and plants that flower under only certain day-length conditions are called photoperiodic. Four photoperiodic responses in plants are a basis for classifying horticultural plants. 1. Short-day plants (or long-night plants). Short-day plants will not flower under continuous light. They require a photoperiod of less than a certain critical value within a 24-hour daily cycle. For example, strawberry (Fragaria x ananasia) requires 10 hours of light or less and violet (Viola papilionacea) requires 11 hours. Poinsettia (Euphorbia pulcherrima) requires 12.5 hours of daylight and cocklebur (Xanthium strumarium) requires about 16 hours or less of light. When planted in the field, short-day plants flower in early spring or fall (Table 4–3). 2. Long-day plants (or short-night plants). Long-day plants are plants that flower only when light periods are longer than a certain critical length (Table 4–4). These plants flower mainly in summer and include annuals such as henbane (Hyoscyamus niger), which requires more than 10 hours of light, and spinach (Spinacia oleracea), which requires 13 hours of light. Baby’s breath (Gypsophila paniculata) requires 16 hours or more of daylight in order to flower. 3. Day-neutral plants. Day-neutral plants are not responsive to photoperiod and flower according to the developmental stage. Plants in this category include tomato, corn, and cucumber (Table 4–5). 4. Intermediate-day plants. Certain grasses such as Indian grass do not flower if the days are too short or too long. These plants are said to have two critical photoperiods and are categorized as intermediate-day plants. The Role of Darkness in Photoperiodism Photoperiodic plants in actuality track or measure the duration of darkness or dark period rather than duration of light. Thus, short-day plants (or long-night plants) flower only if they receive continuous darkness for equal to or more than a critical value (Figure 4–7). If the dark period is interrupted by light of sufficient intensity for even a minute, flowering will not be induced. Similarly, a long-day plant (or short-night plant) will not flower if the critical duration of darkness is exceeded. However, if a long-night period is interrupted by light, flowering will be induced. TABLE 4–3 Plant Selected Short-Day Plants Scientific Name Chrysanthemum Gardenia Poinsettia Kalanchoe Bryophyllum Orchid Strawberry Violet Chrysanthemum x morifolium Gardenia jasminoides Euphorbia pulcherrima Kalancho blossfeldiana Bryophyllum pinnatum Cattleya trianae Fragaria x ananasia Viola papilionaceae TABLE 4–4 Plant Selected Long-Day Plants Scientific Name Baby’s breath Spider plant Sedum Evening primrose Bentgrass Fuchsia Rex begonia Gypsophila paniculata Chlorophytum comosum Sedum spectabile Oenothera spp. Agrostis palustris Fuchsia x hybrida Begonia rex 4.2 Aboveground Environment 105
TABLE 4–5 Plant Bluegrass Corn Cucumber Pea English holly Tomato Kidney bean Selected Day-Neutral Plants Scientific Name Poa annua Zea mays Cucumis sativus Pisum sativum Ilex aquifolium Lycopersicon esculentum Phaseolus vulgaris FIGURE 4–7 Photoperiodic response in flowering species. Light interruption of darkness affects short- and long-day plants differently. Photoperiod type short-day Continuous long, dark period Continuous short, dark period Interrupted dark period (long-night) (a) (b) (c) long-day (short-night) (d) (e) (f) 24-hour day cycle Critical day length 106 Chapter 4 Plant Growth Environment Interrupting the long night with such a short period of lighting is called flash lighting. The responses of short-day plants and long-day plants to light interruption are opposite in the two categories of plants. The most sensitive part of the dark period regarding its response to light interruption appears to be the middle of the period of exposure. The effect diminishes before or after the midperiod. Further, the photoperiodic response can be very precise in that a deviation of even less than 30 minutes from the critical value of required exposure can cause failure to produce an induction of flowering. In henbane, for example, a photoperiod of 10 hours, 