18.11.2018 Views

Article - Plastics recycling and waste management in the US, Quản lý và tái chế nhựa ở Hoa Kỳ (Vietsub)

https://app.box.com/s/c22z4r9i16a9jazrp4hdh6jefj6nekz5

https://app.box.com/s/c22z4r9i16a9jazrp4hdh6jefj6nekz5

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Resources, Conservation <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263<br />

www.elsevier.com/locate/resconrec<br />

<strong>Plastics</strong> <strong>recycl<strong>in</strong>g</strong> <strong>and</strong> <strong>waste</strong> <strong>management</strong> <strong>in</strong> <strong>the</strong><br />

<strong>US</strong><br />

P.M. Subramanian *<br />

S.P.M. Technologies, 110 Cameron Drie, Hockess<strong>in</strong>, DE 19707, <strong>US</strong>A<br />

Abstract<br />

The <strong>in</strong>creas<strong>in</strong>g awareness of <strong>the</strong> environment has contributed to concerns regard<strong>in</strong>g our<br />

life styles <strong>and</strong> our <strong>in</strong>discrim<strong>in</strong>ate disposal of <strong>waste</strong>s. Dur<strong>in</strong>g <strong>the</strong> last decade, we have been<br />

try<strong>in</strong>g to address this complex problem, more aggressively. Discussed here briefly, are our<br />

efforts <strong>in</strong> <strong>the</strong> United States <strong>in</strong> address<strong>in</strong>g <strong>the</strong> issue of solid <strong>waste</strong>s <strong>and</strong> <strong>in</strong> particular, plastic<br />

<strong>waste</strong>s. These efforts have begun to show promis<strong>in</strong>g results. The municipal solid <strong>waste</strong><br />

(MSW) produced annually, has begun to decrease, e.g. from 211.5 million tons <strong>in</strong> 1995 to<br />

209.7 million tons <strong>in</strong> 1996. Recycl<strong>in</strong>g rates <strong>and</strong> compost<strong>in</strong>g rates are <strong>in</strong>creas<strong>in</strong>g. Disposal <strong>in</strong><br />

l<strong>and</strong>fills is decreas<strong>in</strong>g (from 60.9 to 55.5% <strong>in</strong> 1996). Waste disposal by combustion is also<br />

<strong>in</strong>creas<strong>in</strong>g. This is primarily due to <strong>the</strong> <strong>in</strong>creased efficiencies of <strong>the</strong> new <strong>in</strong>c<strong>in</strong>erators <strong>and</strong> <strong>the</strong>ir<br />

ability for <strong>the</strong> removal of particulates <strong>and</strong> harmful gases. <strong>Plastics</strong> are a small but a significant<br />

component of <strong>the</strong> <strong>waste</strong> stream. It is encourag<strong>in</strong>g to note that <strong>the</strong> amount of plastics be<strong>in</strong>g<br />

recycled has grown significantly. In 1997, about 317 million kg of high density polyethylene<br />

(HDPE) bottles <strong>and</strong> 294 million kg of polyethylene terephthalate (PET) bottles were<br />

recycled. Recycl<strong>in</strong>g of durable goods, such as automotive parts, carpets, electronic <strong>and</strong><br />

appliance hous<strong>in</strong>gs <strong>and</strong> parts are be<strong>in</strong>g explored. Environmental compatibility <strong>and</strong> recyclability<br />

are be<strong>in</strong>g considered dur<strong>in</strong>g <strong>the</strong> design<strong>in</strong>g of new parts. Life cycle analyses <strong>and</strong><br />

<strong>management</strong> are also be<strong>in</strong>g studied as tools for decision mak<strong>in</strong>g. © 2000 ACEEE Published<br />

by Elsevier Science B.V. All rights reserved.<br />

Keywords: Environment; <strong>Plastics</strong> <strong>recycl<strong>in</strong>g</strong>; Waste <strong>management</strong>; Municipal <strong>waste</strong>; Integrated <strong>waste</strong><br />

<strong>management</strong>; Waste-to-energy; Inc<strong>in</strong>eration; L<strong>and</strong>fill; Life cycle analysis<br />

* Tel.: +1-302-2394953; fax: +1-302-2390444.<br />

0921-3449/00/$ - see front matter © 2000 ACEEE Published by Elsevier Science B.V. All rights reserved.<br />

PII: S0921-3449(99)00049-X


254<br />

P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263<br />

1. Introduction<br />

The pursuit of a higher quality of life is a cont<strong>in</strong>u<strong>in</strong>g goal for <strong>the</strong> people of this<br />

world. This has contributed to <strong>the</strong> <strong>in</strong>creased consumption of goods <strong>and</strong> services. A<br />

consequence of such consumption is <strong>the</strong> production of <strong>in</strong>creased pollution <strong>and</strong> large<br />

amounts of <strong>waste</strong>s. The goal of any susta<strong>in</strong>able growth should be that <strong>the</strong> efficiency<br />

of energy utilization <strong>in</strong> every step of <strong>the</strong> system, from <strong>the</strong> production of <strong>the</strong> goods<br />

to <strong>the</strong> disposal of <strong>the</strong> <strong>waste</strong>s, be maximized. The <strong>in</strong>terdependence of each of <strong>the</strong>se<br />

steps on <strong>the</strong> o<strong>the</strong>rs <strong>in</strong> <strong>the</strong> total cha<strong>in</strong>, necessitates that we address <strong>the</strong> problems, <strong>in</strong><br />

totality. This is an enormous <strong>and</strong> complex task. In this talk, we will focus only on<br />

<strong>the</strong> solid <strong>waste</strong>s produced <strong>and</strong> its <strong>management</strong>, <strong>and</strong> specially discuss plastics <strong>in</strong> <strong>the</strong><br />

solid <strong>waste</strong> stream, <strong>in</strong> <strong>the</strong> United States. An <strong>in</strong>tegrated <strong>waste</strong> <strong>management</strong> approach<br />

will be considered <strong>in</strong>volv<strong>in</strong>g efficient use of materials, <strong>recycl<strong>in</strong>g</strong> <strong>and</strong><br />

disposal.<br />

2. Municipal solid <strong>waste</strong> (MSW)<br />

Most of <strong>the</strong> consumer generated solid <strong>waste</strong>s, as well as a significant part of <strong>the</strong><br />

<strong>in</strong>dustrially produced <strong>waste</strong>s <strong>in</strong> this country, are disposed of by l<strong>and</strong>fill<strong>in</strong>g. However,<br />

dur<strong>in</strong>g <strong>the</strong> last decade, our environmental awareness has <strong>in</strong>creased, questions<br />

have been raised regard<strong>in</strong>g <strong>the</strong> viability of such <strong>in</strong>discrim<strong>in</strong>ate disposal practices. As<br />

a result, substantial progress has been made <strong>in</strong> better <strong>management</strong> of <strong>the</strong> <strong>waste</strong><br />

streams <strong>and</strong> more efficient utilization of <strong>the</strong> l<strong>and</strong> resources. The total MSW<br />

produced <strong>in</strong> <strong>the</strong> <strong>US</strong> has decl<strong>in</strong>ed. Per capita generation of such <strong>waste</strong>s has also<br />

decl<strong>in</strong>ed <strong>and</strong> <strong>recycl<strong>in</strong>g</strong> <strong>and</strong> compost<strong>in</strong>g activities have grown (Table 1). The<br />

quantities of discarded packag<strong>in</strong>g <strong>and</strong> durable goods have been reduced (Table 2)<br />

[1]. Significant amounts of <strong>waste</strong>s are be<strong>in</strong>g recycled <strong>and</strong>/or composted (Table 3).<br />

