety issues and provided technical and

methodological support during the CNCAN independent

review process of the plant modifications safety assessment

submitted by the utility.

The project “Support to CNCAN – seismic evaluation –

Cernavoda NPP” was requested in order for the Regulatory

Authority to receive assistance in the safety related seismic

evaluation of the Cernavoda NPP. Under the project several

seismic safety assessment studies performed for Cernavoda

NPP were considered and evaluated. CNCAN was assisted

in the establishment of procedures and practices for addressing

seismic hazards evaluation and setting relevant

regulatory requirements.

The last PHARE project connected to the enhancement

of the licensing activities was the project “Support to Regulatory

Authority Staff to improve its Capabilities with the

View of Probabilistic Safety Assessment”. This project required

very high quality work to be carried out both by

CNCAN personnel and by the sub-contractors responsible

for the implementation of the project. The entire project

(approx. 1.5 years) consisted in the provision of training to

CNCAN staff responsible for PSA analysis. The training was

aimed at equipping the staff of CNCAN with the necessary

skills to determine to what extent the existing plant specific

Probabilistic Safety Assessment (PSA) for Cernavoda

Unit 1 could be used in supporting decisions related to nuclear

safety, as well as at establishing a framework that

would assure that the present and future PSAs could be

relied upon. For knowledge management reasons, CNCAN

developed a draft final version of the “Procedure on the review

of PSA” (Level 1 for internal initiators as well as for

internal and external hazards) that will be used in the future.

Also, the final version of the “Norm on Regulatory

Requirements for PSA” was developed, and it can be used

by the utility staff in the preparation of the Licensee’s request

for changes in the licensing basis and by regulatory

staff in the evaluation of such submittals.

Emergency response

There were two PHARE projects implemented in Romania

which were related to emergency response: PH6.01/99 (Lot

1 and 2) “Early warning system – Cernavoda” and 5812.06.01

“Romanian Regulatory Emergency Response Center”.

The first PHARE project related to this topic was the

project “Early warning system – Cernavoda”. This project,

although related to RA, had, however, other beneficiaries

than CNCAN: the Ministry of Administration and Interior

(MI) and the Ministry of Environment and Waters Management

(MEWM) as well as an extended scope: to not only

provide a notification system for Cernavoda city and NPP,

but also one for accidents with trans-boundary effects. At

the end of this project, besides the enhancement of the existent

Early Warning System around Cernavoda NPP and

the establishment of a system designed for real time data

acquisition and data transfer to the National Central Emergency

Situation Centre, an Early Warning system around

Kozloduy NPP (but within the Environmental Protected

Zone on Romanian territory) was installed and a Regional

Emergency Centre in the city of Bechet (close to Romanian/

Bulgarian border on the Danube river) was established.

The second project, “Romanian Regulatory Emergency

Response Center”, continued the work performed by the

previous PHARE project. The difference was that this project

was aimed at improving the regulatory body (CNCAN)

competences in emergency management. The project

provided the appropriate equipping of the CNCAN Emergency

Response Centre. By the end of the project, CNCAN

was provided with technical means for emergency response

and sample analysis, and also with the necessary

training for raising the skills and knowledge of the staff responsible

for emergency response. Besides, CNCAN developed

a comprehensive set of technical specifications for

the tendering and procurement of the necessary equipment

– and the scope was extended from the acquisition of

analysis equipment to all the equipment needed for the establishment

of a network for transferring data to other national

and international Emergency Response authorities.

3. Projects related to radioactive waste

management

The PHARE projects implemented in Romania in support of

RWM focussed on improving the quality of services and the

skills and knowledge at institutional level of the institutions

considered the major players in the radioactive waste

management area. The beneficiaries of these projects

were: CNCAN, the Ministry of Education and Research

(MER), the National Agency for Radioactive Waste (AN-

DRAD), the Romanian National Electrical Company (Societatea

Nationala “Nuclearelectrica” (SNN)) and the “Regia

Autonoma pentru Metale Rare” (Rare Metals Autonomous

Authority – RMAR). Figure 2 illustrates the timeframes of

these projects.

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

| | Fig. 2.

The timetable of PHARE projects related to Radwaste Management.

Radioactive waste repository

There were 4 projects in connection to the Radioactive

Waste Repository.

Three of them were intended to support the establishment

of the national Low-Level Radioactive Waste Repository

at Baita, in Bihor County. These projects were, chronologically,

006-RO/PHARE-SCR/A6-01 “Safety Assessment

of the Radioactive X-Waste Repository of Baita Bihor”,

5812.06.03 “Up-Grading of the Baita-Bihor Repository for

Institutional Radioactive Waste in Romania” and 632.08.01

“Preliminary Safety Analysis Report for the Low-Level Radioactive

Waste Repository Baita Bihor, Romania”.

The first project focused on providing technical assistance

to the CNCAN experts in order to improve their techniques

of overall safety assessment of the Low-Level Radioactive

Waste Repository Baita Bihor. The project considered

the technical characteristics of the waste disposal

site (i.e. the inflow rate, the sorption on backfill) and delivered

a thorough Integrated Performance Assessment

(IPA) based on code simulations, in order to verify the uncertainty

of hypotheses and to identify worst case scenarios

(i.e. the rock cover has been totally eroded). The IPA

was performed in collaboration with IRSN (France) and

GRS (Germany) specialists for establishing a reliable

strategy for the future (i.e. for defining the maximum

waste content of the repository and of waste acceptance

criteria). It should be noted that the assessment was performed

under the regulatory and technical point of view,

and, at the end, a preliminary list of base case scenarios

was established. These scenarios included particular features,

events and processes (FEP) defined in the so-called

simplified FEP lists drawn up by experts and screened out

on the basis of appropriate justifications.

The second project, “Up-Grading of the Baita-Bihor Repository

for Institutional Radioactive Waste in Romania”,

continued on the same activities started in the first project.

This project targeted the application of best EU practices in

the upgrading and licensing of Baita-Bihor Repository for

institutional radioactive waste in Romania, in order to improve

the radiological protection of the operational staff,

population and environment with regards to radioactive

waste disposal activities in Romania. For this project, the

beneficiaries were both the Ministry of Education and Research

and CNCAN. The project aimed, within the framework

of the Institutional Radioactive Waste, to assess the

situation at Baita Bihor placing emphasis on the most urgent

actions to be implemented for the complete refurbishment

and modernisation of the repository.

The third project treating the establishment of the Low-

Level Radioactive Waste Repository was the longest one.

The project “Preliminary Safety Analysis Report for the

Low-Level Radioactive Waste Repository Baita Bihor, Romania“

was a clear continuation of the efforts performed

during the implementation of the project regarding the

safety assessment of the repository. Not only CNCAN, but

also the Ministry of Education and Research (MER) were

the project beneficiaries, although the results were

mainly used by CNCAN during the licensing process of

the repository operations. The work was carried out to

ensure that the activities related to the Baita Bihor repository

corresponded to the European Union practices and

strategies. During the project implementation the Preliminary

Safety Assessment Report based on in-depth

analysis of the operational radioprotection and post-closure

radiological safety of the repository was developed,

including the assessment of the associated uncertainties.

In order to undertake future safety analysis, local skills

were developed as well, in parallel with the definition of

a programme focused on site characterization and experimental

work in order to further improve the knowledge

of the site and reduce the uncertainties underlying the

assessed doses.

National Agency for Radioactive Waste

One project (5812.06.02) dealt with “Technical assistance

to Romania in establishing the activity of National

Agency for Radioactive Waste (ANDRAD)”, and started at

the same time as the project related to the up-grading

of the repository. This project was needed to help Romania

to establish in detail the responsibilities of the National

Agency for Radioactive Waste, which was formally

set up in January 2003 (following the Governmental Ordinance

No.11/2003). ANDRAD was assisted to develop a

national strategy for safe management of spent fuel and

radioactive waste and to define the appropriate financing

scheme for radioactive waste disposal. During this project

the recommendations from the 2004 Country Report

regarding the progress made by Romania in the accession

perspective were implemented; they concerned

the clear delineation of responsibilities between CNCAN,

ANDRAD and Nuclear Agency (AN) because of the need

for continuation of efforts to implement the measures to

improve the management of institutional radioactive

waste. The transfer of the National Repository of Radioactive

Waste Baita-Bihor to ANDRAD responsibility was

following the recommendations of the (Romanian) Country’s

Supreme Defence Council Resolution no. 108/2005

on the establishment of the necessary financial resources

for decommissioning and the management of radioactive

waste.

OPERATION AND NEW BUILD 17

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

OPERATION AND NEW BUILD 18

Waste acceptance criteria

The PHARE project PH4.10/94 had beneficiaries from multiple

countries. In Romania, the beneficiary was the “Regia

Autonoma pentru Metale Rare” (Rare Metals Autonomous

Authority – RMAR). The other co-beneficiaries were institutions

from Czech Republic, Estonia, Hungary, Latvia,

Lithuania, Poland, Slovakia and Slovenia. The project

provided the beneficiary country with comprehensive information

on accepted EU practices in radioactive waste

management and disposal, critical assessment of the methods

employed in the beneficiary’s countries and methodology

for the development of radioactive Waste Acceptance

Criteria (WAC) for waste packages to ensure their safe

transportation, handling, storage and disposal. The technical

assistance provided for Romania covered the following:

a presentation of the waste packages acceptance criteria

methodology for all operating disposal facilities in

the countries of the European Union; the performance of a

technical study covering relevant aspects to define the

waste packages acceptance criteria; and the development

of the waste package acceptance criteria approach that

will be applied to the planned disposal facilities.

Waste characterization at Cernavoda NPP

The project 5812.06.04 was the last PHARE project implemented

in Romania in support of RWM activities. This project

was also the only project in support of RWM having as

beneficiary the nuclear operator: the Romanian National

Electrical Company (Societatea Nationala “Nuclearelectrica”

(SNN)). The project covered the aspects related to on-site

radioactive waste characterisation in order to achieve the

required level for accession to the European Union. The

activities carried out were concise and referred to: the classification

system based on physical form of the wastes

(solid, organic liquid, inflammable solid-liquid mixes); the

identification system, for each type of radioactive waste,

based on their source, substance, radionuclide content and

contact dose rate; and the on-site disposal facilities for each

type of radioactive waste. The project resulted in the setting

up of measuring equipment for waste characterisation,

the development of methodologies for characterising the

radionuclide content in low and intermediate level waste,

the establishment of a database based on the waste characterisation

system and the improvement of the capability of

personnel of Cernavoda NPP to implement the characterisation

programme. Last, but not least, a waste segregation

management according to disposal route was implemented

(e.g. free release, disposal in a landfill, disposal in a

near-surface repository, and long-term storage pending the

availability of a deep geological repository).

Spent Sealed Radioactive Sources (SSRS)

There was only one project implemented in Romania in respect

of the management of the SSRS: SSRS/P01 “Management

of Spent Sealed Radioactive Sources in Central

and Eastern Europe”. This project was the shortest project

in support of the RWM activities (12 months), and was

also an international one having five beneficiary countries.

During the project implementation, a study was performed

to consider the situation relating to the regulation and

management of spent sealed radioactive sources (SSRS) in

five of the Central and Eastern European (C&EE) countries

that were being considered for admission to the EU,

namely, Bulgaria, Latvia, Lithuania, Romania and Slovakia

(two previous studies had considered the situation in the

current EU member states and in the Czech Republic, Estonia,

Hungary, Poland and Slovenia). It should be noted

that, at the date of the project, Romania was the only country

in the study that manufactured SRS and had one national

radioactive waste disposal facility that could accept

SSRS. In addition, there were two interim storage facilities

for SSRS. The project concluded that all the countries were

proceeding with their radioactive waste management

plans, taking account (to varying degrees) of international

standards and practices relating to acceptable dose uptakes,

environmental impact, etc. Such a situation was

similar to that relating to the EU member states that had

been studied, which had also not developed specific prescriptive

disposal criteria for universal application across

all states. Many improvements for radioactive waste management

were recommended to the states and the implementation

of these was expected to serve to further improve

the situation and provide a long-term safe environment

for the management of SSRS. In fact, the technical

assistance offered for Romania covered the following: detection

of radioactive material at the entrance of metal

scrap facilities and at national borders; understanding of

the full life-cycle of SRS, from manufacture through to disposal

in order to avoid accidental inclusion of SSRS in consignments

of scrap metal; development of the current regulations

in order to include waste categorisation, facility

licensing and SSRS disposal; and transferring of the old

database that included SRS and related information, kept

by CNCAN, to a new more practical one.

4. Projects related to On-Site Assistance

The project with reference 009-RO/PHARE-SCR/A6-C

was titled “Modernisation Project for Cernavoda NPP2 –

Environmental Impact Assessment“. It should be noted

that the aim of the project was not the assessment of the

safety of the power plant design itself, but of the manner in

which the safety-related, radiation protection and emergency

response systems already were or would be realised

at Cernavoda, and their compliance with Western standards

and practices as far as relevant to the EIA.

It was underlined that the overall radiation protection

situation at the current Unit 1, which was assumed to be

identical to that to be applied at Unit 2, was considered to

be in compliance with relevant international standards and

practices regarding the protection of both staff and population.

The significance of some minor deviations was considered

to be low and, additionally, they were understood

to be resolved before the Unit 2 was put into operation.

Furthermore, many design changes in the Cernavoda

Unit 2 were observed with respect to its reference Unit, the

Cernavoda Unit 1. Of these design improvements, the majority

were related to safety and the mitigation of postulated

accidents. Therefore, the dose estimates made for the

Unit 1 could be assumed to be conservative for the Unit 2.

The list of major changes planned for this unit included a

number of the components and systems, such as the Heat

Transport System (HTS) and its components, heat transport

auxiliary systems, safety systems, instrumentation

and control systems and the control room. Improvements

had also been recommended by the consultant (HPC AG –

the engineer enterprise) for safety analysis methodologies.

5. Discussion

The projects in support of the Regulatory Authority targeted

the areas considered as highest priority in the accession

process with the aim of enhancing the effectiveness of

the Romanian Nuclear Regulatory Authority and improving

its competence and independent technical assessment capability.

The type of intervention accomplished considered

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

both the organisational and human dimensions of the Regulatory

Authority, intervening on its operating procedures,

capacity to equip itself with adequate Quality Management

System and Procedures, and on the processes affecting

the output of the Regulatory Authority activities.

The intervention on the human dimension, i.e. the staff,

of the Regulator was done by means of the implementation

of targeted training. The transfer of know-how took place

not only in theoretical terms but by exploiting opportunities

of “learning by doing”, which allowed the staff to develop

their skills and competences whilst approaching the

open issues they were called to analyse and tackle. For example,

the PHARE assistance for the implementation of the

two Council Directives inherent radiation protection were

combined with assistance for the revision of the regulations

on radiation safety in the areas of radiotherapy, radio diagnosis,

industry and nuclear medicine and the codes of

practice for Dosimetry – in other words, the staff learned

what the purposes and the meaning of the Council Directives

were, while they were mentored on how to implement

them. Furthermore, the assistance also supported CNCAN

in enhancing its competences with respect to the tasks inherent

in the Cernavoda NPP Unit 1 licensing process, the

safety related seismic evaluation of the Cernavoda NPP, and

the analysis of the of PSA for Cernavoda Unit 1.

The projects which improved the Regulatory Authority

competences in emergency management highlighted the

need to consider the inter-institutional links whilst carrying

out certain interventions. For this reason, the project

on the early warning system for Cernavoda not only benefited

the Regulatory Authority, but also the Ministry of

Administration and Interior (MI) and the Ministry of Environment

and Waters Management (MEWM). The PHARE

projects also emphasised the need for attention to the

trans-boundary effects of accidents.

The projects also provided tools for the improvement of

the Quality Management System of CNCAN, of the working

methodology and performances of the Authority in inspection

practices and emergency preparedness and in the conception

and implementation of regulations, considering

the relevant international and Western practices and legislation.

The PHARE projects in support of radioactive waste

management targeted several institutions, including

CNCAN, all involved in the radioactive waste management

area. These projects benefited from the opportunity to exploit

synergies by addressing radioactive waste management

issues which were a common denominator among

the considered accession countries. The methodology adopted

was similar to that followed in the implementation

of the support to the Regulatory Authority, in the sense that

the transfer of the EU knowledge and practices took place

within the process of revision of the methods and practices

adopted in the beneficiary’s country. Moreover, some projects

focusing on the repository of Baita Bihor, provided

direct guidance in the Safety Assessment for the Repository,

the application of best EU practices in the upgrading

and licensing of Baita-Bihor Repository, and its Preliminary

Safety Analysis Report.

Furthermore, the PHARE interventions aimed at supporting

the establishment of the National Agency for Radioactive

Waste (ANDRAD) and provided assistance to the

implementation of the necessary separation of tasks and

responsibilities between this Agency, CNCAN and the Nuclear

Agency.

The projects also provided training for developing the

local skills, including those of the nuclear operator.

While observing that in general there were 7 institutions

involved in the projects’ implementation, the main

beneficiary was the National Nuclear Regulatory Authority

(CNCAN). CNCAN was involved not only in all the RA supporting

projects, but also in four other PHARE projects supporting

RWM. SNN was involved in two projects: the OSA

project and one of the RWM projects. The other players

were involved in one project each. The overall involvement

distribution is illustrated in Figure 3.

Although in each of the three improvement areas targeted

by the projects there were pauses – for example, two

pauses while implementing the PHARE projects in support

of RA and RWM – at the country level the effort was much

more continuous and extended to a period of 12 years (see

Figure 4). It is worth to consider that in order to horizontally

transfer the knowledge obtained by the implementing

a project, some time is needed after the project is completed.

After the 1 January 2007 (the day of Romania’s accession

to the EU) there were two more PHARE projects implemented

in Romania. Both of them addressed the field of RA

– one of them aimed at improving the quality of the PSA

| | Fig. 3.

Distribution of beneficiaries among the PHARE projects.

OPERATION AND NEW BUILD 19

| | Fig. 4.

PHARE projects implementation timeline (red: Regulatory Authority; green: Radwaste Management; blue: On-Site Assistance).

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

OPERATION AND NEW BUILD 20

analysis performed by the CNCAN’s staff and the other one

aimed at improving CNCAN’s capabilities regarding the regulatory

aspects of NORM and TENORM related activities.

As for the staff training strategy, while observing the

chronology of project implementation, it can be easily seen

that the majority of the effort was directed at training of

the staff of the CNCAN. In fact, the CNCAN’s staffs were

trained continuously, on relevant topics, during the whole

period of implementation of the PHARE projects. Only for

specific activities the training of the personnel focussed on

staff from other agencies, i.e. RMAR staff was trained for

the development of radioactive WAC for waste packages

to ensure their safe transportation, handling, storage and

disposal. Similarly, staff from MI and from MEWM was

trained on how to develop and use a notification system

not only for accidents affecting Cernavoda city and NPP,

but also one for accidents with trans-boundary effects. The

licensee’s staff also received important training on how to

characterize radioactive waste at the plant, on understanding

the environmental impact of their activities and

regarding the current level of radioprotection for staff,

public and environment. The scientists from MER were involved

in performing different calculations using various

codes while preparing the PSAR for the Low-Level Radioactive

Waste Repository Baita Bihor.

6. Conclusions

During the phase of accession to the European Union, Romania

benefited of a number of PHARE projects aiming at

improving the nuclear safety in the country. The implementation

of the projects covered a period of about 12

years and was carried out following a clear strategy of intervention.

The projects targeted areas identified as having

high-priority and highly impacting the nuclear safety of

the country: Regulatory framework, Radioactive Waste

Management and also Operation.

In particular, the projects focused on the Regulatory

framework and contributed both to its institutional development

and to the enhancement of the skills and competences

of the staff of the Safety Authority, which had the

opportunity to acquire the western and international

know-how and practices and incorporate them into its own

practices while applying them to the issues the staff were

called upon to deal with in their regulatory duties. The

knowledge and skills acquired will be further used for continuously

improving the in-house capabilities of the organisations

involved in carrying out and controlling the nuclear

activities in Romania.

Together with the institutional consolidation of the

Regulatory Authority, the PHARE projects produced as

spin-off a series of technical documents to be used as reference

in the future activities of the Safety Authorities and of

the nuclear actors of the countries.

This review of the selected PHARE projects has shown

that the intervention on the nuclear safety of the country

followed a systematic approach, with projects carried out

sometimes in parallel, sometimes in series, and allowing –

in the latter case – adequate time between the sequential

projects for the absorption and further development of

knowledge and know-how. In this way, the conception of

the follow-up project was started considering a new basis.

The PHARE interventions highlighted the specific inter-institutional

dimension of nuclear safety in Romania

improving the compatibility of the regulatory system with

the country’s regulatory commitment and institutional

and human resources endowment, stressing also the trans-

boundary effects of some specific accidents. It is important

to recognise also the role of PHARE in bringing together a

number of accession countries for considering the common

nuclear safety issues they were called to tackle, for

example those related to Radioactive Waste Management,

and identifying opportunities for cooperation; this uncovers

another side of the European added value of the programme.

Finally, the review of the PHARE projects has highlighted

that the regulatory activities, the nuclear safety,

the safety of radioactive sources, the radioprotection and

the radioactive waste management programmes were addressed

and enhanced during the implementation of the

projects.

Acknowledgements

The success of the PHARE projects was based on the efforts

of various stakeholders involved: the European Commission

staff involved in managing the projects, the Western

contractors and Eastern subcontractors that carried out

the work with professionalism, achieving the successful

results. It should be noted that the success of such projects

is also in direct relationship with the involvement of the

beneficiary organisation. All their work and efforts are appreciated

and acknowledged.

The PHARE programme was managed by the European

Commission Directorate General for Enlargement (DG

ELARG).

Abbreviations

AN Agentia Nucleara (Nuclear Agency)

ANDRAD Agentia Nationala pentru Deseuri Radioactive

(National Agency for Radioactive Waste)

CANDU Canada Deuterium Uranium

CNCAN Comisia Nationala pentru Controlul

Activitatilor Nucleare (National Commission

for Nuclear Activities Control)

CWR Consortium of Western Regulators

C&EEC Central and East-European Countries

EC European Commission

EIA Environmental Impact Assessment

EU European Union

EURATOM European Atomic Energy Community

FEP Features, Events and Processes

GRS Gesellschaft für anlagen-und Reaktor

Sicherheit mbH

HTS Heat Transport System

IAEA International Atomic Energy Agency

IPA Integrated Performance Assessment

IRSN Institut de Radioprotection et de Sûreté

Nucléaire

MER Ministry of Education end Research

MI Minister of Interior

MEWM Ministry of Environment and Water

Management

NORM Naturally Occurring Radioactive Materials

NPP Nuclear Power Plant

OSA On-Site Assistance

PHARE Poland, Hungary Aid for Reconstruction

PHWR Pressurized Heavy Water Reactor

PSA Probabilistic Safety Assessment

PSAR Preliminary Safety Assessment Report

QA Quality Assurance

QMS Quality Management System

RA Regulatory Activities

RMAR Rare Metal Autonomous Authority

(Regia Autonoma pentru Metale Rare)

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

RWM

SNN

SRS

SSRS

TENORM

TSO

WAC

References

Radioactive Waste Management

Societatea Nationala “Nuclearelectrica“

(National Society “Nuclearelectrica“)

Sealed Radioactive Source

Spent Sealed Radioactive Source

Technologically Enhanced Naturally

Occurring Radioactive Materials

Technical Support Organization

Waste Acceptance Criteria

| | PHARE report: Support for Regulatory Authority Staff to improve

its Capabilities with the View of Probabilistic Safety Assessment,

number 2005/017-519.03.01. Restricted

| | PHARE report: Development of CNCAN capabilities regarding the

regulatory aspects of Naturally Occurring Radioactive Materials

(NORM) and Technologically Enhanced Naturally Occurring Radioactive

Materials (TENORM) related activities, number 2005/017-

519.03.03. Restricted

| | PHARE report: Romanian Regulatory Emergency Response Centre,

number 5812.06.01. Restricted

| | PHARE report: Early warning system – Cernavoda, number

PH6.01/99(Lot 1 and 2). Restricted

| | PHARE report: Nuclear Safety Regulatory Regime Consolidation,

number RO.01.10.01. Restricted

| | PHARE report: Support to the Romanian Nuclear Regulatory

Authority (CNCAN) in the licensing review of Fire Protection,

Overpressure Protection of Reactor Primary Circuit and Main Steam

Line Design Safety Issues in Cernavoda 1-NPP, number

RO.01.10.02. Restricted

| | PHARE report: Transfer of Western European Methodology to the

Nuclear Safety Authority of Romania (2nd Phase),

number RO/RA/02. Restricted

| | PHARE report: Support to CNCAN – seismic evaluation –

Cernavoda NPP, number RO/TS/01. Restricted

| | PHARE report: Safety Assessment of the Radioactive X-Waste

Repository of Baita Bihor, number 006-RO/PHARE-SCR/A6-01.

Restricted

| | PHARE report: Preliminary Safety Analysis Report for the Low-Level

Radioactive Waste Repository Baita Bihor, Romania, number

632.08.01. Restricted

| | PHARE report: Up-Grading of the Baita-Bihor Repository for Institutional

Radioactive Waste in Romania, number 5812.06.03.

Restricted

| | PHARE report: Technical assistance to Romania in establishing the

activity of National Agency for Radioactive Waste (ANDRAD),

number 5812.06.02. Restricted

| | PHARE report: Technical Basis and Methodological Approach for

Waste Acceptance Criteria, number PH4.10/94. Restricted

| | PHARE report: Management of Spent Sealed Radioactive Sources

in Central and Eastern Europe – Interim Repor“, number SSRS/P01.

Restricted

| | PHARE report: Characterization of radioactive waste at Cernavoda

NPP, number 5812.06.04. Restricted

| | PHARE report: Modernisation Project for Cernavoda NNP2 –

Environmental Impact Assessment, number 009-RO/PHARE-SCR/

A6-C. Restricted

Authors

Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar

Joint Research Centre (JRC) of the European Commission (EC)

Westerduinweg 3

1755 ZG Petten/The Netherlands

OPERATION AND NEW BUILD 21

Imprint

| | Editorial Advisory Board

Prof. Dr. Dr.-Ing. e. h. Adolf Birkhofer

Dr. Peter Fritz

Dipl.-Ing. Ulrich Gräber

Dr. Ralf Güldner

Dr. Ulrich Hartmann

Dr. Norbert Haspel

Dr. Walter Hohlefelder

Prof. Dr. Gerd Jäger

Dipl.-Ing. Ulf Kutscher

Jörg Michels

Dr. Joachim Ohnemus

Dr. Astrid Petersen

Prof. Dr. Winfried Petry

Dr. Wolfgang Steinwarz

Prof. Dr. Bruno Thomauske

Stefan vom Scheidt

Dr. Hannes Wimmer

Ernst Michael Züfle

| | Editorial

Christopher Weßelmann

Im Tal 121, 45529 Hattingen, Germany

Phone +49 2324-4397723,

Fax +49 2324-4397724

E-mail: editorial@atomwirtschaft.com

| | Publisher

INFORUM Verlags- und

Verwaltungsgesellschaft mbH

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-0, Fax: +49 30 498555-19

www.nucmag.com

| | General Manager

Christian Wößner, Berlin, Germany

| | Advertising and Subscription

Sibille Wingens

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-10, Fax: +49 30 498555-19

E-mail: sibille.wingens@nucmag.com

| | Prize List for Advertisement

Valid as of 1 January 2015

Published monthly, 11 issues per year

Germany:

Per issue/copy (incl. VAT, excl. postage) 16.- €

Annual subscription (incl. VAT and postage) 176.- €

All EU member states without VAT number:

Per issue/copy (incl. VAT, excl. postage) 16.- €

Annual subscription (incl. VAT, excl. postage)176.- €

EU member states with VAT number

and all other countries:

Per issues/copy (no VAT, excl. postage) 14.95 €

Annual subscription (no VAT, excl. postage)164.49 €

| | Copyright

The journal and all papers and photos contained in

it are protected by copyright. Any use made thereof

outside the Copyright Act without the consent of

the publisher, INFORUM Verlags- und Verwaltungsgesellschaft

mbH, is prohibited. This applies to reproductions,

translations, microfilming and the input

and incorporation into electronic systems. The

individual author is held responsible for the contents

of the respective paper. Please address letters

and manuscripts only to the Editorial Staff and not

to individual persons of the association´s staff. We

do not assume any responsibility for unrequested

contributions.

Signed articles do not necessarily represent the

views of the editorial.

| | Setting

Waltraud Zimmer, Bonn, Germany

Phone: +49 228 2428867, Fax: +49 228 2428967

E-Mail: w.zimmer@atomwirtschaft.de

| | Printing

in puncto druck + medien GmbH, Bonn

ISSN 1431-5254

Operation and New Build

Overview of PHARE Projects Implemented in Romania Between 1997 and 2008 for Enhancing the Nuclear Safety Level ı Radian Sanda, Benoit Zerger, Giustino Manna and Brian Farrar


atw Vol. 60 (2015) | Issue 1 ı January

OPERATION AND NEW BUILD 22

Nuclear Power Plant Olkiluoto 3 –

Containment Leakage Test Under

Extreme Conditions

Tobias Fleckenstein

Modern nuclear power plants place high demands on the design and execution of safety checks. TÜV SÜD specialists

supported the containment leakage test for the largest-capacity third generation nuclear power plant in the world –

Olkiluoto 3 in Finland. The experts successfully met the challenges presented by exceptional parameters of vessel

volume and pressure.

To test a nuclear containment vessel

for pressure-resistance and leak-tightness,

it is filled with compressed air

while temporarily installed instruments

monitor a number of parameters,

including any potential drops in

pressure. Although these examinations

are routinely performed all over

the world, the test of the Finnish reactor

Olkiluoto 3 in February 2014 set

a new benchmark: It was the first pressure

and leak-tightness test ever conducted

on an EPR unit, and the first

pre-operational test of a reactor containment

conducted in Europe since

2001.

The EPR reactor is a third generation

pressurized water reactor (PWR),

designed and built by French supplier

AREVA. The construction to date has

used about 200,000 m 3 of concrete,

and at the height of the project there

were 700 sub-contractors and up to

4,300 workers from 60 countries at the

site. In order to prepare for the safety

check, TÜV SÜD experts carried out

careful planning and logistics both onsite

and off-site, and in close cooperation

with AREVA and with TVO, the

Finnish owner company of Olkiluoto 3.

and includes a steel liner, which ensures

a continuous surface, including

the basemat. Inside the containment

are many of the reactor’s key components:

the whole reactor coolant system,

the core catcher, the reactor pressure

vessel, the steam generators, the

in-containment refuelling water storage

tank and part of the main feedwater

lines.

The inner containment shell is

the final barrier in the EPR reactor’s

defence strategy and designed to

withstand high pressures. It is intended

to effectively contain without

leakage the total primary coolant

system inventory released into the

containment volume. Containment

leak rate tests are mandatory to specifically

assure two aspects of a power

plant’s safety. Firstly, that the leakage

through the containment itself or

through the components that penetrate

it, doesn’t exceed specified allowable

leakage rates. Secondly, that the

integrity of the containment structure

is maintained during its service

life.

Acceptance criteria for leak rates

are determined so as to demonstrate

that the leak rate assumed in the

plant’s safety analysis and approved

by the regulatory agency will be maintained

throughout the plant’s operating

lifetime.

The containment of Olkiluoto 3 is

unique in that the vessel’s volume is

80,000 m 3 and the test pressure

reached up to 6 bar while measurements

were carried out over a period

of ten days. The demands that these

parameters placed on the test instruments

were so extreme that none

of the involved manufacturers were

able to provide assurance that their

sensors would withstand these extreme

conditions and retain their accuracy.

However, high accuracy is necessary

for sufficient data quality and

data safety, and ultimately for a reliable

measurement of the leakage

rate.

To add to the challenge, the conventional

method of passing the individual

signal transmission lines of the

instruments through the reactor walls

Unique containment

parameters

While the outer containment shell

provides protection against external

hazards, such as an airplane crash, the

inner containment is designed to confine

the mass of radioactive materials

inside the structure. If an accident

causes radioactive steam to escape the

internal system, then the containment

shell plays a critical role in preventing

the release of radioactive material into

the environment. It typically consists

of a structure enclosing the reactor

pressure vessel, equipment access

hatches, air lock doors, seals, isolation

valves, mechanical and electrical penetrations,

and a suppression pool.

The inner containment of Olkiluoto

3 is made of pre-stressed concrete

| | Fig. 1.

TÜV SÜD specialists used the autoclave system of the Technical University in Munich,

Germany, to simulate the project test conditions. Courtesy: TÜV SÜD Industrie Service GmbH.

Operation and New Build

Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein


atw Vol. 60 (2015) | Issue 1 ı January

could not be used at Olkiluoto 3. Instead,

the electronic data recording

systems had to be placed inside the

containment vessel for the entire test

period and had been connected via

three co-axial cables to the analysing

laptop located outside the containment.

The systems inside the containment

were thus also exposed to an

absolute pressure of over 6 bar, in addition

to ambient temperatures of

around 30 °C and high levels of humidity.

Careful preparations

are key

To execute the test, 75 temperature

sensors and 15 humidity sensors, connected

by ten kilometres of cable, had

to be installed and correctly interlinked.

They also had to be able to

withstand the extreme test pressure

for the entire test period. Previous

leak testing had only been performed

at significantly lower pressures, and

some materials used for electronic insulation

are known to undergo

changes, bearing a risk for short-circuits

and fires. The architecture of the

measurement system had to be designed

in such a way that the testing

could continue even if there was a

fault in the coaxial cables used to communicate

with the data recording system

and for the transmission of data.

To ensure the efficient and effective

execution of the Okiluoto 3 test,

the TÜV SÜD specialists completed a

thorough preparation phase prior to

the project test. The objective was to

determine how the equipment would

handle pressures of 6 bar, whether

the measurement precision would be

| | Fig. 2.

Measuring equipment is being placed inside the autoclave system in order to assess how the equipment

will handle the extreme conditions of the Okiluoto 3 project environment.