20 minutes, induces flowering, whereas a photoperiod of 10 hours does not. Further, environmental factors such as temperature can modify the photoperiodic behavior of a plant. For example, flowering in henbane is induced by exposure to 11.5 hours of light at 28.5°C, but it takes only 8.5 hours of exposure to light to induce flowering at 15.5°C. The photoperiodic response varies among species with respect to the number of cycles of day-night treatment needed to induce flowering. Some species require only one exposure to the appropriate photoperiod to be induced to flower, whereas others require several days or even weeks (as in spinach) of exposure to the critical day-night cycle to induce flowering. Further, the stage in development (age) affects the way the photoperiod treatment is administered. Some plants respond as seedlings, but others need to attain a certain age. Growers manipulate the photoperiod requirements of certain seasonal and highincome greenhouse plants to produce plants in a timely fashion. Short-day plants such as poinsettia, chrysanthemum, and Christmas cactus are in high demand during specific
HORTICULTURE Principles and Practic
HORTICULTURE Principles and Practic
With love to Theresa, quarterback;
Brief Contents Preface xxi PART 1 T
Contents Preface xxi PART 1 THE UND
5.3 PLANT GROWTH PROCESSES 160 5.4
8.20 COMMON GREENHOUSE DISEASES 276
12.3 INTERNAL ENVIRONMENTAL CONTROL
PART 6 Summary 541 References and S
22.18 INDOOR COMPOSTING SYSTEMS 668
Preface Horticulture is the area of
ACKNOWLEDGMENTS I am very grateful
PART 1 THE UNDERLYING SCIENCE CHAPT
1 What Is Horticulture? PURPOSE AND
(a) (c) (b) (d) FIGURE 1-1 The many
FIGURE 1 Bridge. The plaza view of
CYCADS Many people mistake these pr
FIGURE 2 The world's largest unbran
FIGURE 2 Sold flowers are loaded on
FIGURE 1-4 Formal landscaping featu
1.4 ROLEOFTHENURSERY AND SEED INDUS
1.5 HORTICULTURE AND SOCIETY Hortic
TABLE 1-3 U.S. Horticultural Export
Turfgrass Operation 1. Landscape te
What Is Horticulture? This site pro
Examples of botanical gardens http:
2 Classifying and Naming Horticultu
Eight major taxa are commonly used
TABLE 2-3 The Divisions of the King
HISTORY OF PLANT TAXONOMY PAUL R. F
AGE OF HERBALISTS Two major events
possible system of nomenclature. Ho
TABLE 1 Type Categories for Plant N
2.3 OTHER CLASSIFICATION SYSTEMS (O
2. Shrubs. A shrub has no main trun
Simple Fruits Fleshy Fruits Drupe B
FIGURE 2-14 A pome, represented by
2.3.5 CLASSIFICATION OF VEGETABLES
(a) (b) FIGURE 2-22 (Source: George
Growth in an organism follows a cer
5.1.2 THE ROLE OF SIGNALS IN GROWTH
waxes are embedded. Waxes consist o
5.3.1 PHOTOSYNTHESIS Photosynthesis
CO 2 FIGURE 5-6 The C 4 pathway of
Growth and Development The general
TABLE 5-2 Energy Produced from Aero
Certain plants are adapted to dry e
conditions exist to sustain growth
Shoot Elongation In certain plants,
for success, since high temperature
FIGURE 5-13 Ripening of plantain sh
Terminal bud removed Unbranched pla
conditions—pertaining to light, m
them to maturity. The major process
6 Breeding Horticultural Plants PUR
Similarly, there can be no plant br
APPLICATION, CHALLENGES, AND PROSPE
hit with target DNA. Therefore, it
Generally, within ten days of exper
Aziz A.N., Sauve R.J., Zhou S., 200
(b) F 1 Rr Rr round round F 2 RR R
e.g., Aa × Aa), the lethal allele
eeder’s equation. Simply stated,
Before the seed or product becomes
6.18.2 THE GENERAL STEPS OF RDNA TE
2. Political disagreement. There ar
REFERENCES AND SUGGESTED READING Ac
PART 2 PROTECTING HORTICULTURAL PLA
7 Biological Enemies of Horticultur
8. Weeds may clog drains, waterways
is also a root parasite that obtain
LEGISLATIVE Both state and federal
Example Integrated cultural, physic
7.4.2 IMPORTANT INSECT ORDERS Insec
Egg FIGURE 7-3 Life cycle of an ins
sucking insects (also found with so
FIGURE 7-12 Corn earworm damage. (S
TABLE 7-1 Selected Fungal Diseases
7.6.1 SMALL ANIMALS Rabbits, mice,
FIGURE 7-16 The disease triangle. P
fungitoxic exudates in its leaves,
SUMMARY Insects are a major class o
For the home growers or those who c
for consumers and the environment).
