Views
5 months ago

small angle X-ray scattering

Chemistry of Materials

Chemistry of Materials Situ Probing of High-Temperature Quantum Dots Solution Synthesis. Nano Lett. 2015, 15, 2620−2626. (25) Liu, Q.; Gao, M. R.; Liu, Y.; Okasinski, J. S.; Ren, Y.; Sun, Y. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering. Nano Lett. 2016, 16, 715−20. (26) Karim, A. M.; Al Hasan, N.; Ivanov, S.; Siefert, S.; Kelly, R. T.; Hallfors, N. G.; Benavidez, A.; Kovarik, L.; Jenkins, A.; Winans, R. E.; Datye, A. K. Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X-ray Absorption Fine Structure Spectroscopy and Small-Angle X-ray Scattering. J. Phys. Chem. C 2015, 119, 13257−13267. (27) van der Stam, W.; Rabouw, F. T.; Geuchies, J. J.; Berends, A. C.; Hinterding, S. O. M.; Geitenbeek, R. G.; van der Lit, J.; Prevost, S.; Petukhov, A. V.; de Mello Donega, C. D. In Situ Probing of Stack- Templated Growth of Ultrathin Cu 2‐x S Nanosheets. Chem. Mater. 2016, 28, 6381−6389. (28) Mozaffari, S.; Li, W.; Thompson, C.; Ivanov, S.; Seifert, S.; Lee, B.; Kovarik, L.; Karim, A. M. Colloidal Nnanoparticle Size Control: Experimental and Kinetic Modeling Investigation of the Ligand-Metal Binding Role in Controlling the Nucleation and Growth Kinetics. Nanoscale 2017, 9, 13772−13785. (29) Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. In Situ and ex Situ Studies of Platinum Nanocrystals: Growth and Evolution in Solution. J. Am. Chem. Soc. 2009, 131, 14590−14595. (30) Cormary, B.; Li, T.; Liakakos, N.; Peres, L.; Fazzini, P. F.; Blon, T.; Respaud, M.; Kropf, A. J.; Chaudret, B.; Miller, J. T.; Mader, E. A.; Soulantica, K. Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies. J. Am. Chem. Soc. 2016, 138, 8422−8431. (31) Lassenberger, A.; Grunewald, T. A.; van Oostrum, P. D. J.; Rennhofer, H.; Amenitsch, H.; Zirbs, R.; Lichtenegger, H. C.; Reimhult, E. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Chem. Mater. 2017, 29, 4511−4522. (32) Ortiz, N.; Hammons, J. A.; Cheong, S.; Skrabalak, S. E. Monitoring Ligand-Mediated Growth and Aggregation of Metal Nanoparticles and Nanodendrites by in Situ Synchrotron Scattering Techniques. ChemNanoMat 2015, 1, 109−114. (33) Sakamoto, N.; Harada, M.; Hashimoto, T. In situ and Timeresolved SAXS Studies of Pd Nanoparticle Formation in a Template of Block Copolymer Microdomain Structures. Macromolecules 2006, 39, 1116−1124. (34) Harada, M.; Tamura, N.; Takenaka, M. Nucleation and Growth of Metal Nanoparticles during Photoreduction Using In Situ Time- Resolved SAXS Analysis. J. Phys. Chem. C 2011, 115, 14081−14092. (35) Manocchi, A. K.; Seifert, S.; Lee, B.; Yi, H. In Situ Small-Angle X-ray Scattering Analysis of Palladium Nanoparticle Growth on Tobacco Mosaic Virus Nanotemplates. Langmuir 2011, 27, 7052− 7058. (36) Wang, J. A.; Winans, R. E.; Anderson, S. L.; Seifert, S.; Lee, B.; Chupas, P. J.; Ren, Y.; Lee, S.; Liu, Y. Z. In Situ Small-Angle X-ray Scattering from Pd Nanoparticles Formed by Thermal Decomposition of Organo-Pd Catalyst Precursors Dissolved in Hydrocarbons. J. Phys. Chem. C 2013, 117, 22627−22635. (37) Sun, Y.; Zuo, X.; Sankaranarayanan, S.; Peng, S.; Narayanan, B.; Kamath, G. Quantitative 3D Evolution of Colloidal Nanoparticle Oxidation in Solution. Science 2017, 356, 303−307. (38) Kim, S. W.; Park, J.; Jang, Y.; Chung, Y.; Hwang, S.; Hyeon, T.; Kim, Y. W. Synthesis of Monodisperse Palladium Nanoparticles. Nano Lett. 2003, 3, 1289−1291. (39) Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts. Science 2013, 341, 771−773. (40) van Embden, J.; Chesman, A. S. R.; Jasieniak, J. J. The Heat-Up Synthesis of Colloidal Nanocrystals. Chem. Mater. 2015, 27, 2246− 2285. 