Views
7 months ago

# galvis

Water treatment

## Table A.4-2 General

Table A.4-2 General notation for the observed SS removal efficiencies to be used in this example Block SS removal efficiencies in each sampling session per each f. rate Block means number V 1 = 0.9 mh -1 V 2 = 1.3 mh -1 V 3 = 1.4 mh -1 Y 1. Y 2. Y 3. 1 Y. 1 Y 1, 1 Y 2, 1 Y 3, 1 Y. 1 2 Y. 2 Y 1, 2 Y 2, 2 Y 3, 2 Y. 2 3 Y. 3 Y 1, 3 Y 2, 3 Y 3, 3 Y. 3 . . . . . . . . . . 33 Y. 33 Y 1, 33 Y 2, 33 Y 3, 33 Y33 Treat Means. Y 1. Y 2. Y3. SS removal efficiencies per each tested filtration rate and per each block are included in table A4-3. This table also includes calculations of sums of squares as required by the third column of table A4-1. The calculations of different values required in the analysis of variance summarised in table A4-1 is illustrated as follows: The computations for the column of degrees of freedom follows: for treatment is t – 1 = 3-1 = 2; for blocks is b –1 = 33-1 = 32; for error is (t - 1)(b - 1) = 2 * 32 = 64; and for total is tb–1 = 3 * 33-1 = 98. The computations for the sum of squares column are presented separately in the boxes: A4-1, A4-2, A4-3 and A4-4. Y Box A4-1. Sum of Square of Treatment (SSTreat) SSTreat = 33 3 ∑∑ j= 1 i= 1 2 ( Y . − Y ) = 33 * ( Y . − Y ) i 3 ∑ i= 1 j= 1 i= 1 where Y = * 3 = 71 . 8 33 33 3 ∑∑ Y i j and = 79.4 ; Y = 69.7 ; Y 66. 2 Y 1 . 2. 3. = i 2 then SSTreat = 33 * ⎡ ⎢⎣ = 3095.26 2 2 2 ( Y − Y) + ( Y − Y) + ( Y − Y) ⎤ = 33 * (58.16 + 4.52 31.12) 2. 3. 1. + ⎥⎦ Box A4-2. Sum of Square of Blocks (SSBlocks) SSBlocks = SSBlocks 33 3 ∑∑( Y . j − Y) j= 1 i= 1 = 3 * ⎡ ⎢⎣ 2 2 2 ( Y − ) + ( − ) + + ( − ) ⎤ . 1 Y Y.2 Y .......... ... Y.33 Y ⎥ ⎦ ( 133.02 + 216.96 + ....... 13.84) = 3 * + = 11496.14 A4-2

