27.11.2018 Views

atw 2018-12

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

<strong>2018</strong><br />

11/<strong>12</strong><br />

573<br />

Should Nuclear Energy<br />

Play a Role in a Carbon-<br />

Constrained World?<br />

580 ı Energy Policy, Economy and Law<br />

NIS Directive in the Energy Sector<br />

587 ı Environment and Safety<br />

Release-Category-Oriented Risk<br />

ISSN · 1431-5254<br />

24.– €<br />

601 ı Decommissioning and Waste Management<br />

Decommissioning:<br />

An Interdisciplinary Task for Junior Staff<br />

607 ı Research and Innovation<br />

Kurchatov Institute’s Critical Assemblies<br />

Register<br />

Now!


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

<strong>2018</strong>: A “Quincuplex” for Nuclear Power<br />

Dear reader, “Do good and talk about it.” Anyone who today follows protagonists of technical progress and technical<br />

innovations – sometimes only supposedly, often for technology on four wheels or with rocket propulsion for space – sees<br />

more than ever how important active “marketing” or “advertising” with a good portion of self-confidence and convincing<br />

appearance are for business success.<br />

A look at five such groundbreaking events of <strong>2018</strong> in the<br />

nuclear energy sector should also convey such a sense of<br />

optimism for our industry. But which five events? Test for<br />

yourself and do some search in the news of the WWW ...<br />

and, will you find what you are looking for? At least for<br />

the German-speaking area it will be narrow here, the<br />

English language already supplies more hits and who is<br />

knowledgeable of the Chinese, finds the answers.<br />

So let’s turn to Asia, certainly the most dynamically<br />

developing region in the world today.<br />

On 6 June <strong>2018</strong> the time had come. Taishan 1 was the<br />

first EPR reactor in the world to achieve first criticality.<br />

After VVER-<strong>12</strong>00 Novovoronezh II-1, with commissioning<br />

in 2016, it is the second reactor type of Generation<br />

III+ that went into operation. The EPR originates from<br />

the earlier cooperation between Siemens/KWU and<br />

Framamtome in the 1990s. It brings together the development,<br />

construction and operating experience of the<br />

pressurized water reactors of the French N4 series and the<br />

three German KWU convoy plants. In addition to further<br />

economic optimisation, e.g. through an extended fuel<br />

cycle and an operating life of at least 60 years, additional<br />

safety features are added, such as a core catcher for<br />

controlling design-basis accidents and other safety<br />

redundancies. The first two “First of a Kind” EPR projects,<br />

Olkiluoto 3 in Finland and Flamanville 3, have been under<br />

construction since 2005 and 2007, respectively. The<br />

projects have been delayed several times for a different<br />

reasons, including complex requirements for operational<br />

facilities and safety defined in the approval procedure.<br />

Construction of the Chinese Taishan plant with two blocks<br />

under the designation CEPR (Chinese EPR) began in 2009.<br />

While retaining the basic design and layout features,<br />

specific Chinese customer requirements have been<br />

implemented, resulting in an increased plant output of<br />

1,750 MW gross. Taishan 2 is also expected to go into<br />

operation in the foreseeable future. Other EPR projects<br />

currently include Hinkley Point C-1 and C-2 in the UK –<br />

where the subsoil is being prepared – and six blocks in<br />

India.<br />

A few days later, on 21 June <strong>2018</strong>, the first AP1000<br />

reactor, a further third generation III+ plant, became<br />

critical for the first time in Sanmen, China. Construction of<br />

the two AP1000 units erected at the Sanmen site began in<br />

2009. The concept developed by Westinghouse Electric for a<br />

nuclear power plant with a gross output of around<br />

1,100 MW integrates revolutionary elements in several<br />

respects. Thus, the AP1000 represents a new concept<br />

not only in terms of building design. The modular design<br />

and a passive safety concept for core and containment<br />

emergency cooling are striking features of the pressurized<br />

water reactor.<br />

The AP1000 projects started in China in 2009/2010<br />

then continued at a rapid pace: on August 8, <strong>2018</strong>, the<br />

Haiyang 1 unit reached first criticality, followed by the<br />

Sanmen 2 and Haiyang 2 units on August 17 and September<br />

29, <strong>2018</strong>, respectively. Two further AP1000 units have<br />

been under construction at the Vogtle site in the USA since<br />

2013, and the two projects at the Summer site were<br />

discontinued in 2017 due to the manufacturer’s Chapter 11<br />

insolvency proceedings.<br />

With these five nuclear power plants commissioned in<br />

<strong>2018</strong> and the Russian VVER-<strong>12</strong>00 projects – one plant<br />

commissioned since 2016, Leningrad II-1 commissioned on<br />

6 February <strong>2018</strong> and active construction projects in<br />

Belarus, Turkey and Bangladesh as well as planning for<br />

Finland, Hungary, Egypt and India - and these five nuclear<br />

power plants commissioned in <strong>2018</strong>, Generation III+<br />

nuclear power plants are no longer a vision, they are reality<br />

in a real world that needs a secure energy supply day and<br />

night.<br />

The projects in Asia, but also those of the Russian<br />

company Rosatom, prove that nuclear power plants of this<br />

development stage can also be built within the planned<br />

budget and thus above all with a view to the “levelised cost<br />

of electricity”. Consistent planning in agreement with all<br />

parties involved and a reliable regulatory environment are<br />

prerequisites for this.<br />

These are promising signs for the future use of nuclear<br />

energy worldwide, which, with a view to aspects such as<br />

security of supply, affordable generation costs and<br />

low-emission technology, is once again being increasingly<br />

brought to the fore by governments and organizations –<br />

including NGOs and environmental protection associations<br />

– as an option for the future energy mix. Signs, the<br />

law<br />

These are promising signs for the future use of nuclear<br />

energy worldwide, which, with a view to aspects such as<br />

security of supply, affordable generation costs and<br />

low-emission technology, is once again being increasingly<br />

brought to the fore by governments and organisations –<br />

including NGOs and environmental protection associations<br />

– as an option for the future energy mix. These are<br />

signs that have been set and that now need to be communicated<br />

and fairly communicated - even if, beyond reality,<br />

protagonists against nuclear energy are still trying to hide<br />

them. The same goes for the fact that half a dozen nuclear<br />

energy news items for <strong>2018</strong> will be filled to overflowing,<br />

with 454 reactors in operation worldwide, more than ever<br />

before in the history of the peaceful use of nuclear power!<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

563<br />

EDITORIAL<br />

Editorial<br />

<strong>2018</strong>: A “Quincuplex” for Nuclear Power


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

EDITORIAL 564<br />

<strong>2018</strong>: Ein „Quincuplex“<br />

für die Kernenergie<br />

Liebe Leserin, lieber Leser, „Tue Gutes und rede darüber“. Wer heute Protagonisten technischen Fortschritts<br />

und technischer Innovationen – manchmal auch nur vermeintlicher, oft für Technik auf vier Rädern oder mit Raketenantrieb<br />

für den Weltraum – verfolgt, sieht mehr denn je, wie wichtig aktives „Marketing“ oder „Werbung“ mit einer<br />

gehörigen Portion Selbstbewusstsein und überzeugendem Auftreten für betriebswirtschaftlichen Erfolg sind.<br />

Ein Blick auf fünf solcher wegwei sender Ereignisse des<br />

Jahres <strong>2018</strong> aus dem Kernenergiesektor sollte auch für<br />

unsere Branche eine solche Aufbruchstimmung vermitteln.<br />

Doch welche sind es? Testen Sie selbst und recherchieren<br />

einmal in den Nachrichten des allvermittelnden<br />

WWW ... und, werden Sie fündig? Zumindest für den<br />

deutschen Sprachraum wird es hier eng, die englische<br />

Sprache liefert schon mehr Treffer und wer des<br />

Chinesischen kundig ist, findet die Antworten.<br />

Wenden wir uns also Asien zu, der aktuell sicherlich<br />

weiterhin dynamischsten sich entwickelnden Region<br />

weltweit.<br />

Am 6. Juni <strong>2018</strong> war es soweit. Taishan 1 erreichte als<br />

erster EPR-Reaktor weltweit Erstkritikalität. Nach dem<br />

WWER-<strong>12</strong>00 Nowoworonesch II-1, mit Inbetriebnahme in<br />

2016, ist es der zweite Reaktortyp der Generation III+ der<br />

in Betrieb gegangen ist. Der EPR entstammt der früheren<br />

Zusammenarbeit von Siemens/KWU und Framamtome<br />

aus den 1990er Jahren. Er führt die Entwicklungs-, Bauund<br />

Betriebserfahrungen der Druckwasserreaktoren der<br />

französischen N4-Baureihe und der drei deutschen KWU-<br />

Konvoi-Anlagen zusammen. Neben einer weiteren Optimierung<br />

der Ökonomie z.B. durch einen verlängerten<br />

Brennstoffzyklus und eine auf minimal 60 Jahre ausgelegte<br />

Betriebszeit kommen zusätzliche Sicherheitsmerkmale<br />

hinzu, wie ein Core-Catcher für die Beherrschung<br />

auslegungsüberschreitende Störfälle sowie<br />

weitere Sicherheits-Redundanzen. Die ersten beiden –<br />

„First of a Kind“ – EPR-Projekte Olkiluoto 3 in Finnland sowie<br />

Flamanville 3 sind seit 2005 bzw. 2007 in Bau.<br />

Verschiedenste Ursachen, so komplexe, im Genehmigungsverfahren<br />

definierte, Anforderungen an betriebliche<br />

Einrichtungen und die Sicherheit haben die Projekte<br />

mehrfach verzögert. Baubeginn für die chinesische Anlage<br />

Taishan mit zwei Blöcken unter der Bezeichnung CEPR<br />

(Chinese EPR) war 2009. Unter Beibehaltung der grundlegenden<br />

Auslegungs- und Designmerkmale sind spezifische<br />

chinesische Kundenwünsche implementiert, so eine<br />

erhöhte Leistung der Anlage von 1.750 MW brutto.<br />

­Taishan 2 soll absehbar ebenfalls in Betrieb gehen. Weitere<br />

EPR-Projekte sind derzeit Hinkley Point C-1 und C-2 in<br />

Großbritannien – hier wird der Baugrund vorbereitet –<br />

sowie sechs Blöcke in Indien.<br />

Wenige Tage später, am 21. Juni <strong>2018</strong>, wurde der erste<br />

AP1000-Reaktor, eine weitere, die dritte Generation III+-<br />

Anlagen, im chinesischen Sanmen erstmals kritisch.<br />

Baubeginn für die zwei am Standort Sanmen errichteten<br />

AP1000-Blöcke war 2009. Das von Westinghouse Electric<br />

entwickelte Konzept für ein Kernkraftwerk mit einer<br />

Leistung von um die 1.100 MW brutto integriert in<br />

mehrerlei Hinsicht revolutionäre Elemente. Somit stellt<br />

der AP1000 nicht nur vom Gebäudedesign her ein neues<br />

Konzept dar. Markant für den Druckwasserreaktor sind<br />

unter anderem die modulare Bauweise sowie ein passives<br />

Sicherheitskonzept für die Kern- und Containmentnotkühlung.<br />

Mit den in den Jahren 2009/2010 begonnenen AP1000-<br />

Projekten in China ging es dann rasant weiter: Am 8. August<br />

<strong>2018</strong> erreichte der Block Haiyang 1 Erstkritikalität und am<br />

17. August bzw. 29. September <strong>2018</strong> folgten die Blöcke<br />

Sanmen 2 und Haiyang 2. Zwei weitere AP1000-Blöcke<br />

sind am Standort Vogtle in den USA seit 2013 in Bau, die<br />

beiden Vorhaben am Standort Summer wurden im Jahr<br />

2017 aufgrund des „Chapter 11 Insolvenzverfahrens“ des<br />

Herstellers eingestellt.<br />

Mit diesen fünf in <strong>2018</strong> in Betrieb gegangenen Kernkraftwerken<br />

sowie den russischen WWER-<strong>12</strong>00-Projekten<br />

– eine Anlage seit 2016 in Betrieb, Leningrad II-1 wurde am<br />

6. Februar <strong>2018</strong> in Betrieb genommen sowie aktiven Bauvorhaben<br />

in Weißrussland, der Türkei und Bangladesch<br />

sowie Planungen für Finnland, Ungarn, Ägypten und<br />

Indien, sind Kernkraftwerke der Generation III+ keine<br />

Vision mehr, sie sind Realität in einer realen Welt, die eine<br />

sichere Energieversorgung Tag und Nacht braucht.<br />

Die Projekte in Asien, aber auch die der russischen<br />

Rosatom belegen, dass Kernkraftwerke dieser Entwicklungsstufe<br />

auch im vorgesehenen Kostenrahmen und<br />

damit vor allem mit Blick auf die „Levelised cost of<br />

Electricity“, also die Gesamt-Stromgestehungskosten<br />

errichtet werden können. Konsequente Planung im<br />

Einvernehmen aller Beteiligten und ein verlässliches<br />

regulatorisches Umfeld sind dafür mit Voraussetzungen.<br />

Für die zukünftige Nutzung der Kernenergie weltweit,<br />

die mit Blick auf Aspekte wie Versorgungssicherheit,<br />

bezahlbare Erzeugungskosten und emissionsarme<br />

Technologie wieder stärker von Regierungen und Organisationen<br />

– auch NGOs und Umweltschutzverbänden – als<br />

Option für den zukünftigen Energiemix in den Fokus<br />

gerückt wird, sind dies vielversprechenden Zeichen.<br />

Zeichen, die gesetzt sind und für die es jetzt gilt, sie zu<br />

kommunizieren und fair kommuniziert zu werden – auch,<br />

wenn jenseits der Realität Protagonisten gegen die Kernenergie<br />

immer noch versuchen, dies auszublenden. So<br />

auch die Tatsachen, quasi um das halbe Dutzend an<br />

Kernenergienachrichten für <strong>2018</strong> voll zumachen, dass mit<br />

454 Reaktoren so viele weltweit in Betrieb sind, wie nie<br />

zuvor in der Geschichte der friedlichen Nutzung der<br />

Kernenergie!<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

<strong>2018</strong>: A “Quincuplex” for Nuclear Power


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke 02.04.2019<br />

22.10.2019<br />

Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 05.03.2019<br />

17.09.2019<br />

Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.04.2019 Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chancen und Regularien<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

RA Kay Höft M. A.<br />

RA Olaf Kreuzer<br />

Dr. Ing. Wolfgang Steinwarz<br />

Berlin<br />

Berlin<br />

04.06.2019 Berlin<br />

<strong>12</strong>.06. - 13.06.2019 Berlin<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Schlüsselfaktor Interkulturelle Kompetenz –<br />

International verstehen und verstanden werden<br />

Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin<br />

Angela Lloyd 20.03.2019 Berlin<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 Nuclear English<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Dr. Matthias Bauerfeind<br />

RA Dr. Christian Raetzke<br />

Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

29.01. - 30.01.2019<br />

24.09. - 25.09.2019<br />

<strong>12</strong>.02. - 13.02.2019<br />

18.03. - 19.03.2019<br />

25.06. - 26.06.2019<br />

Berlin<br />

Berlin<br />

Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.2019 Berlin<br />

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 10.04. - 11.04.2019<br />

18.09. - 19.09.2019<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Berlin<br />

Veränderungsprozesse gestalten – Heraus forderungen<br />

meistern, Beteiligte gewinnen<br />

Erfolgreicher Wissenstransfer in der Kern technik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

22.01. - 23.01.2019<br />

26.11. - 27.11.2019<br />

Berlin<br />

26.03. - 27.03.2019 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

566<br />

Issue 11/<strong>12</strong><br />

November/December<br />

CONTENTS<br />

573<br />

Should Nuclear Energy<br />

Play a Role in a Carbon-<br />

Constrained World?<br />

| | Development of nuclear technology. Fuel element heads for heavy water reactor fuel elements. (Courtesy: NA-SA)<br />

Editorial<br />

<strong>2018</strong>: A “Quincuplex” for Nuclear Power 563<br />

<strong>2018</strong>: Ein „Quincuplex“ für die Kernenergie 564<br />

Abstracts | English 568<br />

Abstracts | German 569<br />

Inside Nuclear with NucNet<br />

How Nuclear Industry Can Solve<br />

‘ Fundamental Obstacle’ of High Capital Cost 570<br />

DAtF Notes. . . . . . . . . . . . . . . . . . . . . .571<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . 572<br />

Energy Policy, Economy and Law<br />

Should Nuclear Energy Play a Role<br />

in a Carbon-Constrained World? 573<br />

Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti<br />

Talks of an End to Germany’s<br />

Nuclear Industry Premature 578<br />

Roman Martinek<br />

Development on NIS Directive in Different<br />

EU Countries in the Energy Sector 580<br />

Stefan Loubichi<br />

573<br />

Spotlight on Nuclear Law<br />

Arbitrary-peaceful?<br />

Consequences of the “Achmea” Decision<br />

of the ECJ also for the ICSID Arbitration<br />

of Vattenfall? 585<br />

Schiedlich-friedlich? –<br />

Folgen des „Achmea“-Urteils des EuGH<br />

auch für das ICSID-Schiedsgerichtsverfahren<br />

von Vattenfall? 585<br />

| | Human Development Index versus per capita electricity consumption<br />

Ulrike Feldmann<br />

Contents


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

567<br />

Environment and Safety<br />

Release-Category-Oriented Risk<br />

Importance Measure in the Frame of<br />

Preventive Nuclear Safety Barriers 587<br />

CONTENTS<br />

Juan Carlos de la Rosa Blul and Luca Ammirabilea<br />

607<br />

| | Classification of the different scenarios.<br />

587<br />

| | Relationship between the different Nuclear Safety Pillars.<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and<br />

Handling of Improbable Developments 593<br />

Position des Arbeitskreises<br />

„Szenarienentwicklung“ zur Thematik:<br />

Wahrscheinlich keitsklassen und Umgang mit<br />

unwahrscheinlichen Entwicklungen 593<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz,<br />

J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel,<br />

G. Stolzenberg, J. Wolf and J. Wollrath<br />

Research and Innovation<br />

Kurchatov Institute’s Critical Assemblies 607<br />

Andrej Yurjewitsch Gagarinskiy<br />

AMNT <strong>2018</strong><br />

Key Topic<br />

Enhanced Safety & Operation Excellence<br />

Focus Session<br />

“International Operational Experience” 610<br />

Ludger Mohrbach<br />

KTG Inside 613<br />

News 616<br />

Nuclear Today<br />

Brexit and Trump Among Fresh Challenges<br />

for Nuclear in Year Ahead 626<br />

John Shepherd<br />

Imprint 614<br />

593<br />

INFORUM: Seminar Programme 2019<br />

Insert<br />

| | Classification of the different scenarios.<br />

Decommissioning of Nuclear Facilities:<br />

An Interdisciplinary Task for Junior Staff 601<br />

Der Rückbau kerntechnischer Anlagen:<br />

Eine interdisziplinäre Aufgabe<br />

für Nachwuchskräfte 601<br />

David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann<br />

Contents


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

568<br />

ABSTRACTS | ENGLISH<br />

How Nuclear Industry can Solve<br />

‘ Fundamental Obstacle’ of High Capital Cost<br />

NucNet | Page 570<br />

History shows that new nuclear generating capacity<br />

can be deployed as quickly as coal and gas-fired<br />

capacity, but the high capital cost of new nuclear<br />

plants remains “a fundamental obstacle” which the<br />

industry needs to tackle, a report by the Massachusetts<br />

Institute of Technology (MIT) Energy Initiative<br />

found. If the global nuclear industry achieved the<br />

pace of plant construction and deployment seen in<br />

France and the US in the 1970s and 1980s, the world’s<br />

energy sector would be completely decarbonised by<br />

2050, Jacopo Buongiorno, a co-director of the study<br />

and an associate department head of the Department<br />

of Nuclear Science and Engineering at MIT, said<br />

during a briefing on the report in Brussels.<br />

Should Nuclear Energy Play a Role in a<br />

Carbon-Constrained World?<br />

Jacopo Buongiorno, Michael Corradini,<br />

John Parsons and David Petti | Page 573<br />

We summarize the findings of a new MIT study on<br />

the future of nuclear energy. The context for the<br />

study is the challenge of simultaneously expanding<br />

energy access and economic opportunity to billions<br />

of people while drastically reducing emissions of<br />

greenhouse gases. We find that while decarbonization<br />

of the electricity sector can be accomplished<br />

employing an assortment of low-carbon technologies<br />

in various combinations, nuclear has a uniquely<br />

valuable role to play as a dispatchable low-carbon<br />

technology. Excluding a dispatchable low-carbon<br />

option like nuclear, as the German Energiewende<br />

does, significantly increases the cost and difficulty of<br />

achieving decarbonization targets. We also find that<br />

the high cost of new nuclear plants limits nuclear’s<br />

role in a balanced portfolio. Reducing this cost can<br />

significantly reduce the total cost of decarbonization.<br />

Our study identified the factors driving up cost,<br />

and we identify promising approaches to achieving<br />

cost reductions. Finally, we identify needed government<br />

policies. These include decarbonization strategies<br />

that recognize the contribution of all lowcarbon<br />

energy technologies and treat them equally<br />

in the electricity market. These also include policies<br />

to accommodate and support development and<br />

demonstration of advanced reactor designs.<br />

Talks of an End to Germany’s Nuclear<br />

Industry Premature<br />

Roman Martinek | Page 578<br />

There now remains hardly anyone in Germany who<br />

has not yet dropped in the last few years a single line<br />

about how the country is valiantly closing one by<br />

one its nuclear power plants. It was difficult to<br />

expect anything else, though, if one keeps in mind<br />

that the accelerated phase-out of nuclear energy<br />

announced by the German political establishment<br />

in 2011 became perhaps the most resonant energy<br />

policy decision in the country’s recent history.<br />

At the same time, it is often overlooked that the<br />

“Atomausstieg” (the name given to Germany’s<br />

denuclearization) is a like a hat that has a false<br />

bottom to it: the issue of disconnection from the<br />

grid lying on the surface of public discourse, while<br />

behind it (or ‘under’ it, if you will) lies a number of<br />

deeper and more far-reaching questions.<br />

Development on NIS Directive in Different<br />

EU Countries in the Energy Sector<br />

Stefan Loubichi | Page 580<br />

The magnitude, frequency and impact of security incidents<br />

are increasing, and represent a major threat<br />

to the functioning of network and information<br />

systems. These systems may also become a target for<br />

deliberate harmful actions intended to damage or<br />

interrupt the operation of the systems. Such incidents<br />

can impede the pursuit of economic activities,<br />

generate substantial financial losses, undermine user<br />

confidence and cause major damage to the economy<br />

of the Union. The answer of the European Union to<br />

this challenge was the NIS Directive.<br />

Arbitrary-peaceful? Consequences of the<br />

“Achmea” Decision of the ECJ also for the<br />

ICSID Arbitration of Vattenfall?<br />

Ulrike Feldmann | Page 585<br />

On 6 March <strong>2018</strong>, the European Court of Justice<br />

(ECJ, Grand Chamber) issued a serious and controversial<br />

ruling on the compatibility of investment<br />

protection clauses with Union law (C-284/16 –<br />

“ Achmea”). Various parties have raised the question<br />

of whether the ruling also applies to agreements<br />

such as the Energy Charter, to which the EU itself is<br />

a contracting party. The Energy Charter is the basis<br />

of the Swedish Vattenfall AB and other plaintiffs’<br />

proceedings before the International Centre for<br />

Settlement of Investment Disputes (ICSID), which<br />

belongs to the World Bank in Washington D.C..<br />

ICSID was established in 1965 by the ICSID<br />

Convention, to which 153 states belong.<br />

Release-Category-Oriented Risk Importance<br />

Measure in the Frame of Preventive Nuclear<br />

Safety Barriers<br />

Juan Carlos de la Rosa Blul and<br />

Luca Ammirabile | Page 587<br />

After the Fukushima accident, the interest on the<br />

field of severe accidents has largely increased, both<br />

on the management aspects – to improve the<br />

prevention of severe accident progression and<br />

mitigate their consequences –, but also in sponsoring<br />

research activities focused on reducing the<br />

uncertainty still present on physical and chemical<br />

phenomena and processes taking place during a<br />

postulated severe accident. One of the most relevant<br />

and comprehensive approaches to look into the field<br />

of severe accidents consists of the Level 2 Probabilistic<br />

Risk Assessment (PRA). In order to reveal the<br />

relative probabilistic weight each system, structure<br />

or component contributes with to the integrated<br />

core damage frequency, several consolidated risk<br />

measures are available for application, among<br />

which Risk Reduction Worth or Fussell-Vesely.<br />

This paper discusses the nature of the different<br />

approaches underlying the existing nuclear safety<br />

barriers and introduces an innovative severeaccident<br />

risk importance measure. This innovative<br />

risk measure takes into account the entire spectrum<br />

of accidents leading to radioactive releases rather<br />

than only focusing at large and early releases. By<br />

applying this tool, the importance is shifted from a<br />

consequence-oriented to a frequency-oriented tool<br />

where the contribution of the different elements of<br />

the plant will be ranked according to their impact<br />

on the total radioactive release frequency.<br />

Position of the Working Group<br />

“Scenario Development” on the Topic:<br />

Probability Classes and Handling<br />

of Improbable Developments<br />

J. Orzechowski, G. Stolzenberg, J. Wollrath,<br />

A. Lommerzheim, S. Mrugalla, Th. Beuth, G. Bracke,<br />

K.-M. Mayer, J. Mönig, A. Rübel, J. Wolf, V. Metz,<br />

S. Chaudry, E. Plischke and K.-J. Röhlig | Page 594<br />

The safety requirements demand the consideration<br />

of different probabilities of occurrence in the<br />

analysis of future evolutions of a disposal system<br />

and disposal site. Furthermore, the Commission<br />

which was established according to the Repository<br />

Site Selection Act requires, as stated in the final<br />

report , the review of the classification in the<br />

probability classes “probable”, “less probable” and<br />

“improbable” evolutions as well as of the distinction<br />

between “probable” and “less probable” evolutions.<br />

In the past, probable and less probable scenarios<br />

were derived during research projects related to the<br />

scenario development. Furthermore, evolutions on<br />

the basis of human intrusion into a disposal system<br />

were examined as well. However, improbable<br />

evolutions have not been considered so far. The<br />

Working Group “Scenario Development” (AKS)<br />

dealt with the classification into probability<br />

classes and with the derivation and treatment<br />

of improbable scenarios. The position was<br />

elaborated by the AKS.<br />

Decommissioning of Nuclear Facilities:<br />

An Interdisciplinary Task for Junior Staff<br />

David Anton, Manuel Reichardt, Thomas Hassel and<br />

Harald Budelmann | Page 602<br />

Some challenges and boundary conditions are<br />

outlined which accompany the dismantling of<br />

nuclear facilities. Compared to the dismantling of<br />

conventional facilities, the work in nuclear facilities<br />

is considerably impeded by the radiological load.<br />

The decommissioning concept has to be individually<br />

developed or adapted for each nuclear installation<br />

taking into account the various boundary conditions.<br />

The versatility of the challenges in connection<br />

with the dismantling of nuclear facilities and<br />

the interim or final disposal of radioactive waste<br />

underlines the necessity of an interdisciplinary<br />

approach.<br />

Kurchatov Institute’s Critical Assemblies<br />

Andrej Yurjewitsch Gagarinskiy | Page 607<br />

Since its establishment, the Kurchatov Institute of<br />

Atomic Energy (now National Research Centre<br />

“ Kurchatov Institute”) was always involved in R&D<br />

on nuclear reactors for various applications. This<br />

activity required dedicated critical facilities (whose<br />

number, design and purpose naturally varied with<br />

time). This paper reviews the status of the Kurchatov<br />

Institute’s experimental park that includes more<br />

than ten critical assemblies intended for R&D<br />

for power (VVER, RBMK, HTGR), ship and space<br />

reactors.<br />

49 th Annual Meeting on Nuclear Technology<br />

(AMNT <strong>2018</strong>) Key Topic | Enhanced Safety &<br />

Operation Excellence<br />

Ludger Mohrbach | Page 610<br />

The report summarises the presentations of the Focus<br />

Session “International Operational Experience” Key<br />

Topic “Enhanced Safety & Operation Excellence”<br />

presented at the AMNT <strong>2018</strong>, Berlin, 29 to 30 May<br />

<strong>2018</strong>.<br />

Brexit and Trump Among Fresh Challenges<br />

for Nuclear in Year Ahead<br />

John Shepherd | Page 626<br />

As <strong>2018</strong> draws to a close, there have been several<br />

developments that will mean the new year dawning<br />

with fresh uncertainties on the horizon for the<br />

global nuclear energy industry: Brexit and<br />

announcement of the Trump administration for a<br />

new policy framework for curtailing civil nuclear<br />

commerce with China are two of them.<br />

Abstracts | English


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Wie kann die Nuklearindustrie mit<br />

