20390_Science_with_STEM_Year_5_Earth_and_Space_Sciences_We_are_all_spinning_in-circles
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy
<strong>Science</strong>: A <strong>STEM</strong> approach (<strong>Year</strong> 5)<br />
Published by R.I.C. Publications ® 2017<br />
Copyright © R.I.C. Publications ® 2017<br />
RIC–<strong>20390</strong><br />
All material identified by is material subject to copyright<br />
under the Copyright Act 1968 (Cth) <strong>and</strong> is owned by the Australian<br />
Curriculum, Assessment <strong>and</strong> Report<strong>in</strong>g Authority 2017.<br />
For <strong>all</strong> Australian Curriculum material except elaborations: This is<br />
an extract from the Australian Curriculum.<br />
Elaborations: This may be a modified extract from the Australian<br />
Curriculum <strong>and</strong> may <strong>in</strong>clude the work of other authors.<br />
Disclaimer: ACARA neither endorses nor verifies the accuracy of the<br />
<strong>in</strong>formation provided <strong>and</strong> accepts no responsibility for <strong>in</strong>complete or<br />
<strong>in</strong>accurate <strong>in</strong>formation.<br />
In particular, ACARA does not endorse or verify that:<br />
• The content descriptions <strong>are</strong> solely for a particular year <strong>and</strong><br />
subject;<br />
• All the content descriptions for that year <strong>and</strong> subject have been<br />
used; <strong>and</strong><br />
• The author’s material aligns <strong>with</strong> the Australian Curriculum content<br />
descriptions for the relevant year <strong>and</strong> subject.<br />
You can f<strong>in</strong>d the unaltered <strong>and</strong> most up to date version of this<br />
material at http://www.australiancurriculum.edu.au/<br />
This material is reproduced <strong>with</strong> the permission of ACARA.<br />
Copyright Notice<br />
A number of pages <strong>in</strong> this book <strong>are</strong> worksheets.<br />
The publisher licenses the <strong>in</strong>dividual teacher<br />
who purchased this book to photocopy these<br />
pages to h<strong>and</strong> out to students <strong>in</strong> their own<br />
classes.<br />
Except as <strong>all</strong>owed under the Copyright Act 1968,<br />
any other use (<strong>in</strong>clud<strong>in</strong>g digital <strong>and</strong> onl<strong>in</strong>e uses<br />
<strong>and</strong> the creation of overhead transp<strong>are</strong>ncies<br />
or posters) or any use by or for other people<br />
(<strong>in</strong>clud<strong>in</strong>g by or for other teachers, students or<br />
<strong>in</strong>stitutions) is prohibited. If you want a licence<br />
to do anyth<strong>in</strong>g outside the scope of the BLM<br />
licence above, please contact the Publisher.<br />
This <strong>in</strong>formation is provided to clarify the limits<br />
of this licence <strong>and</strong> its <strong>in</strong>teraction <strong>with</strong> the<br />
Copyright Act.<br />
For your added protection <strong>in</strong> the case of<br />
copyright <strong>in</strong>spection, please complete the form<br />
below. Reta<strong>in</strong> this form, the complete orig<strong>in</strong>al<br />
document <strong>and</strong> the <strong>in</strong>voice or receipt as proof<br />
of purchase.<br />
Name of Purchaser:<br />
Date of Purchase:<br />
Supplier:<br />
School Order# (if applicable):<br />
Signature of Purchaser:<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Internet websites<br />
In some <strong>in</strong>stances, websites or specific URLs may be recommended. While these <strong>are</strong> checked <strong>and</strong> rechecked at the time of<br />
publication, the publisher has no control over any subsequent changes which may be made to webpages. It is strongly recommended<br />
that the class teacher checks <strong>all</strong> URLs before <strong>all</strong>ow<strong>in</strong>g students to access them.<br />
View <strong>all</strong> pages onl<strong>in</strong>e<br />
PO Box 332 Greenwood <strong>We</strong>stern Australia 6924<br />
<strong>We</strong>bsite: www.ricpublications.com.au<br />
Email: mail@ricpublications.com.au
Foreword<br />
<strong>Science</strong>: A <strong>STEM</strong> approach (Foundation to <strong>Year</strong> 6) is a series of books written <strong>with</strong> the <strong>in</strong>tent to support<br />
Australian Curriculum <strong>Science</strong> while offer<strong>in</strong>g a way to <strong>in</strong>troduce a <strong>STEM</strong> project based on the science<br />
concepts taught.<br />
All <strong>Science</strong> Underst<strong>and</strong><strong>in</strong>g <strong>and</strong> <strong>Science</strong> Inquiry Skills for each unit <strong>are</strong> <strong>in</strong>cluded, <strong>and</strong> any connect<strong>in</strong>g<br />
Technologies or Mathematics curriculum concepts <strong>are</strong> also <strong>in</strong>corporated.<br />
The <strong>STEM</strong> project <strong>all</strong>ows students to apply the science knowledge <strong>and</strong> underst<strong>and</strong><strong>in</strong>g, <strong>and</strong> <strong>in</strong>cludes<br />
any curriculum l<strong>in</strong>ks to Technologies <strong>and</strong> Mathematics curriculum.<br />
If you would like us to feature your completed <strong>STEM</strong> projects on our website, please<br />
email a photograph, video or audio of the project to<br />
.<br />
If you would like to view completed <strong>STEM</strong> projects <strong>and</strong> get some <strong>in</strong>spiration, please<br />
go to .<br />
Introduction.............................................................. iv<br />
Unit description ...................................................iv–vi<br />
Biological sciences:<br />
Surviv<strong>in</strong>g <strong>in</strong> tough times................................ 1–38<br />
Overview...........................................................2–3<br />
Lesson 1............................................................4–7<br />
Lesson 2..........................................................8–13<br />
Lesson 3....................................................... 14–17<br />
Lesson 4....................................................... 18–21<br />
Lesson 5....................................................... 22–25<br />
Lesson 6....................................................... 26–28<br />
Assessment................................................. 29–30<br />
<strong>STEM</strong> project............................................... 31–38<br />
Chemical sciences:<br />
It’s a matter of state......................................39–74<br />
Overview...................................................... 40–41<br />
Lesson 1....................................................... 42–45<br />
Lesson 2....................................................... 46–47<br />
Lesson 3....................................................... 48–51<br />
Lesson 4....................................................... 52–55<br />
Lesson 5....................................................... 56–59<br />
Lesson 6....................................................... 60–63<br />
Assessment................................................. 64–66<br />
<strong>STEM</strong> project............................................... 67–74<br />
Contents<br />
<strong>Earth</strong> <strong>and</strong> space sciences:<br />
<strong>We</strong> <strong>are</strong> <strong>all</strong> <strong>sp<strong>in</strong>n<strong>in</strong>g</strong> <strong>in</strong> <strong>circles</strong>.....................75–112<br />
Overview...................................................... 76–77<br />
Lesson 1....................................................... 78–81<br />
Lesson 2....................................................... 82–87<br />
Lesson 3....................................................... 88–90<br />
Lesson 4....................................................... 91–93<br />
Lesson 5....................................................... 94–97<br />
Lesson 6..................................................... 98–101<br />
Assessment.............................................102–104<br />
<strong>STEM</strong> project...........................................105–112<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Physical sciences:<br />
Enlighten me!........................................... 113–146<br />
Overview..................................................114–115<br />
Lesson 1...................................................116–117<br />
Lesson 2...................................................118–121<br />
Lesson 3...................................................122–123<br />
Lesson 4...................................................124–127<br />
Lesson 5...................................................128–131<br />
Lesson 6...................................................132–135<br />
Assessment.............................................136–138<br />
<strong>STEM</strong> project...........................................139–146<br />
R.I.C. Publications® – www.ricpublications.com.au<br />
YEAR<br />
5<br />
<strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
iii
Introduction<br />
What is <strong>STEM</strong>?<br />
In a nutshell, <strong>STEM</strong> is the <strong>in</strong>tegration of science,<br />
technologies, eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> mathematics<br />
concepts us<strong>in</strong>g project-based <strong>and</strong> cooperative<br />
learn<strong>in</strong>g. Educators have been <strong>in</strong>tegrat<strong>in</strong>g learn<strong>in</strong>g<br />
<strong>are</strong>as s<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g of time, so although the<br />
idea beh<strong>in</strong>d <strong>STEM</strong> is not new, this series hopes<br />
to make it easier for you to execute learn<strong>in</strong>g<br />
<strong>in</strong>tegration <strong>in</strong> the classroom.<br />
The Australian Government, <strong>and</strong> governments around the world, have placed a high priority on<br />
<strong>STEM</strong> skills. The future workforce will require current students to be creative <strong>and</strong> critical th<strong>in</strong>kers who<br />
can collaborate <strong>and</strong> design solutions to problems. The skills utilised <strong>in</strong> <strong>STEM</strong> have never been more<br />
valued.<br />
<strong>STEM</strong> education aims to prep<strong>are</strong> students for the roles of the future <strong>with</strong> skills such as <strong>in</strong>novation,<br />
creativity, reason<strong>in</strong>g, problem-solv<strong>in</strong>g, <strong>and</strong> technical science skills such as question<strong>in</strong>g, observ<strong>in</strong>g,<br />
systematic experimentation, <strong>and</strong> analysis <strong>and</strong> <strong>in</strong>terpretation of data.<br />
Format of this book<br />
This series focuses on deliver<strong>in</strong>g a comprehensive <strong>and</strong> contemporary science program, culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong><br />
a <strong>STEM</strong> project which applies the scientific knowledge acquired dur<strong>in</strong>g the science lessons. The series<br />
<strong>in</strong>corporates the use of onl<strong>in</strong>e resources, digital devices <strong>and</strong> iPad® applications where appropriate, <strong>in</strong><br />
order to enhance the use of technology <strong>in</strong> the classroom.<br />
The units<br />
The science units <strong>are</strong> organised by sub-str<strong>and</strong>—Biological sciences, Chemical sciences, <strong>Earth</strong> <strong>and</strong><br />
space sciences <strong>and</strong> Physical sciences. At the start of each sub-str<strong>and</strong> unit, keywords, a unit overview<br />
<strong>and</strong> curriculum scope <strong>and</strong> sequence <strong>are</strong> provided, as shown below.<br />
Each unit conta<strong>in</strong>s a term’s worth of work <strong>with</strong> 5–7 lessons, a summative assessment of the science<br />
knowledge <strong>with</strong> teacher notes, <strong>and</strong> a <strong>STEM</strong> project.<br />
Unit overview<br />
Biological sciences<br />
SURVIVING IN TOUGH TIMES<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Keywords<br />
adaptation<br />
behaviour<br />
burrow/burrow<strong>in</strong>g<br />
camouflage<br />
characteristic<br />
deserts<br />
ecosystem<br />
environment<br />
environmental<br />
conditions<br />
follicles<br />
forag<strong>in</strong>g<br />
function<br />
habitat<br />
hibernate<br />
mangrove forests<br />
nocturnal<br />
nutrients<br />
organisms<br />
poll<strong>in</strong>ation<br />
predator<br />
protection<br />
reproduction<br />
root systems<br />
stability<br />
structural features<br />
support<br />
survive<br />
threatened<br />
tropical ra<strong>in</strong>forests<br />
venomous<br />
sclerophyll forests<br />
(optional)<br />
R.I.C. Publications® – www.ricpublications.com.au 978-1-925431-98-8 YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 1<br />
Title page Unit overview Curriculum scope <strong>and</strong><br />
sequence<br />
iv<br />
<strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
Unit description<br />
Lessons<br />