Disposal of solid <strong>waste</strong>s by combustion has also <strong>in</strong>creased. This is <strong>the</strong> result of <strong>the</strong><br />

greater efficiencies of <strong>the</strong> newer <strong>waste</strong>-to-energy (WTE) plants which are eng<strong>in</strong>eered<br />

for complete combustion of <strong>the</strong> organic <strong>waste</strong>s <strong>and</strong> capture <strong>and</strong> removal of noxious<br />

gases <strong>and</strong> particles. The APC [2] D<strong>in</strong>ger [3], Greenberg [4] <strong>and</strong> Porter [5] have<br />

provided several overviews of <strong>the</strong> solid <strong>waste</strong> picture. The <strong>US</strong> Environmental<br />

Protection Agency (EPA)s most recent figures [6] show that both <strong>the</strong> total <strong>and</strong> per<br />

capita <strong>waste</strong> generation rates have actually decl<strong>in</strong>ed. <strong>US</strong> EPA is predict<strong>in</strong>g a<br />

Table 1<br />

Municipal solid <strong>waste</strong> <strong>in</strong> <strong>the</strong> <strong>US</strong><br />

1993 1994 1995 1996<br />

Total MSW (million tons) 206<br />

209<br />

211.5 209.7<br />

Per capita generation (kg) 2.0 2.0<br />

2.0<br />

1.95<br />

Per capita discards (kg) 1.59 1.54 1.49 1.45<br />

Recovery–<strong>recycl<strong>in</strong>g</strong>, compost<strong>in</strong>g (%)<br />

21 24 26<br />

27


P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263 255<br />

Table 2<br />

Composition of materials discarded <strong>in</strong> <strong>the</strong> MSW*<br />

Weight (%) 1995<br />

1996<br />

Paper <strong>and</strong> paper products<br />

31.3 31.1<br />

Glass 6.2<br />

6.0<br />

Metals<br />

Ferrous<br />

4.7 4.8<br />

Alum<strong>in</strong>um<br />

1.2 1.3<br />

O<strong>the</strong>r non-ferrous 0.3<br />

0.3<br />

Total metals<br />

6.3<br />

6.4<br />

<strong>Plastics</strong><br />

11.5<br />

12.3<br />

Rubber <strong>and</strong> lea<strong>the</strong>r 3.5<br />

3.7<br />

Textiles 4.2<br />

4.4<br />

Wood<br />

6.4<br />

6.8<br />

O<strong>the</strong>r<br />

1.9<br />

1.9<br />

Food <strong>waste</strong>s 13.6<br />

14.0<br />

Yard trimm<strong>in</strong>gs<br />

13.3<br />

11.3<br />

Miscellaneous <strong>in</strong>organic <strong>waste</strong>s<br />

2.0 2.1<br />

* Discarded after recovery by <strong>recycl<strong>in</strong>g</strong>, compost<strong>in</strong>g.<br />

relatively stable per capita <strong>waste</strong> generation rate through <strong>the</strong> year 2000 as <strong>waste</strong><br />

reduction efforts cont<strong>in</strong>ue to have an effect [2].<br />

Today, over 19 000 communities are <strong>in</strong>volved <strong>in</strong> some form of <strong>recycl<strong>in</strong>g</strong>. A total<br />

78% of <strong>the</strong> <strong>US</strong> population have access to <strong>recycl<strong>in</strong>g</strong> programs [3].<br />

Rathje [7,8] <strong>and</strong> o<strong>the</strong>rs [2] po<strong>in</strong>t out that contrary to popular belief, plastics are<br />

not <strong>the</strong> most prevalent material <strong>in</strong> l<strong>and</strong>fills — paper <strong>and</strong> paper products account<br />

for <strong>the</strong> largest percentage of a l<strong>and</strong>fill’s contents. Food items <strong>and</strong> yard <strong>waste</strong>s are<br />

<strong>the</strong> next largest components. Among <strong>the</strong> o<strong>the</strong>r <strong>in</strong>dividual components plastics<br />

constitute <strong>the</strong> largest fraction (Table 2).<br />

The amounts of materials disposed <strong>in</strong> l<strong>and</strong>fills, recycled or composted or disposed<br />

by combustion are given <strong>in</strong> Table 3.<br />

Table 3<br />

Management of MSW <strong>in</strong> <strong>the</strong> <strong>US</strong><br />

1988 1990<br />

1994 1996<br />

L<strong>and</strong>fill (%)<br />

Recycl<strong>in</strong>g/compost<strong>in</strong>g (%)<br />

Combustion (%)<br />

60.9 55.5<br />

13 17 23.6 27.3<br />

15.5<br />

17.2


256<br />

P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263<br />

3. L<strong>and</strong>fills<br />

As shown <strong>in</strong> Table 3, most of <strong>the</strong> <strong>waste</strong> products are be<strong>in</strong>g disposed of by<br />

l<strong>and</strong>fill<strong>in</strong>g. Dur<strong>in</strong>g <strong>the</strong> 1980s, <strong>the</strong>re was a perceived crisis over a lack of l<strong>and</strong>fill<br />

space which led to fears that America would soon run out of room for its garbage.<br />

Images of garbage barges float<strong>in</strong>g up <strong>and</strong> down our coasts were <strong>in</strong>gra<strong>in</strong>ed <strong>in</strong>to our<br />

m<strong>in</strong>ds. While it is true that <strong>the</strong>re were some localized l<strong>and</strong>fill shortages <strong>in</strong> <strong>the</strong> 1980s,<br />

a shortage never occurred, nationwide. While <strong>the</strong> total number of l<strong>and</strong>fills is<br />

decreas<strong>in</strong>g, total l<strong>and</strong>fill capacity is actually steadily <strong>in</strong>creas<strong>in</strong>g.<br />

Between 1990 <strong>and</strong> 1996, <strong>the</strong>re has been a 17% decrease <strong>in</strong> <strong>waste</strong> be<strong>in</strong>g l<strong>and</strong>filled.<br />

National recovery levels reached 27% <strong>in</strong> 1996 <strong>and</strong> l<strong>and</strong>filled <strong>waste</strong>s decl<strong>in</strong>ed from<br />

83% of all MSW <strong>in</strong> 1986 to 55.4% <strong>in</strong> 1996. It has been calculated that at <strong>the</strong> current<br />

rate of <strong>waste</strong> generation, all of America’s garbage for <strong>the</strong> next 1000 years will fit<br />

<strong>in</strong>to a s<strong>in</strong>gle l<strong>and</strong>fill measur<strong>in</strong>g 120 feet deep <strong>and</strong> 44 miles square [2].<br />

Modern l<strong>and</strong>fills are designed to safely entomb <strong>waste</strong>s so that <strong>the</strong>ir uncontrolled<br />

degradation does not endanger groundwater with pollutants. Such l<strong>and</strong>fills could,<br />

<strong>in</strong> many cases, be used after <strong>the</strong>y are capped, to construct parks, golf courses <strong>and</strong><br />

even airports.<br />

4. <strong>Plastics</strong> <strong>and</strong> plastic <strong>waste</strong>s<br />

<strong>Plastics</strong> have become an <strong>in</strong>tegral part of our lives. The amounts of plastics<br />

consumed annually have been grow<strong>in</strong>g steadily (Table 4). Its low density, strength,<br />

user-friendly design <strong>and</strong> fabrication capabilities <strong>and</strong> low cost, are <strong>the</strong> drivers to<br />

such growth. Besides its wide use <strong>in</strong> packag<strong>in</strong>g, automotive <strong>and</strong> <strong>in</strong>dustrial applications,<br />

