12.12.2012 Views

Introduction to QCD slides - P.Hoyer.pdf - High Energy Physics Group

Introduction to QCD slides - P.Hoyer.pdf - High Energy Physics Group

Introduction to QCD slides - P.Hoyer.pdf - High Energy Physics Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Paul <strong>Hoyer</strong> Mugla 2010<br />

<strong>Introduction</strong> <strong>to</strong> <strong>QCD</strong><br />

Paul <strong>Hoyer</strong><br />

University of Helsinki<br />

Akyaka - Mugla, Turkey<br />

27.8 - 4.9 2010<br />

1


As simple as 1-2-3?<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

The Standard Model<br />

SU(3) x SU(2)L x U(1)<br />

<strong>QCD</strong><br />

Electroweak<br />

Not exactly: The strong, electromagnetic and weak interactions<br />

manifest themselves very differently in Nature<br />

SU(2)L x U(1): Where does the lagrangian come from?<br />

SU(3): What does the lagrangian do?<br />

2


Paul <strong>Hoyer</strong> Mugla 2010<br />

The Discovery of the Strong Interaction<br />

Rutherford’s experiment 1911:<br />

The positive charges in matter are<br />

located in a tiny nucleus, whose radius<br />

is ~ 10 –5 of the a<strong>to</strong>mic size.<br />

⇒ There must be a strong, short-ranged<br />

force <strong>to</strong> counteract the Coulomb repulsion<br />

Thomson’s a<strong>to</strong>m: Rutherford’s a<strong>to</strong>m:<br />

F = α<br />

r 2<br />

Rnucleus<br />

Ra<strong>to</strong>m<br />

� 10 −5<br />

3


Molecules<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Matter<br />

-<br />

e<br />

-<br />

e<br />

-<br />

e<br />

A<strong>to</strong>m<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

-<br />

e<br />

Electron<br />

Nucleus<br />

p<br />

n n<br />

n<br />

pp<br />

p<br />

n<br />

p<br />

n p n<br />

p<br />

n n<br />

n p<br />

p<br />

Pro<strong>to</strong>n Neutron<br />

Quarks<br />

4


Paul <strong>Hoyer</strong> Mugla 2010<br />

The Pion as a carrier of the strong force<br />

In 1935 Hideki Yukawa suggested the existence of a new, strongly interacting<br />

particle “U” (later named the pion). The strength and range of the strong<br />

interaction could be unders<strong>to</strong>od as arising from pion exchange.<br />

• • •<br />

π<br />

• • •<br />

π<br />

π<br />

N<br />

• • •<br />

R < ∼ 1/Mπ<br />

Postulating a new particle was considered very bold in those days, when<br />

only a handful of elementary particles were known: pho<strong>to</strong>n, pro<strong>to</strong>n, neutron,<br />

electron, (neutrino).<br />

It has been suggested that “social pressure” may have kept physicists in the<br />

West from a similar proposal.<br />

Even <strong>to</strong>day in <strong>QCD</strong>, the pion is special: It is a Golds<strong>to</strong>ne boson.<br />

5


Paul <strong>Hoyer</strong> Mugla 2010<br />

Birth of Yang-Mills Theory (1954)<br />

Quantum ElectroDynamics (QED) is invariant under local (space and time -<br />

dependent) gauge transformations:<br />

Electron field:<br />

Pho<strong>to</strong>n field:<br />

ψ(x) → e ieΛ(x) ψ(x)<br />

Aµ(x) → Aµ(x) − ∂µΛ(x)<br />

Λ(x) may be any<br />

regular function<br />

In 1954, Yang and Mills generalized this local U(1) gauge symmetry <strong>to</strong> the<br />

SU(2) group of isospin, with the pro<strong>to</strong>n and neutron forming an SU(2)<br />

� �<br />

p<br />

isospin doublet just as in Yukawa’s theory:<br />

n<br />

This established the structure of non-abelian gauge symmetry.<br />

Nature found, however, different uses of YM theories.<br />

⇐ As in classical ED!<br />

6


Matter field:<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

ψ(x) → U(x)ψ(x)<br />

Physical Review 96 (1954) 191<br />

For a local gauge transformation defined by an SU(2) matrix U(x), Yang and<br />

Mills found that the theory is symmetric provided the fields transform as:<br />

Gauge field: Aµ(x) → U(x)Aµ(x)U † (x) − i<br />

g U(x)∂µU † (x)<br />

The same rule holds for any group, such as SU(3). In QED,<br />

g is the same<br />

for all ψ!<br />

U(x) =e ieΛ(x) Then U1U2 = U2U1, i.e., all group elements commute,<br />

hence the U(1) gauge symmetry is said <strong>to</strong> be abelian.<br />

7


† †<br />

2 * 2 matrices: " " " " " " # ; det " " 1<br />

"<br />

" exp !<br />

a 1 a<br />

Fundamental Representation: ! F " !<br />

2 Pauli<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

+ i - ,<br />

a a<br />

Commutation Relation:<br />

a a†<br />

a<br />

; ! " ! ; Tr ( ! ) " 0 ; a = 1 , ! , 3<br />

a b abc c<br />

/ , 0<br />

1<br />

! !<br />

2<br />

" i . !<br />

1 $ 0 1% 2 $ 0 # i % 3 $ 1 0 %<br />

! " & ' ; ! " & ' ; ! " & '<br />

( 1 0) ( i 0 ) ( 0 # 1)<br />

8


a a<br />

Fundamental Representation: ! F ! # Gell-Mann<br />

$ 0 1 0% $ 0 " i 0% $ 1 0 0% $ 0 0 1 %<br />

1 & ' 2 & ' 3 & ' 4 & '<br />

# !<br />

&<br />

1 0 0<br />

'<br />

; # !<br />

&<br />

i 0 0<br />

'<br />

; # !<br />

&<br />

0 " 1 0<br />

'<br />

; # !<br />

&<br />

0 0 0<br />

'<br />

& 0 0 0' & 0 0 0' & 0 0 0' & 1 0 0'<br />

( ) ( ) ( ) ( )<br />

$ 0 0 " i % $ 0 0 0% $ 0 0 0 % $ 1 0 0 %<br />

5 & ' 6 & ' 7 & ' 8 1 & '<br />

# !<br />

&<br />

0 0 0<br />

'<br />

; # !<br />

&<br />

0 0 1<br />

'<br />

; # !<br />

&<br />

0 0 " i<br />

'<br />

; # ! 0 1 0<br />

3<br />

& '<br />

& i 0 0 ' &0 1 0' &0 i 0 ' &0 0 " 2'<br />

( ) ( ) ( ) ( )<br />

1 123 147 156 246 257 345 367 1 458 1 678 1<br />

f ! f ! " f ! f ! f ! f ! " f ! f ! f !<br />

2 3 3 2<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

a b abc c<br />

[ ! , ! ] ! if !<br />

1<br />

2<br />

9


Yang-Mills<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Particles found in Experiments<br />