der Herausforderung hoher Kapitalkosten<br />

umgehen?<br />

NucNet | Seite 570<br />

Die Geschichte zeigt, dass neue Kernkraftwerke<br />

schnell hinzu gebaut werden können, aber die<br />

hohen Investitionskosten für neue Kernkraftwerke<br />

„eine grundlegende Herausforderung“ sind, mit<br />

dem die Industrie konfrontiert wird. Ein Bericht der<br />

Massachusetts Institute of Technology (MIT)<br />

Energy Initiative kommt fasst dies zusammen.<br />

Wenn die Nuklearindustrie das Tempo des Anlagenbaus<br />

und der Inbetriebnahme in Frankreich und<br />

den USA in den 1970er und 1980er Jahren erreichen<br />

würde, könnte der weltweite Energiesektor bis<br />

2050 vollständig dekarbonisiert sein, sagte Jacopo<br />

Buongiorno, Co-Direktor der Studie und stellvertretender<br />

Abteilungsleiter des Department of<br />

Nuclear Science and Engineering am MIT, während<br />

eines Briefings über den Bericht in Brüssel.<br />

Sollte die Kernenergie eine Rolle bei der<br />

weltweiten Dekarbonisierung spielen?<br />

Jacopo Buongiorno, Michael Corradini,<br />

John Parsons und David Petti | Seite 573<br />

Zusammengefasst sind die Ergebnisse einer neuen<br />

MIT-Studie zur Zukunft der Kernenergie. Der<br />

Kontext für die Studie ist die Herausforderung, den<br />

Zugang zu Energie und die wirtschaftlichen<br />

Möglichkeiten für Milliarden von Menschen zu<br />

erweitern und gleichzeitig die Emissionen von<br />

Treibhausgasen drastisch zu reduzieren. Die Dekarbonisierung<br />

des Elektrizitätssektors kann zwar<br />

durch den Einsatz einer Reihe von kohlenstoffarmen<br />

Technologien in verschiedenen Kombinationen<br />

erreicht werden, Kernkraft ist jedoch die<br />

einzig ausreichend verfügbare kohlenstoffarme<br />

Technologie. Der Ausschluss einer leistungsfähigen<br />

kohlenstoffarmen Option wie der Kernenergie, wie<br />

es bei der deutschen Energiewende der Fall ist, ist<br />

mit erheblichen Herausforderungen verbunden.<br />

Hohe Kapitalkosten für neue Kernkraftwerke<br />

schränken allerdings auch die Investitionsbereitschaft<br />

ein. Die Reduzierung dieser Kosten kann die<br />

Gesamtkosten der Dekarbonisierung erheblich<br />

reduzieren. Abschließend werden Regierungspolitiken<br />

analysiert. Dazu gehören auch Dekarbonisierungsstrategien,<br />

die den Beitrag aller kohlenstoffarmen<br />

Energietechnologien gleich behandeln,<br />

auch den der Kernenergie.<br />

Kein weitere Diskurs zur<br />

deutschen Nukleartechnik<br />

Roman Martinek | Seite 578<br />

In Deutschland gibt es heute kaum noch jemanden,<br />

der in den letzten Jahren darüber schreibt, wie das<br />

Land seine Kernkraftwerke nacheinander stilllegt.<br />

Es war kaum etwas anderes zu erwarten, denn der<br />

von der deutschen Politik im Jahr 2011 beschlossene<br />

beschleunigte Ausstieg aus der Kernenergie wurde<br />

medial zustimmend begleitet und ist sicherlich eine<br />

bedeutende energiepolitische Entscheidung in der<br />

jüngeren Geschichte des Landes. Es muss dennoch<br />

mit allen Fragen und Herausforderungen des „Atomausstiegs“,<br />

auch öffentlich, umgegangen werden.<br />

Die Anwendung der NIS Direktive im<br />

Energiesektor in einigen EU-Staaten<br />

Stefan Loubichi | Seite 580<br />

Die so genannte NIS RICHTLINIE (EU) 2016/1148<br />

war der erste wichtige Schritt in Richtung der<br />

Implementierun eines gemeinsamen Standards der<br />

Informationssicherheit für die gesamte EU. Die<br />

Richtlinie wird in allen EU Ländern unterschiedlich<br />

umgesetzt. Das nächste Problem besteht darin, dass<br />

die Umsetzung in den einzelnen Ländern auch sehr<br />

unterschiedlich ist. Zusammenhänge und Details<br />

dazu werden vorgestellt.<br />

Schiedlich-friedlich? – Folgen des<br />

„Achmea“-Urteils des EuGH auch für<br />

das ICSID-Schiedsgerichtsverfahren<br />

von Vattenfall?<br />

Ulrike Feldmann | Seite 585<br />

Am 6. März <strong>2018</strong> hat der Europäische Gerichtshof<br />

(EuGH, Große Kammer) ein folgenschweres<br />

und umstrittenes Urteil zur Vereinbarkeit von<br />

Inves titionsschutzklauseln mit Unionsrecht gefällt<br />

(Rechtssache C-284/16 - „Achmea“). Es wird von<br />

verschiedenen Seiten die Frage aufgeworfen<br />

worden, ob das Urteil auch für Abkommen wie z.B.<br />

die Energiecharta gilt, bei denen die EU selber<br />

Vertragspartei ist. Die Energiecharta ist Grundlage<br />

des Verfahrens der schwedischen Vattenfall AB und<br />

weiterer Kläger vor dem Internationalen Zentrum<br />

zur Beilegung von Investitionsstreitigkeiten/International<br />

Centre for Settlement of Investment<br />

Disputes (ICSID), das zur Weltbank in Washington<br />

D.C. gehört. Das ICSID wurde 1965 durch die<br />

ICSID-Konvention gegründet, der 153 Staaten<br />

angehören.<br />

Freisetzungskategorie-orientierte<br />

Risikobetrachtung zur Beurteilung<br />

vorsorglicher Sicherheitsbarrieren<br />

Juan Carlos de la Rosa Blul und<br />

Luca Ammirabile | Seite 587<br />

Nach dem Unfall von Fukushima hat das Interesse<br />

an Analysen zu schweren Unfällen stark zugenommen,<br />

sowohl hinsichtlich administrativer Maßnahmen<br />

– zur Verbesserung der Prävention und<br />

Minimierung schwerer Unfallfolgen – als auch bei<br />

der Förderung von Forschungsaktivitäten, die sich<br />

auf noch bestehende Unsicherheiten zu physikalischen<br />

und chemischen Phänomene und Prozesse<br />

konzentrieren, die während eines postulierten<br />

schweren Unfalls eine Rolle spielen können. Ein<br />

relevante und umfassender Ansatz zur Untersuchung<br />

schwerer Unfälle ist das Level 2 Probabilistic<br />

Risk Assessment (PRA). Um die relative wahrscheinlichkeitsbezogene<br />

Gewichtung zu ermitteln,<br />

die jedes System, jede Struktur oder Komponente<br />

zur Kernschadenshäufigkeit beiträgt, stehen<br />

mehrere Risikomaßstäbe zur Disposition. Die verschiedenen<br />

Ansätze dafür werden diskutiert und<br />

ein innovatives Maß für die jeweilige Bedeutung des<br />

Beitrags zum Schwerstörfallrisiko wird eingeführt.<br />

Diese Verfahren berücksichtigt das gesamte<br />

Spektrum von Unfällen, die zu radioaktiven Freisetzungen<br />

führen. Durch die Anwendung des Tools<br />

kann der Beitrag zum Risiko der verschiedenen<br />

Komponenten einer Anlage ermittelt werden.<br />

Position des Arbeitskreises „Szenarienentwicklung“<br />

zur Thematik: Wahrscheinlichkeitsklassen<br />

und Umgang mit<br />

unwahrscheinlichen Entwicklungen<br />

J. Orzechowski, G. Stolzenberg, J. Wollrath,<br />

A. Lommerzheim, S. Mrugalla, Th. Beuth, G. Bracke,<br />

K.-M. Mayer, J. Mönig, A. Rübel, J. Wolf, V. Metz,<br />

S. Chaudry, E. Plischke und K.-J. Röhlig | Seite 594<br />

Die Sicherheitsanforderungen verlangen bei der<br />

Analyse von zukünftigen Entwicklungen eines Endlagers<br />

und Endlagerstandortes die Unter scheidung<br />

hinsichtlich der Wahrscheinlichkeit ihres Eintretens.<br />

Darüber hinaus forderte die nach dem Standortauswahlgesetz<br />

in 2013 eingesetzte Endlagerkommission<br />

in ihrem Abschlussbericht die Überprüfung<br />

der Einteilung in die Wahrscheinlichkeitsklassen<br />

„wahrscheinliche“, „we niger wahrscheinliche“ und<br />

„unwahrschein liche“ Entwicklungen und der<br />

Trennung in „wahrscheinliche“ und „weniger wahrscheinliche“<br />

Entwicklungen.<br />

Der Arbeitskreis „Szenarienentwicklung“ (AKS) hat<br />

sich mit der Einteilung von Entwicklungen in<br />

Wahrscheinlichkeitsklassen, der Ableitung von<br />

unwahrscheinlichen Szenarien sowie mit deren<br />

Behandlung auseinandergesetzt und die vorgestellte<br />

Position formuliert.<br />

Der Rückbau kerntechnischer Anlagen:<br />

Eine interdisziplinäre Aufgabe<br />

für Nachwuchskräfte<br />

David Anton, Manuel Reichardt,<br />

Thomas Hassel und Harald Budelmann | Seite 602<br />

Einige Herausforderungen und Randbedingungen<br />

werden skizziert, die mit dem Rückbau kerntechnischer<br />

Anlagen einhergehen. Im Vergleich zum<br />

Rückbau konventioneller Anlagen werden die<br />

Arbeiten in kerntechnischen Anlagen durch die<br />

radiologische Belastung erschwert. Das Rückbaukonzept<br />

muss unter Berücksichtigung der vielfältigen<br />

Randbedingungen für jede kerntechnische<br />

Anlage individuell erarbeitet bzw. angepasst<br />

werden. Die Vielseitigkeit der Herausforderungen<br />

im Zusammenhang mit dem Rückbau kerntechnischer<br />

Anlagen und der Zwischen- bzw. Endlagerung<br />

der radioaktiven Abfälle unterstreicht<br />

die Notwendigkeit einer interdisziplinären Herangehensweise.<br />

Kritische Anordnungen des<br />

Kurchatov Instituts<br />

Andrej Yurjewitsch Gagarinskiy | Seite 607<br />

Seit seiner Gründung ist das Kurchatov Institute of<br />

Atomic Energy (heute National Research Centre<br />

„Kurchatov Institute“) an der Erforschung und Entwicklung<br />

von Kernreaktoren für verschiedene<br />

Anwendungen beteiligt. Dies erforderte auch<br />

Planung, Bau und Betrieb von speziellen Kritischen<br />

Anordnungen. Dieses Papier gibt einen Überblick<br />

über den Status des Einrichtungen des Kurchatov<br />

Institute mit mehr als zehn Kritischen Anordnungen,<br />

die für die Forschung und Entwicklung von<br />

Leistungs- (VVER, RBMK, HTGR), Schiffs- und<br />

Weltraumreaktoren vorgesehen sind.<br />

49 th Annual Meeting on Nuclear Technology<br />

(AMNT <strong>2018</strong>) Key Topic | Enhanced Safety &<br />

Operation Excellence<br />

Ludger Mohrbach | Seite 610<br />

Der Bericht fasst die Vorträge der Focus Session<br />

„International Operational Experience” des Key<br />

Topic „Enhanced Safety & Operation Excellence“<br />

zusammen, die auf der 49. Jahrestagung Kerntechnik<br />

(AMNT <strong>2018</strong>) präsentiert wurden.<br />

Brexit und die Trump-Administration:<br />

Neue Herausforderungen für die<br />

Kernenergie im kommenden Jahr<br />

John Shepherd | Seite 626<br />

Zum Ende des Jahres <strong>2018</strong> gab es mehrere Entwicklungen,<br />

die möglicherweise dazu führen<br />

werden, dass das neue Jahr mit neuen Unsicherheiten<br />

im Kontext der globalen Kernenergieentwicklung<br />

beginnt. Es sind dies der Brexit mit<br />

seinen Unsicherheiten und die Ankündigung der<br />

Trump-Administration für einen neuen politischen<br />

Rahmen zur Beschränkung des Handels mit<br />

Kernenergietechnologie mit China.<br />

569<br />

ABSTRACTS | GERMAN<br />

Abstracts | German


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

570<br />

INSIDE NUCLEAR WITH NUCNET<br />

How Nuclear Industry Can Solve<br />

‘ Fundamental Obstacle’<br />

of High Capital Cost<br />

History shows that new nuclear generating capacity can be deployed as quickly as coal and gas-fired capacity, but the<br />

high capital cost of new nuclear plants remains “a fundamental obstacle” which the industry needs to tackle, a report<br />

by the Massachusetts Institute of Technology Energy Initiative found.<br />

If the global nuclear industry achieved the pace<br />

of plant construction and deployment seen in<br />

France and the US in the 1970s and 1980s, the<br />

world’s energy sector would be completely<br />

decarbonised by 2050, Jacopo Buongiorno, a<br />

co-director of the study and an associate<br />

department head of the Department of Nuclear Science and<br />

Engineering at MIT, said during a briefing on the report in<br />

Brussels.<br />

“It is feasible based on historical data, but the important<br />

question is can we build nuclear capacity the same way<br />

today?” Mr Buongiorno told the briefing, organised by<br />

European industry group Foratom.<br />

“Such deployment requires an industry which has<br />

sufficient manufacturing capability and resources and also<br />

a regulatory framework in place to support it.”<br />

According to MIT, about 75 % of the capital cost of<br />

nuclear projects under construction, including two<br />

AP1000s at Vogtle in the US, EPRs at Flamanville in France<br />

and Olkiluoto in Finland, and four South Korean APR1400s<br />

at Barakah in the United Arab Emirates, is down to civil<br />

work, site preparation, installation and indirect costs like<br />

engineering oversight and ownership costs.<br />

“Only 20-25% of the total cost goes to actual nuclear<br />

equipment, meaning that there are many issues not related<br />

to technology which affect the bill,” Mr Buongiorno said.<br />

“The solution to high cost will not come from a new,<br />

innovative reactor design, but rather from shrewd<br />

management practices,” he said.<br />

To tackle the cost burden, the MIT report calls on the<br />

nuclear industry to start using “proven project and contract<br />

management practices” and to shift away from construction<br />

of cumbersome, highly site-dependent plants to the<br />

“serial manufacturing of standardised plants”.<br />

“The use of cross-cutting technologies, including<br />

modular construction in factories and shipyards,<br />

advanced concrete solutions (e.g. steel-plate composites,<br />

high-strength reinforcement steel, ultra-high-performance<br />

concrete), seismic isolation technology, and advanced<br />

plant layouts (e.g., embedment, offshore siting),<br />

could have positive impacts on the cost and schedule<br />

of new nuclear power plant construction”, the report<br />

said.<br />

The report, ‘The Future of Nuclear Energy in a Carbon-<br />

Constrained World’, analyses the reasons for the current<br />

global stall in nuclear energy – which accounts for only 5%<br />

of global primary energy production – and outlines<br />

measures that could be taken to arrest and reverse that<br />

trend.<br />

It concludes that nuclear energy could take its place as<br />

a major low-carbon energy source, but issues of cost and<br />

policy need to be addressed. New nuclear plants have<br />

become costlier in recent decades, while other generation<br />

technologies have become cheaper, the report said.<br />

“This disturbing trend undermines nuclear energy’s<br />

potential contribution and increases the cost of achieving<br />

deep decarbonisation”, the report said.<br />

The report found that the overnight cost for nuclear<br />

new-build projects in Europe and the US are higher than<br />

those for projects in South Korea or the UAE.<br />

Overnight cost is the capital cost including engineering,<br />

procurement and construction (EPC) costs, and owners'<br />

costs, but excluding financial charges or interest accrued<br />

during construction.<br />

The overnight cost of the Olkiluoto and Flamanville<br />

projects, and the estimated overnight cost for the EPR<br />

project at Hinkley Point C in the UK, fall between about<br />

$7,200 and $8,200 per kW, based on 2017 figures, the<br />

report said.<br />

The overnight cost for the two AP1000s under construction<br />

at Vogtle has exceeded $8,500 per kW, while that for<br />

two suspended VC Summer AP1000s, also in the US, is<br />

about $6,300 per kW.<br />

In comparison, the report said, the overnight cost for<br />

South Korea’s APR1400 under construction at Barakah in<br />

the UAE is $4,000 per kW. Other APR1400 projects in<br />

South Korea have cost even less – about $3,000 per kW.<br />

China can be even cheaper. According to the report,<br />

China has been building nuclear units at an overnight cost<br />

ranging between about $2,500 and $5,000 per kW.<br />

The report said that for nuclear power to compete with<br />

natural gas-fired energy in the absence of a carbon price,<br />

overnight costs would have to be between $2,000 and<br />

$4,000 per kW.<br />

The report noted that in addition to cost-cutting efforts<br />

and developments, action by policy makers is needed to<br />

support the growth of nuclear energy.<br />

John Parsons, study co-chair and senior lecturer at MIT’s<br />

Sloan School of Management, said “the role of government<br />

will be critical if we are to take advantage of the economic<br />

opportunity and low-carbon potential that nuclear has to<br />

offer”.<br />

He said government officials must create new<br />

decarbonisation policies that put all low-carbon energy<br />

tech nologies on an equal footing, while also exploring<br />

options that spur private investment in nuclear advancement.<br />

The study laid out detailed options for government<br />

support of nuclear. For example, the authors recommend<br />

that policymakers should avoid premature closures of<br />

existing plants, which undermine efforts to reduce<br />

emissions and increase the cost of achieving emission<br />

reduction targets.<br />

One way to avoid these closures is the implementation<br />

of zero-emissions credits – payments made to electricity<br />

producers where electricity is generated without greenhouse<br />

gas emissions – which are in place in New York,<br />

Illinois, and New Jersey.<br />

Inside Nuclear with NucNet<br />

How Nuclear Industry Can Solve ‘ Fundamental Obstacle’ of High Capital Cost ı November/December


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Another proposal is that governments support<br />

development and demonstration of new nuclear technologies<br />

through four funding “levers”: funding to share<br />

regulatory licensing costs; funding to share research and<br />

development costs; funding for the achievement of specific<br />

technical milestones; and funding for production credits to<br />

reward successful demonstration of new designs.<br />

Unless nuclear energy is incorporated into the global<br />

mix of low-carbon energy technologies with the help of<br />

new government policies, the challenge of climate change<br />

will be much more difficult and costly to solve, the report<br />

concluded.<br />

According to MIT, over 80 % of the energy used in the<br />

world comes from fossil fuels and despite all the talk about<br />

switching to alternative energy sources, CO 2 emissions are<br />

on the rise.<br />

“The magnitude of the challenge we are facing in<br />

decarbonising the world’s energy supply is enormous”,<br />

Mr Buongiorno said.<br />

“This means we must have as many energy options on<br />

the table as possible because we cannot succeed using just<br />

one technology type.”<br />

The report is online:<br />

http://bit.ly/2x3yvNt<br />

DATF EDITORIAL NOTES<br />

571<br />

Notes<br />

Public Opinion About<br />

the Loss of Competence<br />

Only limited concern about loss of competence: Asked about their<br />

possible concern with regard to the loss of knowledge on the safety<br />

of nuclear power plants in Germany after nuclear phase-out and in<br />

view of future German capabilities to rate the safety level of foreign<br />

NPPs, a relative majority is not concerned. The relatively high<br />

percentage of persons that cannot decide for either position shows<br />

that their opinion on the issue is not stable. This is often the case<br />

with issues the citizens have not or only hardly dealt with and thus<br />

do not consider it possible to judge on the issue.<br />

East-Germans are more concerned than West-Germans, men<br />

more than women. This might be due to differences in the basic<br />

opinion on nuclear power. The surveys of past decades showed<br />

repeatedly that East-Germans and men are more open to nuclear<br />

than West-Germans and men respectively.<br />

Question: Some time ago, Germany decided to phase out nuclear<br />

energy entirely until 2022. We have two persons talking about this<br />

topic. Who of the two says what comes close to what is your opinion?<br />

Person one: “I’m concerned, that Germany will lose precious<br />

knowledge and experience regarding to the operation of nuclear<br />

power plants. Then, Germany will not be able anymore to rate the<br />

safety standards of foreign nuclear power plants.”<br />

Person two: “I do think differently. When there will be no more use<br />

of nuclear power plants in Germany, we don’t need experience in<br />

operation of nuclear power plants. The safety standards can well be<br />

rated by local experts. Therefore, I am not concerned.”<br />

Not concerned<br />

Concerned<br />

Undecided, no opinion<br />

25 %<br />

36 %<br />

39 %<br />

Public Opinion About Euratom<br />

A large majority thinks Euratom Treaty is reasonable: There is a<br />

broad consensus in the population that European safety cooperation<br />

in the area of nuclear energy is important. Accordingly, 72 per cent<br />

think that the Euratom Treaty makes sense. Only 9 per cent have the<br />

opposing opinion, that it would be better if every European country<br />

would deal with the issue on its own.<br />

Question: The Euratom Treaty has established a safety cooperation<br />

in the field of nuclear energy on the European level for more than<br />

60 years. Do you consider this kind of cooperation to be reasonable,<br />

or should the respective countries regulate this on their own?<br />

19 %<br />

Undecided,<br />

no opinion<br />

72 %<br />

Reasonable<br />

9 %<br />

On their own<br />

Are you interested in more information<br />

on Euratom? DAtF published a new<br />

booklet about Euratom (in German).<br />

Please check www.kernenergie.de.<br />

Results of a public<br />

opinion survey<br />

carried out in<br />

October <strong>2018</strong> by<br />

Institut für<br />

Demoskopie<br />

Allensbach<br />

commissioned by<br />

DAtF. The survey is<br />

based on a total of<br />

1.236 Face-to-Face-<br />

Interviews with a<br />

representative<br />

cross section of<br />

the population<br />

from age 16. The<br />

interviews were<br />

conducted between<br />

11 and 27 October<br />

<strong>2018</strong>.<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

DAtF<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

kernenergie.de<br />

www.kernenergie.de<br />

DAtF Notes


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Calendar<br />

572<br />

CALENDAR<br />

<strong>2018</strong><br />

03.<strong>12</strong>.-14.<strong>12</strong>.<strong>2018</strong><br />

United Nations, Conference of the Parties –<br />

COP24. Katowice, Poland, United Nations<br />

Framework Convention on Climate Change –<br />

UNFCCC, www.cop24.katowice.eu<br />

03.<strong>12</strong>.-04.<strong>12</strong>.<strong>2018</strong><br />

IGD-TP Exchange Forum 8 – Radioactive Waste<br />

Management (EURAD). Berlin, Germany, German<br />

Federal Ministry for Economic Affairs and Energy<br />

(BMWi), igdtp.eu/event/igd-tp-exchange-forum-8/<br />

06.<strong>12</strong>.<strong>2018</strong><br />

Nuclear <strong>2018</strong>. London, United Kingdom, Nuclear<br />

Industry Association (NIA), www.niauk.org<br />

10.<strong>12</strong>.-<strong>12</strong>.<strong>12</strong>.<strong>2018</strong><br />

