15.12.2012 Views

In-vitro dissolution testing: Method development and importance of ...

In-vitro dissolution testing: Method development and importance of ...

In-vitro dissolution testing: Method development and importance of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>In</strong>-<strong>vitro</strong> <strong>dissolution</strong> <strong>testing</strong>:<br />

<strong>Method</strong> <strong>development</strong> <strong>and</strong> <strong>importance</strong><br />

<strong>of</strong> biorelevant test conditions<br />

S<strong>and</strong>ra Klein<br />

Ernst Moritz Arndt University, Greifswald, Germany<br />

S<strong>and</strong>ra.Klein@uni-greifswald.de<br />

EUFEPS BABP Network Open Discussion Forum<br />

Revision <strong>of</strong> BE Requirements for Modified Release Products<br />

February 23‐24 • 2011 •Barcelona •Spain


Modified release (MR) formulations<br />

• intended to release drugs in a controlled <strong>and</strong> pre-determined<br />

fashion <strong>and</strong>/or to target to selective sites in the gastrointestinal<br />

(GI) tract<br />

• release drug over a long time period (12 hrs, 24 hrs, ..)<br />

• typically contain much higher doses than IR formulations<br />

• give release patterns which in turn can <strong>of</strong>fer a lot <strong>of</strong> benefits<br />

� dose dumping<br />

� insufficient drug release


Typical MR formulations<br />

Coated dosage forms<br />

1. Delayed release formulations<br />

2. Extended Release Formulations<br />

Matrix systems<br />

Extended Release Formulations<br />

⇒ erodible or non-erodible matrices<br />

Osmotic systems<br />

⇒ monolithic dosage forms vs. multiparticulates


Possible release pr<strong>of</strong>iles<br />

% Release<br />

time [h]


CPMP/QWP/604/96<br />

Development <strong>and</strong> validation <strong>of</strong> <strong>dissolution</strong> methods<br />

<strong>In</strong>-<strong>vitro</strong> <strong>dissolution</strong> test must be capable <strong>of</strong>:<br />

• discriminating between batches<br />

• showing batch to batch consistency<br />

• determining stability <strong>of</strong> the relevant release characteristics<br />

⇒ various conditions (media pH: 1-6.8/8; apparatus, agitation etc.)<br />

⇒ for additional details reference is made to Ph.Eur.<br />

⇒ sink conditions should be ensured<br />

⇒ as possible methods should be predictive for the in-vivo<br />

performance <strong>of</strong> the formulation


Test methods Ph.Eur.<br />

Ph. Eur.: 2.9.3 Drug release <strong>of</strong> solid dosage forms<br />

• Extended Release Articles<br />

• Delayed Release (Enteric Coated) Articles<br />

• Apparatus 1 (Basket)<br />

• Apparatus 2 (Paddle)<br />

• Apparatus 3 (Reciprocating Cylinder)<br />

• Apparatus 4 (Flow through cell)


Test conditions Ph.Eur.<br />

Extended Release Dosage Articles<br />

⇒ Apparatus 1 <strong>and</strong> Apparatus 2<br />

• simple buffer media


Specifications Ph.Eur.<br />

Extended Release Dosage Articles<br />

• Specification <strong>of</strong> drug release at 3 or more test-time points<br />

• Time point 1:<br />

to check for „dose dumping“, @ ~ 20-30 % drug released<br />

• Time point 2:<br />

to characterize the release pr<strong>of</strong>ile, @ ~ 50 % drug released<br />

• Time point 3:<br />

to check for complete drug release, @ > 80 % drug released


Test conditions Ph.Eur.<br />

Delayed-Release (Enteric Coated) Articles<br />

⇒ Apparatus 1 <strong>and</strong> Apparatus 2<br />

• Procedure:<br />

Unless otherwise directed in the individual monograph:<br />

<strong>Method</strong> A (Half change) or <strong>Method</strong> B (Full change)<br />

⇒ 2 hrs acid stage (pH 1)<br />

⇒ 45 min buffer stage (pH 6.8)


<strong>In</strong> <strong>vitro</strong> characterization <strong>of</strong> MR dosage forms<br />