1134 Article (41) Wu, L.; Willis, J. J.; McKay, I. S.; Diroll, B. T.; Qin, J.; Cargnello, M.; Tassone, C. J. High-Temperature Crystallization of Nanocrystals into Three-Dimensional Superlattices. Nature 2017, 548, 197−201. (42) Cargnello, M.; Jaen, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gamez, J. J. C.; Gorte, R. J.; Fornasiero, P. Exceptional Activity for Methane Combustion over Modular Pd@CeO 2 Subunits on Functionalized Al 2 O 3 . Science 2012, 337, 713−717. (43) Cargnello, M.; Wieder, N. L.; Montini, T.; Gorte, R. J.; Fornasiero, P. Synthesis of Dispersible Pd@CeO 2 Core-Shell Nanostructures by Self-Assembly. J. Am. Chem. Soc. 2010, 132, 1402−1409. (44) Jin, T.; Guo, S. J.; Zuo, J. L.; Sun, S. H. Synthesis and Assembly of Pd Nanoparticles on Graphene for Enhanced Electrooxidation of Formic Acid. Nanoscale 2013, 5, 160−163. (45) Xi, Z.; Erdosy, D. P.; Mendoza-Garcia, A.; Duchesne, P. N.; Li, J. R.; Muzzio, M.; Li, Q.; Zhang, P.; Sun, S. H. Pd Nanoparticles Coupled to WO 2.72 Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Lett. 2017, 17, 2727−2731. (46) Liu, Q. S.; Bauer, J. C.; Schaak, R. E.; Lunsford, J. H. Supported Palladium Nanoparticles: An Efficient Catalyst for the Direct Formation of H 2 O 2 from H 2 and O 2 . Angew. Chem., Int. Ed. 2008, 47, 6221−6224. (47) Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-Mediated Shape Evolution of Palladium Nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6315−6319. (48) Man, R. W. Y.; Brown, A. R. C.; Wolf, M. O. Mechanism of Formation of Palladium Nanoparticles: Lewis Base Assisted, Low- Temperature Preparation of Monodisperse Nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 11350−11353. (49) Lv, T.; Wang, Y.; Choi, S. I.; Chi, M. F.; Tao, J.; Pan, L. K.; Huang, C. Z.; Zhu, Y. M.; Xia, Y. N. Controlled Synthesis of Nanosized Palladium Icosahedra and Their Catalytic Activity towards Formic-Acid Oxidation. ChemSusChem 2013, 6, 1923−1930. (50) Mazumder, V.; Sun, S. H. Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131, 4588−4589. (51) Liu, Y.; Wang, C.; Wei, Y. J.; Zhu, L. Y.; Li, D. G.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. Surfactant-Induced Postsynthetic Modulation of Pd Nanoparticle Crystallinity. Nano Lett. 2011, 11, 1614−1617. (52) Ortiz, N.; Skrabalak, S. E. Manipulating Local Ligand Environments for the Controlled Nucleation of Metal Nanoparticles and their Assembly into Nanodendrites. Angew. Chem., Int. Ed. 2012, 51, 11757−11761. (53) Cargnello, M.; Doan-Nguyen, V. V. T.; Murray, C. B. Engineering Uniform Nanocrystals: Mechanism of Formation and Self-assembly into Bimetallic Nanocrystal Superlattices. AIChE J. 2016, 62, 392−398. (54) Zhang, F.; Ilavsky, J.; Long, G. G.; Quintana, J. P. G.; Allen, A. J.; Jemian, P. R. Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering. Metall. Mater. Trans. A 2010, 41, 1151−1158. (55) Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science 2009, 324, 1309−1312. (56) Wang, F. D.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and Mechanisms of Aggregative Nanocrystal Growth. Chem. Mater. 2014, 26, 5−21. (57) Mourdikoudis, S.; Liz-Marzan, L. M. Oleylamine in Nanoparticle Synthesis. Chem. Mater. 2013, 25, 1465−1476. (58) Gallagher, P. K.; Gross, M. E. The Thermal-Decomposition of Palladium Acetate. J. Therm. Anal. 1986, 31, 1231−1241. (59) Amatore, C.; Jutand, A.; M'barki, M. A. Evidence of the Formation of Zerovalent Palladium from Pd(OAc) 2 and Triphenylphosphine. Organometallics 1992, 11, 3009−3013. (60) Stephenson, Ta; Morehouse, Sm; Powell, A. R.; Heffer, J. P.; Wilkinson, G. Carboxylates of Palladium Platinum and Rhodium and Their Adducts. J. Chem. Soc. 1965, 0, 3632−3640. DOI: 10.1021/acs.chemmater.7b05186 Chem. Mater. 2018, 30, 1127−1135

