532 Index distributed network protocol (DNP3) (Continued) fundamental concepts: enhance performance architecture, 76–7 functions of model layers, 77–8 OSI 7 layer model, 73–6 implementation rules/recommendations, 154 16- and 32-bit variations, 158 actions on slave device startup, 155 confirmation and retries, 157 counter roll-over, 158 data classes/events, 155 default variation, 155 error responses, 154 flags in objects, 158 fragments and frames, 156–7 freeze operations, 159 multiple objects, 157 operating binary outputs, 156 order of responses, 155 over-range analog objects, 158 time synchronization, 159 time-tagged binary input events, 159 unsolicited responses, 156 interoperability between devices, 153 confirming, 153–4 profile document, 153 interoperability/open standard, 67–8 key to data structure, 140–2 message transaction flow diagrams, 104 collision with unsolicited response, 108 confirmation timeouts, 106 effects of network delays, 107–8 multi-fragment response, 105 rules for unsolicited message transactions, 108–11 typical transaction, 105 object header, 118–19 field, 119–20 variation zero, 120 physical layer, 80–1 description, 81 full-duplex procedures, 83 half-duplex procedures, 82 procedures, 81–2 services provided, 81 topologies, 81 polling/communications options, 162–3 qualifier codes, 121–2 all-object mode, 125 index-size sub-field, 122–3 non-ranged mode, 125–7 object identifier mode, 127–8 point indexes, 128 range-absolute mode, 124 range-index mode, 123–4 reasons for using, 72 sub-set definitions: function code quick reference, 147 implementation levels, 143–4 implementation table, 147–52 implementation tables, 144 qualified field, 146–7 qualified field quick reference, 146 summary of implementation, 144–6 system topology, 70–1 TCP/IP and UDP/IP: carrying over a network, 168–9 general considerations, 164–6 Internet protocol suite, 166–7 link layer confirmations, 169 time synchronization, 169 time synchronization: general method, 163–4 global, 164 transmission procedures: confirmed send user data, 92–3 CRC error code, 96–8 main points, 90–1 request link status, 94–6 reset user process, 91–2 test, 92 unconfirmed send user data, 93–4 transport layer (pseudo-transport): data unit, 98–9 description, 98 transport header, 99–100 understanding message structure, 78 application layer, 79 buildup, 78–9, 80 data link layer, 80 physical layer, 80 pseudo-transport layer, 80 water industry application, 374–90 DNP3/IEC 60870-5 comparison: addressing, 308 application functions/data objects, 308–9 choice/winner, 311 complexity, 309–10 data link communications, 308 differences, 308 efficiency, 310 frame format, 308 general similarities, 307 interoperability, 309 security, 309 summary, 310
Index 533 support for protocol, 310 see also distributed network protocol (DNP3) Electric Power Research Institute (EPRI), 10, 362, 363–4 Electrical signal characteristics: data communication equipment (DCE), 36–7 data terminal equipment (DTE), 36 Enhanced performance architecture (EPA), 74, 76–7 model layers: application, 78 data link, 78 physical, 77–8 pseudo-transport, 78 Ethernet, 8–9 10Base2 systems, 320–1 10Base5 systems, 318–20 10BaseF, 322 10BaseFB, 323 10BaseFL, 322–3 10BaseFP, 323 10BaseT, 321–2 10Broad36, 323 1Base5, 323 collisions, 326–7 design rules, 330 cable system grounding, 332 fast ethernet, 333 gigabit ethernet, 333–4 length of cable segment, 330–1 maximum network size, 332 maximum transceiver cable length, 331 maximum transmission path, 331–2 node placement rules, 331 repeater rules, 332 development, 316–17 frame reception, 325 frame transmission, 325 high speed, 360–1 MAC frame format, 327 FCS, 328 information, 328 length, 328 pad, 328 preamble, 327 source and destination address, 327–8 start frame delimeter, 327 medium access control, 324–5 physical layer, 317–18 reducing collisions, 330 signaling methods, 323–4 Version 2/Blue Book, 317 difference with IEEE, 802.3, 329 Far end crosstalk (FEXT), 322 Fast Ethernet, 333 Fibre optic inter repeater link (FOIRL), 322–3, 332 File transfer protocol (FTP), 337 Foundation fieldbus, 2, 14, 355 application layer, 358–9 data link layer, 358 error detection and diagnostics, 360 high speed Ethernet, 360–1 physical layer and wiring rules, 355–7 user layer, 359–60 Foundation fieldbus access sublayer (FAS), 358–9 Foundation fieldbus messaging specification (FMS), 358, 359 Gas Research Institute (GRI), 363–4, 366 Gigabit Ethernet, 333–4 High level data link control (HDLC), 42–3 error/flow, 45 frame contents, 44 frame format: information, 43 supervisory, 43 unnumbered, 43 protocol operation, 44 High speed Ethernet (HSE), 360–1 Hypertext transfer protocol (HTTP), 337 ICMP see Internet control message protocol IEC, 60870-5 addressing, 174 advanced considerations, 286–306 application data objects, 175 application functions, 286 clock synchronization, 294–6 command transmission, 296 data acquisition, 289–93 file transfer, 297 other functions, 296–7 parameter loading, 297 station initialization, 287–8 application layer, 203 ASDU structure, 204–14 message addressing and routing, 214–17 overall message structure, 203–4 balanced transmission, 199 address field, 201 control field, 199–200 function codes from primary station, 200 function codes from secondary station, 201 philosophy, 202
Practical Modern SCADA Protocols: D
Practical Modern SCADA Protocols: D
Contents Preface ..................
