PR-6103IRE Number Patterns to Algebra 4

RICPublications
from RICPublications More from this publisher

Viewing sample


<strong>Number</strong> patterns 4 – <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong><br />

Published by R.I.C. Publications ® 2012<br />

Copyright © Paul Swan 2012<br />

ISBN 978-1-922116-08-6<br />

RIC-6103<br />

Viewing sample<br />

Published by<br />

R.I.C. Publications ® Pty Ltd<br />

PO Box 332, Greenwood<br />

Western Australia 6924<br />

Copyright Notice<br />

No part of this book may be reproduced in any form or by any means, electronic or mechanical, including pho<strong>to</strong>copying or<br />

recording, or by an information retrieval system without written permission from the publisher.


CONTENTS<br />

Graphing Multiples.............................................................................. 4–5<br />

Exchange Rates ................................................................................. 6–7<br />

Marking Multiples................................................................................ 8–9<br />

Diagonal Dilemmas............................................................................... 10<br />

Empty Tables........................................................................................ 11<br />

Multiplication <strong>Patterns</strong>.......................................................................... 12<br />

Multiplication Tables............................................................................. 13<br />

In the Middle......................................................................................... 14<br />

The Boomerang.................................................................................... 15<br />

Robots............................................................................................ 16–17<br />

Even More Robots................................................................................. 18<br />

Blank Robot Grids................................................................................. 19<br />

Circle <strong>Patterns</strong>...................................................................................... 20<br />

Digit Sums............................................................................................ 21<br />

Square the Digits.................................................................................. 22<br />

Paper Folding....................................................................................... 23<br />

Viewing sample<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 3


Graphing Multiples – 1<br />

Ruler<br />

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

Multiples of two are<br />

2, 4, 6, 8, 10, 12, …<br />

The first multiple is 2,<br />

the second is 4, the third,<br />

6 and so on.<br />

Multiples of two may<br />

be graphed as shown.<br />

1 Mark in the 7th, 8th and 9th multiples<br />

of two on the graph and join the points.<br />

2 Multiples of 3.<br />

a List the first ten multiples of three.<br />

b Graph the first ten multiples of three. Use a<br />

different colour pencil. (Make sure it is sharp.)<br />

c Compare the graph of the multiples of two with<br />

the multiples of three graph. What do you<br />

notice?<br />

3 Multiples of 4.<br />

a Describe what you think the graph of the<br />

multiples of four will look like.<br />

b List the first ten multiples of four.<br />

c Graph the multiples of four. Use a different<br />

colour pencil.<br />

Viewing sample<br />

4 Predict what you think would happen if<br />

you graphed the multiples of five.<br />

Graphs are often a<br />

good way <strong>to</strong> find patterns<br />

and relationships.<br />

4 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Graphing Multiples – 2<br />

Ruler<br />

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

1 Multiples of 6.<br />

a Complete this table.<br />

2 Multiples of 7.<br />

a Complete this table.<br />

b Graph these points<br />

on<strong>to</strong> the grid.<br />

3 Which line has the steeper slope?<br />

4 Let me think ...<br />

a What would the graph of the 1 times table<br />

look like?<br />

b Draw the graph <strong>to</strong> check your prediction.<br />

c Were you correct?<br />

b Graph these points<br />

on<strong>to</strong> the grid in a<br />

different colour.<br />

Viewing sample<br />

Yes<br />

No<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 5


Exchange Rates<br />

1 Do this with three other numbers.<br />

a<br />

This is fun!<br />

b What pattern do you see?<br />

2 Further patterns can be found if you use numbers in sequences; for example; 90,<br />

91, 92, 93, 94 etc. There are nine two-digit numbers in the nineties where the<br />

first digit is larger than the second.<br />

a Write them all down, and calculate the difference.<br />

90 91 92 93<br />

- 9 - 19 - 29 - 39<br />

• Choose a two-digit number. The digit for<br />

the tens must be greater than the<br />

number of units: 42<br />

• Reverse the digits: 24<br />

• Subtract them: 42 – 24 = 18<br />

• Divide the answer by 9: 18 ÷ 9 = 2<br />

÷ ÷ ÷<br />

Viewing sample<br />

What<br />

do you<br />

notice<br />

about<br />

the answers?<br />

b<br />

6 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Exchange Rates (continued)<br />