Toronto Global Forum: Navigating a World in<br />

Disruption. Toronto, Canada, forum-americas.org<br />

10.<strong>12</strong>.-11.<strong>12</strong>.<strong>2018</strong><br />

Symposium zum neuen deutschen Strahlenschutzrecht.<br />

Aschaffenburg, Germany,<br />

Fachverband für Strahlenschutz e. V., fs-ev.org<br />

2019<br />

07.01.-08.01.2019<br />

ICNPPS 2019 – 21 st International Conference<br />

Nuclear Power Plant Systems. Tokyo, Japan,<br />

World Academy of Science, Engineering and<br />

Technology, waset.org<br />

15.01.2019<br />

Nuclear Fuel Supply Forum. Washington DC, USA,<br />

Nuclear Energy Institute (NEI), www.nei.org<br />

21.01.-22.01.2019<br />

Uranium Science. Bristol, Unitd Kingdom, University<br />

of Bristol, Royal Academy of Engineering, IAC,<br />

uranium-science.tumblr.com<br />

28.01.-29.01.2019<br />

5 th Central & Eastern Europe Nuclear Industry<br />

Congress 2019. Prague, Czech Republic,<br />

www.szwgroup.com<br />

05.02.-07.02.2019<br />

Nordic Nuclear Forum. Helsinki, Finland, FinNuclear,<br />

www.finnuclear.fi, nordicnuclearforum.fi<br />

20.02.-22.02.2019<br />

ips – International Power Summit 2019.<br />

Berlin, Germany, bit.ly/2kQk2LU<br />

<strong>12</strong>.02.-14.02.2019<br />

The annual Nuclear Deterrence Summit.<br />

Arlington, VA, USA, Access Intelligence,<br />

www.deterrencesummit.com<br />

20.02.-21.02.2019<br />

Nuclear Decommissioning & Waste Management<br />

Summit 2019. London, United Kingdom, ACI,<br />

www.wplgroup.com/aci/event/nucleardecommissioning-waste-management-summit/<br />

25.02.-26.02.2019<br />

Symposium Anlagensicherung. Hamburg,<br />

Germany, TÜV NORD Akademie, www.tuev-nord.de<br />

03.03.-07.03.2019<br />

WM Symposia – WM2019. Phoenix, AZ, USA.<br />

www.wmsym.org<br />

05.03.-06.03.2019<br />

VI. International Power Plants Summit.<br />

Istanbul, Turkey, INPPS Fair,<br />

www.nuclearpowerplantssummit.com<br />

10.03.-15.03.2019<br />

83. Annual Meeting of DPG and DPG Spring<br />

Meeting of the Atomic, Molecular, Plasma Physics<br />

and Quantum Optics Section (SAMOP),<br />

incl. Working Group on Energy. Rostock, Germany,<br />

Deutsche Physikalische Gesellschaft e.V.,<br />

www.dpg-physik.de<br />

10.03.-14.03.2019<br />

The 9 th International Symposium On<br />

Supercritical- Water-Cooled Reactors (ISSCWR-9).<br />

Vancouver Marriott Hotel, Vancouver, British<br />

Columbia, Canada, Canadian Nuclear Society (CNS),<br />

www.cns-snc.ca<br />

11.03.-13.03.2019<br />

18 th Workshop of the European ALARA Network:<br />

ALARA in Decommissioning and Site Remediation.<br />

Marcoule, France, European ALARA Network<br />

www.eu-alara.net<br />

11.03.-<strong>12</strong>.03.2019<br />

Carnegie International Nuclear Policy Conference.<br />

Washington D.C., U.S.A., Carnegie Endownment for<br />

International Peace, carnegieendowment.org<br />

11.03.-15.03.2019<br />

RaPBA-training course. Jülich, Germany,<br />

Forschungszentrum Jülich GmbH, www.fz-juelich.de<br />

24.03.-28.03.2019<br />

RRFM 2019 – 2019 the European Research<br />

Reactor Conference. Jordan, IGORR,<br />

the Inter national Group Operating Research<br />

Reactors and European Nuclear Society (ENS),<br />

www.euronuclear.org<br />

25.03.-27.03.2019<br />

Cyber Security Implementation Workshop.<br />

Boston MA, USA, Nuclear Energy Institute (NEI),<br />

www.nei.org<br />

01.04.-03.04.2019<br />

CIENPI – 13 th China International Exhibition on<br />

Nuclear Power Industry. Beijing, China,<br />

Coastal International, www.coastal.com.hk<br />

09.04.-11.04.2019<br />

World Nuclear Fuel Cycle 2019. Shanghai, China,<br />

World Nuclear Association (WNA),<br />

www.world-nuclear.org<br />

07.05.-08.05.2019<br />

50 th Annual Meeting on Nuclear Technology<br />

AMNT 2019 | 50. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.nucleartech-meeting.com – Register Now!<br />

15.05.-17.05.2019<br />

1 st International Conference of Materials,<br />

Chemistry and Fitness-For-Service Solutions<br />

for Nuclear Systems. Toronto, Canada, Canadian<br />

Nuclear Society (CNS), www.cns-snc.ca<br />

16.05.-17.05.2019<br />

Emergency Power Systems at Nuclear Power<br />

Plants. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de/eps-symposium<br />

24.05.-29.05.2019<br />

International Topical Workshop on Fukushima<br />

Decommissioning Research – FDR2019.<br />

Fukushima, Japan, The University of Tokyo,<br />

fdr2019.org<br />

03.06.-05.06.2019<br />

Nuclear Energy Assembly. Washington DC, USA,<br />

Nuclear Energy Institute (NEI), www.nei.org<br />

04.06.-07.06.2019<br />

FISA 2019 and EURADWASTE ‘19. 9 th European<br />

Commission Conferences on Euratom Research<br />

and Training in Safety of Reactor Systems and<br />

Radioactive Waste Management. Pitesti, Romania,<br />

www.nucleu2020.eu<br />

24.06.-26.06.2019<br />

2019 International Conference on the Management<br />

of Spent Fuel from Nuclear Power Reactors.<br />

Vienna, Austria, International Atomic Energy Agency<br />

(IAEA), www.iaea.org<br />

23.06.-27.06.2019<br />

World Nuclear University Summer Institute.<br />

Romania and Switzerland, World Nuclear University,<br />

www.world-nuclear-university.org<br />

21.07.-24.07.2019<br />

14 th International Conference on CANDU Fuel.<br />

Mississauga, Ontario, Canada, Canadian Nuclear<br />

Society (CNS), www.cns-snc.ca<br />

28.07.-29.07.2019<br />

Radiation Protection Forum. Memphis TN, USA,<br />

Nuclear Energy Institute (NEI), www.nei.org<br />

04.08.-09.08.2019<br />

PATRAM 2019 – Packaging and Transportation<br />

of Radioactive Materials Symposium.<br />

New Orleans, LA, USA. www.patram.org<br />

21.08.-30.08.2019<br />

Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />

FJOH-2019 – Innovative Reactors: Matching the<br />

Design to Future Deployment and Energy Needs.<br />

Karlsruhe, Germany, Nuclear Energy Division<br />

of Commissariat à l’énergie atomique et aux<br />

énergies alternatives (CEA) and Karlsruher Institut<br />

für Technologie (KIT), www.fjohss.eu<br />

04.09.-06.09.2019<br />

World Nuclear Association Symposium 2019.<br />

London, UK, World Nuclear Association (WNA),<br />

www.wna-symposium.org<br />

04.09.-05.09.2019<br />

VGB Congerss 2019 – Innovation in Power<br />

Generation. Salzburg, Austria, VGB PowerTech e.V.,<br />

www.vgb.org<br />

08.09.-11.09.2019<br />

4 th Nuclear Waste Management,<br />

Decommissioning and Environmental Restoration<br />

(NWMDER). Ottawa, Canada, Canadian Nuclear<br />

Society (CNS), www.cns-snc.ca<br />

09.09.-<strong>12</strong>.09.2019<br />

24 th World Energy Congress. Abu Dhabi, UAE,<br />

www.wec24.org<br />

09.09.-<strong>12</strong>.09.2019<br />

Jahrestagung 2019 – Fachverband für<br />

Strahlenschutz | Strahlenschutz und Medizin.<br />

Würzburg, Germany, www.fs-ev.org<br />

22.10.-25.10.2019<br />

SWINTH-2019 Specialists Workshop on Advanced<br />

Instrumentation and Measurement Techniques<br />

for Experiments Related to Nuclear Reactor<br />

Thermal Hydraulics and Severe Accidents.<br />

Livorno, Italy, www.nineeng.org/swinth2019/<br />

23.10.-24.10.2019<br />

Chemistry in Power Plants. Würzburg, Germany,<br />

VGB PowerTech e.V., www.vgb.org<br />

27.10.-30.10.2019<br />

FSEP CNS International Meeting on Fire Safety<br />

and Emergency Preparedness for the Nuclear<br />

Industry. Ottawa, Canada, Canadian Nuclear Society<br />

(CNS), www.cns-snc.ca<br />

Calendar


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Should Nuclear Energy Play a Role<br />

in a Carbon-Constrained World?<br />

Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti<br />

The Big Picture Access to electricity plays a vital role in improving standards of living, education, and health. This<br />

relationship is illustrated by Figure 1, which locates various countries according to their score on the Human<br />

Development Index, a well-known metric of economic and social development, and per capita electricity use. As<br />

countries develop, electricity use tends to rise; according to current forecasts, electricity consumption in developing<br />

non-OECD (Organisation for Economic Co-operation and Development) countries is expected to grow 60 % by 2040,<br />

whereas worldwide use is expected to grow 45 % in the same timeframe (U.S. Energy Information Agency, 2017).<br />

| | Fig. 1.<br />

Human Development Index versus per capita electricity consumption for<br />

different countries (United Nations Development Programme, 2017)<br />

Expanding access to energy while at the same time drastically<br />

reducing the emissions of greenhouse gases that cause<br />

global warming and climate change is among the central<br />

challenges confronting humankind in the 21 st century. This<br />

study focuses on the electric power sector, which has been<br />

identified as an early target for deep decarbonization. In<br />

the foreseeable future, electricity will continue to come<br />

primarily from a mix of fossil fuels, hydro power, variable<br />

renewables such as solar and wind, and nuclear energy<br />

(U.S. Energy Information Agency, 2017). At present nuclear<br />

energy supplies about 11 % of the world’s electricity and<br />

constitutes a major fraction of all low-carbon electricity<br />

generation in the United States, Europe, and globally<br />

(Figure 2). Nuclear energy’s future role, however, is highly<br />

uncertain for several reasons: chiefly, escalating costs and,<br />

to a lesser extent, the per sistence of historical challenges<br />

such as spent fuel disposal and concerns about nuclear<br />

plant safety and nuclear weapons proliferation.<br />

| | Fig. 2.<br />

Share of carbon-free electricity sources in several major economies and<br />

worldwide (International Energy Agency, 2017)<br />

The Nuclear Energy Landscape<br />

Since MIT published its first Future of Nuclear Power study<br />

[Deutch, et al., 2003], the context for nuclear energy in the<br />

United States and globally has changed dramatically.<br />

Throughout most of the 2000s, the U.S. fleet of nuclear<br />

power plants was highly profitable: their capital costs had<br />

been largely amortized over previous decades and their<br />

production costs were low compared to the relatively high<br />

cost of fossil and renewable alternatives. As utilities sought<br />

to maximize the value of their nuclear assets, they<br />

embarked on a flurry of market-driven nuclear power plant<br />

purchases, power uprates, and license extensions. The<br />

situation changed quickly after 2007, as large quantities of<br />

inexpensive shale natural gas became available in the<br />

United States and the Great Recession depressed electricity<br />

demand and prices. Since then, nuclear power plants in<br />

the United States have become steadily less profitable and<br />

the industry has witnessed a wave of plant closures. Two<br />

recent examples include the Kewaunee plant in Wisconsin,<br />

which shut down in 2013 [Dotson, 2014], and the Fort<br />

Calhoun plant in Nebraska, which shut down in 2016<br />

[ Larson, A., 2016]. Both plants shut down because they<br />

could not compete with cheaper generation options.<br />

Similarly, falling natural gas prices in Europe and Asia<br />

have put more economic pressure on nuclear power in<br />

those regions also.<br />

While the U.S. nuclear industry remains exceptionally<br />

proficient at operating the existing fleet of power plants, its<br />

handling of complex nuclear construction projects has<br />

been abysmal, as exemplified by the mismanagement of<br />

component-replacement projects at the San Onofre<br />

[Mufson, 2013] and Crystal River [Penn, 2013] plants,<br />

which led to the premature closure of both plants in 2013.<br />

Other projects, including the troubled Vogtle [Proctor, D.,<br />

2017] and V. C. Summer [Downey, 2017] expansion<br />

projects, have experienced soaring costs and lengthy<br />

schedule delays. In the case of Vogtle and V.C. Summer,<br />

costs doubled and construction time increased by more<br />

than three years, causing the reactor supplier Westinghouse<br />

[Cardwell & Soble, 2017] to declare bankruptcy<br />

(Westinghouse only began emerging from Chapter 11 protection<br />

in <strong>2018</strong>) [Hals & DiNapoli, <strong>2018</strong>]. The V. C. Summer<br />

project was ultimately abandoned in 2017 [Plumer, 2017].<br />

New nuclear plant construction projects by French<br />

reactor suppliers Areva and EDF at Olkiluoto (Finland)<br />

[Rosendahl & Forsell, 2017], Flamanville (France) [Reuters,<br />

<strong>2018</strong>], and Hinkley Point C (United Kingdom) [BBC News,<br />

2017], have suffered similarly severe cost escalation and<br />

delays. Clearly, the goal of deploying new nuclear power<br />

plants at an overnight capital cost of less than $2,000 per<br />

electric kilowatt, as claimed by the North American and<br />

573<br />

ENERGY POLICY, ECONOMY AND LAW<br />

Energy Policy, Economy and Law<br />

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENERGY POLICY, ECONOMY AND LAW 574<br />

European nuclear industries in the 2000s [Winters,<br />

Corletti, & Thompson, 2001] (The Economics of Nuclear<br />

Power, 2008), turned out to be completely unrealistic.<br />

New nuclear plant construction (International Atomic<br />

Energy Agency, 2017) has con tinued at a steady rate in<br />

countries like South Korea, China, and Russia; construction<br />

has also recently started in the Middle East. Many<br />

of these projects have been completed more or less on<br />

time, and likely at significantly lower cost than comparable<br />

projects in the West, although it is often challenging to<br />

independently validate the cost figures published in these<br />

countries.<br />

In 2011, the combined effects of a massive earthquake<br />

and tsunami triggered an accident at the Fukushima<br />

Daiichi nuclear power plant in Japan and led to an unfortunate<br />

decision by Japanese authorities to force the evacuation<br />

of nearly 200,000 people from the region surrounding<br />

the site. This event renewed public concerns about the<br />

safety of nuclear installations. Although the radiological<br />

consequences of the accident have been minimal (United<br />

Nations Scientific Committee on the Effects of Atomic<br />

Radiation, 2017), by 20<strong>12</strong> the entire nuclear fleet in Japan<br />

was tempo rarily shut down, and only a handful of nuclear<br />

plants are currently back online in that country. In the<br />

wake of Fukushima, five countries (Germany, Switzerland,<br />

Belgium, Taiwan, and South Korea) (World Nuclear<br />

Association, 2017) announced their intention to ultimately<br />

phase out nuclear energy, though to date only Germany<br />

has taken immediate action toward actually implementing<br />

this policy.<br />

Against this bleak backdrop, some opportunities have<br />

nonetheless emerged for the nuclear energy industry.<br />

Heightened awareness of the social, economic, and<br />

environmental risks of climate change and air pollution<br />

has provided a powerful argument for maintaining and<br />

potentially increasing nuclear energy’s share of the global<br />

energy mix [Hansen, Emanuel, Caldeira, & Wigley, 2015].<br />

Private investors appear interested in developing and<br />

deploying advanced reactor technologies [Brinton, 2015],<br />

defined here as light- water-cooled small modular reactors<br />

(SMRs) and non-water-cooled reactors (Generation-IV<br />

systems), even as the readiness of these technologies<br />

has significantly increased in the past 15 years [ANL-INL-<br />

ORNL, 2016] (Generation-IV International Forum, 2014).<br />

Finally, there seems to be bipartisan support in the<br />

U.S. Congress for renewed American leadership in commercializing<br />

new nuclear technology [115 th U.S. Congress,<br />

2017-<strong>2018</strong>].<br />

The New MIT Study<br />

In light of the important changes that have occurred in the<br />

past 15 years, coupled with the existential challenges that<br />

now confront the nuclear industry, we concluded that<br />

it was time to conduct a new interdisciplinary study<br />

analyzing the future prospects of nuclear energy in the<br />

U.S. and internationally. The objective of this paper is to<br />

summarize the key findings of the study. The reader is<br />

encouraged to examine the full study report [Buongiorno<br />

& al., <strong>2018</strong>] for a detailed discussion and justification of<br />

the findings.<br />

We have examined the challenge of drastically reducing<br />

emissions of greenhouse gases in the electricity sector,<br />

which has been widely identified as an early candidate for<br />

deep decarbonization. In most regions, serving projected<br />

electricity demand in 2050 while simultaneously reducing<br />

emissions will require a mix of electrical generation assets<br />

| | Fig. 3.<br />

(Left) average system cost of electricity (in $/MWh e ) and (right) nuclear installed capacity (% of peak demand) in the New England region of the United States and<br />

the Tianjin-Beijing-Tangshan (T-B-T) region of China for different carbon constraints (gCO 2 /kWh e ) and three scenarios of various available technologies in 2050:<br />

(a) no nuclear allowed, (b) nuclear is allowed at nominal overnight capital cost ($5,500 per kW e for New England and $2,800 per kW e for T-B-T), and (c) nuclear is<br />

allowed with improved overnight capital cost ($4,100 per kWe for New England and $2,100 per kW e for T-B-T). Simulations were performed with an MIT system<br />

optimization tool called GenX. For a given power market the required inputs include hourly electricity demand, hourly weather patterns, economic costs (capital,<br />

operations, and fuel) for all power plants (nuclear, wind and solar with battery storage, fossil with and without carbon capture and storage), and their ramp-up<br />

rates. The GenX simulations were used to identify the electrical system generation mix that minimizes average system electricity costs in each of these markets.<br />

The cost escalation seen in the no-nuclear scenarios with aggressive carbon constraints is mostly due to the additional build-out and cost of energy storage, which<br />

becomes necessary in scenarios that rely exclusively on variable renewable energy technologies. The current world-average carbon intensity of the power sector is<br />

about 500 grams of CO 2 equivalent per kilowatt hour (g/kWh e ); according to climate change stabilization scenarios developed by the International Energy Agency<br />

in 2017, the power-sector carbon intensity targets to limit global average warming to 2°C range from 10 to 25 g/kWh e by 2050 and less than 2 g/kWh e by 2060.<br />

Energy Policy, Economy and Law<br />

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

that is different from the current system. While a variety of<br />

low- or zero-carbon technologies can be employed in<br />

various combinations, our analysis shows the potential<br />

contribution nuclear can make as a dispatchable lowcarbon<br />

technology. Without that contribution, the cost of<br />

achieving deep decarbonization targets increases significantly<br />

(see Figure 3, left column). The least-cost portfolios<br />

include an important share for nuclear, the magnitude of<br />

which significantly grows as the cost of nuclear drops<br />

( Figure 3, right column).<br />

In all the scenarios we analyzed, a certain flexibility<br />

in operations is required from the dispatchable power<br />

generators, because of the presence of variable renew ables<br />

on the grid. Nuclear plants were traditionally designed for<br />

baseload operation, but, as has been recently demonstrated<br />

in Europe and the United States [Jenkins & al., <strong>2018</strong>],<br />

nuclear plants can adapt to provide load-following generation<br />

and many advanced reactor concepts are being<br />

designed for that capability as well.<br />

A key consideration is whether the deployment of<br />

low-carbon energy technologies like renewables or nuclear<br />

can be accomplished in the timeframe needed to substantially<br />

displace fossil fuels by 2050. Rapid deployment by<br />

that date is critical to achieve current international climate<br />

mitigation goals. In many countries, solar and wind have<br />

achieved notable levels of penetration in electricity generation<br />

markets over the last decade, and this trend is expected<br />

to continue. However, our analysis indicates that, historically,<br />

large-scale increases in low-carbon generation<br />

have occurred most rapidly in connection with additions of<br />

nuclear power (Figure 4).<br />

Nuclear energy does provide other benefits in addition<br />

to its low-carbon attribute. For example, it reduces air<br />

pollution associated with electricity production; it contributes<br />

to fuel diversification and grid stability, has low<br />

land requirements, and creates well-paid jobs. These<br />

benefits are important in certain contexts; for example,<br />

nuclear energy may be attractive in regions that do not<br />

have enough land or suitable weather patterns for largescale<br />

deployment of renewables, or in countries that are<br />

seeking to reduce coal use to improve air quality, or that<br />

are concerned about the security and reliability of their<br />

energy supply. However, we believe that the primary,<br />

generally applicable attribute of nuclear energy that may<br />

justify its future growth on a global scale is its low-carbon<br />

nature. As such, special consideration should be given to<br />

preserving the existing nuclear power plant fleet in the<br />

U.S. and internationally, as it constitutes a bridge to the<br />

future in terms of emission avoidance (as recognized in<br />

recent legislation adopted by the U.S. states of New York<br />

[Larson, A., 2016], Illinois [Anderson, 2016], and New<br />

Jersey [Sethuraman, <strong>2018</strong>]), and expertise essential for<br />

the operation of the future nuclear systems.<br />

Despite the promise highlighted by our analyses, the<br />

prospects for the expansion of nuclear energy remain<br />

decidedly dim in many parts of the world. The fundamental<br />

problem is cost. Other generation technologies<br />

have become cheaper in recent decades, while new nuclear<br />

plants have only become costlier. This disturbing trend<br />

undermines nuclear energy’s potential contribution and<br />

increases the cost of achieving deep decarbonization. In<br />

the MIT study, we have examined what is needed to arrest<br />

and reverse that trend.<br />

We have surveyed recent light water reactor (LWR)<br />

construction projects around the world and examined<br />

recent advances in crosscutting technologies that can be<br />

applied to nuclear plant construction for a wide range of<br />

| | Fig. 4.<br />

Electricity growth (kWh per year per capita) based on actual data for added power capacity in various<br />

countries. Assumes 90 % capacity factor for dispatchable energy sources (nuclear, natural gas, coal) and<br />

the following capacity factors for wind/solar: Germany 19 %/9 %; Spain 25 %/33 %; Denmark 26 %/7 %<br />

(based on historical record for best 10-year period).<br />

advanced nuclear plant concepts and designs under<br />

development. To address cost concerns, we recommend:<br />

(1) An increased focus on using proven project/construction<br />

management practices to increase the<br />

probability of success in the execution and delivery<br />

of new nuclear power plants.<br />

The recent experience of nuclear construction projects<br />

in the United States and Europe has demonstrated<br />

repeated failures of construction management practices<br />

in terms of their ability to deliver products on time and<br />

within budget. Several corrective actions are urgently<br />

needed: (a) completing greater portions of the detailed<br />

design prior to construction; (b) using a proven supply<br />

chain and skilled workforce; (c) incorporating manufacturers<br />

and builders into design teams in the early<br />

stages of the design process to assure that plant systems,<br />

structures, and components are designed for efficient<br />

construction and manufacturing to relevant standards;<br />

(d) appointing a single primary contract manager with<br />

proven expertise in managing multiple independent<br />

subcontractors; (e) establishing a contracting structure<br />

that ensures all contractors have a vested interest in the<br />

success of the project; and (f) enabling a flexible<br />

regulatory environment that can accommodate small,<br />

unanticipated changes in design and construction in a<br />

timely fashion.<br />

(2) A shift away from primarily field construction of<br />

cumbersome, highly site-dependent plants to more<br />

serial manufacturing of standardized plants.<br />

Opportunities exist to significantly reduce the capital<br />

cost and shorten the construction schedule for new<br />

nuclear power plants. First, the deployment of multiple,<br />

standardized units, especially at a single site, affords<br />

considerable learning from the construction of each<br />

unit. In the United States and Europe, where productivity<br />

at construction sites has been low, we also recommend<br />

expanded use of factory production to take<br />

advantage of the manufacturing sector’s higher productivity<br />

when it comes to turning out complex systems,<br />

structures, and components. The use of an array of<br />

cross-cutting technologies, including modular construction<br />

in factories and shipyards, advanced concrete<br />

solutions (e.g., steel-plate composites, high-strength<br />

reinforcement steel, ultra-high performance concrete),<br />

seismic isolation technology, and advanced plant layouts<br />

(e.g., embedment, offshore siting), could have<br />

positive impacts on the cost and schedule of new<br />

ENERGY POLICY, ECONOMY AND LAW 575<br />

Energy Policy, Economy and Law<br />

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENERGY POLICY, ECONOMY AND LAW 576<br />