The lessons <strong>are</strong> based on science knowledge <strong>and</strong> skills. The lessons conta<strong>in</strong> a page of teachers<br />
notes, outl<strong>in</strong><strong>in</strong>g the <strong>in</strong>quiry questions, science str<strong>and</strong>s <strong>and</strong> any l<strong>in</strong>ks to technologies <strong>and</strong> mathematics<br />
concepts, followed by a suggested lesson plan. Any resource sheets required for the lesson follow on.<br />
Assessment<br />
Teacher notes Lesson plan Resource sheets<br />
A teacher page is provided outl<strong>in</strong><strong>in</strong>g the assessment <strong>in</strong>dicators <strong>and</strong> answers for the follow<strong>in</strong>g<br />
assessment page(s). The assessment page(s) covers the science knowledge explored <strong>in</strong> the previous<br />
lessons.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Teacher notes<br />
Assessment page(s)<br />
R.I.C. Publications® – www.ricpublications.com.au<br />
YEAR<br />
5<br />
<strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
v
Unit description<br />
<strong>STEM</strong> project<br />
The <strong>STEM</strong> project provides students <strong>with</strong> the opportunity to apply what they have learned <strong>in</strong> the<br />
previous science lessons while <strong>in</strong>corporat<strong>in</strong>g technologies, eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> mathematics concepts<br />
where possible. The project entails group collaboration <strong>and</strong> an extended learn<strong>in</strong>g period of<br />
3–4 weeks. This gives students a real-life experience of work<strong>in</strong>g <strong>with</strong> ‘colleagues’ to sh<strong>are</strong> ideas<br />
<strong>and</strong> test designed solutions. Each <strong>STEM</strong> project conta<strong>in</strong>s an overview list<strong>in</strong>g <strong>STEM</strong> concepts <strong>and</strong><br />
alternative project ideas, curriculum l<strong>in</strong>ks, teacher notes <strong>and</strong> a group assessment rubric, <strong>and</strong> a project<br />
brief <strong>and</strong> checklist for students. Any resource sheets required <strong>are</strong> also provided, as well as a selfassessment<br />
sheet.<br />
<strong>STEM</strong> project overview <strong>and</strong><br />
<strong>STEM</strong> curriculum l<strong>in</strong>ks<br />
Teacher notes<br />
Project brief<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Project steps<br />
Resource sheets<br />
Self-assessment <strong>and</strong><br />
Group assessment rubric<br />
vi<br />
<strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space<br />
sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
galaxy<br />
solar system<br />
terrestrial planet<br />
Jovian planet<br />
Keywords<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
axis<br />
rotate<br />
spacecrafts<br />
space probes<br />
sun<br />
star<br />
moon<br />
asteroids<br />
planets<br />
gas giants<br />
ice giants<br />
physical features<br />
r<strong>in</strong>g systems<br />
atmospheric<br />
conditions<br />
rotational<br />
period<br />
revolve/orbit<br />
orbital period<br />
exploration<br />
astronauts<br />
satellites<br />
telescopes<br />
celestial bodies<br />
(optional)<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 75
Unit overview<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
The <strong>Earth</strong> is part of a system of planets orbit<strong>in</strong>g around a star (the sun) (ACSSU078)<br />
Lesson 1<br />
What is our solar system<br />
<strong>and</strong> what features does it<br />
have?<br />
Lesson 2<br />
How big <strong>are</strong> the planets <strong>in</strong><br />
our solar system <strong>and</strong> how<br />
far apart <strong>are</strong> they?<br />
Lesson 3<br />
Do <strong>all</strong> planets rotate <strong>and</strong><br />
revolve around the sun at<br />
the same speed?<br />
Lesson 4<br />
What <strong>are</strong> terrestrial<br />
planets?<br />
Lesson 5<br />
What <strong>are</strong> Jovian planets?<br />
Lesson 6<br />
How do scientists explore<br />
the planets <strong>in</strong> our solar<br />
system?<br />
Summative assessment<br />
<strong>STEM</strong> project<br />
Solar system documentary<br />
Students rec<strong>all</strong> their prior knowledge of the solar system<br />
<strong>and</strong> its features to record as much <strong>in</strong>formation as they can.<br />
Students then watch a video <strong>and</strong> answer questions about<br />
space, <strong>in</strong>clud<strong>in</strong>g our galaxy, <strong>and</strong> the planets <strong>and</strong> dwarf<br />
planets <strong>in</strong> our solar system.<br />
Students view an image of our solar system to predict if<br />
it is a realistic representation of its size. Students research<br />
the diameter of each planet, the sun <strong>and</strong> <strong>Earth</strong>’s moon, <strong>and</strong><br />
the distance between each planet by multiply<strong>in</strong>g a scaled<br />
distance by a scale. Students demonstrate the distance<br />
between planets, us<strong>in</strong>g a scale model.<br />
Students briefly explore the solar system us<strong>in</strong>g a 360º video.<br />
Students then rec<strong>all</strong> their knowledge of <strong>Earth</strong>’s rotation<br />
<strong>and</strong> revolution, before explor<strong>in</strong>g the rotation <strong>and</strong> orbital<br />
periods of each planet <strong>in</strong> our solar system. Students use<br />
this <strong>in</strong>formation to comp<strong>are</strong> the different speeds at which<br />
planets rotate on their axis <strong>and</strong> orbit around the sun.<br />
Students explore what is meant by a terrestrial (or rocky)<br />
planet <strong>and</strong> identify which planets <strong>in</strong> our solar system <strong>are</strong><br />
terrestrial planets—Mercury, Venus, <strong>Earth</strong> <strong>and</strong> Mars. In pairs,<br />
students research the surface <strong>and</strong> atmospheric conditions<br />
of one of the terrestrial planets, <strong>and</strong> create a poster us<strong>in</strong>g<br />
a word process<strong>in</strong>g program. Students then use an onl<strong>in</strong>e<br />
dictionary to f<strong>in</strong>d the mean<strong>in</strong>g of the term terrestrial planet.<br />
Students explore what is meant by a Jovian (or gas) planet<br />
<strong>and</strong> identify which planets <strong>in</strong> our solar system <strong>are</strong> Jovian<br />
planets—Jupiter, Saturn, Uranus <strong>and</strong> Neptune. Students<br />
research each of these planets to identify the difference<br />
between the conditions on the gas giants, Jupiter <strong>and</strong><br />
Saturn, <strong>and</strong> the ice giants, Uranus <strong>and</strong> Neptune.<br />
Students watch a video of the Apollo moon l<strong>and</strong><strong>in</strong>g <strong>and</strong><br />
predict how scientists <strong>are</strong> able to explore terrestrial <strong>and</strong><br />
Jovian planets <strong>in</strong> our solar system. Students research<br />
the space probes Curiosity, Juno <strong>and</strong> Cass<strong>in</strong>i to see how<br />
scientists have been able to learn about the conditions on<br />
Mars, Jupiter <strong>and</strong> Saturn. Students then view a time l<strong>in</strong>e of<br />
significant developments <strong>in</strong> space exploration.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Students demonstrate their knowledge of our solar system<br />
by labell<strong>in</strong>g a diagram, def<strong>in</strong><strong>in</strong>g the term solar system,<br />
identify<strong>in</strong>g the difference between terrestrial <strong>and</strong> Jovian<br />
planets <strong>and</strong> expla<strong>in</strong><strong>in</strong>g how scientists explore planets <strong>in</strong> our<br />
solar system.<br />
Students create scale models of each planet <strong>in</strong> our solar<br />
system, show<strong>in</strong>g colours <strong>and</strong> features. These models <strong>are</strong><br />
then used to produce a documentary, expla<strong>in</strong><strong>in</strong>g each<br />
planet’s size, position, surface features <strong>and</strong> atmospheric<br />
conditions, as understood by scientists.<br />
Pages<br />
78–81<br />
82–87<br />
88–90<br />
91–93<br />
94–97<br />
98–101<br />
102–104<br />
105–112<br />
76 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Unit overview<br />
Curriculum scope <strong>and</strong> sequence<br />
SCIENCE UNDERSTANDING<br />
The <strong>Earth</strong> is part of a system of planets orbit<strong>in</strong>g around a star<br />
(the sun) (ACSSU078)<br />
SCIENCE AS A HUMAN ENDEAVOUR<br />
<strong>Science</strong> <strong>in</strong>volves test<strong>in</strong>g predictions by gather<strong>in</strong>g data <strong>and</strong> us<strong>in</strong>g<br />
evidence to develop explanations of events <strong>and</strong> phenomena <strong>and</strong><br />
reflects historical <strong>and</strong> cultural contributions (ACSHE081)<br />
Scientific knowledge is used to solve problems <strong>and</strong> <strong>in</strong>form<br />
personal <strong>and</strong> community decisions (ACSHE083)<br />
SCIENCE INQUIRY SKILLS<br />
Question<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>g<br />
With guidance, pose clarify<strong>in</strong>g questions <strong>and</strong> make predictions<br />
about scientific <strong>in</strong>vestigations (ACSIS231)<br />
Lesson<br />
1 2 3 4 5 6 Assessment <strong>STEM</strong> project<br />
3 3 3 3 3 3 3 3<br />
3 3 3 3 3 3 3 3<br />
3 3 3 3 3 3<br />
3 3<br />
Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g<br />
Identify, plan <strong>and</strong> apply the elements of scientific <strong>in</strong>vestigations<br />
to answer questions <strong>and</strong> solve problems us<strong>in</strong>g equipment <strong>and</strong> 3 3 3 3 3 3 3<br />
materials safely <strong>and</strong> identify<strong>in</strong>g potential risks (ACSIS086)<br />
Decide variables to be changed <strong>and</strong> measured <strong>in</strong> fair tests, <strong>and</strong><br />
observe measure <strong>and</strong> record data <strong>with</strong> accuracy us<strong>in</strong>g digital<br />
technologies as appropriate (ACSIS087)<br />
Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation<br />
Construct <strong>and</strong> use a range of representations, <strong>in</strong>clud<strong>in</strong>g tables<br />
<strong>and</strong> graphs, to represent <strong>and</strong> describe observations, patterns or<br />
relationships <strong>in</strong> data us<strong>in</strong>g digital technologies as appropriate<br />
(ACSIS090)<br />
Comp<strong>are</strong> data <strong>with</strong> predictions <strong>and</strong> use as evidence <strong>in</strong><br />
develop<strong>in</strong>g explanations (ACSIS218)<br />
Evaluat<strong>in</strong>g<br />
Reflect on <strong>and</strong> suggest improvements to scientific <strong>in</strong>vestigations<br />
(ACSIS091)<br />
3 3 3 3 3 3 3 3<br />
3 3 3 3 3 3<br />
3<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Communicat<strong>in</strong>g<br />
Communicate ideas, explanations <strong>and</strong> processes us<strong>in</strong>g scientific<br />
representations <strong>in</strong> a variety of ways, <strong>in</strong>clud<strong>in</strong>g multi-modal texts<br />
(ACSIS093)<br />
3 3 3 3 3 3 3 3<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 77
Lesson 1<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Teacher notes<br />
<strong>Science</strong> <strong>in</strong>quiry focus:<br />
What is our solar system <strong>and</strong> what features does it have?<br />
<strong>Science</strong> Inquiry Skills:<br />
• Question<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>g QP<br />
• Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g PC<br />
• Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation PA<br />
• Communicat<strong>in</strong>g C<br />
<strong>Science</strong> as a Human Endeavour:<br />
• Students identify the ma<strong>in</strong> features of our solar system as<br />
explored by astronauts over time.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g/Mathematics l<strong>in</strong>ks:<br />
• participat<strong>in</strong>g <strong>in</strong> a class onl<strong>in</strong>e m<strong>in</strong>d map<br />
• us<strong>in</strong>g a QR scanner on an iPad ® to scan a QR code that l<strong>in</strong>ks<br />
to an onl<strong>in</strong>e video<br />
Background <strong>in</strong>formation<br />
• Many galaxies exist <strong>in</strong> outer space. The galaxy that our<br />
solar system is <strong>in</strong>, is c<strong>all</strong>ed the Milky Way.<br />
• A solar system is a system of planets orbit<strong>in</strong>g around a<br />
star (our sun). With<strong>in</strong> our galaxy, there <strong>are</strong> many solar<br />
systems, <strong>with</strong> each one conta<strong>in</strong><strong>in</strong>g a system of planets<br />
orbit<strong>in</strong>g around a different star.<br />
• Our solar system conta<strong>in</strong>s eight planets, five dwarf<br />
planets, moons, comets, asteroids, dust <strong>and</strong> gas. In this<br />
unit, the focus will be on the planets, <strong>in</strong>clud<strong>in</strong>g their size<br />