3 There are only eight two-digit numbers in the eighties where the first digit<br />

is greater than the second.<br />

a Write them all down, and calculate the difference.<br />

b What do you notice?<br />

c Calculate the difference between the first and second digit;<br />

8 - 0 =, 8 - 1 =, 8 - 2 = etc.<br />

What do you notice?<br />

4 Investigate what happens when you work with two-digit numbers in the<br />

seventies, sixties and fifties.<br />

a Write the numbers and calculate the difference between the first and second<br />

digits.<br />

Challenge!Viewing sample<br />

b What do you notice?<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 7


Marking Multiples – 1<br />

1 Multiples of 5.<br />

a Colour all the multiples of five on the grid.<br />

b Describe the pattern that is formed.<br />

1 2 3 4 5 6<br />

7 8 9 10 11 12<br />

13 14 15 16 17 18<br />

2 Multiples of 7.<br />

a Use a different colour and mark all the multiples of seven<br />

on the grid.<br />

b Describe the pattern that is formed.<br />

1 2 3 4 5 6 7 8<br />

9 10 11 12 13 14 15 16<br />

17 18 19 20 21 22 23 24<br />

25 26 27 28 29 30 31 32<br />

33 34 35 36 37 38 39 40<br />

41 42 43 44 45 46 47 48<br />

49 50 51 52 53 54 55 56<br />

57 58 59 60 61 62 63 64<br />

65 66 67 68 69 70 71 72<br />

73 74 75 76 77 78 79 80<br />

4 Can you do this?<br />

a Design a grid that will produce a<br />

diagonal pattern when the<br />

multiples of three and five are<br />

coloured.<br />

You don‛t need <strong>to</strong><br />

use all of the grid.<br />

3 Equally puzzling.<br />

a Which multiples do you think will form a diagonal<br />

pattern on this 1–80 grid?<br />

b Colour these multiples on the grid.<br />

19 20 21 22 23 24<br />

25 26 27 28 29 30<br />

31 32 33 34 35 36<br />

37 38 39 40 41 42<br />

43 44 45 46 47 48<br />

49 50 51 52 53 54<br />

55 56 57 58 59 60<br />

Viewing sample<br />

b Test your grid by marking the<br />

multiples of three and five.<br />

c How wide is your grid?<br />

columns wide<br />

8 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Marking Multiples – 2<br />

Ruler<br />

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

1 Multiples of 3.<br />

a Colour all the multiples of three on<strong>to</strong> the 1–60 grid.<br />

b Describe the pattern that is formed.<br />

2 Find multiples.<br />

a Which multiples do you think will produce the same pattern<br />

on the 1–80 grid below?<br />

b Colour these multiples on the 1–80 grid.<br />

3 Multiples of 6.<br />

a List the multiples of six.<br />

b On page 11, design a grid that will produce the same<br />

pattern when the multiples of six are coloured.<br />

c How wide is your grid?<br />

columns wide<br />

4 Multiples of 8.<br />

a Go back <strong>to</strong> your original 1-60 grid and mark in the<br />

multiples of eight using a different colour.<br />

b Which multiples would you need <strong>to</strong> mark on the 1–80<br />

grid <strong>to</strong> produce a similar pattern?<br />

1 – 60 grid<br />

1 2 3 4 5 6<br />

7 8 9 10 11 12<br />

13 14 15 16 17 18<br />

19 20 21 22 23 24<br />

25 26 27 28 29 30<br />

31 32 33 34 35 36<br />

37 38 39 40 41 42<br />

43 44 45 46 47 48<br />

49 50 51 52 53 54<br />

55 56 57 58 59 60<br />

1 – 80 grid<br />

1 2 3 4 5 6 7 8<br />

9 10 11 12 13 14 15 16<br />

17 18 19 20 21 22 23 24<br />

25 26 27 28 29 30 31 32<br />

33 34 35 36 37 38 39 40<br />

41 42 43 44 45 46 47 48<br />

Viewing sample<br />

c List the multiples that you would need <strong>to</strong> colour on<br />

your own grid (page 11), <strong>to</strong> produce a similar pattern.<br />

49 50 51 52 53 54 55 56<br />

57 58 59 60 61 62 63 64<br />

65 66 67 68 69 70 71 72<br />

73 74 75 76 77 78 79 80<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 9


Diagonal Dilemmas<br />

2 More diagonals.<br />

3 Make your own tables.<br />

1 Complete this multiplication table.<br />

a Shade the numbers in the third and<br />

fourth rows.<br />

b Can you see the lines joining numbers in<br />

each row along a diagonal? Find the<br />

differences between the two numbers on<br />

each of the diagonals.<br />

, , , , , , ,<br />

c What do you notice?<br />

a Shade the numbers in the seventh and eighth rows. Mark the diagonals.<br />

b Find the differences between each pair of numbers on the diagonals.<br />

c What do you notice?<br />

a Use an empty table on page 11. Choose two more rows that are next <strong>to</strong> each other<br />