nuclear power plant construction. For less complex<br />

systems, structures, and components, or at sites where<br />

construction productivity is high (as in Asia), conventional<br />

approaches may be the lowest-cost option.<br />

We emphasize the broad applicability of these recommendations<br />

across all reactor concepts and designs. Costcutting<br />

opportunities are pertinent to evolutionary<br />

Generation-III LWRs, SMRs, and Generation-IV reactors.<br />

Without design standardization and innovations in<br />

construction approaches, we do not believe the inherent<br />

technological features of any of the advanced reactors<br />

will produce the level of cost reductions needed to make<br />

nuclear electricity competitive with other generation<br />

options.<br />

In addition to its high cost, the growth of nuclear energy<br />

has been hindered by public concerns about the<br />

consequences of severe accidents (such as occurred at<br />

Fukushima, Japan in 2011) in traditional Generation-II<br />

nuclear power plant designs. These concerns have led<br />

some countries to renounce nuclear power entirely. To<br />

address safety concerns, we recommend:<br />

(3) A shift toward reactor designs that incorporate<br />

inherent and passive safety features.<br />

Core materials that have high chemical and physical<br />

stability, high heat capacity, negative reactivity feedbacks,<br />

and high retention of fission products, together<br />

with engineered safety systems that require limited or<br />

no emergency AC power and minimal external intervention,<br />

will likely make operations simpler and more<br />

tolerable to human errors. Such design evolution has<br />

already occurred in some Generation-III LWRs and is<br />

exhibited in new plants built in China, Russia, and the<br />

United States. Passive safety designs can reduce the<br />

probability that a severe accident occurs, while also<br />

mitigating the offsite consequences in the event an<br />

accident does occur. Such designs can also ease the<br />

licensing of new plants and accelerate their deployment<br />

in developed and developing countries. We judge<br />

that advanced reactors like LWR-based SMRs (e.g.,<br />

NuScale) and mature Generation-IV reactor concepts<br />

(e.g., high-temperature gas reactors and sodium-cooled<br />

fast reactors) also possess such features and are now<br />

ready for commercial deployment. Further, our assessment<br />

of the U.S. and international regulatory environments<br />

suggests that the current regulatory system is<br />

flexible enough to accommodate licensing of these<br />

advanced reactor designs. Certain modifications to the<br />

current regulatory framework could improve the<br />

efficiency and efficacy of licensing reviews.<br />

Lastly, key actions by policy makers are also needed to<br />

capture the benefits of nuclear energy:<br />

(4) Decarbonization policies should create a level<br />

playing field that allows all low-carbon generation<br />

technologies to compete on their merits.<br />

Investors in nuclear innovation must see the possibility<br />

of earning a profit based on selling their products at full<br />

value, which should include factors such as the value of<br />

reducing CO 2 emissions that are external to the market.<br />

Policies that foreclose a role for nuclear energy discourage<br />

investment in nuclear technology, may raise<br />

the cost of decarbonization and slow progress toward<br />

climate change mitigation goals. Germany’s own<br />

experience with its Energiewende illustrates the<br />

difficulty. Despite a massive investment in renewables,<br />

greenhouse gas emissions from the electricity sector<br />

have declined less than 20 % between 2007 and<br />

2017 (German Environment Agency, 2017). Increased<br />

generation from renewables has to a significant degree<br />

been used to replace nuclear instead of reducing<br />

emissions. Consequently, the government has<br />

acknowledged that current measures are unlikely to<br />

achieve the overall 40 % emissions reduction target by<br />

2020 ( German Environment Agency, <strong>2018</strong>). A more<br />

effective approach in Germany and elsewhere would<br />

seek to incorporate CO 2 emissions costs into the price of<br />

electricity and thus allow for more equitable recognition<br />

of the value of all climate-friendly energy technologies,<br />

such as nuclear, hydro, wind, solar, and even fossil fuels<br />

with carbon capture.<br />

Historically, time-to-market and development costs for<br />

new nuclear reactors have been too high, making them<br />

fundamentally unattractive to private investors, and<br />

leading some to advocate for direct government involvement<br />

in the development of these technologies (Secretary<br />

of Energy Advisory Board, 2016). Prototype Generation-IV<br />

systems are currently being explored by the governments<br />

of several countries, including China, which has deployed<br />

high-temperature gas-cooled reactors (HTGRs) [Zhang &<br />

al., 2016], Russia [Digges, 2016], and India [Patel, 2017],<br />

both of which have deployed sodium-cooled fast reactors<br />

(SFRs). For the U.S. and other market-oriented countries<br />

we recommend an important, albeit more limited, role for<br />

governments in the development and deployment of new<br />

nuclear technologies, as follows:<br />

(5) Governments should establish reactor sites where<br />

companies can deploy prototype reactors for testing<br />

and operation oriented to regulatory licensing.<br />

Such sites should be open to diverse reactor concepts<br />

chosen by the companies that are interested in testing<br />

prototypes. The government should provide appropriate<br />

supervision and support – including safety<br />

protocols, infrastructure, environmental approvals,<br />

and fuel-cycle services – and should also be directly<br />

involved with all testing.<br />

(6) Governments should establish funding programs<br />

around prototype testing and commercial deployment<br />

of advanced reactor designs using four<br />

levers: (a) funding to share regulatory licensing<br />

costs, (b) funding to share research and development<br />

costs, (c) funding for the achievement of<br />

specific technical milestones, and (d) funding for<br />

initial new design prototypes or first-of-a-kind<br />

reactors.<br />

The MIT study did not address the disposal of radioactive<br />

waste (or, more properly, spent nuclear fuel) or proliferation<br />

risks. While these issues are universally considered<br />

barriers to the expansion of nuclear energy use,<br />

the political dimensions of finding solutions to waste<br />

disposal and managing proliferation risks far outweigh the<br />

technical challenges. We have reviewed recent studies of<br />

the nuclear fuel cycle that focused on the management and<br />

disposal of spent fuel (Blue Ribbon Commission on<br />

America’s Nuclear Future, 2011) [Kazimi, et al., 2011]<br />

[Wigeland & al., 2014] and have found their recommendations<br />

to be valid. Briefly, there exist robust technical<br />

solutions for spent fuel management, such as interim<br />

storage in dry casks and permanent disposal in geological<br />

repositories with excavated tunnels or deep boreholes –<br />

the greater difficulty, historically, has been siting such<br />

facilities. But the evidence suggests that these solutions<br />

can be implemented through a well-managed, consensusbased<br />

decision-making process, as has been demonstrated<br />

in Finland (Fountain, 2017) and Sweden [Plumer, 20<strong>12</strong>].<br />

Domestically, the U.S. government should follow th ese<br />

Energy Policy, Economy and Law<br />

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

examples and swiftly move on the recommendations for<br />

spent fuel management that have been put before it.<br />

The question of nuclear materials proliferation is more<br />

complex. Adopting certain fuel cycle facilities such as<br />

international fuel banks and centralized spent fuel repositories<br />

can make the civilian nuclear fuel cycle unattractive<br />

as a path to gaining nuclear weapons materials or<br />

capability. At the same time, there is a desire on the part of<br />

established nuclear countries to supply nuclear technologies<br />

to newcomer countries, both because it constitutes<br />

a business opportunity and as a means to gain considerable,<br />

decades-long geopolitical influence in key<br />

regions of the world. Currently Russia and, to a lesser<br />

extent, China are aggressively pursuing opportunities to<br />

supply nuclear energy technology to other countries. Some<br />

have argued that if the United States and Western Europe<br />

wish to pursue such opportunities and advance other<br />

geo-political objectives while simultaneously sustaining<br />

the non-proliferation and safety norms they has advocated<br />

around the world, they have a compelling interest in maintaining<br />

a robust domestic nuclear industry [Moniz, 2017]<br />

(Center for Strategic and International Studies, <strong>2018</strong>)<br />

[Aumeier & Allen, 2008].<br />

Conclusions<br />

Based on the findings that emerged from this study, we<br />

contend that, as of today and for decades to come, the<br />

main value of nuclear energy lies in its potential contribution<br />

to decarbonizing the power sector. Further, we<br />

conclude that cost is the main barrier to fully realizing this<br />

value. Without cost reductions, nuclear energy will not<br />

play a significant role. We find that that there are ways to<br />

reduce nuclear energy’s cost, which the industry must<br />

pursue aggressively and expeditiously. Lastly, we recognize<br />

that government help, in the form of well-designed energy<br />

and environmental policies and appropriate assistance in<br />

the early stages of new nuclear system deployment, is<br />

needed to realize the full potential of nuclear.<br />

Acknowledgements<br />

The study was conducted by a multidisciplinary team of<br />

over twenty faculty, students and consultants, led by the<br />

four authors of this paper. The study report can be<br />

downloaded at the MIT Energy initiative website (https://<br />

energy.mit.edu/research/future-nuclear-energy-carbonconstrained-world/).<br />

We gratefully acknowledge the support<br />

of our major sponsor The Alfred P. Sloan Foundation<br />

and important contributions from Shell, Électricité de<br />

France (EDF), The David and Lucile Packard Foundation,<br />

General Atomics, the Anthropocene Institute, MIT’s<br />

International Policy Laboratory, Mr. Zach Pate, Mr. Neil<br />

Rasmussen, and Dr. James Del Favero. We also thank the<br />

Idaho National Laboratory, Dominion Engineering Inc.,<br />

Blumont Engineering Solutions, Professor Giorgio Locatelli<br />

from the University of Leeds, the Breakthrough Institute,<br />

and Lucid Strategy for their generous in-kind contributions.<br />

References<br />

| | 115 th U.S. Congress. (2017-<strong>2018</strong>). Nuclear Energy Innovation<br />

Capabilities Act / Advanced Nuclear Energy Technologies Act.<br />

| | Anderson, J. (2016). Illinois governor signs energy bill to keep<br />

nuclear plants open, boost renewables. Retrieved from American<br />

Public Power Association: https://www.publicpower.org/<br />

periodical/article/illinois-governor-signs-energy-bill-keepnuclear-plants-open-boost-renewables<br />

| | ANL-INL-ORNL. (2016). Advanced Demonstration and Test<br />

Reactor Options, INL/EXT-16-37867, Rev. 1.<br />

| | Aumeier, S., and Allen, T. (2008, Winter). How to Reinvigorate<br />

U.S. Commercial Nuclear Energy. Issues in Science and<br />

Technology.<br />

| | BBC News. (2017). Hinkley Point: EDF adds £ 1.5bn to nuclear<br />

plant cost. Retrieved from BBC News: https://www.bbc.com/<br />

news/business-40479053<br />

| | Blue Ribbon Commission on America’s Nuclear Future. (2011).<br />

Report to the Secretary of Energy.<br />

| | Brinton, S. (2015). The Advanced Nuclear Industry. Retrieved<br />

from Third Way: https://www.thirdway.org/report/<br />

the-advanced-nuclear-industry<br />

| | Buongiorno, J. et al. (<strong>2018</strong>), The Future of Nuclear Energy in a<br />

Carbon-Constrained World. MIT.<br />

| | Cardwell, D., & Soble, J. (2017). Westinghouse Files for<br />

Bankruptcy, in Blow to Nuclear Power. Retrieved from The New<br />

York Times: https://www.nytimes.com/2017/03/29/business/<br />

westinghouse-toshiba-nuclear-bankruptcy.html<br />

| | Center for Strategic and International Studies. (<strong>2018</strong>). Assessing<br />

the <strong>2018</strong> Nuclear Posture Review. Retrieved from https://www.<br />

csis.org/events/assessign-<strong>2018</strong>-nuclear-posture-review<br />

| | Deutch, J., Moniz, E., Ansolabehere, S., Driscoll, M., Gray, P.,<br />

Holdren, J., Todreas, N. (2003). The Future of Nuclear Power. MIT.<br />

| | Digges, C. (2016, November). Russia’s newest breeder reactor<br />

goes into commercial operation. Bellona.org.<br />

| | Dotson, S. (2014). Lessons Learned from Kewaunee’s Closing.<br />

Retrieved from Power Engineering: https://www.powereng.com/articles/npi/print/volume-7/issue-3/nucleus/lessonslearned-from-kewaunee-s-closing.html<br />

| | Downey, J. (2017). Guarantee may not be enough to save<br />

troubled V.C. Summer nuclear project. Retrieved from Charlotte<br />

Business Journal: https://www.bizjournals.com/charlotte/<br />

news/2017/07/27/toshiba-guaranty-may-not-be-enoughto-save-the.html<br />

| | Fountain, H. (2017, June 9). On Nuclear Waste, Finland shows<br />

U.S. how it can be done. The New York Times.<br />

| | Generation-IV International Forum. (2014). Technology<br />

Roadmap Update for Generation-IV Nuclear Energy Systems.<br />

| | German Environment Agency. (2017). National Inventory<br />

Reports for the German Greenhouse Gas Inventory 1990 to<br />

2016 (as of 01/<strong>2018</strong>) and initial forecast for 2017.<br />

| | German Environment Agency. (<strong>2018</strong>). Press Release. August<br />

<strong>2018</strong>.<br />

| | Hals, T., and DiNapoli, J. (<strong>2018</strong>). Westinghouse reaches deal to<br />

resolve bankruptcy. Retrieved from Reuters: https://<br />

www.reuters.com/article/us-toshiba-accountingwestinghouse-bankr/exclusive-westinghouse-reaches-deal-to-resolve-bankruptcy-sources-idUSKBN1F62WG<br />

| | Hansen, J., Emanuel, K., Caldeira, K., and Wigley, T. (2015).<br />

Nuclear power paves the only viable path forward on climate<br />

change. Retrieved from The Guardian: https://<br />

www.theguardian.com/environment/2015/dec/03/nuclearpower-paves-the-only-viable-path-forward-on-climate-change<br />

| | International Atomic Energy Agency. (2017). The Database on<br />

Nuclear Power Reactors. Retrieved from Power Reactor<br />

Information System: https://www.iaea.org/pris<br />

| | International Energy Agency. (2017). Retrieved from<br />

https://www.iea.org<br />

| | Jenkins, J., et al. (<strong>2018</strong>). The benefits of nuclear flexibility in<br />

power system operations with renewable energy.<br />

Applied Energy (222), 872-884.<br />

| | Kazimi, M., Moniz, E., Forsberg, C., Ansolabehere, S., Deutch, J.,<br />

Driscoll, M., Regalbuto, M. (2011). The Future of the Nuclear Fuel<br />

Cycle. MIT.<br />

| | Larson, A. (2016). N.Y. Approves Nuclear Subsidies and Mandates<br />

50 % Renewables by 2030. Retrieved from Power: http://<br />

www.powermag.com/n-y-approves-nuclear-subsidies-andmandates-50-renewables-by-2030<br />

| | Larson, A. (2016). Sweet Dreams Fort Calhoun Nuclear Plant.<br />

Retrieved from Power: http://www.powermag.com/<br />

sweet-dreams-fort-calhoun-nuclear-plant<br />

| | Moniz, E. (2017). The U.S. Nuclear Energy Enterprise: A Key<br />

National Security Enabler. Energy Futures Initiative.<br />

ENERGY POLICY, ECONOMY AND LAW 577<br />

Energy Policy, Economy and Law<br />

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENERGY POLICY, ECONOMY AND LAW 578<br />

| | Mufson, S. (2013). San Onofre nuclear power plant to shut down.<br />

Retrieved from The Washington Post: https://www.washingtonpost.com/business/economy/san-onofre-nuclear-power-plantto-shut-down<br />

| | Patel, S. (2017). India Gears up to Expand Fast Breeder Reactor<br />

Fleet. Retrieved from Power Magazine: http://www.powermag.<br />

com/india-gears-up-to-expand-fast-breeder-reactor-fleet<br />

| | Penn, I. (2013). Duke Energy announces closing of Crystal River<br />

nuclear power plant. Retrieved from Tampa Bay Times:<br />

http://www.tampabay.com/news/business/energy/<br />

duke-energy-announces-closing-of-crystal-river-nuclearpower-plant/<strong>12</strong>73794<br />

| | Plumer, B. (20<strong>12</strong>, January 28). What Sweden can teach us about<br />

nuclear waste. The Washington Post.<br />

| | Plumer, B. (2017). U.S. Nuclear Comeback Stalls as Two Reactors<br />

Are Abandoned. Retrieved from The New York Times:<br />

https://www.nytimes.com/2017/07/31/climate/nuclearpower-project-canceled-in-south-carolina.html<br />

| | Proctor, D. (2017). Cost Overruns at Vogtle Expected to Soar.<br />

Retrieved from Power: http://www.powermag.com/<br />

cost-overruns-at-vogtle-expected-to-soar<br />

| | Reuters. (<strong>2018</strong>). EDF says Flamanville weldings problems worse<br />

than expected. Retrieved from Reuters: https://<br />

www.reuters.com/article/edf-flamanville/update-2-edfsays-flamanville-weldings-problems-worse-thanexpected-idUSL8N1RN1E6<br />

| | Rosendahl, J., and Forsell, T. (2017). Areva’s Finland reactor to<br />

start in 2019 after another delay. Retrieved from Reuters:<br />

https://www.reuters.com/article/us-finland-nuclear-olkiluoto/<br />

arevas-finland-reactor-to-start-in-2019-after-anotherdelay-idUSKBN1CE1ND<br />

| | Secretary of Energy Advisory Board. (2016). Report on the Task<br />

Force on the Future of Nuclear Power.<br />

| | Sethuraman, R. N. (<strong>2018</strong>). New Jersey Senate, Assembly passes<br />

nuclear subsidy bill. Retrieved from Reuters: https://<br />

www.reuters.com/article/pseg-nuclear-new-jersey-subsidies/<br />

update-1-new-jersey-senate-assembly-passes-nuclear- subsidybill-idUSL1N1RP2EN<br />

| | (2008). The Economics of Nuclear Power. Information Papers,<br />

World Nuclear Association.<br />

| | U.S. Energy Information Agency. (2017). International Energy<br />

Outlook. Retrieved from https://www.eia.gov/outlooks/ieo/<br />

pdf/0484(2017).pdf<br />

| | United Nations Development Programme. (2017). Human<br />

Development Index. Retrieved from Human Development<br />

Reports: http://hdr.undp.org/en/content/humandevelopment-index-hdi<br />

| | United Nations Scientific Committee on the Effects of Atomic<br />

Radiation. (2017). Developments since the 2013 UNSCEAR report<br />

on the levels and effects of radiation exposure due to the nuclear<br />

accident following the Great East-Japan Earthquake and Tsunami<br />

- A 2017 white paper to guide the Scientific Committee’s future<br />

programme of work. New York.<br />

| | Wigeland, R., at al. (2014). Nuclear Fuel Cycle Evaluation<br />

and Screening - Final Report, INL/EXT-14-31465,<br />

FCRD-FCO-2014-000106.<br />

| | Winters, J. W., Corletti, M. M., & Thompson, M. (2001). AP1000<br />

construction and operating costs. 9 th International Conference<br />

On Nuclear Engineering (ICONE-9). Nice, France.<br />

| | World Nuclear Association. (2017). Nuclear Power in Belgium.<br />

Retrieved from http://www.world-nuclear.org/informationlibrary/country-profiles/countries-a-f/belgium.aspx<br />

| | World Nuclear Association. (2017). Nuclear Power in Germany.<br />

Retrieved from http://www.world-nuclear.org/informationlibrary/country-profiles/countries-g-n/germany.aspx<br />

| | World Nuclear Association. (2017). Nuclear Power in South<br />

Korea. Retrieved from http://www.world-nuclear.org/<br />

information-library/country-profiles/countries-o-s/<br />

south-korea.aspx<br />

| | World Nuclear Association. (2017). Nuclear Power in<br />

Switzerland. Retrieved from http://www.world-nuclear.org/<br />

information-library/country-profiles/countries-o-s/<br />

switzerland.aspx<br />

| | World Nuclear Association. (2017). Nuclear Power in Taiwan.<br />

Retrieved from http://www.world-nuclear.org/informationlibrary/country-profiles/others/nuclear-power-in-taiwan.aspx<br />

| | Zhang, Z., et al. (2016, March). The Shandong Shidao Bay<br />

200 MW e High-Temperature Gas-Cooled Reactor Pebble-Bed<br />

Module (HTR-PM) Demonstration Power Plant: An Engineering<br />

and Technological Innovation. Engineering, 2 (1), 1<strong>12</strong>-118.<br />

Authors<br />

Jacopo Buongiorno<br />

Massachusetts Institute of Technology (MIT)<br />

Michael Corradini<br />

University of Wisconsin at Madison<br />

John Parsons<br />

Massachusetts Institute of Technology (MIT)<br />

David Petti<br />

Massachusetts Institute of Technology (MIT)<br />

Idaho National Laboratory (INL)<br />

Talks of an End to Germany’s<br />

Nuclear Industry Premature<br />

Roman Martinek<br />

There now remains hardly anyone in Germany who has not yet dropped in the last few years a single line about how<br />

the country is valiantly closing one by one its nuclear power plants. It was difficult to expect anything else, though, if<br />

one keeps in mind that the accelerated phase-out of nuclear energy announced by the German political establishment<br />

in 2011 became perhaps the most resonant energy policy decision in the country's recent history. At the same time, it is<br />

often overlooked that the “Atomausstieg” (the name given to Germany’s denuclearization) is a like a hat that has a false<br />

bottom to it: the issue of disconnection from the grid lying on the surface of public discourse, while behind it (or ‘under’<br />

it, if you will) lies a number of deeper and more far-reaching questions.<br />

Meanwhile, the consistency and maturity<br />

of the decision itself to accelerate<br />

the nuclear phase-out still raises<br />

questions, especially if one takes into<br />

account the situation in the German<br />

nuclear industry that preceded the<br />

events of March 2011 in Japan.<br />

Professor Hans-Josef Allelein, director<br />

for reactor safety at the Institute of<br />

Energy and Climate Research in Julich,<br />

recalls: “In Germany, before the accident<br />

at Fukushima NPP, an agreement<br />

was reached at the political level<br />

to extend the operation of German<br />

nuclear power plants for a period<br />

Energy Policy, Economy and Law<br />

Talks of an End to Germany’s Nuclear Industry Premature ı Roman Martinek


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

of 8 to 14 years. The decision that was<br />

taken after Fukushima clearly comes<br />

into conflict with this agreement. It<br />

should be acknowledged that in 2011,<br />

Chancellor Angela Merkel skillfully<br />

played on the moods of the German<br />

population and the German media,<br />

taking advantage of this to forge a<br />

coalition with the Social Democrats.<br />

From my point of view, the decision<br />

was practically unsupported by any<br />

facts – that was simply power politics<br />

on Merkel’s part”. According to the<br />

expert, the government should not<br />

have made any sudden movements,<br />

succumbing to antinuclear sentiment<br />

that swept across Western Europe<br />

back then: “The national economy<br />

and the population would have it<br />

easier now if nuclear energy were<br />

used further as planned and the<br />

revenues in this case could be used to<br />

address the implementation of the<br />

“Energiewende”.<br />

It is remarkable that the German<br />

nuclear phase-out is taking place amid<br />

the growing recognition by the international<br />

community of the significance<br />

of nuclear power in combating<br />

climate change. As recently as in early<br />

October, the Intergovernmental Panel<br />

on Climate Change (IPCC) presented<br />

its updated assessment, calling for<br />

rapid, comprehensive and unprecedented<br />

changes in all spheres of the<br />

global community to limit global<br />

warning to 1.5°C. In the 89 mitigation<br />

scenarios considered by the IPCC,<br />

cumulative nuclear generation increases,<br />

on average by around 2.5<br />

times by 2050. The London-based<br />

World Nuclear Association points out<br />

in this regard that the report also says<br />

that “comparative risk assessment<br />

shows health risks are low per unit of<br />

electricity production”, if compared to<br />

other low-carbon sources of energy.<br />

Be it as it may, the fact is that<br />

Germany still has seven NPPs in operation.<br />

All of them shall be shut down<br />

until the end of 2022 – like in the<br />

‘Farewell’ Symphony by Joseph Haydn,<br />

the seven remaining reactors will in<br />

turn be leaving Germany’s podium of<br />

electricity generation. And yet the<br />

story of the nuclear industry in<br />

Germany does not end upon closing of<br />

the last industrial reactor. And the<br />

point here is not only that the country’s<br />

numerous research reactors will continue<br />

their work regardless of the<br />

course of the energy transition. It is<br />

also important that to create not only<br />

a greenfield, but even a brownfield on<br />

an NPP site, simply disconnecting a<br />

power plant from the grid is not<br />

enough. It must be safely dismantled<br />

and the nuclear waste generated over<br />

the years of operation – removed or<br />

safely disposed of. A task that will take<br />

decades to accomplish.<br />

Considering the ever growing<br />

scope of work, it is extremely important<br />

for Germany to maintain an<br />

acceptable level of competence in the<br />

nuclear industry – there should be<br />

sufficient number of profile specialists<br />

and educational institutions providing<br />

for training of those. As paradoxical<br />

and even tragic as it may sound,<br />

decommissioning and dismantling of<br />

NPPs is and will be carried out, among<br />

others, by those who once built them.<br />

In a word, the back-end of the nuclear<br />

fuel cycle is not much of a lifeasserting<br />

field in German realities.<br />

Rainer Klute, head of the non-profit<br />

association Nuklearia, which is engaged<br />

in raising the public acceptance<br />

of nuclear technologies, laments that<br />

there are too few graduates specializing<br />

in nuclear power engineering in<br />

the country today. This does not surprise<br />

him even taking into account the<br />

demand for skills and competencies<br />

that makes it possible to assess job<br />

prospects in this sphere as fairly good.<br />

“Who, being a young man, would<br />

want to get a profession in which one<br />

cannot create anything new that one<br />

could take pride in and instead has to<br />

be engaged in shutting down and dismantling<br />

well-functioning facilities?<br />

Does this seem like an attractive life<br />

goal?” Klute asks rhetorically.<br />

It cannot be ruled out that this is<br />

one of the reasons why it is not only<br />

domestic companies that participate in<br />

NPP decommissioning projects in the<br />

country – foreign energy companies<br />

appear quite willing to provide their<br />

services. One such example is Nukem<br />

Technologies, which specializes in<br />

radioactive waste (RW) and spent<br />

nuclear fuel (SNF) management – in<br />

2009, the engineering company with<br />

its head office located in Alzenau was<br />

acquired by a subsidiary of the Russian<br />

state corporation Rosatom. In its technological<br />

segment, Nukem Technologies<br />

takes leading positions in the European<br />

market: the company's project portfolio<br />

includes, inter alia, the SNF<br />

storage facility at Ignalina NPP in<br />

Lithuania, a similar facility for the<br />

decommissioned units 1 to 4 at<br />

Kozloduy NPP in Bulgaria; in Germany,<br />

Nukem is engaged in the decommissioning<br />

of Philippsburg NPP.<br />

In a consortium with the German<br />

company Entsorgungswerk für Nuklearanlagen<br />

(EWN), Nukem Technologies<br />

participates in the works that are<br />

currently underway at Biblis NPP – in<br />

June 2017, the company was awarded<br />

a corresponding bid. The plant was<br />

shut down in 2011 among other facilities<br />

that fell under the government’s<br />

decision to immediately close eight<br />

reactors in the wake of the Fukushima<br />

accident. In 2017, decommissioning of<br />

both units at Biblis NPP was completed,<br />

followed by the start of dismantling<br />

works. According to the<br />

plant’s director Horst Kemmeter, this<br />

process should take no less than 15<br />

years. As of today, all nuclear fuel has<br />

already been extracted from both<br />

reactors – the last containers left the<br />

NPP site this September, Kemmeter<br />

said at a regular dialogue forum held<br />

as part of the ‘Biblis transparent’<br />

initiative. As for the role of the Nukem<br />

and EWN consortium, the companies<br />

will be responsible for dismantling<br />

and disassembling four steam generators<br />

per unit, the works launched in<br />

October.<br />

Active engagement of foreign<br />

energy companies in back-end projects<br />

in Germany is backed up by a<br />

thesis that phasing out German<br />

nuclear facilities can be accomplished<br />

in the most safe and smooth manner if<br />

one combines German and international<br />

know-how, especially when it<br />

comes to companies that are actively<br />

developing the nuclear industry in<br />

their own countries. Professor Thomas<br />

Walter Tromm, head and spokesperson<br />

of the Nuclear Waste Management,<br />

Safety and Radiation Research<br />

Programme (NUSAFE) at the Karlsruhe<br />

Institute of Technology Energy Center,<br />

notes: “I would point out that if we<br />

consider foreign participation, we are<br />

still dealing with companies that have<br />

branches or offices in Germany”. As<br />

regards the specific project at Biblis<br />

NPP, in which Nukem participates<br />

together with EWN, it should be<br />

stressed that EWN is a 100% state<br />

enterprise, that is, domestic knowhow<br />

is in place here as well, the expert<br />

says.<br />

Given the array of work to be performed<br />

as part of decommissioning<br />

Germany’s NPPs, specialists will be<br />

sure to have things to do for several<br />

decades to come. The demand for<br />

expertise in this area is therefore high,<br />

creating, in turn, the need for measures<br />

to maintain the necessary level of<br />

expertise in the country in the midand<br />

long term. “At the same time, it is<br />

important to maintain competencies<br />

not only among scientists, but also<br />

among engineers who deal with<br />

decommissioning in practice – this is<br />

to be ensured, in particular, through<br />

the dual education system (a form of<br />

ENERGY POLICY, ECONOMY AND LAW 579<br />

Energy Policy, Economy and Law<br />

Talks of an End to Germany’s Nuclear Industry Premature ı Roman Martinek


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENERGY POLICY, ECONOMY AND LAW 580<br />