<strong>and</strong> position<strong>in</strong>g, their features <strong>and</strong>/or conditions, <strong>and</strong><br />
how they move around the sun.<br />
• The eight planets <strong>in</strong> our solar system <strong>all</strong> revolve (orbit)<br />
around the sun. The closest planet to the sun is Mercury,<br />
then Venus, <strong>Earth</strong>, Mars, Jupiter, Saturn, Uranus <strong>and</strong><br />
Neptune, which is the furthest.<br />
• To see a virtual tour of the solar system, download the<br />
program at onto a computer.<br />
Assessment focus:<br />
• Use completed copies of<br />
page 80 to identify students’<br />
prior knowledge of the solar<br />
system, <strong>in</strong>clud<strong>in</strong>g the names,<br />
<strong>and</strong> features <strong>and</strong>/or conditions<br />
of each planet.<br />
Resources<br />
• Onl<strong>in</strong>e m<strong>in</strong>d-mapp<strong>in</strong>g tool<br />
at <br />
• Onl<strong>in</strong>e image of the solar<br />
system at <br />
• A copy of pages 80 <strong>and</strong> 81<br />
for each student<br />
• An iPad ® <strong>with</strong> a QR scanner<br />
for each student<br />
• Onl<strong>in</strong>e video—Solar<br />
System—The Dr B<strong>in</strong>ocs<br />
show at <br />
• Onl<strong>in</strong>e song—<strong>We</strong> <strong>are</strong><br />
the planets (<strong>with</strong> lyrics)<br />
at <br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
78 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 1<br />
Lesson plan<br />
Introduction:<br />
1. Us<strong>in</strong>g an onl<strong>in</strong>e m<strong>in</strong>d-mapp<strong>in</strong>g tool, such as the one found at ,<br />
conduct a whole-class bra<strong>in</strong>storm to identify the features of our solar system. Encourage students<br />
to th<strong>in</strong>k about the features of a day <strong>and</strong> night sky, <strong>and</strong> outer space. QP<br />
Development:<br />
2. Display the image of the solar system at on an <strong>in</strong>teractive<br />
whiteboard. This image shows each planet, the asteroid belt <strong>and</strong> the orbital paths of the planets<br />
<strong>with</strong> each feature numbered from 1–12. Us<strong>in</strong>g page 80, students predict the name of each celestial<br />
body (or space object) <strong>in</strong> our solar system, as represented by each number <strong>in</strong> the image. Students<br />
then rec<strong>all</strong> their prior knowledge of the solar system to write as much <strong>in</strong>formation as they can about<br />
each space object on page 80, us<strong>in</strong>g the image to prompt their memory. QP<br />
3. Give each student an iPad ® <strong>with</strong> a QR scanner <strong>in</strong>st<strong>all</strong>ed. Students scan the QR code on page 81<br />
to watch a video about the solar system. Alternatively, watch as a class at . This video shows Dr B<strong>in</strong>ocs <strong>in</strong> outer space look<strong>in</strong>g at the Milky Way galaxy before<br />
zoom<strong>in</strong>g <strong>in</strong>to our solar system <strong>and</strong> explor<strong>in</strong>g the ma<strong>in</strong> features of each planet <strong>in</strong> order from closest<br />
to furthest from the sun. Students use the <strong>in</strong>formation <strong>in</strong> the video to answer the questions on page<br />
81. PC PA C<br />
Differentiation<br />
• Less capable students can work <strong>with</strong> a partner to answer the questions on pages 80 <strong>and</strong> 81 or<br />
record their answers us<strong>in</strong>g a voice recorder or iPad ® .<br />
• More capable students can be encouraged to describe what the asteroid belt is <strong>and</strong> what an<br />
orbit is, as shown by the image <strong>in</strong> Step 2.<br />
4. Us<strong>in</strong>g the <strong>in</strong>teractive whiteboard, display the same image from Step 2. Students review their<br />
predictions <strong>and</strong> place a tick next to each space object they identified correctly, as well as writ<strong>in</strong>g<br />
the correct answer next to any <strong>in</strong>correct predictions. PA<br />
Reflection:<br />
5. Us<strong>in</strong>g a th<strong>in</strong>k-pair-sh<strong>are</strong>, students answer the question What is the solar system? Students then<br />
name the planets <strong>in</strong> order from closest to furthest from the sun. C<br />
6. Listen to the song <strong>We</strong> <strong>are</strong> the planets at . This song re<strong>in</strong>forces the<br />
planets of our solar system <strong>in</strong> the correct order <strong>and</strong> provides more <strong>in</strong>terest<strong>in</strong>g facts about each.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 79
Lesson 1<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Solar system predictions<br />
1.<br />
2.<br />
3.<br />
4.<br />
5.<br />
6.<br />
7.<br />
8.<br />
9.<br />
What is the object?<br />
What do you know about the object?<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
10.<br />
11.<br />
12.<br />
80 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 1<br />
Our solar system<br />
Scan the QR code to watch a video about our solar system.<br />
1. What is our galaxy c<strong>all</strong>ed?<br />
2. What is a solar system?<br />
3. How many planets <strong>are</strong> found <strong>in</strong> our solar system?<br />
4. Each planet has unique features that scientists use to describe it. Describe the unique<br />
features for each planet as shown by the video.<br />
Mercury<br />
<strong>Earth</strong> <strong>and</strong> the moon<br />
Jupiter<br />
Uranus<br />
Venus<br />
Mars<br />
Saturn<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Neptune<br />
5. What <strong>are</strong> the names of the five dwarf planets <strong>in</strong> our solar system?<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 81
Lesson 2<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Teacher notes<br />
<strong>Science</strong> <strong>in</strong>quiry focus:<br />
How big <strong>are</strong> the planets <strong>in</strong> our solar system <strong>and</strong><br />
how far apart <strong>are</strong> they?<br />
<strong>Science</strong> Inquiry Skills:<br />
• Question<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>g QP<br />
• Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g PC<br />
• Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation<br />
PA<br />
• Communicat<strong>in</strong>g C<br />
<strong>Science</strong> as a Human Endeavour:<br />
• Students explore the size of the planets <strong>in</strong> our<br />
solar system <strong>and</strong> the distance of each planet<br />
from the sun, as discovered by scientists<br />
through space exploration.<br />
Background <strong>in</strong>formation<br />
• The image at is<br />
not a true representation of the solar system,<br />
even though it does show some planets<br />
slightly larger or sm<strong>all</strong>er than others.<br />
• The order of the planets <strong>in</strong> our solar system<br />
from sm<strong>all</strong>est to biggest is: Mercury, Mars,<br />
Venus, <strong>Earth</strong>, Neptune, Uranus, Saturn <strong>and</strong><br />
Jupiter. See the relative sizes of each planet,<br />
m<strong>in</strong>or planet <strong>and</strong> moon <strong>in</strong> our solar system<br />
at .<br />
• The images on page 84 show the planets of<br />
our solar system, at a scale of 1 mm =<br />
1000 km. The letters A–H on page 84,<br />
represent Neptune, Uranus, Saturn, Jupiter,<br />
Mars, <strong>Earth</strong>, Venus <strong>and</strong> Mercury respectively.<br />
• The image on page 85 shows the scaled<br />
distance of each planet from the sun, us<strong>in</strong>g a<br />
scale of 1 mm = 5 000 000 km. At this scale,<br />
it is impossible to represent both the size<br />
<strong>and</strong> distance of the planets, as some planets<br />
would appear too sm<strong>all</strong> for the human eye<br />
to see.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g/Mathematics l<strong>in</strong>ks:<br />
• typ<strong>in</strong>g a URL <strong>in</strong>to an <strong>in</strong>ternet browser to<br />
research onl<strong>in</strong>e <strong>in</strong>formation about planet sizes<br />
• us<strong>in</strong>g a table to record the diameter of each<br />
planet<br />
• us<strong>in</strong>g multiplication to f<strong>in</strong>d the actual distance<br />
of each planet to the sun from a scaled<br />
distance<br />
• select<strong>in</strong>g <strong>and</strong> us<strong>in</strong>g measur<strong>in</strong>g devices to<br />
accurately represent the distance of each<br />
planet from the sun, us<strong>in</strong>g a scale of<br />
1 cm = 1 000 000 km<br />
Assessment focus:<br />
• Use page 85 <strong>and</strong> students’ science journals<br />
to assess their ability to calculate the actual<br />
distance between each planet <strong>and</strong> the sun.<br />
• Use observations of the student modell<strong>in</strong>g the<br />
scaled distance of each planet from the sun, to<br />
assess their ability to select the most effective<br />
tool for a given measurement, <strong>and</strong> their ability<br />
to measure accurately.<br />
Resources<br />
• Onl<strong>in</strong>e image of the solar system at<br />
<br />
• <strong>Science</strong> journal for each student<br />
• One copy of page 84 for display on an<br />
<strong>in</strong>teractive whiteboard.<br />
• <strong>We</strong>bsite—Planetary fact sheet at <br />
• One copy of page 85 for each student<br />
• One calculator for each student<br />
• A selection of measur<strong>in</strong>g tools, <strong>in</strong>clud<strong>in</strong>g<br />
various-sized rulers, different tape<br />
measures <strong>and</strong> trundle wheels<br />
• One copy of the planet cards on pages 86<br />
<strong>and</strong> 87 (cut out <strong>and</strong> lam<strong>in</strong>ated prior to the<br />
lesson)<br />
• One cone or marker per group to<br />
represent the sun<br />
• Onl<strong>in</strong>e video—To scale: The Solar System<br />
at <br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
82 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 2<br />
Lesson plan<br />
Introduction:<br />
1. Display the image at . Us<strong>in</strong>g a th<strong>in</strong>k-pair-sh<strong>are</strong>, students discuss <strong>and</strong><br />
predict whether this image is a true representation of the size of each planet <strong>and</strong> its distance from<br />
the sun. QP<br />
Development:<br />
2. Display a copy of page 84 on an <strong>in</strong>teractive whiteboard. In their science journals, students write the<br />
letters A–H <strong>and</strong> predict which planet each letter is represent<strong>in</strong>g, based on their prior knowledge of<br />
planet sizes. Note: This is a model of the size of each planet at a scale of 1 mm = 1000 km. QP<br />
3. Students go to to f<strong>in</strong>d the diameter of each planet, as recorded<br />
by NASA (National Aeronautics <strong>and</strong> <strong>Space</strong> Adm<strong>in</strong>istration). Students create a table, either on a<br />
computer or <strong>in</strong> their science journals, to record the diameter of each planet, the sun <strong>and</strong> <strong>Earth</strong>’s<br />
moon. PC PA<br />
4. Display page 84 on the <strong>in</strong>teractive whiteboard aga<strong>in</strong>. Students comp<strong>are</strong> the diameter of each<br />
planet to the scaled images of each planet on page 84 <strong>and</strong> mark their predictions as correct or<br />
<strong>in</strong>correct. Students record the correct answers next to their predictions. PA<br />
5. Display page 85 on the <strong>in</strong>teractive whiteboard. As a class, f<strong>in</strong>d the actual distance us<strong>in</strong>g a<br />
calculator. Look at the sm<strong>all</strong>er-scaled image of each planet’s distance from the sun. Note: This<br />
image does not show the actual sizes of each planet as images of the <strong>in</strong>ner planets would not be<br />
visible to the human eye at this scale. PC PA<br />
6. Divide the class <strong>in</strong>to groups of eight <strong>and</strong> <strong>all</strong>ocate each student <strong>in</strong> the group a different planet,<br />
provid<strong>in</strong>g them <strong>with</strong> the correspond<strong>in</strong>g planet card. Us<strong>in</strong>g page 85, students look at the<br />
measurement for their <strong>all</strong>ocated planet at a scale of 1 cm = 1 000 000 km. Students choose a<br />
measur<strong>in</strong>g tool they th<strong>in</strong>k will be effective at measur<strong>in</strong>g the scaled distance of their planet to the<br />
sun, such as a ruler, a tape measure, a trundle wheel or a comb<strong>in</strong>ation of these. PC PA<br />
7. Students collect their chosen measur<strong>in</strong>g tool, a cone or marker <strong>and</strong> their planet card, <strong>and</strong> move<br />
outside to an open space that spans 45 m (<strong>in</strong> a straight l<strong>in</strong>e, if possible). Allocate a tree, a pole or<br />
an identifiable marker as the sun. Each student measures the relative distance of their <strong>all</strong>ocated<br />
planet to the sun <strong>and</strong> st<strong>and</strong>s <strong>in</strong> position, hold<strong>in</strong>g their planet card. When each group has f<strong>in</strong>ished<br />