Pauli ν<br />

using particle accelera<strong>to</strong>rs<br />

Dirac e +<br />

Einstein γ<br />

Yukawa π ±<br />

using cosmic rays<br />

10<br />

http://fafnir.phyast.pitt.edu/particles/


Mesons<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Quark Model classification of Hadrons<br />

q¯q<br />

Hadrons may be formed<br />

with any combination of<br />

q = u,d,s,c,b,t<br />

π +<br />

Free quarks have never been seen:<br />

p<br />

Baryons<br />

qqq<br />

Were quarks mere mathematical rules, or true particles? (Gell-Mann)<br />

12


Paul <strong>Hoyer</strong> Mugla 2010<br />

Quarks have Color<br />

Three quark colors were introduced by O.W. Greenberg in 1964, <strong>to</strong> make the<br />

quark model of the pro<strong>to</strong>n compatible with the Pauli exclusion principle:<br />

Baryon wave functions must be antisymmetric under the interchange of<br />

quarks. In the Quark Model, the space – spin wf is symmetric. The color wf is<br />

antisymmetric, rescuing the Pauli principle.<br />

The antisymmetric color wave function<br />

(A,B,C = red, blue, yellow) means that<br />

the pro<strong>to</strong>n is a color singlet (does not<br />

change under gauge transformations).<br />

Mesons are also color singlets:<br />

|π〉 = �<br />

A<br />

q A ¯q A<br />

|p〉 = �<br />

A,B,C<br />

U|p〉 = |p〉<br />

U|π〉 = |π〉<br />

εABCq A q B q C<br />

13


Quarks are for real: Pointlike scattering of electrons<br />

<strong>High</strong> energy electrons scatter from pointlike quarks inside the pro<strong>to</strong>n:<br />

e +q → e +q (in analogy <strong>to</strong> Rutherford’s experiment)<br />

The struck quark flies out of the pro<strong>to</strong>n and “hadronizes” in<strong>to</strong> a spray (jet) of<br />

hadrons (mostly pions).<br />

At relativistic energies quark-antiquark pairs are created <strong>to</strong> ensure that all<br />

quarks end up as constituents of mesons or baryons.<br />

Deep Inelastic Scattering (DIS):<br />

e + p → e + anything<br />

SLAC 1969: Ee = 20 GeV<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

14


Paul <strong>Hoyer</strong> Mugla 2010<br />

The search for asymp<strong>to</strong>tic freedom<br />

The SLAC data (1969) showed that the pro<strong>to</strong>n<br />

charge is located in apparently free, pointlike<br />

constituents, presumably the quarks proposed<br />

earlier based on the hadron spectrum.<br />

This raised the question:<br />

“How can the quarks be nearly free inside the pro<strong>to</strong>n,<br />

yet bind so strongly <strong>to</strong>gether that they do not exist as free particles?”<br />

It was known that the coupling<br />

strength of QED “runs”, ie.,<br />

α = α(Q 2 ) increases as the<br />

distance scale r = 1/Q decreases.<br />

If there were theories where α = α(Q 2 )<br />

decreases with r this might explain<br />

the SLAC data.<br />

α(r)<br />

e<br />

p<br />

QED<br />

γ *<br />

e<br />

q<br />

π<br />

...<br />

p<br />

15<br />

log(r)


Paul <strong>Hoyer</strong> Mugla 2010<br />

Quantum Chromodynamics (1972)<br />

The <strong>QCD</strong> Lagrangian defines the interactions of quarks and gluons:<br />

L<strong>QCD</strong> = �<br />

f<br />

Looks like QED! But the gauge symmetry is<br />

SU(3) of color (Greenberg, 1964)<br />

ψ → Uψ U ⊂ SU(3)<br />

All quarks u,d,s,c,b,t have<br />

the same strong coupling g<br />

¯ψf (i/∂ − g /A − mf )ψf − 1<br />

4 F µν Fµν<br />

αs = g2<br />

4π<br />

Note: In QED the abelian U(1) symmetry allows<br />

different electric charges e for different particles<br />

It remains a mystery why:<br />

ψ =<br />

⎛<br />

⎝ q<br />

q<br />

q<br />

⎞<br />

⎠<br />

eu = − 2<br />

3 ee<br />

|ep + ee|/e < 1.0 · 10 −21<br />

20


The Standard Model A. Pich - CERN Summer Lectures 2008<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

#<br />

!<br />

"<br />

S. Bethke<br />

2006<br />

! $% & ' ()**+, - ()((*(<br />

!<br />

"<br />

! $% & ' ()**+! - ()((!.<br />

#<br />

2004<br />

21


Paul <strong>Hoyer</strong> Mugla 2010<br />

Asymp<strong>to</strong>tic Freedom<br />

Asymp<strong>to</strong>tic Freedom<br />

“What this year's Laureates<br />

discovered was something that, at<br />

first sight, seemed completely<br />

contradic<strong>to</strong>ry. The interpretation of<br />

their mathematical result was that the<br />

closer the quarks are <strong>to</strong> each other,<br />

the weaker is the 'colour charge'.<br />

When the quarks are really close <strong>to</strong><br />

each other, the force is so weak that<br />

they behave almost as free particles.<br />

This phenomenon is called<br />

‘asymp<strong>to</strong>tic freedom’. The converse<br />

is true when the quarks move apart:<br />

the force becomes stronger when the<br />

distance increases.”<br />

! S(r)<br />

1/r<br />

22<br />

From P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

Data creates Theory<br />

Data<br />

Discriminating<br />

Observables<br />

Fits<br />

Phenomenolog<br />

ical Models<br />

Individual<br />

Essential<br />

Features<br />

Quark Model,<br />

Eightfold<br />

Way, …<br />

(Solvable)<br />

Theory<br />

Complete<br />

description<br />

Quantum<br />

Chromo-<br />

Dynamics<br />

23<br />

Peter Skands, ESHEP-10


Paul <strong>Hoyer</strong> Mugla 2010<br />

Puzzles of <strong>QCD</strong><br />

<strong>QCD</strong> must have Color Confinement: Only color singlet mesons and baryons<br />

can propagate over long distances.<br />

Color confinement is verified numerically in numerical lattice simulations<br />

and modelled phenomenologically, but the mechanism is still poorly unders<strong>to</strong>od.<br />