Courtesy: TÜV SÜD Industrie Service GmbH.

compromised, and how the architecture

of the system needed to be configured.

Parts of the preparation phase

were carried out at the autoclave system

of the Technical University in Munich,

Germany, where the project test

conditions could be simulated.

The on-site test preparation began

with the set-up of the measurement

system. In the process, TÜV SÜD specialists

used more than ten kilometres

of cables to connect all of the sensors

to the data acquisition system and

computers. Once the system was set

up, the specialists undertook a pretest

quality check. In order to further

reduce uncertainty of the containment

leak test, the air in the containment

shell was homogenised by running

four compressor units with dryers

and filters for 24 hours prior to the

execution of the test.

Using information

technology to achieve

higher safety integrity

In addition to setting up and configuring

the hardware, the software required

to run the tests needed to be

developed to accommodate the extreme

parameters. On-site engineers

of TÜV SÜD would have to be able to

quantify leakage volumes and monitor

the real-time values of pressure,

temperature, humidity, mass flow and

leak rates. This data would allow for

the source of a leak to be identified.

The software was successfully developed

by TÜV SÜD and verified

by Germany’s national accreditation

body DAkkS under ISO 17025. It included

an emergency plan for on-site

engineers in case measurement devices

stopped working or a loss of data

occurred. Furthermore, it covered the

analysis of a number of what-if scenarios

and a simulation of potential failures

under laboratory conditions. It

was thus aligned to the requirements

of the project test, including the number

of measurement points and additional

evaluation stages.

To achieve higher standards of

safety integrity, the hardware architecture

was guided by the principle of

diverse redundancy. Redundancy

refers to the duplication of systems,

which enables the overall process

to continue even if one system fails.

In addition, diversity reduces the

impact of so-called common cause

failures, whereby multiple sensors

may fail simultaneously due to a common

cause. To reduce this type of risk,

different configurations and operating

principles are used across the

sensors.

TÜV SÜD experts set up all instruments

as redundant and diverse systems,

including three co-axial cables

provided by the plant supplier AREVA.

If an instrument inside the containment

shell failed, the communication

could be switched to an alternative

device, which would also use a

different communication protocol.

The overall architecture was designed

to allow for measurements to continue

without interruption, even in

the case of instrument failure. The

measurement accuracy was also

found to be within the required tolerance

range.

Executing the leakage test

Once the quality check and containment

homogenisation had been completed,

the project test could finally

begin. The signals from all measuring

devices were processed by two data

acquisition units, which recorded the

data of all sensors at a minimum rate

of ten times per hour. These devices

used internal digital multi-metres and

transferred their data to two separate

computers, one of which was configured

as a backup unit. The data

was stored in its raw format (ohms,

volts, Hz) and subsequently converted

using an online software, which

also applied calibration curves for all

pressure, temperature and humidity

sensors.

To execute the test, the TÜV SÜD

specialists determined a range of variables:

• The free gas volume of the containment

shell: This parameter was

one of the key requirements to

later calculate the leakage volume.

OPERATION AND NEW BUILD 23

Operation and New Build

Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein


atw Vol. 60 (2015) | Issue 1 ı January

OPERATION AND NEW BUILD 24

| | Fig. 3.

TÜV SÜD specialists calibrate the inlet pipe – a requirement to accurately determine the free volume.

Courtesy: TÜV SÜD Industrie Service GmbH.

Although it can, in principle, be

calculated, the TÜV SÜD specialists

opted to measure it to reduce

uncertainty and further increase

the accuracy of the test results.

All of the variables necessary to

determine the incoming mass

flow for pressurisation were measured

every ten seconds. These included

the ambient pressure and

the temperature behind the flow

section. The differential pressure

across the flow section and the

gauge pressure in front of the

nozzle were measured twice using

independent pressure transmitters,

connected to defined tappings.

• Temperature and humidity: The

vapour pressure inside the containment

shell was measured using

twelve relative humidity sensors

and three dew-point mirrors. To

determine the dry-bulb temperature

of the containment air, TÜV

SÜD specialist employed four-wire

resistance temperature device.

• The absolute pressure inside the

containment.

Using high standards to

guide testing

The ANSI/ANS 56.8-2002 standard of

the American Nuclear Society outlines

the standards for the containment

leakage testing requirements of

Olkiluoto 3. It provides a basis for determining

leakage rates through the

primary reactor containment system

of light-water-cooled nuclear power

plants. Together with the testing instructions

of the system construction

company, the standard guided the

work of the TÜV SÜD specialists, and

evaluations were completed at various

levels during testing.

The standards for the leak test

were also in line with the safety recommendations

and requirements

used in the design of Olkiluoto 3.

These include the European utility requirements

defined by European

power companies as well as the safety

and quality recommendations of the

International Atomic Energy Agency

(IAEA). In Finland, nuclear safety instructions

are issued by the Finnish

Radiation and Nuclear Safety Authority

(STUK), which also controls compliance

with them.

In the Olkiluoto 3 project, TÜV

SÜD experts enabled further testing

to continue without delay by analysing

all recorded data on site. This included

pressure, temperature, humidity

and leakage mass flow curves

for all evaluation levels. With the

data acquisition system recording

measurements continuously, all components

of the leak-tightness assessment

were successfully completed in

accordance with requirements:

• The first Loss of Coolant Accident

test (LOCA);

• The design pressure test;

• The Initial Structural Integrity Test

(ISIT); and

• The second LOCA test.

Conclusion

Pressure and leak-tightness tests play

an important role in assessing nuclear

safety and form a significant milestone

in the completion of the Olkiluoto

3 project. As it is one of the

largest industrial projects ever carried

out in Northern Europe, the design,

setup and execution of the tests place

high demands on the expertise of engineers

and specialists. Critical to the

success of the measurement process

were careful preparations and logistics,

carried out both on-site and offsite

prior to the project test.

Author

Tobias Fleckenstein,

Plant Engineering,

TÜV SÜD Industrie Service GmbH

Measurement Technology

Department

Westendstraße 199

80686 Munich/Germany

Operation and New Build

Nuclear Power Plant Olkiluoto 3 – Containment Leakage Test Under Extreme Conditions ı Tobias Fleckenstein


atw Vol. 60 (2015) | Issue 1 ı January

Paradigmenwechsel im Beförderungsrecht oder

am „Flaschenhals“

Hanns Näser

Im gerade begonnenen Jahr sind höchst bedeutsame Entscheidungen des Bundesverfassungsgerichts und des Bundesverwaltungsgerichts

auf dem Gebiet des Atomrechts von erheblicher Tragweite zu erwarten. Insbesondere die

Entscheidung des Bundesverfassungsgerichts zu dem mit der 13. Novelle zum Atomgesetz (vom 31.07.2011 Bundesgesetzblatt

(BGBl) I 1704) erfolgten „Atomausstieg“ wird mit großer Spannung erwartet, weil neben den mit den

Entscheidungen verbundenen weitreichenden Folgen auch grundsätzliche Fragen der Verfassung insbesondere zum

Art. 12 Abs. 1 Grundgesetz (GG) und Art. 14 GG zu beantworten sind.

Für das Bundesverwaltungsgericht steht die Frage zur Entscheidung

an, ob sie die Revision gegen die Brunsbüttel-

Entscheidung des Oberverwaltungsgerichts (OVG) Schleswig-Holstein

zulässt, die aus Sicht der Kläger wesentliche

Grundlagen der Verantwortungsabgrenzung zwischen Exekutive

und Judikative verschoben hat.

Gegenüber diesen grundlegenden Entscheidungen ist

die erwartete Entscheidung des OVG Lüneburg zum nuklearen

Transportrecht von untergeordneter Bedeutung,

obwohl sie auf diesem Rechtsgebiet einen Paradigmenwechsel

vollziehen wird. Es geht bei dieser Entscheidung

um die Frage, ob und wann eine Klagebefugnis eines Dritten

im nuklearen Transportrecht anerkannt werden kann,

genauer, unter welchen Voraussetzungen ein Dritter gegen

eine atomrechtliche Beförderungsgenehmigung nach § 4

Abs. 1 Atomgesetz (AtG) klagebefugt ist.

Zur komplexen und vielschichtigen Vorgeschichte, die

nicht leicht zu entwirren ist:

Über Jahrzehnte hatte das Verwaltungsgericht (VG)

Braunschweig als das nach § 52 Nr. 2 Satz 1 VwGO örtlich

zuständige Gericht für Anfechtungsklagen gegen Beförderungsgenehmigungen

nach § 4 AtG, die vom Bundesamt

für Strahlenschutz (BfS) mit Sitz in Salzgitter (früher von

der Physikalisch-Technischen Bundesanstalt (PTB) mit Sitz

in Braunschweig), erteilt werden, die Zulässigkeit derartiger

Klagen wegen fehlender Klagebefugnis verneint. Das

OVG Lüneburg als Berufungsgericht hatte diese Auffassung

geteilt.

Gegenstand der zur Entscheidung anstehenden Klage

ist eine atomrechtliche Beförderungsgenehmigung des

Bundesamts für Strahlenschutz aus dem Jahre 2003 zur Beförderung

von HAW-Glaskokillen (HAW: High Active Waste)

aus der Wiederaufarbeitungsanlage La Hague in das

Transportbehälterlager Gorleben. Nach Durchführung des

Transports im Dezember 2003 haben die Kläger die Feststellung

der Rechtswidrigkeit dieser Beförderungsgenehmigung

beantragt. Eine derartige Feststellungsklage ist

zulässig, wenn ein besonderes Rechtsschutzinteresse besteht.

Ein Kläger ist Eigentümer eines von ihm bewohnten

Hauses, das ca. 650 m von der Umschlagsanlage in Dannenberg

entfernt ist. Der andere Kläger ist Miteigentümer

eines von ihm bewohnten Hauses, das in unmittelbarer Nähe

der Transportstrecke von Dannenberg zum Transportbehälterlager

Gorleben liegt. Diese örtliche Beziehung der

Kläger zur Transportroute ist der wichtige Beurteilungsmaßstab

für die Klagebefugnis, hierauf wird zurückzukommen

sein.

Das Verwaltungsgericht Braunschweig hat entsprechend

seiner ständigen Rechtsprechung die Klagen als unzulässig

zurückgewiesen. Die Anträge der Kläger auf Zulassung der

Berufung hat das OVG Lüneburg abgelehnt. Das Bundesverfassungsgericht

hat die Beschlüsse über die Nichtzulassung

der Berufung aufgehoben und die Streitsachen an das OVG

Lüneburg zurückverwiesen, weil durch diese Entscheidungen

die Kläger in ihrem Grundrecht auf effektiven Rechtschutz

aus Art. 19 Abs. 4 Satz 1 GG verletzt seien (https://

www.bundesverfassungs-gericht.de/entscheidungen/rk20

090121_1bvr252406.html). Das OVG Lüneburg habe die

Anforderungen an die Zulassung der Berufung überspannt

und sei in der Begründung nur unzureichend auf die von

den Klägern geltend gemachten Argumente eingegangen.

Das OVG Lüneburg hat entsprechend den Vorgaben des

Bundesverfassungsgerichts die Berufung zugelassen, allerdings

an seiner bisherigen Rechtsprechung festgehalten,

die Unzulässigkeit der Klagen festgestellt und die Revision

zugelassen.

Das Bundesverwaltungsgericht hat den Revisionen der

Kläger stattgegeben mit der Entscheidung vom 14.03.2013

(http://www.bverwg.de/entscheidungen/verwan-dte_dokumente.php?az=BVerwG+7+C+34.11).

Das Bundesverwaltungsgericht

geht zwar wie das OVG Lüneburg davon

aus, dass das Gefahrgutrecht als solches keinen Drittschutz

gewährt. Die unterschiedlichen Schutzkonzepte

für ortsfeste Anlagen und Einrichtungen in der Strahlenschutzverordnung

(effektive Dosis am ungünstigsten Ort)

und für Beförderungen im Gefahrgutrecht (effektive Dosis

an der Außenfläche des Gefahrguts) sind aus Sicht des

Gerichts nicht ausschlaggebend für eine unterschiedliche

Bewertung des Drittschutzes. Diesen leitet es vielmehr

aus den mit sicherheitsrechtlichen Vorgaben angereicherten

Genehmigungsvoraussetzungen zur Beförderung von

Kernbrennstoffen ab, und zwar der Gewährleistung der

erforderlichen Vorsorge gegen Schäden und des erforderlichen

Schutzes gegen Störmaßnahmen oder sonstigen

Einwirkungen Dritter. Unter Verweis auf die vergleichbaren

Regelungsgehalte der § 6 Abs. 2 Nr. 2 und 3 AtG für die

Zwischenlagerung von Kernbrennstoffen und § 7 Abs. 2

Nr. 3 AtG und 5 AtG für Kernkraftwerke mit den Genehmigungsvoraussetzungen

des § 4 Abs. 2 Nr. 3 und 5 AtG

für die Beförderung von Kernbrennstoffen weitet es den

für ortsfeste Einrichtungen (§ 6 AtG) und für das Anlagengenehmigungsrecht

(§ 7 AtG) seit langem bestehenden

Drittschutz nunmehr auch auf das Beförderungsrecht

aus.

Worum geht es beim Drittschutz? Anknüpfend an Art.

19 Abs. 4 GG gewährt das Verwaltungsprozessrecht im

Grundsatz subjektiven Rechtsschutz. Eine Klage ist danach

nur zulässig, wenn der Kläger die Möglichkeit der Verletzung

eigener Rechtspositionen geltend macht. Beruft er

sich hingegen auf die Verletzung objektiven Rechts, wäre

die Klage grundsätzlich unzulässig.

Die Möglichkeit der Verletzung eigener Rechtsposition

kann beispielsweise neben dem Adressaten eines Verwaltungsakts

auch ein Dritter geltend machen, sofern er durch

den Verwaltungsakt in seinen Rechten beeinträchtigt

sein kann. Der betreffende Verwaltungsakt muss danach

Rechtswirkungen auch gegenüber dem Dritten entfalten

SPOTLIGHT ON NUCLEAR LAW 25

Spotlight on Nuclear Law

Paradigm Shift in Transport Legislation or Rather at the “Bottleneck” ı Hanns Näser


atw Vol. 60 (2015) | Issue 1 ı January

SPOTLIGHT ON NUCLEAR LAW 26

| | Transport von Kernmaterial

(sog. mehrpoliges Rechtsverhältnis). Beispiele hierfür sind

umwelt- und atomrechtliche Genehmigungen, die den Genehmigungsinhaber

begünstigen und Nachbarn in ihren

Rechten beeinträchtigen können.

Eine Beeinträchtigung subjektiver Rechte kann allerdings

nur dann bestehen, wenn ein durch die Genehmigung

potenziell beeinträchtigter Dritter sich auf eine

Rechtsnorm berufen kann – deren Verletzung er rügt – die

nicht nur dem allgemeinen Interesse dient, sondern auch

seinen Individualinteressen zu dienen bestimmt ist.

Wann eine Rechtsnorm auch Individualinteressen

dient, ist durch Auslegung der Norm zu ermitteln. Dabei

ist insbesondere zu bewerten, ob die Norm individualisierende

Tatbestandsmerkmale enthält,

d.h. neben der Allgemeinheit

auch den Schutz eines bestimmten

abgrenzbaren Personenkreises intendiert

(sog. Schutznormtheorie). Die

Schutznormtheorie wird zunehmend

durch europarechtliche Einflüsse

und Vorgaben zurückgedrängt.

So haben inzwischen bestimmte anerkannte

Vereinigungen Klagebefugnis

bei wichtigen umweltrechtlichen

Großvorhaben, ohne die Verletzung

eigener Rechte geltend machen zu

müssen (Umweltrechtsbehelfsgesetz

vom 07.12.2006 in der Fassung vom

07.08.2013 http://www.gesetze-iminternet.de/umwrg/).

Die Vorgaben des Bundesverwaltungsgerichts,

an die das OVG Lüneburg

gebunden ist, bedeuten allerdings

keine Abkehr von der Schutznormtheorie.

Das Bundesverwaltungsgericht

hat vielmehr den Drittschutz

wegen der Wortgleichheit der o.g. Genehmigungsvoraussetzungen

auch auf die Beförderung von Kernbrennstoffen

ausgedehnt und den Individualrechtsschutz

aus der übergeordneten Schutzzweckbestimmung des § 1

Abs. 1 Nr. 2 AtG abgeleitet. Nach dieser Bestimmung bezieht

sich der Schutzzweck des Atomgesetzes auch auf den

Schutz des Lebens, der Gesundheit und von Sachgütern

vor den Gefahren der Kernenergie. Dieser Schutzzweck

schließt das Beförderungsrecht ein. Allerdings ist bei Beförderungsvorgängen,

anders als bei ortsfesten Anlagen

und Einrichtungen, der abgrenzbare geschützte Personenkreis

nur schwer zu bestimmen. Dies gilt erst recht dann,

wenn die Beförderungsstrecke, wie im Regelfall, nicht in

der Genehmigungsentscheidung festgelegt ist. Denn für

die Abgrenzung vom geschützten zum nicht geschützten

Personenkreis ist wesentliches Kriterium die räumliche Beziehung.

Für die Anerkennung des Drittschutzes ausschlaggebend

ist aus Sicht des Bundesverwaltungsgerichts im konkreten

Fall, dass ein Kläger in der näheren Umgebung der

stationären Verladestelle in Dannenberg zum notwendigen

Umschlag der Transportbehälter von der Schiene auf

die Straße und der andere Kläger in einer „nahezu zwangsläufig

zu benutzenden Strecke“ wohnt; damit verenge sich

die Vielzahl möglicher Transportwege „nach Art eines Flaschenhalses“.

Mit anderen Worten ist bei Beförderungen

im Hinblick auf den Drittschutz zwischen potenziellen Anliegern

einer bescheidmäßig nicht festgelegten Beförderungsstrecke,

bei denen das Transportgut „in einem mehr

oder weniger flüchtigen Beförderungsvorgang vorbeigeführt

wird“ und Anliegern an Transportstrecken zu unterscheiden,

auf die der Transportvorgang angewiesen ist.

Auch ist zu berücksichtigen, dass beim Umschlag in Dannenberg

die Verweildauer nicht unerheblich ist.

Damit ist der Drittschutz bei nuklearen Beförderungsvorgängen

nur unter engen Voraussetzungen anerkannt.

Im Regelfall werden derartige Zwangspunkte nicht bestehen,

insbesondere wenn verschiedene Streckenführungen

denkbar sind. Entscheidend ist danach der jeweilige

Einzelfall.

Da das Standortauswahlgesetz (vom 23. Juli 2013 BGBl

I S. 2553) durch Einführung des § 9a Abs. 2a AtG die Rückführung

von Glaskokillen aus der Wiederaufarbeitung von

abgebrannten Brennelementen zum Transportbehälterlager

Gorleben ausschließt, wird die Entscheidung des OVG

Lüneburg für diesen Standort nur noch für gegenwärtige

nicht absehbare Transporte vom Transportbehälterlager

Gorleben in ein Endlager Relevanz haben können. Ob damit

das für eine Feststellungsklage erforderliche Feststellungsinteresse,

in concreto Wiederholungsgefahr bejaht

werden kann, steht auf einem anderen Blatt.

Author

Hanns Näser

GNS Gesellschaft für Nuklear-Service mbH

Frohnhauser Straße 67

45127 Essen/Germany

Spotlight on Nuclear Law

Paradigm Shift in Transport Legislation or Rather at the “Bottleneck” ı Hanns Näser


atw Vol. 60 (2015) | Issue 1 ı January

Completeness Assessment of General

Safety Requirements for Sodium-Cooled

Fast Reactor Nuclear Design Utilizing

Objective Provision Tree

Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang

1. Introduction The Korea Atomic Energy Research Institute (KAERI) is developing a Prototype Gen-IV Sodiumcooled

Fast Reactor (PGSFR) of 150 MWe size with a plan to apply the construction permit by 2020. The Korea Institute

of Nuclear Safety (KINS) is performing a regulatory research to prepare the licensing of this future reactor, developing

regulatory requirements and safety analyses methodologies.

The development of regulatory requirements

is needed because in a

prescriptive regulatory framework adopted

by the countries like United

States or Korea, licensing review of

nuclear power plant is performed

evaluating whether the design satisfies

the prescriptive design criteria or

regulatory requirements previously

established. For this, U.S. Nuclear Regulatory

Commission (NRC) has the

well established General Design Criteria

(GDC) [1] for Light Water Reactor

(LWR) that served for many decades

in assuring the safety of the nuclear

power plant. The GDC is top level

regulatory requirements enforced by

law. The corresponding regulatory requirements

for LWR are stipulated in

the Korean “Regulations on Technical

Standards for Nuclear Reactor Facilities”

which has the same level of binding

force and similar contents with

those of GDC. Thus, preparing the licensing

of PGSFR requires first of all a

development of GDC like General

Safety Requirements (GSR) for SFR.

The approach we use in developing

the GSR for SFR is 1) to evaluate the

applicability of the current LWR GSR

to SFR and 2) to reflect the other

safety requirements for SFR, developed

by Gen-IV International

Forum (GIF) or American Nuclear Society

(ANS). Following this approach

we have developed a draft version of

SFR GSR with 59 articles. The next

step is to assess the draft versions for

its completeness and the normal approach

is to depend on the engineering

judgement of experts. The NRC’s

GDC is developed also based on the

accumulated experiences of LWR licensing

and operation, but unfortunately

the similar experiences are not

available for SFR. To assure that the

developed GSR includes all the necessary

requirements and guarantee the

safety of SFR from Defence-in-Depth

(DID) point of view, we have decided

to utilize the Objective Provision Tree

(OPT) methodology developed by International

Atomic Energy Agency

(IAEA) [2]. We found that this methodology

provides a systematic and integral

approach in complementing the

GSR developed referencing the current

requirements of similar kind.

The OPT is a methodology to ensure

and document the provision of

essential “lines of protection” for successful

prevention, control or mitigation

of phenomena that could potentially

damage the nuclear system.

[2,3] The OPT is normally developed

by designer to confirm whether the

design fulfills the DID concept, but we

have developed the OPT to apply it in

assessing whether there is missing

safety requirements in our GSR under

development from DID concept. In the

following section, we first describe the

strategy of GSR development for SFR

and the next section presents the development

of OPT. Then, the completeness

assessment on the requirements

of nuclear design utilizing the

“reactivity control” safety function is

presented in the following section.

Through out this paper, we will use a

terminology GSR for common understanding,

instead of GDC or Technical

Standards which are used in the regulation

of United States and Republic of

Korea, respectively.

2. Development of general

safety requirements

for SFR

This section describes the position of

general safety requirements in the

framework of Korean atomic law system

and then how we have developed

the draft version of the SFR GSR. The

current Korean legal framework for

nuclear safety regulation has 4 levels.

The nuclear safety act positions at the

highest level and then follows, sequentially,

enforcement decree of the

nuclear safety act, enforcement regulation

of the nuclear safety act, regulations

on technical standards for nuclear

reactor facilities. Basic concept

and role of act and decrees are the

following:

1) Nuclear safety act stipulates the basic

principles concerning nuclear

safety

2) Enforcement decree of the nuclear

safety act stipulates the particulars

entrusted by the act

3) Enforcement regulation of the nuclear

safety act stipulates the particulars

entrusted by the Act and/or

Decree and necessary for their enforcement

(including detailed procedures

and format of documents)

4) Regulations on Technical Standards

for Nuclear Reactor Facilities

stipulate conceptual technical

standards as entrusted by the Act

and/or Decree. It contains also the

details on technical standards, procedures

or format as entrusted by

the Act, Decree and/or Regulations

Thus, the GSR which corresponds

to LWR GDC of U.S. NRC is the regulations

on Technical Standards in

Korean atomic legal framework. This

GSR for SFR is developed referencing

the LWR GSR, so the first step is to

evaluate the applicability of the LWR

GSR to SFR. Performing the evaluation

we could classify the requirements

of LWR GSR into 3 groups, i.e.,

1) LWR requirements which are not

applicable to SFR, thus need to be excluded,

2) requirements applicable to

SFR as it is, 3) requirements needed to

be revised/amended. In addition to

this, taking into account the SFR specific

features, there are requirements

to be newly added. The overall

strategy and process are depicted in

Figure 1.

In revising/amending the current

LWR requirements and to identify

ENERGY POLICY, ECONOMY AND LAW 27

Energy Policy, Economy and Law

Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang


atw Vol. 60 (2015) | Issue 1 ı January

ENERGY POLICY, ECONOMY AND LAW 28

| | Fig. 1.

Strategy of GSR Development for SFR.

Art. Title Art. Title Art. Title

1 Definition 21 Use of qualified equipment 41 I&C system

2 Radiation Protection 22 Human factors 42 Electric power system

3 Defense-in-Depth 23 Prevention of harmful effects

between systems

4 Interfaces of safety with

security and safeguards

5 Physical Protection / Safeguards

24 Protection against sodium

reactions

6 Proven technologies 26 Inherent protection of

reactor

| | Tab. 1.

General Safety Requirements (Articles of Technical Standards) for SFR.

43 Control room, etc.

44 Alarm devices, etc.

25 Reactor design 45 Optimization of radiation

protection

7 Assessment of Design Safety 27 Suppression of reactor power

oscillation

8 Construction and operating

experiences

46 Radioactive waste processing

& storage systems

47 Radiation protection

provision

28 Reactor core, etc. 48 Fuel handling & storage

facilities

9 Decommissioning 29 Fuel rod and assembly 49 Auxiliary systems

10 Postulated initiating events 30 Protection against flow

blockage

50 Power conversion system

11 Design bases accidents 31 Reactivity control system 51 Emergency response facilities

and equipment

12 Design extension conditions 32 Reactor protection system 52 Intermediate cooling system

13 Safety classes and standards 33 Use of computerized system 53 Liquid sodium handling

system

14 External events design bases 34 Diverse protection system 54 Sodium heating system

15 Fire protection 35 Reactor coolant boundary 55 Protection against sodium

freezing

16 Design bases for environmental

effects

36 Reactor cooling system 56 Purification control of cover

gas and supply

17 Reliability 37 Overpressure protection 57 Operating experiences and

safety research

18 Sharing of facilities 38 Residual heat removal

system

19 calibration / test / inspection/

maintenance

20 Startup, shutdown, and low

power operation

58 Limiting conditions for

operation

39 Ultimate heat sink 59 Initial tests

40 Reactor containment, etc.

new requirements to be added, we

have referenced the international documents

like IAEA SSR-2/1, Safety Design

Criteria of GIF and draft version

of SFR GDC under development by

ANS. Fukushima action items and applicability

of Risk Informed Regulation(RIR)

are also considered. Utilizing

this strategy and process, we have

developed a draft version of SFR GSR

containing 59 articles. The title of the

articles are listed in Table 1.

3. Development of OPT for

SFR reactivity control

safety function

The OPT is a top-down method with a

tree structure for each DID level describing

objectives and barriers, safety

function, challenges to maintain

safety functions, mechanisms of safety

function degradation, and provisions

for each degradation or failure mechanisms

to maintain safety functions.

Reference [2] describes conceptually

how to apply this methodology to development

of safety requirements for

innovative reactors, specifically for

the modular high temperature gas

cooled reactors. In general, we have

three safety functions to fulfill the

safety objectives, i.e., control of reactivity,

core heat removal and containment

integrity. Among these three

safety functions, we have developed

the OPT for the safety function of “reactivity

control”. Because the design of

PGSFR is not mature yet, we have developed

the OPT modelling the KA-

LIMER-600 [4] reactor which is conceptually

designed by KAERI and is an

SFR of 600 MWe size. OPT is a qualitative

methodology whose development

relies mainly on experiences of

experts using the design documents

like probabilistic safety assessment report.

Because the SFR GSR we are developing

is a general one which should

not be reactor or design specific, we

have developed the OPT for KALIMER

even if the target reactor to apply the

GSR in reviewing is the PGSFR. The

detailed description of the system is

not included in this paper since it is not

necessary to understand the developed

OPT. Example of the Level 3

OPT we have developed for the safety

function of “reactivity control” is

shown in Figure 2.

In Figure 2, safety function means

the essential function necessary to ensure

the safety objectives by maintaining

DID and barrier integrity. Challenge

is the phenomenon which

threatens the successful achievement

of the safety function and the possible

challenges to the safety function

Energy Policy, Economy and Law

Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang


atw Vol. 60 (2015) | Issue 1 ı January

| | Fig. 2.

Developed Level 3 OPT for “reactivity control” safety function.

are dealt with by the provisions (inherent

characteristics, safety margins,

systems, provisions). Mechanism is

defined as “specific reason, process or

situation whose consequence might

create challenge to the performance

of safety function.” [3]

4. Completeness

assessment of the

developed general

safety requirements

The draft GSR developed, referencing

the LWR GDC, SDC of GIF RSWG and

ANS GDC for SFR is assessed from the

DID point of view utilizing the OPT.

The process is mainly to identify and

check whether the mechanisms in the

OPT are included in the draft GSR. In

Figure 2, we have 4 challenges to the

safety function of “reactivity control”

and 6 mechanisms that could induce

the challenges. For example fuel cladding

chemical interaction (FCCI) is a

mechanism that could induce the

change in core geometry. Because the

GSR is a top level requirement enforced

by law, the contents are rather

qualitative description, so the prevention

of this mechanism and the ensuing

challenge needs to be translated

into requirements of GSR. On the

other hand, how to achieve this mechanism

should be handled in specific

design by provisions, so the contents

of provisions in Figure 2 need to be

described in a lower level regulatory

documents like review guides. The

assessment whether the requirement

to prevent this mechanism is included

in the GSR or not is done as following:

• Mechanism; Fuel-cladding chemical

interaction.

• Assessment; The paragraph (3) of

Article 25 “reactor design” in our

draft GSR stipulates that “the property

change by the irradiation of

the main core structure materials

like control rod driving mechanism,

core support structure etc.

should not impair the structural

integrity”. Thus the paragraph of

Article 25 is the requirement to

prevent mechanism of “fuel-cladding

chemical interaction”.

• Result; Requirement to prevent the

FCCI is well implemented in the

draft GSR.

Another example we present is the

mechanism of “control rod withdrawal

from subcritical state” that

challenges ‘the inability to maintain

subcriticality”:

• Mechanism; Control rod withdrawal

from subcritical state.

• Assessment; The subparagraph 5

under the paragraph 2 of Article 32

“reactor protection system” stipulates

that “the protection system

shall be designed to assure that the

specified acceptable fuel design

limits are not exceeded for any

single malfunction of the reactivity

control systems such as an accidental

withdrawal of control rods.”

Thus, the subparagraph of Article

35 is the requirement to prevent

the mechanism of “control rod

withdrawal from subcritical state”.

• Result; Requirement to prevent the

control rod withdrawal from subcritical

state is well implemented in

the draft GSR.

In this way, we have confirmed that

the draft GSR has all the requirements

to prevent the challenges and mechanisms

for the “reactivity control”

safety function. We found no requirements

to be added or revised by assessing

this “reactivity control” safety

function, but we expect that we might

be able to find some requirements to

be revised or added by assessing this

way and it might confirm the utility of

our approach. We found that utilizing

the OPT in this way is a systematic and

integral way to complement the development

of GSR. We will continue to

work for other two safety functions in

a future.

5. Conclusion

The draft version of GSR for SFR was

developed, first by evaluating the applicability

of the current LWR GSR to

SFR and then taking into account

other international requirements for

SFR. The current requirements including

the LWR GDC are coming

from the long-year accumulated experiences

of licensing and operation,

but there are not enough experiences

for SFR, so even if it is possible to develop

a draft version of SFR GSR referencing

the currently available requirements,

there is need of a systematic

and integral methodology to complement

the developed GSR for SFR. The

application of OPT is a good way to

achieve the requirements. So the OPT

have been developed for a safety function

of reactivity control and applied

in complementing the draft GSR. Assessing

the completeness of the GSR

in view of DID concept utilizing the

OPT, it was found that the draft GSR

includes all the requirements necessary

to prevent the mechanisms which

could challenge the safety function.

The developed GSR will be applied in

licensing review of PGSFR under

ENERGY POLICY, ECONOMY AND LAW 29

Energy Policy, Economy and Law

Assessment of General Safety Requirements for SFR ı Namduk Suh, Moohoon Bae, Yongwon Choi, Bongsuk Kang and Huichang Yang


atw Vol. 60 (2015) | Issue 1 ı January

RESEARCH AND INNOVATION 30

development in Korea which the designer

plans to apply the licensing for

construction permit by 2020. The revision

and refinement of the draft GSR

for SFR will continue further.

REFERENCES

| | [1] Code of Federal Regulation, Title 10,

Part 50, Domestic Licensing of Production

and Utilization of Facilities, Appendix

A, General Design Criteria for

Nuclear Power Plants, U.S. Nuclear Regulatory

Commission, Washington D.C.

| | [2] IAEA-TECDOC-1366, Considerations

in the development of safety requirements

for innovative reactors : Application

to modular high temperature gas

cooled reactors, IAEA, August 2003.

| | [3] GIF/RSWG, An Integrated Safety Assessment

Methodology (ISAM) for Generation

IV Nuclear Systems, 2011.

| | [4] Korea Atomic Energy Research Institute,

KALIMER-600 Conceptual Design

Report, KAERI/TR-3381, 2007.

Authors

Namduk Suh, Moohoon Bae, and

Yongwon Choi

Korea Institute of Nuclear Safety

62 Gwahak-ro, Yuseong-gu

Daejon/Republic of Korea.

Bongsuk Kang and Huichang Yang

TÜV Rheinland Korea Ltd.

Goro-dong 197-28, Guro-gu

Seoul/Republic of Korea.

RMB: The New Brazilian Multipurpose

Research Reactor

José Augusto Perrotta and Adalberto Jose Soares

1. Introduction In 2009, pushed by the international Moly-99 supply crisis that occurred in 2008/2009, and

that affected significantly the nuclear medicine services in the world, Brazilian government, decided to carry out a sustainability

study, to decide about the feasibility to construct a new research reactor in the country. As demonstrated in

reference [2], the result of the study, which was done following IAEA’s recommendation presented on reference [3],

was favourable to the construction of the new reactor, and Brazilian professionals started analysing its conceptual

design.

| | Fig. 1.