and mark in the diagonals. Write the differences between each pair of numbers<br />

along the diagonals.<br />

b What do you notice?<br />

Challenge!<br />

3 6 9 12 15 18<br />

4 8 12<br />

21<br />

16 20 24 28<br />

2 1<br />

Viewing sample<br />

Use an empty table on page 11<br />

and write down what happens when<br />

you change the direction of the diagonals.<br />

10 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Empty Tables<br />

a Empty tables for Marking Multiples – 2<br />

b Empty tables for Diagonal Dilemmas<br />

X 1 2 3 4 5 6 7 8 9<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

X 1 2 3 4 5 6 7 8 9<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

X 1 2 3 4 5 6 7 8 9<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

X 1 2 3 4 5 6 7 8 9<br />

Viewing sample<br />

6<br />

7<br />

8<br />

9<br />

6<br />

7<br />

8<br />

9<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 11


Multiplication <strong>Patterns</strong><br />

1 Look at the following table.<br />

2 What is happening?<br />

a Draw a 3 x 2 rectangle around six numbers<br />

in the grid.<br />

e.g.<br />

b Multiply the two numbers in the opposite<br />

corners.<br />

x =<br />

x =<br />

c What do you notice?<br />

a Draw more 3 x 2 rectangles in the grids on page 13. Multiply the numbers in the<br />

corners opposite each other.<br />

x = x =<br />

x = x =<br />

b What happens each time?<br />

3 Draw different sized rectangles on the grids and see what happens.<br />

a 4 x 2 rectangles<br />

x = x =<br />

x = x =<br />

b 3 x 3 rectangles<br />

Viewing sample<br />

x = x =<br />

x = x =<br />

4 Think for a moment!<br />

Predict what will<br />

happen if you have<br />

a 4 x 3 rectangle.<br />

Now check and see.<br />

Correct? Yes<br />

No<br />

12 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Multiplication Tables<br />