modell<strong>in</strong>g the solar system, expla<strong>in</strong> that the actual solar system is 100 000 000 000 times larger<br />
than the model they have created. PC PA<br />
Differentiation<br />
• Less capable students can be encouraged to model the distance of <strong>in</strong>ner planets, requir<strong>in</strong>g<br />
sm<strong>all</strong>er measurements.<br />
• More capable students can be encouraged to model the distance of the outer planets, requir<strong>in</strong>g<br />
larger measurements <strong>and</strong> multiple measur<strong>in</strong>g tools.<br />
Reflection:<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
8. Review the image of the solar system from the Introduction. In pairs, students decide if this image is<br />
a true representation of our solar system, justify<strong>in</strong>g their response. Watch the onl<strong>in</strong>e video To scale:<br />
The Solar System at to see a real-life scale model of the size of our<br />
solar system. PA C<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 83
Lesson 2<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
How big is each planet?<br />
A<br />
B<br />
D<br />
C<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
F<br />
E<br />
G<br />
H<br />
84 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 2<br />
How far is each planet from the sun? – 1<br />
1. Us<strong>in</strong>g a calculator, multiply the scaled distance by the scale to f<strong>in</strong>d the actual<br />
distance of each planet from the sun.<br />
Planet<br />
Scaled distance<br />
1 cm = 1 000 000 km<br />
Distance from sun<br />
Actual distance<br />
Mercury 57.9 cm 57 900 000 km<br />
Venus<br />
<strong>Earth</strong><br />
108.2 cm<br />
149.6 cm<br />
Mars 227.9 cm 227 900 000 km<br />
Jupiter<br />
Saturn<br />
778.6 cm<br />
1433.5 cm<br />
Uranus 2872.5 cm 2 872 500 000 km<br />
Neptune<br />
4495.1 cm<br />
2. Look at a sm<strong>all</strong>er-scaled representation of each planet’s distance<br />
from the sun.<br />
The scale of this image is 1 mm = 5 000 000 km.<br />
Planet<br />
Mercury<br />
Venus<br />
<strong>Earth</strong><br />
Mars<br />
Jupiter<br />
Saturn<br />
Uranus<br />
Neptune<br />
Scaled distance<br />
1 mm = 5 000 000 km<br />
2.895 mm<br />
5.41 mm<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
7.48 mm<br />
11.395 mm<br />
38.93 mm<br />
71.675 mm<br />
143.625 mm<br />
224.755 mm<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 85
Lesson 2<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
How far is each planet from the sun? – 2<br />
Mercury<br />
At a scale of 1 cm = 1 000 000 km,<br />
Mercury is 57.9 cm from the sun.<br />
Venus<br />
At a scale of 1 cm = 1 000 000 km,<br />
Venus is 108.2 cm from the sun.<br />
<strong>Earth</strong><br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
At a scale of 1 cm = 1 000 000 km,<br />
<strong>Earth</strong> is 149.6 cm from the sun.<br />
Mars<br />
At a scale of 1 cm = 1 000 000 km,<br />
Mars is 227.9 cm from the sun.<br />
86 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 2<br />
How far is each planet from the sun? – 3<br />
Jupiter<br />
At a scale of 1 cm = 1 000 000 km,<br />
Jupiter is 778.6 cm from the sun.<br />
Saturn<br />
At a scale of 1 cm = 1 000 000 km,<br />
Saturn is 1433.5 cm from the sun.<br />
Uranus<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
At a scale of 1 cm = 1 000 000 km,<br />
Uranus is 2872.5 cm from the sun.<br />
Neptune<br />
At a scale of 1 cm = 1 000 000 km,<br />
Neptune is 4495.1 cm from the sun.<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 87
Lesson 3<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Teacher notes<br />
<strong>Science</strong> <strong>in</strong>quiry focus:<br />
Do <strong>all</strong> planets rotate <strong>and</strong> revolve around the sun at<br />
the same speed?<br />
<strong>Science</strong> Inquiry Skills:<br />
• Question<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>g QP<br />
• Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g PC<br />
• Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation<br />
PA<br />
• Evaluat<strong>in</strong>g E<br />
• Communicat<strong>in</strong>g C<br />
<strong>Science</strong> as a Human Endeavour:<br />
• Students explore the rotation <strong>and</strong> orbital periods<br />
of each planet <strong>in</strong> our solar system, as discovered<br />
by scientists through space exploration, to<br />
comp<strong>are</strong> the speeds at which each planet rotates<br />
on its axis <strong>and</strong> orbits the sun.<br />
Background <strong>in</strong>formation<br />
• The size of each planet <strong>and</strong> its position, relative<br />
to the sun <strong>and</strong> other planets, impacts the<br />
amount of gravity act<strong>in</strong>g on the planet to hold<br />
it <strong>in</strong> orbit.<br />
• All planets rotate on their axis <strong>and</strong> orbit the sun<br />
at different speeds, depend<strong>in</strong>g on the amount<br />
of gravity <strong>and</strong> other forces at work.<br />
• Accord<strong>in</strong>g to NASA, the rotational period of<br />
a planet is the amount of time, <strong>in</strong> hours that it<br />
takes for a planet to make one full rotation on<br />
its axis, relative to the fixed stars. The orbital<br />
period of a planet is the amount of time, <strong>in</strong><br />
<strong>Earth</strong> days, that a planet takes to orbit the sun<br />
for one full revolution. To see the rotation <strong>and</strong><br />
orbital periods of each planet, go to .<br />
• Venus <strong>and</strong> Uranus rotate <strong>in</strong> the opposite<br />
direction to <strong>Earth</strong> <strong>and</strong> the other planets <strong>in</strong> our<br />
solar system.<br />
• Mercury <strong>and</strong> Venus orbit the sun faster than<br />
<strong>Earth</strong>, as they <strong>are</strong> sm<strong>all</strong>er <strong>and</strong> closer to the sun.<br />
A year on each of these planets has less days<br />
than <strong>Earth</strong>. A year on each of the Jovian planets<br />
is significantly longer than a year on <strong>Earth</strong>.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g/Mathematics l<strong>in</strong>ks:<br />
• typ<strong>in</strong>g a URL <strong>in</strong>to an <strong>in</strong>ternet browser to<br />
research onl<strong>in</strong>e <strong>in</strong>formation<br />
• us<strong>in</strong>g a table to record the orbital <strong>and</strong> the<br />
rotation periods of each planet<br />
• explor<strong>in</strong>g the solar system us<strong>in</strong>g an<br />
<strong>in</strong>teractive 360º video, where students<br />
move the camera around to see different<br />
objects (If VR goggles <strong>are</strong> available,<br />
students can use these to imag<strong>in</strong>e they<br />
<strong>are</strong> explor<strong>in</strong>g the solar system <strong>in</strong> real life.)<br />
Assessment focus:<br />
• Use page 90 to assess the students’<br />
ability to analyse <strong>in</strong>formation <strong>in</strong> a table, to<br />
order the planets <strong>in</strong> terms of their orbit or<br />
rotation speed, from fastest to slowest.<br />
Resources<br />
• Onl<strong>in</strong>e video—Explore the solar<br />
system: 360 degree <strong>in</strong>teractive tour at<br />
<br />
• One copy of page 90 for each<br />
student<br />
• Computer access for each student<br />
to research <br />
• Onl<strong>in</strong>e video—Solar system at <br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
88 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 3<br />
Lesson plan<br />
Introduction:<br />
1. Us<strong>in</strong>g a computer or iPad ® , students explore our solar system by watch<strong>in</strong>g a 360º video at . This video <strong>all</strong>ows students to move around to f<strong>in</strong>d the planets <strong>in</strong> focus. Note:<br />
If students have access to virtual reality goggles, they will be able to look around the solar system<br />
us<strong>in</strong>g body movements. Alternatively, if resources <strong>are</strong> limited, this video can be viewed on an<br />
<strong>in</strong>teractive whiteboard <strong>with</strong> the teacher mov<strong>in</strong>g the screen to see each planet as it’s expla<strong>in</strong>ed. QP<br />
Development:<br />
2. Us<strong>in</strong>g a th<strong>in</strong>k-pair-sh<strong>are</strong>, students rec<strong>all</strong> how <strong>Earth</strong> rotates on its axis <strong>and</strong> revolves (or orbits) around<br />
the sun, to cause day <strong>and</strong> night <strong>and</strong> the seasons. Students predict whether <strong>all</strong> planets rotate <strong>and</strong><br />
orbit at the same speed <strong>and</strong> if the length of a day <strong>and</strong> a year <strong>are</strong> the same on <strong>all</strong> planets. C QP<br />
3. Give each student a copy of page 90. Us<strong>in</strong>g a computer, students search the website to identify the<br />
orbital <strong>and</strong> rotation periods of each planet, <strong>and</strong> record this <strong>in</strong>formation. Students then order the<br />
planets from hav<strong>in</strong>g the fastest orbit or rotation speed to the slowest. PC PA<br />
Differentiation<br />
• Less capable students can be encouraged to work <strong>in</strong> groups <strong>with</strong> a teacher to f<strong>in</strong>d the relevant<br />
<strong>in</strong>formation on the website <strong>and</strong> to order the planets.<br />
• More capable students can be encouraged to use the <strong>in</strong>formation to record the orbital velocity<br />
of each planet on the back of page 90, to show the speed at which each planet orbits the sun <strong>in</strong><br />
kilometres per second.<br />
4. In pairs, students sh<strong>are</strong> their answers to questions 3 <strong>and</strong> 4 on page 90 <strong>and</strong> discuss any differences<br />
<strong>in</strong> order<strong>in</strong>g. Students review the <strong>in</strong>formation <strong>in</strong> their tables for any differences, to identify where the<br />
mistakes were made. PA E<br />
5. As a class, watch the video at to see the planets of our solar system<br />
rotat<strong>in</strong>g on their axis <strong>and</strong> orbit<strong>in</strong>g (or revolv<strong>in</strong>g around) the sun. Encourage students to look at<br />
two planets at a time, to comp<strong>are</strong> which is rotat<strong>in</strong>g on its axis or orbit<strong>in</strong>g the sun, at a faster speed.<br />
While students <strong>are</strong> silently compar<strong>in</strong>g different planets, read the <strong>in</strong>formation at the bottom of the<br />
video aloud to the class. PA<br />
Reflection<br />
6. Us<strong>in</strong>g a th<strong>in</strong>k-pair-sh<strong>are</strong>, students answer the questions: Which planets orbit the sun faster than<br />
<strong>Earth</strong>? Which planets orbit the sun slower than <strong>Earth</strong>? Do the four <strong>in</strong>ner planets, Mercury, Venus,<br />
<strong>Earth</strong> <strong>and</strong> Mars, take more or less time to orbit the sun than the four outer planets, Jupiter, Saturn,<br />
Uranus <strong>and</strong> Neptune? C<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 89
Lesson 3<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Orbits <strong>and</strong> rotations<br />
Go to to f<strong>in</strong>d out the orbital period <strong>and</strong> the rotation period<br />
for each planet.<br />
Orbital period<br />
Rotation period<br />
The amount of time it takes for a planet to revolve 360º around the sun.<br />
The orbital period for each planet is recorded <strong>in</strong> <strong>Earth</strong> days or years.<br />
The amount of time it takes for a planet to rotate 360º on its axis.<br />
Negative numbers <strong>in</strong>dicate a rotation that is <strong>in</strong> the opposite direction to<br />
that of <strong>Earth</strong>.<br />
1. What is the orbital period of each planet?<br />
Planet<br />
Mercury<br />
Venus<br />
<strong>Earth</strong><br />
Mars<br />
Orbital period <strong>in</strong> days or<br />
years<br />
2. What is the rotation period of each planet?<br />
Planet<br />
Jupiter<br />
Saturn<br />
Uranus<br />
Neptune<br />
Orbital period <strong>in</strong> days or<br />
years<br />
Planet Day length <strong>in</strong> hours Planet Day length <strong>in</strong> hours<br />
Mercury<br />
Venus<br />
<strong>Earth</strong><br />
Mars<br />
Jupiter<br />
Saturn<br />
Uranus<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Neptune<br />
3. Order the planets from that <strong>with</strong> the fastest orbit speed (least amount of time) to that <strong>with</strong><br />
the slowest orbit speed (most amount of time).<br />
4. Order the planets from that <strong>with</strong> the fastest rotation speed (least amount of time) to that<br />
<strong>with</strong> the slowest rotation speed (most amount of time).<br />
90 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 4<br />
Teacher notes<br />
<strong>Science</strong> <strong>in</strong>quiry focus:<br />
What <strong>are</strong> terrestrial planets?<br />
<strong>Science</strong> Inquiry Skills:<br />
• Question<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>g QP<br />
• Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g PC<br />
• Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation PA<br />
• Communicat<strong>in</strong>g C<br />
<strong>Science</strong> as a Human Endeavour:<br />
• Students identify the ma<strong>in</strong> features of rocky planets as<br />
discovered by astronauts over time, <strong>and</strong> identify how they<br />
have explored Mars <strong>in</strong> recent times.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g/Mathematics l<strong>in</strong>ks:<br />
• us<strong>in</strong>g a voice record<strong>in</strong>g application to record a prediction<br />
<strong>and</strong> a conclusion<br />
• us<strong>in</strong>g a word process<strong>in</strong>g program to create a poster<br />
• us<strong>in</strong>g an onl<strong>in</strong>e dictionary to def<strong>in</strong>e terrestrial planet<br />
Background <strong>in</strong>formation<br />
• The eight planets of our solar system <strong>are</strong> classified <strong>in</strong>to<br />
two groups—terrestrial planets or Jovian planets.<br />
• A terrestrial planet, or rocky planet as they <strong>are</strong><br />
commonly known, is a planet that is composed<br />
predom<strong>in</strong>antly of rocks <strong>and</strong> metals. Terrestrial planets<br />
conta<strong>in</strong> a core made mostly of iron <strong>and</strong> a mantle<br />
surround<strong>in</strong>g the core made of rock.<br />
• With<strong>in</strong> our solar system, the four rocky planets <strong>are</strong><br />
Mercury, Venus, <strong>Earth</strong> <strong>and</strong> Mars. These planets <strong>are</strong><br />
found closer to the sun <strong>and</strong> <strong>are</strong> also referred to as <strong>in</strong>ner<br />
planets.<br />
• The surfaces of terrestrial planets have mounta<strong>in</strong>s,<br />
craters, canyons, <strong>and</strong> volcanoes. These features <strong>are</strong> only<br />
possible on rocky surfaces.<br />
• None of the terrestrial planets <strong>in</strong> our solar system have a<br />
r<strong>in</strong>g system around them. This is because the magnetic<br />
pull of gravity from the core of the planet, pulls the<br />
space debris to the surface of the planet, which<br />
produces a rocky surface.<br />
• To learn more, watch a short documentary about the<br />
<strong>in</strong>ner rocky planets at .<br />
Assessment focus:<br />
• Assess the student’s<br />
underst<strong>and</strong><strong>in</strong>g of terrestrial<br />
(or rocky) planets us<strong>in</strong>g the<br />
<strong>in</strong>formation <strong>in</strong> their<br />
voice record<strong>in</strong>g.<br />
Resources<br />
• Onl<strong>in</strong>e image of terrestrial<br />
planets at <br />
• Access to a computer<br />
or an iPad ® <strong>with</strong> a voice<br />
record<strong>in</strong>g application such<br />
as Chatterbox <strong>and</strong> a word<br />
process<strong>in</strong>g program<br />
• A copy of page 93 for each<br />
pair (optional)<br />
• Onl<strong>in</strong>e video—Explore the<br />
solar system: The rocky<br />
planets at <br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 91
Lesson 4<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson plan<br />
Introduction:<br />
1. View the onl<strong>in</strong>e image of terrestrial planets at . Us<strong>in</strong>g a th<strong>in</strong>k-pairsh<strong>are</strong>,<br />
students identify which planets <strong>are</strong> shown <strong>in</strong> each quadrant of the image. Are these planets<br />
<strong>in</strong>ner planets (closer to the sun) or outer planets (further from the sun)? QP<br />
2. Expla<strong>in</strong> that Mercury, Venus, <strong>Earth</strong> <strong>and</strong> Mars <strong>are</strong> <strong>all</strong> c<strong>all</strong>ed terrestrial or rocky planets. Us<strong>in</strong>g a voice<br />
record<strong>in</strong>g application such as Chatterbox, students predict what is meant by a rocky planet. QP<br />
Development:<br />
3. Divide the class <strong>in</strong>to pairs <strong>and</strong> <strong>all</strong>ocate a rocky planet to each pair. Students research their rocky<br />
planet <strong>and</strong> create a poster us<strong>in</strong>g a word process<strong>in</strong>g program or application, such as Microsoft ®<br />
Word ® or Keynote ® . The poster must <strong>in</strong>clude text <strong>and</strong> images show<strong>in</strong>g what the planet’s surface is<br />
like, the temperatures <strong>and</strong> climatic conditions, <strong>and</strong> other <strong>in</strong>terest<strong>in</strong>g facts about it. Students should<br />
ensure their <strong>in</strong>formation comes from reliable websites <strong>and</strong> nonfiction books. Alternatively, use the<br />
poster template provided on page 93. PC PA<br />
Differentiation<br />
• Less capable students can be <strong>all</strong>ocated a more familiar planet to create a poster for, such as<br />
<strong>Earth</strong>, us<strong>in</strong>g simple sentences to write the <strong>in</strong>formation on their poster. Alternatively, students can<br />
use the poster template provided on page 93.<br />
• More capable students can be encouraged to write their <strong>in</strong>formation us<strong>in</strong>g short, clear <strong>and</strong><br />
concise paragraphs.<br />
4. Display the posters around the classroom or on an <strong>in</strong>teractive whiteboard for other students to<br />
read. Encourage them to th<strong>in</strong>k about <strong>and</strong> discuss why each of these four planets is c<strong>all</strong>ed a rocky<br />
planet. QP<br />
5. Us<strong>in</strong>g an onl<strong>in</strong>e dictionary, students f<strong>in</strong>d the mean<strong>in</strong>g of terrestrial planet. If resources <strong>are</strong> limited,<br />
students may f<strong>in</strong>d the mean<strong>in</strong>g of the word terrestrial <strong>in</strong> a dictionary <strong>and</strong> apply the mean<strong>in</strong>g to<br />
planets. PA<br />
6. Watch the video Explore the solar system: The rocky planets at . This<br />
video briefly expla<strong>in</strong>s what each of the four rocky planets is like, as well as revis<strong>in</strong>g the sun <strong>and</strong> the<br />
solar system.<br />
Reflection:<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
7. Students listen to their prediction about what a rocky planet is <strong>and</strong> make another voice record<strong>in</strong>g<br />
stat<strong>in</strong>g what is meant by a rocky planet, <strong>in</strong> their own words, based on the <strong>in</strong>formation learnt dur<strong>in</strong>g<br />
the lesson. Students sh<strong>are</strong> their recorded def<strong>in</strong>ition <strong>with</strong> the class <strong>and</strong> submit it to the teacher.<br />
PA C<br />
8. Watch the video Human exploration on Mars at . This video<br />
describes how scientific knowledge, technology <strong>and</strong> mathematics skills have helped scientists to<br />
explore the physical features <strong>and</strong> atmospheric conditions on Mars.<br />
92 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Planets<br />
Lesson 4<br />
Name:<br />
Location:<br />
Inner planet<br />
planet from the sun<br />
Outer planet<br />
Description of the planet’s conditions:<br />
Image:<br />
Orbital period:<br />
Rotation period:<br />
Interest<strong>in</strong>g facts:<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 93
Lesson 5<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Teacher notes<br />
<strong>Science</strong> <strong>in</strong>quiry focus:<br />
What <strong>are</strong> Jovian planets?<br />
<strong>Science</strong> Inquiry Skills:<br />
• Question<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>g QP<br />
• Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g PC<br />
• Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation PA<br />
• Communicat<strong>in</strong>g<br />
<strong>Science</strong> as a Human Endeavour:<br />
C<br />
• Students identify the ma<strong>in</strong> features of Jovian planets, as<br />
explored by astronauts over time.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g/Mathematics l<strong>in</strong>ks:<br />
• us<strong>in</strong>g a QR scanner on an iPad ® to scan a QR code that l<strong>in</strong>ks<br />
to onl<strong>in</strong>e <strong>in</strong>formation<br />
• us<strong>in</strong>g a digital application, such as Popplet or ShowMe, to<br />
record <strong>in</strong>formation (optional)<br />
Background <strong>in</strong>formation<br />
• The eight planets of our solar system <strong>are</strong> classified <strong>in</strong>to<br />
two groups—terrestrial planets or Jovian planets.<br />
• A Jovian planet has a thick atmosphere, comprised mostly<br />
of gases. Jovian planets <strong>are</strong> the four planets furthest from<br />
the sun <strong>and</strong> <strong>are</strong> also referred to as giant planets. They<br />
<strong>in</strong>clude Jupiter, Saturn, Uranus <strong>and</strong> Neptune.<br />
• Jovian planets were once <strong>all</strong> referred to as gas giants.<br />
With recent space exploration, some scientists now refer<br />
to Uranus <strong>and</strong> Neptune as a special type of gas giant,<br />
c<strong>all</strong>ed an ice giant.<br />
• Scientists have discovered that the composition of gases<br />
on Jupiter <strong>and</strong> Saturn <strong>are</strong> different to those on Uranus <strong>and</strong><br />
Neptune. To see the composition of gases on gas giants<br />
<strong>and</strong> ice giants go to .<br />
• While Saturn is noted as the planet <strong>with</strong> r<strong>in</strong>gs, <strong>all</strong> Jovian<br />
planets have r<strong>in</strong>g systems made of t<strong>in</strong>y rocks, dust <strong>and</strong> ice.<br />
They also <strong>all</strong> have numerous moons. To see the moons of<br />
<strong>all</strong> planets, go to .<br />
• To read or listen to more <strong>in</strong>formation about the conditions<br />
on each Jovian planet, scan the QR codes on page 96<br />
prior to the lesson.<br />
Assessment focus:<br />
• Use students’ science journals<br />
to assess their underst<strong>and</strong><strong>in</strong>g of<br />
Jovian planets.<br />
Resources<br />
• Onl<strong>in</strong>e image—Jovian<br />
planets at <br />
• <strong>Science</strong> journal for each<br />
student<br />
• An iPad ® <strong>with</strong> a QR scanner<br />
<strong>in</strong>st<strong>all</strong>ed, for each student<br />
• A copy of page 96 per<br />
group, <strong>with</strong> each research<br />
card cut out prior to the<br />
lesson<br />
• A copy of page 97 for each<br />
pair<br />
• Onl<strong>in</strong>e image—Gas giants<br />
<strong>and</strong> ice giants at <br />
• Onl<strong>in</strong>e video—Explore the<br />
solar system: The gas giants<br />
at <br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
94 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 5<br />
Lesson plan<br />
Introduction<br />
1. Revise the names of the four terrestrial planets of our solar system. What <strong>are</strong> the names of the four<br />
rema<strong>in</strong><strong>in</strong>g planets that <strong>are</strong> not terrestrial planets? Are these planets <strong>in</strong>ner planets (closer to the sun)<br />
or outer planets (further from the sun)? Expla<strong>in</strong> that Jupiter, Saturn, Uranus <strong>and</strong> Neptune <strong>are</strong> <strong>all</strong><br />
c<strong>all</strong>ed Jovian planets. QP<br />
Development<br />
2. View the image at to see a four-quadrant image show<strong>in</strong>g each<br />
Jovian planet. Us<strong>in</strong>g a th<strong>in</strong>k-pair-sh<strong>are</strong>, students comp<strong>are</strong> the colours of the planets <strong>and</strong> th<strong>in</strong>k<br />
about each of the Jovian planets’ positions from the sun. Expla<strong>in</strong> that these four Jovian planets<br />
have r<strong>in</strong>g systems <strong>and</strong> thick, dense atmospheres. Jovian planets <strong>are</strong> often referred to as gas giants<br />
because of the large amounts of gases present <strong>in</strong> their atmosphere. Uranus <strong>and</strong> Neptune <strong>are</strong><br />
special types of gas giants, which have different gases to those of Jupiter <strong>and</strong> Saturn. They <strong>are</strong> also<br />
referred to as ice giants. PC PA<br />
3. Divide the class <strong>in</strong>to groups of four <strong>and</strong> give each student a different Jovian planet research card,<br />
from page 96. Individu<strong>all</strong>y, students use an iPad ® to scan QR codes which l<strong>in</strong>k to videos <strong>and</strong> onl<strong>in</strong>e<br />
<strong>in</strong>formation about their <strong>all</strong>ocated planet. In their science journals or us<strong>in</strong>g a digital application, such<br />
as Popplet, students record <strong>in</strong>formation about the physical features <strong>and</strong> atmospheric conditions of<br />
their <strong>all</strong>ocated planet. PC PA<br />
Differentiation<br />
• Less capable students may be limited to view<strong>in</strong>g the videos for their planet, <strong>in</strong>stead of both the<br />
videos <strong>and</strong> the onl<strong>in</strong>e text.<br />