Top view of reactor core (left) and reflector vessel (right).

In 2010, following recommendations

of COBEN (Bi-national Commission on

Nuclear Energy), a committee responsible

for a bi-national cooperative

agreement between Brazil and Argentina,

a decision was taken to adopt, for

the new Research Reactors of Brazil

(RMB) and Argentina (RA10), a conceptual

model based on INVAP designed

OPAL research reactor, as a reference

for radioisotope production

and neutron beams utilization.

For the Brazilian RMB research reactor,

in addition to radioisotope production

and neutron beams utilization,

two other requirements were established.

The first one was the capability

to test fuels and materials for the

Brazilian nuclear program, and the

second was the requirement to have,

around the reactor building, the necessary

infrastructure to allow the interim

storage, for at least 100 years, of

all spent nuclear fuel used in the reactor.

Details of these two characteristics

will be given in the next sections.

Research and Innovation

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares

2. Description of the

reactor

RMB is a MTR open pool type reactor

that uses beryllium and heavy water

as reflector, and light water as moderator

and cooling fluid. The power of

the reactor is 30 MW, and its main requirements,

established during the

feasibility study, are: radioisotope

production, to attend national demand

beyond 2020; production of

thermal and cold neutron beams for

research and application in all areas;

development of materials and nuclear

fuels for the Brazilian nuclear program;

neutron activation analysis;

and silicon transmutation doping.

The core of the reactor is a 5 x 5

matrix, containing 23 MTR fuel elements,

and leaving 2 positions available

for materials irradiation tests.

Each fuel element has 21 plates, with a

meat made of low enriched (19.75 %)

Uranium Silicide-Aluminium dispersion

(U 3 Si 2 -Al) clad with Aluminium.

Dimensions of the fuel element are

80.5 mm x 80.5 mm x 1,045 mm,

and meat dimensions are 0.61 mm x

65 mm x 615 mm.

Three sides of the core are surrounded

by a reflector vessel, filled with

heavy water that acts as reflector for

the neutrons produced in the core.

The reflection on the fourth side is

done with the utilization of removable

beryllium blocks. These beryllium

blocks are needed to allow RMB to be

used as a tool for the Brazilian nuclear

program. Figure 1 shows a top view of


atw Vol. 60 (2015) | Issue 1 ı January

the reactor core and the reflector

vessel.

The core is designed to have a

cycle length of 28 days. To accomplish

with this cycle, the fuel element is

poisoned with Cadmium wires which

are depleted together with the fuel

element. Each fuel element has 42

Cadmium wires, which are placed on

the fuel element alongside the fuel

plates, one on each side of the plate.

The Cadmium wires are 0.4 mm in

diameter and 615 mm long. The core

has also 6 independent Hafnium control

plates, which move parallel to the

fuel plates.

3. Reflector vessel

The reflector vessel is made of zircaloy,

and it is installed in the bottom

of the reactor pool, about 10.5 meters

below water surface level. Filled with

heavy water, it has an internal diameter

equal to 2.6 meters and an internal

height equal to 1.0 meter. It has

5 positions for neutron transmutation

doping; 14 positions for pneumatic irradiation

(9 with 3 vertical positions

each and 5 with 2 vertical positions

each); about 20 positions for bulk irradiation;

one cold neutron source; 2

cold neutron beams; 2 thermal beams,

1 neutrongraphy beam and one position

for fuel irradiation testing, where

up to 2 rigs can be installed simultaneously.

As explained before this fuel

irradiation position constitutes one of

the main differences between RMB

and the reference reactor. The position

has a 5 x 5 grid where beryllium

blocks are placed to reflect the neutrons

produced in the core when there

is no fuel being tested. When used, the

fuel irradiation position allows testing

of fuel prototypes, simulating steady

state and dynamic conditions (ramp

tests and load following).

At least 10 of the bulk irradiation

positions in the reflector vessel can be

used to irradiate rigs with low enriched

fuel miniplates, to produce

Mo-99. Each rig is designed to produce,

after 7 days irradiation, between

2,400 and ,3000 Ci of Mo-99, which

will correspond to 400 and 500 Ci, respectively,

after 6 days calibration.

On the lower part of the reflector

vessel there is a skirt, whose interior is

divided into two parts. The central

part is used as water inlet for the

primary reactor cooling system, and

the outer section, between the central

part and the wall of the skirt, is used

as water outlet for the reactor pool

cooling system. Figure 2 shows a perspective

and a cutaway view of the reflector

vessel.

| | Fig. 2.

Perspective (left) and cutaway (right) views of the reflector vessel.

4. Reactor and service

pools

The reactor pool is a 5.1 meters diameter,

14 meters high cylindrical tank

made of stainless steel, filled with water

up to the 12.6 meters level. It

houses the reflector vessel, a small

spent fuel storage rack, with capacity

to store up to 32 fuel elements; the

bundles of tubes used for pneumatic

irradiation; the internal piping that

form the inlet and outlet of the

primary and pool cooling systems;

nuclear and process instrumentation;

auxiliary support and mechanical

structures, and the water inventory,

required for the pool cooling system to

perform its functions. The tank is embedded

in a concrete block, anchored

to the concrete by a set of reinforcement

rings and clamps at the bottom.

The bottom of the pool has 5 penetrations,

one for the control plates driving

mechanisms, and four for the

heavy water system. One of the heavy

water connections is used for drainage

of the reflector vessel, two are used as

inlet and outlet of the heavy water

cooling system; and the forth connection

is used as an alternative system to

shut down the reactor. This connection

has a set of valves that once open,

removes about 50 % of the heavy water

in less than 15 seconds, assuring

that the reactor is kept shutdown,

even after returning to normal temperature.

Adjacent to the reactor pool there is

the service pool, a 9.0 meters high rectangular

stainless steel structure, with

maximum water level equal to 7.6

meters. The service pool houses a spent

fuel storage rack with capacity to 600

spent fuel elements, the equivalent to

10 years of operation; some containers

specially designed to store damaged

fuel assemblies; a basket for solid waste

storage; a transport cask platform; a

structure to store the reactor isolation

gate; internal piping of the pool cooling

system; pool lighting supports; and

racks used for decay of materials irradiated

in the reactor and that needs

further processing, like Silicon, the

miniplates for Mo-99 production, etc.,

The service pool also is the entrance of

an elevator, which connects the service

pool to a hot cell, named Moly Hot Cell,

which is part of a system used to transfer

the miniplates to a transport cask.

The service pool is connected to the reactor

pool by a transfer channel. The

transfer channel, also made of stainless

steel, has a 5.0 meters layer of water,

which works as biological shielding

when the spent fuel, or any material

irradiated in the core, is transferred

from the reactor pool to the service

pool. A sliding gate, when installed in a

| | Fig. 3.

Perspective view of the reactor and service pools.

groove of the transfer channel, allows

maintenance of one pool without the

need to empty the other pool. Figure 3

shows a perspective view of the reactor

and service pools.

5. Reactor and pools cooling

systems

Light water is used for cooling the reactor

core and the internals of the

RESEARCH AND INNOVATION 31

Research and Innovation

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares


atw Vol. 60 (2015) | Issue 1 ı January

RESEARCH AND INNOVATION 32

reactor and service pools. The water

used in the reactor primary cooling

system enters the reactor pool through

two pipes installed about one meter

below the transfer channel, and flows

down to enter in the lower part of the

reflector vessel, then flows upward

through the reactor core, and through

a riser installed on top of the reflector

vessel, leaving the reactor pool

through a single pipe also installed below

the transfer channel, as shown in

Figure 3. The volume of water that

flows through the core represents

90 % or the total flow in primary cooling

system. The other 10 % comes from

the top of the reactor pool. It enters the

top of the raiser and flows down to the

outlet piping. By using this design, all

N-16 produced in the water, when it

passes through the reactor core, goes

directly to the N-16 decay tank, installed

below the service pool.

The primary cooling system has 3

circuits. Each circuit has a pump, with

inertia flywheel, and a plate type heat

exchanger with capacity to remove

50 % of the heat generated in the reactor

core. One of the circuits remains

in standby during normal operation.

In addition to the 10 % of water

that flows in the primary cooling system,

the reactor pool has another

equivalent volume of coolant that

flows downward in the reactor pool,

passes through the radioisotope production

and silicon irradiation rigs,

and enters a plenum between the

primary cooling inlet region and the

external wall of the skirt installed on

the lower part of the reflector vessel,

as shown in Figure 2. The water

leaves the plenum through a pipe

that goes upward, leaving the reactor

pool close to the transfer channel.

The inlet and outlet pipes of

both cooling systems, the primary

cooling system and the pools cooling

system, have siphon brake and

| | Fig. 4.

The temporary spent fuel storage and the handling and dismantling pools.

flap valves on their top positions. The

siphon brake valves are installed to

prevent the accidental loss of water

as a consequence of a siphon effect

following the unlikely rupture of a

pipe outside the pool, and the flap

valves are installed to allow the establishment

of the natural circulation

process, to cool the reactor core, following

the reactor shutdown.

A 1.5 m thick hot layer on top or the

reactor and service pools, provides a

non-activated stable water layer over

the pools. It prevents active particles

from reaching the surface of the pools,

reducing significantly the radiation

dose to reactor operators. The hot

layer temperature is 8 ºC higher than

the pool water temperature.

6. Reactor control and

shutdown systems

Six independent Hafnium control

plates are used to control the fission

process in the RMB research rector.

Each control plate has an extension

which has a magnetic disc at the end,

and is driven by an independent

mechanism installed in a sealed compartment

below the reactor pool. The

driving mechanism is based on a system

known as “rack-pinion”, having

on its extremity an electromagnetic

assembly. When active, an electric

current passes through the electromagnetic

assembly and engages the

magnetic disc, allowing the movement

of the respective control plate.

The movement is upwards for removal

from the core, and downwards for insertion.

Once the electric current is

interrupted, the magnetic disc automatically

disengages from the eelectromagnetic

assembly, and the control

plate falls by gravity. Compressed air,

from a pneumatic cylinder, helps to

accelerate the introduction of the control

plate into the reactor core.

The negative reactivity inserted by

any combination of five control plates

is enough to keep the reactor shutdown,

and if for some reason, following

a “scram signal” it is detected that

two control plates have not reached to

bottom position, a second “scram signal”

is generated. This second “scram

signal” is used to open a series of valves

that result in the removal of about 50

% of the heavy water from the reflector

vessel; quantity enough to assure keeping

the reactor shutdown even when it

returns to ambient temperature.

7. The spent fuel storage

building

To comply with the requirement to allow

the interim storage, for at least

100 years of all spent nuclear fuel

used in the reactor; a building, named

“Spent Fuel Storage Building”, was

designed adjacent to the reactor

building. This building, which can be

accessed directly from the reactor

building, will have two additional

pools, one for temporary wet storage

of the spent fuel used in the reactor,

and the other for handling and dismantling

rigs that were used for material

and fuel irradiation tests.

The temporary spent fuel storage

pool is a stainless steel structure, similar

to the service pool. The pool has

only three items, the spent fuel storage

rack, the inlet piping from the

pool cooling system, and the pool

lighting system. The spent fuel storage

rack has a capacity to store 1,200

spent fuel elements, the equivalent to

20 years of reactor operation. In order

to improve water distribution injection

and water circulation through the

fuel assemblies, the diffuser of the

pool cooling system is placed below

the storage rack. The pool cooling system

has a derivation that is used to

continuously purify the water, before

it returns to the pool.

The handling and dismantling pool

is also a stainless steel structure. It

houses several racks, with capacity to

store 4 in-core irradiation rigs, 2 used

cold neutron sources, 1 fuel irradiation

loop, and 2 isolation gates, one for the

temporary storage pool and the other

to isolate the pools from a “delivery

transfer channel”, that connects the

two pools with the service pool, located

in the reactor building. The pool

has also the pool lighting system, the

piping of the cooling and purification

system, and a transport cask platform,

needed to receive a cask that will be

used to transfer the spent fuel to a dry

storage position. Figure 4 shows the

temporary spent fuel storage pool and

the handling and dismantling pool.

The two pools of the spent fuel

storage building plus the reactor pool

and the service pool, these last two

located in the reactor building, form a

stainless steel structure embedded in

a concrete block, as shown in Figure

5. Three hot cells located in the

reactor building and one hot cell in

the spent fuel storage building complement

the concrete block.

According to the conceptual design

of the spent fuel storage building,

after 20 year of decay, the spent

nuclear fuel shall be transferred from

the storage pool to a dry storage position,

located in the level -6,00 of the

building. For this operation, a dual

purpose cask (for transport and stor-

Research and Innovation

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares


atw Vol. 60 (2015) | Issue 1 ı January

age) is lowered in the transport cask

platform, installed in the handling

and dismantling pool. After being

filled with spent fuel assemblies, the

cask is taken to an area where it will be

properly dried, and then transferred

to level -6,00 of the building, where

150 dual purpose casks can be stored

for at least 100 years.

A system comprising two ante cameras

and two isolation gates, maintain

the physical and environmental separation

between the reactor and the

spent fuel storage buildings.

8. The research and production

nucleus

The reactor and spent fuel storage

buildings are the centre of what is

called the “research and production

nucleus”, which includes a radioisotope

production facility and three

laboratories, one for research utilizing

neutron beams, one for neutron activation

analysis and the third one for

post irradiation analysis of irradiated

materials and nuclear fuels.

The radioisotope production facility

will have two lines of hot cells, the

first one for production of radioisotopes,

like Mo-99 and I-131, and the

second one for “sealed sources”, like

Ir-192 and I-125, for industrial and

medical applications. According to the

established requirement, it will have

the capacity to produce radioisotopes

and sealed sources to attend the national

needs beyond 2020.

The neutron beams laboratory will

have lines of thermal neutrons, for experiments

like high resolution diffractometry,

high intensity diffractometry,

Laue diffractometry, residual

stress diffractometry, and neutrongraphy;

and lines of cold neutrons,

for experiments like small angle neutron

scattering (SANS), reflectometry,

prompt gamma analysis and others

that are under analysis.

The radiochemistry laboratory will

have two pneumatic connections to receive

long life irradiated samples, plus

five pneumatic tubes connected directly

to the reflector vessel, for cyclic

irradiations of short life products and

delayed neutron activation analysis.

The post irradiation laboratory is

the facility that, together with the reactor,

allows irradiation tests of materials

and fuels needed for the

Brazilian nuclear program.

Seven more facilities complement

the research and production nucleus,

the reactor auxiliary building, the

cooling tower complex, the electrical

supply and distribution building, a radioactive

waste management facility,

a workshop, an operator’s support

building, and a researcher’s building.

Figure 6 shows the main facilities of

the research and production nucleus.

9. The RMB nuclear

research and production

centre

RMB is a new nuclear research and

production centre that will be built in

a city about 100 kilometres from Sao

Paulo city, in the southern part of

Brazil. The centre will have, in addition

to the research and production

nucleus, an administrative centre and

an infrastructure centre to attend all

the needs of the centre. The administrative

centre will have a library, an administration

building, a hotel, a restaurant,

an ambulatory, and a training

centre. The infrastructure centre will

have a water treatment plant, a warehouse,

a workshop, a facility for the fire

brigade, a garage, a sewage treatment

station, a chemical treatment plant, a

meteorological station, the main gate,

and the electrical substation. Shown in

Figure 7, RMB Centre has an area of

about 2 millions square meters.

10. Status of the project

In 2011, the Ministry of Science Technology

and Innovation allocated R$ 50

Mill. (about US$ 25 Mill.) for the conceptual

and basic designs of the complex.

It allowed, in 2012, the signature

of a contract, with a Brazilian company,

to develop the engineering work for the

conceptual and basic design phases of

all buildings and facilities of the centre,

excluding the reactor and connected

systems; and in 2013 the signature of

the contract with INVAP for the work

related to the preliminary engineering

of the reactor and connected systems.

Conclusion of both contracts is planned

for the middle of 2014.

Also in 2012, a contract was signed,

with a Brazilian company with tradition

in environmental studies, to perform

environmental and site studies.

| | Fig. 5.

Pools embedded in the concrete block.

| | Fig. 6.

Plant (left) and perspective view (right) of the RMB research and production nucleus.

The report was finished by middle

2013, allowing the starting of environmental

and nuclear licensing processes,

with presentation of site and local reports,

requirements for first license.

They were also the basis for the three

public hearings, done in October 2013.

Site topography was already surveyed;

geological sampling completed,

and a meteorological tower was

installed and it is operational since

2012.

Next steps are: conclusion of the basic

and preliminary engineering, development

of detailed design, manu-

| | Fig 7.

Artist view of the RMB nuclear research centre.

RESEARCH AND INNOVATION 33

Research and Innovation

RMB: The New Brazilian Multipurpose Research Reactor ı José Augusto Perrotta and Adalberto Jose Soares


atw Vol. 60 (2015) | Issue 1 ı January

34

AMNT 2014

Paper

presented

at the RRFM 2014

facturing, construction, assembling

and management. These phases will be

carried out by national and international

companies, and for these activities,

a provision was made in the national

budget, but not yet confirmed.

Total project remaining time span is

estimated in 5 years after contract signature

and subject to availability of

funds.

11. References

| | [1] I. J. A. Perrotta, J. Obadia, “The RMB

project development status”, on Proceedings

of the 2011 International Conference

on Research Reactors: Safe Management

and Effective Utilization, held in

Rabat, Morocco, 14-18 November 2011;

International Atomic Energy Agency, Vienna,

Austria (2012), available at: http://

www-pub.iaea.org/MTCD/Publications/

PDF/P1575_CD_web/datasets/abstracts/

C6Perrotta.html.

| | [2] I. J. Obadia, J. A. Perrotta, “A sustainability

analysis of the Brazilian Multipurpose

Reactor Project”, on Transaction of

14 th International Topical Meeting on Research

Reactor Fuel Management

(RRFM-2010), held in Marrakesh, Morocco,

21-25 March 2010; European

Nuclear Society, Brussels, Belgium

(2010), ISBN 978-92-95064-10-2, available

at: http://www.euronuclear.org/

meetings/rrfm2010/transactions/

RRFM2010-transactions-s6.pdf.

| | [3] International Atomic Energy Agency,

“Specific Considerations and Milestones

for a Research Reactor Project”, Nuclear

Energy Series NP-T-5.1, IAEA, Vienna,

(2012), ISBN: 978–92–0–127610–0, Available

at: - http://www-pub.iaea.org/MTCD/

publications/PDF/Pub1549_web.pdf.

Authors

José Augusto Perrotta and

Adalberto Jose Soares

Comissão Nacional de Energia

Nuclear (CNEN)

Avenida Prof. Lineu Prestes 2242

05508-000, Brazil

45 th Annual Meeting on Nuclear Technology: Key Topic |

Reactor Operation, Safety – Report Part 3

The following reports summarise the presentations of the Technical Sessions “Reactor Operation, Safety: Radiation

Protection”, “Competence, Innovation, Regulation: Fusion Technology” and “Competence, Innovation, Regulation:

Education, Expert Knowledge, Knowledge Transfer” presented at the 45 th AMNT 2014, Frankfurt, 6 to 8 May

2014.

The other Key Topics and Technical Sessions have been covered in previous issues of atw and will be covered in further

issues of atw.

Reactor Operation, Safety:

Radiation Protection

Angelika Bohnstedt

Due to different circumstances the amount of presentations in the

technical session “Radiation Protection” was at the Annual

Meeting actually reduced to three lectures. But this gave the audience

with about 23 to 27 participants the opportunity to have a

lively discussion after each presentation, not only with the lecturer

but also with other colleagues in the public. So the whole

session was a fruitful exchange of interesting information and

knowledge.

The session was chaired by Dr. Angelika Bohnstedt, Karlsruhe

Institute of Technology (KIT).

The first presentation “Optimisation of Clearance Measurements

According to DIN 25457 Taking Account of Type A and

Type B Uncertainties” was hold by S. Thierfeld (co-author:

S. Wörlen; both Brenk Systemplanung GmbH). In the beginning

S. Thierfeld gave an overview of the DIN 25457, the widely applied

standard for clearance measurements. He showed the evolvement

from the fundamentals in 1993 via the Part 4 about contaminated

and activated metal scrap, to the Part 6 of building rubbles and the

latest Part 7 of the DIN about nuclear sites. And he emphasized

that the primary aim is to get a reliable yes/no decision about the

compliance with clearance levels. At the next step S. Thierfeld explained

the incorporation of DIN ISO 11929, the standard for

dealing with uncertainties in measurements, into DIN 25457. The

consideration of Type A and Type B uncertainties for measurements

and their calibrations was discussed. For different factors,

influencing measurement and calibration, a conservative approach,

taking only Type A uncertainties into account, and a realistic

approach, combining Type A and Type B uncertainties, is possible.

S. Thierfeld elucidated how to check step by step in the measurement

and the calibration procedure which approach of uncertainty

determination will be more reasonable for each respective

factor. He concluded that finally a combination of all conservative

and realistic approaches has to be done in a way to reach clearance

measurements as precisely as necessary. At the end S. Thierfeld

pointed out that the higher effort to reduce uncertainties will

bring a decreased effort for decontamination work.

The following presentation “Optimization of Handling Components

and Large Scale Shielding Calculations with the Deterministic

Code ATTILA” was given by S. Boehlke (co-author:

M. Mielisch; both STEAG Energy Services GmbH), who started with

the statement that in general shielding components are designed

with conservative assumptions and boundary conditions which

cover all possibly occurring situations. This can result in an overestimated

shielding and the goal of an optimization procedure is to

decrease on one hand the radiation level in accessible areas but on

the other hand to decrease the amount of avoidable shielding material.

S. Boehlke noted that for this optimization the calculation of

the shielding geometry as well as the calculation of the dose rate

distribution was done with the code ATTILA. He explained the different

features of ATTILA, e.g. intuitive graphical user interface

and the possibility to integrate simplified CAD geometries etc., and

demonstrated in the following the use of ATTILA with 2 examples:

a large scale dose rate mapping and the optimization of the shielding

material of a handling machine for canisters of vitrified glass.

For the large scale model (situation in a storage building) several

aspects like superposition of all sources, the scattering of walls

etc. and the scattering through openings was taken into account.

As result S. Boehlke showed an overview about the shielding situation

in the whole building. The second example was the calculation

of the dose rate at the surface of a handling machine for canisters.

Here S. Boehlke could demonstrate as consequence of the

calculations a change in the design of the machine with the success

that regions where the dose rate limit was exceeded before

vanished and on the material site the reduction of used lead was

about 30 % and the overall mass reduction of the machine was of

about 10 %.

AMNT 2014

Key Topic | Reactor Operation, Safety – Report Part 3


atw Vol. 60 (2015) | Issue 1 ı January

In the third lecture “Shielding Factors of Newly Designed

Ventilation Screws” H. Niegoth (co-authors: S. Boehlke, W. Stratmann

and M. Bock; all STEAG Energy Services GmbH) presented the

novel design of a shielding screw. He started with a short explanation

that for a hot cell – to handle spent fuel and other sources of

high radiation- there are two opposing requirements: on one hand

sufficient ventilation is necessary but an effective radiation shielding

has to be guaranteed on the other hand. Known construction

solutions are Z-shaped channels, not able to penetrate a wall

straight, and ventilation screws made of cast iron where the shielding

is restricted to gammy radiation. Next H. Niegoth demonstrated

a new approach for a screw design. This design bases upon a sandwich

construction of several layers of winged discs where each individual

element can vary in the numbers of wings, in the thickness

and in the type of shielding material. H. Niegoth pointed out

that because of different materials the shielding possibility is not

restricted to gamma radiation but also neutron shielding can be

achieved by using disc elements of polyethylene. He presented

shielding calculations, performed with the ATTILA code, for

screws with variations in the diameter, the length and the number

of wings for each disc and in the number of turns per screw. In addition

pressure loss coefficients have to be calculated for different

screw parameters with CFD methods. At the end H. Niegoth summarized

that the sandwich concept of the novel screw allows a

flexible adaption of the shielding requirements with regard to the

ventilation requirements for individual application cases.

Competence, Innovation, Regulation:

Fusion Technology

Optimisation Steps in the ITER Design

Thomas Mull

ITER is the International Thermonuclear Experimental Reactor

which is presently under construction at Cadarache in Southern

France. This reactor is meant to demonstrate the feasibility of

maintaining a burning fusion plasma – magnetically confined and

producing a fusion power of 500 MW – in a steady state for several

minutes and to investigate the possibility of breeding Tritium,

which is needed for fuel, at a technical/industrial scale.

The first presentation with the title “Effect of Diagnostic

Apertures on Shut-Down Dose in ITER Upper Port Plug #18”

was given by Arkady Serikov (Karlsruhe Institute of Technology,

KIT). His co-authors were U. Fischer, B. Weinhorst (both KIT) and

L. Bertalot, A. Suarez and S. Pak (all three: ITER Organisation).

Shut-Down Dose Rates (SDDR) are a key condition for ITER

maintainability. Dr. Serikov and his colleagues had focused on one

of the port plugs, namely the Diagnostics Upper Port Plug (UPP) #

18. This port plug is hosting three diagnostic systems: vacuum ultra-violet

(VUV) spectrometer, vertical neutron camera (VNC)

and neutron activation system (NAS).

The SDDRs are calculated in a multi-step process. The first step

calculates the neutron and gamma flux in the plug volume during

ITER operation, based on a prediction of the strength and spatial

distribution of the power release of the ITER fusion plasma and

shielding effects. The second step calculates the (space-resolved)

activation of the materials in the plug, based on these radiation

fluxes and assumptions for the preceding ITER operation time. A

last step calculates the gamma dose rates due to these activated

materials, based on a certain shutdown time before access (typically

106 s, i.e.: approx. 12 days).

The parameters to be varied are choices for materials, presence

or absence of filler materials and general geometry (where

the real geometry is rather closely defined but for sake of simplicity

there are calculations with a “homogenized” plug).

Dr. Serikov and his colleagues found out that the SDDR directly

behind the UPP under consideration could be reduced with respect

to the current design by a factor of approx. 2 by proper

choice of geometry and materials. Moreover they collected experience

with radiation streaming effects inside the gaps which are

surrounding the plugs inevitably and due to the apertures required

by the spectrometers. This experience can be transferred to

many other components.

The following three contributions were all dealing with properties

of tungsten which is foreseen as the plasma-facing material

for the ITER divertor. The speakers (and main authors) of all these

contributions were from Forschungszentrum Jülich GmbH (FZJ).

Isabel Steudel presented her works on “Thermal Shock Behaviour

of Tungsten Under Different Simulation Methods”. Her

co-authors were A. Huber, J. Linke, G. Sergienko and M. Wirtz.

Forged tungsten has a heterogeneous grain structure with grains

flattened corresponding to the forging forces. I. Steudel had investigated

the resistance of tungsten samples with different surface grain

orientation to the impact of electron beams and Nd:YAG laser beams

(with these beams simulating peak power impacts due to so-called

edge-localized modes of the plasma, ELMs, which reach up to 1 GW/

m 2 and which are way higher than the “normal” irradiation due to a

burning plasma which reaches “only” up to 20 MW/m 2 ). The experiments

were starting from base temperatures of 20 °C and 400 °C,

respectively. Mrs. Steudel explained that ELMs are unlikely to occur

in operation states where the wall temperatures are below 200 °C.

The results of these experiments show that there are different

kinds of surface modifications and damages which are referable to

two mechanisms. The transient heat loads and the related temperature

increase leads to a local expansion that induces compressive

stresses due to the cooler surrounding material. After the thermal

shock event the material quickly cools down and compressive

stresses are converted into tensile stresses. If the material is

ductile these stresses can be compensated by plastic deformation.

Otherwise cracks or crack networks occur.

The damage behaviour strongly depends on the impacting

power density and on the base temperature. A damage threshold

was identified between 0.19 and 0.38 GW/m 2 for both base temperatures,

for recrystallised material even between 0.38 and 0.76

GW/m 2 if starting at room temperature.

An important conclusion from the experiments is that both

simulation methods are capable to provide similar thermal loading

conditions and that the damage patterns such as roughening

and cracking are similar and show only minor deviations.

Nathan Lemahieu reported on “Resistance of Tungsten with

Yttrium Doping to ELM-Like Thermal Shocks”. His co-authors

were J. Linke, G. Pintsuk, M. Wirtz (all three FZJ) as well as G. Van

Oost (Ghent University, Belgium) and Z. Zhou (University of Science

and Technology Beijing, China).

The thermal shock resistance of spark plasma sintered tungsten

grades, containing between 0.25 weight% and 1 weight% yttrium,

was investigated under fusion relevant ELM-like loading conditions.

The tungsten samples were cyclically tested at room temperature

using a Nd:YAG laser beam and the electron beam facility

JUDITH 1. Heat pulses with durations of 1 ms were applied to the

samples leading to absorbed power densities between 0.37 GW/m 2

and 1.14 GW/m 2 . Furthermore, at a temperature of 400 °C, three

samples were tested as well with the highest available power density

of 1.14 GW/m 2 . The characterization of the samples before and

after exposure shows that the thermal shock resistance improves

with increasing yttrium content. However, in contrast to pure

tungsten, for a base temperature of 400 °C there is still brittle behaviour

for the yttrium-doped tungsten.

These works clearly showed that tungsten-yttrium grades have

benefits and should be considered as plasma facing materials

(PFM). However, an observed rise in the ductile to brittle transition

temperature (DBTT) could be a real draw-back. Therefore,

future studies should include more tests at elevated base temperatures,

higher than 400 °C to determine this DBTT and to exclude

other drawbacks. A second approach to future research could include

optimizing the yttrium content.

35

AMNT 2014

AMNT 2014

Key Topic | Reactor Operation, Safety – Report Part 3


atw Vol. 60 (2015) | Issue 1 ı January

36

AMNT 2014

Bruno Jasper explained “The Powder Metallurgical Route to

Tungsten-Fiber Reinforced Tungsten”. His co-authors were J.W.

Coenen, Ch. Linsmeier (both FZJ) and J. Riesch and J.-H. You

(Max-Planck-Institut für Plasmaphysik, Garching, Germany) as

well as A. Mohr (Ruhr Universität Bochum, Germany).

Tungsten structures can withstand high temperatures but

tungsten is a relatively brittle material. Tungsten-fiber reinforced

tungsten (Wf/W) composites are supposed to enable enhanced

toughness due to extrinsic energy dissipation mechanisms such as

interface debonding and plastic deformation of fibers. So far

Wf/W has been produced by Chemical Vapor Infiltration (CVI).

The crucial property of this material is a certain ability of the

fibers to move microscopically with respect to the surrounding

tungsten bulk. This feature is secured by very thin coatings of the

tungsten fibers, e.g. by erbium oxide. CVI does not damage neither

the fibers nor their coating. Unfortunately, CVI is limited to rather

small production rates.

B. Jasper and his colleagues are investigating alternative

methods, namely powder metallurgical routes of Wf/W production:

Hot Isostatic Pressing (HIP) and Electro Discharge Sintering

(EDS). The advantage of such a procedure could be much larger

production rates. It is, however, a big challenge not do damage

the fibers and their coatings during these new production processes

which impose high thermal and mechanical stresses onto

the fibers.

In this context, EDS might be the preferable process. During

EDS a powder is placed between two electrodes and then compacted

by a short but high energy pulse. In addition an axial pressure

is applied to increase the density even further.

First pure W samples showed high values for the relative density.

Investigations on samples including fibers are ongoing, supported

by comprehensive modelling efforts.

The Technical Session was chaired by Thomas Mull (AREVA

GmbH).

Competence, Innovation, Regulation:

Education, Expert Knowledge, Knowledge

Transfer

Jörg Starflinger

Design and Development of Training for Managers of a Nuclear

Operator (Anna Starynska, Spider Management Technologies

Ukraine; Ronald Landefeld, Christian Schönfelder and Robert Geisser,

AREVA GmbH): AREVA with their subcontractor Spider Management

Technologies Ukraine are currently implementing a consultancy

project with the objective to complete a management

training center of a nuclear operator. As an important milestone,

the development as well as the training needs analysis of managers

has been completed recently, and accepted by executive

management of the operator. In the paper the methodology used

has been described, the connection of development needs with

the strategic reorientation of the operator and the contribution of

management training to achieving the strategic goals of the utility,

in particular improvement of nuclear safety. The highest priority

of all activities of a nuclear operator shall be given to establish a

mechanism of permanent improvement of safety culture according

to IAEA-Safety Series No. 75-INSAG-4.

Based on a management competence model, a special tool –

the Individual Training and Development Plan – was elaborated

for managers’ appraisal, identification of training needs, elaboration

of individual plans for development of managers and trainers,

and monitoring of the personal development process.

In summary, the utilization of the competence model allows

establishing, forming and developing preferable behaviour of

managers in the context of creation of necessary operation culture.

Individual training and development plans for managers are

an efficient and effective tool of implementation of the operator’s

middle and long term strategy.

Support of an University Nuclear Master Course by a Nuclear

Supplier (Tomas Bajer, AREVA NP Controls, s.r.o.; Vladimir

Slugen, Slovak University of Technology; Stefan Glaubrecht and

Christian Schönfelder, AREVA GmbH): The cooperation between

the Institute of Nuclear and Physical Engineering FEI STU, University

of Bratislava, Slovak Republic, and AREVA has been presented. This

cooperation is considered as a win-win arrangement for all stakeholders,

the university, students and AREVA. The university can

rely on state-of-the-art technologies for its education activities,

expand its lecture offer and establish an international scope. Students

will gain a deeper comprehension of current issues in nuclear

Instrumentation&Control and they will be better prepared for

their future job positions and career perspectives. AREVA will profit

from the students’ enhanced specific knowledge on nuclear technology

and access to well-educated and motivated graduates.