X 1 2 3 4 5 6 7 8 9<br />

1 1 2 3 4 5 6 7 8 9<br />

X 1 2 3 4 5 6 7 8 9<br />

1 1 2 3 4 5 6 7 8 9<br />

2 2 4 6 8 10 12 14 16 18<br />

3 3 6 9 12 15 18<br />

4 4 8 12 16 20 24<br />

5<br />

6<br />

7<br />

8<br />

9<br />

5 10 15 20 25 30<br />

6 12 18 24 30 36<br />

7 14 21 28 35 42<br />

8 16 24 32 40 48<br />

9 18 27 36 45 54<br />

21 24 27<br />

28 32 36<br />

35 40 45<br />

42 48 54<br />

49 56 63<br />

56 64 72<br />

63 72 81<br />

X 1 2 3 4 5 6 7 8 9<br />

1 1 2 3 4 5 6 7 8 9<br />

2 2 4 6 8 10 12 14 16 18<br />

3 3 6 9 12 15 18<br />

4 4 8 12 16 20 24<br />

5<br />

6<br />

7<br />

8<br />

9<br />

5 10 15 20 25 30<br />

6 12 18 24 30 36<br />

7 14 21 28 35 42<br />

8 16 24 32 40 48<br />

9 18 27 36 45 54<br />

21 24 27<br />

28 32 36<br />

35 40 45<br />

42 48 54<br />

49 56 63<br />

56 64 72<br />

63 72 81<br />

X 1 2 3 4 5 6 7 8 9<br />

1 1 2 3 4 5 6 7 8 9<br />

2 2 4 6 8 10 12 14 16 18<br />

2 2 4 6 8 10 12 14 16 18<br />

3 3 6 9 12 15 18<br />

4 4 8 12 16 20 24<br />

5<br />

6<br />

7<br />

8<br />

9<br />

5<br />

6<br />

7<br />

8<br />

9<br />

5 10 15 20 25 30<br />

6 12 18 24 30 36<br />

7 14 21 28 35 42<br />

8 16 24 32 40 48<br />

9 18 27 36 45 54<br />

3 3 6 9 12 15 18<br />

4 4 8 12 16 20 24<br />

5 10 15 20 25 30<br />

6 12 18 24 30 36<br />

7 14 21 28 35 42<br />

8 16 24 32 40 48<br />

9 18 27 36 45 54<br />

21 24 27<br />

28 32 36<br />

35 40 45<br />

42 48 54<br />

49 56 63<br />

56 64 72<br />

63 72 81<br />

X 1 2 3 4 5 6 7 8 9<br />

1 1 2 3 4 5 6 7 8 9<br />

2 2 4 6 8 10 12 14 16 18<br />

21 24 27<br />

28 32 36<br />

35 40 45<br />

42 48 54<br />

49 56 63<br />

56 64 72<br />

63 72 81<br />

X 1 2 3 4 5 6 7 8 9<br />

1 1 2 3 4 5 6 7 8 9<br />

Viewing sample<br />

2 2 4 6 8 10 12 14 16 18<br />

3 3 6 9 12 15 18 21 24 27<br />

3 3 6 9 12 15 18 21 24 27<br />

4 4 8 12 16 20 24 28 32 36<br />

4 4 8 12 16 20 24 28 32 36<br />

5 5 10 15 20 25 30 35 40 45<br />

5 5 10 15 20 25 30 35 40 45<br />

6<br />

6 12 18 24 30 36<br />

42 48 54<br />

6<br />

6 12 18 24 30 36<br />

42 48 54<br />

7<br />

7 14 21 28 35 42<br />

49 56 63<br />

7<br />

7 14 21 28 35 42<br />

49 56 63<br />

8<br />

8 16 24 32 40 48<br />

56 64 72<br />

8<br />

8 16 24 32 40 48<br />

56 64 72<br />

9<br />

9 18 27 36 45 54<br />

63 72 81<br />

9<br />

9 18 27 36 45 54<br />

63 72 81<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 13


In the Middle<br />

1 Three times three.<br />

a Step 1:<br />

b Step 2:<br />

2 There is a quicker way <strong>to</strong> find the answer …<br />

Add the nine numbers in the first 3 x 3<br />

block of numbers.<br />

Divide the <strong>to</strong>tal by the number in the middle of the box. ÷ 6 =<br />

c Repeat steps 1 and 2 for the other four 3 x 3 blocks.<br />

d What do you notice?<br />

a Make your own 3 x 3 block.<br />

b Predict what you think the <strong>to</strong>tal<br />

= ÷ 14 =<br />

= ÷ 25 =<br />

= ÷ 16 =<br />

= ÷ 64 =<br />

Viewing sample<br />

of the nine numbers will be.<br />

c Explain how you made your prediction.<br />

Have you found<br />

the shortcut?<br />

=<br />

d Test your prediction.<br />

14 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


The Boomerang<br />

2 Calculate the answers <strong>to</strong> each of the following multiplications.<br />

1 Add the numbers in each of the first<br />

four boomerangs <strong>to</strong>gether.<br />

1 x 1 x 1 = 2 x 2 x 2 = 3 x 3 x 3 = 4 x 4 x 4 =<br />

3 What do you notice about the <strong>to</strong>tal for the first four boomerangs and the first<br />

four cubic numbers?<br />

4 Further boomerangs.<br />

a Predict the sums for the next three boomerangs.<br />

A number which is multiplied by<br />

itself is called a ‘square number‛.<br />

A number which is multiplied by itself<br />

and then multiplied by itself again is<br />

called a ‘cubic number‛.<br />

You can colour<br />

the boomerangs<br />

b Explain how you made your prediction.<br />

different colours<br />

<strong>to</strong> help you.<br />

c Check your predictions by finding <strong>to</strong>tals for the 5th, 6th and 7th<br />