Baryons and mesons are bound states of quarks. What are the wave functions?<br />

The quarks and gluons bound in hadrons are highly relativistic.<br />

Data and models exist, but no calculations comparable <strong>to</strong> QED a<strong>to</strong>ms.<br />

How can we compare data on hadron final states with perturbative <strong>QCD</strong>?<br />

Fac<strong>to</strong>rization theorems allow <strong>to</strong> express physical measurements in terms of hard,<br />

perturbative subprocesses and universal, measurable quark and gluon distributions.<br />

24


Paul <strong>Hoyer</strong> Mugla 2010<br />

Perspective: The divisibility of matter<br />

Since ancient times we have wondered whether matter can be divided in<strong>to</strong><br />

smaller parts ad infinitum, or whether there is a smallest constituent.<br />

Democritus, ~ 400 BC<br />

Vaisheshika school<br />

Common sense suggest that these are the two possible alternatives.<br />

However, physics requires us <strong>to</strong> refine our intuition.<br />

Quantum mechanics shows that a<strong>to</strong>ms (or molecules) are the identical<br />

smallest constituents of a given substance<br />

– yet they can be taken apart in<strong>to</strong> electrons, pro<strong>to</strong>ns and neutrons.<br />

Hadron physics gives a new twist <strong>to</strong> this age-old puzzle: Quarks can be<br />

removed from the pro<strong>to</strong>n, but cannot be isolated. Relativity – the creation of<br />

matter from energy – is the new feature which makes this possible.<br />

We are fortunate <strong>to</strong> be here <strong>to</strong> address – and hopefully develop an<br />

understanding of – this essentially novel phenomenon!<br />

25


Instantaneous Coulomb interaction<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Understanding charge screening in <strong>QCD</strong><br />

What went wrong with the nice physical argument of QED?<br />

= N _1<br />

* n 2_<br />

c *<br />

3 f 3<br />

Transverse gluons (and quarks)<br />

Instantaneous Coulomb interaction<br />

= +N 4<br />

*<br />

c<br />

Vacuum fluctuations of transverse fields<br />

Yu. L. Dokshitzer hep-ph/0306287<br />

26<br />

Physical, transverse<br />

gluons screen as QED<br />

Coulomb gluons give<br />

the opposite sign!


In <strong>QCD</strong>, mass terms can be directly introduced in the lagrangian.<br />

In the SM all masses result from “Yukawa interactions” involving the Higgs<br />

field, but they are unconstrained by the theory.<br />

The quark masses inferred<br />

from experiment are:<br />

mu = 1.5 ... 3.3 MeV<br />

md = 3.5 ... 6.0 MeV<br />

ms = 104 ± 30 MeV<br />

mc = 1.27 ± .10 GeV<br />

mb = 4.20 ± .15 GeV<br />

mt = 171.2 ± 2.1 GeV<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Quark masses: Nature’s gift<br />

} m > Λ<strong>QCD</strong> , mass effects large<br />

Non-relativistic bound states<br />

Scale of strong<br />

interactions<br />

27


Binding energy<br />

[meV]<br />

0<br />

-1000<br />

-3000<br />

-5000<br />

-7000<br />

3 1 S 0<br />

2 1 S 0<br />

1 1 S 0<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Charmonium – the Positronium of <strong>QCD</strong><br />

Since mc >> Λ<strong>QCD</strong>, the c¯c mesons are nearly non-relativistic<br />

3 3 S 1<br />

2 3 S 1<br />

1 3 S 1<br />

2 1 P 1<br />

8·10 -4 eV<br />

Ionisationsenergie<br />

2 3 P2<br />

2 3 P1<br />

2 3 P0<br />

3 1 D 2<br />

10 -4 eV<br />

e + e −<br />

3 3 D2<br />

3 3 D1<br />

3 3 D2<br />

~ 600 meV<br />

e + e- 0.1 nm<br />

Mass [MeV]<br />

4100<br />

3900<br />

3700<br />

3500<br />

3300<br />

3100<br />

2900<br />

c(3590)<br />

c(2980)<br />

(4040)<br />

(3770)<br />

(3686)<br />

(3097)<br />

3 D1<br />

hc(3525)<br />

3 P2 (~ 3940)<br />

3 P1 (~ 3880)<br />

3 P0 (~ 3800)<br />

2(3556)<br />

1(3510)<br />

0(3415)<br />

C<br />

1 D 2<br />

DD<br />

3 D 3<br />

(~ 3800)<br />

3 D2<br />

1 fm<br />

c¯c<br />

C<br />

28


e<br />

p<br />

γ *<br />

e<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Quarks move relativistically inside the pro<strong>to</strong>n<br />

q<br />

DIS measures the<br />

fraction x of the<br />

pro<strong>to</strong>n energy<br />

which is carried<br />

by the quarks,<br />

anti-quarks and<br />

gluons.<br />

For non-relativistic<br />

internal motion the<br />

x-distribution would<br />

be sharply peaked<br />

Non-relativistic uud state<br />

29


Paul <strong>Hoyer</strong> Mugla 2010<br />

Origin of the pro<strong>to</strong>n mass<br />

The u, d quarks in the pro<strong>to</strong>n have small masses<br />

2mu + md<br />

mp<br />

�<br />

10 MeV<br />

938 MeV<br />

� 1%<br />

99% of the pro<strong>to</strong>n mass<br />

is due <strong>to</strong> interactions!<br />

1% is due <strong>to</strong> Higgs.<br />

⇒ Ultra-relativistic state<br />

Compare this with positronium (e + e – ), the lightest QED a<strong>to</strong>m:<br />

2me<br />

mpos<br />

� 100.00067%<br />

Binding energy is tiny wrt mc 2<br />

⇒ Nonrelativistic state<br />

The compatibility of the non-relativistic⎥p〉 = ⎥uud〉 quark model description<br />

of the pro<strong>to</strong>n with its ultra-relativistic par<strong>to</strong>n model picture remains a mystery<br />