<strong>the</strong>y are extensively used <strong>in</strong> medical delivery systems, artificial implants <strong>and</strong><br />

o<strong>the</strong>r healthcare applications, water desal<strong>in</strong>ation <strong>and</strong> removal of bacteria etc. Usage<br />

of plastics, <strong>in</strong> preservation <strong>and</strong> distribution of food, hous<strong>in</strong>g <strong>and</strong> appliances are too<br />

many to mention here. Specially designed plastics, have been an <strong>in</strong>tegral part of <strong>the</strong><br />

communication <strong>and</strong> electronics <strong>in</strong>dustry — be it <strong>in</strong> <strong>the</strong> manufactur<strong>in</strong>g of chips or<br />

pr<strong>in</strong>ted circuit boards, or hous<strong>in</strong>gs for computers. They are also <strong>in</strong>tegral compo-<br />

Table 4<br />

Growth of plastics <strong>in</strong> MSW<br />

Year <strong>Plastics</strong> <strong>in</strong> MSW (%)<br />

1960 0.5<br />

1970 2.6<br />

1980 5.0<br />

1990 9.8<br />

1992 10.6<br />

1994 11.2<br />

1995<br />

1996<br />

11.5<br />

12.3


P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263 257<br />

Table 5<br />

<strong>Plastics</strong> <strong>in</strong> municipal solid <strong>waste</strong> (1996, 1000 tons)<br />

Durable goods<br />

6260<br />

Non-durable goods 5350<br />

Bags, sacks <strong>and</strong> wraps<br />

3220<br />

Soft dr<strong>in</strong>ks, milk etc. conta<strong>in</strong>ers<br />

O<strong>the</strong>r conta<strong>in</strong>ers<br />

1350<br />

1280<br />

nents <strong>in</strong> <strong>the</strong> preparation <strong>and</strong> delivery of alternative energy systems such as fuel cells,<br />

batteries <strong>and</strong> even solar power.<br />

Given such pervasiveness, it is little wonder that plastics contribute to an<br />

<strong>in</strong>creas<strong>in</strong>g volume <strong>in</strong> <strong>the</strong> solid <strong>waste</strong> stream. In <strong>the</strong> MSW, <strong>in</strong> 1996, plastics<br />

amounted to about 12%, by weight [1]. Table 5 describes <strong>the</strong> amounts of plastics<br />

(thous<strong>and</strong> tons) <strong>in</strong> <strong>the</strong> solid <strong>waste</strong>.<br />

The <strong>waste</strong> plastics collected from <strong>the</strong> solid <strong>waste</strong>s stream is a contam<strong>in</strong>ated,<br />

assorted mixture of a variety of plastics. This makes <strong>the</strong>ir identification, separation<br />

<strong>and</strong> purification, very challeng<strong>in</strong>g.<br />

In <strong>the</strong> plastics <strong>waste</strong> stream, polyethylene forms <strong>the</strong> largest fraction, which is<br />

followed by PET. Lesser amounts of a variety of o<strong>the</strong>r plastics can also be found<br />

<strong>in</strong> <strong>the</strong> plastics <strong>waste</strong> stream (Table 6).<br />

5. Integrated plastics <strong>waste</strong> <strong>management</strong><br />

Any attempt to manage such large quantities of a diverse, contam<strong>in</strong>ated mixture<br />

of plastics <strong>in</strong> an energy efficient <strong>and</strong> environmentally benign manner, needs to be<br />

considered us<strong>in</strong>g an <strong>in</strong>tegrated approach. This would require that we exam<strong>in</strong>e<br />

critically <strong>the</strong> various steps <strong>in</strong> <strong>the</strong> life of <strong>the</strong> plastics such as <strong>the</strong> raw materials for<br />

<strong>the</strong>ir manufacture, <strong>the</strong> manufactur<strong>in</strong>g processes, design <strong>and</strong> fabrication of <strong>the</strong><br />

f<strong>in</strong>ished products, possible reuse of those items, <strong>and</strong> <strong>the</strong> proper disposal of <strong>the</strong><br />

<strong>waste</strong>s etc., <strong>in</strong> totality.<br />

Such an <strong>in</strong>tegrated <strong>waste</strong> <strong>management</strong> concept comprises of<br />

Source reduction,<br />

reuse,<br />

<strong>recycl<strong>in</strong>g</strong>,<br />

Table 6<br />

Types <strong>and</strong> quantities of plastics <strong>in</strong> municipal solid <strong>waste</strong> (1000 tons)<br />

Polyethyleneterephthalate (PET) 1700<br />

High density polyethylene (HDPE) 4120<br />

Low density polyethylene (LDPE/HDPE)<br />

5010<br />

Polypropylene (PP) 2580<br />

Polystyrene (PS)<br />

O<strong>the</strong>r<br />

1990<br />

3130


258<br />

<br />

<br />

P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263<br />

l<strong>and</strong>fill,<br />

<strong>waste</strong>-to-energy conversion<br />

6. Source reduction–conserv<strong>in</strong>g energy<br />

It has been reported that only about 4% of <strong>the</strong> United States energy consumption<br />

are used <strong>in</strong> <strong>the</strong> production of all plastics [2]. Frankl<strong>in</strong> Associates Ltd., a lead<strong>in</strong>g<br />

practitioner <strong>in</strong> life cycle studies, has conducted research to compare <strong>the</strong> life cycle<br />

energy impact of plastics <strong>and</strong> alternative materials. One study compared <strong>the</strong> energy<br />

required to manufacture, use <strong>and</strong> dispose of common packag<strong>in</strong>g items with <strong>the</strong><br />

most likely non-plastic alternatives. Frankl<strong>in</strong> found that by us<strong>in</strong>g plastic packag<strong>in</strong>g,<br />

product manufacturers save enough energy each year to power a city of 1 million<br />

homes for roughly 3.5 years [2]. Rathje [9] has analyzed, carry<strong>in</strong>g capacity ratios of<br />

different packag<strong>in</strong>g materials. Glass has a value of 1.9 <strong>in</strong>dicat<strong>in</strong>g that to carry 1.9<br />

ounce of juice, one needs 1 ounce of glass. <strong>Plastics</strong> has a value of 34 mean<strong>in</strong>g that<br />

34 ounces of juice could be carried <strong>in</strong> 1 ounce of plastic. Paper has a value of 6.9<br />

<strong>and</strong> for alum<strong>in</strong>um <strong>the</strong> value is 21.8.<br />

7. Source reduction–efficient use<br />

An important aspect of <strong>the</strong> <strong>in</strong>tegrated <strong>waste</strong> <strong>management</strong> approach is to m<strong>in</strong>imize<br />

<strong>the</strong> amount of plastics used. By employ<strong>in</strong>g improved manufactur<strong>in</strong>g technologies,<br />

<strong>waste</strong>s produced dur<strong>in</strong>g manufactur<strong>in</strong>g processes have been reduced<br />

significantly, by <strong>the</strong> res<strong>in</strong> manufacturers <strong>and</strong> converters. Parts are be<strong>in</strong>g designed to<br />

have adequate strength, with less weight. Efforts are made to reduce <strong>the</strong> number of<br />

different types of plastics <strong>in</strong> any given assembly. Recycled plastics are often<br />

considered as raw materials for manufacture of a variety of parts, particularly <strong>in</strong><br />

<strong>the</strong> automotive <strong>and</strong> <strong>in</strong>dustrial areas.<br />

S<strong>in</strong>ce 1977, <strong>the</strong> weight of <strong>the</strong> 2-l plastic soft dr<strong>in</strong>k bottle has been reduced from<br />

68 to 51 g, a 25% reduction. That elim<strong>in</strong>ates <strong>the</strong> need for more than 206 million<br />

pounds of PET each year. The 1-gallon plastic milk jug has undergone an even<br />

greater reduction, weigh<strong>in</strong>g 30% less than it did 20 years ago. For several applications,<br />

milk <strong>and</strong> several juices are be<strong>in</strong>g packaged <strong>in</strong> recyclable pouches, which<br />

weigh substantially less than <strong>the</strong> rigid bottles. The lower weights, besides reduc<strong>in</strong>g<br />

<strong>the</strong> amounts of <strong>waste</strong>s produced, reduce <strong>the</strong> costs associated with freight <strong>and</strong><br />

h<strong>and</strong>l<strong>in</strong>g, as well.<br />

The durability of plastics often contributes to <strong>the</strong>ir reuse <strong>in</strong> a variety of<br />

secondary applications. Accord<strong>in</strong>g to Duranceau [10], a large number of automotive<br />

parts are recovered from discarded vehicles or vehicles <strong>in</strong>volved <strong>in</strong> an accident.<br />

These are dismantled, repaired <strong>and</strong> reused <strong>in</strong> many automotive repairs. These<br />

recovered plastic parts contribute to a large reduction <strong>in</strong> <strong>the</strong> potential amounts of<br />

virg<strong>in</strong> plastic materials that would have been required o<strong>the</strong>rwise.