As an example the preparation and delivery of specialized lectures

and practical exercises for an upcoming new subject “Measurement

and control in nuclear power plants”, focusing on stateof-the-art

technologies, especially TELEPERM ® XS (TXS), which

is also used in Slovak NPPs of VVER-440 type. AREVA contributed

to four of the twelve lectures of the university course.

This cooperation will be formalized in the near future by concluding

an agreement detailing the scope of the cooperation. The

cooperation could also be extended in the future, e.g. by expanding

the number of lectures and lab works that are supported by

AREVA, by organizing student internship and Master theses in

AREVA facilities, or even by performing joint R&D projects.

Practical Implementation Methodologies of Preserving

Competence in Nuclear Power Plants (Michael Burkhard, GiS -

Gesellschaft für integrierte Systemplanung mbH): To preserve competence

and knowledge in nuclear power plants, professional tools

are in use in the area of maintenance and operations, so-called “Enterprise

Asset and Operations Management Solution (EAM)”. Such

a system contains operational data, maintenance instructions,

technical specifications, historical data, etc. It can be extended to a

Knowledge Preservation System (KPS), which contributes to prevent

the loss of knowledge, that processes can be optimized by utilizing

experience and to extend of the power plant’s life cycle. If the

KPS is established in a very early stage, information is inserted in a

less filtered way. That way it is possible not only to learn from best

practices but also to prevent doing the same mistakes twice. As soon

as this is achieved, learning from best practices as well as learning

from mistakes, it is very likely that the power plant is optimally prepared

for a technically and economically optimized future.

The main target and the focus has to be on gathering data in a

sufficient way whilst enabling users to get those information attached

directly to their actual work so they get the information

they need at the right time, in the right context and in the appropriate

details. Such system has been applied successfully in several

nuclear power plants in Germany and Switzerland.

Authors:

Angelika Bohnstedt

Karlsruher Institut für Technologie (KIT)

Programm Nukleare Sicherheitsforschung (NUKLEAR)

KIT Campus Nord, Gebäude 433

Hermann-von-Helmholtz-Platz 1

76344 Eggenstein-Leopoldshafen/Germany

Thomas Mull

AREVA GmbH

Nuclear Fusion, HTR and Transverse Issues (PTDH-G)

Paul-Gossen-Straße 100

91052 Erlangen/Germany

Prof. Dr.-Ing. Jörg Starflinger

Institutsleiter

Universität Stuttgart

Institut für Kernenergetik und Energiesysteme (IKE)

Pfaffenwaldring 31, 70569 Stuttgart/Germany

AMNT 2014

Key Topic | Reactor Operation, Safety – Report Part 3


The International Expert Conference on Nuclear Technology

Estrel Convention

Center Berlin

5–7 May

2015

Germany

Key Topics

Outstanding Know-How &

Sustainable Innovations

Enhanced Safety &

Operation Excellence

Decommissioning Experience &

Waste Management Solutions

Programme

3 Gold Sponsor

3 Silver Sponsors

www.nucleartech-meeting.com

Fuel


atw Vol. 60 (2015) | Issue 1 ı January

AMNT 2015 38

Plenary Session

Tuesday ı May 5 th 2015

Welcome and Opening

Address

Dr. Ralf Güldner, President of DAtF,

Germany

Policy

German Energiewende and European Energy

Market – Risk or Opportunity?

Thorsten Herdan, Head of the Department

Energy Policy, Federal Ministry for Economic

Affairs and Energy, Germany

International Developments

Representative of EU Member State

Economy

E.ON’s Strategy: Managing Regulation and

Political Uncertainty

Dr.-Ing. Leonhard Birnbaum, Member of the

Board of Management – Markets,

Services, E.ON SE, Germany

Vattenfall’s Visions Concerning Climate

Policy and the Place of Nuclear

Mats Ladeborn, Head of Nuclear Power

Development, Vattenfall AB, Sweden

Long-Term Stability and Profitability in

Electricity Generation

Jacek Cichosz, Vicepresident and Member of

the Board, PGE EJ1, Poland

Communications

Pragmatism and Ideology: Opinion Shaping

in Nuclear

Ann S. Bisconti, PhD, President, Bisconti

Research, Inc., USA

Why Miracles Come From Nuclear?

Nuclear Communications Beyond Energy

Dr. John Barrett, President and Chief

Executive Officer, Canadian Nuclear

Association, Canada

Waste Management

Re-Start of the Selection Process for a HAW

Final Repository in Germany – a Snapshot of

the Status-Quo

Key Note: Ursula Heinen-Esser, Chairperson

of the Commission “Storage of High-Level

Radioactive Waste Materials”, German

Bundestag

Panel

• Ursula Heinen-Esser, Chairperson of the

Commission

• Prof. Dr. Dirk Bosbach, Director of the Institute

of Energy and Climate Research

IEK-6: Nuclear Waste Management and

Reactor Safety, Forschungszentrum Jülich

GmbH

• Jochen Stay, Spokesperson of anti-nuclear

organisation .ausgestrahlt

• Dr. Hannes Wimmer, Chairman of the

Board of Managing Directors, GNS Gesellschaft

für Nuklear-Service mbH, Germany

Moderator: (Tba)

Competence

From Enhanced Safety to Advanced Designs

Panel

• Yves Brachet, PhD, President EMEA Region,

Westinghouse Electric Company,

Belgium

• Nick Hanigan, Director of Waste Management

and Decommissioning National

Nuclear Laboratory, UK

• Stefan vom Scheidt, CEO AREVA GmbH,

Germany

• Tba, China National Nuclear Corporation

(CNNC), China

Moderator: Chairperson KTG (tba), Germany

Outlook AMNT 2016

Chairperson KTG (tba)

Social Evening

All contributions translated simultaneously

in English/German.

The DAtF-President and the KTG-Chairperson

will lead through the programme.

Key Topic

Outstanding Know-How

& Sustainable

Innovations

Focus Session

Implementing New Safety

Requirements in Europe

Wednesday ı May 6 th 2015

Coordinators: Dr. Christian Raetzke, CONLAR

Consulting on Nuclear Law, Licensing and

Regulation, Germany

The revision of the EU Nuclear Safety Directive

has been adopted by the Council. WENRA

will complete the revision of its Reference

Levels by 2014. The IAEA is pursuing a number

of post-Fukushima actions and programmes.

These developments and their impact

on design and operation of nuclear installations

will be presented and discussed by

high-level speakers from relevant institutions

and companies.

The Revised EU Nuclear Safety Directive

Massimo Garribba, European Commission,

Luxembourg

The Revision of WENRA Reference Levels and

their Implementation by WENRA Regulators

Dr. Hans Wanner, ENSI (Eidgenössisches

Nuklearsicherheitsinspektorat), Switzerland

IAEA Activities Concerning Nuclear Safety

After the Fukushima Accident

Gustavo Caruso, International Atomic

Energy Agency (IAEA), Austria

The Revision of the German Regulations in

the Light of Developments in the EU and

Worldwide

Tba, Anlagen- und Reaktorsicherheit GRS

mbH, Germany (tbc)

The Impact of New Safety Requirements on

the Operation of Existing Installations in the

Czech Republic

Milan Sýkora, CEZ, a. s., Czech Republic

The Impact of New Safety Requirements on

the Design of New Nuclear Power Plants in

the EU on the Example of EPR

Jürgen Wirkner, AREVA GmbH, Germany

Topical Session

Nuclear Know-How Beyond

Power Generation

Wednesday ı May 6 th 2015

Coordinator: Dr. Stefan Nießen,

AREVA GmbH, Germany

FRM II: Neutrons for Industrial and Medical

Applications

Dr. Anton Kastenmüller, Technische

Universität München, Germany

Thermohydraulic Codes Applied to Wind

Power and Combustion Engines

Prof. Dr. Andreas Class, Karlsruher Institute of

Technology, Germany

Radioisotope Battery Technology in Space

Marie-Claire Perkinson, European Aeronautic

Defence and Space Company (EADS), United

Kingdom

Dr. Richard Ambrosi, University of Leicester,

United Kingdom

Gamma Irradiation an Indispensable Tool for

Sterilization

Reiner Eidenberger, Synergy Health

Allershausen GmbH, Germany

Naturally Occurring Radioactive Materials

(NORM): A Comparison Between Geothermal

Energy, Fracking and Uranium Mining

Overburden

Prof. Dr. Thorsten Schäfer, Karlsruher Institute

of Technology, Germany

Industry Applications of Nuclear Safety

Based Non-Destructive Examination

Technology

Friedrich Mohr, iNDT GmbH, Germany

AMNT 2015

Programme


atw Vol. 60 (2015) | Issue 1 ı January

Topical Session

CFD Simulations for Reactor

Safety Relevant Objectives

Thursday ı May 7 th 2015

Coordinator: Dr. Andreas Schaffrath, Martina

Scheuerer, Gesellschaft für Anlagen- und

Reaktorsicherheit GRS mbH, Germany

This session demonstrates the progress as

well as its potential for their application regulatory

practice. Current developments, examples

(e.g. flow in PWR fuel assemblies,

vortex formation at pump inlets, condensation

induced water hammer, containment

flows) and future needs are presented by

worldwide leading technical experts in this

area.

CFD Application in Nuclear Reactor Safety

Martina Scheuerer, Gesellschaft für

Anlagen- und Reaktorsicherheit GRS mbH,

Germany

Current Developments in CFD Codes

Dr. Thomas Frank, ANSYS/ MFBU –

Mechanical-Fluids Business Unit, Germany

LES Analysis of Flow in a Simplified PWR

Assembly with Mixing Grid

Dr. Ulrich Bieder, CEA/Centre de SACLAY,

France

Modelling of Passive Auto-Catalytic

Recombiner Operational Behaviour with

the Coupled REKODIREKT-CFX Approach

Dr. Stephan Kelm, Forschungszentrum

Jülich GmbH, Germany

Investigation of Surface Vortex Formation at

Pump Intakes in PWR

Peter Pandazis, Dr. Andreas Schaffrath,

Gesellschaft für Anlagen- und Reaktorsicherheit

GRS mbH,

Dr. Frank Blömeling, TÜV NORD SysTec

GmbH & Co. KG, Germany

CFD Simulations of Condensation Induced

Water Hammer

Dr. Sabin Ceuca (tbc), Technische Universität

München, Germany

CFD Simulations of Containment Flows

Dr. Ed Komen (tbc), NRG, The Netherlands

CFD for Two-Phase Flows: Status, Recent

Trends and Future Needs

Dr. Dirk Lucas, Helmholtz-Zentrum

Dresden-Rossendorf, Germany

Prof. Dr. Eckhart Laurien, University of

Stuttgart, Germany

Technical Session

Reactor Physics, Thermo and

Fluid Dynamics

Topical Neutron Kinetics

and Thermal Hydraulic

Developments and

Applications

Wednesday ı May 6 th 2015

Chair: Dr. Birgit Wortmann, STEAG Energy

Services GmbH, Germany

The Use of Neutron Fluence Analyses as

Verification of Reactor Pressure Vessel

Shielding Design

Lars Ackermann, AREVA GmbH, Germany

Validation of MCNP for Skyshine Calculation

Luc Schlomer, WTI GmbH, Germany

VENUS 7: A Recent Evaluation for the IRPhE

Handbook

Dr. Winfried Zwermann, Gesellschaft fur

Anlagen- und Reaktorsicherheit (GRS) mbH,

Germany

Nuclear Data Uncertainty Analysis With

Perturbation Theory and Random Sampling

Dr. Winfried Zwermann, Gesellschaft für

Anlagen- und Reaktorsicherheit (GRS) mbH,

Germany

Depletion Calculations for a Fast Spectrum

Fuel Assembly

Alexander Aures, Gesellschaft fur Anlagenund

Reaktorsicherheit (GRS) mbH, Germany

Neutronic Modeling of a PWR Konvoi Type

Reactor Using PARCS With Few Group Cross

Section Generated With SCALE and SERPENT

Joaquin Ruben Basualdo Perello, Karlsruhe

Institute of Technology, Germany

Monte Carlo Neutronics Investigations of

VVER-1000 Fuel Assemblies

Luigi Mercatali, Karlsruhe Institue of

Technology, Germany

Fundamentals of Heat Removal Accuracy ans

Application Limits of Analytical and

Numerical Calculation Methods: Examples

from Nuclear Applications

Dr. Andre Leber, WTI GmbH, Germany

Technical Session

Know-How, New Build and

Innovations

Innovative Concepts in Nuclear

Technology

Thursday ı May 7 th 2015

Chair: Dr. Dietrich Knoche, Westinghouse

Electric Germany GmbH, Germany

Advanced Reactor Concepts and Sustainable

Nuclear Energy Strategy –Russian Trends

Dr. Andrey Gagarinskiy, National Research

Centre, Russia

On the Use of a Molten Salt Fast Reactor for

Transmutation Fulfilling the Requests of the

Nuclear Phase Out Decision

Dr. Bruno Merk, Helmholtz-Zentrum

Dresden-Rossendorf (HZDR), Germany

Modeling SFR Diagrid Expansion Reactivity

Feedback by Coordinate Transformation of

the Diffusion Equation

Dr. Armin Seubert, Gesellschaft fur Anlagenund

Reaktorsicherheit (GRS) mbH, Germany

AREVA‘s Worldwide Contributions to Safety

Improvement

Marina Welker, AREVA GmbH, Germany

AREVA‘s Alternative Way for Spare Parts

Management

Ulrich Kizak, AREVA GmbH, Germany

Development of a Moderator System for a

High-Brilliant Cold and Thermal Neutron

Source

Jan Philipp DabruckRWTH Aachen University,

Germany

Regulatory and Computerised

Improvements

Chair: Dr. Matthias Lamm, AREVA GmbH,

Germany

Training in a Plant Modernization Project

Christof Pudelko, AREVA GmbH, Germany

Supports for Equipment Components and

Piping of Nuclear Power Plants: Advances in

the Russian Regulatory Basis

Dr. Yury Spirochkin Engineering Center of

Nuclear Equipment Strength, Russia

Design of Nuclear Building Structures and

Components With Respect to Service Life

and Reliability

Dr. Rudiger Meiswinkel, TU Kaiserslautern,

Germany

Assessment of Containment Reinforced

Concrete Structures Exposed to the

Accidental Flooding by Using Abaqus FEA-

Software: Solutions and Lessons-Learned

Ulf Ricklefs, Welstinghouse Electric Germany

GmbH, Germany

Thermal and Mechanical Design of the

Plasma Core CXRS Diagnostics of the ITER

Nuclear Fusion Reactor

Frank Giese, WTI GmbH, Germany

AMNT 2015 39

AMNT 2015

Programme


atw Vol. 60 (2015) | Issue 1 ı January

AMNT 2015 40

Fast Neutron Detection With sic Semicoductor

Detector at Elevated Temperatures

Dora Szalkai, Karlsruhe Institute of

Technology, Germany

Surface Finish Influence on the Thermal

Shock Performance of Beryllium

Benjamin Spilker, Forschungszentrum Julich

GmbH, Germany

Creep Irradiation Testing of Copper Alloy for

the ITER First Wall Panels

Christoph Pohl, TUV Rheinland Industrie

Service GmbH, Germany

Campus Nuclear Energie

Wednesday ı May 6 th 2015

Workshop Preserving

Competence

Wednesday ı May 6 th 2015 &

Thursday ı May 7 th 2015

Key Topic

Enhanced Safety &

Operation Excellence

Topical Session

Sustainable Reactor

Operation Management –

Safe, Efficient and Valuable

Tuesday ı May 5 th 2015

Coordinator: Dr. Erwin Fischer, E.ON Kernkraft

GmbH, Germany

Every operator of a nuclear power plant

worldwide strives for safety, efficiency and

adding value. But what are the key factors to

achieve these goals? For sure, the technological

standards and herewith continuous investments

in maintenance and technological

development are essential. Of course, a strict

and sound regulation with an independent

authority of highest expertise is crucial, too.

In this context this session provides an overview

over best practices and state of the art

scientific findings on the relevant topics in

the field of efficient organization and responsible

human performance. Questions of

management systems, organizational setup

are being presented and discussed as well as

aspects of incorporating lessons learned and

training.

Organisational and Regulatory

Background

Welcome/Opening Remarks

Dr. Erwin Fischer

E.ON Kernkraft GmbH, Germany

Management System and Organisational

Setup as Determinants for a Successful

Performance of Plant Staff

Jürgen Schwarzin, E.ON Kernkraft GmbH,

Germany

Health, Safety and Environment – First!

Matthias Röhrborn , RWE Power AG,

Germany

Environmental Management – How to Deal

with EMAS and OSAS?

Dr. Johann Oswald, NPP Isar, E.ON Kernkraft

GmbH, Germany

Procedures Incorporating

Lessons Learned

The Process of Evolving Improvement with

Feedback of Experience in a NPP

Ulrich Sander, NPP Neckarwestheim, EnBW

Kernkraft GmbH, Germany

German Information Notices – Interdisciplinary

Event Assessment Resulting in

Recommendations

Dr. Dagmar Sommer, Gesellschaft für Anlagenund

Reaktorsicherheit (GRS) mbH, Germany

The “Human Factor”

Developing and Preserving Requisite

Qualification – Training at a Simulator

Jochen Kruip, KSG Kraftwerks-Simulator-

Gesellschaft mbH, GfS Gesellschaft für

Simulatorschulung mbH, Germany

Tools Supporting Human Performance

Dr. Stephan Rahlfs, NPP Philippsburg, EnBW

Kernkraft GmbH

Frank Heinrich, E.ON Kernkraft GmbH,

Germany

Focus Session

Radiation Protection

Tuesday ı May 5 th 2015

Coordinator: Erik Baumann, AREVA GmbH,

Germany

Radiation Protection – a century of safety

benefit for jobholders, public and environment.

The development of protection principles

is a long lasting process. It started with

the increasing industrial application of X-rays

more than 100 years ago. Today, there is a

large number of national and international

organization and governmental institutions

dealing with the protection of occupationally

exposed workers, of members of the public

and of the general environment. This session

presents the most recent status of discussions

and developments in the fields of radiation

protection during decommissioning,

development of codes, standards and regulations.

In Fact, it Protection of Human Beings and

the Environment Against Ionizing Radiation

– Some Historical Insights

Erik Baumann, AREVA GmbH, Germany

ALARA – How Much Radiation Protection is

Reasonable?

Dr. Gerhard Frank, Karlsruher Institut of Technology

(KIT), Germany

Radiological Protection Targets and

Performance Indicators

Gabriele Hampel, AXPO Power AG,

NPP Beznau, Switzerland

Dose Rate Measurements at the Presence of

Surface-near Sources

Sinisa Simic, TO.M.MA.S GmbH, Germany

Incorporation Monitoring of Intakes During

the Dismantling of Nuclear Facilities

Martina Froning, Forschungszentrum Jülich

GmbH, Germany

Decommissioning Aspects – EC and IAEA

Guidance on Exemption and Clearance Levels

and Implications on Clearance in Germany

Dr. Stefan Thierfeldt (tbc), Brenk

Systemplanung GmbH, Germany

Topical Session

Fuel Management During the

Last Cycles and Beyond

Wednesday ı May 6 th 2015

Coordinators: Ulf Benjaminsson,

Carina Önneby, Westinghouse Electric

Sweden AB, Sweden

Many utilities are currently facing a situation

where the fuel and core components are to be

effectively managed during the last cycles of

operation and beyond. A key aspect is the experiences

and strategies for core and fuel optimization

with regard to flexibility and fuel

cycle costs. With the completion of the operation,

utilities must consider whether to reuse or

dispose any residual fresh fuel assemblies. Disposal

of other core components, such as control

rods and BWR fuel channels is also to be

performed. Moreover, damaged fuel rods remaining

at the plant are to be prepared for safe

transportation and disposal. Finally, fuel suppliers

and utilities jointly have to ensure that the

depleted fuel assemblies can be safely stored in

dry storage facilities before final disposal.

Fuel Related Experiences and Lessons Learend

from Barsebäck 1 and 2.

Fredrik Winge (tbc), Vattenfall/Ringhals, Sweden

Strategies and experiences from using the

fuel as effectively as possible within EKK

Wolfgang Faber, E.ON Kernkraft GmbH,

Germany

AMNT 2015

Programme


atw Vol. 60 (2015) | Issue 1 ı January

Evaluation of Intermediate Term Dry Storage

of Fuel

Björn Andersson, Westinghouse Electric

Sweden AB, Sweden

Experiences from Potential Reuse Versus

Disposal of Fresh BWR Fuel Assemblies

Tba, Vattenfall Europe Nuclear Energy GmbH

Tbd

Sylvia Choihtramani Becerra/Robert

Schneider, GNF ENUSA Nuclear Fuel S.A.

Topical Session

Current Issues and Learnings

from the International

Experience of Reactor

Operation

Thursday ı May 7 th 2015

Technical Session

Operation and Safety of

Nuclear Installations, Fuel

Operation and Maintenace

Wednesday ı May 6 th 2015

Chair: Dr. Jürgen Sydow, TÜV NORD SysTec

GmbH & Co. KG, Germany

Pipe Robots for Internal Inspection,

Non-Destructive Testing and Machining of

Pipeline Systems in Nuclear Power Stations

Alexander Reiss, Inspector Systems

Rainer Hitzel GmbH, Germany

Lessons Learned From Operational

Accompanying Temperature Measurements

Dr. Sven H. Reese, E.ON Kernkraft GmbH,

Germany

Quality Assurance for Industrialization of

Rodlet Refabrication for Power Ramps,

in LECA-STAR Facility

Cedric Plantegenest, CEA – Cadarache, France

Examination of the Irradiated Mixed Carbide

and Nitride Fuels as Part of Their Safety

Evaluation

Paul David William Bottomley, European

Commission-JRC-Institute für Transurane,

Germany

Special Issues

Chair: Dr. Anke Traichel, NUKEM Technologies

Engineering Services GmbH, Germany

Concept of Modular Heat Exchanger for

Spent Fuel Pool Cooling

Dr. Nader Ben Said, Westinghouse Electric

Germany GmbH, Germany

AMNT 2015 41

Coordinator: Dr. Ludger Mohrbach, VGB

PowerTech e.V., Germany

Continuous improvement is the intrinsic target

of day-to-day operation of nuclear power

plants. Thus, global nuclear safety progressed

by a factor of ten every ten years. The section

highlights in-depth insights in seven persentations

into current operational issues from

seven countries.

Commissioning of Atucha-2 and Taishan-1

Tba

Material Defects in Belgian Reactor Vessels

Rene Delporte (tbc), Electrabel, Belgium

Security of Supply in Central Europe after

Shut-down of Grafenrheinfeld

Tba, TenneT TSO GmbH, Germany

New Energy Policy in France

Gilbert Moritz (tbc), EDF Electricité de France,

France

Backfitting Measures at Swiss Nuclear Power

Plants

Martin Richner, AXPO Power AG, Switzerland

Challenges of the Post-operational Period for

Nuclear Power Plants

Wittmann

Operation of Nuclear Power Plants in the

Spanish Grid

Jose Antonio Prieto, Almaraz-Trillo Nuclear

Power Plants, Spain

NUGENIA: a Non Profit International Organization

to Promote R&D for the Safe Long

Term Operation of GENII and III Nuclear

Power Plants

Dr. Abderrahim Al Mazouzi, EDF – EDF R&D,

France

Control Room Technology

Uwe Kimmeskamp, Bilfinger Mauell GmbH,

Germany

Statistical Analysis of Fatigue Data for

Austenitic Stainless Steels in Water

Environments

Paul Wilhelm, AREVA GmbH, Germany

PSA

Replacement of RPV Head Spray System in

NPP RH1

Thomas Glaab, AREVA GmbH, Germany

A Novel Approach for the Seismic Probabiistic

Safety Assessment During the Design

Stage of Non-Reactor Nuclear Facilities

Maxi Mummert, NUKEM Technologies

Engineering Services GmbH, Germany

Modeling Software Failures of Digital I&C in

Probabilistic Safety Analyses

Dr. Mariana Jockenhövel-Barttfeld, AREVA

GmbH, Germany

Analysis of the Spent Fuel Pool of a Nuclear

Power Plant, Taking Into Account Tolerable

Down Times

Dr. Günter Becker, RISA Sicherheitsanalysen

GmbH, Germany

Fuel

Chair: Patrick Raymond, Commissariat

à l‘énergie atomique et aux énergies

alternatives (CEA), France

Status of the Low Enriched Uranium UMo

Dispersion Fuel Development for High

Performance Research Reactors

Dr. Leo Sannen, SCK-CEN, Belgium

Advanced Statistical Design and Evaluation

Method

Steffen Kaefer, Westinghouse Electric

Germany GmbH, Germany

A Vision for Nuclear Reactor Safety

Prof. Francesco D‘Auria, University of Pisa, Italy

Emergency Response Exercises with

Comprehensive aAccident Scenarios at

Nuclear Power Plants

Ole Staack, ESN Sicherheit und

Zertifizierung GmbH, Germany

On a New Method for the Diagnosis of the

State of the Reactor Pressure Vessel

Inventory During Severe Accidents

Daniel Fiß, Hochschule Zittau/Görlitz,

Germany

Further Investigation on Light Gas Layer Erosion

Using the Current ASTEC Model Basis

Vera Koppers, Ruhr-Universität Bochum,

Germany

Assessment of Fission Product Release

From Ex-Vessel Molten Pools Based on ACE

Experiments

Kathrin Agethen, Ruhr Universität Bochum,

Germany

SA: WASA-BOSS + CESAM

Chair: Dr. Thorsten Hollands, Gesellschaft für

Anlagen- und Reaktorsicherheit (GRS) mbH,

Germany

QUENCH-11 Simulations With the Severe Accident

Analysis Code ASTEC V2.0 in CESAM

Florian Gremme, Ruhr-Universität Bochum,

Germany

CESAM: Simulation of a Large Break LOCA

Sequence in a German PWR Konvoi with the

Severe Accident Code ASTEC

Ignacio Gómez García-Torano, Karlsruhe

Institute of Technology, Germany

QUENCH-11 Simulations With the Severe Accident

Analysis Code ASTEC V2.0 in CESAM

Florian Gremme, Ruhr-Universität Bochum,

Germany

AMNT 2015

Programme


atw Vol. 60 (2015) | Issue 1 ı January

AMNT 2015 42

CESAM: Simulation of a Large Break LOCA

Sequence in a German PWR Konvoi with the

Severe Accident Code ASTEC

Ignacio Gómez García-Torano, Karlsruhe

Institute of Technology, Germany

Parametric Study on a KONVOI MB-LOCA

Scenario for the Determination of Coolability

Parameters

Ailine Trometer, University of Stuttgart,

Germany

WASA-BOSS: Athlet-CD Model for Severe Accident

Analysis for a Generic Konvoi Reactor

Polina Tusheva, Helmholtz-Zentrum

Dresden-Rossendorf (HZDR), Germany

WASA-BOSS: Expansion of the Model-Basis

in MELCOR

Philipp Dietrich, Karlsruhe Institute of

Technology, Germany

WASA-BOSS: Investigation of the Coolability

of Partly-Damaged BWR Core by Water

Injection Into the RPV

Dr. Valentino Di Marcello, Karlsruhe Institute

of Technology, Germany

Simulation of the Fukushima-Daiichi Unit 3

Accident With ATHLET-CD as Part of the

Collaborative Research Project WASA-BOSS

Mathias Hoffmann, Ruhr-Universität

Bochum, Germany

Contributions for „WASA-BOSS“: Study of

Containment Film Cooling With an Advanced

Water Film Model

Xi Huang, Karlsruhe Institute of Technology,

Germany

Key Topics

Decommissioning

Experience & Waste

Management Solutions

Welcome/Introduction

Dr. Erich Gerhards, E.ON Kernkraft GmbH,

Germany

Status Quo and Future

Challenges

Decommissioning Projects in Germany –

Perspectives From the Federal Level

Dr. Bernhard Massing, Federal Ministry for

the Environment, Nature Conservation, Building

and Nuclear Safety (BMUB), Germany

The Decision Regarding the “Right” Decommissioning

and Dismantling Concept

Dr. Ralf Versemann, RWE Power AG, Germany

Factors for Successful

Decommissioning

Staff – A Key Component for Successful

Decommissioning and Efficient Dismantling

Ernst-Michael Züfle, Senior Advisor to CEO,

Vattenfall GmbH, Germany

Construction and Process Organization in a

Nuclear Power Plant – A Constant Change?

Dr. Walter Glöckle, Ministry of the

Environment, Climate Protection and the

Energy Sector, Baden-Württemberg, Germany

Successful Interface Management Among

the Remaining Operation, Dismantling and

Recycling Management

Andreas Ehlert, Energietechnische

Gesellschaft im VDE (ETG), Germany

Remaining Operation and Waste

Management

Safety Classifications and Reclassification of

Systems

Dr. Heinz-Walter Drotleff, Entsorgungskommission

(ESK), Germany

Efficient Recycling and Waste Management

Frank Bolles, Burkhard Hartmann, EnBW

Kernkraft GmbH, Germany

qualification of old packages that have accumulated

over decades.

Involving representatives of the waste producers,

responsible authorities and experts, this

session will elaborate means and potentials

for improvement and acceleration of the

qualification process to deliver an annual

amount of 10.000 m³ of radioactive waste

starting from 2023.

Welcome/Opening Remarks

Presentations: Boundary Conditions for

Waste and Disposal

National Waste Management Plan

Federal Ministry for the Environment, Nature

Conservation, Building and Nuclear Safety

(BMUB), (tbc)

Final Repository Konrad – What Still Has to

be Done

Bundesamt für Strahlenschutz (BfS), (tbc)

Task and Duties of the Coordinators

GNS Gesellschaft für Nuklear-Service mbH /

Energiewerke Nord GmbH (EWN), (tba)

Panel Discussion: Final Disposal of 10.000 m³

of Radioactive Waste per Year – A Joint

Challenge

Introduction by Moderator

Panel Discussion

Panelists: Authorities and independent

experts, waste producers of public and

private sector

Key Topics: Qualification of waste packages

– rules and regulations, standards and

specific solutions, experiences gained and

lessons learned

Topical Session

End of Life Applications and

Infrastructure – Experiences and

Way Forward

Wednesday ı May 6 th 2015

Focus Session

Experiences on Postoperation

and Decommissioning in Germany

Tuesday ı May 5 th 2015

Coordinator: Dr. Erich Gerhards,

E.ON Kernkraft GmbH, Germany

This session provides an overview of current

developments and best practices in Germany.

Essential questions regarding the decision for

the “right” decommissioning and dismantling

concept, success factors of an efficient

decommissioning as well as the state-of-theart

amongst others during the waste treatment

will be discussed. The session adresses

representatives of international and national

service providers, public authorities and TSOs

as well as operators.

Focus Session

Qualification for Konrad –

What Is to Be Done?

Tuesday ı May 5 th 2015

Coordinators: Iris Graffunder, Energiewerke

Nord GmbH, Germany

Dr. Astrid Petersen, GNS Gesellschaft für

Nuklear-Service mbH, Germany

Since 2002, regulations with binding conditions

for final disposal of ILW/LLW in the Konrad

repository exist. Still, there is uncertainty

among the responsible waste producers concerning

the qualification process of waste

packages for final disposal. This comprises

both the fabrication of new packages and the

Coordinator: Thomas Seipolt, NUKEM

Technologies Engineering Services GmbH,

Germany

This session is going to cover the “after-life”

of nuclear facilities as well as decommissioning-

related programs in Germany and in

Europe with emphasis on European countries.

European countries not only have

shown different levels of progress in that

perspective, but have chosen different ways

to deal with the issue depending on their

specifics. This session covers topics such us

decommissioning know-how transfer, legal

framework, support programs as well as reuse

concepts.

AMNT 2015

Programme


atw Vol. 60 (2015) | Issue 1 ı January

Decommissioning Documents and Pilot

Dismantling – Support for the Armenian NPP

Ronald Rieck, NUKEM Technologies

Engineering Services GmbH, Germany

IAEA Decommissioning Programs and

Support

Vladimir Michal, International Atomic Energy

Agency, Vienna International Centre, Austria

Second Life of a Nuclear Site – Experiences

and Lessons Learned

Dr. Markus Storcz, RWE Power AG, Germany

INPP Decommissioning: Progress and Future

Challenges

Darius Janulevicius, State Enterprise Ignalina,

Italy

Engineering 3D Models for Decommissioning

Alexandr Kanishev, Vladislav Tikhonovsky,

CJSC NEOLANT, Russia

Topical Session

Comprehensive Solutions

for Waste and Spent Fuel

Management: The Key to

Public Acceptance from

New Build to Phase Out

Thursday ı May 7 th 2015

Coordinator: Dr. Jürgen Skrzyppek,

Stefan Weber, GNS Gesellschaft für

Nuklear-Service mbH, Germany

Today, solutions for the disposal of radioactive

waste from operating and dismantling of

NPPs do not only have to be technically

feasible, but must be communicable to the

public. Especially for planned new builds,

the issue of disposal has become a key

factor in public acceptance. This session will

offer international comparison of the challenges

and advances of waste management

as well as disposal and its relevance to the

situation of nuclear energy in the respective

country.