– but a mystery that we can address within <strong>QCD</strong>.<br />

Both are supported by data: = ??<br />

⎥p〉<br />

uud<br />

30<br />

gluon<br />

q¯q


Unlike a<strong>to</strong>ms, hadrons have<br />

no ionization threshold,<br />

where the quark constituents<br />

would be liberated.<br />

Hadron masses are<br />

generated by the<br />

potential and kinetic<br />

energies of the<br />

constituents<br />

Not yet explained<br />

by <strong>QCD</strong><br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Hadron mass spectrum is relativistic<br />

R e ! (m )<br />

2<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

P.Desgrolard, M.Giffon, E.Martynov, E.Predazzi, hep-ph/0006244<br />

Spin<br />

" (770)<br />

# (782)<br />

Regge trajec<strong>to</strong>ry<br />

f 2(1270)<br />

a 2 (1318)<br />

" 3(1700)<br />

# (1670)<br />

3<br />

f 4 (2050)<br />

a (2020)<br />

4<br />

0.00<br />

0 .00 2.00 4.0 0 6.00 8.00 10.00<br />

m 2 (G eV )<br />

2<br />

(2350)<br />

" 5<br />

f (2510)<br />

6<br />

a (2 450)<br />

6<br />

For unknown<br />

reasons, hadron<br />

spins are<br />

proportional <strong>to</strong><br />

their mass 2<br />

31


√+%&'(<br />

!"#$$%$&'()#*%+,-.<br />

!" #<br />

!"<br />

!" $!<br />

π-<br />

π,<br />

!" $!<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

! "#$ %&'()*<br />

! !" !" #<br />

./0 0 1 2 3 4 5 6 7 .8 08 18 28<br />

⇓<br />

! !" !" #<br />

⇓<br />

elastic<br />

Total and Elastic Hadron Cross Sections<br />

0/0 1 2 3 4 5 6 7 .8 08 18 28 38 48<br />

π ∓ d <strong>to</strong>tal<br />

π − p elastic<br />

π − p <strong>to</strong>tal<br />

Not yet explained<br />

by <strong>QCD</strong><br />

! "#$ %&'()*<br />

Figure 40.13: Total and elastic cross sections for π ± p and π ± d (<strong>to</strong>tal only) collisions as a function of labora<strong>to</strong>ry beam momentum and <strong>to</strong>tal<br />

center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the<br />

COMPAS <strong>Group</strong>, IHEP, Protvino, August 2005)<br />

32


Paul <strong>Hoyer</strong> Mugla 2010<br />

Heavy Ion Collisions<br />

The quest for a new phase of matter at RHIC, LHC,...<br />

33


Paul <strong>Hoyer</strong> Mugla 2010<br />

34<br />

P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

Hadron masses from Lattice calculations<br />

35<br />

P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

The accuracy of QED perturbation theory<br />

Many of our most accurate predictions come from QED a<strong>to</strong>ms.<br />

For example, the 2S1/2 – 8S1/2 splitting in Hydrogen:<br />

Δ(2S1/2 – 8S1/2)H = 770 649 350 012.0(8.6) kHz EXP<br />

= 770 649 350 016.1(2.8) kHz QED<br />

The QED result is based on perturbation theory:<br />

– an expansion in α = e 2 /4π ≈ 1/137.035 999 11(46)<br />

U.D. Jentschura et al,<br />

PRL 95 (2005) 163003<br />

However, the series must diverge since for any α = e2/4π < 0 the electron<br />

charge e is imaginary: The Hamil<strong>to</strong>nian is not hermitian and probability not<br />

conserved. F. Dyson<br />

The perturbative expansion is believed <strong>to</strong> be divergent (asymp<strong>to</strong>tic).<br />

The good agreement of data with QED is fortuituous, from a<br />

theoretical point of view. For a discussion of the truncation effects in asymp<strong>to</strong>tic<br />

expansions see Y. Meurice, hep-th/0608097<br />

<strong>QCD</strong> perturbation theory has many features in common with that of QED.<br />

36


Paul <strong>Hoyer</strong> Mugla 2010<br />

Applications of perturbative <strong>QCD</strong> <strong>to</strong> data<br />

The <strong>QCD</strong> perturbative expansion successfully describes short distance<br />

processes, which involve high virtualities Q 2 and small αs(Q 2 ).<br />

Long distance dynamics is “universal”, i.e., independent of the hard process.<br />

Measuring the soft quark distribution and fragmentation functions in one<br />

process one can then predict measurable hadron cross sections.<br />

The applications of P<strong>QCD</strong> depends on Fac<strong>to</strong>rization Theorems, which hold <strong>to</strong><br />

all orders in αs at “Leading Twist”, for sufficiently inclusive processes.<br />

The “<strong>High</strong>er Twist” corrections are power-suppressed in the hard scale,<br />

∝ 1/Q 2 and can usually not be predicted.<br />

37


dσ<br />

dX<br />

Fac<strong>to</strong>rization Theorem<br />

Fac<strong>to</strong>rization: expresses the independence of long-wavelength (soft)<br />

Fac<strong>to</strong>rization emission on the nature of the hard (short-distance) process.<br />

� �<br />

�<br />

=<br />

a,b<br />

f<br />

ˆX f<br />

f!x,Q i "<br />

fa(xa, Q 2 i )fb(xb, Q 2 i ) dˆσab→f(xa, xb, f, Q 2 i , Q2 f )<br />

d ˆ Xf<br />

!<br />

ˆ<br />

"<br />

! sum over long!wavelength his<strong>to</strong>ries<br />

leading <strong>to</strong> a with xa at the scale Qi 2<br />

�<br />

�<br />

!<br />

Paul <strong>Hoyer</strong> Mugla 2010 + (At H.O. each of these defined in a specific scheme, usually MS) P. Skands<br />

ˆ<br />

X<br />

D<br />

!<br />

p = x j<br />

!<br />

!<br />

P pro<strong>to</strong>n<br />

Par<strong>to</strong>n distribution<br />

fa(xa, Q<br />

functions (PDF)<br />

2 i )fb(xb, Q 2 i ) dˆσab→f(xa, xb, f, Q2 i , Q2 f )<br />

b, Q 2 i ) dˆσab→f(xa, xb, f, Q2 i , Q2 f )<br />

rization<br />

a,b<br />

f<br />

ˆX f<br />

d ˆ Xf<br />

fa(xa, Q (ISR)<br />

2 i )fb(xb, Q 2 i ) dˆσab→f(xa, xb, f, Q2 i , Q2 f )<br />

d ˆ Xf<br />

d ˆ Xf<br />

D( ˆ Xf → X, Q 2 i , Q 2 f)<br />

Illustration by M. Mangano<br />

X<br />

D( ˆ Xf → X, Q 2 i , Q 2 f)<br />

38<br />

D( ˆ Fragmentation<br />

Xf → X<br />

Function (FF)<br />

! Sum over long!wavelength his<strong>to</strong>ries<br />

from at Qf 2 D( <strong>to</strong> X<br />

ˆ Xf → X, Q 2 i , Q 2 f) (FSR and Hadronization)


