Views
1 year ago

University Physics with Modern Physics

University Physics with Modern

SEARS AND ZEMANSKY’S UNIVERSITY PHYSICS WITH MODERN PHYSICS FIRST AUSTRALIAN SI EDITION Y O U N G FREEDMAN BHATHAL Copyright © Pearson Australia (a division of Pearson Australia Group Pty Ltd) 2011 – 9781442517110 - Young/University Physics 1st edition

  • Page 2 and 3: SEARS AND ZEMANSKY’S UNIVERSITY P
  • Page 4 and 5: SEARS AND ZEMANSKY’S UNIVERSITY P
  • Page 6 and 7: BRIEF CONTENTS Detailed Contents Pr
  • Page 8 and 9: Detailed Contents vii 9 ROTATION OF
  • Page 10 and 11: Detailed Contents ix *25.6 Theory o
  • Page 12 and 13: Detailed Contents xi 42.5 Free-Elec
  • Page 14 and 15: PREFACE This book is the product of
  • Page 16 and 17: Preface xv questions at the end of
  • Page 18 and 19: Preface xvii tutorial system in the
  • Page 20 and 21: ABOUT THE AUTHORS Hugh D. Young is
  • Page 22 and 23: Acknowledgements xxi Julien Sprott
  • Page 24 and 25: UNITS, PHYSICAL QUANTITIES AND VECT
  • Page 26 and 27: 1.2 Solving Physics Problems 3 (The
  • Page 28 and 29: 1.3 Standards and Units 5 Australia
  • Page 30 and 31: 1.4 Unit Consistency and Conversion
  • Page 32 and 33: 1.5 Uncertainty and Significant Fig
  • Page 34 and 35: 1.7 Vectors and Vector Addition 11
  • Page 36 and 37: 1.7 Vectors and Vector Addition 13
  • Page 38 and 39: 1.8 Components of Vectors 15 1.8 Co
  • Page 40 and 41: 1.8 Components of Vectors 17 (We al
  • Page 42 and 43: 1.9 Unit Vectors 19 SET UP: Figure
  • Page 44 and 45: 1.10 Products of Vectors 21 Test Yo
  • Page 46 and 47: 1.10 Products of Vectors 23 To use
  • Page 48 and 49: 1.10 Products of Vectors 25 Next we
  • Page 50 and 51: CHAPTER 1 SUMMARY Physical quantiti
  • Page 52 and 53:

    Exercises 29 Section 1.5 Uncertaint

  • Page 54 and 55:

    Exercises 31 1.59. For the two vect

  • Page 56 and 57:

    Problems 33 2 2 2 2 2 2 difference

  • Page 58 and 59:

    2.1 Displacement, Time and Average

  • Page 60 and 61:

    2.2 Instantaneous Velocity 37 Drags

  • Page 62 and 63:

    2.2 Instantaneous Velocity 39 SOLUT

  • Page 64 and 65:

    2.3 Average and Instantaneous Accel

  • Page 66 and 67:

    Note that a x in Eq. (2.5) is reall

  • Page 68 and 69:

    2.4 Motion with Constant Accelerati

  • Page 70 and 71:

    2.4 Motion with Constant Accelerati

  • Page 72 and 73:

    2.4 Motion with Constant Accelerati

  • Page 74 and 75:

    2.5 Freely Falling Bodies 51 parts

  • Page 76 and 77:

    2.5 Freely Falling Bodies 53 Exampl

  • Page 78 and 79:

    2.6 Velocity and Position by Integr

  • Page 80 and 81:

    2.6 Velocity and Position by Integr

  • Page 82 and 83:

    Exercises 59 Key Terms a x -t graph

  • Page 84 and 85:

    Exercises 61 velocity (magnitude an

  • Page 86 and 87:

    Exercises 63 2.40. Engineering. A l

  • Page 88 and 89:

    Problems 65 displacement of the gaz

  • Page 90 and 91:

    Challenge Problems 67 2.88. You are

  • Page 92 and 93:

    MOTION IN TWO OR THREE DIMENSIONS 3

  • Page 94 and 95:

    3.1 Position and Velocity Vectors 7

  • Page 96 and 97:

    3.2 The Acceleration Vector 73 3.6

  • Page 98 and 99:

    3.2 The Acceleration Vector 75 We c

  • Page 100 and 101:

    3.3 Projectile Motion 77 Conceptual

  • Page 102 and 103:

    3.3 Projectile Motion 79 at equal t

  • Page 104 and 105:

    3.3 Projectile Motion 81 value of t

  • Page 106 and 107:

    3.3 Projectile Motion 83 angle a525

  • Page 108 and 109:

    3.4 Motion in a Circle 85 3.26 The

  • Page 110 and 111:

    3.4 Motion in a Circle 87 its centr

  • Page 112 and 113:

    3.5 Relative Velocity 89 Test Your

  • Page 114 and 115:

    3.5 Relative Velocity 91 EXECUTE: (

  • Page 116 and 117:

    3.5 Relative Velocity 93 Example 3.

  • Page 118 and 119:

    Exercises 95 Key Terms average acce

  • Page 120 and 121:

    Exercises 97 Figure 3.40 Exercise 3

  • Page 122 and 123:

    Problems 99 distance D. If she jump

  • Page 124 and 125:

    Problems 101 3.68. Kaitlin is going

  • Page 126 and 127:

    Challenge Problems 103 aim to hit t

  • Page 128 and 129:

    4.1 Force and Interactions 105 4.1

  • Page 130 and 131:

    4.1 Force and Interactions 107 We w

  • Page 132 and 133:

    4.2 Newton’s First Law 109 The te

  • Page 134 and 135:

    4.2 Newton’s First Law 111 4.11 R

  • Page 136 and 137:

    4.3 Newton’s Second Law 113 These

  • Page 138 and 139:

    4.3 Newton’s Second Law 115 that

  • Page 140 and 141:

    4.4 Mass and Weight 117 Again the n

  • Page 142 and 143:

    4.4 Mass and Weight 119 we’ll see

  • Page 144 and 145:

    4.5 Newton’s Third Law 121 Concep

  • Page 146 and 147:

    4.5 Newton’s Third Law 123 slip o

  • Page 148 and 149:

    4.6 Free-Body Diagrams 125 4.30 Exa

  • Page 150 and 151:

    Exercises 127 Key Terms action-reac

  • Page 152 and 153:

    Problems 129 4.22. Imagine that you

  • Page 154 and 155:

    Challenge Problems 131 tension of 2

  • Page 156 and 157:

    5.1 Using Newton’s First Law: Par

  • Page 158 and 159:

    5.1 Using Newton’s First Law: Par

  • Page 160 and 161:

    5.1 Using Newton’s First Law: Par

  • Page 162 and 163:

    5.2 Using Newton’s Second Law: Dy

  • Page 164 and 165:

    5.2 Using Newton’s Second Law: Dy

  • Page 166 and 167:

    5.2 Using Newton’s Second Law: Dy

  • Page 168 and 169:

    5.3 Frictional Forces 145 In these

  • Page 170 and 171:

    5.3 Frictional Forces 147 5.19 (a),

  • Page 172 and 173:

    5.3 Frictional Forces 149 Example 5

  • Page 174 and 175:

    5.3 Frictional Forces 151 Rolling F

  • Page 176 and 177:

    5.3 Frictional Forces 153 which int

  • Page 178 and 179:

    5.4 Dynamics of Circular Motion 155

  • Page 180 and 181:

    5.4 Dynamics of Circular Motion 157

  • Page 182 and 183:

    5.5 The Fundamental Forces of Natur

  • Page 184 and 185:

    CHAPTER 5 SUMMARY Using Newton’s

  • Page 186 and 187:

    Exercises 163 angle with the vertic

  • Page 188 and 189:

    Exercises 165 the graph where stati

  • Page 190 and 191:

    Problems 167 Figure 5.55 Exercise 5

  • Page 192 and 193:

    Problems 169 travels upward with a

  • Page 194 and 195:

    Problems 171 Figure 5.72 Problem 5.