Obtaining Completely Fuel Free Reactors as

a Precondition for Dismantling

Tba, RWE/ NPP Biblis, Germany

Safe Dismantling Together with Reliable

Waste Management of Nuclear Power Plants

of the First Generation ‐ A Key Factor for

Acceptance of New Build Projects

Tba

Public Acceptance for a Repository Site and

its Simultaneous Influence on Decisions for

the Extension of Nuclear Power

Tba, Posiva Oy, Finland

Early Engagement of all Stakeholders Along

Potential Transport Routes to a Repository

Site

Tba, NWMO, Canada

Ensuring Dismantling and Disposal Projects

in the Long Term – Governmental

Responsibility

Tba, NDA, United Kingdom

Technical Session

Radioactive Waste Management,

Storage and Disposal

Characterisation

Wednesday ı May 6 th 2015

Chair: Werner Stratmann, STEAG Energy

Services GmbH, Germany

Gamma-Induced Radiation Damage in Spent

Nuclear Fuel

Christian Herold, RWTH Aachen, Germany

Progress in the Non-Destructive Analysis of

Radioactive Waste Drums to Fulfil Storage

Acceptance Criteria

Dr. Marina Sokcic-Kostic, NUKEM Technologies

Engineering Services, Germany

ANNA - A New Flexible Code for Best-

Estimate Neutron Activation Calculations

Lars Ackermann, AREVA GmbH, Germany

Monte-Carlo Calculations of the Radiation

Field in a Rock Salt Horizontal Emplacement

Gallery of an Underground Nuclear Waste

Disposal Facility

Héctor Saurí Suárez, Karlsruher Institut für

Technologie (KIT), Germany

Treatment Disposal I

Chair: Klaus Büttner, NUKEM Technologies

Engineering Services GmbH, Germany

Pyrohydrolysis: A Universal Tool for the

Treatment of Organic Radwaste

Dr. Georg Braehler, NUKEM Technologies

Engineering Services GmbH, Germany

Sorbents for Sr-90-Removal

Dr. Alexander Zulauf, NUKEM Technologies

Engineering Services, Germany

Qualification Procedure for the Konrad

Repository on Example of Disposal of

Activated Components of the Forschungs-

Neutronenquelle Heinz Maier-Leibnitz

(FRM II)

Patrick Halama, EWN GmbH, Germany

Treatment Disposal II

Chair: Klaus Büttner, NUKEM Technologies

Engineering Services GmbH, Germany

Lessons Learned from 1000 CASTOR

Dispatches

Wolfgang Reuter, GNS Gesellschaft für

Nuklear-Service mbH, Germany

Ageing of Elastomeric Seals for Storage

Containers

Anja Kömmling, Federal Institute for

Materials Research, Germany

Results and Conclusions From the German

P&T Study – a View of the Contributing

Helmholtz Research Centres

Dr. Bruno Merk, Helmholtz-Zentrum

Dresden-Rossendorf (HZDR), Germany

Technical Session

Decommissioning of Nuclear

Installations

Decommissioning of Nuclear

Facilities – Challenges and

Solutions

Thursday ı May 7 th 2015

Chair: Stefan Klute, Siempelkamp

Nukleartechnik GmbH, Germany

Source Term Reduction Prior to Decommissioning

and Dismantling AREVA‘ s

Decontamination Technology

Dr. Christian Topf, AREVA GmbH, Germany

Detection of Contaminations in Pipes With

OSL-Dosimetry: Test Measurements

Uwe Reichelt, TU Dresden, Germany

Dismantling of SVAFO Research Reactors

R2&R2-0

Hans-Uwe Arnold , AREVA GmbH, Germany

Further Dismantling Activities of the

Obrigheim NPP Reactor

Dr. Ralf Borchardt, Energiewerke Nord

GmbH, Germany

Sorbents for Sr-90-Removal

Dr. Alexander Zulauf, NUKEM Technologies

Engineering Services, Germany

Characterization and Remediation of Contaminated

Concrete at Nuclear Power Plants

Richard Mcgrath, USA

AMNT 2015 43

AMNT 2015

Programme


atw Vol. 60 (2015) | Issue 1 ı January

44

KTG INSIDE

Inside

Liebe Leserinnen und Leser, im Jahr 2014 sind vier neue Kernkraftwerke weltweit ans Netz gegangen, davon

drei allein in China. Weitere 26 sind dort im Bau. Das Land mit dem größten Wachstumspotenzial und Energiehunger

setzt verstärkt auf Kernenergie, um die Umweltverschmutzung durch die Kohleverstromung und die damit verbundenen

gesundheitlichen Gefahren nachhaltig zu reduzieren. Und auch im Rahmen der internationalen Bemühungen um Klimaschutz

und CO 2 -Reduktionen ist Kernenergie inzwischen eine Option für den Weltklimarat.

In Deutschland zeigt sich derweil immer deutlicher die

Tragweite von nicht zu Ende gedachten politischen Entscheidungen.

Der Kernenergieausstieg lässt die ehrgeizigen

CO 2 -Ziele der Bundesregierung wanken. „Dreckige“ Kohlekraftwerke

ersetzen in der Grundlastversorgung die Kernenergie,

weil die entsprechenden CO 2 -Zertifikate so billig

sind. Der EU-Emissionshandel liegt wegen politischer Eingriffe

und falscher Rahmenbedingungen am Boden. Und

damit rechnet sich selbst der Einsatz moderner und umweltfreundlicher

Gas- und Kohlekraftwerke nicht mehr.

Während die Erneuerbaren zeitweise im Überfluss ins

Netz drücken, leidet insgesamt die Versorgungssicherheit.

Auf Veranlassung des Netzbetreibers musste beispielsweise

2014 das Kernkraftwerk Brokdorf die Revision verschieben.

Gleichzeitig ergreifen die europäischen Nachbarn im

Osten technische Maßnahmen, um die ungebremste

Stromeinspeisung aus Deutschland zu Spitzenzeiten der

regenerativen Erzeugung zu verhindern. Erforderliche Infrastrukturinvestitionen

in Deutschland bleiben hingegen

aus: zu wenig Planungssicherheit und jede Menge regionale

Widerstände. Und die technische Umsetzung von Großspeichern

ist nach wie vor nicht gelöst. Die „Dunkelflaute“

wird bei weiter steigendem Anteil der Regenerativen immer

mehr zum Problem, technisch wie auch wirtschaftlich.

Fazit: Der Energiemarkt funktioniert nicht mehr.

Gleichzeitig versucht die Bundesregierung die durch

ihre aktionistischen Eingriffe selbst verursachten Probleme

bei Energieversorgung und Klimaschutz auf die Industrie

und damit letztlich alle Bürger abzuwälzen. Das betrifft

in gleichem Maße den vom Erneuerbare-Energie-Gesetz

(EEG) beeinflussten hohen Strompreis – dem inzwischen

in Europa nach Dänemark mit Abstand zu anderen

EU-Staaten zweithöchsten – wie den verordneten Zwang

zur Häuserdämmung. Und für die weitere Entsorgung

werden neue zusätzliche Zwischenlagergenehmigungen

für Abfälle aus der Wiederaufarbeitung gefordert, weil

diese politisch motiviert nicht mehr in das dafür vorgesehene

zentrale und genehmigte Lager dürfen.

Die Bundesregierung zeigt sich dennoch überrascht,

dass ihre Eingriffe mit Konsequenzen insbesondere für die

großen Energieversorger verbunden sind und diese unter

wirtschaftlichen Gesichtspunkten zum Handeln gezwungen

werden. Das über Jahrzehnte gesamtgesellschaftlich

eingeschwungene System zwischen Industrie, Politik und

Gesellschaft ist aus dem Takt.

Mich persönlich erstaunt bei diesen Entwicklungen in

Deutschland am meisten, dass die politisch Verantwortlichen

immer wieder von Konsequenzen überrascht werden,

die doch eigentlich recht gut im Voraus zu berechnen

waren. Ein Beispiel dafür ist die Diskussion um die Entsorgungskosten.

Auf Basis geprüfter Konzepte wurden

über Jahrzehnte Rückstellungen aufgebaut und bestätigt.

Für den Wegfall von Planungs- und Geschäftsgrundlagen

kann man die Unternehmen der Energiewirtschaft aber

tatsächlich nicht verantwortlich machen; weder für den

um Jahrzehnte verschobenen Bau eines Endlagers für

hochradioaktive Abfälle noch für die gesetzliche „Enteignung“

ihrer Kraftwerke und den damit verbundenen wirtschaftlichen

Verlust.

Liebe Leserinnen und Leser, ich möchte mich weder vom

bisherigen Bild der ingenieurtechnisch geprägten und innovativen

Bundesrepublik verabschieden, noch vom Wirtschaftsstandort.

Die Erkenntnisse des Bundeswirtschaftsministers

lassen mich hier ein wenig hoffen. Schließlich hat

er die Komplexität der Energiewende erkannt und auch das

EEG als ungeeignetes Mittel zur Steuerung der Energiesysteme

adressiert. Wir dürfen dennoch gespannt sein, wie die

übergeordneten energiepolitischen Ziele Wirtschaftlichkeit,

Versorgungssicherheit und Umweltverträglichkeit in

Deutschland wieder gleichermaßen Einzug halten.

Ich wünsche Ihnen und uns allen für das Jahr 2015,

dass wir auch weiterhin unsere Kompetenz und unser Engagement

im Dienste der friedlichen Nutzung der Kernenergie

zum Einsatz bringen können – in Deutschland und

weit darüber hinaus!

Ihre

Dr. Astrid Petersen

Vorsitzende der KTG e.V.

KTG-Newsletter Nr. 4

* Der vollständige

Newsletter, u.a. mit

detaillierten Informationen

zu Vorstand

und Aktivitäten der

KTG-Sektionen ist

auf den Webseiten

der KTG verfügbar

unter www.ktg.org |

Service

Liebe Leserinnen und Leser, wir haben in der Mitgliederversammlung der Kerntechnischen Gesellschaft e. V.

(KTG) am 6. Mai 2014 einstimmig eine neue Satzung verabschiedet, die u.a. eine Vereinfachung der Struktur vorsieht.

Die Fusion der bisher 10 Ortssektionen zu den 5 Sektionen – Nord, Süd, West, Ost und Südwest – ist inzwischen

umgesetzt. Informationen darüber, aber auch über die konstituierende Sitzung des KTG-Beirats und vieles mehr

finden sie in diesem Newsletter*.

Weiterhin ist es uns sehr wichtig, dass der KTG-Newsletter

insbesondere durch Beiträge von IHNEN – den KTG-

Mitgliedern – lebt, daher gilt nach wie vor: Ihr Feedback

aber auch Ihr Input ist ausdrücklich erwünscht. Lob, Kritik

und Verbesserungsvorschläge, aktuelle Themen, interessante

Beiträge und News aus der Welt der Kerntechnik

senden Sie gerne an: newsletter-input@ktg.org.

Die nächste Ausgabe des Newsletters ist für das

II. Quartal 2015 geplant mit Einsendeschluss für Beiträge

28. Februar 2015. Ihr Redaktionsteam

KTG Inside


Unsere Jahrestagung – die gemeinsame Fachkonferenz von KTG und DAtF

5.–7. Mai 2015 Estrel Convention Center Berlin ı Deutschland

Frühbucherrabatt!

Bis zum 31. Januar 2015

registrieren und

bis zu 170 EUR sparen!

Key Topics

Kompetenz & Innovation

Sicherheitsstandards & Betriebsexzellenz

Rückbauerfahrung & Entsorgungslösungen

Stilllegung und Entsorgung im Fokus

Unsere Jahrestagung bietet mit einer Vielzahl an Vorträgen und

Diskussionen in Plenarsitzung, Technischen Sitzungen, Fach- und

Fokussitzungen ein zweieinhalbtägiges Programm der Extraklasse.

Experten aus Theorie und Praxis diskutieren aktuelle Fragestellungen

und neueste Erkenntnisse.

3 Gold Sponsor

3 Silber Sponsoren

Aktuelle Top-Themen

3 Stilllegung

3 Nachbetrieb

3 Rückbau

3 Abfallmanagement

3 Konditionierung

3 Transporte

3 Zwischenlagerung

3 Endlagerung

Unsere Jahrestagung – das Original seit 45 Jahren.

Hier trifft sich die Branche.

www.unserejahrestagung.de


atw Vol. 60 (2015) | Issue 1 ı January

46

KTG INSIDE

Aktuelles und Kernenergie-News

Neuformierung der KTG‐Sektionen

Im Rahmen der Strukturvereinfachung der KTG wurden

die bisherigen 10 Ortssektionen wie folgt fusioniert:

• Erlangen/Nürnberg und München bilden die Sektion

Süd

• Karlsruhe-Mannheim-Stuttgart und Rhein-Main bilden

die Sektion Süd-West

• Berlin/Brandenburg/Greifswald und Sachsen bilden

die Sektion Ost

• Rheinland und Rhein-Ruhr bilden die Sektion West

• Hannover/Braunschweig und Norddeutschland bilden

die Sektion Nord

Sektion Süd

Nach dem Zusammenschluss der KTG-Ortssektionen Erlangen/Nürnberg

und München vereint die Sektion Süd ca. 600

Mitglieder – vorrangig aus den Kernkraftwerken Gundremmingen,

Isar und Grafenrheinfeld sowie den Unternehmen

GRS, AREVA, dem TÜV Süd und der TU München (FRM II).

Neben dem „internen“ Erfahrungsaustausch und der

Vernetzung der Mitglieder in den einzelnen Unternehmen

sowie regelmäßigen Vortragsveranstaltungen an den jeweiligen

Standorten sollen zukünftig auch gemeinsame

Veranstaltungen durchgeführt werden.

Wenn passend, sollen aber auch „externe“ Veranstaltungen

dazu beitragen, das Wissen über und die sachliche

Auseinandersetzung mit kerntechnischen Themen zu erhöhen.

Außerdem zeigen die Mitglieder der Sektion durch

ihr berufliches und persönliches Engagement, dass sie als

Experten in allen Bereichen der Kernenergie verantwortungsvoll

und nachhaltig handeln. Auf diese Weise möchten

sie zur Versachlichung des Themas in Deutschland beitragen.

Auch weiterhin sollen Exkursionen – u.a. im Rahmen

von Veranstaltungen an den jeweiligen Standorten – für

die Mitglieder angeboten werden. Wichtig ist dem Vorstand,

den Erfahrungsaustausch mit den anderen neu gegründeten

Sektionen sowie den Fachgruppen zu intensivieren.

Informationen auf der neu zu gestaltenden Internetseite

der Sektion sollen zukünftig aktuell und vielseitig

gestaltet werden.

Sektion Südwest

Die Sektion Südwest ist mit derzeit ca. 790 Mitgliedern die

mitgliederstärkste Sektion der KTG. Sie ist im Jahr 2014

aus den beiden Ortssektionen Karlsruhe-Mannheim-Stuttgart

und Rhein-Main entstanden.

In ihrer Region (Baden-Württemberg und Hessen) befinden

sich neben den (teils bereits abgeschalteten) Kernkraftwerken

Biblis, Neckarwestheim, Obrigheim und Philippsburg

zahlreiche Firmen und Forschungseinrichtungen

mit energietechnischen/kerntechnischen Kompetenzen.

Zu ihnen zählen z.B. AREVA Deutschland, Kraftanlagen Heidelberg,

NUKEM, NIS sowie Westinghouse Electric Germany

GmbH. Vertreten sind auch die Universitäten Frankfurt,

Darmstadt und Stuttgart sowie Forschungseinrichtungen

wie das GSI Helmholtzzentrum für Schwerionenforschung in

Darmstadt und das Karlsruher Institut für Technologie

(KIT).

Die Mitglieder der Sektion Südwest, die sich hauptsächlich

aus den oben genannten Einrichtungen und Unternehmen

rekrutieren, sind sehr reisefreudig, weshalb technische

Exkursionen – nicht nur zum Thema Kerntechnik –

einen wichtigen Bestandteil der Vereinsarbeit bilden. Die

Diskussionsfreudigkeit der Mitglieder kann auch bei Vortragsveranstaltungen

mit anschließenden sogenannten

Stammtischen ausgelebt werden.

Besonders in den Forschungseinrichtungen aber auch

bei den Firmen finden bisweilen interessante Vorträge und

Vortragsreihen statt, auf die besonders aufmerksam gemacht

wird.

Sektion Ost

Die Sektion Ost ist im Oktober 2014 aus den bisherigen Sektionen

Berlin/Brandenburg/Greifswald und Sachsen hervorgegangen.

Mit einer Mitgliederzahl von ca. 160 ist die

Sektion Ost die kleinste aller Sektionen.

Hauptsächlich stammen die Mitglieder (von Nord

nach Süd) von den EWN mit den Standorten Lubmin und

Rheinsberg über eine ganze Reihe Ingenieurbüros in Berlin

und Sachsen bis zu den drei großen öffentlichen Einrichtungen

in Sachsen: Technische Universität Dresden,

Forschungsstandort Dresden-Rossendorf (Sitz vom Helmholtz-Zentrum

Dresden-Rossendorf und Verein für Kernverfahrenstechnik

und Analytik Rossendorf) sowie der Hochschule

Zittau/Görlitz (alle 4 KOMPOST KOMPetenzzentrum

OST).

Wir bieten unseren Mitgliedern und externen Gästen

regelmäßig:

• Vortragsveranstaltungen und Diskussionsrunden zu

aktuellen Themen,

• Kolloquien in Zusammenarbeit mit dem VDI/GET und

dem KOMPOST,

• Exkursionen zu kerntechnischen und Kerntechnik nahen

Einrichtungen,

• Verbindungen zu anderen Sektionen der KTG in

Deutschland und

• lockere Gemeinschaftsabende an.

Sektion West

Die KTG-Sektion West ist aus den bisherigen Ortssektionen

Rheinland und Rhein-Ruhr hervorgegangen.

Die Mitglieder des Vorstandes der Sektion West sehen

die Information über die friedliche Nutzung der Kernenergie

in verschiedenen Technologiefeldern als ihre wichtigsten

Ziele der Vorstandsarbeit an.

Neben dem „internen“ Erfahrungsaustausch und den

Netzwerken der Mitglieder sollen auch „externe“ Veranstaltungen

dazu beitragen, das Wissen über und die sachliche

Auseinandersetzung mit kerntechnischen Themen

zu erhöhen. Zudem soll durch das persönliche und berufliche

Engagement der Mitglieder der Sektion deutlich werden,

dass hinter der Kernenergie Fachleute und verantwortungsvoll

handelnde Menschen stehen, die als Teil

dieser Gesellschaft sich für die Versachlichung einer über

viele Jahre in Deutschland stark emotionalisierten Debatte

einsetzen.

Neben regelmäßigen Vortragsveranstaltungen werden

auch jährlich Exkursionen für die Mitglieder angeboten.

Wichtig ist dem Vorstand, den Erfahrungsaustausch mit

den anderen Sektionen und Fachgruppen zu intensivieren.

Informationen auf den Internetseiten der Sektionen

sollen zukünftig noch aktueller und vielseitiger gestaltet

werden.

Mit einem interessanten Angebot der Sektion West will

der Vorstand die Sektion, die aktuell ca. 530 Mitglieder

umfasst, für neue Mitglieder attraktiv machen.

Konstituierende Sitzung des Beirats

Am 5. November 2014 fand in Berlin die konstituierende

Sitzung des KTG-Beirats statt. Die anwesenden Beiratsmitglieder

haben Dr. Wolfgang Steinwarz (Siempelkamp

KTG Inside


atw Vol. 60 (2015) | Issue 1 ı January

Nukleartechnik GmbH & Sprecher der Sektion West) zum

Vorsitzenden des Beirates und Iris Graffunder (EWN

GmbH, Betriebsstätte Karlsruhe & Sprecherin Fachgruppe

Stilllegung und Entsorgung) zur stellvertretenden Vorsitzenden

des Beirates gewählt. In der Sitzung wurden Vorschläge

für den neu zu wählenden KTG-Vorstand diskutiert

und das nächste Beiratstreffen für 29. Januar 2015

geplant.

Neuer Vorstand bei Women in

Nuclear (WiN) Germany

Auf der diesjährigen Mitgliederversammlung von WiN

Germany am 14. November 2014 bei der Westinghouse

Electric GmbH in Mannheim waren die WiNners aufgerufen,

einen neuen Vorstand sowie die Präsidentin zu wählen.

Die bisherige Präsidentin Jutta Jené wurde mit großer

Zustimmung in ihrem Amt für weitere zwei Jahre

bestätigt.

Ihr zur Seite stehen im Vorstand zukünftig Marika Didonaki

(Budgetbeauftragte), Hedjeh Emami-Far (Leiterin

AG Kommunikation), Karin Reiche (AG Messen & Veranstaltungen),

Maxi Mummert (AG Internet), Dr. Christien Zedler

(AG Bildung), Beate Scheffler (AG Networking) und Yvonne

Broy (Sponsoring-Beauftragte).

Die bisherige Leiterin der AG-Bildung, Birgit Felgenhauer,

stand wegen beruflicher Veränderung nicht mehr zur

Wiederwahl. Ihr folgt Christien Zedler ins Amt. „Wir danken

Birgit Felgenhauer ganz herzlich für ihr Engagement im

WiN-Vorstand und für die AG-Bildung und freuen uns auf

die Zusammenarbeit mit Christien Zedler“, sagte Präsidentin

Jutta Jené.

Auch wenn in Deutschland der Ausstieg aus der Kernenergie

beschlossen worden ist, wollen die deutschen

WiNners nicht nur das „interne“ Networking pflegen, sondern

sich auch weiterhin aktiv im internationalen Rahmen

– WiN Europe bzw. WiN Global – betätigen. Nächste Gelegenheit:

WiN Global Conference vom 24. bis 28. August

2015 in Wien.

Zum vierten Mal hatte der Verein den WiN-Germany-

Preis ausgeschrieben, der als eine besondere Anerkennung

für den Nachwuchs in der Nukleartechnik vergeben

wird. Aus den von jungen Wissenschaftlerinnen bzw. Ingenieurinnen

eingereichten Arbeiten nahm eine Jury vorab

in einem ersten Auswahlverfahren aus allen eingegangenen

Bewerbungen drei Kandidatinnen in die engere

Wahl – darunter auch Christine Schumacher vom Forschungszentrum

Jülich. Mit ihrem Vortrag „Entwicklung

einer Trennmethode für Radionuklide in wässrigen Umweltproben

mit einem automatisierten Trennsäulensystem“

überzeugte sie dann auch die „große“ Jury – die Teilnehmerinnen

der Mitgliederversammlung, die mehrheitlich

die Arbeit und den Vortrag von Christine Schumacher

würdigten.

Neben einer Urkunde und einer Geldprämie erhält

Christine Schumacher – ebenso wie die beiden Platzierten

Frances Viereckl (NUKEM) und Madeleine Weber (KIT) – die

Möglichkeit, ihre Arbeit beim Workshop Kompetenzerhaltung

anlässlich der Jahrestagung Kerntechnik 2015 einzureichen.

Nachwuchstagung der Jungen Generation

Zur diesjährigen Nachwuchstagung der Jungen Generation

haben sich ca. 40 Teilnehmer im Informationszentrum des

Kernkraftwerks Isar getroffen, um über die wirtschaftlichen

Auswirkungen der Energiewende zu diskutieren. Als

durch die Abschaltung eines Blockes direkt „Betroffene“

konnten der Anlagenleiter Isar, Dr. Kohlpainter, sowie Frau

Zimmermann in ihrem Vortrag „Herausforderung an Betrieb

und Rückbau“ auch aus ganz persönlicher Erfahrung

berichten. Wie andere Standorte und Betreiber sich dieser

Aufgabe stellen, neben der Ausrichtung auf eine neue

Marktsituation, aber auch, wie die Mitarbeiter motiviert

und mitgenommen werden sollen stellten Reinhold Scheuring

(Kraftwerksleiter Kernkraftwerk Grafenrheinfeld) und

Christoph Heil (Technischer Geschäftsführer der EnBW

Kernkraft GmbH) dar. Dass mit dem Ausstiegsbeschluss

auch die Entsorgungsfrage mehr in den Fokus rückt, zeigte

Thomas Seipolt (Geschäftsführer der NUKEM Technologies

Engineering Services GmbH). Er thematisierte insbesondere

die zukunftssichere Behandlung radioaktiver Abfälle.

Gleich zwei Vorträge hielt Detlef Fischer (Verband der Bayerische

Energie- und Wasserwirtschaft e.V.). Er vertrat

Dr. Kießling von E.ON mit dem Vortrag zur Stilllegung von

Kraftwerken und dem derzeit viel diskutierten Kapazitätsmarkt.

Zunächst hielt er jedoch einen wahrlich launigen

Vortrag über die Energiewende. Darüber hinaus wurde die

Situation der Netze von Ralf Schwarz (Bayernwerk AG) sowie

die Energiebeschaffung/Bilanzkreismanagement von

Thomas Darda (EnSo) beleuchtet.

Abgerundet wurde die Veranstaltung mit einem Vortrag

der KTG-Vorsitzenden, Dr. Astrid Petersen, die auf die

neue, eher zurückhaltende Rolle der Kernenergie in Politik

und Medien einging sowie mit dem Besuch der Papierfabrik

UPM Plattling. Dieser Standort gehört zu den größten

Energieverbrauchern der Region und ist aufgrund seiner

Wettbewerbssituation auf dem internationalen Markt nur

durch die Vergünstigungen überlebensfähig.

Die Junge Generation bedankt sich bei E.ON Kernkraft

sowie dem Kernkraftwerk Isar für die freundliche Unterstützung

bei der Durchführung der Tagung.

Splitter aus der Energiewelt

• Leitartikel aus der Welt vom 17.11.2014: Ökologisch

entsorgtes Geld

Bei der Energiepolitik gefährden die abrupten Kurswechsel

der großen Koalition den Energiestandort

Deutschland. Überforderte Öko-Populisten sind zunehmend

mit der Korrektur eigener Fehler beschäftigt


• Schweinfurter Tagblatt, 05.11.2014 zum Thema „Erfolgreicher

Rückbau bei E.ON“: Ein leerer Sarkophag

aus Beton

Zum Thema Abschluss atomrechtlicher Rückbau Kernkraftwerk

Würgassen mit Bildern & Interview von Dr.

Ralf Güldner Vorsitzender der Geschäftsführung der

E.ON-Kernkraft GmbH …

• Spiegel Online vom 01.12.2014: Hier bekommen Sie

reine Kernkraft

Ein Augsburger Energieunternehmen will punkten, indem

es einen Strom anbietet, der ausschließlich aus

Kernkraft gewonnen wird. Kurios: Die Firma will nicht

Nuklearfans ansprechen, sondern fortschrittliche Klimaschützer


Glosse

Bemühungen für eine Laufzeitverlängerung der Camerata

Nucleare endgültig gescheitert: Das Sinfonieorchester der

Deutschen Energiewirtschaft stellt den Betrieb nach

einem Konzert im Kloster Wettenhausen bei Günzburg

endgültig ein.

Denkt man an die großen Aktivitäten der Musiker in

den vergangenen 28 Jahren seit der Gründung der

Camerata Nucleare und die Kontamination weiter Landstriche

mit einer hohen Dosis an klassischen Werken, die

47

KTG INSIDE

KTG Inside


atw Vol. 60 (2015) | Issue 1 ı January

48

KTG INSIDE

regelmäßig zu Strahlung in den Gesichtern der Zuhörerschaft

geführt haben, drängen sich uns Nukleartechnikern

einige Fragen förmlich auf:

• Benötigen wir für die Camerata Nucleare nicht eine

Stilllegungsgenehmigung? Und falls ja, welche Behörde

wäre hierfür eigentlich zuständig?

• Müssen die Werkzeuge (Instrumente), die vielen Stunden

hohen Aktivitäten ausgesetzt waren, jetzt einer Abklinglagerung

zugeführt werden?

• Was passiert mit den „Abfallprodukten“ aus langjähriger

Produktion, den mit Tönen aktivierten silbernen

Plastikscheiben?

Doch lassen Sie uns hier und heute mit solchen Fragen

keine schlafenden Hunde wecken, sondern lassen

Sie uns hoffen, dass unsere Kollegen ihre Werkzeuge

jetzt nicht dem „Sicheren Einschluss“ zuführen. Sie haben

uns seit der Gründung des Orchesters 1986 viel

Freude bereitet, und deshalb akzeptieren wir die Beendigung

des „bestimmungsgemäßen Betriebs“ und sagen

einfach nochmals:

Herzlichen Dank den Mitgliedern der Camerata Nucleare

und weiterhin alles Gute!!

Kontakt

Bernd Gulich

Sprecher der Arbeitsgruppe Kommunikation

bernd.gulich@eon.com

Herzlichen

Glückwunsch

Januar 2015

95 Jahre wird im Januar

9. Dr. Josef Fassbender, Jülich

88 Jahre werden im Januar

1. Prof. Dr. Werner Oldekop,

Braunschweig

3. Dipl.-Ing. Walter Jäger,

Engelskirchen

86 Jahre wird im Januar

20. Dr. Devana Lavrencic-Cannata,

Rom/I

85 Jahre wird im Januar

10. Dipl.-Ing. Hans-Peter Schmidt,

Weinheim

84 Jahre wird im Januar

12. Dr. Rolf Hüper, Karlsruhe

83 Jahre wird im Januar

3. Dipl.-Ing. Fritz Kohlhaas, Kahl/M.

82 Jahre werden im Januar

7. Dr. Willi Biermann, Bergisch

Gladbach

9. Prof. Dr. Hellmut Wagner,

Karlsruhe

16. Heinz Fleischhacker, Lingen/Ems

80 Jahre werden im Januar

10. Dipl.-Ing. Walter Diefenbacher,

Karlsruhe

17. Dipl.-Ing. Helge Dyroff, Alzenau

24. Theodor Himmel, Bad Honnef

79 Jahre werden im Januar

5. Obering. Peter Vetterlein,

Oberursel

11. Dipl.-Ing. Ulrich Moritz, Bergisch

Gladbach

23. Prof. Dr. Hartmut Schmoock,

Norderstedt

27. Dr. Peter Weimar, Karlsruhe

30. Dipl.-Phys. Wolfgang Borkowetz,

Rüsselsheim

30. Dipl.-Ing. Friedrich Morgenstern,

Essen

78 Jahre werden im Januar

7. Dipl.-Ing. Albrecht Müller,

Niederrodenbach

9. Dipl.-Ing. Werner Rossbach,

Bergisch Gladbach

10. Dipl.-Ing. Klaus Lehmann,

Erlangen

14. Dr. Angelika Hecker, Philippsburg

25. Dipl.-Ing. (FH) Heinz Wolf,

Philippsburg

77 Jahre werden im Januar

7. Dipl.-Ing. (FH) Manfred Schirra,

Stutensee

8. Dipl.-Ing. Wolfgang Repke,

Waldshut

10. Dr. Dieter Türck, Dieburg

12. Dipl.-Ing. Hans Dieter Adami,

Rösrath

17. Dr. Dieter Fleischhammer, Dießen

18. Dr. Werner Katscher, Jülich

22. Dr. Franz Müller, Erlangen

28. Dipl.-Ing. Erhard Müller, Gründau

76 Jahre werden im Januar

11. Dipl.-Ing. Gerwin H. Rasche,

Hasloch

13. Dr. Udo Wehmann, Hildesheim

16. Dr. Wolfgang Kersting, Blieskastel

21. Prof. Dr. Detlef Filges, Langerwehe

23. Dipl.-Phys. Wolfram Gaide, Jülich

28. Dr. Sigwart Hiller, Lauf

75 Jahre wird im Januar

4. Dipl.-Ing. Wolfgang Schemenau,

Laudenbach

70 Jahre wird im Januar

6. Dr. Bruno Keck, Alzenau

65 Jahre werden im Januar

3. Dipl.-Ing. Christian Sauer, Hessheim

10. Sten Adin, Västeras/S

15. Dipl.-Ing. Andreas Hüttmann,

Oering

29. Dipl.-Ing. Hans-Jürgen Schartz,

Waghäusel

31. Dr. Bernd Lorenz, Essen

60 Jahre werden im Januar

8. Dr. Peer Dräger, München

21. Dr. Christian Krause, Bonn

25. Heinz-Ulrich Kraft,

Schwanstetten

28. Dr. Joachim Runkel MdL, Suthfeld

50 Jahre werden im Januar

9. Michael Lüdeke, Neuenkirchen

11. Dr. Ben Volmert, Birmensdorf/CH

23. Dipl.-Ing. Matthias Topp, Wiesloch

24. Gero Spitzner, Fürth

25. Dr. Guido Caspary, Aldenhoven

31. Dipl.-Ing. Eckhard Stengert,

Worms

Februar 2015

87 Jahre werden im Februar

10. Dipl.-Ing. Hans-Peter Schabert,

Erlangen

24. Dr. Dietrich Hiller, Wiesbaden

86 Jahre wird im Februar

20. Dr. Helmut Hübel, Bensberg

85 Jahre wird im Februar

5. Dr. Eberhard Teuchert,

Leverkusen

84 Jahre wird im Februar

14. Dipl.-Ing. Heinrich Kahlow,

Rheinsberg

82 Jahre wird im Februar

11. Dr. Rudolf Büchner, Dresden

81 Jahre werden im Februar

9. Dr. Horst Keese, Rodenbach

12. Dipl.-Ing. Horst Krause, Radebeul

23. Prof. Dr. Adolf Birkhofer, Grünwald

79 Jahre werden im Februar

6. Dr. Ashu-T. Bhattacharyya,

Erkelenz

17. Dr. Helfrid Lahr, Wedemark

KTG Inside


atw Vol. 60 (2015) | Issue 1 ı January

78 Jahre werden im Februar

5. Prof. Dr. Arnulf Hübner, Berlin

6. Dipl.-Ing. Heinrich Moers,

Florida/USA

11. Dr. Günter Keil, Sankt Augustin

11. Reiner Lembcke, Bad Vilbel

18. Dipl.-Ing. Hans Wölfel,

Heidelberg

21. Dipl.-Ing. Hubert Andrae, Rösrath

77 Jahre werden im Februar

5. Dr. Friedrich-Peter Heigl,

Frankfurt/M.