TABLE 8-1 Strategy 4: Strategies an
gibberellic acid spray overcomes st
In a competitive industry, a variet
Chemicals gain access to humans thr
2. Pesticide management. Controllin
Every organism has its natural enem
TABLE 8-3 Selected Examples of Biol
1 2 YEAR 3 4 FIGURE 8-5 cycle. A cr
6. Heat treatment. In the greenhous
Organic Compounds (Organics) Organi
under enclosed conditions (e.g., wa
FIGURE 8-9 A tractor-mounted spraye
8.11.9 LANDSCAPE PESTS AND THEIR CO
application, a particular herbicide
Further, they do not provide unifor
SUMMARY Herbicides are chemicals us
Sulfur may be applied for both prev
8.23 PREVENTING GREENHOUSE DISEASES
PART 3 PROPAGATING HORTICULTURAL PL
9 Sexual Propagation PURPOSE AND EX
Anther Microspore Megaspore mother
Lettuce seeds Red light Darkness Fa
FEDERAL AND STATE SEED LAWS Federal
Germination Test In laboratory prac
FIGURE 15 The essential structures
processing into flour or meal). How
physiologically immature seeds must
seeds may be treated in this way be
The two basic modes of seedling eme
locations in the field. Home garden
FIGURE 9-9 A plastic flat. (Source:
(a) (b) FIGURE 9-12 (a) Sowing seed
y the gardener or grower. Whatever
REFERENCES AND SUGGESTED READING Co
species enables vegetative propagat
for rapid rooting. There are two ba
Cutting involving one node (e.g., s
This practice is especially importa
10.6.4 STICKING THE CUTTING Cutting
(a) Indexing by budding Diseased pl
10.11 M ETHODS OF GRAFTING Grafting
Scion Wax FIGURE 10-17 Steps in bar
MODULE 3 BUDDING 10.12 TYPES OF BUD
MODULE 4 LAYERING 10.13 TYPES OF LA
Buried part of shoot is nicked FIGU
variety of ways. In air layering, a
FIGURE 10-34 by using cormels. Prop
Psuedobulbs In the Dendrobium orchi
The technique is used widely in cro
PART 4 GROWING PLANTS INDOORS CHAPT
11 Growing Houseplants PURPOSE AND
TABLE 11-1 Common houseplants Commo
Saddle leaf Philodendron selloum To
Window Displays Plants in windows e
CONTAINER GARDENS DR. TERRI W. STAR
annuals and hardy perennial species
of the large container filled with
perfection about four to six weeks
FIGURE 11-6 Flowers displayed on th
TABLE 11-5 Plant Selected Plants fo
The lighting condition near these w
Fluorescent Lights Fluorescent ligh
may be used for one pot or a group
garden rooms, atriums, or a large c
The photoperiod affects when the ho
patted firm to keep the plant erect
Other Materials Apart from clay and
(a) ( FIGURE 11-25 Support for plan
TABLE 11-7 Common Problems of House
• Keep soil moist all the time
• Prefers high temperatures • P
amount and quality of light. If sup
12 Controlled-Environment Horticult
6. Curvilinear 7. Curved eave 8. Do
Detached greenhouses have several a
12.2.3 FRAME DESIGN There are two b
horticultural business a less-expen
Texas, Hawaii, and California. The
source of heat for times when the t
FIGURE 12-17 Greenhouse production
FIGURE 12-21 Moving tables allowing
Research program on greenhouse engi
greenhouses equipped with a variety
FIGURE 1 Annual energy required per
This system was demonstrated in a 5
FIGURE 6 Amounts of waste energy ut
Ekholt, B.A., D.R. Mears, M.S. Gini
or object to be warmed. Failure to
objects in its path (e.g., the floo
FIGURE 12-27 Motorized ventilation
FIGURE 12-30 Movable internal shade
