16.12.2012 Views

On-Line H2 PPB Impurity Analysis Using FTIR - MKS Instruments, Inc.

On-Line H2 PPB Impurity Analysis Using FTIR - MKS Instruments, Inc.

On-Line H2 PPB Impurity Analysis Using FTIR - MKS Instruments, Inc.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>On</strong>-<strong>Line</strong> H <strong>PPB</strong> <strong>Impurity</strong><br />

2 <strong>Impurity</strong><br />

2<br />

<strong>Analysis</strong> <strong>Using</strong> <strong>FTIR</strong><br />

Arik Ultsch<br />

<strong>MKS</strong> <strong>Instruments</strong> Deutschland


Background<br />

� Volatile fossil fuel prices have created interest in<br />

Hydrogen as a new energy source for the<br />

auto industry<br />

� Impurities in H 2 fuel directly affect the longevity of the<br />

combustion or fuel cell engine<br />

� Regulatory agencies have initiated<br />

an H 2 quality threshold at the<br />

ppb level<br />

� <strong>FTIR</strong> spectroscopy is the<br />

most viable method of providing<br />

ppb level H 2 impurity detection<br />

on-site at the pump


H 2 <strong>Impurity</strong> <strong>Analysis</strong>: Content<br />

� Fuel cell principle<br />

� Determining the effect of impurities on fuel cells<br />

– How much can be tolerated?<br />

– Is the effect reversible?<br />

– Effects of impurities<br />

� Sulfur (H 2S, COS), ammonia, CO, CO 2, H 2O<br />

– Impurities from H 2 Fuel as well as Air Feed<br />

� Cell <strong>Analysis</strong> by Air Liquide R&D Center USA<br />

� Robert Benesch, Tracey Jacksier, and Sumaeya Salman<br />

� <strong>FTIR</strong> Validation for H 2 impurity detection<br />

– Method detection limits for:<br />

� Multiple components<br />

� Different <strong>FTIR</strong> detector ranges tested


Fuel Cell Principle<br />

� Fuel cells generate electricity from a simple<br />

electrochemical reaction in which oxygen and<br />

hydrogen combine to form water<br />

� Anode<br />

– Porous carbon coated with tiny particles of platinum (Pt)<br />

– Pt acts as a catalyst to form ions<br />

(2H 2 => 4H + + 4e - )<br />

� Proton Exchange Membrane (PEM)<br />

– Allows positively charged<br />

ions to travel through<br />

� Cathode<br />

– Forms oxygen atoms<br />

– Oxygen and hydrogen<br />

combine to form water<br />

(O 2 + 4H + + 4e - => 2H 2O)


<strong>Impurity</strong> Effects on Cell Voltage<br />

� Decrease in performance<br />

– Affect different physical and chemical processes<br />

� Removal of impurity<br />

– Cell Performance: recoverable or non-recoverable


The Fuel – Hydrogen and Air<br />

� Hydrogen<br />

– Introduced to anode side of fuel cell<br />

� Reducing environment<br />

– Dependant upon production method<br />

� Typical methods<br />

- Biological – fermentation, anaerobic digestion<br />

- Electrochemical – electrolysis of H 2 O<br />

- Thermal – reforming, gasification<br />

� Steam Methane Reforming (SMR)<br />

- 95% of US H 2 production<br />

- He, N 2 , CO, H 2 S, NH 3 , CH 4 …<br />

� Air<br />

– Introduced to cathode side of fuel cell<br />

� Oxidizing environment


Sources of Impurities<br />

� Carbon Monoxide in H 2<br />

– Reported Mechanism*<br />

� Physical adsorption onto fuel cell catalyst<br />

� CO absorbs onto Pt site blocking H 2 adsorption<br />

CO + Pt ⇔Pt⋅CO<br />

g<br />

s<br />

* J. Baschuyuk and X. Li, “Carbon Monoxide Poisoning of Proton Exchange Membrane<br />

Fuel Cells”; Int. J. Energy Res. 2001, 25; 695-713<br />

ads<br />

Pt g<br />

+ −<br />

⋅COads+ <strong>H2</strong>O→Pts<br />

+ CO2<br />

+ 2H<br />

+ 2e


CO Effect on Fuel Cell<br />

1.0 and 4.5 ppm CO in H 2<br />

9.2 ppm CO in H 2


Sources of Impurities<br />

� Ammonia in H 2<br />

– Reported Mechanism*<br />

� Concentration and exposure dependant<br />

� Short-term exposure of trace concentrations<br />

(~40ppm)<br />

- Non-Reversible<br />

- Mainly effects the Membrane structure<br />

* F. Uribe, S. Gottesfeld, T. Zawodzinski, “Effect of Ammonia as Potential Fuel <strong>Impurity</strong> <strong>On</strong> Proton<br />