• More capable students can be encouraged to conduct their own additional research to f<strong>in</strong>d out<br />
more <strong>in</strong>formation about their <strong>all</strong>ocated planet.<br />
4. Students then work <strong>with</strong> the person <strong>in</strong> their group, that researched the same type of planet (Jupiter<br />
<strong>with</strong> Saturn, <strong>and</strong> Uranus <strong>with</strong> Neptune). They describe their <strong>all</strong>ocated planets to each other <strong>and</strong><br />
then comp<strong>are</strong> each planet’s conditions, to identify the common conditions of their type of Jovian<br />
planet. The Venn diagram provided on page 97 may be used to help students comp<strong>are</strong> each<br />
planet’s conditions. PC PA<br />
5. In their groups, each pair sh<strong>are</strong>s <strong>in</strong>formation about their type of Jovian planet (gas giant or ice<br />
giant). Students comp<strong>are</strong> the two types of planets to predict the difference between gas giants <strong>and</strong><br />
ice giants. QP PA<br />
6. Groups sh<strong>are</strong> their predictions about the difference between gas giants <strong>and</strong> ice giants <strong>with</strong> the<br />
class. View the onl<strong>in</strong>e image at to briefly show the difference<br />
between gas giants <strong>and</strong> ice giants, <strong>in</strong> terms of their composition. PC PA<br />
Reflection<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
7. Watch the onl<strong>in</strong>e video Explore the solar system: The gas giants at .<br />
Students can evaluate their research, based on the <strong>in</strong>formation shown <strong>in</strong> the video.<br />
8. Students decide which Jovian planet they f<strong>in</strong>d most fasc<strong>in</strong>at<strong>in</strong>g <strong>and</strong>, <strong>in</strong> their science journals or<br />
us<strong>in</strong>g a digital application, such as ShowMe, list reasons for their choice, based on the planet’s<br />
conditions. PA C<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 95
Lesson 5<br />
Jovian planets<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Jupiter<br />
Scan these QR codes to learn about Jupiter.<br />
Watch a video<br />
Uranus<br />
Read <strong>in</strong>formation<br />
Saturn<br />
Scan these QR codes to learn about Saturn.<br />
Watch a video<br />
Neptune<br />
Read <strong>in</strong>formation<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Scan these QR codes to learn about Uranus.<br />
Scan these QR codes to learn about Neptune.<br />
Watch a video<br />
Read <strong>in</strong>formation<br />
Watch a video<br />
Read <strong>in</strong>formation<br />
96 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 5<br />
Jovian planets comparison<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 97
Lesson 6<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Teacher notes<br />
<strong>Science</strong> <strong>in</strong>quiry focus:<br />
How do scientists explore the planets <strong>in</strong> our solar system?<br />
<strong>Science</strong> Inquiry Skills:<br />
• Question<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>g QP<br />
• Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g PC<br />
• Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation PA<br />
• Communicat<strong>in</strong>g<br />
<strong>Science</strong> as a Human Endeavour:<br />
C<br />
• Students research how scientists were able to gather data<br />
<strong>and</strong> develop ideas about the solar system, through the use of<br />
technology devices such as space probes.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g/Mathematics l<strong>in</strong>k:<br />
• us<strong>in</strong>g a computer to type URLs <strong>in</strong>to a web browser, to l<strong>in</strong>k to<br />
onl<strong>in</strong>e videos<br />
• conduct<strong>in</strong>g onl<strong>in</strong>e research to identify how technological<br />
advances have assisted scientists to explore terrestrial <strong>and</strong> Jovian<br />
planets <strong>in</strong> our solar system<br />
• us<strong>in</strong>g a digital application, such as Seesaw, to communicate<br />
<strong>in</strong>formation (optional)<br />
Background <strong>in</strong>formation<br />
• Early astronomers developed ideas about the world based<br />
on observations of the sky, <strong>in</strong>clud<strong>in</strong>g the sun, moon, stars,<br />
comets <strong>and</strong> other objects <strong>in</strong> the solar system. They used<br />
mathematical calculations to predict events relat<strong>in</strong>g to<br />
astronomy.<br />
• With the <strong>in</strong>vention of telescopes, astronomers were able to<br />
view different planets <strong>in</strong> our solar system from <strong>Earth</strong>.<br />
• With the advancement of satellite, space exploration <strong>and</strong><br />
space flight technologies, scientists have been able to<br />
observe the physical features <strong>and</strong> atmospheric conditions on<br />
each planet <strong>in</strong> our solar system, to identify possibilities of life<br />
on other planets.<br />
• A space probe is an unmanned robotic spacecraft that<br />
travels through space, to collect <strong>in</strong>formation about celestial<br />
bodies <strong>in</strong> our solar system, <strong>and</strong> send this data back to <strong>Earth</strong><br />
for scientists to study. <strong>Space</strong> probes <strong>in</strong>clude <strong>in</strong>terplanetary<br />
probes, such as the Voyager probes; orbiters, such as Juno<br />
<strong>and</strong> Cass<strong>in</strong>i; <strong>and</strong> l<strong>and</strong>ers (<strong>in</strong>clud<strong>in</strong>g rovers), such as Huygens<br />
<strong>and</strong> Curiosity.<br />
• For more <strong>in</strong>formation, go to .<br />
Assessment focus:<br />
• Use pages 100 <strong>and</strong> 101 to<br />
assess students’ research<strong>in</strong>g<br />
skills, <strong>in</strong>clud<strong>in</strong>g notetak<strong>in</strong>g<br />
<strong>and</strong> synthesis<strong>in</strong>g<br />
<strong>in</strong>formation.<br />
• Use students’ answers to<br />
the Reflection question, to<br />
assess their underst<strong>and</strong><strong>in</strong>g<br />
of how technological<br />
advances have assisted<br />
scientists to explore planets<br />
<strong>in</strong> our solar system.<br />
Resources<br />
• Onl<strong>in</strong>e video—First<br />
moon l<strong>and</strong><strong>in</strong>g 1969 at<br />
<br />
• Individual science<br />
journals or an iPad <strong>with</strong><br />
Popplet<br />
• An iPad ® <strong>with</strong> a QR<br />
scanner <strong>in</strong>st<strong>all</strong>ed for<br />
each pair<br />
• A copy of pages 100<br />
<strong>and</strong> 101 for each pair<br />
• <strong>We</strong>bsite—Where our<br />
Curiosity took us at<br />
<br />
• Onl<strong>in</strong>e image—<strong>Space</strong><br />
exploration time l<strong>in</strong>e<br />
overview at <br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
98 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 6<br />
Lesson plan<br />
Introduction<br />
1. As a class, watch the video at to see the 1969 space mission, Apollo<br />
moon l<strong>and</strong><strong>in</strong>g. Individu<strong>all</strong>y, students reflect on their prior knowledge of space exploration to<br />
predict how scientists explore other planets <strong>in</strong> our solar system. Prompt students <strong>with</strong> questions<br />
<strong>in</strong>clud<strong>in</strong>g: How did scientists explore <strong>Earth</strong>’s moon <strong>in</strong> the past? What technology do they use to<br />
explore the solar system? How do scientists explore terrestrial planets? How do scientists explore<br />
gas planets when there is no surface to l<strong>and</strong> on? Students record their predictions <strong>in</strong> their science<br />
journals or use an iPad ® application such as Popplet. QP<br />
Development<br />
2. Divide the class <strong>in</strong>to pairs. Us<strong>in</strong>g a computer, students type the URLs on pages 100 <strong>and</strong> 101 <strong>in</strong>to a<br />
web browser to research how scientists have explored gas giants <strong>in</strong> the past. Students learn about<br />
space probes, <strong>in</strong>clud<strong>in</strong>g Cass<strong>in</strong>i <strong>and</strong> Juno, <strong>and</strong> how scientists have used these <strong>in</strong> recent times<br />
to explore the gas giants, Jupiter <strong>and</strong> Saturn. Students summarise their research to answer the<br />
questions on pages 100 <strong>and</strong> 101. PC PA<br />
Differentiation<br />
• Less capable students can conduct an <strong>in</strong>terview <strong>in</strong> pairs, to answer the questions on pages 100<br />
<strong>and</strong> 101. Students record their answers us<strong>in</strong>g an audio or video-record<strong>in</strong>g application on an<br />
iPad ® .<br />
• More capable students can be encouraged to view the onl<strong>in</strong>e <strong>in</strong>teractive time l<strong>in</strong>e of the space<br />
exploration project Voyager at . Us<strong>in</strong>g their science journals,<br />
students record key <strong>in</strong>formation relat<strong>in</strong>g to the exploration of <strong>all</strong> four gas giants, rather than<br />
learn<strong>in</strong>g about Cass<strong>in</strong>i <strong>and</strong> Juno.<br />
3. Us<strong>in</strong>g a th<strong>in</strong>k-pair-sh<strong>are</strong>, students answer the questions: How did Cass<strong>in</strong>i <strong>and</strong> Juno travel around<br />
the gas giants? How did Neil Armstrong move along on the surface of the moon? What k<strong>in</strong>d of<br />
robot do you th<strong>in</strong>k scientists would need to explore Mars—a l<strong>and</strong>-based robot or an air-based robot?<br />
Students justify their op<strong>in</strong>ion based on their knowledge of terrestrial <strong>and</strong> Jovian planets. QP C<br />
4. As a class, go to to discover how scientists have used the rover,<br />
Curiosity, to explore the surface of Mars. Students look at the images <strong>and</strong> footage of the rover <strong>and</strong><br />
take turns to read the <strong>in</strong>formation, as the teacher scrolls down the page. Discuss the aim of the<br />
rover’s mission <strong>and</strong> how it was used to collect evidence of the conditions on Mars. PA<br />
Reflection<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
5. View a time l<strong>in</strong>e of significant developments <strong>in</strong> space exploration at .<br />
In their science journals or us<strong>in</strong>g a digital application, such as Seesaw, students <strong>in</strong>dividu<strong>all</strong>y answer<br />
the question How have advances <strong>in</strong> technology assisted scientists to explore terrestrial <strong>and</strong> Jovian<br />
planets <strong>in</strong> our solar system? PA C<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 99
Lesson 6<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
<strong>Space</strong> probes – 1<br />
Conduct <strong>in</strong>ternet research about space probes to answer the follow<strong>in</strong>g questions.<br />
1. What is a space probe?<br />
2. What is a space probe used for?<br />
3. Which Jovian planets did each of these space probes explore?<br />
(a)<br />
(b)<br />
Juno<br />
Cass<strong>in</strong>i<br />
Type <strong>in</strong>to a web browser to watch a video about Juno. Click<br />
<strong>and</strong> drag the mouse on the video to look around the solar system.<br />
4. What did Juno discover dur<strong>in</strong>g its mission? List as much <strong>in</strong>formation as possible us<strong>in</strong>g<br />
bullet po<strong>in</strong>ts.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
100 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Lesson 6<br />
<strong>Space</strong> probes – 2<br />
Type <strong>in</strong>to a web browser to watch a video about the Cass<strong>in</strong>i–<br />
Huygen space mission.<br />
1. How many years did it take Cass<strong>in</strong>i to reach Saturn?<br />
2. Record the key events <strong>in</strong> the Cass<strong>in</strong>i-Huygen space mission. These <strong>are</strong> shown <strong>in</strong> text<br />
throughout the video.<br />
15 October, 1997<br />
14 January, 2005<br />
8 July, 2009<br />
26 April, 2017<br />
15 September, 2017<br />
3. How many dives did Cass<strong>in</strong>i make between Saturn <strong>and</strong> its r<strong>in</strong>gs,<br />
before the mission ended?<br />
4. Why did scientists program Cass<strong>in</strong>i to dive between the r<strong>in</strong>gs, know<strong>in</strong>g that it would not<br />
survive?<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
5. Us<strong>in</strong>g the images <strong>in</strong> the video, after Cass<strong>in</strong>i entered <strong>in</strong>to Saturn’s atmosphere, draw or<br />
write your observations of Saturn.<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 101
Assessment<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Teacher notes<br />
<strong>Science</strong> knowledge<br />
The <strong>Earth</strong> is part of a system of planets orbit<strong>in</strong>g around a star (the sun) (ACSSU078)<br />
Indicators<br />