Paul <strong>Hoyer</strong> Mugla 2010<br />

e !<br />

# q<br />

e " q<br />

" #<br />

" #<br />

$ ( ee & hadrons) $ ( ee & qq)<br />

q<br />

R '<br />

! !<br />

NC<br />

Q<br />

" # " # " # " # -<br />

$ ( ee & % % ) $ ( e e & % % )<br />

,<br />

(<br />

)<br />

)<br />

*<br />

)<br />

)<br />

)<br />

+<br />

-<br />

, ( u, d, s)<br />

, ( u, d, s, c)<br />

, ( u, d, s, c,<br />

b)<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

2<br />

3<br />

10<br />

9<br />

11<br />

9<br />

N<br />

N<br />

N<br />

C<br />

C<br />

C<br />

q<br />

2<br />

q<br />

40


ξ =<br />

1 +<br />

= log E + p �<br />

� m 2 + p 2 ⊥<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Q + M X<br />

2x<br />

�<br />

1 + 4m2 px2 /Q2 c¯c b¯b s¯s<br />

� − log tan(θ/2)<br />

R = σ(e+ e − → hadrons)<br />

σ(e + e − → µ + µ − )<br />

=3 �<br />

q<br />

e 2 q<br />

�<br />

1+ αs<br />

π<br />

�<br />

41


Paul <strong>Hoyer</strong> Mugla 2010<br />

LEP determination of neutrino number<br />

e + e − → hadrons<br />

at Z peak<br />

42


:02 PM<br />

e +<br />

e –<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Traces of Quarks and Gluons in the final state?!<br />

e + e – → 2 jets e + e – → 3 jets<br />

Z<br />

q<br />

_<br />

q<br />

h’s<br />

h’s<br />

Q 2 = m 2 Z<br />

e +<br />

e –<br />

Z<br />

q<br />

_<br />

q<br />

g<br />

h’s<br />

h’s<br />

43<br />

h’s


No exclusive amplitudes for charged particles (I)<br />

The identification of the data on e + e – → 2 jets with the <strong>QCD</strong> process<br />

e + e − → q¯q<br />

Gauge invariance dictates that amplitudes<br />

with external charged particles vanish:<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

requires care, since the latter does not exist!<br />

This is a general feature of gauge theories, and as such is best illustrated by<br />

the QED process e + e − → µ + µ −<br />

A(e + e − → µ + µ − ) = 0<br />

This is because the amplitude must be invariant under local U(1) gauge<br />

transformations. Multiplying one of the external fermions by<br />

U = e iπ = – 1 we get A → – A.<br />

44


No exclusive amplitudes for charged particles (II)<br />

In the perturbation expansion the Born<br />

term is well-defined and ≠ 0:<br />

This problem shows up at order α 2 as an<br />

infrared singularity in the loop integral for k → 0:<br />

This may be seen without calculation:<br />

The two fermion propaga<strong>to</strong>rs ∝ k, e.g.:<br />

(p1 − k) 2 − m 2 µ = −2p1 · k + k 2 ∝ k<br />

The pho<strong>to</strong>n propaga<strong>to</strong>r ∝ k 2 , giving a log singularity at k = 0<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

e +<br />

e –<br />

e +<br />

e –<br />

γ*<br />

γ*<br />

q<br />

�<br />

0<br />

p1<br />

p2<br />

d 4 k<br />

k 4<br />

⇒ The exclusive process e + e – → µ + µ – is ill defined.<br />

µ +<br />

µ –<br />

µ +<br />

k<br />

µ –<br />

45


No exclusive amplitudes for charged particles (III)<br />

Two charged particles at different positions x, y must be connected by a<br />

pho<strong>to</strong>n string <strong>to</strong> be gauge invariant:<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

¯ψ(y)exp<br />

�<br />

ie<br />

� y<br />

x<br />

dzνA ν �<br />

(z) ψ(x)<br />

The pho<strong>to</strong>n (gauge) field serves as a connection, which “informs” about the<br />

choice of gauge at each point in space.<br />

In perturbation theory, the missing string causes an infrared singularity at the<br />

one pho<strong>to</strong>n correction level.<br />

But we previously saw that there is no problem with the <strong>to</strong>tal e + e – cross<br />

section, which includes the µ + µ – final state?!<br />

To see how the IR singularity cancels in the <strong>to</strong>tal cross section we may use<br />

the optical theorem.<br />

46


Unitarity (white):<br />

σ<strong>to</strong>t(s) = �<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Some Theorems<br />

X<br />

�<br />

Before <strong>QCD</strong><br />

E.g., Lorentz inv., unitarity and the optical theorem<br />

SS † = 1<br />

“something will happen”<br />

note: includes “no” scattering<br />

The Lagrangian of <strong>QCD</strong><br />

Optical Theorem<br />

As a consequence of the unitarity of the scattering matrix:<br />

the <strong>to</strong>tal cross section may be expressed in terms of the<br />

Unitarity (white)<br />

imaginary part of the forward elastic amplitude:<br />

SS † =1<br />

dΦX |MX| 2 = 8π<br />

Optical Theorem (white) √ Im [Mel(θ = 0)]<br />

s<br />

σ<strong>to</strong>t(s) =<br />

µ<br />

)( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

4 F a µνF aµν<br />

The Lagrangian of <strong>QCD</strong> in white<br />

µ<br />

)( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

X ~ XX<br />

2<br />

X<br />

10<br />

4 F a µνF aµν<br />

SS † = 1<br />

Total = The Lagrangian that can of happen <strong>QCD</strong><br />

dΦX |M X | 2 = 8π<br />

√ Im [M<br />

s<br />

el(θ = 0) ]<br />

Sum over everything<br />

“Square Root” of<br />

nothing happening<br />

L = ¯ ψ i q(iγ µ )( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

4 F a µνF aµν<br />

The Lagrangian of <strong>QCD</strong> in white<br />

L = ¯ ψ i q(iγ µ )( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

4 F a µνF aµν<br />

The sum over all states X becomes a completeness sum on the rhs.<br />

QED satisfies unitarity at each order of α.<br />

=<br />

47<br />

P. Skands


µ +<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

µ +<br />

γ* γ*<br />

µ –<br />

Optical Theorem for σ<strong>to</strong>t(e in QED (I)<br />

+ e − )<br />

O (α) O � α 2�<br />

µ –<br />

γ ∗ → µ + µ −<br />

µ +<br />

µ –<br />

γ<br />

µ +<br />

µ –<br />

γ ∗ → µ + µ − γ<br />

µ +<br />

µ –<br />

µ +<br />

µ –<br />

γ ∗ → µ + µ −<br />

At O(α 2 ) there are two contributions <strong>to</strong> the imaginary part (dashed line).<br />