15. Dr. Heiner Krug, Saarbrücken

27. Dr. Klaus Wolfert, Ottobrunn

76 Jahre werden im Februar

3. Dr. Roland Bieselt, Kürten

8. Dr. Joachim Madel, Sankt Ingbert

8. Dr. Herbert Spierling, Dietzenbach

22. Dr. Manfred Schwarz, Dresden

15. Dipl.-Ing. Nicolaus Porschek,

Hamburg

23. Dipl.-Ing. Victor Teschendorff,

München

24. Dipl.-Ing. Ing. grad. Anton Scheuer,

Kerpen

28. Dr. Günther Dietrich, Holzwickede

65 Jahre wird im Februar

12. Dipl.-Ing. (TU) Karl-Heinz Durst,

Hessdorf

60 Jahre werden im Februar

1. Dipl.-Ing. Wolfgang Filbert, Peine

23. Dipl.-Ing. Wolfgang Storr,

Möhrenfeld

50 Jahre werden im Februar

6. Dr. Ronald Hepper, Würzburg

15. Joachim Dux, Bürstadt

18. Sven Lahmann, Adenbüttel


13. Oktober

Prof. em Dr.-Ing

Wolfgang Lischke

Dresden

13. November 2014

Prof. Dr. Horst Böhm

Karlsruhe

24. November 2014

Dr. Werner Meyer-Jungnick

49

KTG INSIDE

75 Jahre werden im Februar

8. Dipl.-Phys. Tadas D. Urbas,

Neustadt

9. Dr. Gerhard Preusche,

Herzogenaurach

13. Dr. Hans-Ulrich Fabian, Gehrden

14. Kurt Ebbinghaus, Bergisch

Gladbach

21. Dr. Jürgen Langeheine, Gauting

23. Dr. Gerhard Heusener, Bruchsal

25. Prof. Dr. Sigmar Wittig, Karlsruhe

70 Jahre werden im Februar

1. Prof. Dr. Alfred Voß, Aidlingen

11. Dipl.-Ing. Hans-Dieter Wallerius,

Frankenthal

Die Kerntechnische Gesellschaft e. V.

gratuliert ihren Mitgliedern sehr

herzlich zum Geburtstag

und wünscht ihnen weiterhin

alles Gute.

KTG Inside

Verantwortlich für den Inhalt:

Die Autoren.

Lektorat: Sibille Wingens,

Kerntechnische Gesellschaft e.V.

Robert-Koch-Platz 4

10115 Berlin

Tel.: +49 30 498555-10, Fax: -19

E-Mail: s.wingens@ktg.org

Internet: www.ktg.org

Willich

Die KTG verliert in ihnen langjährige

Mitglieder, denen sie ein ehrendes

Andenken bewahren wird.

Ihren Familien gilt

unsere Anteilnahme.

KTG Inside


atw Vol. 60 (2015) | Issue 1 ı January

60 TH YEAR ATW 50

die atomwirtschaft

Vol. I

Issue 1

January 1956

Foreword

The idea of the atomic structure of matter came from philosophic speculations and was proven by theoretical and experimental

research. Its results provide to mankind an energy form of its strongest concentration. In its practical use it

initially served war technology. This use woke the emotional defence of mankind feeling threatened as well as the desire

to use this power source for peacefully purposes and to exploit it for the economic sector.

Already today nuclear energy is an important replenishment

of the world energy potential which exists alongside

classical energy sources. An increasing number of companies

of different businesses need continuous information

about the intentions of nuclear energy use: the chemical

industry, the electrical industry, the energy industry, the

measuring instruments industry and all branches of mechanical

engineering, which are part of this new development

from exploitation of minerals to reactor constructions.

Added to this are all companies and specialists that pay

attention to the allocation of isotopes. While there exists to

necessary degree scientific literature for nuclear physics

and related fields, there is a lack of a systematically handling

of newly arising economic problems. It thereby appears

irrational to split information and news into different

specialist journals.

The present journal will in detail and with objective

clarity report on all economic questions with regard to

nuclear transformation. Scientific and chemical engineering

topics are only to the extend part of the programme as

long as they are being essential to the understanding of

economic questions. The information will be extensive and

concentrated and will cover economic contexts including

news, legal questions as well as questions on operational

and social safety.

With the editorial experience by the publisher the

journal will concentrate and rationalize the reading mater.

Especially its documentation, which sighted and reliably

provides a pictures of the happenings in Germany and the

most important countries in the world, will inform the

reader quick and briefly in an intelligible language.

Thus the ATOMWIRTSCHAFT should serve above all a

serious and concentrated reporting and should be a conscientious

advisor on a new promising field of work of science

and technics beyond German speaking regions.

The Publisher

Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne,

Herbert Seidl and Kurt Sauerwein

Zum Geleit

Die Vorstellung vom atomaren Aufbau der Materie erwuchs aus philosophischer Spekulation und wurde durch theoretische

und experimentelle Forschungen erwiesen. Ihre Ergebnisse stellen der Menschheit eine Energieform in stärkster

Konzentration zur Verfügung. In ihrer praktischen Verwendung diente sie zunächst der Kriegstechnik. Diese Anwendung

weckte die seelische Abwehr der sich bedroht fühlenden Menschheit, wie auch den Drang, diese Kraftquelle für friedliche

Zwecke zu verwenden, sie im ökonomischen Bereich nutzbar zu machen. Schon heute steht offensichtlich in der Atomenergie

eine wertvolle Ergänzung des Energiepotentials der Welt bereit, die neben die klassischen Energiequellen tritt.

die atomwirtschaft

Jahrgang I

Nr. 1

Januar 1956

Eine wachsende Zahl von Unternehmen der verschiedenartigsten

Wirtschaftskreise braucht eine fortlaufende Unterrichtung

über die Aussichten bei der Nutzung der Atomkraft:

die chemische Industrie, die Elektroindustrie, die

Energiewirtschaft, die Industrie der Meßgeräte und alle

Zweige des Maschinenbaus, die von der Erzgewinnung bis

zum Reaktorenbau an dieser neuen Entwicklung beteiligt

sind. Hinzu treten alle Unternehmen und Fachleute, die

sich mit dem Einsatz von Isotopen beschäftigen. Während

die wissenschaftliche Literatur für die Kernphysik und die

ihr verwandten Gebiete in ausreichendem Maße verfügbar

ist, fehlt es an einer systematischen Bearbeitung der neu

auftretenden wirtschaftlichen Probleme. Dabei erscheint

eine Aufsplitterung der Nachrichtengebung in die verschiedensten

Fachzeitschriften unrationell.

Die vorliegende Zeitschrift will in sachlicher Klarheit

umfassend über alle wirtschaftlichen Fragen der Kernumwandlung

berichten. Wissenschaftliche und verfahrenstechnische

Themen gehören nur insoweit zu ihrem Programm,

als sie zum Verständnis der wirtschaftlichen Fragen

unerläßlich sind. Die Unterrichtung wird umfassend

und konzentriert sein und sich von der Behandlung der

wirtschaftlichen Zusammenhänge einschließlich der

Nachrichtengebung bis zu den Fragen der Rechtsordnung

und der betrieblichen wie sozialen Sicherheit erstrecken.

Unter Verwertung der redaktionellen Erfahrungen des

Verlages wird die Zeitschrift eine Konzentration und damit

eine Rationalisierung des Lesestoffes bringen. Insbesondere

ihre Dokumentation, die gesichtet und zuverlässig ein

Bild des Geschehens in Deutschland und in den wichtigsten

Ländern der Welt gibt, wird den Leser schnell und

knapp in verständlicher Sprache unterrichten.

So soll DIE ATOMWIRTSCHAFT der ernsthaften und vor

allem konzentrierten Berichterstattung dienen und über

das deutsche Sprachgebiet hinaus ein gewissenhafter Berater

auf einem neuen, zukunftsreichen Arbeitsfeld von

Wirtschaft und Technik sein.

Die Herausgeber

Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne,

Herbert Seidl und Kurt Sauerwein

60 th year atw

Foreword ı Siegfried Balke, Heinrich Freiberger, Karl Hecht, W. Alexander Menne, Herbert Seidl and Kurt Sauerwein


atw Vol. 60 (2015) | Issue 1 ı January

The Federal Republic of Germany and

the International Cooperation

in the Nuclear Field

Franz Josef Strauß

The questions of international cooperation in the field of nuclear energy for peaceful purposes arise the increasing

interest of all political and economic interested parties of our nation. This rising sympathy reflects the awareness,

that due to the fast development of nuclear energy, in detail a hardly assessable process, a new technical revolution

is in the offing which for the further economic development of the European states and not least our country itself

will be in view of the current inferior position in comparison to the leading nuclear powers, of paramount importance.

By all necessity of catching up the scientific and technical development at national level, the conviction is more

and more confirmed that joint efforts both in the European and global area are necessary to make full use of the tremendous

possibilities of nuclear energy for peaceful progress.

60 TH YEAR ATW 51

It is appropriate and valuable, already for determining

the own point of view for the further participation in international

cooperation within the nuclear field, to gain

from time to time an overview and to take stock on existing

organisation as well as different projects and plans.

For this purpose the following lines are intended, without

demanding completeness in all details. I may initially pay

attention to the entirely or predominant economic committees

for cooperation followed by bilateral and multilateral

facts and projects.

Scientific organisations

1. CERN

On 1 July 1953, in a purely scientific field, with little attention

paid by the public, twelve west and southern

European countries, amongst them the Federal Republic

of Germany, joint together in Paris the so-called “European

Organization for Nuclear Research“ (CERN). The organisation

especially wants to serve basic research. For

this purpose she built an international laboratory for research

in the field of highly accelerated particles including

cosmic radiation in Meyrin Geneva. The laboratory

comprises apart from its respective buildings, equipment

etc. a synchrocyclotron with a proton acceleration capacity

of approx. 600 billion electron volts, which currently

is being constructed.

In addition, the construction of a high performance

proton synchrotron is planned, which should be commissioned

in 1960. Beside the construction and operation of

these installations, CERN wants to serve international scientific

cooperation in the nuclear field through the exchange

of scientists, training of researchers, dissemination

of information and cooperation with national research

institutions. In order to throw light on the activities

of CERN at a practical example, it shall be indicated,

that a symposium about high-energy physics will take

place in Geneva in June this year, to which approximately

200 nuclear scientists from different countries, among

them as well leading German experts, will attend.

Besides a representation within the organisation of

CERN and an objective and personal participation

through constant transfer of researchers as well as financing

the organisation, the Federal Republic of Germany is

behind Great Britain and France in third place. At present

she bears approximately 18 % of the overall costs. The

contribution scheme of each member will be determined

as of 1957 based on the net public income.

2. European Atomic Energy Society

The “European Atomic Energy Society“ (Europäische Atomenergie-Gesellschaft)

serves research as well as the practical

use and utilization of nuclear energy for friendly

purposes. She was established on 15 June 1954. Currently

besides the Federal Republic of Germany, who

joint the society in February 1956, countries such as

Great Britain, France, Italy, Belgium, Sweden, Norway,

the Netherlands and Switzerland belong to her.

The member states are represented by their supreme

national atomic energy agencies. The society’s object is

especially in the context of the loose merger of a scientific

union the exchange and dissemination of scientific information,

the standardisation of technical terms, the

promotion of safety measures for the population, the

publication of scientific papers and as far as possible the

publication of an international journal with regards to

nuclear science.

She especially defines her duty in the promotion of direct

exchange of ideas between scientists, and engineers

through regular conferences and meetings in different

member states. As an example for the work of the society

the recent conference of rector scientists and practitioner

in Naples should be pointed out, to which also decisive

German personalities in this area were represented. Furthermore

this year, symposiums with regards to questions

of disposal of nuclear waste, the chemical processing of

enriched fuels as well as metallurgical issues and theoretical

nuclear physics are intended.

The Federal Ministry for Nuclear Affairs tries to delegate

on a regular basis all respective experts from the field

of science, economy as well as from the ministry itself to

the conventions of those institutions, which achieved and

contributed with valuable results. Professor Heisenberg

represents the Federal Republic of Germany within the

permanent council, within the permanent working group

she is represented by several members from different scientific

areas. The chairmanship of the council holds the

President of the British Atomic Energy Research Establishment,

Sir John Cockcroit. A permanent financial contribution

by all members is not intended. They burden their

participations costs at the councils meetings and conventions

themselves.

English translation of

the original text

published in:

die atomwirtschaft

Vol. I

Issue 6

June 1956

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

60 TH YEAR ATW 52

Bilateral cooperation

The agreement with the USA

In the area of bilateral cooperation between the Federal

Republic of Germany and other countries, up to now

only the so-called standard agreement with the USA

exists, which has been concluded in essentially similar

form with altogether 30 states of the western world. The

agreement concluded in February 1956 came into

force on 23 April this year. It intends – only mentioning

the relevant points – the leasing of at the most 6 kg

Uranium-235 in an up at best 20 % enriched condition

for the operation of research reactors in the Federal Republic

of Germany.

Delivered single fuel items need to be returned unchanged

or exchanged for new delivered pieces after the

machining operation. In addition, according to the agreement,

contracting partners shall exchange each other on

issues such as the planning, construction and operation

of research reactors, health and safety problems with regards

to operation and usage of such reactors as well as

on the usage of radioactive isotopes within physical and

biological research, medicine, agriculture and industry.

The exchange of confidential information is not intended.

According to the agreement and on the basis of special

arrangements by the Federal Republic of Germany, the

USA are allowed to sell or lease reactor materials which

are necessary for the construction and operation of research

reactors.

The agreement provides different safety guarantees

against the misuse of nuclear fuels or rather reactor materials

for other purposes than agreed on. Thus among

others representatives of the American Nuclear Committee

are allowed upon request to observe the condition and

usage of leased nuclear fuels as well as the efficiency of

the reactor, for which they are being used. The agreement

remains in force, subject to a mutual agreed extension,

for a period of five years. The Federal Republic o Germany

hopes that due to the standard agreement concluded

with the USA first research reactors will be put to

operation in the foreseeable future. Negotiations on the

execution of the agreement and the purchase of research

reactors in the USA should be completed shortly. It remains

hope that beyond this standard agreement further

agreement with the United States for the delivery of nuclear

fuels, if possible also for the operation of nuclear

power plants, can be concluded.

Preliminary discussions with Great Britain about the

conclusion of a British-German Nuclear agreement are

currently on-going, about possibilities of further bilateral

nuclear agreements with other states can not be concretely

reported yet.

Multilateral Projects

1. International Atomic

Energy Agency

From the projects of multilateral cooperation in the nuclear

field for peaceful purposes I would firstly like to emphasise

on the international planning on establishing an

International Atomic Energy Agency. After President Eisenhower

presented at the UN General Assembly his plan

“Atoms for Peace“ in December 1953, negotiations took

place in the following period in the bosom of the UN concerning

an International Atomic Energy Agency, which resulted

very difficult due to the political differences

between west and east.

Now on 18 April this year, the draft of constitution for

a future International Atomic Energy Agency was accepted

by a conference to which Australia, Belgium, Brazil,

France, Great Britain, India, Canada, Portugal, the Soviet

Union, the South African Union, Czechoslovakia and the

USA belong. The draft shall be discussed during a major

conference in New York among all considered countries

in September this year. It is expected, to lay down the

statues during this conference in order to establish the

International Atomic Energy Agency within the next

years.

The Federal Republic of Germany did not yet express

an opinion on the recently received draft of the statute.

She will, of course, be represented at the conference.

The draft of statute concerns itself in comprehensive

manner with the responsibilities and targets of the authority

as well as with its executive bodies and their functions.

Only the main points can be pointed out here

broadly. The authority should in particular be responsible

to promote and support to the greatest extend possible

research and development of nuclear energy and its usage

for peaceful purposes in all member states. For this

purpose she shall be authorised to seize all necessary

measures to fulfil these targets and to build all required

institutions and plants.

In particular she shall take care of the availability of

necessary nuclear material required for research and its

practical usage, support the exchange of scientific and

technical information as well as support the exchange of

scientists and experts, provide safety measures against

the misuse of nuclear fuel for other than friendly purpose

and supervise the adherence to these measures as well as

to elaborate regulations for employment and population

protection and to guarantee obedience to these regulations.

Members of the Agency should be all member states of

the United Nations and its affiliate organisations, which

sign the final statute within a certain period. Due to its

membership at the UNESCO, the Federal Republic of Germany

already has access to the International Atomic Energy

Agency.

A General Conference, a Board of Governers and a department

with an executive director and respective civil

service are intended for the executive bodies of the

Agency. The General Conference, which consists of a representative

of each member state, takes decision by

simple majority. She has among other things the right to

decide on the budget and is able to provide recommendations

to the Board of Governers with respect to all atomic

authority related questions. Besides she also decides on

approval and suspension of members. The Board of Governers

should consist of 23 members.

Five members are the leading nuclear powers (USA,

the Soviet Union, Great Britain, France and Canada), five

seats are allocated to the representatives of specific regional

groups (e.g. Latin America, southern Asia, Pacific

regions); 2 members are producers of source materials

(Belgium, Poland, Czechoslovakia, Portugal), whereas

both seats should alternate on a yearly basis between east

and west; 1 seat is allocated for countries which can only

provide technical knowledge. The General Conference

shall elect at least ten further members of the Board of

Governers from countries that are neither nuclear powers

nor provide raw material or nuclear material or technical

knowledge.

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

The relation between the International Atomic Energy

Agency and the UN has been for a long time subject of intense

political controversy. According to the draft of

statue, the agency shall report to the UN General Assembly

and “when appropriate” to the Security Council.

Future relations between the Agency and the UN shall be

guaranteed in conjunction with the UN General Assembly

along with the General Conference of the agency. In practice

it is regulated that the agency is an independent organisation

from the UN, which nevertheless is responsible

to inform the UN about her activities. With regards to

the position of the Agency towards its members it needs

to be highlighted, that the member state sovereignty

needs to be considered.

2. The OEEC-Project

The Council of Ministers of the seventeen OEEC-member

states decided within a meeting on 29 February 1956

with the participation of representatives from the USA

and Canada, to appoint a selected committee for nuclear

energy, which should rework within three month the

report of the working party No. 10, in order to create a

fundament for a concrete and speedy cooperation of

OEEC- members in the nuclear field of nuclear field. Due

to the details of the report No. 10, of the so-called OEECplan,

it can be referred to – even to avoid repetitions –

the report in February 1956 issue no. 2 of the “Atomwirtschaft”.

The selected committee appointed four task

forces for the performance of its tasks. One team for

common enterprises, one for security control, one for

the adaptation of legislation and one for the training of

specialists.

The task force for “common enterprises” is responsible

to evaluate technical and other requirements for the construction

of a joint isotope separation plant for uranium,

a chemical plant for processing enriched fuels, a plant for

the production of heavy water and common operation of

experimental reactors. The task force for “security matters”

should elaborate recommendations for the special

committee of a control system within the OEEC-countries

for preventing misuse of source material and nuclear

fuels, especially for military purposes.

The task force for “the adaptation of legislation” is responsible

to ascertain the possibility to harmonise national

atomic legislations with related legislations (e.g.

mining codes, standards for employment and population

protection) and the task force for “training of specialists”

shall evaluate the current situation of the training sector

of each single member state and thus highlight ways to

overcome the significant lack of well trained specialists

within the nuclear field (scientists and engineers).

Besides the actual task forces of the special committee

on nuclear energy, a mixed group together with the

OEEC-Board of Governers “Committee on trade“ elaborates

the possibilities and requirements for an economic

and custom policy moratorium and the following establishment

of a nuclear common market of the OEEC-countries.

The moratorium shall prevent obstacles, which

could stand in the way for the future liberalisation on

trade of source material, nuclear fuels as well as of nuclear

equipment.

A subgroup of the OEEC-committee responsible for insurance

questions gives attention to the extremely complex

and difficult questions of insurance against nuclear

risks and a far-reaching adaptation of the required national

laws. The work of these committees is now near

completion. The soon expected reports will be part of the

agenda during the concluding meeting on 23 until 30

June of the special committee on nuclear energy.

The special committee will deal especially with the

question of establishing a steering committee on nuclear

energy its constitution and responsibilities as well as with

questions on cooperation with the USA and with all other

supranational institution or rather activities. It is expected

to present its final report with recommendations on a

practical definition of the cooperation of the seventeen

OEEC-member states to the Council of Ministers on 17

July. Even if it is not possible to provide at present any

precise forecasts, it can be nevertheless expected that the

decisions of the Ministerial Council will bring the plans

for cooperation in the nuclear field within the OEEC

closer to its realisation.

The Federal Republic is present in all mentioned committees

and groups and promotes their activities best possible.

She has always emphasized and proved its willingness

to collaborate on both OEEC and EURATOM-level. I

nevertheless consider a non-existent or only little coordinated

cooperation of both projects and even a kind of

„competition“ between both as incorrect. Certain coordination

already arises due to the fact that all six coals

and steel countries are at the same time OEEC-members.

Moreover, it seems attractive to me, to entrust a special

committee with the responsibility to adapt both plans to

one another as far as possible, wherever it seems appropriate

– e.g. at certain common companies, in terms of

security check.

3. EURATOM

A task force appointed by the government committee in

Brussels chaired by L.M. Armand (France) presented a detailed

report with a plan for cooperation in the nuclear

field on the level of the six member states of the European

Coal and Steel Community in November 1955(so-called

EURATOM-plan). Due to its history and details of this

plan it can again be referred to the detailed report in February

1956 issue no. 2 “Atomwirtschaft” p.1 ff.

The government committee in Brussels reworked the

Armand-report subsequently. On April 1956 the government

committee now presented the “Report of the Heads

of Delegation to the Foreign Ministers”. Beside of very

extensive explanations about the establishment of a general

European common market it contains also recommendations

for the structure of EURATOM within its

second main part. The report ties in to a large extend to

the Armand-report but deviates from it – in a general liberal

tendency – not insignificantly in certain points. In

what follows only the most important aspects will be

mentioned.

The report strongly underlines, that EURATOM shall

be open to all European states, which accept the community

rules. The establishment of a close liaison with

Great Britain should be further attempted in any event.

The report also noticed, that the EURATOM and OEECplan

do not show any contradictions but rather complete

and support each other.

Within the field of research it is explicitly noticed, that

besides the recommendation for common research activities

in the context of EURATOM the major part of the research

results should be still carried out by public or

private research bodies within the member states. Research

cannot be planned. A centralisation of research

seems principally flawed.

60 TH YEAR ATW 53

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

60 TH YEAR ATW 54

On the question of law of inventions, private property

and private initiative is generally recognised. In exceptional

cases, however, which cannot be discussed in detail

at this point, the possibility of non-exclusive compulsory

licenses on full compensation are intended. All decision if

challenged shall be reviewed by court.

In the field of labour and population protection the report

regards an elaboration of binding minimum standards

for the members of the community as necessary. The

respective control of plants, which machine and process

fuel material is essentially considered. However, the periodical

monitoring of the safety requirements, should be

left to the member states with a certain right of control by

the community.

The major part of investments in the nuclear field

should remain within the responsibility of the public and

private sector in the member states in the same way as

research carried out by the EURATOM should only represent

a supplement to the entire research work. The initiative

of enterprises should be supported by illustrative programs,

the dissemination of research results and if necessary

financial assistance.

Even if the development projects in the nuclear field

shall be forwarded to the commission for a statement, the

report also underlines, that the organisation should

neither possess the right of investment decisions nor the

right to comment on their economic justification or on

the facilities location.

The recommendation about the supply of source material

and fuels within the report seems of special economic

and political importance. In this respect a purchase

priority by EURATOM is planned, which shall provide

these materials in standardised and non-discriminating

conditions to consumers. An exception takes merely place

if the organisation declares not being able to deliver. An

ownership monopoly is not recommended. Under certain

conditions, in case of strongly enriched nuclear fuels,

only a leasing form of commodities is intended.

In order to guarantee prevention of misuse of ores and

nuclear fuels, the report recommends far-reaching control

and in particular the return of nuclear fuels to t he

community bodies at the end of a conversion process.

The report states an immediate establishment of a

nuclear common market that later on shall give way to a

general common market.

In order to accomplish all responsibilities of EURATOM,

a European Atomic Energy Commission with its own power

and common mandate as permanent body for the on-going

management of the community was recommended.

Certain committees shall support the European Atomic

Energy Commission in order to achieve her tasks e.g. an

expert’ forum for science and economy and a mixed committee

of producers and consumers. In order to perform

its functions towards common institutions, an administrative

unit for the industrial administration and an

agency for special coverage obligations with a commercial

management should be established. The complete

report by the head of delegation is – as it needs to be emphasized,

an expert report dedicated to governments. But

at the same time the report is not binding. Thus suggestions

by the participating governments in all detailed

questions are subjected to alternations.

During the conference of the Foreign Ministers of the

European Coal and Steel countries from 29 to 30 May in

Venice, the ministers agreed on using the report as basis

for an intergovernmental conference, which is convened

on 26 June in Brussels. This conference shall elaborate

necessary individual contracts for the establishment of a

common European market and by EURATOM into a whole

comprehensive treaty.

Two questions of high political importance, however,

were reserved for a special consultation. This concerns in

this respect the inclusion of overseas territories into the

treaty placed for discussion by France and the question of

the military usage of nuclear energy. It is obvious, that

especially problems, which result from military use of

one or more member states in the nuclear field, have significant

influence on the cooperation development in the

field of research and usage of nuclear energy for peaceful

purposes.

In this context it is necessary to remind, that the Federal

Republic of Germany refused within the Paris Treaty

the production of nuclear arms. After all it is necessary to

point out the welcoming decision by the conference in

Venice, at which the Belgian Foreign Minister Spaak was

appointed to inform allied European countries as well as

European organisations about the activities of the upcoming

intergovernmental conference and to explicitly

invite them for a participation in efforts of the six

countries.

Author

Franz Josef Strauß

Federal Minister of Germany for Nuclear Affairs

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

Die Bundesrepublik und die

internationale Zusammenarbeit

auf dem Kernenergiegebiet

Franz Josef Strauß

Den Fragen internationaler Zusammenarbeit auf dem Gebiete der Kernenergie für friedliche Zwecke wendet sich in

steigendem Maße das Interesse aller politisch und wirtschaftlich interessierten Kreise unseres Volkes zu. Diese wachsende

Anteilnahme entspricht der Erkenntnis, daß sich durch die Entwicklung der Kernenergie in raschem, im einzelnen

kaum übersehbarem Ablauf eine neue technische Revolution anbahnt, die für die weitere wirtschaftliche Entwicklung

der europäischen Staaten und dabei nicht zuletzt unseres Vaterlandes angesichts des augenblicklichen Rückstandes

gegenüber den führenden Atommächten von ausschlaggebender Bedeutung sein wird.

60 TH YEAR ATW 55

Immer mehr vertieft sich auch die Überzeugung, daß – bei

aller Notwendigkeit, den Anschluß an die wissenschaftliche

und technische Entwicklung im nationalen Bereich

weitmöglichst zu gewinnen – sowohl im europäischen als

auch im weltweiten Raum gemeinsame Anstrengungen

notwendig sind, um die ungeheueren Möglichkeiten der

Kernenergie für den friedlichen Fortschritt voll auszuschöpfen.

Es ist, schon um den eigenen Standpunkt für die weitere

Beteiligung an der internationalen Zusammenarbeit auf

dem Kernenergiegebiet festzulegen, zweckmäßig und

wertvoll, von Zeit zu Zeit einen Überblick über die bestehenden

Einrichtungen sowie die verschiedenen Vorhaben

und Pläne zu gewinnen und eine gewisse Zwischenbilanz

zu ziehen. Diesem Zwecke sollen, ohne Anspruch auf Vollständigkeit

in allen Einzelheiten zu erheben, die nachstehenden

Zeilen dienen. Ich darf dabei zunächst auf die ganz

oder überwiegend wissenschaftlichen Gremien der Zusammenarbeit

und sodann auf die bilateralen und multilateralen

Gegebenheiten und Vorhaben eingehen.

Organisationen der Wissenschaft

1. CERN

Auf rein wissenschaftlichem Gebiet haben sich, in der Öffentlichkeit

wenig beachtet, am 1. Juli 1953 in Paris zwölf

west- und südeuropäische Staaten, darunter die Bundesrepublik,

zur sogenannten „Europäischen Organisation für

Kernphysikalische Forschung” (CERN) zusammengeschlossen.

Die Organisation will insbesondere der Grundlagenforschung

dienen. Sie errichtet zu diesem Zweck in Meyrin

bei Genf ein internationales Laboratorium für Forschungen

auf dem Gebiete hochbeschleunigter Teilchen einschließlich

der kosmischen Strahlung. Das Laboratorium

wird neben den entsprechenden Gebäuden, Gerätschaften

usw. ein Synchrozyklotron mit einem Protonen-Beschleunigungsvermögen

von etwa 600 Mill. Elektronenvolt umfassen,

das bereits im Bau ist. Daneben ist die Errichtung

eines Protonen-Synchrotrons von großer Leistungsstärke

geplant, das 1960 in Betrieb genommen werden soll. Neben

der Errichtung und dem Betrieb dieser Anlagen will

die CERN der internationalen wissenschaftlichen Zusammenarbeit

auf dem Kernenergiegebiet durch Austausch

von Wissenschaftlern, Ausbildung von Forschern, Verbreitung

von Informationen und Zusammenarbeit mit nationalen

Forschungseinrichtungen dienen. Um die Aktivität

der CERN an einem praktischen Beispiel zu beleuchten,

darf darauf hingewiesen werden, daß im Juni dieses Jahres

in Genf ein Symposion über Hochenergiephysik stattfindet,

an dem etwa 200 Kernwissenschaftler aus verschiedenen

Ländern, darunter auch führende deutsche Gelehrte,

teilnehmen.

Die Bundesrepublik steht, neben einer Vertretung in

den Organen der CERN und einer sachlichen und persönlichen

Beteiligung durch ständige Abordnung von Forschern,

auch in der Finanzierung der Organisation hinter

Großbritannien und Frankreich an dritter Stelle. Sie trägt

gegenwärtig etwa 18 % der Kosten. Der Beteiligungsschlüssel

der einzelnen Mitglieder wird ab 1957 auf der Grundlage

des Nettovolkseinkommens neu festgelegt werden.

2. Europäische

Atomenergie-Gesellschaft

Sowohl der Forschung als auch der praktischen Verwertung

und Nutzbarmachung der Kernenergie für friedliche

Zwecke dient die „Europäische Atomenergie-Gesellschaft“

(European Atomic Energy Society). Sie ist am 15. Juni 1954

gegründet worden. Gegenwärtig gehören ihr neben der

Bundesrepublik Deutschland, die im Februar 1956 beigetreten

ist, die Länder Großbritannien, Frankreich, Italien,

Belgien, Schweden, Norwegen, die Niederlande und die

Schweiz an. Die Mitgliedsländer sind durchweg durch ihre

obersten nationalen Atombehörden vertreten. Die Gesellschaft

bezweckt im Rahmen des lockeren Zusammenschlusses

einer wissenschaftlichen Vereinigung insbesondere

den Austausch und die Verbreitung von Informationen

wissenschaftlicher Art, die Vereinheitlichung von

Fachbegriffen, die Förderung von Schutzmaßnahmen für

die Bevölkerung, die Publizierung wissenschaftlicher Werke

und nach Möglichkeit die Herausgabe einer internationalen

kernwissenschaftlichen Zeitschrift. Vor allem sieht

sie ihre Aufgabe in der Förderung des unmittelbaren Gedankenaustausches

von Wissenschaftlern und Technikern

durch regelmäßige Tagungen und Zusammenkünfte in

den verschiedenen Mitgliedsländern. Als Beispiel für die

Arbeit der Gesellschaft sei auf die kürzliche Konferenz von

Reaktor-Wissenschaftlern und -Praktikern in Neapel hingewiesen,

bei der auch maßgebliche deutsche Persönlichkeiten

auf diesem Sachgebiet vertreten waren. Ferner sind

für dieses Jahr Symposien über Fragen der Beseitigung von

Atomabfall, der chemischen Aufbereitung angereicherter

Brennstoffe, metallurgische Fragen und theoretische Kernphysik

vorgesehen.

Das Bundesministerium für Atomfragen ist bemüht, zu

den Tagungen der Gesellschaft, die bisher wertvolle Ergebnisse

erzielt haben, regelmäßig die entsprechenden

die atomwirtschaft

Vol. I

Ausgabe 6

Juni 1956

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

60 TH YEAR ATW 56

Sachverständigen aus Wissenschaft und Wirtschaft sowie

aus dem Ministerium selbst zu delegieren. Im ständigen

Rat der Gesellschaft (Council) ist die Bundesrepublik durch

Professor Heisenberg, im ständigen Arbeitsausschuß (Working

Group) durch mehrere Mitglieder für verschiedene

wissenschaftliche Sachgebiete vertreten. Den Vorsitz der

Gesellschaft hat der Präsident des British Atomic Energy

Research Establishment, Sir John Cockcroit. Eine ständige

finanzielle Beteiligung der Mitglieder ist nicht vorgesehen;

diese tragen vielmehr die Kosten ihrer Teilnahme an den

Sitzungen und Tagungen der Gesellschaft selbst.

Bilaterale Zusammenarbeit

Der Vertrag mit den USA

Auf dem Gebiet bilateraler Zusammenarbeit zwischen der

Bundesrepublik und anderen Staaten ist bisher lediglich

das sog. Standardabkommen mit den USA zu verzeichnen,

das von diesen bisher mit insgesamt 30 Staaten der westlichen

Welt im wesentlichen in gleicher Form abgeschlossen

worden ist. Das im Februar 1956 unterzeichnete Abkommen

ist am 23. April dieses Jahres in Kraft getreten. Es sieht

– um nur die wesentlichsten Punkte anzusprechen – die

Verpachtung von im Höchstfall 6 kg Uran-235 in einem bis

zu höchstens 20 % angereicherten Zustand zum Betrieb

von Forschungsreaktoren in der Bundesrepublik vor. Die

gelieferten Brennstoffeinzelstücke müssen nach dem Bearbeitungsvorgang

unverändert zurückgegeben bzw. gegen

andere, neu zu liefernde Stücke ausgetauscht werden. Daneben

sollen nach dem Abkommen die Vertragspartner gegenseitig

Informationen über Planung, Bau und Betrieb

von Forschungsreaktoren, über die Probleme von Gesundheit

und Sicherheit im Zusammenhang mit dem Betrieb

und der Benutzung solcher Reaktoren sowie über die Verwendung

radioaktiver Isotope in der physikalischen und

biologischen Forschung, in der Medizin, Landwirtschaft

und Industrie austauschen. Ein Austausch von Geheiminformationen

ist nicht vorgesehen. Nach dem Abkommen

können auf Grund besonderer Vereinbarungen der Bundesrepublik

Reaktormaterialien, die für den Bau und den Betrieb

von Forschungsreaktoren erforderlich sind, durch die

USA verkauft oder verpachtet werden. Das Abkommen

sieht verschiedene Sicherheitsgarantien gegen den Mißbrauch

des Kernbrennstoffes bzw. des Reaktormaterials zu

anderen als mit dem Abkommen beabsichtigten Zwecken

vor. So muß u.a. Vertretern der Atomkommission der Vereinigten

Staaten auf Verlangen gestattet werden, Zustand

und Verwendung des verpachteten Kernbrennstoffes sowie

die Leistung des Reaktors, in dem er verwendet wird, zu

beobachten. Das Abkommen bleibt vorbehaltlich einer gegenseitig

zu vereinbarenden Verlängerung für fünf Jahre in

Kraft. Die Bundesregierung hofft, daß auf Grund des Standardabkommens

mit den USA die ersten Forschungsreaktoren

in absehbarer Zeit in Betrieb genommen werden können.