P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263 259<br />

8. Recycl<strong>in</strong>g of plastics<br />

Plastic <strong>recycl<strong>in</strong>g</strong> has grown appreciably dur<strong>in</strong>g <strong>the</strong> last few years. Recycl<strong>in</strong>g of<br />

rigid plastic conta<strong>in</strong>ers has grown to about 1.4 billion pounds — 704 million<br />

pounds of <strong>waste</strong> HDPE bottles <strong>and</strong> 649 million pounds of <strong>waste</strong> PET bottles, <strong>in</strong><br />

1997 (Table 7). At present, <strong>the</strong>re are more than 1700 bus<strong>in</strong>esses h<strong>and</strong>l<strong>in</strong>g <strong>and</strong><br />

reclaim<strong>in</strong>g post-consumer plastics. A wide variety of new products, such as s<strong>in</strong>gleuse<br />

cameras, park benches, sweaters, jeans, videocassettes, detergent bottles <strong>and</strong><br />

toys are be<strong>in</strong>g made with or packaged <strong>in</strong> post-consumer recycled plastics. More<br />

than 1500 commercially available products are listed <strong>in</strong> <strong>the</strong> Recycled Plastic<br />

Products Source Book published by <strong>the</strong> APC.<br />

The production <strong>and</strong> consumption of virg<strong>in</strong> plastic res<strong>in</strong>s have been <strong>in</strong>creas<strong>in</strong>g<br />

steadily. Toloken [11] <strong>in</strong>dicates that <strong>the</strong> amount of plastics recycled have also<br />

<strong>in</strong>creased simultaneously (4% <strong>in</strong> 1997), however, <strong>the</strong> <strong>recycl<strong>in</strong>g</strong> rate has decl<strong>in</strong>ed.<br />

This is due to <strong>the</strong> weaker market dem<strong>and</strong> for recycled res<strong>in</strong>s <strong>in</strong> an economy where<br />

<strong>the</strong> virg<strong>in</strong> res<strong>in</strong>s are priced very low — a situation compounded by <strong>the</strong> low energy<br />

costs <strong>and</strong> <strong>the</strong> poor global economy, currently (1999).<br />

8.1. Durable plastics <strong>recycl<strong>in</strong>g</strong><br />

Durable plastics, as opposed to most packag<strong>in</strong>g <strong>and</strong> convenience goods which<br />

are discarded after a s<strong>in</strong>gle use, tend to have a life of 3 or more years. Automobiles,<br />

computers, household appliances, carpets <strong>and</strong> fabrics fall <strong>in</strong>to this category. The<br />

use of plastics <strong>in</strong> durable applications cont<strong>in</strong>ues to grow as design eng<strong>in</strong>eers,<br />

manufacturers <strong>and</strong> consumers cont<strong>in</strong>ue to rely on its performance, low cost <strong>and</strong><br />

design benefits. The recovery of plastics from such durable goods is complex. Often,<br />

<strong>the</strong>y are <strong>in</strong>tegrated with several o<strong>the</strong>r plastic <strong>and</strong> non-plastic components. Their<br />

separation, recovery <strong>and</strong> purification require several steps <strong>and</strong> generally, <strong>the</strong><br />

volumes of such materials available for recovery are limited. Never<strong>the</strong>less, several<br />

efforts are under way explor<strong>in</strong>g <strong>the</strong> <strong>recycl<strong>in</strong>g</strong> of such products after <strong>the</strong>ir lifetime.<br />

Manufacturers of such products have committed to use recycled materials,<br />

wherever possible, as a part of <strong>the</strong>ir total material needs. Bus<strong>in</strong>ess equipment <strong>and</strong><br />

computer manufacturers, who are currently recover<strong>in</strong>g precious metals from such<br />

Table 7<br />

<strong>Plastics</strong> bottle <strong>recycl<strong>in</strong>g</strong> rates<br />

Plastic bottle (million kg) 1996 1997<br />

Change (%)<br />

PET soft dr<strong>in</strong>k 240 246 2.7<br />

PET custom<br />

46<br />

48<br />

3<br />

Total PET bottles 286<br />

295 2.8<br />

HDPE natural<br />

183 188<br />

2.7<br />

HDPE pigmented 115<br />

132 14.9<br />

Total HDPE bottles 297 319<br />

7.4<br />

All plastic bottles 593<br />

617<br />

4.1


260<br />

P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263<br />

products, are test<strong>in</strong>g <strong>the</strong> recovery of plastic hous<strong>in</strong>gs <strong>and</strong> o<strong>the</strong>r components from<br />

<strong>the</strong>m. Automotive companies have major efforts <strong>in</strong> <strong>recycl<strong>in</strong>g</strong> of plastic components<br />

<strong>and</strong> try to use materials hav<strong>in</strong>g recycled plastics content.<br />

In <strong>the</strong> <strong>US</strong>, carpets consume over 2 billion pounds of polymers, mostly nylon 66,<br />

nylon 6 or polyesters. Carpet constructions consist of about 50% fibers or face yarn.<br />

The back<strong>in</strong>g of <strong>the</strong> carpets is <strong>in</strong>variably polypropylene, attached to a layer of highly<br />

filled SBR latex. Recovery of <strong>the</strong> face fiber <strong>in</strong> a pure form, freed from <strong>the</strong> back<strong>in</strong>g<br />

<strong>and</strong> <strong>the</strong> fillers etc., is a complex process. Carpet manufacturers are <strong>in</strong>troduc<strong>in</strong>g new<br />

technology to recover such carpet fibers <strong>and</strong> underlay, <strong>in</strong>clud<strong>in</strong>g preparation of<br />

pure monomers <strong>and</strong> <strong>in</strong>termediates.<br />

Several studies <strong>and</strong> pilot programs <strong>in</strong> durables <strong>recycl<strong>in</strong>g</strong> are under way. The<br />

objective of <strong>the</strong>se projects is a comprehensive <strong>in</strong>vestigation of <strong>the</strong> technical,<br />

economic <strong>and</strong> ecological aspects of such <strong>recycl<strong>in</strong>g</strong>. Automotive shredder residue<br />

(ASR), a major, comm<strong>in</strong>gled mixture of <strong>waste</strong> products from end-of-life (EOL)<br />

automobiles is a subject of extensive <strong>in</strong>vestigation regard<strong>in</strong>g its potential use for<br />

impact modification of concrete, pyrolysis, or as a fuel <strong>in</strong> energy plants. Economic<br />

model<strong>in</strong>g has complemented much of this experimental research. They <strong>in</strong>clude<br />

assessment of system economies for today’s automobile <strong>recycl<strong>in</strong>g</strong> <strong>in</strong>frastructure <strong>and</strong><br />

project <strong>the</strong> impact of different material <strong>and</strong> energy recovery options [2].<br />