The IR singularity cancels between them, i.e., between different final states!<br />

Since the γ*→ γ* amplitude does not have external charges, it “has <strong>to</strong> be” regular.<br />

It means that even in QED we must define cross sections such that they include<br />

(arbitrarily soft) pho<strong>to</strong>ns. There are no free, “bare electrons”.<br />

48


Paul <strong>Hoyer</strong> Mugla 2010<br />

Optical Theorem for σ<strong>to</strong>t(e in QED (II)<br />

+ e − )<br />

γ* γ*<br />

k k<br />

Since the IR singularity is only at k = 0, it suffices <strong>to</strong> include only pho<strong>to</strong>ns with<br />

k < k0, for arbitrarily small k0.<br />

The criterion is <strong>to</strong> sum over all states that are degenerate in energy,<br />

since these have an asymp<strong>to</strong>tically long formation time Δt ∼ 1/ΔE<br />

In QED, collinear IR singularities are regulated by the electron mass:<br />

49<br />

Kinoshita-<br />

Lee-Nauenberg<br />

(KLN) theorem<br />

p<br />

Ee =<br />

xp<br />

(1–x)p<br />

+<br />

� p2 + m2 e Ee+γ = � (xp) 2 + m2 e + (1 − x)|p|<br />

For |p| >> me the<br />

collinear e + γ state has<br />

nearly the same energy<br />

as the single electron e.<br />

⇒ In QED, collinear bremsstrahlung is enhanced by a fac<strong>to</strong>r log(|p|/me).


Paul <strong>Hoyer</strong> Mugla 2010<br />

Removing IR sensitivity in <strong>QCD</strong><br />

In <strong>QCD</strong> even soft gluons can change the color of the quark<br />

⇒ we can never measure the color of a quark!<br />

Also: Want <strong>to</strong> sum over all soft and collinear divergences up <strong>to</strong> a<br />

“Fac<strong>to</strong>rization scale” µ, large enough <strong>to</strong> apply P<strong>QCD</strong> for Q > µ.<br />

Define IR safe cross sections, which can be calculated in P<strong>QCD</strong><br />

using the fac<strong>to</strong>rization theorem, and measured in experiments.<br />

50


e�nition<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Infrared Safe observables<br />

An obser vable is infrared safe if it is insensitive <strong>to</strong><br />

SOFT radiation:<br />

Adding any number of infinitely soft particles should not<br />

change the value of the obser vable<br />

COLLINEAR radiation:<br />

Splitting an existing particle up in<strong>to</strong> two comoving particles<br />