FIGURE 12-33 A high pressure sodium
Source of Water The quality of loca
FIGURE 12-37 Overhead sprinkler irr
Intermittent Feed Greenhouse plants
However, in winter, greenhouse vent
OUTCOMES ASSESSMENT 1. Explain the
. Foliage or green plants. Foliage
2. Labor. The size of the labor for
FIGURE 13-1 Greenhouse production o
FIGURE 13-2 Lettuce plug is inserte
13.8.4 AGGREGATE HYDROPONIC SYSTEMS
(a) (b) (c) FIGURE 13-6 Plug produc
14 Growing Succulents PURPOSE AND E
FIGURE 14-3 Leaf succulent represen
frost-hardy. Their rosettes are usu
TABLE 14-1 Plant Selected Popular S
(a) (b) FIGURE 14-12 Typical bromel
14.7.1 WHAT ARE CACTI? 14.7 CACTI C
FIGURE 14-16 Opuntia. (Source: Crai
FIGURE 14-23 Mammillaria. (Source:
FIGURE 14-28 Both desert and jungle
Growing mix Gravel Cacti (a) (b) FI
PART5 GROWING PLANTS OUTDOORS: ORNA
15 Principles of Landscaping PURPOS
8. Create recreational grounds. Suc
knowledge, with concern for resourc
(a) (b) (c) FIGURE 15-2 The occurre
GUIDELINES FOR LANDSCAPE DESIGN DAV
the landscape. Some very successful
Rhythm and Line Panoramic view of a
FIGURE 15-10 A formal garden. The e
How frequently do they entertain? A
the patio should be located on the
15.7.1 SELECTING PLANTS A homeowner
Plant Arrangement in the Landscape
Shadow FIGURE 15-15 Planting a tree
SUMMARY Landscaping enhances the su
3. Supply materials on a timely bas
such as preparation rooms (for mixi
of environmental fluctuations. Furt
FIGURE 16-4 A bare-root tree seedli
17 Installation of the Landscape PU
for walks, driveways, and patios (F
Planting may be limited to accentin
17.3.3 PREPARING THE BED The soil s
FIGURE 17-4 Bedding plants raised i
SUMMARY Bedding plants are largely
TABLE 17-6 Selected Ground Covers T
TABLE 17-7 Selected Ornamental Gras
they determine the success and surv
12. Wildlife attraction. Trees in t
pennsylvanica), hackberry (Celtis s
y winds. A stake, which is often a
TABLE 17-8 Selected Narrowleaf Ever
TABLE 17-11 Selected Deciduous Shru
Blooming bushes 1. Blue mist shrub
Planting Bulblets and Bulbils Speci
may be divided such that each secti
FIGURE 18-1 (Source: George Acquaah
Cool-Season (Temperate) Grasses In
Growth Habit Turfgrasses are the mo
Heavy Use Lawns on playgrounds and
The seed should be free from weeds
Source of Sod As with seed, sod sup
A plug of sod FIGURE 18-7 Plugging
way, plants are able to adapt to th
form of a can placed on the lawn wi
TABLE 18-3 Some Common Lawn and Tur
even surface soil surface for layin
MacCaskey, M. 1987. All about lawns
Pruning is sometimes done in conjun
4. Pruning may be done to reduce th
19.4.2 SAWS A saw may be designed t
defeat the purpose of pruning. The
Bud withers as cut end dries back d
19.6 STRATEGIES FOR PRUNING ABOVEGR
Rejuvenation Pruning Cut canes to a
3. In the third and subsequent year
(a) Cut Prune (b) FIGURE 19-16 Step
Eucalyptus and Paulownia are amenab
TRAINING & PRUNING DECIDUOUS FRUIT
Summer pruning eliminates an energy
a) b) FIGURE 2 Newly planted apple
FIGURE 6 Wooden limb spreaders can
FIGURE 9. An apple tree trained to
years to promote continued lateral
Horizontal Espalier The horizontal
19.16.1 CANE FRUITS Cane fruits are
FIGURE 19-26 Shearing of Christmas
pyramid-like form that is wider at
After selecting the appropriate spe
PART 6 GROWING PLANTS OUTDOORS: VEG