8.2. Design for <strong>recycl<strong>in</strong>g</strong><br />

Until recently, very little attention had been paid to make components <strong>and</strong><br />

systems that lend <strong>the</strong>mselves to facile <strong>recycl<strong>in</strong>g</strong> at <strong>the</strong> end of <strong>the</strong>ir use. Comb<strong>in</strong>ations<br />

of plastic, paper, metal <strong>and</strong> natural products were used <strong>in</strong> comb<strong>in</strong>ation<br />

without any consideration of <strong>the</strong> potential difficulties <strong>in</strong> <strong>recycl<strong>in</strong>g</strong>. For example, <strong>the</strong><br />

soft dr<strong>in</strong>k PET bottle had a polyethylene bottom, polypropylene or alum<strong>in</strong>um cap<br />

<strong>and</strong> paper labels. Adhesives used <strong>in</strong> <strong>the</strong> assembly of <strong>the</strong> products often, prevent<br />

easy separation of attached plastic parts. With <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g awareness for<br />

potential recyclability, designers are explor<strong>in</strong>g new designs <strong>and</strong> material comb<strong>in</strong>ations.<br />

New simplified soft dr<strong>in</strong>k bottle constructions, automotive fascias, bumpers<br />

<strong>and</strong> <strong>in</strong>strumental panels are examples of such efforts.<br />

8.3. Adanced <strong>recycl<strong>in</strong>g</strong> technologies<br />

Ano<strong>the</strong>r approach to <strong>the</strong> <strong>recycl<strong>in</strong>g</strong> of plastics <strong>waste</strong>s <strong>in</strong>volves <strong>the</strong> generation of<br />

monomers <strong>and</strong> build<strong>in</strong>g blocks <strong>in</strong> high purity, from <strong>the</strong> plastic <strong>waste</strong>s, enabl<strong>in</strong>g <strong>the</strong><br />

re-manufacture of <strong>the</strong> orig<strong>in</strong>al or new plastics. Such novel <strong>recycl<strong>in</strong>g</strong> (e.g. glycolysis,<br />

ammonolysis, pyrolysis, etc.) represents a significant technological advancement<br />

that could supplement exist<strong>in</strong>g mechanical <strong>recycl<strong>in</strong>g</strong> techniques. These are often<br />

called advanced <strong>recycl<strong>in</strong>g</strong> or feed-stock <strong>recycl<strong>in</strong>g</strong> or chemical <strong>recycl<strong>in</strong>g</strong> [2]. Commercial<br />

size plants to make <strong>the</strong> respective monomers from polyesters <strong>and</strong> nylon<br />

have been built or are under construction. While several technologies <strong>in</strong> <strong>the</strong>se areas<br />

have been developed, large scale adoptions depend upon <strong>the</strong>ir economic viability.


P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263 261<br />

Table 8<br />

Energy values of common materials<br />

Material<br />

BTU/pound<br />

<strong>Plastics</strong><br />

Polyethylene<br />

19 900<br />

Polypropylene<br />

19 850<br />

Polystyrene<br />

17 800<br />

Rubber 17 800<br />

Newspaper<br />

8000<br />

Lea<strong>the</strong>r 7200<br />

Wood 6700<br />

Average MSW<br />

4500<br />

Yard <strong>waste</strong>s<br />

3000<br />

Food <strong>waste</strong>s<br />

2600<br />

Fuel oil<br />

20 900<br />

Wyom<strong>in</strong>g coal<br />

9600<br />

9. Energy recovery<br />

Ano<strong>the</strong>r important way to manage solid <strong>waste</strong> is to recover <strong>the</strong> energy value of<br />

products after <strong>the</strong>ir useful life. One such method <strong>in</strong>volves combustion of municipal<br />

solid <strong>waste</strong> (MSW) or garbage <strong>in</strong> <strong>waste</strong>-to-energy (WTE) facilities. Modern energy<br />

recovery facilities burn solid <strong>waste</strong>s <strong>in</strong> special combustion chambers, <strong>and</strong> use <strong>the</strong><br />

result<strong>in</strong>g heat energy to generate steam <strong>and</strong> electricity. This process can reduce <strong>the</strong><br />

volume of MSW by as much as 90%. Today, <strong>the</strong>re are 114 energy recovery plants,<br />

operat<strong>in</strong>g <strong>in</strong> 32 states throughout <strong>the</strong> United States, generat<strong>in</strong>g enough electricity to<br />

meet <strong>the</strong> power needs of 1.2 million homes <strong>and</strong> bus<strong>in</strong>esses.<br />

Boettcher [12] has po<strong>in</strong>ted out that as plastics are generally derived from<br />

petroleum or natural gas, <strong>the</strong>y have stored energy values higher than any o<strong>the</strong>r<br />

material commonly found <strong>in</strong> <strong>the</strong> <strong>waste</strong> stream. The energy values of several<br />

common materials are given <strong>in</strong> Table 8.<br />

Polyolef<strong>in</strong>s commonly used <strong>in</strong> packag<strong>in</strong>g can generate twice as much energy as<br />

Wyom<strong>in</strong>g coal <strong>and</strong> almost as much energy as fuel oil. When plastics are processed<br />

<strong>in</strong> modern WTE facilities, <strong>the</strong>y can help o<strong>the</strong>r <strong>waste</strong>s combust more completely,<br />

leav<strong>in</strong>g less ash for disposal. Several <strong>in</strong>ternational <strong>and</strong> <strong>US</strong> studies, <strong>in</strong>clud<strong>in</strong>g a 1995<br />

report completed by <strong>the</strong> American Society of Mechanical Eng<strong>in</strong>eers (ASME) <strong>and</strong> a<br />

study sponsored by <strong>the</strong> <strong>US</strong> Conference of Mayors <strong>in</strong> 1989, have found that <strong>the</strong>re<br />

is no evidence to l<strong>in</strong>k <strong>the</strong> <strong>in</strong>c<strong>in</strong>eration of polyv<strong>in</strong>ylchloride conta<strong>in</strong><strong>in</strong>g <strong>waste</strong>s with<br />

<strong>in</strong>creased diox<strong>in</strong> emissions. Such combustion processes could be a way of dispos<strong>in</strong>g<br />

<strong>the</strong> large volumes of contam<strong>in</strong>ated automotive shredder residues, safely [2].<br />

In 1997, <strong>the</strong>re were 112 energy recovery facilities operat<strong>in</strong>g <strong>in</strong> 31 states throughout<br />

<strong>the</strong> United States with a design capacity of nearly 101 500 tons per day [2].


262<br />

P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263<br />

9.1. Life cycle analysis <strong>and</strong> <strong>management</strong><br />

Dur<strong>in</strong>g <strong>the</strong> last 20 years, public op<strong>in</strong>ion <strong>and</strong> environmental directives from<br />

governments have led to <strong>the</strong> evolution of methodologies to measure an <strong>in</strong>dustrial<br />

system’s environmental impact. Lowman, <strong>in</strong> his presentation at an automobile<br />

<strong>in</strong>dustry conference [13] mentions that life cycle analysis (LCA) has emerged as a<br />

tool <strong>in</strong> <strong>the</strong> development of public policy <strong>and</strong> <strong>in</strong> design decisions. It analyzes<br />

multiple attributes of a product or system from cradle to grave. It also has <strong>the</strong><br />

unique ability to create a quantitative <strong>in</strong>ventory list<strong>in</strong>g of all process <strong>in</strong>puts <strong>and</strong><br />

outputs (<strong>in</strong>clud<strong>in</strong>g environmental emissions <strong>and</strong> energy resources) from which<br />

tradeoff analyses can be made before mak<strong>in</strong>g public policy decisions or large<br />