• Identifies <strong>and</strong> labels the sun <strong>and</strong> the planets correctly on an image of our solar system.<br />
• Identifies that circular l<strong>in</strong>es on an image of the solar system represent orbital paths.<br />
• Def<strong>in</strong>es solar system.<br />
• Identifies the names of the terrestrial <strong>and</strong> Jovian planets <strong>in</strong> our solar system, <strong>and</strong> the features <strong>and</strong>/<br />
or conditions of each group of planets.<br />
• Identifies how scientists explore planets <strong>in</strong> our solar system that cannot be accessed by humans.<br />
• Identifies the planets that space probes Cass<strong>in</strong>i, Curiosity <strong>and</strong> Juno, have been explor<strong>in</strong>g <strong>in</strong> recent<br />
times.<br />
Assessment answers<br />
Pages 103 <strong>and</strong> 104<br />
1.<br />
Neptune<br />
Mars<br />
Saturn<br />
<strong>Earth</strong><br />
Venus<br />
Mercury<br />
<strong>Earth</strong>’s moon<br />
The Sun<br />
Uranus<br />
Jupiter<br />
2. The l<strong>in</strong>es on the diagram represent the orbital<br />
paths of each planet.<br />
3. A solar system is a system of space (or celestial)<br />
objects that orbit around a star (the sun).<br />
4.<br />
Name the<br />
planets <strong>in</strong><br />
each group.<br />
Describe<br />
the<br />
conditions<br />
<strong>and</strong>/or<br />
features of<br />
each group<br />
of planets.<br />
Terrestrial planets<br />
Mercury<br />
Venus<br />
<strong>Earth</strong><br />
Mars<br />
Terrestrial planets <strong>are</strong><br />
those that <strong>are</strong> made<br />
mostly of rocks <strong>and</strong><br />
metals. They have a<br />
rocky surface which<br />
may conta<strong>in</strong> mounta<strong>in</strong>s,<br />
craters, canyons or<br />
volcanoes. Terrestrial<br />
planets do not have r<strong>in</strong>g<br />
systems but may have a<br />
sm<strong>all</strong> number of moons.<br />
Jovian planets<br />
Gas giants Ice giants<br />
Jupiter<br />
Saturn<br />
Uranus<br />
Neptune<br />
Jovian planets <strong>are</strong> those<br />
<strong>with</strong> a thick atmosphere<br />
made mostly of gas.<br />
They <strong>are</strong> divided <strong>in</strong>to two<br />
groups—gas giants <strong>and</strong><br />
ice giants—depend<strong>in</strong>g on<br />
the type of gases <strong>in</strong> the<br />
atmosphere. Jovian planets<br />
<strong>all</strong> have r<strong>in</strong>g systems made<br />
of t<strong>in</strong>y rocks, dust <strong>and</strong><br />
ice. They also <strong>all</strong> conta<strong>in</strong><br />
multiple moons.<br />
5. Teacher check—Answer should reflect:<br />
Scientists use technologies, such as space<br />
probes, to explore planets that cannot be<br />
accessed by humans. These space probes<br />
can be <strong>in</strong>terplanetary probes, orbiters or<br />
l<strong>and</strong>ers.<br />
6. Cass<strong>in</strong>i Mars<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Curiosity<br />
Juno<br />
Jupiter<br />
Saturn<br />
102 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Assessment<br />
1. Label the space objects on the diagram.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
2. What do the dotted circular l<strong>in</strong>es on the diagram represent?<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 103
Assessment<br />
<strong>STEM</strong> project<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
3. What is a solar system?<br />
4. Complete the table.<br />
Terrestrial planets<br />
Jovian planets<br />
Name the<br />
planets <strong>in</strong><br />
each group.<br />
Describe the<br />
conditions<br />
<strong>and</strong>/or<br />
features of<br />
each group<br />
of planets.<br />
Gas giants<br />
Ice giants<br />
5. How do scientists learn about the physical features <strong>and</strong> atmospheric conditions of<br />
planets that cannot be accessed by humans?<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
6. Match each space probe to the planet it has been explor<strong>in</strong>g.<br />
Cass<strong>in</strong>i<br />
Curiosity<br />
Juno<br />
Mars<br />
Jupiter<br />
Saturn<br />
104 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
<strong>STEM</strong> project<br />
Solar system documentary<br />
<strong>STEM</strong> project overview<br />
Students create scale models of each planet <strong>in</strong> our solar system, show<strong>in</strong>g colours <strong>and</strong> features.<br />
The models <strong>are</strong> then used to produce a documentary expla<strong>in</strong><strong>in</strong>g each planet’s size, position,<br />
surface features <strong>and</strong> atmosphere conditions, as understood by scientists.<br />
Concepts overview:<br />
<strong>Science</strong><br />
• Apply knowledge of the planets <strong>in</strong> our solar system <strong>and</strong> how scientists learn about these planets<br />
through space exploration.<br />
• Use science <strong>in</strong>quiry skills to plan <strong>and</strong> conduct an <strong>in</strong>vestigation to research <strong>and</strong> create<br />
a scientific representation of each planet <strong>in</strong> our solar system.<br />
• Communicate <strong>in</strong>formation about our solar system clearly, concisely <strong>and</strong> correctly throughout<br />
a documentary.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g<br />
• Apply the design process to plan, create <strong>and</strong> evaluate a model of each planet <strong>in</strong> our solar system<br />
<strong>and</strong> a documentary expla<strong>in</strong><strong>in</strong>g what each planet is like.<br />
• While work<strong>in</strong>g collarboratively, use project management processes to ensure accountability of<br />
each group member when plann<strong>in</strong>g, organis<strong>in</strong>g, controll<strong>in</strong>g resources, monitor<strong>in</strong>g time l<strong>in</strong>es <strong>and</strong><br />
meet<strong>in</strong>g design criteria.<br />
• Create a documentary us<strong>in</strong>g a digital camera or an iPad ® to describe the <strong>in</strong>formation scientists<br />
have learnt about each planet <strong>in</strong> our solar system.<br />
• Upload a documentary to a web-based system, such as a vlog or class website to sh<strong>are</strong> <strong>in</strong>formation.<br />
Mathematics<br />
• Use multiplication to convert centimeters to millimetres to create a scale model of each planet,<br />
us<strong>in</strong>g a scale of 1 mm = 100 km.<br />
• Use formal measurements to measure the diameter of each planet’s model.<br />
Alternative project ideas:<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
• Students design <strong>and</strong> create a model of a space probe that could navigate around a terrestrial<br />
or Jovian planet, to provide <strong>in</strong>formation to scientists about the features <strong>and</strong> conditions of the<br />
planet. Students create proportion<strong>all</strong>y-sized tools that the space probe will use to collect <strong>and</strong><br />
record data, <strong>in</strong>clud<strong>in</strong>g cameras <strong>and</strong> thermometers. Students use digital technologies, such as<br />
presentation apps or softw<strong>are</strong>, to expla<strong>in</strong> the features <strong>and</strong> abilities of their model space probe.<br />
• Students design <strong>and</strong> create a stop-motion animation of an adventure story or video game, set<br />
<strong>in</strong> outer space. The characters <strong>in</strong> the story or video game must explore each planet <strong>in</strong> the solar<br />
system <strong>and</strong> answer three quiz questions about the planet, before they cont<strong>in</strong>ue on their journey<br />
to the next planet.<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 105
<strong>STEM</strong> project<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
<strong>Science</strong> Underst<strong>and</strong><strong>in</strong>g<br />
<strong>STEM</strong> curriculum l<strong>in</strong>ks<br />
SCIENCE CURRICULUM<br />
• The <strong>Earth</strong> is part of a system of planets orbit<strong>in</strong>g around a star (the sun) (ACSSU078)<br />
<strong>Science</strong> as a Human Endeavour<br />
• <strong>Science</strong> <strong>in</strong>volves test<strong>in</strong>g predictions by gather<strong>in</strong>g data <strong>and</strong> us<strong>in</strong>g evidence to develop explanations of events <strong>and</strong><br />
phenomena <strong>and</strong> reflects historical <strong>and</strong> cultural contributions (ACSHE081)<br />
• Scientific knowledge is used to solve problems <strong>and</strong> <strong>in</strong>form personal <strong>and</strong> community decisions (ACSHE083)<br />
<strong>Science</strong> Inquiry Skills<br />
Plann<strong>in</strong>g <strong>and</strong> conduct<strong>in</strong>g<br />
• Identify, plan <strong>and</strong> apply the elements of scientific <strong>in</strong>vestigations to answer questions <strong>and</strong> solve problems us<strong>in</strong>g<br />
equipment <strong>and</strong> materials safely <strong>and</strong> identify<strong>in</strong>g potential risks (ACSIS086)<br />
Process<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g data <strong>and</strong> <strong>in</strong>formation<br />
• Construct <strong>and</strong> use a range of representations, <strong>in</strong>clud<strong>in</strong>g tables <strong>and</strong> graphs, to represent <strong>and</strong> describe observations,<br />
patterns or relationships <strong>in</strong> data us<strong>in</strong>g digital technologies as appropriate (ACSIS090)<br />
Communicat<strong>in</strong>g<br />
• Communicate ideas, explanations <strong>and</strong> processes us<strong>in</strong>g scientific representations <strong>in</strong> a variety of ways, <strong>in</strong>clud<strong>in</strong>g multimodal<br />
texts (ACSIS093)<br />
TECHNOLOGIES CURRICULUM<br />
Design <strong>and</strong> Technologies Knowledge <strong>and</strong> Underst<strong>and</strong><strong>in</strong>g<br />
• Investigate characteristics <strong>and</strong> properties of a range of materials, systems, components, tools <strong>and</strong> equipment <strong>and</strong><br />
evaluate the impact of their use (ACTDEK023)<br />
Design <strong>and</strong> Technologies Processes <strong>and</strong> Production Skills<br />
• Critique needs or opportunities for design<strong>in</strong>g, <strong>and</strong> <strong>in</strong>vestigate materials, components, tools, equipment <strong>and</strong> processes to<br />
achieve <strong>in</strong>tended designed solutions (ACTDEP024)<br />
• Generate, develop <strong>and</strong> communicate design ideas <strong>and</strong> processes for audiences us<strong>in</strong>g appropriate technical terms <strong>and</strong><br />
graphical representation techniques (ACTDEP025)<br />
• Select appropriate materials, components, tools, equipment <strong>and</strong> techniques <strong>and</strong> apply safe procedures to make designed<br />
solutions (ACTDEP026)<br />
• Negotiate criteria for success that <strong>in</strong>clude susta<strong>in</strong>ability to evaluate design ideas, processes <strong>and</strong> solutions (ACTDEP027)<br />
• Develop project plans that <strong>in</strong>clude consideration of resources when mak<strong>in</strong>g designed solutions <strong>in</strong>dividu<strong>all</strong>y <strong>and</strong><br />
collaboratively (ACTDEP028)<br />
Digital Technologies Processes <strong>and</strong> Production Skills<br />
• Acquire, store <strong>and</strong> validate different types of data, <strong>and</strong> use a range of softw<strong>are</strong> to <strong>in</strong>terpret <strong>and</strong> visualise data to create<br />
<strong>in</strong>formation (ACTDIP016)<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
• Plan, create <strong>and</strong> communicate ideas <strong>and</strong> <strong>in</strong>formation, <strong>in</strong>clud<strong>in</strong>g collaboratively onl<strong>in</strong>e, apply<strong>in</strong>g agreed ethical, social <strong>and</strong><br />
technical protocols. (ACTDIP022)<br />
MATHEMATICS CURRICULUM<br />
Number <strong>and</strong> Algebra<br />
• Solve problems <strong>in</strong>volv<strong>in</strong>g multiplication of large numbers by one- or two-digit numbers us<strong>in</strong>g efficient mental, written<br />
strategies <strong>and</strong> appropriate digital technologies (ACMNA100)<br />
• Recognise that the place value system can be extended beyond hundredths (ACMNA104)<br />
Measurement <strong>and</strong> Geometry<br />
• Choose appropriate units of measurement for length, <strong>are</strong>a, volume, capacity <strong>and</strong> mass (ACMMG108)<br />
106 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
<strong>STEM</strong> project<br />
<strong>STEM</strong> project:<br />
Teacher notes<br />
Students create scale models of each planet <strong>in</strong> our solar system, show<strong>in</strong>g colours <strong>and</strong> features.<br />
The models <strong>are</strong> then used to produce a documentary expla<strong>in</strong><strong>in</strong>g each planet’s size, position,<br />
surface features <strong>and</strong> atmosphere conditions, as understood by scientists.<br />
Estimated duration: 4–6 weeks<br />