Contents vii 12.6 Frame reception .
Preface ix Chapter 3: Open SCADA pr
1 Introduction Objectives When you
Introduction 3 Figure 1.2 PC to IED
Introduction 5 The interconnection
Introduction 7 a number of sub-path
Introduction 9 The Internet protoco
Introduction 11 Outside the utiliti
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Key features of SCADA software incl
Fundamentals of SCADA communication
2.2.2 Control processor unit (or CP
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
2.5.2 Multi-point architecture (Mul
2.6 Communication philosophies Fund
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Pin 8 - Data carrier detect (DCD) F
2.7.6 Synchronous communications 2.
The two most common modes of operat
2.8.3 Error control/flow control Fu
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
Fundamentals of SCADA communication
3 Open SCADA protocols DNP3 and IEC
3.2.2 DNP 3.0 and IEC 60870 protoco
4.2 Interoperability and open stand
Preview of DNP3 69 The DNP3 User Gr
Preview of DNP3 71 The capability t
5 Fundamentals of distributed netwo
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
5.3.6 Full-duplex procedures Fundam
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
The message sequences are shown in
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
These rules are illustrated in the
Fundamentals of distributed network
Fundamentals of distributed network
Freeze functions are typically used
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
Fundamentals of distributed network
6 Advanced considerations of distri
Advanced considerations of distribu
Advanced considerations of distribu
Advanced considerations of distribu
Advanced considerations of distribu
6.2 Interoperability between DNP3 d
6.3.2 Data classes and events Advan
Recommendations: 6.3.9 Multiple obj
6.3.15 Time-tagged binary input eve
Advanced considerations of distribu
Advanced considerations of distribu
Advanced considerations of distribu
Advanced considerations of distribu
Advanced considerations of distribu
Preview of IEC 60870-5 171 7.2 Stan
Preview of IEC 60870-5 173 Under IE
Preview of IEC 60870-5 175 over cor
8 Fundamentals of IEC 60870-5 8.1 T
Fundamentals of IEC 60870-5 179 8.1
8.1.9 IEC 60870-5-101 1995 Fundamen
Fundamentals of IEC 60870-5 183 pro
Fundamentals of IEC 60870-5 185 MAS
8.4 Data link layer Fundamentals of
8.4.2 Order of information Fundamen
8.4.5 Unbalanced and balanced trans
Fundamentals of IEC 60870-5 193 Sta
Station/link initialization, balanc
Fundamentals of IEC 60870-5 197 The
Fundamentals of IEC 60870-5 199 To
Function codes from secondary stati
Fundamentals of IEC 60870-5 203 is
The following notes apply to these
Fundamentals of IEC 60870-5 207 Typ
Fundamentals of IEC 60870-5 209 Typ
Fundamentals of IEC 60870-5 211 Whe
Fundamentals of IEC 60870-5 213 8.5
Fundamentals of IEC 60870-5 215 to
Fundamentals of IEC 60870-5 217 Mas
Fundamentals of IEC 60870-5 219 Qua
Fundamentals of IEC 60870-5 221 Key
Fundamentals of IEC 60870-5 223 SVA
Fundamentals of IEC 60870-5 225 Key
Fundamentals of IEC 60870-5 227 DCO
8.6.4 Qualifier information element
Key - QOC Qualifier of command QU Q
Fundamentals of IEC 60870-5 233 SCQ
Fundamentals of IEC 60870-5 235 LOF
Fundamentals of IEC 60870-5 237 FBP
Fundamentals of IEC 60870-5 239 In
Fundamentals of IEC 60870-5 241 Typ
Fundamentals of IEC 60870-5 243 Typ
Fundamentals of IEC 60870-5 245 Typ
Fundamentals of IEC 60870-5 247 Val
Type 11 Measured, scaled value Fund
Fundamentals of IEC 60870-5 251 Typ
Fundamentals of IEC 60870-5 253 Typ
Fundamentals of IEC 60870-5 255 Val
Type 20 Packed single-point with st
Fundamentals of IEC 60870-5 259 Pro
Fundamentals of IEC 60870-5 261 Typ
Fundamentals of IEC 60870-5 263 Typ
Fundamentals of IEC 60870-5 265 Typ
Fundamentals of IEC 60870-5 267 8.7