each with half the original momentum should not change<br />

the value of the obser vable<br />

51<br />

P. Skands


LO:<br />

σ NLO<br />

�<br />

1 (R) =<br />

� LO, NLO, etc<br />

|M (0)<br />

2Re[M (1)<br />

52<br />

σ Z → 2 1-loop:<br />

qk<br />

LO<br />

(R) = |M X+1 (0)<br />

X+1 |2<br />

Cross sections<br />

�<br />

at NLO<br />

σBorn = |M<br />

Z → 3 jets:<br />

(0)<br />

X |2<br />

Z → 2 1-loop:<br />

qk<br />

g<br />

qi �<br />

ik<br />

σ<br />

qk<br />

qi<br />

a<br />

qk<br />

LO<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

Z decay:<br />

q q<br />

q q<br />

�<br />

|M|<br />

colours<br />

2 Z → 3 jets:<br />

qk<br />

qi<br />

g<br />

qi<br />

=<br />

jk<br />

qk<br />

qi<br />

a g<br />

qi<br />

ik<br />

Z → 2 1-loop:<br />

qk<br />

a<br />

g<br />

qi �<br />

ik<br />

|M<br />

R<br />

qk<br />

qi<br />

a<br />

(0)<br />

X+1 |2<br />

Z → 3 jets:<br />

qk �<br />

qi<br />

g<br />

qi<br />

jk<br />

qk<br />

qi<br />

a g<br />

qi<br />

ik<br />

Removing IR sensitivity in <strong>QCD</strong> at NLO<br />

a<br />

g<br />

qi<br />

qk<br />

orem (Kinoshita-Lee-Nauenberg)<br />

ities cancel at complete order (only finite te<br />

ik<br />

�<br />

qk<br />

qi<br />

a<br />

σBorn + |M qk<br />

(note: Not the 1-loop diagram sq<br />

(0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

M X X ]<br />

|M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

M X X ]<br />

��<br />

rn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M<br />

σ NLO<br />

O, etc<br />

�<br />

σBorn = |M<br />

= X σBorn(1 + K)<br />

(0)<br />

X |2<br />

σ LO<br />

�<br />

(R) = |M X+1<br />

R<br />

(0)<br />

X+1 |2<br />

�<br />

σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

M X X ]<br />

Z → 2 1-loop:<br />

LO:<br />

g<br />

NL Theorem (Kinoshita-Lee-Nauenberg)<br />

Singularities cancel at complete order (only finite terms left<br />

Lemma: only � after some hard �work<br />

ik<br />

σ<br />

(note: Not the 1-loop diagram squared)<br />

LO<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

NLO<br />

X = σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0<br />

X M X<br />

σ NLO<br />

LO, NLO, etc<br />

�<br />

σBorn = |M<br />

X = σBorn(1 + K)<br />

� �<br />

� �<br />

(0)<br />

X |2<br />

σ LO<br />

�<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

(note: Not the 1-loop diagram squared)<br />

NL Theorem (Kinoshita-Lee-Nauenberg)<br />

Singularities cancel at complete order (only finite terms left over)<br />

Lemma: only after some hard work<br />

�� � ��<br />

NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

NLO<br />

X = σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

σ NLO<br />

X = σBorn(1 + K)<br />

NNLO<br />

X = σ NLO<br />

X +<br />

� �<br />

|M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

� �<br />

+ 2Re[M (1)<br />

σBorn = |M<br />

(0)<br />

X+1M X+<br />

(0)<br />

X |2<br />

σ LO<br />

�<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

��<br />

X = σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

σ NLO<br />

X = σBorn(1 + K)<br />

!1(e + e − → q ¯q(g)) = !0(e + e − �<br />

→ q ¯q) 1 + "s(ECM)<br />

+ O("<br />

#<br />

2 X<br />

�<br />

+ |M<br />

(note: Not the 1-loop diagram squared)<br />

(Kinoshita-Lee-Nauenberg)<br />

ncel at complete order (only finite terms left over)<br />

after some hard work<br />

�<br />

s)<br />

29<br />

(0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

te |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

LO<br />

= σBorn(1 + K)<br />

�<br />

|M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

� �<br />

+ 2Re[M (1) (0)∗<br />

X+1M X+1 ]+<br />

�<br />

|M (0)<br />

X+2 |2<br />

σBorn = |M (0)<br />

X |2<br />

�<br />

LO<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

�<br />

|M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

| 2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

nite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

NLO<br />

X = σBorn(1 + K)<br />

)) = !0(e<br />

�<br />

� �<br />

�<br />

+ e − �<br />

→ q ¯q) 1 + "s(ECM)<br />

+ O("<br />

#<br />

2 ...<br />

�<br />

s)<br />

Z decay:<br />

q<br />

X+1 |2 +<br />

q q<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

q<br />

�<br />

|M| 2 =<br />

colours<br />

�<br />

∝ δijδ ∗ ji<br />

= Tr[δij]<br />

= NC<br />

Z decay:<br />

NNLO = σ NLO +<br />

8<br />

q<br />

∝ δijδ ∗ ji<br />

= Tr[δij]<br />

= NC<br />

q<br />

q q<br />

�<br />

|M| 2 =<br />

colours<br />

∝ δijδ ∗ ji<br />

= Tr[δij]<br />

= NC<br />

qi<br />

qi<br />

qk qk<br />

g jk<br />

a<br />

�<br />

(1) 2 (2) (0)∗<br />

M (0)∗<br />

R<br />

X qk<br />

qk<br />

]<br />

g ik<br />

Z → 3 jets: a<br />

qi<br />

qi<br />

qk<br />

g jk<br />

8<br />

a<br />

qi<br />

16<br />

8<br />

qi<br />

qk<br />

g ik<br />

a<br />

8<br />

qi<br />

qi<br />

� � � �<br />

|M (1) | 2 + 2Re[M (2) M (0)∗ (1) (0)∗ ]<br />

29<br />

qk<br />

qi<br />

qi<br />

qk<br />

qk<br />

a<br />

16<br />

+<br />

qk<br />

qk<br />

16<br />

2Re[M (1)<br />

P. Skands<br />

(0) 2


Cross<br />

σσ Sections at NNLO<br />

X+1 (R)<br />

Sections<br />

= |MX+1 |<br />

at NNLO<br />

X+1 (R) = |MX+1 |<br />

R<br />

NLO<br />

X = σBorn + |M<br />

NLO<br />

(0)<br />

X+1 |2 + 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

O<br />

= |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

O<br />

= σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

�<br />

qk qk<br />

qj qj<br />

NNLO<br />

qi<br />

qi<br />

qi<br />

qk<br />

NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

NNLO �� � ��<br />

�<br />

qk qk<br />

qj qj<br />

LO<br />

X+1 (R) = X+1<br />

R<br />

|2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

NNLO �� � ��<br />

�<br />

qk qk<br />

qj qj<br />

NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

Removing IR sensitivity in <strong>QCD</strong> at NNLO<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