Exchange Membrane Fuel Cell Performance” J. Electrochemical Society, 2002, 149 (3) A293-296


NH 3 Effects on Fuel Cell<br />

pure H 2<br />

0.5, 1.0 ppm NH 3 in H 2<br />

No Effect<br />

9.0, 44.7 ppm NH 3 in H 2<br />

9.0 Non - Reversible<br />

44.7 Non - Reversible


Summary of Impurities Tested<br />

<strong>Impurity</strong> Electrode<br />

Lowest Test<br />

Conc (ppm)<br />

Highest Test<br />

Conc (ppm)<br />

% Decrease<br />

at Lowest<br />

Conc<br />

Typical Air Sample: (maximum hourly concentration detected at<br />

EPA testing sites in Houston and Chicago area in 2005):<br />

CO [3 ppm], NO [0.65 ppm], SO 2 [0.137 ppm]<br />

% Decrease<br />

at Highest<br />

Conc<br />

CO anode 0.52 9.2 5 >58<br />

<strong>H2</strong>S anode 0.10 2.0 not detected >58<br />

NH3 anode 0.50 44.7 not detected 14.7<br />

CO cathode 0.40 68.6 not detected not detected<br />

SO2 cathode 0.07 4.8 3 40<br />

NO2 cathode 0.025 2.86 not detected 20


Current H 2 Fuel Cell Specification<br />

SAE J2719<br />

Property Value Unit Limit<br />

1 Ammonia 0.1 ppm v/v Maximum<br />

2 Carbon Dioxide 2 ppm v/v Maximum<br />

3 Carbon Monoxide 0.2 ppm v/v Maximum<br />

4 Formaldehyde 0.01 ppm v/v Maximum<br />

5 Formic Acid 0.2 ppm v/v Maximum<br />

6 Helium 300 ppm v/v Maximum<br />

7 Hydrogen Fuel Index 99.97 % (a) Maximum<br />

8 Nitrogen and Argon 100 ppm v/v Maximum<br />

9 Oxygen 5 ppm v/v Maximum<br />

10 Particulate Concentration 1 µg/L@NTP (b) Maximum<br />

11 Particulates Size 10 µm Maximum<br />

12 Total Gases 300 ppm v/v (c) Maximum<br />

13 Total Halogenated Compounds 0.05 ppm v/v Maximum<br />

14 Total Hydrocarbons 2 ppm v/v (d) Maximum<br />

15 Total Sulfur Compounds 0.004 ppm v/v Maximum<br />

16 Water 5 ppm v/v Maximum


<strong>FTIR</strong> For H 2 <strong>Impurity</strong> <strong>Analysis</strong><br />

� Real-time analysis at ppb levels<br />

� <strong>FTIR</strong> advantage<br />

– Multiple components analysis with one unit<br />

� Single analyzer for all the impurities except O 2, H 2, Ar, N 2<br />

– High resolution enables speciation between similar molecules<br />

� Butane, Propane, Ethane, Methane, fuel sources, etc.<br />

– Permanent calibration<br />

– <strong>Analysis</strong> performed at various sites<br />

� H 2 production site<br />

� H 2 storage site: gas or liquid cylinders<br />

� At - <strong>Line</strong> analysis at fueling station


Infrared (IR) Spectroscopy<br />

� Based on IR light absorption<br />

– Energy (IR radiation) heats molecule - vibrations and rotations<br />

– The pattern and intensity of the spectrum provides all the information<br />

about gas (type and concentration)


Background and Sample<br />

BACKGROUND (Io)<br />

N 2 Purge 1cm -1<br />

SAMPLE (I)<br />

1000 ppm NH 3 1cm -1<br />

Absorbance = - Log (I/Io)