education where students acquire theoretical<br />

knowledge at the university and<br />

practical knowledge in the workplace –<br />

author's note)”, believes Prof. Tromm.<br />

“Further training of such specialists<br />

can be carried out at the remaining<br />

operating NPPs as well as within<br />

decommissioning projects”.<br />

Another critical topic for Germany<br />

remains preserving the country’s<br />

expert weight in the international<br />

professional community after the last<br />

Development on NIS Directive in Different<br />

EU Countries in the Energy Sector<br />

Stefan Loubichi<br />

nuclear power reactor is shut down.<br />

“This is an issue that the government<br />

is also concerned with, as reflected in<br />

the new edition of the government’s<br />

energy research program”, says Prof.<br />

Tromm. In resolving this issue, he<br />

believes, one can count on the support<br />

from the Helmholtz Association, as<br />

well as universities that still continue<br />

research in the field of reactor safety.<br />

The German nuclear industry dates<br />

back to the 1950s and 1960s, when<br />

the first research reactors were commissioned.<br />

For a country with a more<br />

than half a century history of using<br />

nuclear energy for peaceful purposes,<br />

being able to remain an equal partner<br />

in the international discussion shall<br />

be not least a question of prestige.<br />

The NIS Directive DIRECTIVE (EU) 2016/1148 concerning measures for a high common level of security of<br />

network and information across the Union, better known as the NIS Directive, is the European way to ensure a high<br />

level of security of network and information systems within the Union.<br />

Author<br />

Roman Martinek<br />

Expert for Communication<br />

Czech Republic<br />

Member States have very different<br />

levels of preparedness, which has led<br />

to fragmented approaches across the<br />

Union. This results in an unequal level<br />

of protection of consumers and businesses,<br />

and undermines the overall<br />

level of security of network and information<br />

systems within the Union.<br />

Lack of common requirements on<br />

operators of essential services and<br />

digital service providers in turn makes<br />

it impossible to set up a global and<br />

effective mechanism for cooperation<br />

at Union level.<br />

By 9 November <strong>2018</strong>, for each<br />

sector and subsector referred to in<br />

Annex II, Member States shall (according<br />

to article 5 of the NIS Directve)<br />

identify the operators of essential<br />

services with an establishment on<br />

their territory.<br />

The criteria for the identification of<br />

the operators of essential services<br />

shall be as follows:<br />

• An entity provides a service which<br />

is essential for the maintenance of<br />

critical societal and/or economic<br />

activities;<br />

• The provision of that service depends<br />

on network and information<br />

systems; and<br />

• An incident would have significant<br />

disruptive effects on the provision<br />

of that service.<br />

When determining the significance of<br />

a disruptive effect as referred to in<br />

point (c) of Article 5(2), Member<br />

States shall (according to article 6<br />

of the NIS Directive) take into<br />

account at least the following crosssectoral<br />

factors:<br />

• The number of users relying on<br />

the service provided by the entity<br />

concerned;<br />

• The dependency of other sectors<br />

referred to in Annex II on the<br />

service provided by that entity;<br />

• The impact that incidents could<br />

have, in terms of degree and duration,<br />

on economic and societal<br />

activities or public safety;<br />

• The market share of that entity;<br />

• The geographic spread with regard<br />

to the area that could be affected<br />

by an incident;<br />

• The importance of the entity for<br />

maintaining a sufficient level of the<br />

service, taking into account the<br />

availability of alternative means<br />

for the provision of that service.<br />

According to Article 8 of the NIS<br />

Directive each Member State shall<br />

designate one or more national competent<br />

authorities on the security of<br />

network and information systems<br />

(‘competent authority’), covering at<br />

least the sectors referred to in Annex II<br />

and the services referred to in Annex<br />

III. Member States may assign this role<br />

to an existing authority or authorities.<br />

The competent authorities shall<br />

monitor the application of this Directive<br />

at national level.<br />

Each Member State shall designate<br />

a national single point of contact<br />

on the security of network and information<br />

systems (‘single point of<br />

contact’).<br />

According to article 9 of the NIS<br />

Directive each Member State shall<br />

designate one or more CSIRTs (Computer<br />

security incident response<br />

teams) which shall comply with the<br />

requirements set out in point (1) of<br />

Annex I, covering at least the sectors<br />

referred to in Annex II and the services<br />

referred to in Annex III, responsible<br />

for risk and incident handling in<br />

accordance with a well-defined process.<br />

A CSIRT may be established<br />

within a competent authority.<br />

The essential articles for operator<br />

of essential services are aticle 14<br />

and 15.<br />

Member States shall (according to<br />

article 14) ensure that operators of<br />

essential services take appropriate<br />

and proportionate technical and<br />

organisational measures to manage<br />

the risks posed to the security of<br />

network and information systems<br />

which they use in their operations.<br />

Having regard to the state of the art,<br />

those measures shall ensure a level of<br />

security of network and information<br />

systems appropriate to the risk posed.<br />

As well Member States shall ensure<br />

that operators of essential services<br />

take appropriate measures to prevent<br />

and minimise the impact of incidents<br />

affecting the security of the network<br />

and information systems used for the<br />

provision of such essential services,<br />

with a view to ensuring the continuity<br />

of those services.<br />

Member States shall ensure that<br />

operators of essential services notify,<br />

Energy Policy, Economy and Law<br />

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

without undue delay, the competent<br />

authority or the CSIRT of incidents<br />

having a significant impact on the<br />

continuity of the essential services<br />

they provide. Notifications shall<br />

include information enabling the<br />

competent authority or the CSIRT to<br />

determine any cross-border impact of<br />

the incident. Notification shall not<br />

make the notifying party subject to<br />

increased liability.<br />

In order to determine the significance<br />

of the impact of an incident, the<br />

following parameters in particular<br />

shall be taken into account:<br />

• The number of users affected by<br />

the disruption of the essential<br />

service;<br />

• The duration of the incident;<br />

• The geographical spread with<br />

regard to the area affected by the<br />

incident.<br />

According to article 15 of the NIS<br />

Directive, Member States shall ensure<br />

that the competent authorities have<br />

the necessary powers and means to<br />

assess the compliance of operators of<br />

essential services with their obligations<br />

under Article 14 and the effects<br />

thereof on the security of network and<br />

information systems.<br />

Member States shall ensure<br />

that the competent authorities have<br />

the powers and means to require<br />

operators of essential services to<br />

provide:<br />

• The information necessary to<br />

assess the security of their network<br />

and information systems,<br />

including documented security<br />

policies;<br />

• Evidence of the effective implementation<br />

of security policies,<br />

such as the results of a security<br />

audit carried out by the competent<br />

authority or a qualified auditor<br />

and, in the latter case, to make<br />

the results thereof, including the<br />

underlying evidence, available to<br />

the competent authority.<br />

In order to promote convergent<br />

implementation of Article 14 (1)<br />

and (2), Member States shall,<br />

without imposing or discriminating<br />

in favour of the use of a particular<br />

type of technology, encourage the<br />

use of European or internationally<br />

accepted standards and specifications<br />

relevant to the security<br />

of network and information<br />

systems.<br />

By 9 May <strong>2018</strong>, Member States<br />

shall adopt and publish the laws,<br />

regulations and administrative provisions<br />

necessary to comply with this<br />

Directive. They shall immediately<br />

inform the Commission thereof. They<br />

shall apply those measures from<br />

10 May <strong>2018</strong>.<br />

According to Annex II there are the<br />

following types of entities fort he<br />

purposes of article 4:<br />

1. Energy:<br />

a. Electricity:<br />

Electricity undertakings, distribution<br />

system operators and transmission<br />

system operators, all as<br />

defined in article 2 2009/72/EC<br />

b. Oil:<br />

Operators of oil transmission pipelines,<br />

Operators of oil production,<br />

refining and treatment facilities,<br />

storage and transmission<br />

c. Gas:<br />

Supply undertakings, Distribution<br />

system operators, Transmission<br />

system operators, Storage system<br />

operators, LNG system operators,<br />

LNG system operators, Operators<br />

of natural gas refining and<br />

treatment facilities, as defined in<br />

Article 2 of Directive 2009/73/EC<br />

2. Transport:<br />

a. Air transport:<br />

Air carriers, Airport managing<br />

bodies, traffic management control<br />

operators providing air traffic<br />

control<br />

b. Rail transport:<br />

Infrastructure managers, railway<br />

c. Water transport:<br />

Inland, sea and coastal passenger<br />

and freight water transport companies,<br />

Managing bodies of ports,<br />

Operators of vessel traffic services<br />

d. Road transport:<br />

Road authorities, Operators of<br />

Intelligent Transport Systems<br />

3. Banking:<br />

Credit institutions<br />

4. Financial market infrastructures:<br />

Operators of trading venues, Central<br />

counterparties (CCPs)<br />

5. Health sector:<br />

Health care settings (including<br />

hospitals and private clinics),<br />

Healthcare providers<br />

6. Drinking water supply and distribution:<br />

Suppliers and distributors of water<br />

intended for human consumption<br />

7. Digital Infrastructures:<br />

IXPs, DNS service providers, TLD<br />

name registries<br />

NIS ImpIementation in France<br />

The NIS Directive is partially transposed.<br />

Implementation acts are:<br />

Act Nr. <strong>2018</strong>-133 of 26 th February<br />

<strong>2018</strong><br />

Decree Nr. <strong>2018</strong>-384 of 23 rd of May<br />

<strong>2018</strong>.<br />

The national strategy on the security<br />

of network an information security<br />

is available on: https://www.ssi.gouv.<br />

fr/uploads/2015/10/strategie_<br />

nationale_securite_numerique_fr.pdf<br />

Single point of contact is:<br />

Agence nationale de la sécurité des<br />

systèmes d'information (ANSSI)<br />

Boulevard de la Tour-Maubourg 51,<br />

75700 Paris 07 SP<br />

E-Mail: nis@ssi.gouv.fr<br />

National Computer Security Incident<br />

Response Team (CSIRT) is:<br />

CSIRT France<br />

E-Mail: cert-fr.cossi@ssi.gouv.fr<br />

Phone: +33 1 71758468<br />

According tot he decree of 23 rd of May<br />

<strong>2018</strong> the following sectors are identified<br />

as essential services:<br />

• Civil activities of the State,<br />

• Judicial activities,<br />

• Military activities of the State,<br />

• Food,<br />

• Electronic, audiovisual and information<br />

communications,<br />

• Energy,<br />

• Space and research,<br />

• Finance,<br />

• Water management,<br />

• Industry,<br />

• Health,<br />

• Transport.<br />

Article 2 of the decree of 23 rd of May<br />

<strong>2018</strong> provides that the operators<br />

shall be designated according to the<br />

following criteria:<br />

• The number of users depending on<br />

the service;<br />

• The dependence of the other sectors<br />

of activity listed in the schedule to<br />

this decree on the service;<br />

• The consequences that an incident<br />

could have, in terms of gravity, and<br />

duration, on the functioning of the<br />

economy or society or on public<br />

safety;<br />

• The operator's market share;<br />

• The geographical scope with<br />

regard to the area likely to be<br />

affected by an incident;<br />

• The importance of the operator to<br />

ensure an adequate level of service,<br />

taking into account the availability<br />

of alternative means for the provision<br />

of the service;<br />

• Where applicable, sectoral factors.<br />

The operators shall appoint a representative<br />

that will be the point of<br />

contact with the ANSSI.<br />

Reporting obligations:<br />

Operators of essential services must<br />

report “without undue delay” to<br />

the ANSSI any incident significantly<br />

impacting the security of the network<br />

and information systems.<br />

The operators shall disclose within<br />

three months from the date of their<br />

appointment the list of the networks<br />

and information systems listed in the<br />

Act. The operators shall then send<br />

once a year to the ANSSI an update of<br />

that list. The operators also need to<br />

keep this information at the disposal<br />

of the ANSSI in case of inspection.<br />

ENERGY POLICY, ECONOMY AND LAW 581<br />

Energy Policy, Economy and Law<br />

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENERGY POLICY, ECONOMY AND LAW 582<br />

Sanctions:<br />

There are three criminal for the operators<br />

of essential services:<br />

• Directors that do not comply with<br />

the security rules, even after the<br />

timeline specified in a formal<br />

demand issued by the ANSSI shall<br />

be punishable with a fine of<br />

€100,000;<br />

• Directors that do not comply with<br />

their reporting obligation in case of<br />

an incident shall be punishable<br />

with a fine of €75,000;<br />

• Directors that obstruct an investigation<br />

shall be punishable with a<br />

fine of €<strong>12</strong>5,000.<br />

NIS Implementation<br />

in Sweden<br />

The NIS Directive is transposed.<br />

Implementation acts are:<br />

Act (<strong>2018</strong>:000) “Information security<br />

for certain operators of essential<br />

services and digital service providers”<br />

Ordinance (<strong>2018</strong>:000) “Information<br />

security for certain operators of<br />

essential services and digital service<br />

providers”<br />

The national strategy on the security<br />

of network an information security<br />

is available on:<br />

https://www.government.se/<br />

legal-documents/2017/11/<br />

skr.-201617213/<br />

Single point of contact is:<br />

Swedish Civil Contingencies Agency<br />

(MSB)<br />

651 81 Karlstad<br />

E-Mail: spoc.nis@msb.se<br />

National Computer Security Incident<br />

Response Team (CSIRT) is:<br />

MSB/CERT-SE<br />

E-Mail: cert@cert.se<br />

Phone: +46 867 857 99<br />

According tot he Swedish NIS<br />

Directive law the following sectors<br />

are identified as essential services:<br />

• Energy,<br />

• Transportation,<br />

• Banking,<br />

• Financial market infrastructure,<br />

• Health care,<br />

• Water management and digital<br />

infrastructure.<br />

Operators of essential services must<br />

immediately report significant disruptions<br />

to MSBT. The reporting<br />

obligation must not have a negative<br />

effect on correcting the disruption.<br />

Specifications on what defines a<br />

significant disruption are announced<br />

in an ordinance/government agency<br />

regulation.<br />

MSB established detailed assessment<br />

material to assist operators of<br />

essential services in deciding whether<br />

the directive is applicable to their<br />

service. MSB presented a catalogue<br />

of the identified criteria through a<br />

regulation. Operators of essential<br />

services are without delay obliged to<br />

report to the supervisory authority.<br />

Relevant regulatory authorities are:<br />

• Energy sector: Swedish Energy<br />

Agency<br />

• Transportation sector: Swedish<br />

Transport Agency<br />

• Banking: Swedish Financial Supervisory<br />

Authority<br />

• Finance: Swedish Financial Supervisory<br />

Authority<br />

• Health care: Swedish Health and<br />

Social Care Inspectorate<br />

• Distribution of Drinking water:<br />

The National Food Agency<br />

• Digital infrastructure: Swedish<br />

Post and Telecom Authority<br />

• Digital services: Swedish Post and<br />

Telecom Authority<br />

Reporting obligations:<br />

Operators of essential services must<br />

immediately report significant disruptions<br />

to the Swedish Civil Contingencies<br />

Agency.<br />

Sanctions:<br />

If the relevant authority finds that<br />

the supplier does not comply with the<br />

act or ordinance they can instruct the<br />

supplier to take actions.<br />

The request can be combined<br />

with a penalty fine. The MSB shall<br />

decide on administrative fines from<br />

5,000 SEK up to 10,000,000 SEK<br />

for not complying with the<br />

security requirements or incident<br />

notification.<br />

NIS Implementation<br />

in the United Kingdom<br />

The NIS Directive is transposed.<br />

The implementation of the EU<br />

Security of Networks and Information<br />

Systems (NIS) Directive in May <strong>2018</strong><br />

requires Competent Authorities (CAs)<br />

to have the ability to assess the cyber<br />

security of Operators of Essential<br />

Services (OES).<br />

In support of the UK NIS Directive<br />

implementation, the NCSC is committed<br />

to working with lead government<br />

departments, regulators and<br />

industry to develop a systematic<br />

method of assessing the extent to which<br />

an organisation is adequately managing<br />

cyber security risks in relation<br />

to the delivery of essential services.<br />

This assessment method, otherwise<br />

known as the Cyber Assessment<br />

Framework (CAF), is intended to meet<br />

both NIS Directive requirements and<br />

wider CNI needs.<br />

The implementation of the EU<br />

Security of Networks and Information<br />

Systems (NIS) Directive in May <strong>2018</strong><br />

requires Competent Authorities (CAs)<br />

to have the ability to assess the cyber<br />

security of Operators of Essential<br />

Services (OES).<br />

In support of the UK NIS Directive<br />

implementation, the NCSC is committed<br />

to working with lead government<br />

departments, regulators and<br />

industry to develop a systematic<br />

method of assessing the extent to<br />

which an organisation is adequately<br />

managing cyber security risks in<br />

relation to the delivery of essential<br />

services.<br />

You find indicators of good practice<br />

for four different objectives:<br />

Objective A<br />

A.1. Governance<br />

A.2. Risk Management<br />

A.3. Asset Management<br />

Source: https://www.ncsc.gov.uk/<br />

guidance/caf-objective-a<br />

Objective B<br />

B.1. Service Protection Policies and<br />

Processes<br />

B.2. Identity and Access Control<br />

B.3. Data Security<br />

B.4. System Security<br />

B.5. Resilient Networks and Systems<br />

B.6. Staff Awareness and Training<br />

Source: https://www.ncsc.gov.uk/<br />

guidance/caf-objective-b<br />

Objective C<br />

C.1. Security Monitoring<br />

C.2. Proactive Securit Event Discovery<br />

Source: https://www.ncsc.gov.uk/<br />

guidance/caf-objective-c<br />

Objective D<br />

D.1. Resource and Recovery Planning<br />

D.2. Lessons Learned<br />

Source: https://www.ncsc.gov.uk/<br />

guidance/caf-objective-d<br />

The national strategy on the<br />

security of network an information<br />

security is available on:<br />

https://www.gov.uk/government/<br />

publications/national-cyber-securitystrategy-2016-to-2021<br />

Single Point of contact is:<br />

National Cyber Security Centre (NCSC)<br />

E-Mail: UKSPOC@ncsc.gov.uk<br />

Phone: +44 300 020 0973<br />

National Computer Security Incident<br />

Response Team (CSIRT) is as well the<br />

National Cyber Security Centre<br />

(NCSC)<br />

In the UK unfortunately we find a<br />

lot of different national competent<br />

authorities for OES (=Operators of<br />

Essential Services):<br />

ENERGY – Electricity / Gas<br />

England, Scotland and Wales:<br />

Department for Business, Energy &<br />

Industrial Strategy, / the Office of Gas<br />

and Electricity Markets<br />

E-Mail: nis.energy@beis.gov.uk<br />

Phone: +44 20 7901 7000<br />

Northern Ireland:<br />

Department of Finance Northern<br />

Ireland<br />

E-Mail: nis.ca@finance-ni.gov.uk<br />

ENERGY – Oil<br />

England, Scotland and Wales:<br />

Energy Policy, Economy and Law<br />

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Department for Business, Energy &<br />

Industrial Strategy, / Health & Safety<br />

Executive<br />

E-Mail: nis.cyber.incident@hse.gov.uk<br />

Department of Finance Northern<br />

Ireland<br />

E-Mail: nis.ca@finance-ni.gov.uk<br />

By 6 November <strong>2018</strong> the Department<br />

for Business, Energy and Industrial<br />

Strategy gave the following implementation<br />

update;<br />

For the energy sector in England,<br />

Wales and Scotland, BEIS shares Competent<br />

Authority responsibilities with<br />

Ofgem and HSE. In downstream gas and<br />

electricity sector Ofgem delivers the<br />

compliance functions under a Memorandum<br />

of Understanding with BEIS. In<br />

the oil and upstream gas sector the<br />

compliance functions will be carried<br />

out by HSE under an Agency Agreement<br />

with BEIS. Both HSE and Ofgem have<br />

been engaging closely with NCSC, the<br />

BEIS NIS regulatory policy function,<br />

and with industry in order to develop<br />

further sector specific guidance.<br />

This guidance will tailor the CAF to<br />

the needs of energy sub sectors and will<br />

provide further information about the<br />

steps that Operators of Essential Services<br />

(OES) should take in order to identify<br />

their levels of cyber security, commence<br />

the improvement journey to address<br />

and manage cyber security risks, and be<br />

compliant with the NIS regulations.<br />

According to the view of the<br />

Department for Business, Energy &<br />

Industrial Strategy operators will need<br />

time to adjust to the new framework.<br />

They expect operators to undertake a<br />

robust but realistic CAF self- assessment<br />

supported by evidence. In the<br />

first year, they do not expect to take<br />

enforcement action on the basis of the<br />

operator’s CAF self-assessment and<br />

recognise development and improvement<br />

will likely be needed, having<br />

taken a risk-based approach.<br />

Key dates fort he future would be<br />

as follows:<br />

• 31 October <strong>2018</strong>: CAF version 2<br />

was published on NCSC website<br />

• End November <strong>2018</strong>: publication<br />

of HSE operational guidance for<br />

the oil sector<br />

• End November <strong>2018</strong>: publication<br />

of Ofgem Cyber Security Practices<br />

guidance for the electricity and gas<br />

sector, to be available on Ofgem<br />

website.<br />

• November <strong>2018</strong>: DCMS returns notification<br />

of number of OES in<br />

scope of the regulations to the European<br />

Commission and BEIS provides<br />

a list of OES to GCHQ.<br />

• Late November / mid-December<br />

<strong>2018</strong>: sub-sector events to be held<br />

with OES. HSE will launch its<br />

operational guidance and provide<br />

surgeries to launch the sub-sector<br />

CAF self-assessments on 21 November.<br />

Ofgem will focus on sub-sector<br />

workshops between 10-11 December.<br />

Invitations will be issued to<br />

OES.<br />

• From Q2 2019 or potentially earlier<br />

depending on the CA: Competent<br />

Authorities will review the selfassessment<br />

evidence and improvement<br />

plans; and establish a rolling<br />

programme of inspections or thirdparty<br />

assessments/validations of<br />

OES own self-assessments. Please<br />

refer to detailed guidance from<br />

Ofgem or HSE for further details<br />

on how and when you should<br />

return your self-assessment.<br />

Sanctions:<br />

Financial penalties will only be levelled<br />

as a last resort where it is assessed<br />

appropriate risk mitigation measures<br />

were not in place without good reason.<br />

In addition, the maximum penalties<br />

should be reserved for the most severe<br />

cases, and it is expected that mitigating<br />

factors (including steps taken to comply<br />

with the NIS Directive, actions<br />

taken to remedy any consequences)<br />

and sector specific factors will be<br />

taken into account by the competent<br />

authority when deciding appropriate<br />

regulatory response.<br />

In the event of any enforcement<br />

action by the competent authority, it<br />

will notify the operator of impending<br />

action, allow the operator an opportunity<br />

to make representations, and<br />

confirm the final decision and<br />

reasoning of the competent authority.<br />

NIS Implementation<br />

in the Netherlands<br />

The status of transposition is:<br />

In progress<br />

Implementation act is the Security<br />

Network- and Information Systems<br />

Act, 29 May <strong>2018</strong><br />

The national strategy on the<br />

security of network an information<br />

security is available on: https://www.<br />

nctv.nl/ncsa/index.aspx<br />

Single point of contact is:<br />

National Cyber Security Centre (NCSC)<br />

E-Mail: info@ncsc.nl<br />

According to https://ec.europa.eu/<br />

digital-single-market/en/implemen tation-nis-directive-<br />

netherlands a National<br />

Computer Security Incident<br />

Response Team (CSIRT) has to be determined.<br />

Although the Government<br />

declared that the Minister of Economic<br />

Affairs and Climate Policy is responsible<br />

for the energy infrastructure.<br />

OSE are obliged to notify immediately<br />

the following events:<br />

1. Incidents with significant consequences<br />

for the continuity of the<br />

essential service<br />

2. Breaches of the security of network<br />

and information systems which<br />

may have significant consequences<br />

for the continuity of the essential<br />

service;<br />

Sanctions:<br />

There are 3 types of sanctions defined,<br />

until now:<br />

1. Up to EUR 5 million for any<br />

breach of the draft implementation<br />

act by essential service<br />

operators,<br />

2. A maximum of EUR 1 million for<br />

failing to cooperate with a request<br />

for further information from the<br />

National Cyber Security Centre;<br />

and<br />

3. A maximum fine of EUR 1 million<br />

for failure to adequately cooperate<br />

with supervisory authorities<br />

exercising their competencies.<br />

Compared to other countries at the<br />

moment the Netherlands has the<br />

highest sanctions, but the lowest<br />

level of clearly defined obligations.<br />

NIS Implementation<br />

in Hungary<br />

The status of transposition is:<br />

Partial transposition<br />

Implementation acts are:<br />

Act 134 of 2017 on modifying<br />

certain interior related tasks and<br />

corresponding laws<br />

Government Decree 394/2017<br />

(XII.13) on modifying government<br />

decrees related to Act 134 of 2017 on<br />

modifying certain interior related<br />

tasks and corresponding laws<br />

Hungary has as well identified<br />

the following sectors: energy, transportation,<br />

health, finance, info communication<br />

technologies, water.<br />

The national strategy on the<br />

security of network an information<br />

security is (officially) not yet adopted.<br />

Single Point of contact is:<br />

National Cyber Security Centre<br />

(NCSC)<br />

Dózsa György út 86/B Budapest<br />

H-1068<br />

E-Mail: spoc@govcert.hu<br />

Phone: +36 206 9320<br />

National competent authorities for all<br />

sectors for OES is:<br />

National Directorate General for<br />

Disaster Management<br />

E-Mail: kikfo@katved.gov.hu<br />

Phone: +36 208 200 548<br />

Contact Hours: 08:00 – 16:00<br />

National Computer Security Incident<br />

Response Team (CSIRT) is the same as<br />

the single point of contact.<br />

Operators of essential services<br />

must immediately report extraordinary<br />

incidents to the Directorate and<br />

to other competent authorities as<br />

defined by Hungarian laws and<br />

regulations.<br />

ENERGY POLICY, ECONOMY AND LAW 583<br />

Energy Policy, Economy and Law<br />

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENERGY POLICY, ECONOMY AND LAW 584<br />