20 Growing Vegetables Outdoors PURP
The National Agricultural Statistic
(This item omitted from WebBook edi
growers should take to determine an
pests and reduce/ eliminate hail da
square yard (10 to 68 grams per squ
High tunnels help increase the prof
(This item omitted from WebBook edi
20.4 VEGETABLE MARKET TYPES Fresh V
Establishing the Crop Planting into
home water supply from the tap. Thi
Cole crop Cabbage Root Potato Bean
6. Adequate nutrition. While overfe
variable, ranging from creamy yello
There are two general production pr
This toxin is heat resistant and no
large, or jumbo. The bulb may be sw
REFERENCES Growing selected vegetab
TABLE 21-1 Popular Herbs and Their
(a) (b) (c) (d) (e) (f) FIGURE 21-1
22 Organic Farming PURPOSE AND EXPE
22.3 PRINCIPLES OF ORGANIC FARMING
and the specific materials to be us
22.8 MANAGING SOIL PHYSICAL QUALITY
preemergent or early postemergent o
Composting is a deliberate activity
22.14.5 THE CARBON-TO-NITROGEN RATI
Moisture Supply Water is required b
Compost materials FIGURE 22-4 a wir
As microbial decomposition proceeds
Establishment and Management of an
night, freezing can occur in spring
accomplished by stratification. It
transmitted by the dagger nematode
PART 7 SPECIAL TECHNIQUES AND HANDL
24 Cut Flowers and Floral Design PU
to more than four-fold in standard
Temperature and Humidity Wilting re
FLORAL DESIGN: AN OVERVIEW BY WM. J
Principle Definition Types (or Uses
pH value-a measure of the acidity o
FIGURE 6 Parallel Design-Parallel d
24.3.2 TOOLS AND MATERIALS The tool
3. Establish the focal point. 4. Ad
Natural Drying To dry naturally, fl
24.4.3 DRIED FLOWER ARRANGEMENTS Dr
25 Terrarium Culture PURPOSE AND EX
FIGURE 25-3 Terrarium containers ar
FIGURE 25-5 Assortment of tools use
25.6.7 ENHANCING THE DISPLAY Certai
(a) (b) FIGURE 26-1 Bonsai can be c
TABLE 26-3 Plant A Selection of Pop
26.3.1 COLLECTING BONSAI PLANTS FRO
Strip bark Bare branch FIGURE 26-9
26.5.2 SANITATION It is critical to
27 Postharvest Handling and Marketi
whereas oranges are picked (they ha
(b) (a) (c) (d) (e1) (e2) (f) FIGUR
To reduce packaging injury, contain
is replaced by the by-product of re
Stored produce may lose some color,
with pricing. When selling by volum
(a) (b) FIGURE 27-5 Horticultural p
APPENDIX A Temperature: Converting
APPENDIX B Metric Conversion Chart
APPENDIX D Common and Scientific Na
Pecan (Carya illinoensis) Peony (Pa
GLOSSARY A Abaxial Turned away from
Cellulose A complex carbohydrate th
Floriculture The science and practi
M Macronutrient An essential elemen
Root cap A mass of hard cells cover
INDEX A-frame, 395 A-horizon, 108 A
defined, 390 fertilization, 432-434
Radiant heaters, 378 Radicle, 90 Re
color plate 1 (a) (b) (c) (d) (e) M
color plate 3 (b) (a) (c) (d) (e) (
color plate 5 (a) (b) (d) (c) (e) (
color plate 7 (b) (c) (d) (a) (e) (
color plate 9 (a) (b) (c) (d) (e) (
color plate 11 (a) (c) (b) (d) Grow
color plate 13 (a) (b) (c) (d) (e)
color plate 15 (a) (b) (c) (d) (e)
color plate 17 (a) (b) (c) (d) (e)
color plate 19 (a) (b) (c) (d) (e)
color plate 21 (a) (b) (c) (e) (d)
color plate 23 (c) (b) (a) (d) (e)
color plate 25 (c) (a) (b) (d) (e)
color plate 27 (a1) (a2) (b2) (b1)
color plate 29 (a) (b) (c) (d) (e)
color plate 31 (a) (b) (c) Floral d