Ph.Eur. methods<br />

• primarily use <strong>of</strong> apparatus I <strong>and</strong> II<br />

• simple <strong>dissolution</strong> media<br />

• useful for quality control purposes<br />

• not useful for examining biopharmaceutical properties <strong>of</strong> the<br />

dosage form<br />

• <strong>of</strong>ten not predictive for the in vivo performance <strong>of</strong> a MR dosage<br />

form


CPMP/QWP/604/96<br />

Development <strong>and</strong> validation <strong>of</strong> <strong>dissolution</strong> methods<br />

<strong>In</strong>-<strong>vitro</strong> <strong>dissolution</strong> test must be capable <strong>of</strong>:<br />

• discriminating between batches<br />

• showing batch to batch consistency<br />

• determining stability <strong>of</strong> the relevant release characteristics<br />

⇒ various conditions (media pH: 1-6.8/8; apparatus, agitation etc.)<br />

⇒ for additional details reference is made to Ph.Eur.<br />

⇒ sink conditions should be ensured<br />

⇒ as possible methods should be predictive for the in-vivo<br />

performance <strong>of</strong> the formulation


<strong>In</strong> <strong>vitro</strong> characterization <strong>of</strong> MR dosage forms<br />

Biorelevant <strong>dissolution</strong> tests<br />

• simulation <strong>of</strong> the gastrointestinal passage <strong>of</strong> the dosage form<br />

• prediction <strong>of</strong> in vivo absorption using in <strong>vitro</strong> data<br />

How to simulate a gastrointestinal passage ???


GI passage<br />

Stomach<br />

• pH: fasted: 1-3 fasted<br />

fed: 3-7<br />

• passage time: fasted: 0.5-2h<br />

fed: several hours


GI passage<br />

Duodenum<br />

• pH = 4-6<br />

• bile- <strong>and</strong> pancreatic secretion<br />

• short passage time (< 10 min)


GI passage<br />

Jejunum<br />

• pH = 6-7


GI passage<br />

Ileum<br />

• pH = 7-7.5<br />

• quantitative absorption <strong>of</strong> bile salts<br />

(active transport)


GI passage<br />

Colon<br />

• pH = 5-7<br />

• great number <strong>and</strong> variety <strong>of</strong> bacteria<br />

• individual passage times differ largely


Criteria for <strong>dissolution</strong> test design<br />

Media to simulate gastrointestinal passage<br />

• pH-value / pH pr<strong>of</strong>iles<br />

• volume<br />

• composition<br />

Dissolution equipment<br />

• apparatus<br />

• hydrodynamic conditions<br />

Passage times<br />

• multiple units ↔ single unit dosage form<br />

Food effects<br />

• fasted ↔ fed state conditions


Dissolution equipment<br />

Flow through cell Reciprocating cylinder / BioDis<br />

• a series <strong>of</strong> media can be used → variable pH–values<br />

• variable passage times<br />

• variable motility patterns<br />

• variable hydrodynamics / flow rates<br />

• complex media → food effects


Case examples<br />

Impact <strong>of</strong> gastrointestinal pH on drug release<br />

⇒ pH gradient<br />

• site <strong>and</strong> extent <strong>of</strong> drug release from Mesalazin DR formulations<br />

Impact <strong>of</strong> gastrointestinal contents on drug release<br />

⇒ biorelevant media gradient<br />

• food effects on drug release from Theophyllin ER formulations


Site specific drug delivery<br />

Therapy <strong>of</strong> <strong>of</strong> inflammatory bowel diseases<br />

• oral mesalazin treatment<br />

⇒ high concentrations <strong>of</strong> drug at the inflamed areas<br />

⇒ avoid drug release <strong>and</strong> absorption in the proximal GI tract<br />