boomerangs.<br />

5 th 6 th 7 th<br />

Viewing sample<br />

5 What do you notice about cubic numbers?<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 15


Robots – 1<br />

1 Toy Robot<br />

A <strong>to</strong>y robot may only be given<br />

two instructions.<br />

• Turn right; and<br />

• Forward steps.<br />

The following instructions were<br />

given <strong>to</strong> a robot.<br />

• Forward one step<br />

• Turn right<br />

• Forward two steps<br />

• Turn right<br />

• Forward four steps<br />

• Turn right<br />

These instructions are repeated<br />

until the robot gets back <strong>to</strong> the<br />

start.<br />

a Draw the robot’s path.<br />

b How many times did you<br />

repeat the pattern?<br />

2 A different pattern<br />

a Follow these instructions <strong>to</strong> show<br />

the robot’s path on the grid.<br />

• Forward four steps<br />

• Turn right<br />

• Forward one step<br />

• Turn right<br />

• Forward two steps<br />

• Turn right<br />

b Continue the pattern until the robot<br />

gets back <strong>to</strong> the start.<br />

c How many times did<br />

you repeat the pattern?<br />

3 What do you notice<br />

about the patterns?<br />

A right turn is<br />

the same as a<br />

quarter turn<br />

or a 90° turn.<br />

Viewing sample<br />

16 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Robots – 2<br />

1 Draw the robot's path.<br />

a Follow these instructions <strong>to</strong> produce<br />

the robot’s path on the grid.<br />

• Forward two steps<br />

• Turn right<br />

• Forward three steps<br />

• Turn right<br />

• Forward one step<br />

• Turn right<br />

• Repeat four times.<br />

b Where do you finish?<br />

c Describe the pattern.<br />

2 Make one yourself.<br />

a Write your own set of instructions<br />

<strong>to</strong> produce a similar pattern.<br />

• Forward<br />

• Turn right<br />

• Forward<br />

• Turn right<br />

• Forward<br />

• Turn right<br />

Viewing sample<br />

b Try your set of instructions on the<br />

grid <strong>to</strong> check whether your pattern<br />

is similar. Watch where you start!<br />

Write a set of<br />

robot instructions for<br />

a friend <strong>to</strong> draw.<br />

You can use the grids on<br />

page 19.<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 17


Even More Robots<br />

1 Use the blank grids on page 19 <strong>to</strong> draw the paths that<br />

these robots would travel.<br />

a Robot 1<br />

• Forward 2 steps<br />

• Turn right<br />

• Forward 3 steps<br />

• Turn right<br />

• Forward 4 steps<br />

• Turn right<br />

d What do you notice about the paths travelled by the robots?<br />

e What do you notice about the instructions?<br />

2 What happens if you change the order; for example, 3 steps, 2 steps and<br />

then 4 steps? Test what happens when the order is changed.<br />

3 What happens if the robots are instructed <strong>to</strong> walk<br />

2 steps, 3 steps and then 6 steps?<br />

4 A different pattern.<br />

b Robot 2<br />

• Forward 3 steps<br />

• Turn right<br />

• Forward 4 steps<br />

• Turn right<br />

• Forward 2 steps<br />

• Turn right<br />

c Robot 3<br />

• Forward 4 steps<br />

• Turn right<br />

• Forward 2 steps<br />

• Turn right<br />

• Forward 3 steps<br />

• Turn right<br />

a Write your instructions and draw the robot’s walk on the grid on page 19.<br />

b What happens?<br />

a Write your instructions and draw the robot’s walk on the grid on page 19.<br />

b What happens?<br />

a Now try 2 steps, 1 step and 5 steps.<br />

You may have noticed that the<br />

order of the instructions is the<br />

same in each case.<br />

Viewing sample<br />

b What do you notice about the 2, 3, 6 pattern and the 2, 1, 5 pattern?<br />

18 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Blank Robot Grids<br />

Viewing sample<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 19


Circle <strong>Patterns</strong><br />

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

1 Connect the dots.<br />

Joining the points according <strong>to</strong> certain rules will produce some interesting patterns.<br />

The first rule is n ➜ 2n which means you will need <strong>to</strong> join each number <strong>to</strong> its double.<br />

e.g. 1 ➜ 2, 2 ➜ 4, 3 ➜ 6 and so on.<br />

The following circle has been<br />

divided in<strong>to</strong> 36 sections. The numbers<br />

closest <strong>to</strong> the circle go from 1–36 in a<br />

clockwise direction. The numbers on the<br />

outside go from 1–36 in an<br />

anticlockwise direction.<br />

Join all the points <strong>to</strong> their double in a clockwise direction using a ruler and sharp pencil<br />

until you reach 18.<br />

Viewing sample<br />

Now starting from 1 and working in an anticlockwise direction, join each point <strong>to</strong> its<br />