The reporting must include at least:<br />

• The description and status of the<br />

incident,<br />

• The extent of the disruption,<br />

• Contact details of the incident<br />

response person appointed by the<br />

provider,<br />

• The aspects that define the effect of<br />

the incident.<br />

Section 9 (2) of Government Decree<br />

65/2013 (III.8) specifies the amount<br />

of administrative fines that may be<br />

imposed on operators of essential<br />

services for breach of any obligations<br />

defined by the applicable laws.<br />

The amount the administrative fine<br />

ranges between HUF 100,000<br />

(~EUR 330) and HUF 3,000,000<br />

(~EUR 9,900).<br />

The next step<br />

Although the Implementation of the<br />

NIS Directive is not sufficient finished<br />

in all EU countries, the European<br />

Commission continues to implement<br />

further steps. In Annex 1 to COM<br />

(2017) 477 finally we find the requirements<br />

to be met by conformity assessment<br />

bodies as follows:<br />

1. A conformity assessment body<br />

shall be established under national<br />

law and have legal personality.<br />

2. A conformity assessment body<br />

shall be a third-party body independent<br />

of the organisation or the<br />

ICT products or services it assesses.<br />

3. A body belonging to a business<br />

association or professional federation<br />

representing undertakings<br />

involved in the design, manufacturing,<br />

provision, assembly, use<br />

or maintenance of ICT products or<br />

services which it assesses, may, on<br />

condition that its independence<br />

and the absence of any conflict<br />

of interest are demonstrated, be<br />

considered a conformity assessment<br />

body.<br />

4. A conformity assessment body, its<br />

top-level management and the<br />

personnel responsible for carrying<br />

out the conformity assessment<br />

tasks shall neither be the designer,<br />

manufacturer, supplier, installer,<br />

purchaser, owner, user or maintainer<br />

of the ICT product or service<br />

which is assessed, nor shall it<br />

be the authorised representative<br />

of any of those parties. This shall<br />

not preclude the use of assessed<br />

products that are necessary for the<br />

operations of the conformity assessment<br />

body or the use of such<br />

products for personal pur poses.<br />

5. A conformity assessment body, its<br />

top-level management and the<br />

personnel responsible for carrying<br />

out the conformity assessment<br />

tasks shall not be directly involved<br />

in the design, manufacture or<br />

construction, the marketing, installation,<br />

use or maintenance of<br />

those ICT products or services, or<br />

represent the parties engaged in<br />

those activities. They shall not<br />

engage in any activity that may<br />

conflict with their independence of<br />

judgement or integrity in relation<br />

to conformity assessment activities<br />

for which they are notified. This<br />

shall apply, in particular, to consultancy<br />

services.<br />

6. Conformity assessment bodies<br />

shall ensure that the activities of<br />

their subsidiaries or subcontractors<br />

do not affect the confidentiality,<br />

objectivity or impartiality<br />

of their conformity assessment<br />

activities.<br />

7. Conformity assessment bodies and<br />

their personnel shall carry out the<br />

conformity assessment activities<br />

with the highest degree of professional<br />

integrity and the requisite<br />

technical competence in the<br />

specific field and shall be free from<br />

all pressures and inducements,<br />

including of a financial nature,<br />

which might influence their<br />

judgement or the results of their<br />

conformity assessment activities,<br />

especially as regards persons or<br />

groups of persons with an interest<br />

in the results of those activities.<br />

8. A conformity assessment body<br />

shall be capable of carrying out all<br />

the conformity assessment tasks<br />

assigned to it under this Regulation,<br />

whether those tasks are<br />

carried out by the conformity<br />

assessment body itself or on its<br />

behalf and under its responsibility.<br />

9. At all times and for each conformity<br />

assessment procedure and each<br />

kind, category or sub-category of<br />

ICT products or services, a conformity<br />

assessment body shall have<br />

at its disposal the necessary:<br />

a) Personnel with technical knowledge<br />

and sufficient and appropriate<br />

experience to perform the<br />

conformity assessment tasks…<br />

10. A conformity assessment body<br />

shall have the means necessary to<br />

perform the technical and administrative<br />

tasks connected with the<br />

conformity assessment activities in<br />

an appropriate manner, and shall<br />

have access to all necessary equipment<br />

and facilities.<br />

11. The personnel responsible for carrying<br />

out conformity assessment<br />

activities shall have the following:<br />

a) Sound technical and vocational<br />

training covering all the conformity<br />

assessment activities;<br />

b) Satisfactory knowledge of the requirements<br />

of the assessments they<br />

carry out and adequate authority<br />

to carry out these assessments;<br />

c) Appropriate knowledge and understanding<br />

of the applicable requirements<br />

and testing standards;<br />

d) The ability to draw up certificates,<br />

records and reports demonstrating<br />

that assessments have been carried<br />

out.<br />

<strong>12</strong>. The impartiality of the conformity<br />

assessment bodies, of their toplevel<br />

management and of the<br />

assessment personnel shall be<br />

guaranteed.<br />

13. The remuneration of the top-level<br />

management and of the assessment<br />

personnel of a conformity<br />

assessment body shall not depend<br />

on the number of assessments<br />

carried out or on the results of<br />

those assessments.<br />

14. Conformity assessment bodies<br />

shall take out liability insurance<br />

unless liability is assumed by the<br />

State in accordance with national<br />

law, or the Member State itself is<br />

directly responsible for the conformity<br />

assessment.<br />

15. The personnel of a conformity<br />

assessment body shall observe professional<br />

secrecy with regard to all<br />

information obtained in carrying<br />

out their tasks under this Regulation<br />

or pursuant to any provision of<br />

national law giving effect to it,<br />

except in relation to the competent<br />

authorities of the Member States in<br />

which its activities are carried out.<br />

16. Conformity assessment bodies<br />

shall meet the requirements of<br />

standard EN ISO/IEC 17065:20<strong>12</strong>.<br />

17. Conformity assessment bodies<br />

shall ensure that testing laboratories<br />

used for conformity assessment<br />

purposes meet the requirements<br />

of standard EN ISO/IEC<br />

17025:2005.<br />

Only this Annex 1 would help us in the<br />

field of independence in IT security. In<br />

Germany, for example, it would be<br />

possible at the moment, that in special<br />

situations energy companies can do<br />

their own § 8a verification. I don't<br />

think that this is the way it should be.<br />

Independent verification is only<br />

possible with independent certification<br />

bodies.<br />

Author<br />

Prof. h.c.(IUK) PhDr. Dipl.-Kfm./<br />

Dipl.-Vw. Stefan Loubichi<br />

Loubichi Business Consulting UG<br />

(haftungsbeschränkt)<br />

Associate expert to Kraftwerksschule<br />

Essen and<br />

Simulator Centre Essen<br />

(GfS mbH / KSG mbH)<br />

Grafenberger Allee <strong>12</strong>5<br />

40237 Düsseldorf, Germany<br />

Energy Policy, Economy and Law<br />

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Schiedlich-friedlich? – Folgen des „Achmea“-Urteils des EuGH<br />

auch für das ICSID-Schiedsgerichtsverfahren von Vattenfall?<br />

Ulrike Feldmann<br />

Am 6. März diesen Jahres hat der Europäische Gerichtshof (EuGH, Große Kammer) ein folgenschweres und umstrittenes<br />

Urteil zur Vereinbarkeit von Investitionsschutzklauseln mit Unionsrecht gefällt (Rechtssache C-284/16 - „Achmea“).<br />

Das „Achmea“-Ausgangsverfahren<br />

Aufgrund gesetzlicher Maßnahmen der Slowakischen<br />

Republik (zeitweise geltendes Verbot der Gewinnausschüttung<br />

aus privatem Krankenversicherungsgeschäft) sah sich<br />

Achmea BV., die als Krankenversicherungsgesellschaft in<br />

der Slowakei aktiv war, geschädigt und leitete ab Oktober<br />

2008 ein Schiedsverfahren nach Art. 8 des Abkommens<br />

zwischen den Niederlanden, der Tschechischen Republik<br />

und der Slowakischen Republik über die Förderung des<br />

gegenseitigen Schutzes von Investitionen ein. Als Schiedsort<br />

für Streitigkeiten sieht das Abkommen Frankfurt am<br />

Main vor, so dass auf das Verfahren deutsches Recht anzuwenden<br />

war. Im Schiedsverfahren erhob die Slowakische<br />

Republik die Einrede der Unzuständigkeit des Schiedsgerichts.<br />

Als Begründung trug sie vor, dass aufgrund ihres<br />

Beitritts zur EU der in Art. 8 Abs. 2 des o.g. Schiedsabkommens<br />

vorgesehene Rückgriff auf ein Schiedsverfahren mit<br />

dem Unionsrecht nicht vereinbar sei. Dieser Einwand<br />

wurde in erster und zweiter Schieds gerichtsinstanz zurückgewiesen,<br />

und die Slowakische Republik wurde verurteilt,<br />

Schadensersatz an Achmea BV. zu leisten. Gegen die<br />

Abweisung ihres Antrags auf Auf hebung des Schiedsspruchs<br />

legte die Slowakische Republik Rechtsbeschwerde<br />

beim Bundesgerichtshof (BGH) in Karlsruhe ein.<br />

Das Vorabentscheidungsersuchen des BGH<br />

Zwar verneinte der BGH die Frage, ob Art. 344 AEUV<br />

(Vertrag über die Arbeitsweise der EU), wonach sich die<br />

Mitgliedstaaten verpflichten, Streitig keiten über die Auslegung<br />

oder Anwendung der Verträge nicht anders als<br />

hierin vorgesehen zu regeln, einer Bestimmung in einer<br />

internationalen Übereinkunft zwischen den EU-Mitgliedstaaten<br />

entgegensteht, die vorsieht, dass ein Investor eines<br />

EU-Mitgliedstaates im Falle einer Streitigkeit über Investitionen<br />

in einem andern EU-Mitgliedstaat gegen diesen ein<br />

Verfahren vor ein Schiedsgericht bringen darf, dessen<br />

Gerichtsbarkeit sich dieser Mitgliedstaat unterworfen hat.<br />

Der BGH äußerte darüber hinaus sogar Zweifel an der<br />

Anwendbarkeit des Art. 344 AEUV an sich:<br />

Art. 344 AEUV betreffe nach Gegenstand und Zielsetzung<br />

keine Streitigkeiten zwischen einem Einzelnen<br />

und einem Mitgliedstaat.<br />

Ferner betreffe Art. 344 AEUV nur Streitigkeiten<br />

über die Auslegung und Anwendung der Verträge, nicht<br />

aber Entscheidungen im Schiedsverfahren, die alleine<br />

aufgrund von bilateralen Investitionsabkommen („BIT“-<br />

Abkommen) gefällt worden seien.<br />

Nicht zuletzt, so der BGH, könne aus der in Art. 344 AEUV<br />

geschützten Autonomie des Rechtssystems der EU, deren<br />

Wahrung der EuGH sichere, nicht gefolgert werden, dass<br />

Art. 344 AEUV die Entscheidungskompetenz des EuGH für<br />

jegliche Rechtsstreitigkeiten schütze, in der Unionsrecht zur<br />

Anwendung kommen könne. Dies gelte nur insoweit, als die<br />

Mitgliedstaaten die in den Unions verträgen vorge sehenen<br />

Verfahren vor dem EuGH in Anspruch nehmen müssten. Dies<br />

sei vorliegend nicht der Fall, da die Unions verträge kein<br />

gerichtliches Verfahren vorsähen, das Inves toren wie<br />

Achmea BV. ermögliche, gegenüber einem EU- Mitgliedstaat<br />

den Schadensersatz anspruch aus einem „BIT“- Abkommen<br />

vor den Unions gerichten geltend zu machen.<br />

Trotz dieser und anderer Bedenken bezüglich der<br />

Anwendbarkeit des Unionsrechts (auch im Hinblick auf<br />

die Frage, ob Art. 267 AEUV oder das Diskriminierungsverbot<br />

des Art. 18 Abs. 1 AEUV der im o.g. „BIT“-<br />

Abkommen vereinbarten Schiedsgerichtsklausel überhaupt<br />

entgegenstehen) legte der BGH gleichwohl dem<br />

EuGH im Vorabentscheidungsverfahren nach Art. 267<br />

AEUV die Frage der Vereinbarkeit von Schiedsgerichtsklauseln<br />

mit Unionsrecht wegen der zahlreichen<br />

bilateralen Investitionsschutzabkommen zwischen EU-<br />

Mitgliedstaaten mit ähnlichen Schiedsgerichtsklauseln –<br />

es gibt derzeit 196 dieser „BIT“-Abkommen, wobei die<br />

Bundesrepublik Deutschland Partei solcher Abkommen<br />

mit 14 anderen EU-Mitgliedstaaten ist – vor.<br />

Das Verfahren vor dem EuGH<br />

Im Verfahren vor dem EuGH hatten neben den Parteien<br />

wegen der grundsätzlichen Bedeutung des Rechtsstreits<br />

15 EU-Mitgliedstaaten sowie die EU-Kommission Erklärungen<br />

abgegeben.<br />

Der Generalanwalt am EuGH Melchior Wathelet<br />

hatte sich in seinem Schlussantrag vom 19.09.2017<br />

zugunsten der Intra-EU Investitionsschutzklauseln ausgesprochen.<br />

Wörtlich lautet sein Vorschlag unter Rn. 273<br />

des Schlussantrags:<br />

„Die Artikel 18, 267 und 344 AEUV sind dahin auszulegen,<br />

dass sie der Anwendung eines Mechanismus zur<br />

Beilegung von Streitigkeiten zwischen einem Investor und<br />

einem Staat nicht entgegenstehen, der durch ein vor dem<br />

Beitritt eines der Vertragsstaaten zur Europäischen Union<br />

geschlossenes bilaterales Investitionsabkommen eingeführt<br />

wurde und nach dem ein Investor eines Vertragsstaats bei<br />

einer Streitigkeit über Investitionen in dem anderen Vertragsstaat<br />

gegen Letzteren ein Verfahren vor einem Schiedsgericht<br />

einleiten darf.“<br />

Die tschechische, die ungarische sowie die polnische<br />

Regierung erklärten sich mit dem Schlussantrag des<br />

Generalanwalts nicht einverstanden und forderten eine<br />

Wiederaufnahme des Verfahrens, die das Gericht jedoch<br />

zurückwies.<br />

Das „Achmea“-Urteil des EuGH vom 6.03.<strong>2018</strong><br />

Da die Richter des EuGH in der überwiegenden Zahl der<br />

Fälle den Schlussanträgen des Generalanwalts folgen,<br />

dessen Schlussanträge unparteilich und unabhängig zu<br />

erfolgen haben, kam das Urteil des EuGH eher überraschend.<br />

Denn die Richter des EuGH sehen Schiedsgerichtsklauseln<br />

wie die in Art. 8 des in Rede stehenden<br />

„BIT“-Abkommens als mit dem EU-Recht unvereinbar an.<br />

Artikel 267 und 344 AEUV seien dahingehend auszulegen,<br />

dass sie, wie der EuGH in Rn. 60 wörtlich feststellt, „einer<br />

Bestimmung in einer internationalen Übereinkunft<br />

zwischen den EU-Mitgliedstaaten wie Art. 8 des BIT entgegenstehen,<br />

nach der ein Investor eines dieser Mitgliedstaaten<br />

im Fall einer Streitigkeit über Investitionen in dem<br />

anderen Mitgliedstaat gegen diesen ein Verfahren vor dem<br />

Schiedsgericht einleiten darf, dessen Gerichtsbarkeit sich<br />

dieser Mitgliedstaat unterworfen hat“. Das Unionsrecht sei<br />

„als Teil des in jedem EU-Mitgliedstaat geltenden Rechts<br />

als auch als einem internationalen Abkommen zwischen<br />

585<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Spotlight on Nuclear Law<br />

Arbitrary-peaceful? Consequences of the “Achmea” decision of the ECJ also for the ICSID arbitration of Vattenfall? ı Ulrike Feldmann


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

SPOTLIGHT ON NUCLEAR LAW 586<br />

den EU-Mitgliedstaaten entsprungen anzusehen“. Für den<br />

vorgelegten Rechtsstreit bedeute dies, dass das in Art. 8<br />

des „BIT“-Abkommens vorgesehene Schiedsgericht ggf.<br />

das Unionsrecht und insbesondere die Bestimmungen<br />

über die Grundfreiheiten, u.a. Niederlassungsfreiheit und<br />

Kapitalverkehrsfreiheit, auszulegen oder sogar anzuwenden<br />

hätte (Rn. 42 des EuGH-Urteils).<br />

Die Richter des EuGH sehen den BGH auch nicht als<br />

„Gericht eines Mitgliedstaates“ iSv. Art. 267 AEUV an, da<br />

das dem Rechtsstreit zugrundeliegende „BIT“-Abkommen<br />

nicht Teil des in den Niederlanden und in der Slowakei<br />

bestehenden Gerichtssystems sei. Folglich sei der BGH<br />

auch nicht befugt, den EuGH um Vorabentscheidung nach<br />

Art. 267 AEUV zu ersuchen.<br />

Zwar erkennt der EuGH ausdrücklich die Handelsschiedsgerichtsbarkeit<br />

sowie die Patentgerichtsbarkeit an,<br />

bemängelt jedoch im vorliegenden Fall, dass die Möglichkeit<br />

der Zuweisung von Streitigkeiten durch das in Art. 8<br />

des „BIT“-Abkommens vorgesehene Schiedsgericht zu<br />

einer Einrichtung, die nicht Teil des Gerichtssystems der<br />

Union ist, in einer Übereinkunft (dem „BIT“-Abkommen)<br />

vorgesehen ist, die nicht von der Union, sondern von den<br />

EU-Mitgliedstaaten geschlossen wurde. Der EuGH fürchtet<br />

um die effektive Durchsetzung des Unionsrechts.<br />

Das Urteil ist in der Presse bereits als „Generalabrechnung“<br />

mit Schiedsgerichtsverfahren bezeichnet<br />

und als Anlass für die Forderung genommen worden, den<br />

„Irrweg der Investitionsschutz-Paralleljustiz im Internationalen<br />

Recht“ zu beenden. Auf jeden Fall führt das<br />

EuGH-Urteil zu großer Verunsicherung auf Seiten der an<br />

„BIT“-Abkommen beteiligten EU-Mitgliedstaaten wie auch<br />

auf Seiten der Investoren. Die Verunsicherung wird im<br />

Übrigen dadurch verstärkt, dass die für den Intra-EU-<br />

Investitionsschutz zuständige Fachebene der EU-Kommission<br />

vor einigen Monaten angekündigt haben soll, dass die<br />

EU-Kommission den Mitgliedstaaten voraussichtlich die<br />

gemeinsame Aufhebung ihrer Investitionsschutzverträge<br />

mit anderen EU-Mitgliedstaaten vorschlagen wird, sofern<br />

die EU-Kommissare den entsprechenden Vorschlag der<br />

Kommissions-Fachebene unterstützen. Bekannt geworden<br />

ist bislang allerdings nicht, ob das Ende schiedlichfriedlicher<br />

Konfliktlösung bei Investitionsstreitigkeiten<br />

tatsächlich von der EU-Kommission versucht wurde<br />

einzuläuten.<br />

Folgen für das ICSID-Verfahren von Vattenfall<br />

Obschon das EuGH-Urteil vom 06.03.<strong>2018</strong> sich expressis<br />

verbis nur auf Übereinkommen zwischen EU-Mitgliedstaaten<br />

bezieht, wird von verschiedenen Seiten (z.B.<br />

EU-Kommission, Bundesregierung, Bundestags fraktionen)<br />

die Frage aufgeworfen, ob das Urteil auch für Abkommen<br />

wie z.B. die Energiecharta gilt, bei denen die EU selber<br />

Vertragspartei ist. Die Energiecharta ist Grundlage des<br />

Verfahrens ARB/<strong>12</strong>/<strong>12</strong> der schwedischen Vattenfall AB<br />

sowie der Kernkraftwerk Brunsbüttel GmbH & Co., der<br />

Kernkraftwerk Krümmel GmbH sowie der Vattenfall Europe<br />

Nuclear Energy GmbH (VENE) und der Vattenfall GmbH<br />

vor dem Internationalen Zentrum zur Beilegung von<br />

Investitionsstreitigkeiten/International Centre for Settlement<br />

of Investment Disputes (ICSID), das zur Weltbank in<br />

Washington D.C. gehört. Das ICSID wurde 1965 durch die<br />

ICSID-Konvention gegründet, der 153 Staaten angehören.<br />

Gegenstand der Klage der o.g. 5 Gesellschaften vor dem<br />

ICSID-Schiedsgericht ist die Frage, ob die 13. AtG-Novelle<br />

gegen die Verpflichtungen der Bundesrepublik Deutschland<br />

aus dem Vertrag über die Energiecharta verstößt.<br />

Das ICSID-Schiedsgericht hatte seine Entscheidung<br />

ursprünglich für das 1. Quartal <strong>2018</strong> angekündigt. Das<br />

„Achmea“-Urteil hatte das Schiedsgericht jedoch bewogen,<br />

eine Reihe zusätzlicher Fragen an die Parteien zu richten<br />

und diese aufgefordert, bis zum 23. April <strong>2018</strong> (einschließlich<br />

Fristverlängerung ) Stellung zu nehmen.<br />

Durch das „Achmea“-Urteil sieht sich die EU-<br />

Kommission in ihrer zuvor bereits vertretenen Auffassung<br />

bestätigt, dass Intra-EU-Schiedsverfahren auf der Grundlage<br />

des Energiechartavertrages gegen EU-Recht verstoßen.<br />

Diese Auffassung wird von der deutschen<br />

Bundesregierung offenbar geteilt (s. Bundestagsdrucksache<br />

19/ 2174). Sie hat in ihrer schriftsätzlichen Antwort<br />

an das ICSID-Schiedsgericht vorgetragen, dass der Rechtssatz<br />

aus dem „Achmea“-Urteil auch für den Energiechartavertrag<br />

gelten müsse, das Unionsrecht also nicht<br />

zulasse, dass die drei Vattenfall Gesellschaften sowie die<br />

beiden – mittelbar vom schwedischen Staate kontrol lierten<br />

deutschen – Betreibergesellschaften als Unter nehmen<br />

des EU-Mitgliedstaats Schweden den EU- Mitgliedstaat<br />

Deutschland vor dem ICSID verklagen können.<br />

Zwischenentscheidung des ICSID<br />

Das Schiedsgericht hat in seiner – bisher unveröffentlichten<br />

– Zwischenentscheidung vom 31. August <strong>2018</strong><br />

diese Auffassung dem Vernehmen nach zurückgewiesen.<br />

Anders als im „Achmea“-Fall handele es sich bei dem in<br />

Rede stehenden Rechtsstreit nicht um ein bilaterales<br />

Investitionsschutzabkommen zwischen Deutschland und<br />

Schweden, sondern die Klägerinnen beriefen sich<br />

auf die Investitionsschutzklausel im völkerrechtlichen<br />

Energiecharta-Vertrag, dem neben Deutschland und<br />

Schweden auch die EU beigetreten sei. Die EU könne, so<br />

das Schiedsgericht, nicht über die Anwendbarkeit des<br />

Energiecharta-Vertrages entscheiden, in dem sie selber<br />

Vertragspartei sei.<br />

Da neben der Klage der Vattenfall-Gesellschaften noch<br />

weitere Verfahren verschiedener Unternehmen aufgrund<br />

des Energiecharta-Vertrages gegen andere EU-Mitgliedstaaten<br />

anhängig sind, hat das ICSID-Schiedsgericht dies<br />

offenbar zum Anlass genommen, seine Rechtsauffassung<br />

auffällig ausführlich zu begründen.<br />

Ausblick<br />

Nachdem insoweit die Frage der Bedeutung des<br />

„ Achmea“-Urteils auf Verfahren nach dem Energie charta-<br />

Vertrag vom ICSID-Schiedsgericht in Washington offenbar<br />

geklärt wurde, ohne dass damit allerdings auch ein<br />

„schiedlich-friedlicher“ Prozessausgang schon vorprogrammiert<br />

wäre, dürfte einer endgültigen Entscheidung<br />

des ICSID nun nichts mehr im Wege stehen. Die Bundesregierung<br />

hat (s. Bundestagsdrucksache 19/2174) bereits<br />

auf die Überprüfungsmöglichkeiten – Auslegung des<br />

Schiedsspruchs, Wiederaufnahme des Verfahrens bei<br />

schwerwiegenden neuen Tatsachen sowie Aufhebung –<br />

gemäß den Artikeln 51 – 53 ICSID-Konvention hingewiesen.<br />

Eine Berufungsmöglichkeit besteht allerdings<br />

nicht. Auch ist die Aufhebung eines Schiedsspruchs nur<br />

unten den engen Voraussetzungen des Art. 53 ICSID-<br />

Konvention möglich. Wird der Schiedsspruch nicht<br />

aufgehoben, ist er zwischen den Parteien des Verfahrens<br />

(inter partes) endgültig und bindend. Er kann im Falle des<br />

Obsiegens von Vattenfall in allen ICSID-Vertragsstaaten<br />

vollstreckt werden, und zwar in das Vermögen der<br />

Bundesrepublik Deutschland, soweit dieses Vermögen<br />

nicht hoheitlichen Zwecken zu dienen bestimmt ist.<br />

Author<br />

Ulrike Feldmann<br />

Berlin, Germany<br />

Spotlight on Nuclear Law<br />

Arbitrary-peaceful? Consequences of the “Achmea” decision of the ECJ also for the ICSID arbitration of Vattenfall? ı Ulrike Feldmann