<strong>in</strong>vestments <strong>in</strong> products, or research.<br />

In <strong>the</strong> United States, where l<strong>and</strong>fill space is actually <strong>in</strong>creas<strong>in</strong>g, <strong>the</strong> EPA is <strong>in</strong> an<br />

<strong>in</strong>formation ga<strong>the</strong>r<strong>in</strong>g stage, <strong>and</strong> is becom<strong>in</strong>g more active <strong>in</strong> <strong>the</strong> area of life cycle<br />

<strong>management</strong> (LCM).<br />

10. Conclusion<br />

The past decade has seen <strong>in</strong>creased awareness of <strong>the</strong> environmental issues <strong>and</strong><br />

general support for exploration <strong>and</strong> implementation of methods <strong>and</strong> practices to<br />

make our products <strong>and</strong> processes more environmentally benign. Consequentially,<br />

substantial progress has been made <strong>in</strong> <strong>the</strong> areas of environmental <strong>management</strong>. In<br />

<strong>the</strong> case of solid <strong>waste</strong>s <strong>in</strong>clud<strong>in</strong>g plastics, significant progress has been made <strong>in</strong><br />

reduc<strong>in</strong>g <strong>waste</strong> <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> quantities be<strong>in</strong>g recycled. Chemical <strong>recycl<strong>in</strong>g</strong> to<br />

make monomers, <strong>in</strong> <strong>the</strong> case of nylon <strong>and</strong> polyesters, has been established <strong>and</strong><br />

disposal of very complex <strong>and</strong> contam<strong>in</strong>ated mixtures of plastics by <strong>in</strong>c<strong>in</strong>eration has<br />

been developed. While several new technologies have been developed, <strong>the</strong> amounts<br />

of materials be<strong>in</strong>g recycled appear to have reached a plateau. In <strong>the</strong> absence of<br />

additional legislative m<strong>and</strong>ates, fur<strong>the</strong>r progress <strong>in</strong> <strong>recycl<strong>in</strong>g</strong> of plastics might be<br />

slower, given <strong>the</strong> relatively high costs of <strong>recycl<strong>in</strong>g</strong>, <strong>the</strong> low cost of energy, <strong>and</strong> <strong>the</strong><br />

low cost of l<strong>and</strong>fill<strong>in</strong>g. Yet, with a long-term perspective, greater dedication to<br />

higher environmental quality <strong>and</strong> life cycle analysis of products, growth of plastics<br />

<strong>and</strong> its <strong>recycl<strong>in</strong>g</strong> could become more important <strong>in</strong> <strong>the</strong> future.<br />

Acknowledgements<br />

Valuable discussions with Mr John McAuley of Montell <strong>and</strong> Dr Michael Fisher<br />

of <strong>the</strong> American <strong>Plastics</strong> Council are hereby acknowledged.<br />

References<br />

[1] Frankl<strong>in</strong> Associates Ltd. Characterization of Municipal Solid Waste: 1997 Update (Prepared for <strong>the</strong><br />

<strong>US</strong>EPA). Prairie Village, KS, 1998.


P.M. Subramanian / Resources, Conseration <strong>and</strong> Recycl<strong>in</strong>g 28 (2000) 253–263 263<br />

[2] APC (American <strong>Plastics</strong> Council), 1998. (http://www.<strong>Plastics</strong>resource.com/).<br />

[3] D<strong>in</strong>ger PW. Recycl<strong>in</strong>g perspective — as packag<strong>in</strong>g recovery rate’s slow, <strong>the</strong> new focus is durables<br />

<strong>recycl<strong>in</strong>g</strong>. In: Modern <strong>Plastics</strong> Encyclopedia, vol. A 34, 1999.<br />

[4] Greenberg EG. The solid <strong>waste</strong>: <strong>the</strong> once <strong>and</strong> future issue. In: Packag<strong>in</strong>g Digest, 1998.<br />

[5] Porter W. Waste prevention — is <strong>recycl<strong>in</strong>g</strong> enough? In: Speech dur<strong>in</strong>g American <strong>Plastics</strong> Council,<br />

Harper’s magaz<strong>in</strong>e Forum, 1998. (http:// www. <strong>Plastics</strong>resource.com/topics/read<strong>in</strong>groom/speeches/<br />

transcript – harper.html).<br />

[6] <strong>US</strong> EPA Report. Characterization of Municipal Waste (MSW) <strong>in</strong> <strong>the</strong> United States, 1998.<br />

(http://www.<strong>Plastics</strong>resource.com/topics/disposal/backgrounders/disposal – backgrounder.html).<br />

[7] Rathje W. The Garbage Project, University of Arizona, 1992.<br />

[8] Rathje W, Murphy C. Five Major Myths about Garbage <strong>and</strong> Why They are Wrong. Smithsonian,<br />

1992. (http://www.<strong>Plastics</strong>resource.com/topics/disposal/articles/<strong>in</strong>dex.html).<br />

[9] Rathje W. K<strong>in</strong>g of <strong>the</strong> L<strong>and</strong>fill Hill: Rathje Talks Trash (reported by Roger Renstrom). In: <strong>Plastics</strong><br />

News, 1999, p. 53.<br />

[10] Duranceau C, L<strong>in</strong>dell T. Automotive Recycl<strong>in</strong>g as Reuse: Investigation to Establish <strong>the</strong> Contribu<br />

tion of Reuse as Recycl<strong>in</strong>g. Society of Automotive Eng<strong>in</strong>eers Publication No. 1430, 1998.<br />

[11] Toloken S. Plastic bottle <strong>recycl<strong>in</strong>g</strong> rate keeps slid<strong>in</strong>g. In: <strong>Plastics</strong> News, August 24, 1998, p. 1.<br />

[12] Boettcher F. Environmental compatibility of polymers <strong>in</strong> emerg<strong>in</strong>g technologies. In: Subramanian<br />

PM, Andrews GD, editors. <strong>Plastics</strong> Recycl<strong>in</strong>g. Wash<strong>in</strong>gton, DC: American Chemical Society, 1992,<br />

pp. 16–25.<br />

[13] Lowman RW. Life cycle assessment <strong>and</strong> public policy development for <strong>the</strong> automotive <strong>in</strong>dustry. In:<br />

Proceed<strong>in</strong>gs of <strong>the</strong> Total Life Cycle Conference <strong>and</strong> Exposition, Auburn Hill, MI, April 7–9, 1997.<br />

(http://www.<strong>Plastics</strong>resource.com/topics/read<strong>in</strong>groom/speeches/ica – speech.html/).<br />

.


Trường đại học Khoa Học Tự Nhiên<br />

Khoa Môi Trường<br />

Lớp CMT 2010<br />

<br />

Báo cáo chuyên đề - TÁI CHẾ VÀ TÁI SỬ DỤNG<br />

CHẤT THẢI RẮN<br />

Đề tài 09:<br />

QUẢN LÝ VÀ TÁI CHẾ NHỰA Ở HOA KỲ<br />

GVHD: TS. Tô Thị Hiền<br />

Nhóm 17<br />

1.Phan Ngọc Hậu 1022095<br />

2. Lại Xuân Trường 1022328<br />

3. Huỳnh Thị Thanh Xuân 1022364


NỘI DUNG<br />

1. Giới thiệu chung<br />

2. Hiện trạng xử <strong>lý</strong> chất thải rắn <strong>ở</strong> <strong>Hoa</strong> <strong>Kỳ</strong><br />

3. Nhựa <strong>và</strong> các chất thải từ <strong>nhựa</strong><br />

4. <strong>Quản</strong> <strong>lý</strong> tổng hợp các chất thải từ <strong>nhựa</strong><br />

5. Kết luận về quản <strong>lý</strong> <strong>và</strong> <strong>tái</strong> <strong>chế</strong> chất thải từ<br />

<strong>nhựa</strong> <strong>ở</strong> <strong>Hoa</strong> <strong>Kỳ</strong><br />