• mesalazin is not absorbed in the colon<br />

Crohn´s disease Ulcerative colitis


Formulation concepts <strong>of</strong> marketed dosage<br />

forms<br />

Product Dosage from Polymer type* Polymer<br />

br<strong>and</strong> name<br />

Release pH<br />

Claversal ® coated tablet MA:MM (1:1) Eudragit ® L > pH 6<br />

Sal<strong>of</strong>alk ® coated tablet MA:MM (1:1) Eudragit ® L > pH 6<br />

Asacolitin ® coated tablet MA:MM (1:2) Eudragit ® S > pH 7<br />

Pentasa ® IR tablet containing<br />

coated microgranules<br />

Sal<strong>of</strong>alk ®<br />

Granustix ®<br />

Claversal ®<br />

Micropellets<br />

coated microgranules coating: MA:MM (1:1)<br />

core: MM neutral esters<br />

Surelease ® pHindependent<br />

Eudragit ® L<br />

Eudragit ® NE<br />

coated microgranules coating: MA/MM (1:1 & 1:2) Eudragit ® L<br />

Eudragit ® S<br />

*MA = methaycrylic acid, MM = methacrylate esters<br />

> pH 6<br />

> pH 6-7<br />

S. Klein et al., J. Pharm. Pharmacol. 2005: 57 (6) 709-720


Compendial method: SIF pH 6.8 vs. pH 7.5<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Claversal 500 mg<br />

Sal<strong>of</strong>alk 500 mg<br />

Asacolitin 400 mg<br />

pH 6.8 pH 7.5<br />

0 60 120 180 240 300<br />

Time [min]<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Claversal 500 mg<br />

Sal<strong>of</strong>alk 500 mg<br />

Asacolitin 400 mg<br />

0 60 120 180 240 300<br />

Time [min]<br />

S. Klein et al., J. Pharm. Pharmacol. 2005: 57 (6) 709-720


pH-gradient „prepr<strong>and</strong>ial“<br />

GI-segment pH Media<br />

single unit<br />

dosage forms<br />

multiple unit<br />

dosage forms<br />

Stomach 1.8 Simulated Gastric Fluid (SGFsp)* 60 min 30 min<br />

Proximal Jejunum 6.5 Phosphatpuffer pH 6.5 15 min 45 min<br />

Distal Jejunum 6.8 Simulated intestinal fluid pH 6.8 (SIFsp) USP 24 15 min 45 min<br />

Proximal Ileum 7.2 Phosphatpuffer pH 7.2 R (Ph. Eur 1997) 30 min 45 min<br />

Distal Ileum 7.5 Simulated intestinal fluid pH 6.8 (SIFsp) USP 23 120 min 45 min<br />

Proximal Colon 6.5 Phosphatpuffer pH 6.5 360 min 360 min<br />

Proximal Colon 6.5 Phosphatpuffer pH 6.5 240 min 240 min<br />

Distal Colon 6.8 Simulated intestinal fluid pH 6.8 (SIFsp) USP 24 360 min 360 min<br />

Distal Colon 6.8 Simulated intestinal fluid pH 6.8 (SIFsp) USP 24 240 min 270 min<br />

* pH modified<br />

Passage time<br />

S. Klein et al., J. Pharm. Pharmacol. 2005: 57 (6) 709-720


pH-gradient<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 60 120 180 240 300 360 420 480<br />

Time [min]<br />

Claversal 500 mg<br />

Sal<strong>of</strong>alk 500 mg<br />

Asacolitin 400 mg<br />

S. Klein et al., J. Pharm. Pharmacol. 2005: 57 (6) 709-720


Colonic delivery<br />

pH- <strong>and</strong> time-based multi-unit colonic delivery system<br />

� oral therapy <strong>of</strong> Ulcerative colitis <strong>and</strong> other colon related<br />

diseases<br />

Outer layer: Eudragit FS<br />

<strong>In</strong>ner layer: Eudragit RL+RS<br />

Mesalazin / Caffein core<br />

M.W. Rudolph et al., Eur J Pharm Biopharm 2001: 51(3) 183-190


“Fraction released”<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 60 120 180 240 300 360 420 480<br />

Time [min]<br />

Sal<strong>of</strong>alk 500 mg<br />

Asacolitin 400<br />

mg<br />

Sal<strong>of</strong>alk<br />

Granustix 500<br />

mg<br />

Prototype<br />

S. Klein et al., J. Contr. Rel. 2008, 130: 216-219


Plasma pr<strong>of</strong>ile � “fraction absorbed”<br />

Plasmakonzentration [µmol/L]<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Zeit [h]<br />

Calculation<br />

Fraction absorbed [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 120 240 360 480<br />