Absorbance is Proportional to<br />

Concentration<br />

Absorbance = - Log (I/Io)<br />

Absorbance = ε •C •path<br />

FFT of Sample<br />

1000 ppm NH 3 1.0 cm -1


What Can <strong>FTIR</strong> Do?<br />

Hydrogen (<strong>H2</strong>), %<br />

Oxygen (O2), %<br />

Nitrogen (N2), %<br />

Water (<strong>H2</strong>O), %<br />

Component<br />

Hydrogen Sulfide (<strong>H2</strong>S), ppm<br />

Carbon Monoxide (CO), %<br />

Carbon Dioxide (CO2), %<br />

Methane (CH4), %<br />

Non-methane Hydrocarbons, %<br />

Nitric Oxide (NO), ppm<br />

Nitric Dioxide (NO2), ppm<br />

Sulfur Dioxide (SO2), ppm<br />

Product<br />

40-80<br />

0-1<br />

0-10<br />

0-300<br />

0-25<br />

0-25<br />

0-25<br />

0-10<br />

0-10<br />

Low ppm<br />

Low ppm<br />

Low ppm<br />

Exhaust<br />

0-10<br />

0-5<br />

0-80<br />

Low ppm<br />

0-25<br />

0-25<br />

0-25<br />

0-10<br />

0-10<br />

0-100<br />

Low ppm<br />

0-100<br />

� Analyze all components that:<br />

– Are IR active<br />

– Have Dipole Moments<br />

� Examples<br />

– Ammonia, CO, CO 2 , H 2 O,<br />

Hydrocarbons, etc<br />

� Raw Reformed Hydrogen<br />

– Percent level analysis<br />

� Purified Hydrogen<br />

– <strong>PPB</strong> level analysis


<strong>FTIR</strong> Components Used For Test<br />

� Gas Cell<br />

– Stainless steel – path length 5.11 meters<br />

– Metal sealed cell:


16u Cutoff<br />

Ammonia<br />

9u Cutoff<br />

Water<br />

Methane<br />

Ethane<br />

Formic Acid<br />

Formaldehyde<br />

CO2<br />

CO


Method Validation<br />

� EPA Method 40 CFR 136 Appendix B<br />

– Build calibrations on <strong>FTIR</strong><br />

– Estimate a minimum detection limit<br />

– Determine how low a concentration can be<br />

detected with this method


<strong>FTIR</strong> Validation Method for H 2<br />

� Gases validated on <strong>FTIR</strong><br />

– CO, CO 2, CH 4, C 2H 6, NH 3, H 2O, Formaldehyde<br />

and Formic Acid<br />

– All in Balance of H 2<br />

� Gas standards creation<br />

– NIST traceable gas cylinders for gases<br />

� 100 ppm of CO, CO 2 , CH 4 , C 2 H 6 in H 2<br />

– NIST traceable permeation tubes for liquids<br />

� NH 3 , H 2 O, Formaldehyde and Formic Acid<br />

– Blended with H 2<br />

� Purified H 2 (


Method Detection Limits<br />

Contaminant<br />

SAE J2719<br />

Detection<br />

Limits (ppmv)<br />

16u Stirling* 9.2u TE 16u LN2<br />

Ammonia (NH3) 0.10 0.36 0.81 0.02<br />

Carbon Monoxide (CO) 0.20 0.01 0.05 0.01<br />

Carbon Dioxide (CO2) 2.00 0.01 0.01 0.01<br />

Formaldehyde (HCHO) 0.01 0.02 0.02 0.02<br />

Formic Acid (HCOOH) 0.20 0.03 0.02 0.02<br />

Total Hydrocarbons<br />

2.00 0.71<br />

(Reported as C1)<br />

Methane 0.10 0.02 0.02 0.03<br />

Ethane 0.10 0.02 0.05 0.05<br />

Ethylene 0.10 0.03<br />

Water (<strong>H2</strong>O) 5.00 0.40 0.74 0.12<br />

* Signal to noise ratio (SNR) was 1/3 that of 16u LN2 for this test<br />

* However improved SNR to same level as 16u LN2


Acknowledgments<br />

� Fuel cell work<br />

– Air Liquide Research and Technology Center<br />

� Robert Benesch, Tracey Jacksier, Sumaeya Salman<br />

� Method validation / calibration work<br />

– Elutions Design Bureau, <strong>Inc</strong> – Houston, TX<br />

� Scott Thompson<br />

– <strong>MKS</strong> <strong>Instruments</strong> – <strong>On</strong> <strong>Line</strong> Product Group<br />

� Barbara Marshik<br />

– Monetary support for this work<br />

� <strong>MKS</strong> <strong>Instruments</strong><br />

� Shell Global Solutions <strong>Inc</strong>. - Westhollow Technology<br />

Center

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!