Verhandlungen über die Ausführung des Abkommens

und den Kauf von Forschungsreaktoren in den USA stehen

vor dem Abschluß. Es besteht die Hoffnung, daß über dieses

erste Standardabkommen hinaus weitere Abkommen

mit den Vereinigten Staaten zur Lieferung von Kernbrennstoffen,

nach Möglichkeit auch zum Betriebe von Kraftreaktoren,

abgeschlossen werden können.

Mit Großbritannien sind bereits Vorbesprechungen

über den Abschluß eines britisch-deutschen Atomabkommens

im Gange, über sonstige Möglichkeiten für bilaterale

Atomabkommen mit anderen Staaten läßt sich gegenwärtig

noch nichts Konkretes berichten.

Multilaterale Vorhaben

1. Die Internationale Atomagentur

Von den multilateralen Vorhaben einer Zusammenarbeit

auf dem Kernenergiegebiet zu friedlichen Zwecken möchte

ich zunächst auf die weltweite Planung der Errichtung

einer Internationalen Atomagentur eingehen. Nachdem

im Dezember 1953 Präsident Eisenhower der Vollversammlung

der UN seinen Plan „Atoms for Peace“ vorgelegt hatte,

fanden in der Folgezeit im Schöße der UN Verhandlungen

über eine weltweite Atomenergiebehörde statt, die sich

nicht zuletzt wegen der politischen Gegensätze zwischen

West und Ost sehr schwierig gestalteten. Nunmehr ist jedoch

am 18. April dieses Jahres durch eine Konferenz, der

Australien, Belgien, Brasilien, Frankreich, Großbritannien,

Indien, Kanada, Portugal, Sowjetunion, Südafrikanische

Union, Tschechoslowakei und die USA angehören,

der Entwurf einer Satzung für die künftige Internationale

Atomagentur (International Atomic Energy Agency) angenommen

worden. Er soll noch im September dieses Jahres

in New York auf einer großen Konferenz aller in Betracht

kommenden Mitglieder beraten werden. Man hofft, in dieser

Konferenz die Statuten endgültig festlegen zu können,

um so schon im nächsten Jahre die Internationale Atomagentur

aufbauen zu können.

Die Bundesregierung hat zu dem erst kürzlich zugegangenen

Satzungsentwurf noch nicht Stellung genommen. Sie

wird selbstverständlich auf der Konferenz vertreten sein.

Der Satzungsentwurf befaßt sich in sehr umfassender

Form mit den Aufgaben und Zielen der Behörde sowie ihren

Organen und deren Funktionen. Es kann hier nur in

großen Zügen auf die wichtigsten Gesichtspunkte hingewiesen

werden. Die Behörde soll vor allem die Aufgabe haben,

die Erforschung und Entwicklung der Atomenergie

und ihre Nutzung zu friedlichen Zwecken in allen Mitgliedsstaaten

weitmöglichst zu fördern und zu unterstützen.

Zu diesem Zwecke soll sie befugt sein, alle für die Erreichung

dieses Zieles notwendigen Maßnahmen zu ergreifen

und die erforderlichen Institutionen und Anlagen zu

errichten. Insbesondere soll sie für die Bereitstellung des

für die Forschung und die praktische Verwertung notwendigen

Kernmaterials sorgen, den Austausch wissenschaftlicher

und technischer Informationen sowie von Wissenschaftlern

und Fachleuten fördern, Schutzmaßnahmen gegen

Mißbrauch der Kernbrennstoffe zu anderen als friedlichen

Zwecken vorsehen und über ihre Einhaltung wachen

sowie Vorschriften für Arbeits- und Bevölkerungsschutz

ausarbeiten und ihre Beachtung sicherstellen.

Mitglieder der Agentur sollen alle Mitgliedsstaaten der

Vereinten Nationen und ihrer Tochterorganisationen sein,

die innerhalb einer bestimmten Frist das endgültige Statut

unterzeichnen. Die Bundesrepublik hat somit schon über

ihre Mitgliedschaft in der UNESCO Zugang zur Internationalen

Atomagentur.

An Organen der Agentur ist eine Allgemeine Konferenz

(General Conference), ein Direktorium (Board of Governers)

und ein Stab mit einem Generaldirektor und einer

entsprechenden Beamtenschaft vorgesehen. Die Allgemeine

Konferenz, die sich aus je einem Vertreter aller Mitgliedsstaaten

zusammensetzt, entscheidet mit einfacher

Mehrheit. Sie hat u.a. das sog. Budgetrecht und kann in

allen die Atombehörde betreffenden Fragen dem Direktorium

Empfehlungen geben. Außerdem entscheidet sie

über die Zulassung und Suspendierung von Mitgliedern.

Das Direktorium soll sich aus 23 Mitgliedern zusammensetzen.

5 Mitglieder sind die führenden Atommächte

(USA, Sowjetunion, Großbritannien, Frankreich und

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

Kanada); 5 Sitze gehen an Vertreter bestimmter regionaler

Gruppen (z.B. Lateinamerika, Südasien, Pazifische Region);

2 Mitglieder sind den Produzenten von Ausgangsstoffen

zu entnehmen (Belgien, Polen, Tschechoslowakei, Portugal),

wobei diese beiden Sitze alljährlich zwischen Ost

und West abwechseln sollen; für die Länder, die im wesentlichen

nur technische Kenntnisse zur Verfügung stellen

können, ist 1 Sitz vorgesehen; schließlich sollen weitere

10 Mitglieder des Direktoriums durch die Allgemeine

Konferenz aus den Ländern gewählt werden, die weder

Atommächte sind noch Grundstoffe oder Kernmaterial

oder technische Kenntnisse zur Verfügung stellen können.

Das Verhältnis der Internationalen Atomagentur zu den

UN war lange Zeit Gegenstand heftiger politischer Kontroversen.

Nach dem Satzungsentwurf ist nunmehr vorgesehen,

daß die Agentur der Generalversammlung der UN

und, „when appropriate”, dem Sicherheitsrat Bericht zu

erstatten hat. Die künftigen Beziehungen zwischen der

Agentur und den UN sollen im Zusammenwirken der Vollversammlung

der UN mit der Allgemeinen Konferenz der

Agentur gewährleistet werden. In der Praxis geht die Regelung

dahin, daß die Agentur eine von der UN unabhängige

Organisation ist, die allerdings die Verpflichtung übernimmt,

die UN über ihre Tätigkeit zu unterrichten. Hinsichtlich

der Stellung der Agentur gegenüber ihren Mitgliedern

ist hervorzuheben, daß die Souveränität der Mitgliedsstaaten

beachtet werden muß.

2. Das OEEC-Projekt

Der Ministerrat der 17 Mitgliedsstaaten der OEEC hat unter

Beteiligung von Vertretern der USA und Kanadas in seiner

Sitzung vom 29. Februar 1956 beschlossen, einen Sonderausschuß

für Kernenergie einzusetzen, der möglichst

innerhalb von drei Monaten den Bericht der Arbeitsgruppe

Nr. 10 überarbeiten soll, um die Grundlage für eine baldige

konkrete Zusammenarbeit der OEEC-Mitglieder auf dem

Kernergiegebiet zu schaffen. Wegen der Einzelheiten des

Berichts Nr. 10, des sog. OEEC-Planes, darf – schon um

Wiederholungen zu vermeiden – auf die Ausführungen in

Heft Nr. 2 der „Atomwirtschaft” vom Februar 1956, S. 1 ff.

verwiesen werden. Der Sonderausschuß hat zur Erfüllung

seiner Aufgaben vier Arbeitsgruppen eingesetzt, nämlich

für gemeinschaftliche Unternehmen, Sicherheitskontrolle,

Anpassung der Gesetzgebung und Ausbildung von Fachkräften.

Die Arbeitsgruppe „gemeinschaftliche Unternehmen”

hat den Auftrag, die technischen und sonstigen Voraussetzungen

für die Errichtung einer gemeinsamen Isotopentrennungsanlage

für Uran, einer chemischen Anlage

zur Aufbereitung angereicherter Brennstoffe, einer Anlage

zur Erzeugung von Schwerem Wasser und für den gemeinsamen

Betrieb von Versuchsreaktoren zu prüfen. Die Arbeitsgruppe

„Sicherheitsfragen” soll dem Sonderausschuß

Vorschläge für ein Kontrollsystem innerhalb der OEEC-

Länder zur Verhinderung des Mißbrauchs von Ausgangsstoffen

und Kernbrennstoffen, insbes. für militärische

Zwecke, unterbreiten. Die Arbeitsgruppe „Anpassung der

Gesetzgebung” hat den Auftrag, die Möglichkeiten einer

Harmonisierung der nationalen Atomgesetzgebungen und

der verwandten Gesetzgebungen (z.B. Berggesetze, Normen

für den Arbeits- und Bevölkerungsschutz) zu ergründen,

und die Arbeitsgruppe „Ausbildung von Fachkräften”

schließlich soll die derzeitige Lage in den einzelnen Mitgliedsländern

auf dem Ausbildungssektor prüfen und Wege

zur Überwindung des allenthalben für besonders

schwerwiegend erachteten Mangels an ausgebildeten

Fachkräften auf dem Kernenergiegebiet (von Wissenschaftlern

und Technikern) aufzeigen. Neben diesen eigentlichen

Arbeitsgruppen des Sonderausschusses für

Kernenergie befaßt sich eine zusammen mit dem Handelsdirektorium

der OEEC gebildete gemischte Gruppe „Ausschuß

für Handelsfragen“ mit den Möglichkeiten und Voraussetzungen

für ein wirtschafts- und zollpolitisches Stillhalteabkommen

und die spätere Errichtung eines gemeinsamen

Atommarktes der OEEC-Länder. Das Stillhalteabkommen

soll die Aufrichtung von Hemmnissen verhindern,

die einer späteren Liberalisierung des Handels mit Ausgangs-

und Kernbrennstoffen sowie mit Atomausrüstungsgegenständen

(equipment) entgegenstehen könnten. Eine

Untergruppe des Ausschusses der OEEC für Versicherungsfragen

befaßt sich mit den äußerst vielschichtigen und

schwierigen Fragen der Versicherung gegen das Atomrisiko

und einer weitmöglichen Anpassung der insoweit zu schaffenden

nationalen Gesetze. Die Arbeiten all dieser Gremien

stehen vor dem Abschluß. Die demnächst zu erwartenden

Berichte werden Gegenstand der für den 28. bis 30. Juni angesetzten,

voraussichtlich abschließenden Sitzung des Sonderausschusses

für Kernenergie sein. Der Sonderausschuß

wird sich außerdem insbesondere auch mit der Frage der

Errichtung eines Direktoriums für Kernenergie (steering

committee) und dessen Zusammensetzung und Zuständigkeiten

sowie mit Fragen der Zusammenarbeit mit den USA

und mit anderen übernationalen Institutionen bzw. Vorhaben

zu befassen haben. Er wird seinen Abschlußbericht mit

Vorschlägen für die praktische Ausgestaltung der Zusammenarbeit

der 17 Mitgliedsstaaten der OEEC voraussichtlich

am 17. Juli dem Ministerrat vorlegen. Wenn auch im

gegenwärtigen Zeitpunkt noch keine genauen Prognosen

gestellt werden können, so darf doch erwartet werden, daß

die Beschlüsse des Ministerrats die Pläne für eine Zusammenarbeit

auf dem Kernenergiegebiet innerhalb der OEEC

der Verwirklichung ein gutes Stück näherbringen werden.

Die Bundesrepublik ist in allen genannten Ausschüssen

und Gruppen vertreten und fördert deren Arbeiten nach

Kräften. Sie hat stets ihre Bereitschaft betont und in der

Praxis bewiesen, sowohl auf der OEEC- als auch auf der

EURATOM-Ebene mitzuarbeiten. Ich halte allerdings ein

nicht oder nur wenig koordiniertes Nebeneinander der

beiden Projekte oder gar eine Art „Wettlauf” zwischen ihnen

für verfehlt. Eine gewisse Koordinierung ergibt sich

zwar schon aus der Tatsache, daß die sechs Montanstaaten

gleichzeitig Mitglieder der OEEC sind. Darüber hinaus

aber scheint es mir wünschenswert, ein bestimmtes Gremium

ausdrücklich mit der Aufgabe zu betrauen, die beiden

Pläne dort, wo dies sinnvoll ist – z.B. bei gewissen gemeinschaftlichen

Unternehmen, in der Frage der Sicherheitskontrolle

– soweit wie möglich einander anzupassen.

3. EURATOM

Auf der Ebene der sechs Mitgliedsstaaten der Montanunion

hat eine vom Regierungsausschuß in Brüssel eingesetzte

Arbeitsgruppe unter dem Vorsitz von L. M. Armand (Frankreich)

im November 1955 einen eingehenden Bericht mit

einem Plan für eine Zusammenarbeit auf dem Kernenergiegebiet

vorgelegt (sog. EURATOM-Plan). Wegen der Vorgeschichte

und der Einzelheiten dieses Planes darf wiederum

auf die eingehende Darstellung in der „Atomwirtschaft”, Nr.

2, Febr. 1956, S. 1 ff., verwiesen werden,

Der Armand-Bericht wurde in der Folgezeit vom Regierungsausschuß

in Brüssel überarbeitet. Der Regierungsausschuß

hat nunmehr, am 21. April 1956, den „Bericht

der Delegationsleiter an die Außenminister“ vorgelegt. Er

enthält neben sehr umfangreichen Ausführungen über die

60 TH YEAR ATW 57

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

60 TH YEAR ATW 58

Schaffung eines allgemeinen gemeinsamen europäischen

Marktes in seinem zweiten Hauptteil Vorschläge für die Ausgestaltung

von EURATOM. Der Bericht knüpft zwar weitgehend

an den Armand-Bericht an, er weicht aber – in einer

allgemein etwas liberalen Grundtendenz – in einzelnen

Punkten nicht unwesentlich von diesem ab. Im folgenden

können nur die wichtigsten Gesichtspunkte angesprochen

werden.

Der Bericht betont zunächst mit großem Nachdruck,

daß EURATOM allen europäischen Staaten offenstehen

solle, welche die Regeln der Gemeinschaft annehmen. Die

Herstellung einer besonders engen Verbindung mit Großbritannien

soll auf jeden Fall versucht werden. Der Bericht

bemerkt ferner, daß EURATOM- und OEEC-Plan keine Gegensätze

darstellen, sondern sich vielmehr gegenseitig ergänzen

und fördern.

Auf dem Gebiet der Forschung wird neben den Vorschlägen

für eine gemeinsame Forschungstätigkeit im

Rahmen von EURATOM ausdrücklich bemerkt, daß der

größte Teil der Forschungsarbeiten weiterhin durch öffentliche

oder private Forschungsträger in den Mitgliedsländern

durchgeführt werden müsse. Forschung könne

nicht „geplant” werden. Eine Zentralisierung der Forschung

erscheine grundsätzlich verfehlt.

In der Frage der Erfinderrechte wird Privateigentum

und Privatinitiative grundsätzlich anerkannt. In Ausnahmefällen

allerdings, auf die hier nicht im einzelnen eingegangen

werden kann, ist die Möglichkeit von nichtausschließlichen

Zwangslizenzen unter voller Entschädigung

vorgesehen. Alle Entscheidungen sollen insoweit der Anfechtung

vor einem Gerichtshof unterliegen.

Auf dem Gebiete des Arbeits- und Bevölkerungsschutzes

bezeichnet der Bericht die Aufstellung von verbindlichen

Mindestnormen für die Mitglieder der Gemeinschaft

als erforderlich. Eine entsprechende Kontrolle der Anlagen,

in denen Kernbrennstoffe be- oder verarbeitet werden,

wird als notwendig erachtet. Hierbei soll jedoch den

Mitgliedsstaaten selbst die regelmäßige Überwachung der

Sicherheitsbedingungen unter einem gewissen Kontrollrecht

der Gemeinschaft überlassen bleiben.

Ebenso wie die von EURATOM durchgeführten Forschungsarbeiten

nur eine Ergänzung der gesamten Forschungstätigkeit

darstellen sollen, soll auch der größte Teil

der Investitionen auf dem Atomgebiet weiterhin Aufgabe

der öffentlichen und privaten Hand in den Mitgliedsländern

bleiben. Die Initiative der Unternehmen soll durch

hinweisende Programme, die Verbreitung von Forschungsergebnissen

und erforderlichenfalls durch finanzielle Mitwirkung

gefördert werden. Wenn auch die Entwicklungsprojekte

auf dem Gebiete der Atomenergie der Kommission

zur Stellungnahme übersandt werden sollen, so betont

doch der Bericht, daß die Organisation weder das Recht

der Investitionslenkung noch das der Stellungnahme zu

deren wirtschaftlicher Begründung oder dem Standort der

Einrichtungen haben solle.

Von besonderer wirtschaftlicher und auch politischer

Bedeutung erscheint der Vorschlag des Berichts über die

Versorgung mit Ausgangsstoffen und Kernbrennstoffen.

Insoweit ist eine Einkaufspriorität von EURATOM vorgesehen,

das seinerseits den Verbrauchern diese Stoffe zu einheitlichen

und nichtdiskriminierenden Bedingungen zur

Verfügung stellen soll. Eine Ausnahme von der Einkaufspriorität

soll unter noch festzulegenden Bedingungen nur

dann Platz greifen, wenn die Organisation erklärt, selbst

nicht liefern zu können. Ein Eigentumsmonopol der Organisation

wird in dem Bericht nicht vorgeschlagen. Unter

gewissen Voraussetzungen, so bei stark angereicherten

Kernbrennstoffen, ist allerdings nur eine pachtweise Überlassung

vorgesehen.

Um die Sicherheit vor Mißbrauch von Erzen und Kernbrennstoffen

zu gewährleisten, wird in dem Bericht eine

weitgehende Kontrolle und insbesondere der Rücklauf von

Kernbrennstoffen am Ende eines Umwandlungszyklus in

die Einrichtungen der Gemeinschaft vorgeschlagen.

Der Bericht sieht ferner die unverzügliche Schaffung

eines gemeinsamen Atommarktes vor, der später in dem

allgemeinen gemeinsamen Markt aufgehen soll.

Zur Erfüllung der Aufgaben von EURATOM wird eine Europäische

Atomenergiekommission mit eigenen Befugnissen

und einem gemeinsamen Mandat als ständiges Organ

für die laufende Verwaltung der Gemeinschaft vorgeschlagen.

Die Kommission soll einer parlamentarischen Kontrolle

durch eine gemeinsame Versammlung und einer richterlichen

Kontrolle durch einen Gerichtshof unterliegen. In

Fragen der allgemeinen Politik sowie bei gewissen Entscheidungen

von besonders weittragender Bedeutung soll der

Ministerrat nach noch festzusetzenden Bestimmungen mitwirken.

Der Europäischen Atomenergiekommission sollen

für die Erfüllung ihrer Aufgaben gewisse Gremien zur Seite

stehen, z.B. ein Sachverständigenbeirat für Wissenschaft

und Wirtschaft und ein gemischter Ausschuß der Produzenten

und Verbraucher. Für die Ausübung ihrer Funktionen

gegenüber gemeinsamen Unternehmen soll eine Dienststelle

für industrielle Verwaltung und für die Versorgungsaufgaben

eine Agentur mit kaufmännischer Geschäftsführung

eingerichtet werden. Der Bericht der Delegationsleiter ist in

seiner Gesamtheit, wie betont werden muß, ein Sachverständigenbericht

an die Regierungen. Er ist für diese somit

nicht verbindlich. Allen beteiligten Regierungen sind daher

Änderungsvorschläge in allen Einzelfragen Vorbehalten.

Auf der Konferenz der Außenminister der Montanunionstaaten

am 29. und 30. Mai in Venedig sind die Minister

übereingekommen, den Bericht zur Grundlage der Beratungen

einer Regierungskonferenz zu machen, die für den 26.

Juni nach Brüssel einberufen ist. Diese Konferenz soll die

notwendigen Einzelverträge für die Schaffung eines gemeinsamen

europäischen Marktes und von EURATOM in einem

als einheitliches Ganzes anzusehenden Vertragswerk

ausarbeiten.

Zwei Fragen von hochpolitischer Bedeutung sind allerdings

gesonderten Beratungen der Außenminister Vorbehalten

worden. Es handelt sich insoweit um die von Frankreich

zur Erörterung gestellte Einbeziehung der überseeischen

Gebiete in das Vertragswerk und um die Frage der militärischen

Verwendung der Atomenergie. Es liegt auf der Hand,

daß gerade die Probleme, die sich aus einer militärischen

Betätigung eines oder mehrerer Mitgliedsstaaten auf dem

Atomgebiet ergeben, erheblichen Einfluß auf die Ausgestaltung

der Zusammenarbeit auf dem Gebiet der Erforschung

und Nutzung der Kernenergie zu friedlichen Zwecken ausüben.

In diesem Zusammenhang muß daran erinnert werden,

daß die Bundesrepublik in den Pariser Verträgen auf

die Herstellung von Atomwaffen verzichtet hat. Schließlich

ist noch auf die erfreuliche Entschließung der Konferenz in

Venedig hinzuweisen, nach der der belgische Außenminister

Spaak beauftragt worden ist, befreundete europäische Länder

sowie die europäischen Organisationen über die Arbeiten

der kommenden Regierungskonferenz in Brüssel zu unterrichten

und sie zu einer Beteiligung an den Bemühungen

der Sechs ausdrücklich einzuladen.

Autor:

Franz Josef Strauß

Bundesminister für Atomfragen

60 th year atw

The Federal Republic of Germany and the International Cooperation in the Nuclear Field ı Franz Josef Strauß


atw Vol. 60 (2015) | Issue 1 ı January

Top

Energy experts agree climate

change threat needs nuclear

solution

(nei) The U.S. Environmental Protection

Agency’s proposed rule regulating

carbon emissions from existing

power plants is the first time the

agency has ever included nuclear energy

as a solution to an air pollution

problem, former EPA Deputy Administrator

Bob Perciasepe said.

Now president of the Center for

Climate and Energy Solutions (C2ES),

Perciasepe told a gathering of energy

experts in Washington, D.C., that the

pro-nuclear sentiment behind EPA’s

Clean Power Plan is a “threshold

change worth noting.”

The plan, also known as the

“111(d) rule” after the applicable section

of the Clean Air Act, contains provisions

to give states and regions

credit for avoided carbon emissions if

they preserve existing nuclear plants

considered to be at risk of premature

closure. It also seeks ways to provide

credit for nuclear plants now under

construction.

The industry has criticized both

provisions as being “right in intent but

wrong on methodology”.

Perciasepe acknowledged that

EPA’s first draft of the plan was “not

the most elegant” but was “a way to

get started” while juggling competing

interests and complicated interstate

electricity issues. He said EPA recognized

from the start that meeting

President Obama’s near-term goal of a

26 percent to 28 percent reduction in

carbon from 2005 levels by 2025

would be difficult to achieve without

existing and new nuclear plants.

The bottom line, Perciasepe said, is

that “nuclear energy cannot be ignored

as a solution to the health of the

planet.” He said EPA has received 1.5

million comments on the draft 111(d)

rule and expressed confidence that the

agency will be responsive to the concerns

of the industry as it works toward

finalizing the rule by June 2015.

Other speakers at the event, conducted

by the Howard Baker Forum,

also referenced nuclear energy. Jessica

Lovering, senior analyst at the

Breakthrough Institute, compared

other countries’ recent experiences

with nuclear energy – especially those

of France, Germany and Japan.

Lovering noted that in the nearly

four years that Japan put its 50 operable

reactors on hiatus after the

Fukushima accident and greatly increased

its use of fossil fuels, there

have been 4,000 additional deaths per

year from air pollution as well as

40,000 serious illnesses and 1 million

minor illnesses.

Contrasting France and Germany’s

divergent energy policies, Lovering

said France’s 80 percent share of nuclear

energy gives it the cleanest air in

Europe – including half Germany’s carbon

intensity – as well as the lowest

electricity prices in Europe. Germany,

meanwhile, is essentially burning dirty

brown coal to replace its nuclear capacity

while not markedly increasing its

use of renewables. This has resulted in

greatly increased carbon emissions as

well as higher electricity costs.

She said France’s policy choice

shows that a country does not have to

make expensive sacrifices to move toward

clean energy. In France, “the

clean option IS the cheapest option,”

she said.

Installed nuclear energy capacity

worldwide could nearly triple from

today’s 375 gigawatts to as much as

1,092 gigawatts by 2050 if nations recognize

it as the best and least expensive

means to address the threat of climate

change, a new International

Atomic Energy Agency report says.

The report, “Climate Change and

Nuclear Power 2014,” says its analysis

“indicates that nuclear power represents

the largest single mitigation potential

at the lowest average costs.”

The Intergovernmental Panel on Climate

Change notes that raising the

percentage of global nuclear energy

capacity from 16 percent in 2005 to 18

percent in 2030 could avoid 1.9 billion

metric tons of carbon dioxide-equivalence

per year.

IAEA notes that even its high projection,

based on the International Energy

Agency’s stringent “450 Scenario,”

is achievable in the timeframe

noted. As the chart shows, the nuclear

industry was able to increase global

net capacity 20 times from 1970 to

1990, lending plausibility to the IEA’s

forecast of 126 percent capacity

growth through 2030.

| | www.nei.org, 6598

World

Power-hungry emerging

countries look to nuclear

energy to meet demand

(gd) Emerging markets will play a major

role in the expansion of global nuclear

installed capacity, which will increase

from 371 GW in 2013 to

517 GW by 2025, at a Compound Annual

Growth Rate (CAGR) of 2.5 %,

according to research and consulting

firm GlobalData.

The company’s latest report* states

that while the world’s nuclear power

generation decreased in 2011 and

2012 in the aftermath of the

Fukushima meltdown, the market is

gradually recovering, with large-scale

capacity additions expected in the

Asia-Pacific (APAC) region.

Pranav Srivastava, GlobalData’s

Associate Analyst covering Nuclear

Power, says: “The after-effects of the

Fukushima meltdown go beyond the

decline of nuclear power generation

in Japan.

“Germany and Switzerland are

now planning to phase out nuclear

power, while others, such as China,

Japan, France and the UK, have developed

strong frameworks for nuclear

safety and performed stress tests

on their existing nuclear reactors to

ensure safe operations.”

Despite this more cautious global

approach, GlobalData states that the

emerging nuclear countries in the

APAC region are building more than

20 nuclear reactors and are planning

to add 13.8 GW of nuclear power by

2030, led by 6.8 GW of additions in

Vietnam.

Srivastava explains: “High electricity

demand is a key driver for nuclear

power development in Vietnam. The

country plans to construct 10 new reactors

by 2030 and has signed a number

of co-operative governmental

agreements regarding the peaceful use

of nuclear energy with Russia, China,

India, South Korea and Argentina.

“Russia received a construction

deal to build the first two reactors in

2009, while Japan won the deal for

the third and fourth reactors the following

year.”

GlobalData’s report states that despite

anti-nuclear public opinion and

safety concerns, there are a number of

factors boosting demand for nuclear

power.

The analyst concludes: “Nuclear

power has the capacity to produce

large amounts of electricity and therefore

meet the growing demand for

power. It is also seen as a way of counteracting

concerns over volatile fossil

fuel prices, oil reserve shortages and

rising carbon emissions.”

| | www.globaldata.com, 6596

NEA Director-General opened

the Northeast Asia Nuclear

Safety Symposium

(nea) On 26 November 2014, the NEA

Director-General opened the Northeast

Asia Nuclear Safety Symposium

* Emerging Nuclear

Power Countries –

Market Forecast,

Key Companies and

Development Analysis

to 2030

59

NEWS

News


atw Vol. 60 (2015) | Issue 1 ı January

Operating Results October 2014

60

Plant name

Nominal

capacity

gross

[MW]

net

[MW]

Operating

time

enerator

[h]

Energy generated. gross

[MWh]

Month Year 1) Since

commissioning

Time availability

[%]

Energy availability Energy utilisation

[%] *) [%] *)

Month Year 1) Month Year 1) Month Year 1)

NEWS

KBR Brokdorf 1480 1410 745 1 073 558 9 462 011 309 654 875 100.00 96.79 96.79 91.23 97.32 87.48

KKE Emsland 6) 1406 1335 745 1 041 037 9 492 725 299 885 849 100.00 94.27 94.27 94.17 99.44 92.77

KKG Grafenrheinfeld 1345 1275 745 979 090 8 521 034 326 996 325 100.00 90.70 90.70 89.47 97.37 86.39

KWG Grohnde 1430 1360 745 1 000 954 8 142 281 335 701 952 100.00 81.72 81.72 81.54 93.29 77.53

KRB B Gundremmingen B 1344 1284 745 1 009 087 8 024 701 298 775 953 100.00 82.41 82.41 81.61 100.55 81.47

KRB C Gundremmingen C 1344 1288 745 1 002 395 8 569 143 288 935 646 100.00 88.50 88.50 87.74 99.52 86.80

KKI 2 Isar 2 1485 1410 745 1 070 136 9 322 809 304 877 887 100.00 94.39 94.39 88.55 96.37 85.63

GKN II Neckarwestheim II 1400 1310 735 999 500 9 307 200 284 934 314 98.63 91.70 91.70 91.46 97.12 90.39

KKP 2 Philippsburg 2 1468 1402 745 1 087 192 8 101 803 323 550 677 100.00 78.58 78.58 78.44 98.21 74.50

*)

Net-based values

1)

Refueling

2)

Inspection

3)

Repair

4)

Stretch-out-operation

5)

Stretch-in-operation

6)

New nameplate capacity

as of 2014:

KKE Emsland from

July 2014:

1 406 MW (gross),

1 335 MW (net)

Source: VGB

(2 nd TRM+) in Seoul, Korea. During

his presentation, he stressed the importance

of the human dimension in

nuclear safety and finding mechanisms

to implement safety culture concepts

effectively in different national

contexts. He noted that the NEA is in a

very good position to help facilitate

further nuclear safety discussions in

the region, and assured participants

of the NEA’s support for that interaction.

In closing, he recalled that “All

problems have solutions, and working

together we can overcome any challenge.”

| | www.oecd-nea.org, 6597

| | ITER construction site: The B2 slab, which will support some 400,000 tons

of building and equipment (including the 23,000-ton ITER Tokamak),

is now in place.

ITER Tokamak complex will

begin to rise

(iter) The ITER Organization and the

European Domestic Agency for ITER,

Fusion for Energy, issued statements to

mark the completion of Tokamak Complex

foundations and the beginning of

a new phase of ITER construction.

In the centre of the vast excavated

area that will house the principal

buildings of the ITER scientific facility,

workers have started to frame out the

lower walls of the Tokamak Complex,

a first step toward realizing the senstorey

structure that will house the

ITER fusion experiments.

This milestone comes on the heels

of the August completion of the Tokamak

Complex basemat – the heavily

reinforced “B2 slab” that will support

some 400,000 tons of building and

equipment, including the 23,000-ton

ITER Tokamak.

“The start of pouring activities for

the massive Tokamak Complex is an

important and exciting moment for

the ITER Project,” declared ITER Director-General

Osamu Motojima.

“Years of hard work by all ITER Members

are bearing fruit as the ITER facility

takes shape in France and as the

manufacturing of the systems and

components advances. ITER is progressing

on all fronts.”

The imminent start of concrete

pouring for the walls will mark the beginning

of the second phase of ITER

construction. Four years were necessary

to complete the first phase – the

creation of a ground support structure

for the Tokamak Complex. From August

2010 to August 2014, workers excavated

the 17-metre- deep, 90 x 130

metre Tokamak Complex Seismic Pit;

created a ground-level basemat and

retaining walls; installed 493 seismic

columns and pads; and poured the B2

foundation slab.

All works have been carried out by

the European Domestic Agency “Fusion

for Energy” which, as part of its

contribution to ITER, is responsible

for the financial contribution and

technical supervision linked to the

construction of 39 scientific buildings

and dedicated areas on the ITER platform.

The Director of Fusion for Energy,

Henrik Bindslev, stressed that “Europe

is taking ITER construction to the next

level. The basemat is … where scientific

work and industrial know-how

will come together and be deployed to

seize the power of fusion energy.”

The Tokamak Complex will dominate

the ITER platform when it is completed.

The seven-storey structure will

house not only the ITER Tokamak, but

also more than 30 different plant systems

including cooling systems and

electrical power supplies. Eighty

metres tall, 120 metres long and 80

metres wide, the Tokamak Complex

will require 16,000 tons of rebar,

150,000 m 3 of concrete and 7,500 tons

of steel for the building structure.

The contract for Tokamak Complex

construction was awarded in December

2012 by Fusion for Energy to the

French-Spanish consortium VFR

(made up of French companies VINCI

Construction Grands Projets, Razel-

Bec, Dodin Campenon Bernard,

Campenon Bernard Sud-Est, GTM

Sud and Chantiers Modernes Sud, and

the Spanish firm Ferrovial Agroman).

The EUR 300-million contract also

includes the construction of the ITER

Assembly Building; the radio frequency

heating building; areas for

heating, ventilation and air conditioning;

a cleaning facility and site services

buildings; the cryoplant compressor

and coldbox building; the control

buildings; the fast discharge and

switching network resistor building;

and three bridges.