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Release-Category-Oriented Risk<br />

Importance Measure in the Frame of<br />

Preventive Nuclear Safety Barriers<br />

Juan Carlos de la Rosa Blul and Luca Ammirabilea<br />

1 Introduction and outline In the regulatory framework regarding nuclear installations dedicated to<br />

electricity production, one of the fundamental design principles consists of the so-called Defence-in-Depth [1]: a set of<br />

multiple and independent barriers arranged in a series configuration by which undesired events should be intercepted<br />

before yielding undesired consequences. These barriers can be either physical (fuel cladding, reactor cooling system,<br />

containment structure, safety systems, etc.) or non-physical (surveillance procedures, emergency guidelines, etc.).<br />

[11], Maintenance Rule [<strong>12</strong>] or Risk<br />

Monitor [13]. These indicators look at<br />

hierarchically order the plant SSCs<br />

according to their impact on the overall<br />

CDF or CDF variations depending<br />

on the availability or failure of the<br />

SSC.<br />

In terms of mitigating severe accidents,<br />

the number of safety barriers is<br />

significantly lower: containment or<br />

reactor building as a value type of<br />

barrier, Severe Accident Management<br />

Guidelines (SAMGs) as administrative,<br />

and the use of several PRA<br />

applications based on PRA Large<br />

Early Release Frequency (LERF) as<br />

figure of merit.<br />

587<br />

ENVIRONMENT AND SAFETY<br />

| | Fig. 1.<br />

Nuclear Safety Performance Pillars.<br />

Most safety barriers rely on a deterministic<br />

assessment, i.e., they have been<br />

designed against predetermined challenging<br />

events assumed in the initial<br />

design or afterwards through Design<br />

Modifications (see, e.g. [2] to [4]).<br />

To provide with a single overview<br />

of the entire list of measures taken to<br />

achieve an adequate safety level of<br />

performance and highlighting potential<br />

areas of improvement, the different<br />

safety related field of activities can<br />

be arranged upon different safety<br />

pillars (see Figure 1), each of them<br />

involving the application of several<br />

and different in nature fields of<br />

activities.<br />

For the sake of comparison, the<br />

concept of nuclear safety barriers may<br />

be generically extended to these fundamental<br />

safety pillars and to their<br />

comprised field of activities. In doing<br />

so, each of them may be twofold classified<br />

upon whether the activity is a<br />

value (physical) or a practice (administrative),<br />

and whether it aims at preventing,<br />

correcting (i.e. controlling) or<br />

mitigating (see Figure 2) an undesired<br />

event. In addition to this, each<br />

barrier put in place can also be<br />

analysed and classified according to<br />

weather it has been designed based on<br />

deterministic or probabilistic grounds.<br />

In terms of the safety approach<br />

method, Probabilistic Risk/Safety<br />

Assessment (PRA/PSA) applications<br />

have been gradually incorporated into<br />

the analysis of the safety barriers (see,<br />

e.g. [5] and [6]), falling under the<br />

general category of risk-informed<br />

decision-making processes [7]. PRA<br />

more extended figure of merit is the<br />

Core Damage Frequency (CDF, sum of<br />

the frequency of the scenarios considered<br />

in a specific PRA model leading<br />

to core damage). Risk indicators<br />

are mostly based on CDF such as Fussell-Vesely’s<br />

measure of importance<br />

(F-V), Risk Achievement/Reduction<br />

Worth (RAW/RDW), or simply the<br />

CDF variation [8], meaning they are<br />

designed to prevent core damage.<br />

Some of the main applications where<br />

CDF is an input are the Reactor Oversight<br />

Process (ROP) [9], Mitigating<br />

Systems Performance Indicators<br />

( MSPI) [10], Safety Evaluations<br />

related with Design Change Packages<br />

| | Fig. 2.<br />

Ranging of safety-related activities along an accident sequence.<br />

Environment and Safety<br />

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENVIRONMENT AND SAFETY 588<br />

2 Analysis and classification<br />

of nuclear safety<br />

barriers<br />

Coming back to Figure 1, the different<br />

activities taken to ensure an adequate<br />

safety level may be classified upon<br />

three different areas or top-level<br />

pillars of activities: Safety Design and<br />

Performance, Management Improvement<br />

and Safety Assessment.<br />

If the IAEA design and operational<br />

safety requirements safety standards<br />

[14] and [15] are taken as a comprehensive<br />

list, its 96 requirements<br />

(removing 19 requirements not related<br />

to the safety performance of the plant)<br />

might be classified in 74 requirements<br />

under the pillar of safety design<br />

and performance, 11 requirements<br />

addressing management improvement,<br />

and 11 requirements under the category<br />

of safety assessment.<br />

• Safety Design and Performance<br />

Within this safety pillar, the activities<br />

directly affecting the safety<br />

response of the plant are classified.<br />

By directly it is meant that the<br />

object of the activity is the humanmachine<br />

system made up of safetyrelated<br />

SSC and human actions<br />

actuating on them. Such activities<br />

comprise design technical specifications,<br />

testing, maintenance,<br />

design principles such as independency,<br />

redundancy, etc., but<br />

also emergency procedures, administrative<br />

procedures such as<br />

maintenance, surveillance and<br />

inspection, etc.<br />

Most nuclear countries have nowadays<br />

implemented a set of common<br />

standards regarding safety design<br />

(see [14] and [15]), most of which<br />

rely on a deterministic approach<br />

even if probabilistic results are becoming<br />

more and more integrated<br />

into several aspects of the design.<br />

The 74 IAEA safety-performancerelated<br />

design and operational<br />

requirements found on [14] and<br />

[15] related to the safety design and<br />

performance category may be in<br />

turn classified and simplified as<br />

follows:<br />

• Fundamental design criteria<br />

PP<br />

Defence in depth underlying<br />

criteria (multi-barriers, independency,<br />

redundancy, etc.)<br />

PP<br />

Single-failure criterion<br />

PP<br />

SSC safety classification<br />

PP<br />

Assumed Postulated Initiating<br />

Events (PIEs)<br />

PP<br />

Safety margins<br />

• Safety procedures<br />

PP<br />

Abnormal and failure procedures<br />

PP<br />

Emergency procedures<br />

PP<br />

SAMGs<br />

PP<br />

Maintenance, surveillance and<br />

inspections<br />

PP<br />

Operational limits and conditions<br />

for safe operation<br />

• Management Improvement<br />

This top safety pillar groups those<br />

activities indirectly modifying the<br />

human- machine system safety performance.<br />

By indirectly it is meant<br />

that the object of the activity is not<br />

the human- machine system performing<br />

the safety function in<br />

charge of preventing, correcting<br />

(i.e. controlling) or mitigating the<br />

adverse condition, but those activities<br />

whose performance is expected<br />

to ultimately impact that<br />

system. The connection between<br />

the object of a management improvement<br />

activity and the humanmachine<br />

system usually relies on<br />

the performance analysis of different<br />

aspects dealing with the human<br />

organization or SSCs in charge of<br />

performing the safety functions.<br />

The importance of the available<br />

tools for continuously improving<br />

the safety performance of the plant<br />

has long been stressed; see for<br />

instance [16] and [17]. The most<br />

relevant tools indirectly improving<br />

the safety performance of the plant<br />

are the followings:<br />

• Operating Experience<br />

• Nuclear Safety Culture<br />

• Risk Oversight Process<br />

• Performance Indicators<br />

• PRA applications<br />

• Trending and Performance<br />

Analysis<br />

• Corrective Action Program<br />

• Benchmarking and Self-Assessment<br />

• Observation program<br />

• Safety Assessment<br />

By safety assessment it is meant<br />

any activity in charge of ensuring<br />

that the plant meets with the<br />

design safety requirements and<br />

| | Fig. 3.<br />

Relationship between the different Nuclear Safety Pillars.<br />

verifies the conformity of the plant<br />

with the quantitative safety design<br />

objectives.<br />

The most relevant activities dealing<br />

with safety assessment are<br />

hereafter indicated for clarification:<br />

• Safety Analysis (analysis of<br />

plant response against adverse<br />

situations departing from normal<br />

conditions):<br />

PP<br />

Probabilistic Safety (or Risk)<br />

Assessment<br />

PP<br />

Deterministic Analysis<br />

• External Reviews (e.g. IAEA,<br />

WANO, INPO) and Independent<br />

Oversight;<br />

NPP safety performance can therefore<br />

be schematically considered according<br />

to Figure 2, where the actions directly<br />

in charge of responding to adverse<br />

conditions are carried out by the human-machine<br />

system, the performance<br />

of this system being in turn affected<br />

by a set of management tools.<br />

And as a cross-sectional set of activities,<br />

the safety assessment tool which<br />

applies at many different levels with<br />

the aim of ensuring the compliance of<br />

the NPP design and performance with<br />

the expected safety design objectives.<br />

As already introduced in section 1,<br />

the different activities belonging to<br />

the three safety pillars can be classified<br />

upon whether they look at preventing<br />

accident conditions – before<br />

the accident occurs –, correcting the<br />

accident – after the onset of the<br />

accident – or mitigating the accident –<br />

to limit the undesired consequences<br />

once the core has partly or fully<br />

damaged – (Figure 3). They can also<br />

be classified in values and practices<br />

depending on whether they look at<br />

physically modifying or managing the<br />

human-machine system respectively.<br />

Table 1 arranges the fundamental<br />

categories of activities under the three<br />

different safety pillars according to<br />

this twofold classification.<br />

Environment and Safety<br />

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Prevention Correction Mitigation<br />

Values<br />

Practices<br />

DiD criteria<br />

Single-failure criterion<br />

Safety-classification-driven design criteria<br />

PIEs<br />

LCOs<br />

Safety Analysis<br />

Abnormal and failure procedures<br />

Risk Monitor<br />

Maintenance, surveillance and inspections<br />

Maintenance Rule PRA applications<br />

OE<br />

Nuclear Safety Culture<br />

ROP<br />

Trending and Performance Analysis<br />

Corrective Action Program<br />

External Reviews<br />

| | Tab. 1.<br />

Arrangement of the NPP safety activities.<br />

Table 2 lists these barriers along<br />

with their type and underlying safety<br />

approach.<br />

3 Risk-based mitigating<br />

safety barriers<br />

After the Fukushima-Daiichi nuclear<br />

accident, considerable efforts have<br />

been put in place to provide nuclear<br />

plants with new equipment to mitigate<br />

beyond-core-melt accidents, see<br />

e.g. [18]. These efforts resulted in<br />

Safety Margins<br />

DiD physical barriers<br />

Single-failure criterion<br />

Safety-classification-driven design criteria<br />

Safety Systems<br />

Emergency procedures<br />

Safety barriers / activities Type Criteria<br />

DiD criteria<br />

Single-failure<br />

Safety classification<br />

PIEs<br />

Prevention<br />

Correction<br />

Mitigation 1 D, P 1<br />

Prevention<br />

Correction<br />

Prevention<br />

Correction<br />

Mitigation 1<br />

Prevention<br />

Correction<br />

Mitigation 1<br />

Safety Margins Correction D<br />

Maintenance, Surveillance and Inspections Prevention D, P 2<br />

Maintenance Rule Prevention P<br />

Limit Condition for Operation (LCO) Prevention D<br />

Abnormal, failure and EPGs<br />

Prevention<br />

Correction<br />

PRA applications Prevention P<br />

OE Prevention D<br />

Nuclear Safety Culture Prevention D<br />

ROP Prevention P<br />

Trending and Performance Analysis Prevention D<br />

CAP Prevention P<br />

External Reviewers Prevention D, P<br />

Safety Systems Correction D<br />

Physical Barriers<br />

Correction<br />

Mitigation<br />

Mitigating Equipment Mitigation D, P<br />

Safety Analysis<br />

Correction<br />

Mitigation<br />

SAMGs Mitigation D<br />

| | Tab. 2.<br />

Criteria and rationale / parameter underlying the safety barriers / activities.<br />

backfitted mitigating systems, fixed or<br />

portable, in charge of maintaining<br />

the cooling capability of the fuel in<br />

the reactor vessel core, reducing the<br />

flammable gases and transferring<br />

the heat outside the containment or<br />

reactor building.<br />

As shown in the former tables, the<br />

majority of safety barriers look at preventing<br />

the occurrence of an accident.<br />

As shown in Table 2, the majority of<br />

the prevention safety barriers have<br />

D<br />

D<br />

D, P<br />

D<br />

D<br />

D, P<br />

DiD physical barriers<br />

Safety-classification design criteria 1<br />

PIEs 1<br />

Mitigating equipment 1<br />

SAMGs<br />

been designed taking account only<br />

design safety criteria. When a probabilistic<br />

safety approach is instead considered<br />

among the safety criteria in<br />

designing such prevention safety<br />

barriers, the underlying figures of<br />

merit are based on the Core Damage<br />

Frequency (CDF) and the Large Early<br />

Release Frequency (LERF) and Large<br />

Release Frequency (LRF). This will be<br />

the case, for instance, of design improvements<br />

aimed at improving the<br />

safety response of a system featuring a<br />

significant contribution to the CDF,<br />

such as passive Reactor Coolant Pump<br />

seals preventing a coolant leakage<br />

during Extended Loss of Alternate<br />

Current scenarios.<br />

LERF/LRF comprises those accidents<br />

resulting in a radioactive release<br />

higher than a specific magnitude<br />

threshold (depending on the national<br />

regulatory framework, this value can<br />

be 3 %, 10 %, etc., of the initial volatile<br />

fission products stored in the fuel<br />

assemblies and released to the environment,<br />

see e.g. Ref. [19]) at a<br />

certain time, i.e. LERF, or no matter<br />

the releasing time, i.e. LRF (as for<br />

the timing threshold magnitude, it<br />

depends on the national dispositions<br />

as well).<br />

International recommendations<br />

for existing plants do not usually<br />

specify maximum LERF frequencies.<br />

For new plants, these categories of<br />

events are required to be practically<br />

eliminated, see e.g. [20] and [21].<br />

The extended practice is to regulate<br />

on the LERF/LRF variations caused<br />

by design changes in plant and<br />

inspection findings. For instance, the<br />

Spanish Consejo de Seguridad Nuclear<br />

sets acceptable ranges for backfitting<br />

designs, see Figure 4 (where FGLT<br />

and FGL stand for LERF and LRF<br />

respectively) as described in [22]<br />

adapted from [11]) and Table 3 aimed<br />

at classifying performance indexes<br />

1) Only in some limited,<br />

more recent designs<br />

2) Only in limited NPPs<br />

ENVIRONMENT AND SAFETY 589<br />

Environment and Safety<br />

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENVIRONMENT AND SAFETY 590<br />

| | Fig. 4.<br />

Example of backfitting design acceptance according to Level 2<br />

figures-of-merit.<br />

and findings within the US NRC ROP<br />

safety barrier [23].<br />

It is important to note that LERF/<br />

LRF figures-of-merit only include a<br />

small set of sequences featuring the<br />

highest consequences of the whole<br />

spectrum of severe accidents. This<br />

means that most of the accidents<br />

leading to radioactive releases will<br />

not be taken into account in<br />

mitigating- oriented risk-based preventive<br />

measures.<br />

3.1 Discussion on LERF/LRF<br />

figures of merit<br />

Nuclear safety design approach of<br />

existing 2 nd generation NPPs was<br />

purely based on deterministic principles.<br />

Such approach put the stress<br />

on a set of few dominant envelop<br />

scenarios driving the entire safety<br />

design of the plant. Due to the deterministic<br />

nature of the design approach,<br />

the selection of the scenarios<br />

was limited to those challenging the<br />

plant the most. However and as<br />

Colour Importance CD probability increase<br />

(ΔCD)<br />

initially revealed by the TMI-2 nuclear<br />

accident, there were other scenarios<br />

not foreseen in the design whose<br />

damage could be lower yet featuring<br />

higher frequencies of occurrence.<br />

Such approach solely relying on a<br />

set of preconceived, deterministic,<br />

bounding yet limited set of accidents<br />

was the gap to be bridged by a<br />

prob abilistic approach. Probabilistic<br />

analysis sets an objective traceable<br />

basis for identifying accidents that<br />

challenge the plant the most in terms<br />

of risk, i.e. frequency versus consequences.<br />

If the consequence is fixed<br />

for a given set of scenarios, then the<br />

risk directly shifts to the frequency.<br />

This is performed by the Level 1 PRA<br />

considering one single type of consequence,<br />

i.e. code damage, thereby<br />

focusing only on the different accident<br />

frequencies. By ordering the accidents<br />

upon their featured frequencies, any<br />

Level 1 PRA application would prioritize<br />

safety improvements according<br />

to their impact on the total risk, that is<br />

to say, according to a reduction on the<br />

core damage frequency.<br />

The inclusion of a probabilistic<br />

approach therefore opened the spectrum<br />

of accidents to be considered for<br />

safety purposes to also those less<br />

challenging in terms of damage progression,<br />

but more frequent, in the<br />

end, featuring a high level of risk. By<br />

applying such comprehensive tool to<br />

safety, the key concept was put on<br />

lowering the total risk rather than<br />

addressing specific bounding accidents.<br />

As a matter of fact, safety<br />

efforts directed towards double-ended<br />

guillotine Large Break LOCAs were<br />

expanded to comprise also other less<br />

challenging accidents like Small Break<br />

LOCAs, Loss of Off-site Power<br />

scenarios, etc. In other words, safety<br />

design reoriented the initial bias that<br />

focused safety onto a specific preselected<br />

frame of accidents towards<br />

objective, frequency-driven accidents,<br />

where any pre-assessment whatsoever<br />

on the spectrum of accidents (other<br />

than a low frequency screening-out<br />

value) was not applicable anymore.<br />

Coming back to the concept of<br />

risk, and focusing on Level 2 PRA, the<br />

figures of merit driving any potential<br />

Large Early Release probability increase<br />

(ΔLER)<br />

Green Very low ΔCD < 10 -6 ΔLER < 10 -7<br />

White Low – moderate 10 -6 < ΔCD < 10 -5 10 -7 < ΔLER < 10 -6<br />

Yellow Significant 10 -5 < ΔCD < 10 -4 10 -6 < ΔLER < 10 -5<br />

Red High 10 -4 < ΔCD 10 -5 < ΔLER<br />

| | Tab. 3.<br />

MSPIs and findings classification included in US NRC ROP system [23].<br />

design improvement in terms of prevention<br />

are limited to the large and<br />

early release frequencies. Such large<br />

and early in terms of radioactive<br />

releases mean the most challenging<br />

bounding severe accidents. In terms of<br />

Level 1 PRA, to limit the figure of<br />

merit to large and early releases<br />

would be as if taking from the entire<br />

spectrum of accidents leading to core<br />

damage only those featuring early<br />

occurrence and extended core damage.<br />

As a conclusion, the implementation<br />

of PRA tools derived in a broader<br />

spectrum of accidents leading to core<br />

damage accounted for when looking<br />

at prioritizing efforts towards nuclear<br />

safety improvements. But this shift<br />

of prioritizing safety improvements<br />

towards SSCs according to their contribution<br />

to core damage has not been<br />

translated to the severe accident field,<br />

i.e., LERF and LRF continues to focus<br />

the attention on the consequence of<br />

the accident no matter how frequent<br />

they are likely to occur, therefore<br />

missing two important pieces of information<br />

from a safety perspective<br />

( already accounted for in Level 1 PRA<br />

scenarios), namely (i) that less severe<br />

accidents – whether in terms of magnitude<br />

or time – are still severe accidents;<br />

and partially drawn from the<br />

first issue, (ii) that the more frequent<br />

the scenario is, the more attention<br />

should be paid to as the higher its risk<br />

will likely be (because the undesired<br />

consequences will still be unacceptably<br />

high).<br />

Furthermore, and in accordance<br />

with the ALARA principle, it will be<br />

convenient to track all the scenarios<br />

that derive into a radioactive release;<br />

otherwise, most of the sequences<br />

would remain out of control in the<br />

range from core damage to the source<br />

term release. For example, if 50 % of<br />

the CDF evolves into a source term<br />

release, and LERF and LRF contributes<br />

in 5 % to the source term, this means<br />

that 95 % of the scenarios involving<br />

source term release to the environment<br />

are not keeping tracked by any of<br />

the safety indicators and practices,<br />

meaning that 47.5 % of the accidents<br />

leading to core damage will not be<br />

susceptible to direct safety improvements<br />

of any kind.<br />

4 Level 2 PRA.<br />

Methodology and<br />

insights<br />

In order to have a better understanding<br />

of the new metrics proposed,<br />

let us review some insights related<br />

with Level 2 PRA.<br />

Environment and Safety<br />

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Figure 5 depicts the level 2 PRA<br />