6. Thực trạng quản <strong>lý</strong> <strong>và</strong> <strong>tái</strong> <strong>chế</strong> chất thải rắn<br />

từ <strong>nhựa</strong> <strong>ở</strong> Việt nam


1. CÁC TỪ VIẾT TẮT<br />

❖ MSW : Chất thải rắn đô thị<br />

❖ EPA: Cơ quan bảo vệ môi trường của Mỹ<br />

❖ ASME: Hiệp hội các kĩ sư cơ khí Mỹ<br />

❖ PET: Polyethylene terephalate


1. GIỚI THIỆU CHUNG<br />

Tiêu thụ hàng hóa <strong>và</strong> dịch vụ<br />

Hệ quả<br />

Cuộc sống chất<br />

lượng cao<br />

❖ SỬ DỤNG<br />

HIỆU QUẢ???<br />

❖ XỬ LÝ TỐI<br />

ƯU???<br />

PHƯƠNG<br />

PHÁP QUẢN<br />

LÝ CHẤT<br />

THẢI HIỆU<br />

QUẢ


2. HIỆN TRẠNG XỬ LÝ CHẤT THẢI RẮN Ở HOA KỲ<br />

CHÔN LẤP<br />

QUÁ TRÌNH<br />

PHÁT TRIỂN<br />

BỀN VỮNG &<br />

NHẬN THỨC VỀ<br />

MÔI TRƯỜNG<br />

CHÔN LẤP - TÁI CHẾ/COMPOSTING - ĐỐT


2. HIỆN TRẠNG XỬ LÝ CHẤT THẢI RẮN Ở HOA KỲ<br />

❖ Tổng lượng MSW <strong>ở</strong> Mỹ đã giảm<br />

❖ Lượng chất thải bình quân đầu người giảm


1994<br />

<strong>Quản</strong> <strong>lý</strong> MSW <strong>ở</strong> Mỹ<br />

1996<br />

15%<br />

Chôn lấp<br />

17%<br />

24%<br />

61%<br />

Tái chế/compost<br />

Đốt<br />

27%<br />

56%<br />

❖Hoạt động <strong>tái</strong> <strong>chế</strong> <strong>và</strong> làm phân compost phát triển<br />

❖Sử dụng hiệu quả hơn tài nguyên đất<br />

❖Xử <strong>lý</strong> CTR bằng phương pháp đốt cũng tăng lên<br />

Ngày nay, hơn 19000 tổ chức tham gia <strong>và</strong>o một số<br />

chương trình <strong>tái</strong> <strong>chế</strong> <strong>và</strong> 78% dân số Mỹ tham gia <strong>và</strong>o<br />

chương trình <strong>tái</strong> <strong>chế</strong>


3. NHỰA VÀ CÁC CHẤT THẢI RẮN TỪ NHỰA<br />

ỨNG DỤNG RỘNG RÃI<br />

CHI<br />

PHÍ<br />

THẤP<br />

NHẸ<br />

NHỰA<br />

BỀN<br />

GIA TĂNG CHẤT THẢI<br />

15<br />

% Nhựa trong MSW<br />

ĐA<br />

DẠNG<br />

THIẾT KẾ<br />

THÂN<br />

THIỆN<br />

10<br />

9,8 10,6 11,2 11,5 12,3<br />

5<br />

0<br />

0,5 2,6 5<br />

1960 1970 1980 1990 1992 1994 1995 1996


3. NHỰA VÀ CÁC CHẤT THẢI RẮN TỪ NHỰA<br />

Thành phần của các loại rác thải trong MSW<br />

Khối lượng (%) 1995 1996<br />

Giấy <strong>và</strong> các sản phẩm từ giấy 31.3 31.1<br />

Thủy t<strong>in</strong>h 6.2 6.0<br />

Tổng kim loại 6.3 6.4<br />

Nhựa 11.5 12.3<br />

Cao su <strong>và</strong> da 3.5 3.7<br />

Dệt may 4.2 4.4<br />

Gỗ 6.4 6.8<br />

Khác 1.9 1.9<br />

Thực phẩm 13.6 14.0<br />

Rác sân vườn 13.3 11.3<br />

Chất thải vô cơ khác 2.0 2.1<br />

Theo Rathje, <strong>nhựa</strong> không phải là vật liệu phổ biến nhất <strong>ở</strong><br />

bãi chôn lấp mà là giấy <strong>và</strong> các sản phẩm từ giấy.


3. NHỰA VÀ CÁC CHẤT THẢI RẮN TỪ NHỰA<br />

Nhựa được ứng dụng rộng rãi, vì vậy số lượng của các loại<br />

<strong>nhựa</strong> cũng tương đối đa dạng.<br />

Đồ thị dưới đây mô tả số lượng của các loại <strong>nhựa</strong> trong chất<br />

thải rắn đô thị năm 1996<br />

Nghìn tấn<br />

7000<br />

6260<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Nhựa bền<br />

5350<br />

Nhựa không<br />

bền<br />

3220<br />

Túi, bao bì<br />

1350 1280<br />

Vỏ chai<br />

nước giải<br />

khát, sữa…<br />

Các vỏ chai<br />

khác


3. NHỰA VÀ CÁC CHẤT THẢI RẮN TỪ NHỰA<br />

Xét về thành phần, <strong>nhựa</strong> làm từ polyethylen chiếm số lượng lớn<br />

nhất trong dòng thải.<br />

Polyethylen bao gồm PET, HDPE, LDPE<br />

Nghìn tấn<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1700<br />

4120<br />

5010<br />

2580<br />

1990<br />

3130<br />

1000<br />

0<br />

PET HDPE LDPE PP PS Các loại<br />

khác


4. QUẢN LÝ TỔNG HỢP CHẤT THẢI TỪ NHỰA<br />

‣ Giảm thiểu<br />

năng lượng<br />

‣ Sử dụng<br />

hiệu quả<br />

năng lượng<br />

đầu <strong>và</strong>o<br />

GIẢM<br />

THIỂU<br />

TẠI<br />

NGUỒN<br />

TÁI<br />

CHẾ<br />

QUẢN<br />

LÝ<br />

TỔNG<br />

HỢP<br />

THU<br />

HỒI<br />

NĂNG<br />

LƯỢNG<br />

‣ Tái <strong>chế</strong> <strong>nhựa</strong> có<br />

độ bền cao<br />

‣ Cải tiến thiết kế<br />

‣ Thay đổi công<br />

nghệ


4. QUẢN LÝ TỔNG HỢP CHẤT THẢI TỪ NHỰA<br />

1. Giảm thiểu tại nguồn<br />

1.2. Giảm thiểu năng lượng<br />

Frankl<strong>in</strong> <strong>và</strong> các cộng sự - những người đi đầu trong nghiên cứu<br />

vòng đời sản phẩm đã thực hiện một nghiên cứu so sánh năng<br />

lượng trong sản xuất <strong>và</strong> sử dụng giữa <strong>nhựa</strong> <strong>và</strong> các vật liệu thay<br />

thế khác<br />

❖ 1 ounce thủy t<strong>in</strong>h đóng gói được 1.9 ounce nước trái cây<br />

❖ 1 ounce giấy đóng gói được 6.9 ounce nước trái cây<br />

❖ 1 ounce nhôm đóng gói được 21.8 ounce nước trái cây<br />

❖ 1 ounce <strong>nhựa</strong> đóng gói được 34 ounce nước trái cây<br />

→ Việc sử dụng túi <strong>nhựa</strong> sẽ tiết kiệm đủ năng lượng cho một<br />

thành phố 1 triệu hộ dân trong suốt 3,5 năm


4. QUẢN LÝ TỔNG HỢP CHẤT THẢI TỪ NHỰA<br />

1. Giảm thiểu tại nguồn<br />

1.2. Sử dụng hiệu quả nguyên liệu đầu <strong>và</strong>o<br />

Lượng chất thải từ <strong>nhựa</strong> phát s<strong>in</strong>h giảm đáng kể thông qua việc<br />

xem xét <strong>và</strong> sử dụng hiểu quả nguồn nguyên liệu đầu <strong>và</strong>o<br />