In the years to come, the number of

workers involved in ITER construction

will rise from 300, currently, to more

than 2,000.

| | www.iter.org, 6605

World Energy Outlook warns

nuclear industry on

decommissioning and disposal

(nucnet) The nuclear energy industry

needs to be ready to manage “an unprecedented

rate” of decommissioning

with almost 200 of the 434 react-

News


atw Vol. 60 (2015) | Issue 1 ı January

ors that were operating commercially

at the end of 2013 to be retired by

2040, a report by the International

Energy Agency says.

The World Energy Outlook 2014

(WEO) says “the vast majority” of

these reactor retirements will be in the

European Union, the US, Russia and

Japan.

The industry will need to manage

this unprecedented rate of decommissioning,

while also building substantial

new capacity for those reactors

that are replaced, WEO says. The IEA

estimates the cost of decommissioning

plants that are retired to be more

than $100 billion. But WEO warns

that “considerable uncertainties” remain

about these costs, reflecting the

relatively limited experience to date in

dismantling and decontaminating reactors

and restoring sites for other

uses. Regulators and utilities need to

continue to ensure that adequate

funds are set aside to cover these future

expenses, WEO says. It also warns

that all countries which have ever had

nuclear generation facilities have an

obligation to develop solutions for

long-term storage.

In one scenario examined in WEO,

the cumulative amount of spent nuclear

fuel that has been generated

(a significant portion of which becomes

high-level radioactive waste)

more than doubles, reaching 705,000

tonnes in 2040.

Today – 60 years since the first nuclear

reactor started operating – no

country has yet established permanent

facilities for the disposal of highlevel

radioactive waste from commercial

reactors, which continues to build

up in temporary storage, WEO says.

It says nuclear power is one of the

few options available at scale to reduce

carbon dioxide emissions while

providing or displacing other forms of

baseload generation. Nuclear has

avoided the release of an estimated 56

gigatonnes of CO 2 since 1971, or almost

two years of total global emissions

at current rates. Policies concerning

nuclear power will remain an

essential feature of national energy

strategies, even in countries which are

committed to phasing out the technology

and that must provide for alternatives,

WEO says.

In WEO’s central scenario, global

nuclear power capacity increases by

almost 60 percent from 392 gigawatts

in 2013 to more than 620 GW in 2040.

However, its share of global electricity

generation, which peaked almost two

decades ago, rises by just one percentage

point to 12 percent. This growth is

concentrated in just four countries –

China, India, South Korea and Russia.

These are markets where electricity is

supplied at regulated prices, utilities

have state backing or governments act

to facilitate private investment. Of the

growth in nuclear generation to 2040,

China accounts for 45 percent while

India, South Korea and Russia collectively

make up a further 30 percent.

Generation increases by 16 percent in

the US, rebounds in Japan – although

not to levels seen before the Fukushima-Daiichi

accident – and falls by 10

percent in the European Union.

WEO says despite the challenges

nuclear faces, it has specific characteristics

that underpin the commitment

of some countries to maintain it as a

future option. “Nuclear plants can

contribute to the reliability of the

power system where they increase the

diversity of power generation technologies

in the system. For countries that

import energy, it can reduce their dependence

on foreign supplies and

limit their exposure to fuel price

movements in international markets.”

Although the upfront costs to build

new nuclear plants are high and, often,

uncertain, nuclear power can offer

economic benefits by adding stability

to electricity costs and improving

balance of payments, WEO says.

| | www.iea.org, www.nucnet.org,

6606

Europe

New Commissioner lays out

plans for European ‘Energy

Union’

(nucnet) Momentum is building for a

European Energy Union like never before,

but if progress is to be made

member states will need to stop thinking

of markets as national territories

and be willing to explore the common

buying of gas, the new European Commissioner

for Energy Union has said.

In a speech at the Tatra Summit in

Slovakia yesterday, Maroš Šefčovič

laid out his vision for an Energy Union

– an idea that was first aired in 2009

– saying it needs to be built on “security,

solidarity and trust”.

“We need to integrate,” he said.

“We need to explore the common purchasing

of gas. We will need to diversify

our energy sources and routes,

and reduce high energy dependency

on several of our member states.”

He said geopolitical events – notably

in Ukraine and Russia – worldwide

energy competition and the impact

of climate change are triggering a

“mind switch” in terms of the EU’s energy

and climate strategy.

Mr Šefčovič, who supported the

European Commission’s decision to

approve a contract for the proposed

Hinkley Point C nuclear plant in the

UK, said transparency is needed as to

how member states are negotiating

with third country suppliers. The EC

should be involved in these negotiations.

Similarly, no member state

should modify its energy system

without consultation because this

may have “huge consequences” for another

member state’s systems.

Building a European Energy Union

is one of the EC’s most pressing challenges,

he said. The EU imports 53

percent of its energy at a cost of more

than €400 billion a year, making it the

biggest energy customer in the world.

Mr Šefčovič said one of his key

goals is to finalise an internal energy

market. He said a “transparent and

competitive” energy market will be the

backbone of the Energy Union, bringing

real benefits to households through

affordable energy prices and industry

through greater competitiveness.

In a progress report on the internal

energy market published last month,

the EC said there are still challenges

that need to be addressed.

The report said more investment is

needed in infrastructure including

smart grids. It said Europe needs to

implement a set of simple, harmonised

rules for gas and electricity trading.

Mr Šefčovič said the Third Energy

Package – a legislative package that

entered into force in 2009 aimed at

producing a more harmonised internal

gas and electricity market –

must be “fully implemented and applied”

through strict monitoring and

with assistance for any member states

experiencing problems with implementation.

The package includes measures

such as the ‘Unbundling Provision’,

which says organisations involved in

electricity and gas transmission cannot

also be involved in generation and

supply. The aim of the legislation is to

eliminate any potential conflict of interest.

Mr Šefčovič intends to produce a

short policy paper within months with

concrete proposals for an Energy

Union.

The idea of a European Energy

Union dates to a December 2009 declaration

by Jerzy Buzek, president of

the European Parliament at the time,

who said a “European Energy Community”

could become the next big EU

project.

61

NEWS

News


atw Vol. 60 (2015) | Issue 1 ı January

62

NEWS

In May 2010, Mr Buzek signed a

declaration which explained the

concept of energy community and

called for “a radical shift” in the way

Europe produces and consumes energy.

One of his proposals was that the

EU must have the ability to pool its

supply capacities and engage in “coordinated

energy purchasing”. In the

long term, if the EU is faced with a major

energy crisis, common strategic

reserves must be available.

In September, when he was still

prime minister of Poland, the new EC

president Donald Tusk urged other EU

leaders to create an Energy Union in

order to reduce Europe’s dependence

upon Russian gas imports.

Poland has decided to build new

nuclear reactors to move away from its

heavy reliance on coal and gas. The

first unit is expected to come into commercial

operation by 2025.

| | europa.eu, www.nucnet.org, 6607

China

Hongyanhe-3 achieves first

criticality

(nucnet) The Hongyanhe-3 nuclear

unit in Liaoning province, northeastern

China, has achieved first criticality,

the China Nuclear Energy Agency

(CNEA) has said.

The Chinese-designed Generation

II CPR-1000 pressurised water reactor

(PWR) unit reached first criticality on

27 October 2014, CNEA said. All parameters

were “normal” and “reasonable”,

CNEA said.

The unit is undergoing physical

testing to validate the performance of

the reactor core and the performance

of the instrumentation and control

(I&C) system.

The next step is to start the turbine

on the secondary, non-nuclear side of

the unit and test whether it can operate

at full speed.

Hongyanhe has two commercially

operational units and two under construction,

all of the domestic CPR-

1000 design.

Hongyanhe-1 and -2 entered commercial

operation in June 2013 and

October 2013. Construction of

Hongyanhe-3 and -4 started in March

and August 2009.

According to the International

Atomic Energy Agency’s Power Reactor

Information System (Pris) database,

China has 22 nuclear units in

commercial operation and 27 units

under construction.

| | www.cnecc.com, 6604

Research

IAEA-led project solves mystery

of how helium enters the

atmosphere

(iaea) How helium – the light noble

gas that sends balloons floating in the

air – enters the atmosphere has

wracked the brains of scientists for

generations. Now the mystery has

been solved, as an unexpected side benefit

of research done by a group of

scientists in an IAEA-led project to

study groundwater in South America.

The Guarani Aquifer is one of the

world’s largest water systems, and

Pradeep Aggarwal, Head of the IAEA’s

Isotope Hydrology Section and a

group of other scientists set out to

study this aquifer to learn how it can

be better managed and protected.

“In effect, this aquifer, under Argentina,

Brazil, Paraguay and Uruguay,

is a huge natural laboratory

where we were able to infer for the

first time that helium from deep in the

earth reaches the atmosphere along

with the discharging ground water,”

said Pradeep Aggarwal.

Helium is produced as uranium

and thorium in the earth’s crust decay.

Until this study it was unclear how it

entered the atmosphere.

The results of the findings, following

three years of study, has been published

in Nature Geoscience. Aggarwal

is the lead author with two other

IAEA experts and nine contributors

from five institutions in Brazil, the

United States and Switzerland who

took part in the study. They used a

laser-cooling and atom-trapping technique

at the Argonne National Laboratory

in the United States for measuring

the rare, radioactive krypton isotope

(Kr-81). In this technique, specific

lasers are used to slow down and

count individual Kr-81 atoms, which

are only a few among more than a trillion

atoms of stable krypton (Kr-84).

The reduced number of Kr-81 atoms in

groundwater compared to the atmospheric

krypton allowed the estimation

of the age of water, which established

the link between groundwater

and the passage of helium. Krypton-81

has a half-life of about 229,000 years

and is used for dating old (about

50,000 to one million year-old)

groundwater.

The IAEA Guarani project aimed to

provide more knowledge about the

aquifer.

“The Agency is working with its international

partners to improve our

understanding of groundwater systems

so that we can better protect and

manage this vital freshwater resource,”

said Aggarwal.

“As part of this process we need to

continue to better understand earth’s

physical systems. In pursuing the

Guarani project, we found out more

than we expected, but that is the

nature of scientific exploration.”

Helium is quite rare on earth but is

widely used in industry. The gas is important

to the electronics industry and

for cooling super-conducting magnets

such as those used in magnetic resonance

imaging (MRI). Most helium is

obtained from natural gas drilling in

the United States.

| | www.iaea.org, 6599

FRM II: New hall for cooling

systems of ultra-cold neutron

source

(frmii) South of the Maier-Leibnitz

Laboratory a hall in wood construction

is currently being built. From next year

on, it will house the mock-up for the

cooling systems of the ultracold neutron

source at the FRM II. The hall will

be ready at the end of November 2014.

The hall was necessary in order to

be able to test the large cooling systems

the source of ultracold neutrons

in non-nuclear operation. Only after a

year of testing the compressors and

gas tanks will be taken to the neutron

source for the preparation of ultracold

neutrons.

The foundations for three gas

tanks, filled with the coolants nitrogen

and helium, are already poured.

The 70 square metres wide and 3.70

metres high hall consists of a wooden

structure. It will house the compressors

of the refrigerator, which is

to ensure the cooling of the neutrons.

The ultracold neutrons are slowed

down so much that they have a velocity

of only about 20 kilometers an

hour. Planned experiments with ultracold

neutrons include the measurement

of the lifetime of free neutrons

and the search for an electric dipole

moment of the neutron.

| | www.frm2.tum.de, 6603

Company News

Successful commissioning of

Taishan EPR reactors full-scope

simulator

(areva) CORYS, a company co-owned

by AREVA and EDF, announced the

successful installation and commissioning

of the Taishan plant’s full scope

simulator at the on-site training center,

in the Guangdong province, in China.

News


atw Vol. 60 (2015) | Issue 1 ı January

| | View of the Taishan site in an early stage of construction of Taishan unit 1. (Courtesy: Areva)

This marks an important milestone for

the project as plant’s staff will now

start training to prepare the plant’s

commissioning and operation phases.

The simulator will provide enhanced

training to the customer’s 100

operators for the two EPR units in construction

in Taishan.

Developed through CORYS’ stateof-the-art

simulation workshop

ALICES © , the simulator offers a very

high level of realism. In addition,

thanks to its unequalled calculation

capacity, the device is very reactive

and its behaviors are extremely

faithful to those of the reference

plant.

“This commissioning adds to

Flamanville 3 EPR’s full-scope simulator

supplied by CORYS”, said Ralf

Gathmann, CORYS CEO. “With this

second validation, we become leaders

in the segment of the GEN3 Full-

Scope simulator.”

“With the Taishan full scope simulator

in service, a major milestone for

the plant construction project has

been successfully achieved,” said

Zhou Weichang, Head of the Taishan

training centre, for TNPJVC*. “We

are grateful to the CORYS project

team who made this project a success.”

| | www.areva.com, 6600

Rusatom Overseas welcomes

Fortum’s decision to enter

Hanhikivi 1 NPP project

(rus) Rusatom Overseas welcomes the

conditional decision of the Finnish energy

company Fortum on entering the

Hanhikivi 1 nuclear power plant project

by purchasing up to 15 per cent of

Voimaosakeyhtiö SF shares. Fortum’s

purchase of a minority stake in the

project implemented by Fennovoima

will allow to meet the requirement of

the Ministry of Employment and the

Economy of Finland in accordance

with which at least 60 per cent of the

shares should be in the Finnish ownership.

Kirill Komarov, Deputy CEO for

Corporate Development and International

Business of Rosatom Corporation

said: “Russian nuclear industry

has been cooperating with Fortum for

more than 40 years, and we are happy

that our cooperation is entering a new

phase. Fortum’s readiness to participate

in our joint project with Fennovoima

is a truly positive signal. If

Fortum becomes a shareholder, the

Hanhikivi 1 project will have access to

the competences of one of the leading

energy experts in Finland.”

In December 2013, Rusatom Overseas

and Fennovoima signed the EPC

Contract for Hanhikivi 1 nuclear

power plant in the region of Northern

Ostrobothnia, Finland. In March 2014,

RAOS Voima Oy, subsidiary of Rusatom

Overseas, purchased a 34-percent

share in Fennovoima.

| | www.rosatom.ru

Westinghouse inks multi-party

agreement to develop nuclear

power in Turkey

(westn) Westinghouse Electric Company,

China’s State Nuclear Power

Technology Corporation (SNPTC) and

Electricity Generation Company

(EÜAŞ), the largest electric power

company in Turkey, announced an

agreement to enter into exclusive negotiation

to develop and construct a

four-unit nuclear power plant site in

the Republic of Turkey based on

AP1000 ® reactor technology.

The project also covers all life cycle

activities including operations, nuclear

fuel, maintenance, engineering,

plant services and decommissioning.

“We are excited to expand into the

Republic of Turkey and provide our

cutting-edge technology and innovative

passive safety systems,” said Danny

Roderick, Westinghouse president

and CEO. “We are confident that our

partnering relationship with SNPTC

and the leadership they have demonstrated

in China will provide the

greatest value to the customers in the

Republic of Turkey.”

Eight AP1000 units are currently

under construction worldwide: two

each at the Vogtle and V.C. Summer

sites in the U.S. and the Sanmen and

Haiyang sites in China. In addition,

shareholder agreements have been

signed in the past few months for the

development of AP1000 plants at the

Moorside site in the United Kingdom

and the Kozloduy site in Bulgaria.

Westinghouse Electric Company, a

group company of Toshiba Corporation

(TKY:6502), is the world’s pioneering

nuclear energy company and is

a leading supplier of nuclear plant

products and technologies to utilities

throughout the world. Westinghouse

supplied the world’s first pressurized

water reactor in 1957 in Shippingport,

Pa., U.S. Today, Westinghouse technology

is the basis for approximately

one-half of the world’s operating nuclear

plants. AP1000 is a trademark of

Westinghouse Electric Company LLC.

All rights reserved.

State Nuclear Power Technology

Corporation (SNPTC) is the general

contractor of the first four AP1000

units in the world being built in China.

By working together with overseas

partners, SNPTC is working on providing

safe, clean, economic and reliable

energy by advanced nuclear technology,

products and services.

Electricity Generation Company

(EÜAS) is a state owned company

which was founded to generate electricity

in compliance with the energy

and economic policies of the state and

| | View of the AP1000 construction site in Sanmen, China. Eight AP1000

units are currently under construction worldwide. Negotiations to develop

and construct a four-unit nuclear power plant site in the Republic of Turkey

have started. (Courtesy: Westinghouse)

63

NEWS

News


atw Vol. 60 (2015) | Issue 1 ı January

64

Uranium

Prize range: Spot market [USD*/lb(US) U 3O 8]

140.00

) 1

Uranium

Prize range: Spot market [USD*/lb(US) U 3O 8]

140.00

) 1

120.00

120.00

100.00

100.00

80.00

80.00

NEWS

60.00

40.00

Prices in real USD, base: US prices (1982 to1984) *

60.00

40.00

20.00

20.00

0.00

Year

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2014

2014

0.00

* Actual nominal USD prices, not real prices referring to a base year. Year

Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2014

Jan. 2012

Jan. 2013

Jan. 2014

Jan. 2015

| | Uranium spot market prices from 1980 to 2014 and from 2004 to 2014. The price range is shown.

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.

Separative work:

Spot market price range [USD*/kg UTA]

180.00

) 1

Conversion:

Spot conversion price range [USD*/kgU]

14.00

) 1

160.00

12.00

140.00

120.00

10.00

100.00

8.00

80.00

6.00

60.00

40.00

4.00

20.00

2.00

0.00

* Actual nominal USD prices, not real prices referring to a base year.

Year

Jan. 2012

Jan. 2013

Jan. 2014

Jan. 2015

Source: Energy Intelligence, Nukem; Bild/Figure: atw 2014

0.00

* Actual nominal USD prices, not real prices referring to a base year. Year

Source: Energy Intelligence, Nukem; Bild/Figure: atw 2014

Jan. 2012

Jan. 2013

Jan. 2014

Jan. 2015

| | Separative work and conversion market price ranges from 2004 to 2014. The price range is shown.

)1

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.

in accordance with the principles of

efficiency and profitability.

| | www.westinghousenuclear.com,

6601

People

Luc Oursel passed away

Luc Oursel, president and CEO of

AREVA, passed away on 3 December

2014.

| | www.areva.com

Market data

(All information is supplied without

guarantee.)

Nuclear fuel supply market data

Information in current (nominal)

U.S.-$. No inflation adjustment of

prices with respect to a base year. Separative

work data for the formerly

„secondary market”. Uranium prices

[US-$/lb U 3 O 8 ; 1 lb = 453.53 g; 1 lb

U 3 O 8 = 0.385 kg U]. Conversion

prices [US-$/kg U], Separative work

[US-$/SWU (Separative work unit)].

January to December: 2012

• Uranium: 40.25–53.00

• Conversion: 6.25–10.50

• Separative work: 118.00–147.00

January to December 2013:

• Uranium: 34.00–43.50

• Conversion: 9.25–11.50

• Separative work: 98.00–127.00

January to July 2014:

• Uranium: 28.10–36.00

• Conversion: 7.75–11.00

• Separative work: 89.00–98.00

August 2014:

• Uranium: 28.60–32.50

• Conversion: 7.75–10.50

• Separative work: 89.00–92.00

September 2014:

• Uranium: 32.00–36.50

• Conversion: 7.75–10.00

• Separative work: 86.00–92.00

| | Source: Energy Intelligence,

www.energyintel.com

Cross-border price for hard coal

Cross-border price for hard coal in

[€/t TCE] and orders in [t TCE] for

use in power plants (TCE: tonnes of

coal equivalent, German border):

2010: 85.33; 23,795,158

2011: 106.97; 26,513,704

2012: 93.02; 27,453,635

2013: 79.12, 31,637,166

2014:

I. quarter: 75.16; 8,446,794

II. quarter: 71.18; 6,374,963

| | Source: BAFA, some data provisional

EEX Trading Results in

September 2014

(eex) In September 2014, the total

volume in power derivatives on the

European Energy Exchange (EEX)

amounted to 154.3 TWh. This represents

the highest volume that has been

traded on this market so far in 2014.

The French Power Futures volume increased

by 265 percent to 7.3 TWh

compared to the previous year

(September 2013: 2.0 TWh). This represents

the highest monthly volume

that has been traded and registered

for clearing at EEX since the launch of

this product. The volume in Italian

Power Futures increased by 49 percent

to 12.7 TWh compared to the previous

month (August 2014: 8.5 TWh).

In September, 71.7 TWh were registered

at EEX for clearing. Clearing

and settlement of all transactions was

executed by European Commodity

Clearing (ECC).

News


atw Vol. 60 (2015) | Issue 1 ı January

The base load price for the year

2015 in the Phelix Future product

(market area Germany/Austria) was

quoted at EUR 34.72 per MWh on

30 September 2014. The peak load

price for 2015 in the Phelix Future

product was quoted at EUR 43.58

per MWh.

On the EEX Market for Emission Allowances,

a total volume of 44.9 million

tonnes of CO 2 was traded in

September, compared with 108.3 million

tonnes of CO 2 in September 2013.

During the month, Primary Market

Auctions contributed 37.3 million

tonnes of CO 2 to the total volume. In

September, the first Primary Market

Auction for EU Aviation Allowances

(EUAA) in 2014 was conducted by

EEX with a volume of 1.64 million

tonnes of CO 2 .

In September, the monthly average

of the ECarbix (European Carbon Index)

amounted to EUR 5.99 per EUA.

On the EUA Derivatives Market, the

daily settlement price in the front year

contract (Dec-2014) varied between

EUR 5.68 per EUA and EUR 6.42 per

EUA.

The Power Derivatives Market

volumes for September 2014 are

broken down as follows: (September

2013 in brackets):

• Total trading volume:

154,260,536 MWh

(177,867,019 MWh)

• Phelix Futures: 133,165,765 MWh

(170,410,054 MWh)

• French Futures: 7,318,397 MWh

(1,970,645743 MWh)

• Italian Futures: 12,708,494 MWh

• Dutch Futures: 74,705 MWh

• Belgian Futures: 184,655 MWh

• Spanish Futures

(Trade registration): 183,655 MWh

• Phelix Options: 807,520

(5,486,320 MWh)

| | www.eex.com

MWV crude oil/product prices:

August 2014

According to information and calculations

by the Association of the German

Petroleum Industry MWV e.V in

August 2014 the prices for mineral oil

products such as super, diesel fuel

and fuel oil developed inconsistently

compared to the previous month

(July 2014) in Germany. The average

gas station prices for Euro super consisted

of 155.10 €Cent (July 2014:

158.63 €Cent, approx. -2.23 % in

brackets: each information for previous

month or rather previous month

comparison), for diesel fuel of

136.542 €Cent (136.76; -0.18 %) and

for heating oil (HEL) of 78.33 €Cent

(78.01; +0.41 %).

The tax share for super with a.m.

consumer price of 155.10 €Cent

(158.63 €Cent) consisted of 65.45

€Cent (42.2 %, 65.45 €Cent) for

the current constant mineral oil

tax share and 24.76 €Cent (current

rate: 19.0 % = const., 25.33 €Cent)

for the valued-added tax. The

product price (notation Rotterdam)

consisted of 55.84 €Cent (35.2 %,

56.77 €Cent) and the gross margin

consisted of 11.63 €Cent (7.5 %;

12.01 €Cent). Thus the overall tax

share for super results of 61.2 %

(60.3).

Worldwide crude oil prices

(monthly average price PEC/Brent/

WTI) were approx. -5.41 % (-2.90 %)

lower in August 2014 compared to

July 2014: each in US-$/bbl: OPEC

basket: 100.75 (105.61); UK-Brent:

101.61 (106.77); West Texas Intermediate

(WTI): 96.54 (103.59).

| | www.mwv.de

Publications

Proceedings of AMNT 2014

(inforum) As one of Europe‘s biggest

and most prestigious nuclear energy

conferences the AMNT features a

wide range programme with 200 expert

lectures relating to the three Key

Topics:

• Reactor Operation, Safety

• Competence, Innovation, Regulation

• Fuel, Decommissioning & Disposal

Advantages of the Proccedings CD:

• Presentations of Topcial Sessions

and Focus Sessions

• Abstracts of Technical Sessions

and Workshop Preserving Competence

• List of all autors and committee

members

• Practical search function and userfriendly

structure

| | www.kernenergie.de, 228

Energiemarkt Deutschland –

Jahrbuch 2015

Hans-Wilhelm Schiffer

Zahlen, Daten, Fakten gehören zum

Handwerkzeug; auch und gerade in

einer so mit Realitäten verbundenen

Branche, wie der Energiewirtschaft.

Von daher zählt das von Hans-Wilhelm

Schiffer herausgegebene Jahrbuch

“Energiemarkt Deutschland”

auch in seiner Auflage für das Jahr

2015 zu den unverzichtbaren Werke

für alle, die bei der Energieversorgung

mitreden wollen.

Das Jahrbuch „Energiemarkt

Deutschland 2015“ liefert auf 636 Seiten

einen fundierten und aktuellen

Überblick über die Struktur und Entwicklung

des deutschen Energiemarktes

und das Handeln seiner Teilnehmer.

Das Buch befasst sich eingehend

mit den Märkten und einzelnen Teilmärkten

für Mineralöl, Braunkohle,

Steinkohle, Erdgas und Elektrizität.

Den erneuerbaren Energien ist ein

eigenes Kapitel gewidmet.

Es präsentiert Daten und Fakten

zu Angebot und Nachfrage, erläutert

Preisbildungsmechanismen für Erdöl,

Kohle, Erdgas und Strom und

beschreibt die nationalen und europäischen

rechtlichen Rahmenbedingungen.

Eigens erörtert werden die internationalen

Klimaschutzvereinbarungen

und die Umsetzung des Treibhausgas-

Emissionshandels in Deutschland.

Alle wichtigen Zusammenhänge

des Energiemarktes sind in 130 Tabellen

und 190 Abbildungen anschaulich

aufbereitet.

Käufer des Buches haben die Möglichkeit,

die Grafiken von einer eigenen

Website herunterzuladen und bei

Angabe der Quelle ihren eigenen Präsentationen

oder Dokumenten einzubinden.

Schiffer, Hans-Wilhelm: Energiemarkt

Deutschland Jahrbuch 2015

(2014), Köln:

TÜV Media, 636 Seiten mit zahlreichen

farbigen Abbildungen und Tabellen,

ISBN: 978-3-8249-1849-2, 99,- €,

| | www.tuev-media.de, 229

65

NEWS

News


atw Vol. 60 (2015) | Issue 1 ı January

NUCLEAR TODAY 66

IAEA Puts Cyber Security in Focus for

Nuclear Facilities in 2015

John Shepherd

Later this year, the International Atomic Energy Agency

(IAEA) will convene a special conference to discuss computer

security, in the wake of cyber attacks on global financial

institutions and government agencies that were increasingly

in the news in 2014.

In common with other industrial and commercial sectors,

computer security at facilities handling nuclear and other

radioactive material, in addition to related activities such

as transport, represents what the IAEA has said are “a

unique set of challenges”.

According to the IAEA, the prevalence of IT security incidents

in recent years involving the Stuxnet malware

“demonstrated that nuclear facilities can be susceptible to

cyber attack”. The IAEA said this and other events have significantly

raised global concerns over potential vulnerabilities

and the possibility of a cyber attack, or a joint cyber-physical

attack, that could impact on nuclear security.

The IAEA has correctly identified that the use of computers

and other digital electronic equipment in physical

protection systems at nuclear facilities, as well as in facility

safety systems, instrumentation, information processing

and communication, “continues to grow and presents an

ever more likely target for cyber attack”.

According to the IAEA, computer systems and networks

supporting nuclear facility operations include many

non-standard information technology systems in terms of

architecture, configuration, or performance requirements.

“These systems can include specialised industrial control

systems, access control systems, alarm and tracking systems,

and information systems pertaining to safety and

security and emergency response,” the IAEA said.

The agency’s Vienna conference, to be held in June, will

review emerging trends in computer security and areas

that may still need to be addressed. The meeting follows a

declaration of ministers of IAEA member states in 2013

that called on the agency to help raise awareness of the

growing threat of cyber attacks and their potential impact

on nuclear security.

The conference is being organised “to foster international

cooperation in computer security as an essential element

of nuclear security”, the IAEA said.

The US Nuclear Energy Institute (NEI) explained recently

that a cyber attack on the country’s nuclear plants

“cannot prevent critical systems in a nuclear energy facility

from performing their safety functions”. The NEI said nuclear

plant safety systems are “completely isolated from the

internet and, even if cyber security were breached, the reactors

are designed to shut down safely if necessary”.

The NEI stressed that nuclear plants are also designed

to automatically disconnect from the power grid if there is

a disturbance that could be caused by a cyber attack.

The US Nuclear Regulatory Commission requires power

reactor licensees and those seeking permission to build

and operate new reactors to prove that their digital computer

and communication systems and networks are protected

against cyber attacks, including those systems and

networks associated with safety-related and important-

to-safety functions and emergency preparedness functions,

including offsite communications, and support systems

and equipment important to safety and security.

Figures from the US Federal Bureau of Investigation

(FBI) highlight why ongoing attention to the potential

threats to digital systems is needed. According to the FBI,

cyber attacks are an increasing risk for the US electric sector

and have eclipsed terrorism as the primary threat. The

FBI said its industrial control systems cyber emergency response

team responded to 256 incidents that targeted critical

infrastructure sectors in fiscal year 2013, and 59 percent

of those incidents involved the energy sector.

The UK’s Nuclear Decommissioning Authority (NDA) said

towards the end of 2014 that its network is subject to

30,000 automated cyber attacks or scans every day – which

the NDA said was “not unusual”.

The NDA, which warned that networks in its supply chain

were also at risk of attack, said suppliers bidding for certain

contracts involving sensitive and personal information are

now required to provide assurance of compliance with the

requirements of the UK’s Cyber Essentials (CE) programme.

CE “defines a focused set of controls which provide

cost-effective basic security for organisations of all sizes”,

the NDA said. In particular, it focuses on threats “which require

low levels of attacker skill, and which are widely available

online”.

An advocacy body for the global software industry, the

US-based BSA / The Software Alliance, said last November

that there is an “uneven landscape” for cyber security readiness

in Europe which should be tackled by investing in

critical infrastructure.

BSA said a draft EU network and information security

directive should focus on “Europe’s most critical networks

and infrastructure, such as transport, energy and banking,

in order to establish a foundation for cyber security readiness

first and foremost in those areas where disruption

would have major security and public safety impacts”.

However, as important and necessary as activities to

combat potential threats to cyber security are, it will be especially

important to ensure that these efforts make clear

that risks of cyber attacks are not unique to nuclear facilities

and infrastructure.

Indeed, it will be important for industry leaders and all

involved to highlight the cyber security issue as one of importance

to the global energy sector (among others) as a

whole, and not something that should encourage a new and

unbalanced focus, on the nuclear energy industry alone.

Details of the IAEA’s ‘International Conference on Computer

Security in a Nuclear World: Expert Discussion and Exchange’

are on the ‘meetings’ section of the agency’s web site.

Author

John Shepherd

nuclear 24

24 Charlotte Street

Brighton BN2 1A6/United Kongdom

Nuclear Today

IAEA Puts Cyber Security in Focus for Nuclear Facilities in 2015 ı John Shepherd


nucmag.com

The Whole Story of

Nuclear Power

– 50 Years on Disc

atw-digital | 50 years: 1956 to 2005

atw-digital

| 50 years: 1956 to 2005

Single User License

nucmag.com

© INFORUM ı Berlin | 2014

p

p

p

p

Expert’s articles, reports, interviews and news covering all

technical, economic and political topics of nuclear power

and technology.

Read the articles on your computer or print them out.

Navigate quickly to the desired papers with a few mouse clicks.

Convenient search function in all papers as full-text search

and/or deliberate search for authors and documents titles.

I would like to order (single user license),

payment by invoice:

P atw-digital 799.– €*

| 50 years: 1956 to 2005 599.– €*

Also available on Disc:

u | 2006 to 2010 199.– €*

149.– €*

u | 2011, 2012, 2013 or 2014 69.– €*

49.– €*

Surname, First Name

Organization/Order no.

DAtF-/KTG-Member (yes/no)*

Street

Postal Code City Country

Please send your order to:

INFORUM Verlags- und

Verwaltungsgesellschaft mbH

Robert-Koch-Platz 4

10115 Berlin, Germany

Fax-No. +49 30 498555-19

or order online: www.nucmag.com

Prices excluding postage.

Prices including 19% VAT for Germany and all EU member states

without VAT number. For EU member states with VAT number and

all other countries VAT will not be added.

Telephone/E-mail

VAT no. (EU countries except Germany)

I order atw-digital | 50 years: 1956 to 2005 and agree

to the terms and cancellation rights referred to below.

Date

Signature

Cancellation: This order may be cancelled within 14 days. A notice

must be sent to INFORUM Verlags- und Verwaltungsgesellschaft mbH,

Robert-Koch-Platz 4, 10115 Berlin, Germany, within this period.

The deadline will be observed by due mailing. Prompt dispatch of the

notification is sufficient for compliance with the cancellation conditions.

*

Special price for DAtF- and KTG-Members.


The International Expert Conference on Nuclear Technology

Estrel Convention

Center Berlin

5–7 May

2015

Germany

Early Bird Discount!

Register by 31 January 2015

and save up to EUR 170

3 Gold Sponsor

3 Key Topics – 1 Event

Outstanding Know-How &

Sustainable Innovations

Enhanced Safety &

Operation Excellence

Decommissioning Experience &

Waste Management Solutions

Highlights

3 More than 2 days comprehensive programme on each key topic

3 200 expert presentations from high-level professional speakers

3 Around 1,000 participants from around 30 countries

3 About 40 international exhibitors and sponsors

3 Networking with experts and decision-makers

3 Up-to-date developments and innovations

3 Silver Sponsors

Don’t miss this key event of the global nuclear energy community.

www.nucleartech-meeting.com

More magazines by this user