Zeit [min]<br />

S. Klein et al., J. Contr. Rel. 2008, 130: 216-219


LEVY-Plot<br />

fraction absorbed [%]<br />

100<br />

� prospective IVIVC<br />

� predictive in-<strong>vitro</strong> method<br />

80<br />

60<br />

40<br />

20<br />

0<br />

y = 0,6104x + 1,4488<br />

R 2 = 0,9948<br />

0 20 40 60 80 100<br />

fraction released [%]<br />

S. Klein et al., J. Contr. Rel. 2008, 130: 216-219


„Extended release“ formulations<br />

Theophylline<br />

• treatment <strong>of</strong> chronic asthma<br />

• narrow therapeutic index<br />

Therapeutic requirements<br />

• plasma levels in the therapeutic range<br />

• reduce serum level fluctuations<br />

⇒ risk for dose dumping?<br />

⇒ impact <strong>of</strong> food on drug release?


Theophylline ER beads – food effect<br />

Medium-fat breakfast High-fat breakfast<br />

A. Karim et al., Clin. Pharmacol. Ther. 38, 642-647 (1985)


Theophylline ER tablets – food effect<br />

High-fat breakfast<br />

A. Karim et al., Clin. Pharmacol. Ther. 38, 642-647 (1985)


Compendial method: Paddle – SIF pH 6.8<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Contiphyllin 300 mg<br />

Tromphyllin 300 mg<br />

0 60 120 180 240 300 360 420 480<br />

Time [min]


Dissolution media<br />

1. Simulation <strong>of</strong> pH-conditions in the upper GI tract<br />

• buffer solutions – pH gradient<br />

2. Simulation <strong>of</strong> the physiological GI contents<br />

• biorelevant <strong>dissolution</strong> media – biorelevant pH gradient<br />

Stomach<br />

Small<br />

intestine<br />

Colon<br />

prepr<strong>and</strong>ial<br />

FaSSGF<br />

FaSSIF<br />

SCoF<br />

postpr<strong>and</strong>ial<br />

Milk, Ensure ® Plus<br />

FeSSIF<br />

SCoF


Fasted State Simulated Gastric Fluid<br />

„Biorelevant“ conditions in the fasted stomach<br />

Na taurocholate 80 µmol/L<br />

Lecithin 20 µmol/L<br />

Pepsin 0.1 mg/mL<br />

NaCl 34.2 mmol/L<br />

HCl conc. ad pH 1.6<br />

Demineralized water ad 1000 mL<br />

pH 1.6<br />

Surface tension 42.6 mN/m<br />

Osmolality 121 mOsm/kg<br />

M Vertzoni et al. Eur J Pharm Biopharm. 60:413-417 (2005)


Milk<br />

Objective: Simulation <strong>of</strong> the initial gastric conditions after a light<br />

breakfast<br />

Whole milk, 3,5 % fat<br />

(per 100 g)<br />

269 kJ<br />

64 kcal<br />

3,5 g fat<br />

3,3 g proteins<br />

4,7 g carbohydrates<br />

Ref.: CMA (www.cma.de)<br />

P. Macheras et al. <strong>In</strong>t. J. Pharm. 33: 125-136 (1986)<br />

S. Klein et al. J. Pharm. Pharmacol. 56: 605-610 (2004)


Ensure ® Plus<br />

Objective: to simulate initial composition after a st<strong>and</strong>ardized<br />

st<strong>and</strong>ardized (FDA) high fat breakfast „worst case“<br />

St<strong>and</strong>ard Breakfast FDA Division <strong>of</strong> Biopharmaceutics<br />

2 slices <strong>of</strong> toasted white bread with butter<br />

2 eggs fried in butter<br />

2 slices <strong>of</strong> bacon<br />

2 ounces <strong>of</strong> hash-browned ( fried shradded ) potatoes = 56,7 g<br />

8 ounces <strong>of</strong> whole milk<br />

Carbohydrate: 58g, 232 kcal, 972 kJ, 24 %<br />

Protein: 33g, 132 kcal, 552 kJ, 14 %<br />

Fat: 67 g, 603 kcal, 2533 kJ, 62 %<br />

Klein et al. J. Pharm. Pharmacol. 56: 605-610 (2004)