Fundamentals of IEC 60870-5 269 Typ
Fundamentals of IEC 60870-5 271 Typ
Fundamentals of IEC 60870-5 273 Typ
Fundamentals of IEC 60870-5 275 Typ
Fundamentals of IEC 60870-5 277 Typ
Fundamentals of IEC 60870-5 279 Typ
Fundamentals of IEC 60870-5 281 Typ
Fundamentals of IEC 60870-5 283 Typ
Fundamentals of IEC 60870-5 285 Val
9.1.1 Station initialization Advanc
9.1.2 Data acquisition Advanced con
Advanced considerations of IEC 6087
Advanced considerations of IEC 6087
In Figure 9.4 the following time sy
Advanced considerations of IEC 6087
Basic application functions: 9.2.3
Advanced considerations of IEC 6087
Advanced considerations of IEC 6087
Advanced considerations of IEC 6087
10 Differences between DNP3 and IEC
Data objects: Differences between D
10.2 Which one will win? Difference
Intelligent electronic devices (IED
11.2.5 Communications Intelligent e
Ethernet and TCP/IP networks 317 tr
Ethernet and TCP/IP networks 319 Th
Ethernet and TCP/IP networks 321 Fi
12.2.5 10Broad36 12.2.6 1Base5 Ethe
Ethernet and TCP/IP networks 325 si
Ethernet and TCP/IP networks 327 As
12.8.4 Length Ethernet and TCP/IP n
Ethernet and TCP/IP networks 331 To
12.11.8 Fast Ethernet Ethernet and
12.12 TCP/IP Ethernet and TCP/IP ne
Ethernet and TCP/IP networks 337
Ethernet and TCP/IP networks 339 Fi
Here follows a brief description of
Unicast addresses Ethernet and TCP/
The three common fields are: Ethern
Ethernet and TCP/IP networks 347 Th
13 Fieldbus and SCADA communication
Fieldbus and SCADA communications s
Fieldbus and SCADA communications s
• Programmable logic controllers
Fieldbus and SCADA communications s
Three such ‘services’ are readi
Figure 13.9 High speed Ethernet and
14.2 UCA development UCA protocol 3
14.3.1 Uniform communications infra
UCA protocol 367 14.3.4 Uniform app
14.3.5 Uniform data model UCA proto
Figure 14.6 Device object model ove
UCA protocol 373 An excellent refer
Applications of DNP3 and SCADA prot
Applications of DNP3 and SCADA prot
Applications of DNP3 and SCADA prot
PDS 500 Data Map Applications of DN
Applications of DNP3 and SCADA prot
Applications of DNP3 and SCADA prot
Applications of DNP3 and SCADA prot
Applications of DNP3 and SCADA prot
16 Future developments Objectives W
Appendix A Glossary 3GPP 10Base2 10
Appendix A: Glossary 395 ATM Attenu
Appendix A: Glossary 397 Capacitanc
Appendix A: Glossary 399 Decibel (d
Appendix A: Glossary 401 ESS Etherl
Appendix A: Glossary 403 I/O addres
Manchester encoding Appendix A: Glo
Appendix A: Glossary 407 Packet PAD
Appendix A: Glossary 409 RFI Ring R
Appendix A: Glossary 411 TDMA TDR T
Appendix A: Glossary 413 X.25 CCITT
Appendix B: Implementers of DNP3 41
Appendix B: Implementers of DNP3 41
DNP3 device profile Appendix C: Sam
Appendix C: Sample device profile d
Appendix C: Sample device profile d
Appendix C: Sample device profile d
Appendix C: Sample device profile d
Software setup Appendix D: Practica
Appendix D: Practicals 431 1. Set u
Objectives • To show how a basic
Implementation/setting up TCP/IP Cl
Appendix D: Practicals 437 Click on
Appendix D: Practicals 439 Click on
Appendix D: Practicals 441 Now rese
Appendix D: Practicals 443 Practica
Appendix D: Practicals 445 This sho
Appendix D: Practicals 447 Once you
IMPORTANT NOTICE: Appendix D: Pract
Appendix D: Practicals 451 (This is
Appendix D: Practicals 453 PRACTICA
Click on the Diags button and the f
Appendix D: Practicals 457 The scre
Appendix D: Practicals 459 Assume t
Appendix D: Practicals 461 Problem
Network Loading Assumptions Item Da
2. IEC 60870-5-101 Packet Analysis
3.1.1.1.1 Appendix D: Practicals 46
Appendix D: Practicals 469 Valid Ca
3.1.1.1.7 Type 14 INFORMATION OBJEC
Appendix D: Practicals 473 3.1.1.1.
Appendix D: Practicals 475 QDS Qual
Appendix D: Practicals 477 7 6 5 4
3.1.1.1.11 Communication 1 Appendix