❖ Sử dụng các hạt <strong>nhựa</strong> <strong>tái</strong> <strong>chế</strong> thay cho các hạt <strong>nhựa</strong> thường<br />

❖ Sản xuất các sản phẩm <strong>và</strong> l<strong>in</strong>h kiện bền <strong>và</strong> nhẹ<br />

Biểu hiện:<br />

‣ Từ năm 1977, trọng lượng của chai <strong>nhựa</strong> đựng nước ngọt 2L<br />

đã giảm từ 68 xuống 51 g, giảm 25% → Tiết kiệm được 206<br />

triệu pounds PET/năm<br />

‣ Các bình đựng sữa 1 gallon cũng giảm 30% về khối lượng so<br />

với cách đây 20 năm<br />

‣ Một số loại sữa <strong>và</strong> nước trái cây được đóng gói trong các túi<br />

<strong>tái</strong> <strong>chế</strong> có khối lượng ít hơn so với các chai <strong>nhựa</strong>


4. QUẢN LÝ TỔNG HỢP CHẤT THẢI TỪ NHỰA<br />

2. Tái <strong>chế</strong><br />

Năm 1997: <strong>tái</strong> <strong>chế</strong> khoảng 1.4 tỉ pound<br />

‣ 704 triệu pound chai HDPE<br />

‣ 649 triệu pound chai PET<br />

Hiện nay:<br />

‣ Hơn 1700 doanh nghiệp xử <strong>lý</strong> <strong>và</strong> <strong>tái</strong> <strong>chế</strong> <strong>nhựa</strong> đã qua sử dụng<br />

‣ Hơn 1500 sản phẩm thương mại có nguồn gốc từ <strong>nhựa</strong> <strong>tái</strong> <strong>chế</strong>.


4. QUẢN LÝ TỔNG HỢP CHẤT THẢI TỪ NHỰA<br />

2. Tái <strong>chế</strong><br />

Giấy<br />

Kim<br />

Loại<br />

Kết hợp<br />

VL mới<br />

Nhựa<br />

Sản<br />

Phẩm<br />

NL<br />

khác<br />

KHÓ KHĂN CHO TÁI CHẾ<br />

Đơn giản<br />

hóa SP<br />

GIẢI PHÁP<br />

THIẾT KẾ


4. QUẢN LÝ TỔNG HỢP CHẤT THẢI TỪ NHỰA<br />

3. Thu hồi năng lượng<br />

Phương pháp thực hiện: đốt trong các buồng đốt đặc biệt <strong>và</strong> sử dụng<br />

năng lượng s<strong>in</strong>h ra trong quá trình để sản xuất điện<br />

Ḣiệu quả: thu hồi 90 % từ MSW<br />

Trong đó, <strong>nhựa</strong> có nguồn gốc dầu mỏ <strong>và</strong> khí tự nhiên cho hiệu quả thu<br />

hồi cao nhất.


4. QUẢN LÝ TỔNG HỢP CHẤT THẢI TỪ NHỰA<br />

3. Thu hồi năng lượng<br />

❖ Năm 1992, có 112 cơ s<strong>ở</strong> <strong>tái</strong> <strong>chế</strong> năng lượng hoạt<br />

động trên 31 bang của Mỹ, với công suất thiết kế gần<br />

101500 tấn/ngày.<br />

❖ Năm 2000, có 114 nhà máy <strong>tái</strong> <strong>chế</strong> năng lượng <strong>ở</strong> 32<br />

bang của Mỹ, năng lượng điện tạo ra đủ cung cấp<br />

cho 1.2 triệu ngôi nhà <strong>và</strong> công ty.


5. KẾT LUẬN<br />

Nhận thức về môi trường tăng<br />

→Thực thi các phương án <strong>Quản</strong> <strong>lý</strong> tổng hợp CTR<br />

‣ Giảm thiểu chất thải <strong>và</strong> tăng số lượng rác <strong>tái</strong> <strong>chế</strong>.<br />

‣ Hoàn thiện <strong>và</strong> xử <strong>lý</strong> những hỗn hợp rất phức tạp, xử<br />

<strong>lý</strong> chất thải dẻo bằng phương pháp đốt phát triển.<br />

‣ Vật liệu được <strong>tái</strong> <strong>chế</strong> dường như đạt đến mức ổn định<br />

Vấn đề đặt ra: Trong trường hợp không có các biện pháp<br />

bổ sung, việc <strong>tái</strong> <strong>chế</strong> các loại <strong>nhựa</strong> sẽ bị chậm lai do chi phí<br />

cho việc này cao hơn so với việc chôn lấp. Tuy nhiên, với<br />

mục tiêu dài hạn là nâng cao chất lượng môi trường thì phân<br />

tích vòng đời của sản phẩm, phát triển các loại <strong>nhựa</strong> <strong>và</strong> <strong>tái</strong><br />

<strong>chế</strong> chúng sẽ tr<strong>ở</strong> nên quan trọng hơn trong tương lai.


6. HIỆN TRẠNG VÀ GIẢI PHÁP CHO VẤN ĐỀ CHẤT<br />

THẢI RẮN TỪ NHỰA Ở VIỆT NAM<br />

Giải pháp:<br />

❖ Quy hoạch quản <strong>lý</strong> CTR đồng bộ<br />

❖ Công nghệ xử <strong>lý</strong> CTR hướng tới việc thân thiện<br />

với môi trường, vận hành đơn giản, ít tốn kém,<br />

phù hợp với điều kiện của Việt Nam <strong>và</strong> đảm bảo<br />

tiêu chí tỷ lệ chôn lấp chỉ còn dưới 15%, tăng<br />

cường tỷ lệ <strong>tái</strong> <strong>chế</strong> <strong>và</strong> <strong>tái</strong> sử dụng CTR.<br />

❖ Tăng phí vệ s<strong>in</strong>h của các hộ gia đình<br />

❖ Làm tốt công tác tuyên truyền vận động thông<br />

qua chương trình giáo dục <strong>ở</strong> trường học <strong>và</strong> các<br />

phương tiện thông t<strong>in</strong> đại chúng


6. HIỆN TRẠNG VÀ GIẢI PHÁP CHO VẤN ĐỀ CHẤT<br />

THẢI RẮN TỪ NHỰA Ở VIỆT NAM<br />

Việt Nam có hơn 2.000 doanh nghiệp hoạt động sản xuất, k<strong>in</strong>h<br />

doanh trong lĩnh vực <strong>nhựa</strong>, với:<br />

‣ Tốc độ tăng trư<strong>ở</strong>ng đạt 15 - 20%/năm<br />

‣ Sản lượng tiêu thụ 22kg/người<br />

→ Tính trung bình, tỷ lệ thành phần nilong, chất dẻo chiếm từ 6 –<br />

16% lượng chất thải rắn đô thị<br />

Phương pháp xử <strong>lý</strong> chủ yếu: phương pháp chôn lấp. Tỷ lệ <strong>tái</strong> <strong>chế</strong><br />

chỉ đạt khoảng 8÷12% CTRSH đô thị thu gom.<br />

→ Việc áp dụng các phương pháp tích hợp trong quản <strong>lý</strong> chất thải<br />

rắn nói chung <strong>và</strong> chất thải rắn từ <strong>nhựa</strong> nói riêng <strong>ở</strong> nước ta hiện tại<br />

vẫn còn là vấn đề nan giải

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!