  • Page 196 and 197:

    Challenge Problems 173 Figure 5.77

  • Page 198 and 199:

    WORK AND KINETIC ENERGY 6 LEARNING

  • Page 200 and 201:

    6.1 Work 177 6.3 The work done by a

  • Page 202 and 203:

    6.1 Work 179 6.6 This weightlifter

  • Page 204 and 205:

    6.2 Kinetic Energy and the Work-Ene

  • Page 206 and 207:

    6.2 Kinetic Energy and the Work-Ene

  • Page 208 and 209:

    6.2 Kinetic Energy and the Work-Ene

  • Page 210 and 211:

    6.3 Work and Energy with Varying Fo

  • Page 212 and 213:

    6.3 Work and Energy with Varying Fo

  • Page 214 and 215:

    6.3 Work and Energy with Varying Fo

  • Page 216 and 217:

    6.4 Power 193 6.4 Power The definit

  • Page 218 and 219:

    6.4 Power 195 The time is 15.0 min

  • Page 220 and 221:

    Exercises 197 Key Terms average pow

  • Page 222 and 223:

    Exercises 199 whether the cricket b

  • Page 224 and 225:

    Problems 201 have about the same pe

  • Page 226 and 227:

    Problems 203 draw for this bow is a

  • Page 228 and 229:

    POTENTIAL ENERGY AND ENERGY CONSERV

  • Page 230 and 231:

    7.1 Gravitational Potential Energy

  • Page 232 and 233:

    7.1 Gravitational Potential Energy

  • Page 234 and 235:

    7.1 Gravitational Potential Energy

  • Page 236 and 237:

    7.1 Gravitational Potential Energy

  • Page 238 and 239:

    7.2 Elastic Potential Energy 215 We

  • Page 240 and 241:

    7.2 Elastic Potential Energy 217 or

  • Page 242 and 243:

    7.2 Elastic Potential Energy 219 Ex

  • Page 244 and 245:

    7.3 Conservative and Nonconservativ

  • Page 246 and 247:

    7.3 Conservative and Nonconservativ

  • Page 248 and 249:

    7.4 Force and Potential Energy 225

  • Page 250 and 251:

    7.5 Energy Diagrams 227 Test Your U

  • Page 252 and 253:

    CHAPTER 7 SUMMARY Gravitational pot

  • Page 254 and 255:

    Exercises 231 and assume that the r

  • Page 256 and 257:

    Problems 233 labelled x-coordinates

  • Page 258 and 259:

    Problems 235 rest with the rod hori

  • Page 260 and 261:

    Challenge Problem 237 petrol is use

  • Page 262 and 263:

    8.1 Momentum and Impulse 239 Newton

  • Page 264 and 265:

    8.1 Momentum and Impulse 241 equal

  • Page 266 and 267:

    8.1 Momentum and Impulse 243 change

  • Page 268 and 269:

    8.2 Conservation of Momentum 245 If

  • Page 270 and 271:

    8.2 Conservation of Momentum 247 EV

  • Page 272 and 273:

    8.3 Momentum Conservation and Colli

  • Page 274 and 275:

    8.3 Momentum Conservation and Colli

  • Page 276 and 277:

    8.4 Elastic Collisions 253 Finally,

  • Page 278 and 279:

    8.4 Elastic Collisions 255 Example

  • Page 280 and 281:

    8.5 Centre of Mass 257 8.5 Centre o

  • Page 282 and 283:

    8.5 Centre of Mass 259 SOLUTION IDE

  • Page 284 and 285:

    8.6 Rocket Propulsion 261 *8.6 Rock

  • Page 286 and 287:

    v ex much greater) than the relativ

  • Page 288 and 289:

    Exercises 265 Key Terms centre of m

  • Page 290 and 291:

    Exercises 267 Figure 8.35 Exercise

  • Page 292 and 293:

    Problems 269 the vertical bar is pi

  • Page 294 and 295:

    Problems 271 and surface? (b) What

  • Page 296 and 297:

    8.107. The coefficient of restituti

  • Page 298 and 299:

    ROTATION OF RIGID BODIES 9 ?All seg

  • Page 300 and 301:

    9.1 Angular Velocity and Accelerati

  • Page 302 and 303:

    9.1 Angular Velocity and Accelerati

  • Page 304 and 305:

    9.2 Rotation with Constant Angular

  • Page 306 and 307:

    9.3 Relating Linear and Angular Kin

  • Page 308 and 309:

    9.3 Relating Linear and Angular Kin

  • Page 310 and 311:

    9.4 Energy in Rotational Motion 287

  • Page 312 and 313:

    9.4 Energy in Rotational Motion 289

  • Page 314 and 315:

    9.5 Parallel-Axis Theorem 291 K 1 5

  • Page 316 and 317:

    9.6 Moment-of-Inertia Calculations

  • Page 318 and 319:

    9.6 Moment-of-Inertia Calculations

  • Page 320 and 321:

    Exercises 297 Key Terms angular dis

  • Page 322 and 323:

    Exercises 299 track? (b) The maximu

  • Page 324 and 325:

    Problems 301 of the plate for an ax

  • Page 326 and 327:

    Problems 303 block B descends. Bloc

  • Page 328 and 329:

    DYNAMICS OF ROTATIONAL MOTION 10 ?I

  • Page 330 and 331:

    10.1 Torque 307 Then F tan 5 F sin

  • Page 332 and 333:

    10.2 Torque and Angular Acceleratio

  • Page 334 and 335:

    10.2 Torque and Angular Acceleratio

  • Page 336 and 337:

    10.3 Rigid-Body Rotation About a Mo

  • Page 338 and 339:

    10.3 Rigid-Body Rotation About a Mo

  • Page 340 and 341:

    10.3 Rigid-Body Rotation About a Mo

  • Page 342 and 343:

    10.4 Work and Power in Rotational M

  • Page 344 and 345:

    10.5 Angular Momentum 321 rate of c

  • Page 346 and 347:

    10.6 Conservation of Angular Moment

  • Page 348 and 349:

    10.6 Conservation of Angular Moment

  • Page 350 and 351:

    10.7 Gyroscopes and Precession 327

  • Page 352 and 353:

    10.7 Gyroscopes and Precession 329

  • Page 354 and 355:

    Answers to Test Your Understanding

  • Page 356 and 357:

    Exercises 333 10.10. A cord is wrap

  • Page 358 and 359:

    Exercises 335 A and B? (b) At the t

  • Page 360 and 361:

    Problems 337 tabletop so that it is

  • Page 362 and 363:

    Problems 339 base of a ramp. The ba

  • Page 364 and 365:

    Challenge Problems 341 8.00 kg; its

  • Page 366 and 367:

    11.2 Centre of Gravity 343 11.1 Con

  • Page 368 and 369:

    11.2 Centre of Gravity 345 The tota

  • Page 370 and 371:

    11.3 Solving Rigid-Body Equilibrium

  • Page 372 and 373:

    11.3 Solving Rigid-Body Equilibrium

  • Page 374 and 375:

    11.4 Stress, Strain and Elastic Mod

  • Page 376 and 377:

    11.4 Stress, Strain and Elastic Mod

  • Page 378 and 379:

    11.4 Stress, Strain and Elastic Mod

  • Page 380 and 381:

    11.5 Elasticity and Plasticity 357

  • Page 382 and 383:

    Exercises 359 Key Terms atmosphere,

  • Page 384 and 385:

    Exercises 361 Figure 11.26 Exercise

  • Page 386 and 387:

    Problems 363 Problems 11.41. Mounta

  • Page 388 and 389:

    Problems 365 Figure 11.44 Problem 1

  • Page 390 and 391:

    Problems 367 11.74. If you put a un

  • Page 392 and 393:

    Challenge Problems 369 11.91. You h

  • Page 394 and 395:

    GRAVITATION 12 LEARNING GOALS By st

  • Page 396 and 397:

    12.1 Newton’s Law of Gravitation

  • Page 398 and 399:

    12.1 Newton’s Law of Gravitation

  • Page 400 and 401:

    12.2 Weight 377 w (N) 700 600 Earth

  • Page 402 and 403:

    12.3 Gravitational Potential Energy

  • Page 404 and 405:

    12.4 The Motion of Satellites 381 I

  • Page 406 and 407:

    12.4 The Motion of Satellites 383 1

  • Page 408 and 409:

    12.5 Kepler’s Laws and the Motion

  • Page 410 and 411:

    12.5 Kepler’s Laws and the Motion

  • Page 412 and 413:

    12.6 Spherical Mass Distributions 3

  • Page 414 and 415:

    12.7 Apparent Weight and the Earth

  • Page 416 and 417:

    12.8 Black Holes 393 Table 12.1 Var

  • Page 418 and 419:

    12.8 Black Holes 395 (a) When the r

  • Page 420 and 421:

    12.8 Black Holes 397 waves called S

  • Page 422 and 423:

    Exercises 399 Key Terms apparent we

  • Page 424 and 425:

    Exercises 401 12.22. Engineering. T

  • Page 426 and 427:

    Problems 403 craft. In a sketch, sh

  • Page 428 and 429:

    Challenge Problems 405 0 0 aphelion

  • Page 430 and 431:

    PERIODIC MOTION 13 LEARNING GOALS B

  • Page 432 and 433:

    13.2 Simple Harmonic Motion 409 Als

  • Page 434 and 435:

    13.2 Simple Harmonic Motion 411 by

  • Page 436 and 437:

    13.2 Simple Harmonic Motion 413 EXE

  • Page 438 and 439:

    13.2 Simple Harmonic Motion 415 the

  • Page 440 and 441:

    13.3 Energy in Simple Harmonic Moti

  • Page 442 and 443:

    13.3 Energy in Simple Harmonic Moti

  • Page 444 and 445:

    13.4 Applications of Simple Harmoni

  • Page 446 and 447:

    13.4 Applications of Simple Harmoni

  • Page 448 and 449:

    13.5 The Simple Pendulum 425 The re

  • Page 450 and 451:

    13.6 The Physical Pendulum 427 abou

  • Page 452 and 453:

    13.7 Damped Oscillations 429 k vr 5

  • Page 454 and 455:

    v through a sharp peak as the drivi

  • Page 456 and 457:

    CHAPTER 13 SUMMARY Periodic motion:

  • Page 458 and 459:

    Exercises 435 horizontal spring. Ne

  • Page 460 and 461:

    Exercises 437 13.32. A thrill-seeki

  • Page 462 and 463:

    Problems 439 found in part (c)? (e)

  • Page 464 and 465:

    Challenge Problems 441 Figure 13.38

  • Page 466 and 467:

    Challenge Problems 443 where A and

  • Page 468 and 469:

    14.1 Density 445 Table 14.1 Densiti

  • Page 470 and 471:

    14.2 Pressure in a Fluid 447 CAUTIO

  • Page 472 and 473:

    14.2 Pressure in a Fluid 449 total

  • Page 474 and 475:

    14.3 Buoyancy 451 EXECUTE: For the

  • Page 476 and 477:

    14.3 Buoyancy 453 (b) The density o

  • Page 478 and 479:

    14.4 Fluid Flow 455 (Fig. 14.22). T

  • Page 480 and 481:

    14.5 Bernoulli’s Equation 457 for

  • Page 482 and 483:

    14.5 Bernoulli’s Equation 459 SET

  • Page 484 and 485:

    14.6 Viscosity and Turbulence 461 V

  • Page 486 and 487:

    CHAPTER 14 SUMMARY Density and pres

  • Page 488 and 489:

    Exercises 465 Section 14.2 Pressure

  • Page 490 and 491:

    Problems 467 14.42. A golf course s

  • Page 492 and 493:

    Problems 469 14.66. A vertical cyli

  • Page 494 and 495:

    Challenge Problems 471 Figure 14.42

  • Page 496 and 497:

    15.1 Types of Mechanical Waves 473

  • Page 498 and 499:

    15.2 Periodic Waves 475 In Fig. 15.

  • Page 500 and 501:

    15.3 Mathematical Description of a

  • Page 502 and 503:

    15.3 Mathematical Description of a

  • Page 504 and 505:

    15.3 Mathematical Description of a

  • Page 506 and 507:

    15.4 Speed of a Transverse Wave 483

  • Page 508 and 509:

    15.4 Speed of a Transverse Wave 485

  • Page 510 and 511:

    15.5 Energy in Wave Motion 487 and

  • Page 512 and 513:

    15.5 Energy in Wave Motion 489 (b)

  • Page 514 and 515:

    15.6 Wave Interference, Boundary Co

  • Page 516 and 517:

    15.7 Standing Waves on a String 493

  • Page 518 and 519:

    15.7 Standing Waves on a String 495

  • Page 520 and 521:

    15.8 Normal Modes of a String 497 T

  • Page 522 and 523:

    15.8 Normal Modes of a String 499 B

  • Page 524 and 525:

    CHAPTER 15 SUMMARY Waves and their

  • Page 526 and 527:

    Exercises 503 15.7 Answers: yes, ye

  • Page 528 and 529:

    Exercises 505 15.27. A wave pulse o

  • Page 530 and 531:

    Problems 507 motion of the rope is

  • Page 532 and 533:

    Challenge Problems 509 15.75. A uni

  • Page 534 and 535:

    SOUND AND HEARING 16 LEARNING GOALS

  • Page 536 and 537:

    16.1 Sound Waves 513 The fractional

  • Page 538 and 539:

    16.1 Sound Waves 515 because the ai

  • Page 540 and 541:

    16.2 Speed of Sound Waves 517 (Fig.

  • Page 542 and 543:

    16.2 Speed of Sound Waves 519 Dolph

  • Page 544 and 545:

    16.3 Sound Intensity 521 16.3 Sound

  • Page 546 and 547:

    16.3 Sound Intensity 523 Example 16

  • Page 548 and 549:

    16.4 Standing Sound Waves and Norma

  • Page 550 and 551:

    16.4 Standing Sound Waves and Norma

  • Page 552 and 553:

    16.4 Standing Sound Waves and Norma

  • Page 554 and 555:

    16.5 Resonance and Sound 531 motion

  • Page 556 and 557:

    16.6 Interference of Waves 533 ener

  • Page 558 and 559:

    16.7 Beats 535 Two sound waves with

  • Page 560 and 561:

    16.8 The Doppler Effect 537 • Vel

  • Page 562 and 563:

    16.8 The Doppler Effect 539 Example

  • Page 564 and 565:

    16.8 The Doppler Effect 541 waves.

  • Page 566 and 567:

    16.9 Shock Waves 543 16.36 The firs

  • Page 568 and 569:

    CHAPTER 16 SUMMARY Sound waves: Sou

  • Page 570 and 571:

    Exercises 547 frequency of 3 1 220

  • Page 572 and 573:

    Exercises 549 Section 16.5 Resonanc

  • Page 574 and 575:

    Problems 551 diameter L/10. You hav

  • Page 576 and 577:

    Challenge Problems 553 16.84. Two l

  • Page 578 and 579:

    17.1 Temperature and Thermal Equili

  • Page 580 and 581:

    17.3 Gas Thermometers and the Kelvi

  • Page 582 and 583:

    17.4 Thermal Expansion 559 The Kelv

  • Page 584 and 585:

    17.4 Thermal Expansion 561 same way

  • Page 586 and 587:

    17.4 Thermal Expansion 563 Example

  • Page 588 and 589:

    17.5 Quantity of Heat 565 If there

  • Page 590 and 591:

    17.5 Quantity of Heat 567 In Eqs (1

  • Page 592 and 593:

    Table 17.3 Approximate Specific Hea

  • Page 594 and 595:

    Normal Melting Normal Boiling Point

  • Page 596 and 597:

    17.6 Calorimetry and Phase Changes

  • Page 598 and 599:

    17.7 Mechanisms of Heat Transfer 57

  • Page 600 and 601:

    17.7 Mechanisms of Heat Transfer 57

  • Page 602 and 603:

    17.7 Mechanisms of Heat Transfer 57

  • Page 604 and 605:

    17.7 Mechanisms of Heat Transfer 58

  • Page 606 and 607:

    Answers to Test Your Understanding

  • Page 608 and 609:

    Exercises 585 where a is the coeffi

  • Page 610 and 611:

    Problems 587 255°C is dropped into

  • Page 612 and 613:

    T 3 T 3 law: 0.778 kg. Assuming no

  • Page 614 and 615:

    outer surfaces are T 2 and T 1 . Th

  • Page 616 and 617:

    18.1 Equations of State 593 18.1 Eq

  • Page 618 and 619:

    18.1 Equations of State 595 The pro

  • Page 620 and 621:

    18.1 Equations of State 597 Example

  • Page 622 and 623:

    18.2 Molecular Properties of Matter

  • Page 624 and 625:

    18.3 Kinetic-Molecular Model of an

  • Page 626 and 627:

    18.3 Kinetic-Molecular Model of an

  • Page 628 and 629:

    18.3 Kinetic-Molecular Model of an

  • Page 630 and 631:

    18.3 Kinetic-Molecular Model of an

  • Page 632 and 633:

    18.4 Heat Capacities 609 the atoms

  • Page 634 and 635:

    18.5 Molecular Speeds 611 is only a

  • Page 636 and 637:

    18.6 Phases of Matter 613 Finally,

  • Page 638 and 639:

    18.6 Phases of Matter 615 Line (b)

  • Page 640 and 641:

    CHAPTER 18 SUMMARY Equations of sta

  • Page 642 and 643:

    Exercises 619 PROBLEMS For instruct

  • Page 644 and 645:

    Exercises 621 (b) For a scientist o

  • Page 646 and 647:

    Problems 623 temperature will you a

  • Page 648 and 649:

    Challenge Problems 625 Figure 18.30

  • Page 650 and 651:

    19.2 Work Done During Volume Change

  • Page 652 and 653:

    19.2 Work Done During Volume Change

  • Page 654 and 655:

    19.4 Internal Energy and the First

  • Page 656 and 657:

    19.4 Internal Energy and the First

  • Page 658 and 659:

    19.4 Internal Energy and the First

  • Page 660 and 661:

    19.5 Kinds of Thermodynamic Process

  • Page 662 and 663:

    19.7 Heat Capacities of an Ideal Ga

  • Page 664 and 665:

    19.7 Heat Capacities of an Ideal Ga

  • Page 666 and 667:

    19.8 Adiabatic Processes for an Ide

  • Page 668 and 669:

    CHAPTER 19 SUMMARY Heat and work in

  • Page 670 and 671:

    Exercises 647 PROBLEMS For instruct

  • Page 672 and 673:

    Problems 649 gas) inside the ball i

  • Page 674 and 675:

    Challenge Problems 651 V 0 0 from 2

  • Page 676 and 677:

    THE SECOND LAW OF THERMODYNAMICS 20

  • Page 678 and 679:

    20.2 Heat Engines 655 In the follow

  • Page 680 and 681:

    20.2 Heat Engines 657 Problem-Solvi

  • Page 682 and 683:

    20.3 Internal-Combustion Engines 65

  • Page 684 and 685:

    20.4 Refrigerators 661 20.9 (a) Pri

  • Page 686 and 687:

    20.5 The Second Law of Thermodynami

  • Page 688 and 689:

    20.6 The Carnot Cycle 665 differenc

  • Page 690 and 691:

    20.6 The Carnot Cycle 667 the amoun

  • Page 692 and 693:

    20.6 The Carnot Cycle 669 20.15 Pro

  • Page 694 and 695:

    20.7 Entropy 671 We have talked abo

  • Page 696 and 697:

    20.7 Entropy 673 Example 20.6 Entro

  • Page 698 and 699:

    20.7 Entropy 675 that occurs at T 5

  • Page 700 and 701:

    20.8 Microscopic Interpretation of

  • Page 702 and 703:

    20.8 Microscopic Interpretation of

  • Page 704 and 705:

    Answers to Test Your Understanding

  • Page 706 and 707:

    Exercises 683 each cycle and gives

  • Page 708 and 709:

    Problems 685 heat enters the gas an

  • Page 710 and 711:

    Challenge Problem 687 do to transfe

  • Page 712 and 713:

    21.1 Electric Charge 689 especially

  • Page 714 and 715:

    21.1 Electric Charge 691 Protons (1

  • Page 716 and 717:

    21.2 Conductors, Insulators and Ind

  • Page 718 and 719:

    21.3 Coulomb’s Law 695 object as

  • Page 720 and 721:

    21.3 Coulomb’s Law 697 The consta

  • Page 722 and 723:

    Example 21.2 Force between two poin

  • Page 724 and 725:

    21.4 Electric Field and Electric Fo

  • Page 726 and 727:

    21.4 Electric Field and Electric Fo

  • Page 728 and 729:

    21.4 Electric Field and Electric Fo

  • Page 730 and 731:

    Problem-Solving Strategy 21.2 Elect

  • Page 732 and 733:

    21.5 Electric-Field Calculations 70

  • Page 734 and 735:

    21.5 Electric-Field Calculations 71

  • Page 736 and 737:

    21.6 Electric Field Lines 713 21.29

  • Page 738 and 739:

    21.7 Electric Dipoles 715 We furthe

  • Page 740 and 741:

    21.7 Electric Dipoles 717 Example 2

  • Page 742 and 743:

    Answers to Test Your Understanding

  • Page 744 and 745:

    Exercises 721 21.18. Repeat Exercis

  • Page 746 and 747:

    Exercises 723 a circle lying flat o

  • Page 748 and 749:

    Problems 725 point charge 23q place

  • Page 750 and 751:

    Challenge Problems 727 Challenge Pr

  • Page 752 and 753:

    22.1 Charge and Electric Flux 729 E

  • Page 754 and 755:

    22.2 Calculating Electric Flux 731

  • Page 756 and 757:

    22.2 Calculating Electric Flux 733

  • Page 758 and 759:

    22.3 Gauss’s Law 735 Example 22.3

  • Page 760 and 761:

    22.3 Gauss’s Law 737 Equation (22

  • Page 762 and 763:

    22.4 Applications of Gauss’s Law

  • Page 764 and 765:

    22.4 Applications of Gauss’s Law

  • Page 766 and 767:

    -- - -- - - - - - - - - - - - - - -

  • Page 768 and 769:

    - - --- 22.5 Charges on Conductors

  • Page 770 and 771:

    22.5 Charges on Conductors 747 A mo

  • Page 772 and 773:

    22.5 Charges on Conductors 749 Conc

  • Page 774 and 775:

    Exercises 751 Key Terms closed surf

  • Page 776 and 777:

    Problems 753 22.22. (a) At a distan

  • Page 778 and 779:

    Problems 755 point charge q located

  • Page 780 and 781:

    Challenge Problems 757 r 1 r 2 5 3a

  • Page 782 and 783:

    23.1 Electric Potential Energy 759

  • Page 784 and 785:

    23.1 Electric Potential Energy 761

  • Page 786 and 787:

    23.1 Electric Potential Energy 763

  • Page 788 and 789:

    23.2 Electric Potential 765 Example

  • Page 790 and 791:

    23.2 Electric Potential 767 In this

  • Page 792 and 793:

    23.2 Electric Potential 769 Althoug

  • Page 794 and 795:

    23.2 Electric Potential 771 Example

  • Page 796 and 797:

    23.3 Calculating Electric Potential

  • Page 798 and 799:

    23.3 Calculating Electric Potential

  • Page 800 and 801:

    23.4 Equipotential Surfaces 777 ter

  • Page 802 and 803:

    23.5 Potential Gradient 779 Gauss

  • Page 804 and 805:

    23.5 Potential Gradient 781 so the

  • Page 806 and 807:

    Exercises 783 Key Terms (electric)

  • Page 808 and 809:

    Exercises 785 on the y-axis is V 5

  • Page 810 and 811:

    Problems 787 23.56. Two oppositely

  • Page 812 and 813:

    Problems 789 centrated at their cen

  • Page 814 and 815:

    CAPACITANCE AND DIELECTRICS 24 LEAR

  • Page 816 and 817:

    24.1 Capacitors and Capacitance 793

  • Page 818 and 819:

    24.1 Capacitors and Capacitance 795

  • Page 820 and 821:

    24.2 Capacitors in Series and Paral

  • Page 822 and 823:

    24.2 Capacitors in Series and Paral

  • Page 824 and 825:

    24.3 Energy Storage in Capacitors a

  • Page 826 and 827:

    24.3 Energy Storage in Capacitors a

  • Page 828 and 829:

    24.4 Dielectrics 805 When the charg

  • Page 830 and 831:

    24.4 Dielectrics 807 carpenters to

  • Page 832 and 833:

    - + 24.5 Molecular Model of Induced

  • Page 834 and 835:

    24.6 Gauss’s Law in Dielectrics 8

  • Page 836 and 837:

    CHAPTER 24 SUMMARY Capacitors and c

  • Page 838 and 839:

    Exercises 815 24.5. A 10.0 mF paral

  • Page 840 and 841:

    Problems 817 maximum magnitude of c

  • Page 842 and 843:

    Challenge Problems 819 constant of

  • Page 844 and 845:

    Challenge Problems 821 nected to po

  • Page 846 and 847:

    25.1 Current 823 25.1 Current A cur

  • Page 848 and 849:

    25.1 Current 825 number of particle

  • Page 850 and 851:

    25.2 Resistivity 827 r ( V # m ) Ta

  • Page 852 and 853:

    25.3 Resistance 829 Test Your Under

  • Page 854 and 855:

    25.3 Resistance 831 25.10 Current-v

  • Page 856 and 857:

    25.4 Electromotive Force and Circui

  • Page 858 and 859:

    25.4 Electromotive Force and Circui

  • Page 860 and 861:

    25.4 Electromotive Force and Circui

  • Page 862 and 863:

    25.5 Energy and Power in Electric C

  • Page 864 and 865:

    25.5 Energy and Power in Electric C

  • Page 866 and 867:

    25.6 Theory of Metallic Conduction

  • Page 868 and 869:

    25.6 Theory of Metallic Conduction

  • Page 870 and 871:

    CHAPTER 25 SUMMARY Current and curr

  • Page 872 and 873:

    Exercises 849 PROBLEMS Exercises Se

  • Page 874 and 875:

    Problems 851 (a) Graph V ab as a fu

  • Page 876 and 877:

    Problems 853 Figure 25.38 Problem 2

  • Page 878 and 879:

    DIRECT-CURRENT CIRCUITS 26 LEARNING

  • Page 880 and 881:

    26.1 Resistors in Series and Parall

  • Page 882 and 883:

    26.1 Resistors in Series and Parall

  • Page 884 and 885:

    26.2 Kirchhoff’s Rules 861 First,

  • Page 886 and 887:

    26.2 Kirchhoff’s Rules 863 Collec

  • Page 888 and 889:

    26.3 Electrical Measuring Instrumen

  • Page 890 and 891:

    26.3 Electrical Measuring Instrumen

  • Page 892 and 893:

    26.3 Electrical Measuring Instrumen

  • Page 894 and 895:

    26.4 R-C Circuits 871 At time t 5 0

  • Page 896 and 897:

    26.4 R-C Circuits 873 capacitor cha

  • Page 898 and 899:

    26.5 Power Distribution Systems 875

  • Page 900 and 901:

    | | | | | | | | CHAPTER 26 SUMMARY

  • Page 902 and 903:

    Exercises 879 Figure 26.31 Exercise

  • Page 904 and 905:

    Exercises 881 meter not important?

  • Page 906 and 907:

    Problems 883 Figure 26.59 Problem 2

  • Page 908 and 909:

    + + + + Challenge Problems 885 tota

  • Page 910 and 911:

    27.1 Magnetism 887 permanent magnet

  • Page 912 and 913:

    27.2 Magnetic Field 889 In this cha

  • Page 914 and 915:

    27.2 Magnetic Field 891 convenient

  • Page 916 and 917:

    27.3 Magnetic Field Lines and Magne

  • Page 918 and 919:

    27.4 Motion of Charged Particles in

  • Page 920 and 921:

    27.4 Motion of Charged Particles in

  • Page 922 and 923:

    27.5 Applications of Motion of Char

  • Page 924 and 925:

    27.5 Applications of Motion of Char

  • Page 926 and 927:

    27.6 Magnetic Force on a Current-Ca

  • Page 928 and 929:

    27.7 Force and Torque on a Current

  • Page 930 and 931:

    27.7 Force and Torque on a Current

  • Page 932 and 933:

    27.7 Force and Torque on a Current

  • Page 934 and 935:

    27.8 The Direct-Current Motor 911 *

  • Page 936 and 937:

    27.9 The Hall Effect 913 Test Your

  • Page 938 and 939:

    CHAPTER 27 SUMMARY Magnetic forces:

  • Page 940 and 941:

    Exercises 917 positively charged pa

  • Page 942 and 943:

    Exercises 919 netic field in the re

  • Page 944 and 945:

    Problems 921 S same particle moves

  • Page 946 and 947:

    Problems 923 about the y-axis and c

  • Page 948 and 949:

    Challenge Problems 925 1.45 3 10 5

  • Page 950 and 951:

    28.1 Magnetic Field of a Moving Cha

  • Page 952 and 953:

    The forces are repulsive, and the f

  • Page 954 and 955:

    28.3 Magnetic Field of a Straight C

  • Page 956 and 957:

    28.3 Magnetic Field of a Straight C

  • Page 958 and 959:

    28.4 Force Between Parallel Conduct

  • Page 960 and 961:

    28.5 Magnetic Field of a Circular C

  • Page 962 and 963:

    28.6 Ampere’s Law 939 For the ele

  • Page 964 and 965:

    28.6 Ampere’s Law 941 line integr

  • Page 966 and 967:

    28.7 Applications of Ampere’s Law

  • Page 968 and 969:

    28.8 Magnetic Materials 945 28.25 (

  • Page 970 and 971:

    28.8 Magnetic Materials 947 on an a

  • Page 972 and 973:

    28.8 Magnetic Materials 949 Such ma

  • Page 974 and 975:

    CHAPTER 28 SUMMARY Magnetic field o

  • Page 976 and 977:

    Exercises 953 conductor, this will

  • Page 978 and 979:

    Exercises 955 the following points

  • Page 980 and 981:

    Problems 957 when the electron is 4

  • Page 982 and 983:

    Problems 959 field that the current

  • Page 984 and 985:

    ELECTROMAGNETIC INDUCTION 29 LEARNI

  • Page 986 and 987:

    29.1 Induction Experiments 963 pole

  • Page 988 and 989:

    29.2 Faraday’s Law 965 To underst

  • Page 990 and 991:

    29.2 Faraday’s Law 967 If we have

  • Page 992 and 993:

    29.2 Faraday’s Law 969 SET UP: Fi

  • Page 994 and 995:

    29.2 Faraday’s Law 971 Example 29

  • Page 996 and 997:

    29.3 Lenz’s Law 973 Conceptual Ex

  • Page 998 and 999:

    29.4 Motional Electromotive Force 9

  • Page 1000 and 1001:

    29.5 Induced Electric Fields 977 As

  • Page 1002 and 1003:

    29.6 Eddy Currents 979 Example 29.1

  • Page 1004 and 1005:

    - - - 29.7 Displacement Current and

  • Page 1006 and 1007:

    29.7 Displacement Current and Maxwe

  • Page 1008 and 1009:

    29.8 Superconductivity 985 magnetic

  • Page 1010 and 1011:

    CHAPTER 29 SUMMARY Faraday’s law:

  • Page 1012 and 1013:

    Exercises 989 B 5 1 0.0120 T/s 2 t

  • Page 1014 and 1015:

    Exercises 991 Section 29.5 Induced

  • Page 1016 and 1017:

    Problems 993 force on charges in th

  • Page 1018 and 1019:

    Challenge Problems 995 q located at

  • Page 1020 and 1021:

    30.1 Mutual Inductance 997 between

  • Page 1022 and 1023:

    30.1 Mutual Inductance 999 30.3 A l

  • Page 1024 and 1025:

    30.2 Self-Inductance and Inductors

  • Page 1026 and 1027:

    30.2 Self-Inductance and Inductors

  • Page 1028 and 1029:

    30.3 Magnetic-Field Energy 1005 obt

  • Page 1030 and 1031:

    30.4 The R-L Circuit 1007 30.4 The

  • Page 1032 and 1033:

    30.4 The R-L Circuit 1009 At time t

  • Page 1034 and 1035:

    30.5 The L-C Circuit 1011 That is,

  • Page 1036 and 1037:

    30.5 The L-C Circuit 1013 Since i 5

  • Page 1038 and 1039:

    30.6 The L-R-C Series Circuit 1015

  • Page 1040 and 1041:

    30.6 The L-R-C Series Circuit 1017

  • Page 1042 and 1043:

    L-R-C series circuits: A circuit th

  • Page 1044 and 1045:

    Exercises 1021 energy stored in the

  • Page 1046 and 1047:

    + Problems 1023 To do this, the car

  • Page 1048 and 1049:

    Challenge Problems 1025 i circuit e

  • Page 1050 and 1051:

    31.1 Phasors and Alternating Curren

  • Page 1052 and 1053:

    31.2 Resistance and Reactance 1029

  • Page 1054 and 1055:

    31.2 Resistance and Reactance 1031

  • Page 1056 and 1057:

    31.2 Resistance and Reactance 1033

  • Page 1058 and 1059:

    v ad of Kirchhoff’s loop rule, th

  • Page 1060 and 1061:

    31.3 The L-R-C Series Circuit 1037

  • Page 1062 and 1063:

    31.4 Power in Alternating-Current C

  • Page 1064 and 1065:

    31.4 Power in Alternating-Current C

  • Page 1066 and 1067:

    31.5 Resonance in Alternating-Curre

  • Page 1068 and 1069:

    31.6 Transformers 1045 EXECUTE: (a)

  • Page 1070 and 1071:

    31.6 Transformers 1047 We can combi

  • Page 1072 and 1073:

    CHAPTER 31 SUMMARY Phasors and alte

  • Page 1074 and 1075:

    Exercises 1051 passed through a ful

  • Page 1076 and 1077:

    Exercises 1053 the tweeter branch?

  • Page 1078 and 1079:

    Challenge Problems 1055 Figure 31.2

  • Page 1080 and 1081:

    32.1 Maxwell’s Equations and Elec

  • Page 1082 and 1083:

    32.1 Maxwell’s Equations and Elec

  • Page 1084 and 1085:

    32.2 Plane Electromagnetic Waves an

  • Page 1086 and 1087:

    32.2 Plane Electromagnetic Waves an

  • Page 1088 and 1089:

    32.3 Sinusoidal Electromagnetic Wav

  • Page 1090 and 1091:

    32.3 Sinusoidal Electromagnetic Wav

  • Page 1092 and 1093:

    32.3 Sinusoidal Electromagnetic Wav

  • Page 1094 and 1095:

    32.4 Energy and Momentum in Electro

  • Page 1096 and 1097:

    32.4 Energy and Momentum in Electro

  • Page 1098 and 1099:

    32.5 Standing Electromagnetic Waves

  • Page 1100 and 1101:

    32.5 Standing Electromagnetic Waves

  • Page 1102 and 1103:

    CHAPTER 32 SUMMARY Maxwell’s equa

  • Page 1104 and 1105:

    Exercises 1081 (a) In which directi

  • Page 1106 and 1107:

    Challenge Problems 1083 S (Hint: In

  • Page 1108 and 1109:

    THE NATURE AND PROPAGATION OF LIGHT

  • Page 1110 and 1111:

    33.2 Reflection and Refraction 1087

  • Page 1112 and 1113:

    33.2 Reflection and Refraction 1089

  • Page 1114 and 1115:

    33.2 Reflection and Refraction 1091

  • Page 1116 and 1117:

    33.3 Total Internal Reflection 1093

  • Page 1118 and 1119:

    33.3 Total Internal Reflection 1095

  • Page 1120 and 1121:

    33.5 Polarisation 1097 33.19 Disper

  • Page 1122 and 1123:

    33.5 Polarisation 1099 33.21 (a), (

  • Page 1124 and 1125:

    33.5 Polarisation 1101 Incident unp

  • Page 1126 and 1127:

    33.5 Polarisation 1103 33.27 When l

  • Page 1128 and 1129:

    33.5 Polarisation 1105 xy- and xz-p

  • Page 1130 and 1131:

    33.6 Scattering of Light 1107 33.32

  • Page 1132 and 1133:

    33.7 Huygens’s Principle 1109 Fro

  • Page 1134 and 1135:

    CHAPTER 33 SUMMARY Light and its pr

  • Page 1136 and 1137:

    Exercises 1113 33.7 Answer: (ii) Hu

  • Page 1138 and 1139:

    Problems 1115 33.31. Unpolarised li

  • Page 1140 and 1141:

    Problems 1117 when entering the ear

  • Page 1142 and 1143:

    Challenge Problems 1119 Figure 33.6

  • Page 1144 and 1145:

    34.1 Reflection and Refraction at a

  • Page 1146 and 1147:

    34.1 Reflection and Refraction at a

  • Page 1148 and 1149:

    34.2 Reflection at a Spherical Surf

  • Page 1150 and 1151:

    34.2 Reflection at a Spherical Surf

  • Page 1152 and 1153:

    34.2 Reflection at a Spherical Surf

  • Page 1154 and 1155:

    34.2 Reflection at a Spherical Surf

  • Page 1156 and 1157:

    34.3 Refraction at a Spherical Surf

  • Page 1158 and 1159:

    34.3 Refraction at a Spherical Surf

  • Page 1160 and 1161:

    34.4 Thin Lenses 1137 Test Your Und

  • Page 1162 and 1163:

    f, sr, sr surface. The distances an

  • Page 1164 and 1165:

    R 2 is negative. (C 2 is on the opp

  • Page 1166 and 1167:

    34.4 Thin Lenses 1143 Parts (a), (b

  • Page 1168 and 1169:

    34.5 Cameras 1145 To calculate the

  • Page 1170 and 1171:

    34.5 Cameras 1147 The intensity of

  • Page 1172 and 1173:

    34.6 The Eye 1149 cornea. The regio

  • Page 1174 and 1175:

    34.6 The Eye 1151 (a) Vertical line

  • Page 1176 and 1177:

    34.7 The Magnifier 1153 A convergin

  • Page 1178 and 1179:

    microscope are highly corrected com

  • Page 1180 and 1181:

    34.8 Microscopes and Telescopes 115

  • Page 1182 and 1183:

    CHAPTER 34 SUMMARY Reflection or re

  • Page 1184 and 1185:

    Exercises 1161 Fig. 34.16b). Hence

  • Page 1186 and 1187:

    Exercises 1163 cise 34.11 also appl

  • Page 1188 and 1189:

    Problems 1165 Figure 34.56 Problem

  • Page 1190 and 1191:

    Problems 1167 34.97. Rays from a le

  • Page 1192 and 1193:

    INTERFERENCE 35 LEARNING GOALS By s

  • Page 1194 and 1195:

    35.1 Interference and Coherent Sour

  • Page 1196 and 1197:

    35.2 Two-Source Interference of Lig

  • Page 1198 and 1199:

    35.2 Two-Source Interference of Lig

  • Page 1200 and 1201:

    35.3 Intensity in Interference Patt

  • Page 1202 and 1203:

    35.3 Intensity in Interference Patt

  • Page 1204 and 1205:

    35.4 Interference in Thin Films 118

  • Page 1206 and 1207:

    35.4 Interference in Thin Films 118

  • Page 1208 and 1209:

    35.4 Interference in Thin Films 118

  • Page 1210 and 1211:

    35.5 The Michelson Interferometer 1

  • Page 1212 and 1213:

    CHAPTER 35 SUMMARY Interference and

  • Page 1214 and 1215:

    Exercises 1191 horizontal distance

  • Page 1216 and 1217:

    Problems 1193 Figure 35.22 Exercise

  • Page 1218 and 1219:

    Challenge Problems 1195 light at po

  • Page 1220 and 1221:

    36.1 Fresnel and Fraunhofer Diffrac

  • Page 1222 and 1223:

    36.2 Diffraction from a Single Slit

  • Page 1224 and 1225:

    36.3 Intensity in the Single-Slit P

  • Page 1226 and 1227:

    36.3 Intensity in the Single-Slit P

  • Page 1228 and 1229:

    36.4 Multiple Slits 1205 (b) We sol

  • Page 1230 and 1231:

    36.4 Multiple Slits 1207 occur at t

  • Page 1232 and 1233:

    36.5 The Diffraction Grating 1209 c

  • Page 1234 and 1235:

    36.5 The Diffraction Grating 1211 t

  • Page 1236 and 1237:

    36.6 X-ray Diffraction 1213 As Fig.

  • Page 1238 and 1239:

    36.7 Circular Apertures and Resolvi

  • Page 1240 and 1241:

    36.7 Circular Apertures and Resolvi

  • Page 1242 and 1243:

    36.8 Holography 1219 36.30 (a) A ho

  • Page 1244 and 1245:

    CHAPTER 36 SUMMARY Fresnel and Frau

  • Page 1246 and 1247:

    Exercises 1223 directly opposite th

  • Page 1248 and 1249:

    Problems 1225 36.43. A converging l

  • Page 1250 and 1251:

    Challenge Problems 1227 radiation a

  • Page 1252 and 1253:

    37.1 Invariance of Physical Laws 12

  • Page 1254 and 1255:

    37.1 Invariance of Physical Laws 12

  • Page 1256 and 1257:

    37.2 Relativity of Simultaneity 123

  • Page 1258 and 1259:

    37.3 Relativity of Time Intervals 1

  • Page 1260 and 1261:

    37.3 Relativity of Time Intervals 1

  • Page 1262 and 1263:

    37.4 Relativity of Length 1239 Leng

  • Page 1264 and 1265:

    37.4 Relativity of Length 1241 1 m

  • Page 1266 and 1267:

    37.5 The Lorentz Transformations 12

  • Page 1268 and 1269:

    37.5 The Lorentz Transformations 12

  • Page 1270 and 1271:

    37.6 The Doppler Effect for Electro

  • Page 1272 and 1273:

    37.7 Relativistic Momentum 1249 Exa

  • Page 1274 and 1275:

    37.7 Relativistic Momentum 1251 a p

  • Page 1276 and 1277:

    37.8 Relativistic Work and Energy 1

  • Page 1278 and 1279:

    37.9 Newtonian Mechanics and Relati

  • Page 1280 and 1281:

    37.9 Newtonian Mechanics and Relati

  • Page 1282 and 1283:

    Answers to Test Your Understanding

  • Page 1284 and 1285:

    Exercises 1261 The observer in Sr m

  • Page 1286 and 1287:

    Problems 1263 transform this equati

  • Page 1288 and 1289:

    Challenge Problems 1265 t r 1 5 c g

  • Page 1290 and 1291:

    38.2 Emission and Absorption of Lig

  • Page 1292 and 1293:

    38.2 The Photoelectric Effect 1269

  • Page 1294 and 1295:

    38.2 The Photoelectric Effect 1271

  • Page 1296 and 1297:

    38.3 Atomic Line Spectra and Energy

  • Page 1298 and 1299:

    38.3 Atomic Line Spectra and Energy

  • Page 1300 and 1301:

    38.3 Atomic Line Spectra and Energy

  • Page 1302 and 1303:

    38.4 The Nuclear Atom 1279 the posi

  • Page 1304 and 1305:

    38.5 The Bohr Model 1281 SET UP: Le

  • Page 1306 and 1307:

    38.5 The Bohr Model 1283 When we so

  • Page 1308 and 1309:

    38.5 The Bohr Model 1285 rest. Rath

  • Page 1310 and 1311:

    38.6 The Laser 1287 incident photon

  • Page 1312 and 1313:

    + 38.7 X-ray Production and Scatter

  • Page 1314 and 1315:

    38.7 X-ray Production and Scatterin

  • Page 1316 and 1317:

    38.8 Continuous Spectra 1293 (b) Fo

  • Page 1318 and 1319:

    38.8 Continuous Spectra 1295 equipa

  • Page 1320 and 1321:

    38.9 Wave-Particle Duality 1297 (b)

  • Page 1322 and 1323:

    CHAPTER 38 SUMMARY Photons: Electro

  • Page 1324 and 1325:

    Exercises 1301 of the same energy a

  • Page 1326 and 1327:

    Exercises 1303 Be 31 38.25. A tripl

  • Page 1328 and 1329:

    Problems 1305 scattered photon is 0

  • Page 1330 and 1331:

    THE WAVE NATURE OF PARTICLES 39 100

  • Page 1332 and 1333:

    39.1 de Broglie Waves 1309 The Bohr

  • Page 1334 and 1335:

    39.2 Electron Diffraction 1311 1 A

  • Page 1336 and 1337:

    39.3 Probability and Uncertainty 13

  • Page 1338 and 1339:

    39.3 Probability and Uncertainty 13

  • Page 1340 and 1341:

    39.3 Probability and Uncertainty 13

  • Page 1342 and 1343:

    39.5 Wave Functions and the Schröd

  • Page 1344 and 1345:

    39.5 Wave Functions and the Schröd

  • Page 1346 and 1347:

    39.5 Wave Functions and the Schröd

  • Page 1348 and 1349:

    39.5 Wave Functions and the Schröd

  • Page 1350 and 1351:

    Exercises 1327 Key Terms boundary c

  • Page 1352 and 1353:

    Problems 1329 39.33. Consider the c

  • Page 1354 and 1355:

    Challenge Problems 1331 0 0 0 0 and

  • Page 1356 and 1357:

    QUANTUM MECHANICS 40 ?Each of these

  • Page 1358 and 1359:

    40.1 Particle in a Box 1335 Equatio

  • Page 1360 and 1361:

    40.1 Particle in a Box 1337 CAUTION

  • Page 1362 and 1363:

    40.2 Potential Wells 1339 potential

  • Page 1364 and 1365:

    40.2 Potential Wells 1341 40.8 (a)

  • Page 1366 and 1367:

    40.3 Potential Barriers and Tunnell

  • Page 1368 and 1369:

    40.4 The Harmonic Oscillator 1345 W

  • Page 1370 and 1371:

    40.4 The Harmonic Oscillator 1347 T

  • Page 1372 and 1373:

    40.4 The Harmonic Oscillator 1349 2

  • Page 1374 and 1375:

    40.5 Three-Dimensional Problems 135

  • Page 1376 and 1377:

    Exercises 1353 Key Terms bound stat

  • Page 1378 and 1379:

    Problems 1355 and its first derivat

  • Page 1380 and 1381:

    Challenge Problems 1357 Using the e

  • Page 1382 and 1383:

    41.1 The Hydrogen Atom 1359 was inc

  • Page 1384 and 1385:

    41.1 The Hydrogen Atom 1361 (a) z L

  • Page 1386 and 1387:

    41.1 The Hydrogen Atom 1363 ber of

  • Page 1388 and 1389:

    41.1 The Hydrogen Atom 1365 41.6 Cr

  • Page 1390 and 1391:

    41.2 The Zeeman Effect 1367 T 5 2pr

  • Page 1392 and 1393:

    41.2 The Zeeman Effect 1369 and wav

  • Page 1394 and 1395:

    41.3 Electron Spin 1371 1 A beam of

  • Page 1396 and 1397:

    41.3 Electron Spin 1373 EXECUTE: Co

  • Page 1398 and 1399:

    41.4 Many-Electron Atoms and the Ex

  • Page 1400 and 1401:

    41.4 Many-Electron Atoms and the Ex

  • Page 1402 and 1403:

    41.4 Many-Electron Atoms and the Ex

  • Page 1404 and 1405:

    41.5 X-ray Spectra 1381 V AC in the

  • Page 1406 and 1407:

    41.5 X-ray Spectra 1383 Example 41.

  • Page 1408 and 1409:

    Exercises 1385 Key Terms atomic num

  • Page 1410 and 1411:

    Problems 1387 41.33. Calculate the

  • Page 1412 and 1413:

    MOLECULES AND CONDENSED MATTER 42 F

  • Page 1414 and 1415:

    42.1 Types of Molecular Bonds 1391

  • Page 1416 and 1417:

    42.2 Molecular Spectra 1393 We intr

  • Page 1418 and 1419:

    42.2 Molecular Spectra 1395 When we

  • Page 1420 and 1421:

    42.3 Structure of Solids 1397 avera

  • Page 1422 and 1423:

    42.3 Structure of Solids 1399 In a

  • Page 1424 and 1425:

    42.4 Energy Bands 1401 In a metalli

  • Page 1426 and 1427:

    42.5 Free-Electron Model of Metals

  • Page 1428 and 1429:

    42.5 Free-Electron Model of Metals

  • Page 1430 and 1431:

    42.5 Free-Electron Model of Metals

  • Page 1432 and 1433:

    42.6 Semiconductors 1409 SET UP: Th

  • Page 1434 and 1435:

    42.7 Semiconductor Devices 1411 CAU

  • Page 1436 and 1437:

    42.7 Semiconductor Devices 1413 the

  • Page 1438 and 1439:

    42.7 Semiconductor Devices 1415 by

  • Page 1440 and 1441:

    CHAPTER 42 SUMMARY Molecular bonds

  • Page 1442 and 1443:

    Exercises 1419 42.4. The water mole

  • Page 1444 and 1445:

    Problems 1421 (a) Explain why the r

  • Page 1446 and 1447:

    Challenge Problems 1423 between the

  • Page 1448 and 1449:

    43.1 Properties of Nuclei 1425 and

  • Page 1450 and 1451:

    43.1 Properties of Nuclei 1427 Tabl

  • Page 1452 and 1453:

    43.2 Nuclear Binding and Nuclear St

  • Page 1454 and 1455:

    43.2 Nuclear Binding and Nuclear St

  • Page 1456 and 1457:

    43.2 Nuclear Binding and Nuclear St

  • Page 1458 and 1459:

    43.3 Nuclear Stability and Radioact

  • Page 1460 and 1461:

    43.3 Nuclear Stability and Radioact

  • Page 1462 and 1463:

    43.3 Nuclear Stability and Radioact

  • Page 1464 and 1465:

    43.4 Activities and Half-Lives 1441

  • Page 1466 and 1467:

    43.4 Activities and Half-Lives 1443

  • Page 1468 and 1469:

    43.5 Biological Effects of Radiatio

  • Page 1470 and 1471:

    43.5 Biological Effects of Radiatio

  • Page 1472 and 1473:

    43.6 Nuclear Reactions 1449 least a

  • Page 1474 and 1475:

    43.7 Nuclear Fission 1451 The total

  • Page 1476 and 1477:

    43.7 Nuclear Fission 1453 43.15 Sch

  • Page 1478 and 1479:

    43.8 Nuclear Fusion 1455 43.17 The

  • Page 1480 and 1481:

    43.8 Nuclear Fusion 1457 conversion

  • Page 1482 and 1483:

    Exercises 1459 Key Terms activity,

  • Page 1484 and 1485:

    Exercises 1461 b is produced in the

  • Page 1486 and 1487:

    Problems 1463 43.62. The results of

  • Page 1488 and 1489:

    PARTICLE PHYSICS AND COSMOLOGY 44 ?

  • Page 1490 and 1491:

    44.1 Fundamental Particles—A Hist

  • Page 1492 and 1493:

    44.1 Fundamental Particles—A Hist

  • Page 1494 and 1495:

    44.2 Particle Accelerators and Dete

  • Page 1496 and 1497:

    44.2 Particle Accelerators and Dete

  • Page 1498 and 1499:

    44.3 Particles and Interactions 147

  • Page 1500 and 1501:

    44.3 Particles and Interactions 147

  • Page 1502 and 1503:

    44.3 Particles and Interactions 147

  • Page 1504 and 1505:

    44.4 Quarks and the Eightfold Way 1

  • Page 1506 and 1507:

    44.4 Quarks and the Eightfold Way 1

  • Page 1508 and 1509:

    44.4 Quarks and the Eightfold Way 1

  • Page 1510 and 1511:

    44.5 The Standard Model and Beyond

  • Page 1512 and 1513:

    44.6 The Expanding Universe 1489 SE

  • Page 1514 and 1515:

    44.6 The Expanding Universe 1491 in

  • Page 1516 and 1517:

    44.6 The Expanding Universe 1493 We

  • Page 1518 and 1519:

    44.7 The Beginning of Time 1495 ast

  • Page 1520 and 1521:

    44.7 The Beginning of Time 1497 44.

  • Page 1522 and 1523:

    AGE OF IONS Expanding, cooling gas

  • Page 1524 and 1525:

    44.7 The Beginning of Time 1501 is

  • Page 1526 and 1527:

    CHAPTER 44 SUMMARY Fundamental part

  • Page 1528 and 1529:

    Exercises 1505 Section 44.2 Particl

  • Page 1530 and 1531:

    Challenge Problems 1507 E v . 44.52

  • Page 1532 and 1533:

    APPENDIX A THE INTERNATIONAL SYSTEM

  • Page 1534 and 1535:

    APPENDIX B USEFUL MATHEMATICAL RELA

  • Page 1536 and 1537:

    APPENDIX D PERIODIC TABLE OF THE EL

  • Page 1538 and 1539:

    APPENDIX F NUMERICAL CONSTANTS Fund

  • Page 1540 and 1541:

    ANSWERS TO ODD-NUMBERED PROBLEMS Ch

  • Page 1542 and 1543:

    Answers to Odd-Numbered Problems 15

  • Page 1544 and 1545:

    Answers to Odd-Numbered Problems 15

  • Page 1546 and 1547:

    Answers to Odd-Numbered Problems 15

  • Page 1548 and 1549:

    Answers to Odd-Numbered Problems 15

  • Page 1550 and 1551:

    Answers to Odd-Numbered Problems 15

  • Page 1552 and 1553:

    Answers to Odd-Numbered Problems 15

  • Page 1554 and 1555:

    Index 1531 average, 276 calculating

  • Page 1556 and 1557:

    Index 1533 closed orbit, 382 closed

  • Page 1558 and 1559:

    Index 1535 electromagnetic waves, 1

  • Page 1560 and 1561:

    Index 1537 error (uncertainty), 8,

  • Page 1562 and 1563:

    Index 1539 Gu, Min, 1155 GUT (grand

  • Page 1564 and 1565:

    Index 1541 thermal expansion and, 5

  • Page 1566 and 1567:

    Index 1543 of transverse wave, 484-

  • Page 1568 and 1569:

    Index 1545 interference, 1297-1298

  • Page 1570 and 1571:

    Index 1547 randomness in electric c

  • Page 1572 and 1573:

    Index 1549 source of emf, 833, 833-

  • Page 1574 and 1575:

    Index 1551 as vector, 307-308, 326

  • Page 1576:

    Index 1553 x-ray photons, 1290-1291

General Physics (PHY 2140) - Physics & Astronomy
Which physics for the Invisible Universe?
The European strategy for particle physics - Irfu - CEA
Chapter 9 – Rotation and Rolling - UCF Physics
Experimental Astroparticle Physics, part 1
AMS-02 - Particle Physics at CIEMAT
2011 version - Elementary Particle Physics Group - University of ...
Spring 2008 - Department of Physics - Texas Tech University
PDF to download - Physics at Lancaster University
december 08 issue 06 volume 05 dimensions of particle physics A ...
Parity Violation and Topological Currents - UBC Physics & Astronomy
t - Eötvös Loránd University
Particle physics and introduction to field theory
LAGUNA - Particle Physics and Particle Astrophysics - University of ...
Experimental Elementary Particle Physics Group - University of ...
External Fields in Lattice Hadron Physics - University of Virginia
Mike Bush: UK Met Office physics developments - C-SRNWP Project
Astronomical Notes - Astronomy & Physics - Saint Mary's University
Introducing the Physics of Low-level Falls - Boise State University
Annual Report 2011-2012.pdf - School of Physics - University of ...