Fed State Simulated Gastric Fluid<br />

„Biorelevant“ conditions in the fed stomach some time after a meal<br />

NaCl 237.02 mmol/L<br />

Acetic acid 17.12 mmol/L<br />

Sodium acetate 29.75 mmol/L<br />

Demineralized water ad 1000 mL<br />

Milk:acetate buffer 1:1<br />

HCl conc. ad pH 5.0<br />

pH 5.0<br />

Osmolality 400 mOsm/kg<br />

Buffer capacity 25 mEq/L/pH<br />

E Jantratid et al. Pharm Res. 25 (7):1663–76 (2008)


Fasted State Simulated <strong>In</strong>testinal Fluid<br />

NaH 2 PO 4<br />

3.438 g<br />

Na taurocholat 3 mmol/L<br />

Lecithin 0.75 mmol/L<br />

NaCl 6.186 g<br />

NaOH ad pH 6.5<br />

Demineralized water ad 1 Liter<br />

pH 6.5<br />

Osmolality 270 + 10 mOsm/kg<br />

Buffer capacity 10 + 2 mEq/L/pH


Fed State Simulated <strong>In</strong>testinal Fluid<br />

Glacial acetic acid 8.65 g<br />

Na taurocholate 15 mmol/L<br />

Lecithin 3.75 mmol/L<br />

NaCl 11.874 g<br />

NaOH ad pH 5.0<br />

Demineralized water ad 1 Liter<br />

pH 5.0<br />

Osmolality 635 + 10 mOsm/kg<br />

Buffer capacity 76 + 2 mEq/L/pH


Simulated Colonic Fluid<br />

Simulation <strong>of</strong> the pH-values <strong>and</strong> ions in the proximal colon<br />

1 molar acetic acid solution 170 mL<br />

1 molar NaOH solution 157 mL<br />

Demineralized water ad 1 Liter<br />

pH 5.8<br />

Osmolality 295 mOsm/kg<br />

Buffer capacity 29 mEq/L/pH<br />

Fotaki et al , Eur. J. Pharm. Sci. 24 : 115-122, 2005


Dissolution media<br />

1. Compendial buffers<br />

• Simulation <strong>of</strong> the pH conditions in the GI tract<br />

2. Biorelevant media<br />

• Simulation <strong>of</strong> the physiological GI milieu<br />

� Fasted state<br />

Stomach: FaSSGF<br />

Small intestine: FaSSIF<br />

Colon: SCoF<br />

� Fed State<br />

→ FaSSIF–Gradient<br />

Stomach: Milk / Ensure ® Plus<br />

Small intestine: FeSSIF → FeSSIF–Gradient<br />

Colon: SCoF<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


FaSSIF / FeSSIF gradients<br />

Concentration <strong>of</strong> bile components: FaSSIF gradient<br />

GI-section pH Biorelevant media Sodium taurocholate Lecithin<br />

Proximal Jejunum 6.5 FaSSIF 3 mmol/l 0.75 mmol/l<br />

Distal Jejunum 6.8 FaSSIF a,b<br />

3 mmol/l 0.75 mmol/l<br />

Proximal Ileum 7.2 FaSSIF a,b<br />

1.5 mmol/l 0.375 mmol/l<br />

Distal Ileum 7.5 Blank FaSSIF a<br />

-------- --------<br />

a pH modified, b Concentration <strong>of</strong> bile components modified<br />

Concentration <strong>of</strong> bile components: FeSSIF gradient<br />

GI-section pH Biorelevant media Sodium taurocholate Lecithin<br />

Proximal Jejunum 5.0 FeSSIF 15 mmol/l 3.75 mmol/l<br />

Distal Jejunum 6.5 FeSSIF a,b<br />

15 mmol/l 3.75 mmol/l<br />

Proximal Ileum 6.5 FeSSIF a,b<br />

7.5 mmol/l 1.875 mmol/l<br />

Distal Ileum 7.5 Blank FaSSIF a<br />

-------- --------<br />

a pH modified, b Concentration <strong>of</strong> bile components modified,<br />

c Phosphate buffer<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Biorelevant pH-gradient methods<br />