�� � ��<br />

�<br />

qk qk<br />

qj qj<br />

σ NLO<br />

σ = σBorn+Finite<br />

NLO σ = σBorn+Finite<br />

NLO<br />

= σBorn+Finite<br />

X X<br />

LO = σ NLO<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

g ik<br />

σ NLOg<br />

qi<br />

ik<br />

a<br />

σX NLO qi qi<br />

qi<br />

X<br />

qk qk qk<br />

X +<br />

� �<br />

X +<br />

� �<br />

X + X +<br />

σ NNLO<br />

= σ NLO<br />

σ NNLO<br />

= σ NLO<br />

σ NNLO<br />

= σ NLO<br />

X X<br />

Cross Sections at NNLO<br />

qi qi<br />

qi<br />

a<br />

gik a<br />

gik |M (0)<br />

X+1 |2 |M qi<br />

(0)<br />

X+1 |2 |M qi<br />

(0)<br />

X+1 |2 qi<br />

a<br />

g<br />

= σBorn(1 qi + K)<br />

ik<br />

ga ik g<br />

a<br />

ik<br />

a<br />

= σBorn(1 qi<br />

σ + K)<br />

NLO<br />

a<br />

σ = σBorn(1 qi + K)<br />

NLO<br />

= σBorn(1 qi + K)<br />

qk<br />

�� ��<br />

g ik<br />

qk qk qk<br />

qk<br />

|M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

|M<br />

X M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

|M +<br />

(1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

|M +<br />

(1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ] +<br />

Z → 2 2-loop:<br />

15<br />

15<br />

15<br />

Z → 2 2-loop:<br />

qk<br />

qk<br />

qj<br />

qj qk<br />

qi<br />

qi qj<br />

gij g jk gij a g jk<br />

g b<br />

ij<br />

a g jk<br />

+Finite<br />

g<br />

qi<br />

qj<br />

ij<br />

a g<br />

qk<br />

jk<br />

qi a b b<br />

qi<br />

qi<br />

qi<br />

qj<br />

qj<br />

qj<br />

qk<br />

qk<br />

qk<br />

b<br />

qk<br />

qk<br />

qk<br />

qk<br />

Two-Loop ! Born Interference<br />

Two-Loop<br />

Two-Loop<br />

!<br />

!<br />

Born<br />

Born<br />

Interference<br />

Interference<br />

18<br />

18<br />

18<br />

|M (0)<br />

gjk g ij<br />

gjk 2Re[M (1) (0)∗<br />

2Re[M M (1) (0)∗<br />

2Re[M M (1) (0)∗<br />

M<br />

qi g<br />

qk<br />

ik<br />

a<br />

b X<br />

c<br />

qi g<br />

qk<br />

ik<br />

qi<br />

g<br />

c<br />

jk<br />

g a ij<br />

qk<br />

b<br />

g<br />

qk<br />

jkX<br />

a<br />

qi g<br />

qk<br />

ik<br />

qi<br />

g<br />

c<br />

jk<br />

g a ij<br />

qk<br />

b<br />

g<br />

qk<br />

jk<br />

X<br />

a<br />

qi g<br />

qk<br />

ik<br />

qi<br />

g<br />

c<br />

jk<br />

g a ij<br />

qk<br />

b<br />

g<br />

qk<br />

jk<br />

a<br />

qk<br />

qk<br />

X ]<br />

��<br />

� ��<br />

��<br />

�<br />

+<br />

qk<br />

Two-Loop ! Born 30<br />

30<br />

30 Interference<br />

X ] X ]<br />

X a ]<br />

2Re[M (1)<br />

2Re[M (1)<br />

2Re[M (1)<br />

18<br />

18<br />

18<br />

and so on, at each fixed order in αs<br />

qk<br />

2Re[M (1) (0)∗<br />

(0)∗<br />

X+1 M M<br />

X+1<br />

18<br />

X+1 ]+<br />

�<br />

X+1 ]+<br />

�<br />

X+1 ]+<br />

�<br />

(0)∗<br />

X+1M Z Z Z→ → →4: 4:<br />

qi<br />

qi<br />

qi<br />

qi qi qi<br />

qj qj<br />

qj<br />

gik g ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

qk qk qk<br />

X+1 ]+<br />

�<br />

|M (0)<br />

X+2 |2 X+2 |2 |M (0)<br />

X+2 |2<br />

|M (0)<br />

a<br />

qj Z → 4:<br />

qi<br />

gik g<br />

a<br />

ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

qj<br />

qj<br />

qk qk<br />

qi<br />

qiqj<br />

qi<br />

Real Real ! ! Real Real (X+2) (X+2) qk<br />

Real ! Real (X+2)<br />

g ij<br />

qi qi<br />

b<br />

g ik<br />

a<br />

53<br />

|M (<br />

X<br />

Real ! Real<br />

P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

Event genera<strong>to</strong>rs<br />

At high energies many gluons are radiated. Then one needs <strong>to</strong> include<br />

high orders in αs for which complete, IR regulated matrix elements are not<br />

available.<br />

⇒ Shower Monte Carlo methods:<br />

Include only the log enhanced terms of tree digrams (no loops)<br />

Use phenomenological hadronization model for Q < µ.<br />

This gives approximate results for hadron<br />

distributions in the final state.<br />

The reliability is tested by including<br />

next-<strong>to</strong>-leading logarithms and comparing<br />

several hadronization models.<br />

Cluster Fragmentation<br />

55


Paul <strong>Hoyer</strong> Mugla 2010<br />

<strong>QCD</strong> is very successful in comparisons with data<br />

Rate of 3-jet events<br />

in e + e – annihilations<br />

e + e – → q q g<br />

→ 3 jets<br />

Ex: Estimate the CM<br />

energy in e+ e– annihilations<br />

at which 2-jet structure<br />

emerges. In quark<br />

fragmentation, pions get an<br />

average fraction ≈ 0.1<br />

of the quark energy, and<br />

≈ 350 MeV.<br />

S. Bethke, hep-ex/0606035<br />

56


Angular distribution<br />

of 4-jet events in<br />

e + e – annihilations<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

S. Bethke, hep-ex/0606035<br />

57


Measurement of quark<br />

and gluon color charges<br />

in e + e – annihilations<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

quark<br />

color<br />

charge<br />

e + e –<br />

S. Bethke, hep-ex/0606035<br />

gluon charge<br />

58


(Nonperturbative)<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Jet production in hadron collisions<br />

(Inclusive sum)<br />

(log. scaling<br />

violations)<br />

(Perturbative)<br />

(Nonperturbative)<br />

(log. scaling<br />

violations)<br />

arXiv:1002.1708<br />

(or: h + X)<br />

(<strong>High</strong>er<br />

order in αs)<br />

59


Paul <strong>Hoyer</strong> Mugla 2010<br />

The CDF Detec<strong>to</strong>r<br />

60


Fermilab:<br />

〉 pp<br />

– �= → 0 jet and + X 〈0|F a µνF µν<br />

ECM = 1.96 TeV<br />

Quarks and gluons<br />

are pointlike down<br />

q<br />

<strong>to</strong> the best resolution<br />

that has been reached<br />

Ex: Estimate the maximum<br />

radius of quarks and gluons,<br />

given the agreement of<br />

<strong>QCD</strong> with the Fermilab jet<br />

2x<br />

data.<br />

ξ =<br />

Rapidity:<br />

F2(x) = �<br />

x =<br />

1 +<br />

y = log E + p �<br />

� m 2 + p 2 ⊥<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

e 2 q xfq(x)<br />

Q 2<br />

Q 2 + M 2 X<br />

�<br />

1 + 4m 2 px 2 /Q 2<br />

� − log tan(θ/2)<br />

ECM = 1960 GeV<br />

a |0〉 �= 0<br />

CDF Collab., hep-ex/0701051<br />

61


Paul <strong>Hoyer</strong> Mugla 2010<br />

pp<br />

–<br />

→ jet + X: Jet mass distribution<br />

62


Paul <strong>Hoyer</strong> Mugla 2010<br />

Concluding remarks<br />

Perturbative <strong>QCD</strong> has been successfully applied <strong>to</strong> hard collision data.<br />

!<br />

"<br />

! $% & ' ()**+, - ()((*(<br />

#<br />

<strong>QCD</strong> effects constitutes the major background in the search for new physics<br />

at the Tevatron and the LHC. Hence much effort is expended on making the<br />

calculations as accurate as possible.<br />

e Standard Model A. Pich - CER<br />

<strong>High</strong> intensity electron beams at Jefferson Lab, Mainz,... are mapping out<br />

hadron structure through Form fac<strong>to</strong>rs and Generalized Par<strong>to</strong>n Distributions.<br />

Lattice <strong>QCD</strong> methods allow fast progress in the calculation of nonperturbative<br />

quantities, such as the hadron spectrum.<br />

The simple Quark Model systematics of the hadron spectrum remains an<br />

encouraging mystery.<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!