4 months ago


THORNE: A wave cannot

THORNE: A wave cannot resolve structures that are smaller than about one-third the wavelength. Let’s look at it this way. You are looking at your antenna in the light of that wave. Then all you will see is just a tiny blur, with no definition. Therefore such an antenna cannot determine the polarization and the direction of travel. VERITAS: And would this be true for a gravitational wave? Do gravitational waves have polarization? THORNE: Yes, it would be true. And gravitational waves also have states of polarization. In LIGO, for instance, polarization causes one arm to expand while the other arm contracts, and vice versa. This is why LIGO works in the first place. VERITAS: Thank you for that explanation of polarization. So we now understand that without polarization there would be no LIGO. Now, Professor Thorne, what is the typical dimension of the LIGO antenna? THORNE: Four kilometers. VERITAS: And what is the typical wavelength of the gravitational wave LIGO is trying to detect? THORNE: It is thousands of kilometers. VERITAS: So LIGO is much smaller than the wavelength. How can LIGO see the state of polarization? THORNE: Well .. er .. LIGO accumulates measurements many times, making the effective length of the LIGO arm 1120 kilometers. So, LIGO is not small compared to the wavelength after all. VERITAS: Are you saying that the fundamental physics limitation of small antennas you have just explained can be defeated by accumulating measurement many times? THORNE: It is more complicated than that. VERITAS: OK, let us go back to the electromagnetic wave example. If I use a storage-type oscilloscope to accumulate measurements with that small antenna, will I be able to determine the plane of polarization of the wave? THORNE: Well… er… I cannot say right offhand. 80

VERITAS: Then I will say. The answer is a definite no. You cannot defeat physics of waves this way. The same is true for gravitational wave. You cannot use an antenna that is a thousand times smaller than a wavelength to sense polarization. From the point of the incoming wave, your antenna is just an indistinct speck. And since sensing polarization is how LIGO works, it is not a valid instrument. Do you agree with this statement? THORNE: No. The scientific establishment has accepted the LIGO results. VERITAS: Is that your entire answer to the physics fallacy at the very core of LIGO I have just pointed out? THORNE: Yes. VERITAS: Your Honor, I have no further questions. JUDGE: Redirect, Mr. Moscato? MOSCATO: Yes, Your Honor. Professor Thorne, is it not true that not only the entire scientific establishment agrees with you, but that the Royal Swedish Academy of Sciences agrees with you solidly enough to give you the Nobel Prize? Isn’t it true that scientific consensus is as total on LIGO has it has ever been on anything? THORNE: It is true. MOSCATO: No further questions. JUDGE: The witness is excused. This entry was posted on October 29, 2017 at 11:02 am 81

Talk (PDF) - Physics Department - Utah State University
Talk (PDF) - Physics Department - Utah State University
IIP News 04
lecture - Ettore Majorana - Infn
LIGO Magazine, Issue 2, 3/2013 - LIGO Scientific Collaboration
Talk (PDF) - Physics Department - Utah State University
RrpprES rN Spncr-TrME - LIGO - Caltech
Fundamental physics in our time - ZARM
Laser Cutting - BOC Australia
Navigation, Gravitation and Cosmology with Cold Atom ... - INFN
Talk (PDF) - Physics Department - Utah State University
Gravitational Wave: Sources
High Energy Density Physics with Intense Ion and Laser Beams - GSI
February 2013
Thermo Scientific DXR Raman Microscope
Custom Built Solid-State Lasers
Engl.High.Energy.Las.. - Psi Ece Jhu
Refraction to the rescue - Magazines
User Guide - Sitech West