Table A.4.3 SS removal efficiencies per each DyGF rate and sampling session (block) together with calculations required to apply the ANOVA technique as summarised in table A4-1. Blocks Date efficiencies for Vf Sums of Blocks Sums of Totales Sums of Error 0.9 mh -1 1.3 m h -1 1.4 m h -1 means Y . J (2) (3) (4) (5) (6) (7) (8) 1 88,0 81,7 80,3 83,33 Y . 1 133,02 263,35 97,81 71,94 8,44 0,21 6,49 2 87,7 84,2 87,7 86,53 Y . 1 216,96 251,90 154,92 251,90 41,71 0,03 45,45 3 75,4 64,4 62,4 67,39 Y . 1 19,42 13,29 55,41 88,81 0,21 0,88 0,34 4 85,2 82,0 82,0 83,06 Y . 4 126,79 180,79 103,37 103,37 29,31 1,01 20,31 5 75,0 61,2 57,8 64,66 Y . 5 51,05 10,24 112,21 197,16 7,53 1,82 1,68 6 85,5 80,3 75,0 80,26 Y . 6 71,63 188,41 71,63 10,24 5,46 4,41 0,11 7 87,6 78,7 61,8 76,03 Y . 7 17,89 250,92 46,95 100,04 16,08 22,29 74,52 8 62,4 54,8 48,4 55,20 Y . 8 275,66 89,01 287,69 548,16 0,19 3,03 1,46 9 80,8 72,6 65,8 73,06 Y . 9 1,59 81,40 0,64 36,56 0,03 2,70 2,91 10 83,1 71,3 78,7 77,70 Y . 10 34,76 127,42 0,23 47,29 4,87 18,25 43,30 11 71,0 59,8 65,1 65,29 Y . 11 42,43 0,63 144,88 45,04 3,53 11,71 29,19 12 70,0 62,1 58,4 63,51 Y . 12 68,74 3,24 93,99 179,00 1,23 0,49 0,26 13 64,0 43,9 43,9 50,59 Y . 13 449,98 61,52 778,27 778,27 33,29 21,02 1,18 14 78,9 74,7 75,8 76,49 Y . 14 22,01 51,08 8,63 15,92 26,46 0,12 23,99 15 80,9 83,6 84,5 83,03 Y . 15 126,12 82,98 140,10 162,45 94,50 7,32 50,63 16 77,5 75,3 82,0 78,28 Y . 16 41,95 32,81 12,12 104,50 69,71 0,80 87,33 17 77,3 77,5 73,6 76,13 Y . 17 18,76 30,07 32,84 3,17 41,57 12,24 9,29 18 65,7 53,6 43,0 54,11 Y . 18 313,07 37,20 330,40 829,72 15,95 2,61 30,37 19 75,5 62,8 40,5 59,60 Y . 19 148,76 13,43 80,55 978,41 68,25 28,32 181,79 20 71,5 46,6 36,1 51,40 Y . 20 416,27 0,11 633,74 1274,91 155,63 7,14 94,15 21 84,5 57,4 42,6 61,51 Y . 21 105,97 161,74 208,50 850,33 237,52 4,18 176,00 22 67,6 79,5 52,3 66,48 Y . 22 28,33 17,53 59,99 381,31 41,78 230,07 74,04 23 82,5 65,0 61,7 69,72 Y . 23 4,32 114,49 46,24 102,68 26,81 6,88 6,03 24 78,8 56,6 60,6 65,32 Y . 24 41,99 48,83 232,09 125,30 34,43 44,28 0,79 25 81,2 58,6 82,7 74,19 Y . 25 5,69 88,42 173,01 118,96 0,34 180,60 199,41 26 81,4 65,7 57,9 68,33 Y . 26 12,02 92,71 37,04 194,40 30,20 0,27 23,78 27 94,0 91,9 91,9 92,58 Y . 27 431,75 491,17 403,48 403,48 38,64 1,98 24,09 28 93,9 81,9 84,3 86,67 Y . 28 221,02 487,92 101,04 155,23 0,14 7,37 10,19 29 86,2 76,4 81,3 81,30 Y . 29 90,27 206,75 21,37 90,27 7,41 7,72 31,36 30 78,2 60,9 43,3 60,80 Y . 30 121,04 40,56 118,47 811,69 95,47 4,92 141,33 31 83,3 73,8 75,0 77,38 Y . 31 31,15 133,02 4,04 10,24 2,71 2,17 10,36 32 83,6 82,2 83,6 83,11 Y . 32 127,80 138,34 107,99 138,34 51,03 1,41 36,68 33 82,8 78,1 65,6 75,52 Y . 33 13,84 121,28 40,01 38,13 0,10 22,13 18,45 Means Treat. 79,4 69,7 66,2 Y i. Y 1. Y 2. Y3. 71,8 Y (1) 58,16 4,52 31,12 Sums of Columns 3912,55 4739,62 9247,22 1190,54 660,40 1457,29 2 i . = 2 3 , j = (1). ( Y − 71 .8 ) ; i 1,2,3 . (5). ( Y − 71 .8 ) ; j 1,2,...., 33 (2). 2 ( Y. j − 71 .8 ) ; j = 1,2,...., 33 (6). ( Y 1 . j − Y 1 . − Y . 1 + Y ) ; j = 1,2,...., 33 (3). 2 ( Y − 71 .8 ) ; j 1,2,...., 33 (7). ( Y2 . j − Y 2. − Y. 2 + Y) ; j = 1,2,...., 33 1 . j = (4). 2 ( Y2 , j − 71 .8 ) ; j = 1,2,...., 33 (8). ( Y 3 . j − Y3. − Y. 3 + Y) ; j = 1,2,...., 33 A4-3

• Page 1 and 2:

Development and Evaluation of Multi

• Page 3 and 4:

ACKNOWLEDGEMENTS To my supervisor,

• Page 5 and 6:

ABBREVIATIONS ABNT: Acuavalle: ACV:

• Page 7 and 8:

SOCs: Synthetic Organic Chemicals S

• Page 9 and 10:

u c V V f Vs uniformity coefficient

• Page 11 and 12:

• Page 13 and 14:

4 MULTISTAGE FILTRATION EXPERIENCIE

• Page 15 and 16:

1 INTRODUCTION Water is essential f

• Page 17 and 18:

Table 1.2 Access to WS&S in Colombi

• Page 19 and 20:

Table 1.5 Safe drinking water cover

• Page 21 and 22:

1.2 Multiple Barriers Strategy and

• Page 23 and 24:

2 OVERCOMING THE LIMITATIONS OF SLO

• Page 25 and 26:

adjustment, are among the technolog

• Page 27 and 28:

On January 14, 1829, Simpson’s on

• Page 29 and 30:

With increasing life expectancy, en

• Page 31 and 32:

Table 2.2 Treatments steps recommen

• Page 33 and 34:

In table 2.3, WHO guideline values

• Page 35 and 36:

2.5 The Slow Sand Filtration Proces

• Page 37 and 38:

When the particles are very close t

• Page 39 and 40:

in which p 0 is the clean media por

• Page 41 and 42:

Yao et al (1971) related the remova

• Page 43 and 44:

compensate for the increase in the

• Page 45 and 46:

can be applied, but intermittent op

• Page 47 and 48:

Table 2.4 Comparison of design crit

• Page 49 and 50:

Although accepted as indirect indic

• Page 51 and 52:

50% when the temperature falls from

• Page 53 and 54:

Figure 2.9 Flow diagram of the wate

• Page 55 and 56:

ut higher running costs, since more

• Page 57 and 58:

Headloss and flow control. Final he

• Page 59 and 60:

Figure 2.13 Influence of flow condi

• Page 61 and 62:

Operation and maintenance (O & M).

• Page 63 and 64:

in parallel (Galvis, 1983; Smet et

• Page 65 and 66:

cleaning simple, DyGF should behave

• Page 67 and 68:

case of Dortmund (Germany), the HGF

• Page 69 and 70:

Table 2.9 Data about three experien

• Page 71 and 72:

Some points of discussion about HGF

• Page 73 and 74:

and 600-800 NTU) and different filt

• Page 75 and 76:

the HGF units of Aesch (see table 2

• Page 77 and 78:

in spite of the low removal efficie

• Page 79 and 80:

order to overcome the water quality

• Page 81 and 82:

full-scale units. In this research,

• Page 83 and 84:

3 MULTISTAGE FILTRATION STUDIES WIT

• Page 85 and 86:

in the case of UGFL. Initially, it

• Page 87 and 88:

• Bigger and better-instrumented

• Page 89 and 90:

l Figure 3.7 Plan view of Cinara's

• Page 91 and 92:

The present research work was divid

• Page 93:

Table 3.1. Design parameters, grave

• Page 96 and 97:

Figure 3.9. Piezometer distribution

• Page 98 and 99:

were used to collect samples for DO

• Page 100 and 101:

were poured into a funnel using fil

• Page 102 and 103:

H 0 : H a : Treatment levels workin

• Page 104 and 105:

3.2 Results and Specific Discussion

• Page 106 and 107:

3.2.2 Dynamic gravel filtration (Dy

• Page 108 and 109:

Mean faecal coliform removal effici

• Page 110 and 111:

Table 3.10 Comparative analysis of

• Page 112 and 113:

DyGF-A had flow reductions in the r

• Page 114 and 115:

The experimental data used to produ

• Page 116 and 117:

Previous observations were further

• Page 118 and 119:

ates (figure 3.17 B). However, at t

• Page 120 and 121:

Longer “initial-ripening” perio

• Page 122 and 123:

Table 3.17. Descriptive statistics

• Page 124:

100 Filtration rate = 0.3 mh -1 100

• Page 127 and 128:

After the present experience, faeca

• Page 130 and 131:

nature of the organic matter and th

• Page 132 and 133:

Table 3.24 Comparative analyses of

• Page 134 and 135:

3.2.4.3. Filtration run lengths and

• Page 136 and 137:

deep bed filter (data not included

• Page 138 and 139:

and operational considerations Pard

• Page 140 and 141:

than in sand samples from other SSF

• Page 142 and 143:

Step dose tracer tests were made at

• Page 144 and 145:

for HGFS and from 3 to 5 for HGF. T

• Page 146 and 147:

Constant and declining filtration r

• Page 148 and 149:

The efficiency levels summarised be

• Page 150 and 151:

Surface area of CGF and SSF units.

• Page 152 and 153:

community based organisations and l

• Page 154 and 155:

systems. All these systems were fed

• Page 156 and 157:

Parts of the suburban settlements o

• Page 158 and 159:

Figure 4.2. Layout of Retiro MSF pl

• Page 160 and 161:

Traditionally, in the WS&S of Colom

• Page 162 and 163:

Photo 4.10. Partial cleaning activi

• Page 164 and 165:

Figure 4.3 Location of full-scale M

• Page 167 and 168:

4.4.1.3 Main characteristics of mul

• Page 169 and 170:

Figure 4.4 Layout of Restrepo MSF p

• Page 171 and 172:

Figure 4.6 Layout of Javeriana MSF

• Page 173 and 174:

Figure 4.9 Layout of Cañasgordas M

• Page 175 and 176:

Figure 4.11. Layout of Ceylan MSF p

• Page 177:

Table 4.4 Descriptive statistics fo

• Page 180 and 181:

Water sources in the coffee region

• Page 182 and 183:

Filterability results seem to under

• Page 184 and 185:

Table 4.8 Mean removal efficiencies

• Page 186 and 187:

The length of this ripening period

• Page 188 and 189:

in Peru (Pardon, 1989) and Colombia

• Page 190 and 191:

Photo 4.24 Drainage facilities in u

• Page 192 and 193:

the Cauca Valley. This is not the c

• Page 194 and 195:

Pardon (1989) reports similar evide

• Page 196 and 197:

5. COST OF MULTI-STAGE FILTRATION P

• Page 198 and 199:

ecame formally established as WS en

• Page 200 and 201:

Models for assessing construction q

• Page 202 and 203:

MSF system can then be calculated o

• Page 204 and 205:

5.7 Cost Model for the Cali Area an

• Page 206 and 207:

Table 5.8. Annual labour costs due

• Page 208 and 209:

5.8 General Discussion The followin

• Page 210 and 211: systems. The differences between MS
• Page 212 and 213: guideline for colour is < 15 PCU (W
• Page 214 and 215: Table 6.1. Individual (at each trea
• Page 216 and 217: Table 6.3. Individual (at each trea
• Page 218 and 219: As shown in tables 6.1 and 6.3, col
• Page 220 and 221: UGFL 0.45 UGFS 0.45 (32;51;85) (44;
• Page 222 and 223: Table 6.4. An example of identifica
• Page 224 and 225: MSF technology showed great flexibi
• Page 226 and 227: In harmony with the new development
• Page 228 and 229: epresents the risk the community ha
• Page 230 and 231: The selection of MSF alternatives i
• Page 232 and 233: scouring and transporting away prev
• Page 234 and 235: REFERENCES ABNT, (1989) NB-592 Proj
• Page 236 and 237: Craun, G.F., Bull, R.J., Clark, R.M
• Page 238 and 239: Drinking Water Disinfection, ed. by
• Page 240 and 241: Huisman, L. (1989) Plain Sedimentat
• Page 242 and 243: Mendenhall, W. and Sincich, T. (199
• Page 244 and 245: Ridley, J.E. (1967) Experience in t
• Page 246 and 247: Visscher, J.T. and Galvis, G. (1992
• Page 248 and 249: ANNEXES Annex 1: Accessories for Mu
• Page 250 and 251: aw water. The red colour is used fo
• Page 252 and 253: Annex 2: Design of Manifolds Manifo
• Page 254 and 255: + q 2 Q1 (1.2 qn + qn) (2.2 qn) = =
• Page 256 and 257: R 1 = (total orifice area / lateral
• Page 258 and 259: 0.30 0.25 0.20 0.15 0.10 0.05 0.00
• Page 262 and 263: Box A4-3. Sum of Square Error (SSE)
• Page 264 and 265: Annex 5: Residence times in coarse
• Page 266 and 267: Table A5-1 Percentage of incoming w
• Page 268 and 269: Annex 6 Number and Type of Valves N
• Page 270: Table A7-1. Descriptive statistics
• Page 274 and 275: Tables A7-3 Removal efficiencies of
• Page 276 and 277: Tables A7-5 Removal efficiencies of
• Page 278 and 279: Construction quantities of DyGF com
• Page 280: Net present value (US\$) of MSF and
Pall Aria™ AP-Series Packaged Water Treatment ... - Pall Corporation
The Treatment of Scottish Water for Private Communities
Pall Aria™ AP-Series Packaged Water Treatment ... - Pall Corporation
Water Treatment Products - Colorfil
Pilot Testing and Evaluation of Three Filtration Technologies - pncwa
Microorganisms (The Coliform Group Bacteria)
Capacity Charts for Water Treatment Systems
Screen Filtration for Ballast Water Treatment Applications - Cross ...
Water Treatment Improvements and Plant Capacity ... - Ohiowater.org
Potable Water - X-Flow
2003 City of Roanoke Water Quality Report - Western Virginia Water ...
may 4th am water treatment.pdf(18358.4kb) - PNWS-AWWA
Presentation - National Water Research Institute
City of Roseville - Evaluation of the New Compressible Media Filter
Water Encyclopedia: Domestic, Municipal, and Industrial Water ...
Rena Angelidaki A sustainable solution for pig manure treatment ...
Water Softeners and Wastewater Treatment Systems
Sydney Water - Best practice guidelines for water ... - Neptune-Benson
Algal removal by alum coagulation - Illinois State Water Survey
TridentÂ® HS multi-barrier packaged water treatment system
Premium Grade Filter Media - Swimming Pools
105745_LodgingMktSeg Sheet_Oct13
Waste water treatment without chemistry Atec Advanced Oxidation ...
Filter Pilot Testing at the Hale Avenue Resource Recovery Facility
WE UNDERSTAND BALLAST WATER TREATMENT - Severn Trent ...
The Take Back the Tap Guide to Safe - Food & Water Watch
HDF Drumfilters. Pure filtration. - Hydrotech Veolia Water Solutions ...
Reprinted with permission Westwick-Farrow Publishing