14.12.2012 Views

Complex Analysis - Maths KU

Complex Analysis - Maths KU

Complex Analysis - Maths KU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

C<br />

C<br />

y<br />

Figure 5.34 Figure for Problem 9<br />

C<br />

y<br />

2<br />

x 4 + y 4 = 16<br />

Figure 5.35 Figure for Problem 10<br />

y<br />

Figure 5.36 Figure for Problem 23<br />

1<br />

x<br />

x<br />

x<br />

5.3 Cauchy-Goursat Theorem 263<br />

sin z<br />

5. f(z) =<br />

(z2 − 25)(z2 e<br />

6. f(z) =<br />

+9)<br />

z<br />

2z2 +11z +15<br />

7. f(z) = tan z 8. f(z) = z2 − 9<br />

cosh z<br />

�<br />

1<br />

9. Evaluate dz, where C is the contour shown in Figure 5.34.<br />

C z<br />

�<br />

5<br />

10. Evaluate<br />

dz, where C is the contour shown in Figure 5.35.<br />

z +1+i<br />

C<br />

In Problems 11–22, use any of the results in this section to evaluate the given integral<br />

along<br />

�<br />

the<br />

�<br />

indicated closed contour(s).<br />

11. z +<br />

C<br />

1<br />

�<br />

� �<br />

dz; |z| =2 12. z +<br />

z<br />

C<br />

1<br />

z2 �<br />

dz; |z| =2<br />

�<br />

z<br />

13.<br />

C z2 dz; |z| =3<br />

− π2 �<br />

10<br />

14.<br />

dz; |z + i| =1<br />

C (z + i) 4<br />

�<br />

2z +1<br />

15.<br />

C z2 1<br />

dz; (a) |z| = , (b) |z| =2, (c) |z − 3i| =1<br />

2 + z<br />

�<br />

2z<br />

16.<br />

C z2 dz; (a) |z| =1, (b) |z − 2i| =1, (c) |z| =4<br />

+3<br />

�<br />

−3z +2<br />

17.<br />

C z2 dz; (a) |z − 5| =2, (b) |z| =9<br />

− 8z +12<br />

� � �<br />

3 1<br />

18.<br />

− dz; (a) |z| =5, (b) |z − 2i| =<br />

C z +2 z − 2i<br />

1<br />

2<br />

�<br />

z − 1<br />

1<br />

19.<br />

dz; |z − i| = 2<br />

C z(z − i)(z − 3i)<br />

�<br />

1<br />

20.<br />

C z3 dz; |z| =1<br />

+2iz2 �<br />

21. Ln(z + 10) dz; |z| =2<br />

C<br />

� �<br />

�<br />

5 3 10<br />

22.<br />

+ − + 7 csc z dz; |z − 2| =<br />

C (z − 2) 3 (z − 2) 2 z − 2 1<br />

2<br />

�<br />

8z − 3<br />

23. Evaluate<br />

C z2 dz, where C is the “figure-eight” contour shown in Figure<br />

− z<br />

5.36. [Hint: Express C as the union of two closed curves C1 and C2.]<br />

24. Suppose z0 is any constant complex number interior to any simple closed curve<br />

contour C. Show that for a positive integer n,<br />

⎧<br />

�<br />

⎨<br />

dz 2πi, n =1<br />

=<br />

C (z − z0) n ⎩ 0, n > 1.<br />

In Problems 25 and 26, evaluate the given contour integral by any means.<br />

25.<br />

� � �<br />

z<br />

e<br />

− 3¯z dz, where C is the unit circle |z| =1<br />

z +3<br />

C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!