double until you reach 18.<br />

The shape you have drawn<br />

is called a 'cardioid'<br />

or heart shape.<br />

Look in your dictionary<br />

for words beginning<br />

with 'cardio'.<br />

What are they<br />

related <strong>to</strong>?<br />

20 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Digit Sums<br />

1 Calculate the digit sums for these numbers.<br />

Example: 38 ➜ 3 + 8 ➜ 11 ➜ 1 + 1 = 2<br />

a 41 ➜ + =<br />

b 382 ➜ + + ➜ ➜ + =<br />

c 4886 ➜ + + + ➜ ➜ + =<br />

2 Many interesting patterns may be found by looking at the<br />

digit sums found in the tables.<br />

a Calculate the digit sum for the six-times table.<br />

1 x 6 = 6 ➜ 6 ➜ 6<br />

2 x 6 = 12 ➜ 1 + 2 ➜ 3<br />

3 x 6 = ➜<br />

4 x 6 = ➜<br />

5 x 6 = ➜<br />

6 x 6 = ➜<br />

7 x 6 = ➜<br />

8 x 6 = ➜<br />

9 x 6 = ➜<br />

10 x 6 = ➜<br />

Digit Sum<br />

b Write about any patterns you notice.<br />

Every number has a digit sum. The digit sum of 7<br />

is seven. The digit sum of 62 is eight (6 + 2).<br />

The digit sum of 728 is also eight (7 + 2 + 8 = 17, 1 + 7 = 8).<br />

The digit sum of a number is found by adding all the<br />

digits in the number until a single digit is left.<br />

Digit Sum<br />

11 x 6 = ➜<br />

12 x 6 = ➜<br />

13 x 6 = ➜<br />

14 x 6 = ➜<br />

15 x 6 = ➜<br />

16 x 6 = ➜<br />

17 x 6 = ➜<br />

18 x 6 = ➜<br />

Viewing sample<br />

19 x 6 = ➜<br />

20 x 6 = ➜<br />

c Predict the digit sums for the:<br />

21st multiple of six<br />

31st multiple of six<br />

25th multiple of six<br />

35th multiple of six<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 21


Square the Digits<br />

1 Try beginning with a different starting number and see<br />

what happens.<br />

a Choose a two-digit number:<br />

• Choose a two-digit number. e.g. 35<br />

• Square its digits. 3 2 = 3 x 3 or 9<br />

5 2 = 5 x 5 or 25<br />

• Add the two numbers. 9 + 25 = 34<br />

• Now square the digits of this<br />

new number and add them. 3 2 + 4 2<br />

9 + 16 = 25<br />

• Continue the process. 35, 34, 25, 29,<br />

85, 89, 145, 42,<br />

20, 4, 16, 37,<br />

58, 89, 145 ...<br />

You will have noticed that the digits start <strong>to</strong> repeat<br />

themselves.<br />

b Square its digits. x =<br />

x =<br />

c Add the two numbers. + =<br />

d Now square the digits of this new number and add them.<br />

e Continue the process and list all your numbers below.<br />

x =<br />

x =<br />

+ =<br />

, , , , ,<br />

, , , , ,<br />

, , , , ,<br />

Viewing sample<br />

, , , , ,<br />

f Did your numbers start <strong>to</strong> repeat themselves?<br />

When I tried it<br />

I kept going <strong>to</strong><br />

one.<br />

Yes<br />

No<br />

22 • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • © R.I.C. Publications ® • www.ricpublications.com.au •


Paper Folding<br />

1 Fold the paper.<br />

a Start with a sheet of A4 paper. This<br />

sheet represents one rectangle.<br />

d Fold again.<br />

b Fold the paper once across the middle.<br />

You will have created two congruent<br />

rectangles (same size and shape).<br />

c Fold the paper again (lengthways).<br />

2 Collect data.<br />

a Write your data in<strong>to</strong> a table.<br />

e And again.<br />

No of folds No of Rectangles Other expression<br />

0 1<br />

Viewing sample<br />

1 2<br />

2 4 2 2<br />

b What pattern is emerging?<br />

c Predict what would happen if you folded once more.<br />

• www.ricpublications.com.au• © R.I.C. Publications ® • <strong>Number</strong> patterns <strong>to</strong> <strong>Algebra</strong> • 23


Viewing sample

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!