1. Introduce the project<br />
• Watch the onl<strong>in</strong>e video Could we move<br />
to <strong>Earth</strong> 2.0? at to encourage students to th<strong>in</strong>k<br />
about what life could be like on other<br />
planets.<br />
• Divide the class <strong>in</strong>to groups of four.<br />
• Display page 108 on a whiteboard or<br />
give each group a copy. Read through<br />
the problem, the task <strong>and</strong> the criteria <strong>and</strong><br />
clarify any queries students have.<br />
• Give each group a copy of page 109, so<br />
students can manage <strong>and</strong> assess their<br />
progress.<br />
• Give each group a copy of pages 84 <strong>and</strong><br />
110, to plan the size <strong>and</strong> appearance of<br />
the models of each planet. Discuss where<br />
to f<strong>in</strong>d art <strong>and</strong> craft supplies <strong>and</strong> rem<strong>in</strong>d<br />
students about resource management.<br />
2. Investigate<br />
• In their groups, each student is <strong>all</strong>ocated<br />
a terrestrial <strong>and</strong> a Jovian planet to<br />
research, which they will be responsible for<br />
discuss<strong>in</strong>g dur<strong>in</strong>g the documentary.<br />
• Students research their planets us<strong>in</strong>g the<br />
<strong>in</strong>formation listed <strong>in</strong> the Investigate section<br />
on page 109.<br />
3. Design, plan <strong>and</strong> manage resources<br />
• Students plan the models by calculat<strong>in</strong>g<br />
the scaled diameter of each planet <strong>in</strong><br />
millimetres, us<strong>in</strong>g page 110; <strong>and</strong> colour<strong>in</strong>g<br />
images of each planet, us<strong>in</strong>g page 84.<br />
• Students plan their documentary, us<strong>in</strong>g a<br />
storyboard of each scene. Students then<br />
record the <strong>in</strong>formation for each scene, on<br />
palm cards.<br />
4. Create<br />
• Students create their models <strong>and</strong><br />
decorate them accord<strong>in</strong>g to each planet’s<br />
appearance.<br />
• Students create their documentary,<br />
expla<strong>in</strong><strong>in</strong>g the <strong>in</strong>formation recorded on<br />
their palm cards while they film the models<br />
of each planet, <strong>in</strong> order from closest to<br />
furthest from the sun.<br />
5. Evaluate <strong>and</strong> ref<strong>in</strong>e<br />
• Students evaluate their models <strong>and</strong> their<br />
documentary to ensure they meet <strong>all</strong> the<br />
criteria listed on page 108. Any necessary<br />
changes should be made.<br />
6. Communicate<br />
• Students sh<strong>are</strong> their documentary <strong>with</strong> an<br />
audience by upload<strong>in</strong>g it to a class vlog or<br />
website, or email<strong>in</strong>g it to a p<strong>are</strong>nt/c<strong>are</strong>r.<br />
• Individu<strong>all</strong>y, students complete the selfassessment<br />
on page 111 to evaluate how<br />
well their team cooperated together to<br />
produce their documentary.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 107
<strong>STEM</strong> project<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
The problem<br />
Project brief<br />
SOLAR SY<strong>STEM</strong> DOCUMENTARY<br />
Famous scientists have received feedback from<br />
space probes which show what the conditions<br />
<strong>are</strong> like on each planet. The space probes have<br />
flown through the solar system orbit<strong>in</strong>g around,<br />
<strong>and</strong> l<strong>and</strong><strong>in</strong>g on, different planets. These space<br />
probes have sent photographic evidence <strong>and</strong> test sample results to the<br />
scientists. The scientists now need to expla<strong>in</strong> what they have learnt about<br />
each planet to the public. Could we live on any other planet?<br />
The task<br />
Create a scale model of each planet <strong>in</strong> our solar system,<br />
show<strong>in</strong>g colours <strong>and</strong> features. Us<strong>in</strong>g these models,<br />
produce a documentary expla<strong>in</strong><strong>in</strong>g each planet’s size,<br />
position, surface features <strong>and</strong> atmosphere conditions, as<br />
understood by scientists.<br />
Th<strong>in</strong>gs to consider<br />
• You must work <strong>in</strong> groups of four, <strong>with</strong> each group<br />
member research<strong>in</strong>g, creat<strong>in</strong>g <strong>and</strong> speak<strong>in</strong>g about one terrestrial <strong>and</strong> one<br />
Jovian planet.<br />
• Each model must be created us<strong>in</strong>g the scale: 1 mm on the model<br />
represents 100 km <strong>in</strong> the real world.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
• You must write the name <strong>and</strong> the actual diameter of each planet on a label<br />
<strong>and</strong> attach it to each model.<br />
• Dur<strong>in</strong>g the documentary, you must describe each planet <strong>in</strong> order from<br />
closest to furthest from the sun. When <strong>in</strong>troduc<strong>in</strong>g each planet, you must<br />
expla<strong>in</strong> its distance from the sun.<br />
• Dur<strong>in</strong>g the documentary, for each planet you must expla<strong>in</strong> the type<br />
(terrestrial or Jovian), its features <strong>and</strong>/or conditions, <strong>and</strong> its rotation <strong>and</strong><br />
orbital periods.<br />
• The documentary must have a duration of between 5 <strong>and</strong> 10 m<strong>in</strong>utes.<br />
108 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
<strong>STEM</strong> project<br />
Investigate<br />
Project steps<br />
Decide which terrestrial <strong>and</strong> Jovian planet each group member will research <strong>and</strong> speak<br />
about.<br />
Identify which planets <strong>are</strong> terrestrial planets <strong>and</strong> which <strong>are</strong> Jovian planets.<br />
Revise the size, features <strong>and</strong>/or conditions of each planet.<br />
Revise the distance between each planet <strong>and</strong> the sun, <strong>and</strong> the order of each planet from<br />
closest to furthest from the sun.<br />
Revise the rotation <strong>and</strong> orbital periods of each planet.<br />
Design, plan <strong>and</strong> manage resources<br />
Calculate the diameter of each model us<strong>in</strong>g the scale: 1 mm on the model represents<br />
100 km <strong>in</strong> the real world.<br />
Decide on, <strong>and</strong> collect the materials you will use to make the models.<br />
Colour an image of each planet to show how each model will look.<br />
Plan your documentary by creat<strong>in</strong>g a storyboard of each scene.<br />
Write palm cards for each scene, expla<strong>in</strong><strong>in</strong>g the required <strong>in</strong>formation <strong>in</strong> your own words.<br />
Make sure you <strong>in</strong>clude <strong>all</strong> necessary <strong>in</strong>formation <strong>and</strong> can read the palm cards clearly.<br />
Create<br />
Create a model of each planet us<strong>in</strong>g the scale.<br />
Decorate each planet to show its colours <strong>and</strong> features.<br />
Create labels, <strong>in</strong>clud<strong>in</strong>g the planet’s name <strong>and</strong> actual diameter.<br />
Rehearse your documentary. Time it to make sure it is between 5 <strong>and</strong> 10 m<strong>in</strong>utes long.<br />
Film your documentary.<br />
Evaluate <strong>and</strong> ref<strong>in</strong>e<br />
Ensure each model meets the criteria.<br />
Ensure your documentary meets the criteria.<br />
Communicate<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
Upload your documentary to a class blog or email it to a p<strong>are</strong>nt/c<strong>are</strong>r.<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 109
<strong>STEM</strong> project<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
Modell<strong>in</strong>g the planets<br />
1. Multiply the model size (cm) by ten to f<strong>in</strong>d the model size (mm). For example: 4.879 cm x<br />
10 = 48.79 mm.<br />
Planet<br />
Actual<br />
diameter<br />
(km)<br />
Scaled diameter (cm)<br />
1 cm on the model<br />
represents 1000 km <strong>in</strong> the<br />
real world.<br />
Mercury 4 879 km 4.879 cm<br />
Venus 12 104 km 12.104 cm<br />
<strong>Earth</strong> 12 756 km 12.756 cm<br />
Mars 6 792 km 6.792 cm<br />
Jupiter 142 984 km 142.984 cm<br />
Saturn 120 536 km 120.536 cm<br />
Uranus 51 118 km 51.118 cm<br />
Neptune 49 528 km 49.528 cm<br />
Scaled diameter (mm)<br />
1 mm on the model<br />
represents 100 km <strong>in</strong> the real<br />
world.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
2. What materials will you use to make each model the correct size <strong>and</strong> shape?<br />
3. What materials will you use to decorate each model so that it looks like the planet it is<br />
represent<strong>in</strong>g?<br />
110 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
<strong>STEM</strong> project<br />
Self-assessment<br />
Student name:<br />
Date:<br />
<strong>STEM</strong> project:<br />
Solar system documentary<br />
1. Colour a face to rate how cooperatively your team worked.<br />
All group members contributed ideas to the team.<br />
All group members listened c<strong>are</strong>fully to the ideas<br />
of others.<br />
All group members encouraged others to<br />
contribute their thoughts <strong>and</strong> op<strong>in</strong>ions.<br />
Group members <strong>all</strong> spoke respectfully to other<br />
group members.<br />
Group members compromised (when needed) to<br />
create the best possible product.<br />
2. List three ways the team helped each other to create the product.<br />
3. List one difficulty the group encountered when work<strong>in</strong>g as a team.<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
4. How could a similar issue be resolved <strong>in</strong> future projects?<br />
5. What was the most enjoyable part of the project?<br />
6. What was the least enjoyable part of the project?<br />
R.I.C. Publications® – www.ricpublications.com.au YEAR <strong>Science</strong>:<br />
5 A <strong>STEM</strong> APPROACH 111
<strong>STEM</strong> project<br />
<strong>Earth</strong> <strong>and</strong> space sciences<br />
WE ARE ALL SPINNING IN CIRCLES<br />
CRITERIA<br />
Group members:<br />
Project task:<br />
Produce a documentary to demonstrate what other planets <strong>in</strong> our solar system <strong>are</strong> like.<br />
Create a scale model of each planet to film <strong>and</strong> expla<strong>in</strong> dur<strong>in</strong>g the documentary.<br />
<strong>Science</strong> knowledge<br />
Applies knowledge of our solar system, <strong>in</strong>clud<strong>in</strong>g each planet’s name, size, features/<br />
conditions, rotation <strong>and</strong> orbital periods, <strong>and</strong> the distance of each planet from the sun, <strong>in</strong><br />
order.<br />
<strong>Science</strong> as a Human Endeavour<br />
Researches how scientists <strong>are</strong> able to develop ideas about the solar system through space<br />
exploration.<br />
<strong>Science</strong> skills<br />
Researches <strong>in</strong>formation about each planet us<strong>in</strong>g reliable websites.<br />
Uses a table to record the model size of each planet.<br />
Communicates science underst<strong>and</strong><strong>in</strong>g correctly, clearly <strong>and</strong> concisely, us<strong>in</strong>g a scientific<br />
representation of each planet.<br />
Technology/Eng<strong>in</strong>eer<strong>in</strong>g skills<br />
Plans <strong>and</strong> designs models of each planet <strong>and</strong> a documentary that meet the given criteria.<br />
Investigates <strong>and</strong> uses a range of materials to create <strong>and</strong> decorate the model of each<br />
planet.<br />
Creates a model of each planet us<strong>in</strong>g the correct size, colours <strong>and</strong> observable features.<br />
Evaluates designed products to ensure they meet the criteria <strong>and</strong> makes any necessary<br />
changes.<br />
Plans <strong>and</strong> creates a documentary to describe the <strong>in</strong>formation scientists have learnt about<br />
each planet <strong>in</strong> our solar system.<br />
Uploads a documentary to a web-based system to sh<strong>are</strong> <strong>in</strong>formation.<br />
Mathematics skills<br />
Converts a scaled diameter of each planet (centimetres) to millimetres <strong>and</strong> uses these<br />
measurements to create each model.<br />
Creates a documentary <strong>with</strong> a duration of 5–10 m<strong>in</strong>utes.<br />
Group skills<br />
All group members contributed fairly <strong>and</strong> appropriately.<br />
Group assessment rubric<br />
All group members collaborated <strong>and</strong> communicated effectively.<br />
Group members were able to resolve conflicts <strong>in</strong>dependently.<br />
1 = Below expectations<br />
2 = Meet<strong>in</strong>g expectations<br />
3 = Above expectations<br />
©R.I.C. Publications<br />
Low Resolution Images<br />
Display Copy<br />
112 <strong>Science</strong>:<br />
A <strong>STEM</strong> APPROACH<br />
YEAR<br />
5<br />
R.I.C. Publications® – www.ricpublications.com.au