GI-section<br />

GI-section<br />

Compendial media pH Biorelevant media pH Tablets Pellets<br />

Stomach SGFsp* 1.8 FaSSGF 1.8 60 30<br />

Proximal Jejunum Blank FaSSIF 6.5 FaSSIF 6.5 15 45<br />

Distal Jejunum Blank FaSSIF 6.8 FaSSIF* 6.5 15 45<br />

Proximal Ileum Blank FaSSIF 7.2 FaSSIF*/** 7.2 30 45<br />

Distal Ileum Blank FaSSIF* 7.5 Blank FaSSIF* 7.5 120 45<br />

Proximal Colon SCoF 5.8 SCoF 5.8 240 240<br />

* pH modified, ** Concentration <strong>of</strong> bile components modified<br />

Compendial media pH Biorelevant media pH Tablets Pellets<br />

Stomach Acetate buffer / SGFsp*5.0 / 2.0<br />

®<br />

Ensure Plus (Milk) 6.5 (120/120) 240 120<br />

Proximal Jejunum Blank FeSSIF 5.0 FeSSIF 5.0 45 45<br />

Distal Jejunum Blank FaSSIF 6.5 FeSSIF* 6.5 45 45<br />

Proximal Ileum Blank FaSSIF 6.5 FeSSIF*/** 6.5 45 45<br />

Distal Ileum Blank FaSSIF* 7.5 Blank FaSSIF* 7.5 45 45<br />

Proximal Colon SCoF 5.8 SCoF 5.8 --- 240<br />

* pH modified, ** Concentration <strong>of</strong> bile components modified<br />

Media <strong>and</strong> pH-values prepr<strong>and</strong>ial pH-Gradient<br />

Media <strong>and</strong> pH-values postpr<strong>and</strong>ial pH-Gradient<br />

Passage time [min]<br />

Passage time [min]<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Contiphyllin 300 mg tablets<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 60 120 180 240 300 360 420 480<br />

Time [min]<br />

Prepr<strong>and</strong>ial pH pr<strong>of</strong>ile: � = compendial buffers, � = biorelevant media<br />

Postpr<strong>and</strong>ial pH pr<strong>of</strong>ile: � = compendial buffers, � = biorelevant media<br />

biorelevant<br />

media<br />

compendial<br />

media<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Tromphyllin 300 mg tablets<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

?<br />

0 60 120 180 240 300 360 420 480<br />

Time [min]<br />

Prepr<strong>and</strong>ial pH pr<strong>of</strong>ile: � = compendial buffers, � = biorelevant media<br />

Postpr<strong>and</strong>ial pH pr<strong>of</strong>ile: � = compendial buffers, � = biorelevant media<br />

biorelevant<br />

media<br />

compendial<br />

media<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Drug release in the postpr<strong>and</strong>ial stomach<br />

Release [%]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Tromphyllin 300 mg fed state stomach<br />

Contiphyllin 300 mg fed state stomach<br />

High-fat breakfast<br />

17,48<br />

15,62<br />

40,81<br />

30,35<br />

60,89<br />

39,51<br />

77,76<br />

43,70<br />

0 60 120 180 240<br />

Time [min]<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Drug release in the postpr<strong>and</strong>ial state<br />

Release [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Contiphyllin 300 mg fed state milk<br />

Tromphyllin 300 mg fed state milk<br />

Light breakfast<br />

0 60 120 180 240<br />

Time [min]<br />

300 360 420 480<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Drug release in the postpr<strong>and</strong>ial state<br />

Milk <strong>and</strong> simple buffer media<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Drug release in the postpr<strong>and</strong>ial state<br />

Ensure ®<br />

Plus<br />

Milk<br />

Klein S. , Dissolution Technologies, 16 (3): 28-40, 2009


Importance <strong>of</strong> biorelevant test conditions<br />

• pH-gradient <strong>and</strong> biorelevant pH-gradient methods allow a<br />

better prediction <strong>of</strong> the potential in-vivo behaviour <strong>of</strong> MR<br />

dosage forms<br />

• pH values <strong>and</strong> passage times can be easily adapted to<br />

different patient subgroups or a best / worst case scenario<br />

• composition <strong>of</strong> media can be even better adapted to<br />

physiological conditions<br />

• methods can be adapted to check for alcohol-dependent<br />

dose dumping<br />

• hydrodynamic conditions need to be examined in more detail


Thank you !!!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!