Chemistry of Materials Article (61) Lamer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, 4847−4854. (62) Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study. J. Phys. Chem. B 2001, 105, 12278−12285. (63) van Embden, J.; Sader, J. E.; Davidson, M.; Mulvaney, P. Evolution of Colloidal Nanocrystals: Theory and Modeling of their Nucleation and Growth. J. Phys. Chem. C 2009, 113, 16342−16355. (64) Chen, X. L.; Schroder, J.; Hauschild, S.; Rosenfeldt, S.; Dulle, M.; Forster, S. Simultaneous SAXS/WAXS/UV-Vis Study of the Nucleation and Growth of Nanoparticles: A Test of Classical Nucleation Theory. Langmuir 2015, 31, 11678−11691. (65) Hendricks, M. P.; Campos, M. P.; Cleveland, G. T.; Jen-La Plante, I.; Owen, J. S. A Tunable Library of Substituted Thiourea Precursors to Metal Sulfide Nanocrystals. Science 2015, 348, 1226− 1230. (66) Yin, X.; Shi, M.; Wu, J.; Pan, Y. T.; Gray, D. L.; Bertke, J. A.; Yang, H. Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry. Nano Lett. 2017, 17, 6146−6150. (67) Willis, J. J.; Gallo, A.; Sokaras, D.; Aljama, H.; Nowak, S. H.; Goodman, E. D.; Wu, L. H.; Tassone, C. J.; Jaramillo, T. F.; Abild- Pedersen, F.; Cargnello, M. Systematic Structure Property Relationship Studies in Palladium Catalyzed Methane Complete Combustion. ACS Catal. 2017, 7, 7810−7821. 1135 DOI: 10.1021/acs.chemmater.7b05186 Chem. Mater. 2018, 30, 1127−1135

X-ray scattering of periodic and graded multilayer ... - IWXM
Calculation of g(r) Functions from Small-Angle Scattering Data by ...
Inelastic X-Ray Scattering - University of Illinois at Urbana-Champaign
Small-Angle Neutron Scattering - Kfki
small angle light scattering - TA Instruments
Introduction to Neutron and X-Ray Scattering - Spallation Neutron ...
Application Gallery - Hecus Graz X-Ray Systems
Calculation of g(r) Functions from Small-Angle Scattering Data by ...
X-ray and Neutron Scattering from Crystalline Surfaces and Interfaces
New Adventures in Soft X-ray Scattering S.S. Dhesi Diamond Light ...
Coherent Soft X-ray Scattering for Studying Nanoscale Materials
In Situ Small-Angle X-ray Scattering Observation of Pt Catalyst ...
Small Angle X-ray Scattering and Applications in Structural Analysis ...
Biological Small Angle X-ray Scattering: An Introduction to the ...
SMALL-ANGLE X-RAY SCATTERING STUDIES IN ... - LNLS
Small Angle X-ray Scattering (SAXS) Measurements
Small-Angle X-Ray Scattering from RNA, Proteins, and Protein ...
Small-Angle X-Ray Scattering from RNA, Proteins, and Protein ...
electronic reprint Small-angle X-ray scattering measurements of ...
Experiment Ultra Small Angle Scattering on precursors of ... - ESRF
Small-Angle X-ray Scattering: A Concise Review
Small-angle X-ray scattering - Hasylab - Desy
Small-Angle X-ray Scattering SAXS vs. X-ray Diffraction SAXS vs. X ...
Small-Angle X-ray Scattering Basics & Applications Table of ...
Small-Angle X-ray Scattering (SAXS) - Cheiron School 2011 ...
Characterization of Steels by Anomalous Small-Angle X-ray Scattering