14.12.2012 Views

Complex Analysis - Maths KU

Complex Analysis - Maths KU

Complex Analysis - Maths KU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

118 Chapter 2 <strong>Complex</strong> Functions and Mappings<br />

EXAMPLE 4 Computing Limits with Theorem 2.2<br />

Use Theorem 2.2 and the basic limits (15) and (16) to compute the limits<br />

(3 + i)z<br />

(a) lim<br />

z→i<br />

4 − z2 +2z<br />

z +1<br />

(b) lim<br />

z→1+ √ 3i<br />

Solution<br />

z 2 − 2z +4<br />

z − 1 − √ 3i<br />

(a) ByTheorem 2.2(iii) and (16), we have:<br />

lim<br />

z→i z2 � � � �<br />

= lim z · z =<br />

z→i<br />

lim z<br />

z→i<br />

· lim z<br />

z→i<br />

= i · i = −1.<br />

Similarly, lim<br />

z→i z 4 = i 4 = 1. Using these limits, Theorems 2.2(i), 2.2(ii),<br />

and the limit in (16), we obtain:<br />

lim<br />

z→i<br />

� (3 + i)z 4 − z 2 +2z � =(3+i) lim<br />

z→i z 4 − lim<br />

z→i z 2 + 2 lim<br />

z→i z<br />

=(3+i)(1) − (−1)+2(i)<br />

=4+3i,<br />

and lim<br />

z→i (z +1)=1+i. Therefore, byTheorem 2.2(iv), we have:<br />

(3 + i)z<br />

lim<br />

z→i<br />

4 − z2 +2z<br />

=<br />

z +1<br />

lim<br />

z→i<br />

� (3 + i)z 4 − z 2 +2z �<br />

lim (z +1)<br />

z→i<br />

After carrying out the division, we obtain lim<br />

7 1<br />

−<br />

2 2 i.<br />

(b) In order to find lim<br />

z→1+ √ 3i<br />

lim<br />

z→1+ √ � � 2<br />

z − 2z +4 =<br />

3i<br />

z→i<br />

= 4+3i<br />

1+i .<br />

(3 + i)z 4 − z 2 +2z<br />

z +1<br />

z2 − 2z +4<br />

z − 1 − √ , we proceed as in (a):<br />

3i<br />

�<br />

1+ √ �2 �<br />

3i − 2 1+ √ �<br />

3i +4<br />

= −2+2 √ 3i − 2 − 2 √ 3i +4=0,<br />

and lim<br />

z→1+ √ � √ � √ √<br />

z − 1 − 3i =1+ 3i − 1 − 3i = 0. It appears that<br />

3i<br />

we cannot applyTheorem 2.2(iv) since the limit of the denominator is 0.<br />

However, in the previous calculation we found that 1 + √ 3i isarootof<br />

the quadratic polynomial z2 −2z +4. From Section 1.6, recall that if z1 is<br />

a root of a quadratic polynomial, then z −z1 is a factor of the polynomial.<br />

Using long division, we find that<br />

z 2 �<br />

− 2z +4= z − 1+ √ ��<br />

3i z − 1 − √ �<br />

3i .<br />

=

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!