flowchart, where at the top, first<br />

row, the main prescriptive tasks are<br />

indicated. The rest of the methodology<br />

is intended just to step from one<br />

task to the next one, i.e., they are userdependent:<br />

• First stage. First binning process.<br />

As a back-end methodology, Level 2<br />

starts from the results coming from<br />

Level 1 (first main block), and after<br />

asking the sequences about the<br />

containment systems performance<br />

not included in Level 1 (through<br />

the so-called Bridge Trees, BT in<br />

the flowchart), the outputs are<br />

classified into Plant Damage States<br />

(PDSs) through the use of the PDS<br />

Logic Tree (PDS LT) which classifies<br />

the sequences according to<br />

their equal evolution in the containment.<br />

• Second stage (prescriptive). This<br />

is the Level 2 itself: given that containment<br />

and Reactor Pressure<br />

Vessel (RPV) phenomena are<br />

subjected to a high degree of<br />

uncertainty, one PDS may evolve in<br />

different manners (this means that<br />

in the absence of epistemic uncertainties,<br />

one PDS would obviously<br />

mean one Release Category). Containment<br />

Event Tree (CET), also<br />

named Accident Progression Event<br />

Tree (APET), is the white box<br />

through which analyzing and<br />

propagating the input sequences<br />

(PDS) to the output sequences<br />

( Release Categories, RCs).<br />

• Third stage. Given the large number<br />

of outputs coming from the<br />

CET, it is suitable to reclassify them<br />

according to a similar released<br />

source term characterisation.<br />

This is done by the RC Logic Tree<br />

( RC LT).<br />

• Fourth stage. In order to obtain<br />

the source term associated to each<br />

RC, the most frequent sequence is<br />

chosen as representative for the RC<br />

and simulated with a severeaccident<br />

system simulation code<br />

such as MELCOR, MAAP or ASTEC,<br />

which gives us the RC characterization<br />

(in terms of time, magnitude,<br />

and composition).<br />

• Fifth stage. An eventual filtering<br />

process is applied to compute the<br />

LERF and LRF categories by focusing<br />

only in those RCs meeting with<br />

certain criteria regarding timing<br />

(early) and magnitude (large).<br />

5 Severe-accident risk<br />

significant measure<br />

In order to fill this gap, a new indicator<br />

related with all the sequences<br />

| | Fig. 5.<br />

Level 2 PRA flowchart.<br />

deriving in a source term release is<br />

proposed to be incorporated into the<br />

probabilistic safety measures applied<br />

at the prevention level.<br />

The indicator is just an adaptation<br />

of the Fussell-Vesely importance<br />

measure, defined as the relative contribution<br />

to the reference risk of all<br />

the minimal cut sets belonging to one<br />

basic event:<br />

(1)<br />

where MCS stands for Minimum Cut<br />

Set, and BE is the Basic Event belonging<br />

to the SSC under analysis. In this<br />

case, the importance would have to be<br />

propagated to the source term release.<br />

If the source term magnitude is not<br />

taken into account – assuming that<br />

even a small, not-early release, e.g.<br />

TMI-2, still leads to high undesired<br />

consequence, the risk associated to<br />

one specific sequence, will only be<br />

driven by its frequency.<br />

When attempting to convert a<br />

sequence into a source release in<br />

terms of relative frequency, from a<br />

mere quantitative point of view, this<br />

index should only replace p(MCS) by<br />

p(RC), where RC is the release category,<br />

i.e. the sum of all accidents<br />

featuring similar source term characterisation<br />

in timing, magnitude and<br />

fission product chemical speciation:<br />

(2)<br />

where RCF stands for the total Release<br />

Categories Frequency.<br />

But there are several reasons to<br />

maintain p(MCS) in the equation:<br />

• Since p(MCS) is the Core Damage<br />

indicator, it is convenient to keep<br />

this term in order to track its<br />

associated frequency.<br />

• p(MCS) and p(RC) are independent.<br />

• p(RC) has a significant uncertainty;<br />

this is not the case for<br />

p(MCS).<br />

• Calculation of p(MCS) can be<br />

computed by a probabilistic computer<br />

software, while the RCs can<br />

be computed by a different way (in<br />

a non-integrated L1 – L2 PRA).<br />

• P(RC) is a parameter related not<br />

with the BE but with the PDS.<br />

Therefore, it is suitable to implement<br />

p(RC) as a weighting factor of<br />

p(MCS). Furthermore, considering<br />

that one MCS is split into different<br />

PDSs and that one PDS is related with<br />

a specific CET layout (thus a specific<br />

RC conditional frequency (here<br />

named f c )), then:<br />

(3)<br />

If MCSs are extended to the containment<br />

system consideration, i.e., after<br />

the BTs have been applied, then one<br />

interface MCS, here named MCS*,<br />

will be related with one PDS. Further,<br />

if it is considered that in order to<br />

obtain a fraction corresponding to<br />

the total RC frequency, the denominator<br />

should be the Source Terms<br />

Fre quency (STF), by removing the<br />

non-failure categories associated<br />

frequency the following final equation<br />

is obtained:<br />

(4)<br />

ENVIRONMENT AND SAFETY 591<br />

Environment and Safety<br />

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

ENVIRONMENT AND SAFETY 592<br />

6 Summary<br />

and conclusions<br />

Activities and countermeasures related<br />

to nuclear safety currently<br />

include results coming both from<br />

deterministic and probabilistic analyses.<br />

These activities can be arranged<br />

in three categories depending on<br />

whether they are implemented before<br />

the accident begins (prevention),<br />

once the accident has already started<br />

(correction, i.e. control) or after the<br />

fuel has been damaged (mitigation).<br />

By analysing the fundamental set of<br />

nuclear safety activities, a gap has<br />

been identified in the prevention area<br />

applied to the field of severe accidents.<br />

This gap consists of limiting riskoriented<br />

measures related to accidents<br />

involving core damage to only<br />

those leading to the worst consequences,<br />

hence to driven risk as a<br />

consequence-driven concept rather<br />

than as a frequency-driven, just like<br />

applied in the solid field of Level 1<br />

PRA. Furthermore, by applying such<br />

approach the frequency of the remaining<br />

accidents deriving in lower yet still<br />

highly significant radioactive releases<br />

is not being tracked. This means that<br />

any risk-informed decision making<br />

will not take into account this set of<br />

severe accidents which in the end<br />

contribute the most to the radioactive<br />

releases given the relative low values<br />

features by LERF/LRF categories.<br />

In addition, safety improvements to<br />

reduce that residual risk brought by<br />

the radioactive release accidents other<br />

than LERF/LRF will not be considered<br />

as no figure of merit exists to follow<br />

them up.<br />

A new metrics to be used in riskdecision<br />

making processes looking at<br />

the field of severe accidents has been<br />

suggested. This importance measure<br />

is based on the Fussell-Vesely factor<br />

as currently used for core damage<br />

applications. This risk importance<br />

measure does not limit to the most<br />

challenging accidents from the consequence<br />

stand point but it comprises<br />

the entire set of accidents leading to<br />

radioactive releases according to their<br />

featured frequency, just as the equivalent<br />

Level 1 PRA figure of merit of CDF<br />

does. This risk importance measure<br />

will allow prioritizing safety improvements<br />

in the field of severe accidents<br />

according to the contribution to the<br />

total radioactive releases, hence shifting<br />

from a consequence-driven to a<br />

frequency-driven indicator. In addition,<br />

the remaining severe accidents<br />

not falling under LERF/LRF and<br />

featuring a much larger frequency of<br />

radioactive releases will not be<br />

neglected in the assessment process of<br />

any potential safety improvement and<br />

design modification looking at improving<br />

the plant response against<br />

severe accidents.<br />

References<br />

[1] International Nuclear Safety Advisory<br />

Group (INSAG), Defence in Depth in<br />

Nuclear Safety, INSAG-10 (1996).<br />

[2] International Atomic Energy Agency<br />

(IAEA), Modifications to Nuclear Power<br />

Plants, IAEA NS-G-2.3 (2001).<br />

[3] United States Nuclear Regulatory<br />

Commission, Code of Federal<br />

Regulations, 10 CFR 50.59<br />

(last reviewed on 2017).<br />

[4] Consejo de Seguridad Nuclear, Guía de<br />

Seguridad 1.11, Modificaciones de<br />

diseño en centrales nucleares (2002).<br />

[5] International Atomic Energy Agency<br />

(IAEA), Applications of Probabilistic<br />

Safety Assessment (PSA) for nuclear<br />

power plants, 2001.<br />

[6] Wu, J.S., Apostolakis, G. E., Experience<br />

with probabilistic risk assessment in the<br />

nuclear power industry, Journal of<br />

Hazardous Materials, Vol. 29, Issue 3,<br />

1992.<br />

[7] Zio E., Pedroni N., Panorama des<br />

processus décisionnels tenant compte<br />

du risque, Cahiers de la Sécurité<br />

Industrielle, Fondation pour une<br />

Culture de Sécurité Industrielle, 20<strong>12</strong>.<br />

[8] Cheok, M.C., Parry, G.W., Sherry, R.R.,<br />

Use of importance measures in riskinformed<br />

regulatory applications,<br />

Reliability Engineering and System<br />

Safety, Vol. 60, Issue 3, 1998.<br />

[9] Nuclear Regulatory Commission (NRC),<br />

Reactor Oversight Process, NUREG-1649<br />

(2006).<br />

[10] International Atomic Energy Agency<br />

(IAEA), Operational safety performance<br />

indicators for nuclear power plants,<br />

IAEA-TECDOC-1141, 2000.<br />

[11] United States Nuclear Regulatory<br />

Commission, An approach for using<br />

probabilistic risk assessment in riskinformed<br />

decisions on plant specific<br />

changes to the licensing basis,<br />

Regulatory Guide 1.174, 2011.<br />

[<strong>12</strong>] Yingli Zhu, Criteria for Assessing the<br />

Quality of Nuclear Probabilistic Risk<br />

Assessments, Massachusetts Institute<br />

of Technology (2004).<br />

[13] Nuclear Energy Institute (NEI), Risk<br />

Monitors. The State of the Art in their<br />

Development and Use at Nuclear Power<br />

Plants, NEA/CSNI/R(2004)20, 2004.<br />

[14] International Atomic Energy Agency<br />

(IAEA), Safety of Nuclear Power Plants:<br />

Design, SSR-2/1, Rev.1, 2016.<br />

[15] International Atomic Energy Agency<br />

(IAEA), Safety of Nuclear Power Plants:<br />

Commissioning and Operation, SSR-<br />

2/2, 2011.<br />

[16] International Atomic Energy Agency<br />

(IAEA), The Management System<br />

for Nuclear Installations, GS-G-3.5,<br />

2009.<br />

[17] International Atomic Energy Agency<br />

(IAEA), Leadership and Management<br />

for Safety, GSR Part 2, 2016.<br />

[18] ENSREG EU stress tests and follow-up,<br />

visited on 16 July <strong>2018</strong>,<br />

http://www.ensreg.eu/EU-Stress-Tests.<br />

[19] B. Chaumont, E. Raimond, L2 PSA<br />

methods harmonization, 3 rd European<br />

Review Meeting on Severe Accident<br />

Research (ERMSAR), Nesseber<br />

(Bulgaria), 2008.<br />

[20] Nuclear Energy Agency Organisation<br />

For Economic Co-Operation And<br />

Development (OECD), Implementation<br />

of Defence in Depth at Nuclear Power<br />

Plants, NEA No. 7248, 2016.<br />

[21] International Atomic Energy Agency<br />

(IAEA), Considerations on the<br />

Application of the IAEA Safety<br />

Requirements for the Design of Nuclear<br />

Power Plants, IAEA-TECDOC-1791,<br />

2016.<br />

[22] Consejo de Seguridad Nuclear (CSN),<br />

Criterios básicos para la realización de<br />

aplicaciones de los Análisis Probabilistas<br />

de Seguridad, Guía de Seguridad 1.14,<br />

2007.<br />

[23] https://www.nrc.gov/reactors/<br />

operating/oversight.html,<br />

visited on 16 July <strong>2018</strong>.<br />

Authors<br />

Juan Carlos de la Rosa Blul<br />

Luca Ammirabile<br />

European Commission<br />

DG Joint Research Centre – JRC<br />

Directorate G – Nuclear Safety<br />

& Security<br />

Unit G.I.4 Reactor Safety &<br />

Emergency Preparedness<br />

Westerduinweg 3<br />

1755 LE Petten,<br />

The Netherlands<br />

Environment and Safety<br />

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Position des Arbeitskreises „Szenarienentwicklung“<br />

zur Thematik:<br />

Wahrscheinlichkeitsklassen und<br />

Umgang mit unwahrscheinlichen<br />

Entwicklungen<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla,<br />

J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf und J. Wollrath<br />

Zusammenfassung Die Sicherheitsanforderungen [BMU 10] verlangen bei der Analyse von zukünftigen<br />

Entwicklungen eines Endlagers und Endlagerstandortes die Unterscheidung hinsichtlich der Wahrscheinlichkeit ihres<br />

Eintretens. Darüber hinaus forderte die nach dem Standortauswahlgesetz [STA 13] in 2013 eingesetzte Endlagerkommission<br />

in ihrem Abschluss bericht [KOM 16] die Überprüfung der Einteilung in die Wahrscheinlichkeitsklassen<br />

„wahrscheinliche“, „weniger wahrscheinliche“ und „unwahrscheinliche“ Entwicklungen und der Trennung in<br />

„ wahrscheinliche“ und „weniger wahrscheinliche“ Entwicklungen.<br />

In der Vergangenheit wurden in<br />

Vorhaben zur Szenarienentwicklung<br />

zwar wahrscheinliche und weniger<br />

wahrscheinliche Szenarien abgeleitet<br />

und auch das menschliche Eindringen<br />

in ein Endlager untersucht, jedoch<br />

keine unwahrscheinlichen Entwicklungen<br />

berücksichtigt.<br />

Der Arbeitskreis „Szenarienentwicklung“<br />

(AKS) hat sich mit der Einteilung<br />

von Entwicklungen in Wahrscheinlichkeitsklassen,<br />

der Ableitung<br />

von unwahrscheinlichen Szenarien<br />

sowie mit deren Behandlung auseinandergesetzt<br />

und die folgende<br />

Position formuliert:<br />

Der AKS vertritt die Auffassung,<br />

dass die Einteilung von Entwicklungen<br />

in Wahrscheinlichkeitsklassen<br />

eine übliche Vorgehensweise ist und<br />

dass eine solche Klassifizierung einen<br />

wesentlichen Aspekt für die Optimierung<br />

der Endlagerauslegung und die<br />

Zusammenstellung von Argumenten<br />

im Rahmen des Langzeitsicherheitsnachweises<br />

darstellt sowie für die<br />

allgemeine Diskussion ein hilfreiches<br />

Unterscheidungsmerkmal sein kann.<br />

Insgesamt ist die Einteilung in drei<br />

Klassen ausreichend. Um eine weitere<br />

Differenzierung in Klassen vorzunehmen,<br />

sind verlässliche Daten notwendig,<br />

die oftmals nicht vorliegen.<br />

Die quantitative Vorgabe von Wahrscheinlichkeiten<br />

für alle Aspekte der<br />

unterschiedlichen Entwicklungen hält<br />

der AKS für nicht praktikabel.<br />

Nach Auffassung des AKS ist eine<br />

umfassende, systematische Erfassung<br />

von unwahrscheinlichen Szenarien<br />

nicht möglich. Aus diesem Grund<br />

empfiehlt der AKS, unwahrschein liche<br />

Szenarien getrennt von einer systematischen<br />

Entwicklung wahrscheinlicher<br />

und weniger wahrscheinlicher Szenarien<br />

zu behandeln.<br />

In den Sicherheitsanforderungen<br />

[BMU 10] wird für unwahrscheinliche<br />

Entwicklungen, die zu hohen Strahlenexpositionen<br />

führen können, eine<br />

Optimierungsprüfung dahingehend<br />

gefordert, ob eine Reduzierung der<br />

Auswirkungen mit vertretbarem Aufwand<br />

möglich ist. Hier vertritt der<br />

AKS die Auffassung, dass Entwicklungen<br />

im Zusammenhang mit Ereignissen<br />

und Prozessen, die aufgrund<br />

der Anwendung von Ausschlusskriterien<br />

und Mindestanforderungen<br />

im Standortauswahlverfahren am<br />

zu untersuchenden Endlagerstandort<br />

ausgeschlossen werden, im Rahmen<br />

der geforderten Optimierungsprüfung<br />

nicht weiter zu berücksichtigen<br />

sind.<br />

Der AKS hält es für zwingend<br />

notwendig, eine Unterscheidung<br />

zwischen unwahrscheinlichen Entwicklungen<br />

mit einer Restwahrscheinlichkeit<br />

und ausgeschlossenen<br />

Entwicklungen vorzunehmen.<br />

Der AKS stützt die Festlegungen<br />

in den Sicherheitsanforderungen<br />

[BMU 10], für unwahrscheinliche<br />

Szenarien und Szenarien aufgrund<br />

eines unbeabsichtigten menschlichen<br />

Eindringens in ein Endlager auf<br />

Grenzwerte für zumutbare Risiken<br />

oder zumutbare Strahlenexpositionen<br />

zu verzichten.<br />

Stattdessen schlägt der AKS vor,<br />

über folgende Optionen unwahrscheinliche<br />

Entwicklungen mit einer<br />

Restwahrscheinlichkeit abzuleiten:<br />

• Unwahrscheinliche Ereignisse und<br />

Prozesse, die im Rahmen der<br />

Einteilung in Wahrscheinlichkeitsklassen<br />

identifiziert wurden.<br />

• Unwahrscheinliche Ausprägung<br />

von Ereignissen und Prozessen,<br />

die auf die Barrieren des Endlagersystems<br />

wirken.<br />

• Gleichzeitiges Versagen mehrerer<br />

technischer Komponenten aufgrund<br />

voneinander unabhängiger<br />

Ursachen.<br />

Über den Optimierungsgedanken<br />

hinaus erscheint es nach Ansicht des<br />

AKS zu Anschauungszwecken praktikabel,<br />

eine begrenzte Auswahl von<br />

unwahrscheinlichen Szenarien und/<br />

oder What-If Fällen zusammenzustellen<br />

und die Robustheit des Endlagersystems<br />

und einzelner Komponenten<br />

zu testen und darzustellen.<br />

Für die What-If Fälle sind keine regulatorischen<br />

Vorgaben notwendig.<br />

Motivation/Sachstand<br />

zur Thematik<br />

Die Szenarienentwicklung ist die<br />

Ableitung von potenziellen Entwicklungen<br />

eines Endlagers für radioaktive<br />

Abfälle, die hinsichtlich ihres<br />

Eintretens, gemäß den Sicherheitsanforderungen<br />

des Bundesministeriums<br />

für Umwelt, Naturschutz, Bau und<br />

nukleare Sicherheit (BMU) [BMU 10]<br />

in die folgenden Wahrscheinlichkeitsklassen<br />

eingeteilt werden:<br />

• wahrscheinlich,<br />

• weniger wahrscheinlich und<br />

• unwahrscheinlich.<br />

Die im Jahr 2013 nach dem Standortauswahlgesetz<br />

eingesetzte Kommission<br />

„Lagerung hoch radioaktiver Abfallstoffe“<br />

(im Folgenden kurz Kommission<br />

genannt) hat unter anderem<br />

diskutiert, ob die bestehenden Sicherheitsanforderungen<br />

[BMU 10] dem<br />

Stand von Wissenschaft und Technik<br />

entsprechen. Eine Empfehlung mit<br />

593<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

DECOMMISSIONING AND WASTE MANAGEMENT 594<br />

direktem Bezug zur Szenarienentwicklung<br />

[KOM 16] lautet:<br />

„Überprüfung der Einteilung in<br />

die Wahrscheinlichkeitsklassen „wahrscheinliche<br />

Entwicklungen“, „weniger<br />

wahrscheinliche Entwicklungen“ und<br />

„unwahrscheinliche Entwicklungen“,<br />

insbesondere ob die Trennung in<br />

„ wahrscheinliche Entwicklungen“ und<br />

„weniger wahrscheinliche Entwicklungen“<br />

gerechtfertigt ist.“<br />

Über die nationalen Empfehlungen<br />

hinaus sind Szenarien und damit<br />

verbundene Wahrscheinlichkeitsbetrachtungen<br />

auch Gegenstand der<br />

internationalen Fachdiskussion. Der<br />

internationale Stand wurde 2015 auf<br />

dem IGSC Scenario Development<br />

Workshop OECD/NEA vorgestellt und<br />

erläutert [NEA 16]. In der Vergangenheit<br />

sind in verschiedenen nationalen<br />

Vorhaben bereits Arbeiten wie z. B.<br />

„Überprüfung und Bewertung des<br />

bereits verfügbaren Instrumentariums<br />

für eine sicherheitliche Bewertung<br />

von Endlagern für HAW“<br />

( ISIBEL) [BUH 08], „Vorläufige<br />

Sicher heitsanalyse für den Standort<br />

Gorleben“ (VSG) [BEU <strong>12</strong>] und<br />

„ Methodik und Anwendungsbezug<br />

eines Sicherheits- und Nachweis konzeptes<br />

für ein HAW-Endlager im Tonstein“<br />

(ANSICHT) [LOM 15, LOM 18]<br />

im Zusammenhang mit Szenarienentwicklungen<br />

durchgeführt worden.<br />

Der Fokus in diesen Vorhaben lag<br />

auf der Zusammenstellung von wirtsgesteinsspezifischen<br />

FEP-Katalogen<br />

(Features, Events and Processes) und<br />

einer darauf basierenden transparenten<br />

und nachvollziehbaren Methodik<br />

zur Ableitung von Szenarien. Die<br />

zugrunde liegende Methodik in den<br />

genannten Vorhaben war lediglich auf<br />

die Ableitung wahrscheinlicher und<br />

weniger wahrscheinlicher Szenarien<br />

ausgerichtet. Die unwahrscheinlichen<br />

Entwicklungen wurden bisher nicht<br />

betrachtet.<br />

Das vorliegende Positionspapier<br />

befasst sich im Wesentlichen mit dem<br />

Umgang mit unwahrscheinlichen Entwicklungen.<br />

Darüber hinaus wird<br />

allgemein auf unterschiedliche zu<br />

betrachtende Entwicklungen sowie<br />

deren Einteilung und auf die o. g.<br />

Überprüfungsforderung der Kommission<br />

eingegangen.<br />

Nationale und internationale<br />

Regularien / Empfehlungen<br />

Nationale Anforderungen<br />

und Empfehlungen<br />

Die Sicherheitsanforderungen [BMU<br />

10] sind maßgeblich für die Nachweisführung<br />

der Einhaltung des<br />

vorgegebenen Sicherheitsniveaus zur<br />

Erfüllung der atomrechtlichen Anforderungen<br />

an ein Endlager für wärmeentwickelnde<br />

radioaktive Abfälle in<br />

tiefen geologischen Formationen. In<br />

den Sicherheitsanforderungen wird<br />

eine Reihe von Vorgaben zur Berücksichtigung<br />

und Behandlung unterschiedlich<br />

wahrscheinlicher Entwicklungen<br />

gemacht.<br />

So werden für die wahrscheinlichen<br />

und weniger wahrscheinlichen<br />

Entwicklungen einzuhaltende zusätzliche<br />

effektive Dosisgrenzwerte für<br />

Einzelpersonen der Bevölkerung<br />

festgelegt (Absatz 6.2 und 6.3 in<br />

[BMU 10]). Für unwahrscheinliche<br />

Entwicklungen sowie für Entwicklungen<br />

aufgrund eines unbeabsichtigten<br />

menschlichen Eindringens in ein<br />

Endlager wird auf die Festlegung<br />

von Werten für zumutbare Risiken<br />

oder zumutbare Strahlenexpositionen<br />

verzichtet (Absatz 6.4 und 6.5 in<br />

[BMU 10]).<br />

In Absatz 7.2 in [BMU 10] werden<br />

Forderungen nach einer umfassenden<br />

Identifizierung und Analyse sicherheitsrelevanter<br />

Szenarien und deren<br />

Einordnung in die vorgegebenen<br />

Wahrscheinlichkeitsklassen erhoben.<br />

In nachgeordneten Anforderungen<br />

werden für wahrscheinliche und<br />

weniger wahrscheinliche Entwicklungen<br />

spezifische Nachweise zur<br />

Einhaltung der Dosisgrenzwerte<br />

( Absatz 7.2.2 in [BMU 10]) und zum<br />

Ausschluss der Kritikalität (Absatz<br />

7.2.4 in [BMU 10]) gefordert. Für<br />

wahrscheinliche Entwicklungen sind<br />

spezifische Nachweise zur Integrität<br />

des einschlusswirksamen Gebirgsbereiches<br />

und der geotechnischen<br />

Barrieren über den Nachweiszeitraum<br />

(Absatz 7.2.1 und 7.2.3 in [BMU 10])<br />

zu erbringen. Weiterhin ist ein<br />

Nachweis zur Handhabbarkeit der<br />

Abfallbehälter bei einer eventuellen<br />

Bergung in der Nachverschlussphase<br />

aus dem stillgelegten und verschlossenen<br />

Endlager für einen Zeitraum<br />

von 500 Jahren (Absatz 8.6 in<br />

[BMU 10]) zu führen.<br />

Begriffsbestimmungen zu unterschiedlich<br />

wahrscheinlichen<br />

Ent wicklungen [BMU 10]:<br />

„Wahrscheinliche Entwicklungen<br />

sind die für diesen Standort prognostizierten<br />

normalen Entwicklungen<br />

und für vergleichbare<br />

Standorte oder ähnliche geolo gische<br />

Situationen normalerweise beobachtete<br />

Entwicklungen. Dabei ist<br />

für die technischen Komponenten<br />

des Endlagers die als normal prognostizierte<br />

Entwicklung ihrer<br />

Eigenschaften zugrunde zu legen.<br />

Falls eine quantitative Angabe zur<br />

Eintrittswahrscheinlichkeit einer<br />

bestimmten Entwicklung möglich<br />

ist, und ihre Eintritts wahrscheinlichkeit<br />

bezogen auf den Nachweiszeitraum<br />

mindestens 10 % beträgt,<br />

gilt diese als wahr schein liche Entwicklung.“<br />

„Weniger wahrscheinliche Entwicklungen<br />

sind solche, die für diesen<br />

Standort unter ungünstigen geologischen<br />

oder klimatischen Annahmen<br />

eintreten können und die<br />

bei vergleichbaren Standorten oder<br />

vergleichbaren geologischen Situationen<br />

selten aufgetreten sind. Für<br />

die technischen Komponenten des<br />

Endlagers ist dabei eine als normal<br />

prognostizierte Entwicklung ihrer<br />

Eigenschaften bei Eintreten der<br />

jeweiligen geologischen Entwicklung<br />

zugrunde zu legen. Außerdem sind<br />

auch von der normalen Entwicklung<br />

ab weichende ungünstige Entwicklungen<br />

der Eigenschaften der technischen<br />

Komponenten zu untersuchen.<br />

Rückwirkungen auf das<br />

geologische Umfeld sind zu<br />

betrachten. Abgesehen von diesen<br />

Rückwirkungen sind dabei die<br />

jeweilig erwarteten geologischen<br />

Entwicklungen zu berücksich tigen.<br />

Innerhalb einer derartigen Entwicklung<br />

ist das gleichzeitige<br />

Auftreten mehrerer unabhängiger<br />

Fehler nicht zu unterstellen. Falls<br />

eine quantitative Angabe zur<br />

Wahrscheinlichkeit einer bestimmten<br />

Entwicklung oder einer ungünstigen<br />

Entwicklung der Eigenschaften<br />

einer technischen Komponente<br />

möglich ist, sind diese hier<br />

zu betrachten, wenn diese Wahrscheinlichkeit<br />

bezogen auf den<br />

Nachweiszeitraum mindestens 1 %<br />

beträgt.“<br />

„Unwahrscheinliche Entwicklungen<br />

sind Entwicklungen, deren Eintreten<br />

am Standort selbst unter ungünstigen<br />

Annahmen nicht erwartet<br />

wird und die bei ver gleichbaren<br />

Standorten oder vergleichbaren<br />

geologischen Situationen nicht<br />

beobachtet wurden. Zustände und<br />

Entwicklungen für technische<br />

Komponenten, die durch zu<br />

treffende Maßnahmen praktisch<br />

ausgeschlossen werden können<br />

sowie das gleichzeitige unabhängige<br />

Versagen von meh reren Komponenten<br />

werden den unwahrscheinlichen<br />

Entwicklungen zugeordnet.“<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Dem Begriff Entwicklung kommen<br />

in den Sicherheitsanforderungen /<br />

BMU 10/ verschiedene Bedeutungen<br />

zu:<br />

1. Beschreibung von Prozessen an<br />

einem bestimmten Ort über einen<br />

bestimmten Zeitraum.<br />

2. Szenarium, das Wechselwirkungen<br />

von verschiedenen Prozessen beschreibt.<br />

Die jeweilige Wortbedeutung erschließt<br />

sich aus dem Sinnzusammenhang.<br />

Hier sollte dennoch aus der<br />

Sicht des AKS zur Vermeidung<br />

von Missverständnissen eine klarere<br />

sprachliche Abgrenzung der genannten<br />

verschiedenen Bedeutungen im<br />

Zuge einer Aktualisierung der Sicherheitsanforderungen<br />

vorgenommen<br />

werden.<br />

Darüber hinaus hat sich die Entsorgungskommission<br />

(ESK) mit der<br />

Thematik „Einordnung von Entwicklungen<br />

in Wahrscheinlichkeits klassen“<br />

und dem „unbeabsichtigten menschlichen<br />

Eindringen in ein Endlager“<br />

auseinandergesetzt und entsprechende<br />

Empfehlungen bzw. Leitlinien verfasst<br />

[ESK <strong>12</strong>a, ESK <strong>12</strong>b].<br />

Internationale Regelungen /<br />

Empfehlungen<br />

Auch internationale Regelungen bzw.<br />

Empfehlungen differenzieren hinsichtlich<br />

Eintrittswahrscheinlichkeiten.<br />

So geben die von der Western<br />

European Nuclear Regulators Association<br />

(WENRA) ausgegebenen Safety<br />

Reference Level (SRL) die Durchführung<br />

einer Szenarienentwicklung<br />

bzw. -analyse vor, die mögliche FEP<br />

inklusive derjenigen Ereignisse mit<br />

einer geringen Wahrscheinlichkeit zu<br />

berücksichtigen hat, die die Sicherheit<br />

eines Endlagersystems gefährden<br />

[WEN 14].<br />

Den von der WENRA erarbeiteten<br />

SRL liegen die Empfehlungen der<br />

International Atomic Energy Agency<br />

(IAEA) [IAEA 11] und [IAEA <strong>12</strong>] zugrunde.<br />

Herauszustellen ist allerdings<br />

noch die folgende Empfehlung der<br />

IAEA in Bezug auf den Vergleich von<br />

kalkulierten Werten mit vorgegebenen<br />

Grenzwerten oder Risiken, die u.<br />

a. bei sehr seltenen Ereignissen mit<br />

Vorsicht zu behandeln sind ([IAEA<br />

11]):<br />

“The robustness of the disposal<br />

system can be demonstrated, however,<br />

by making an assessment of reference<br />

events that are typical of very low<br />

frequency natural events.”<br />

Die o. g. Aussagen werden in<br />

gleicher Weise durch die Ergebnisse<br />

des internationalen Workshops der<br />

OECD/NEA zur Szenarienentwicklung<br />

gestützt [NEA 16]. Aus den Ergebnissen<br />

bzw. Vergleichen wird deutlich,<br />

dass nahezu alle Nationen eine Klassifizierung<br />

der zu untersuchenden<br />

Szenarien vornehmen. Darüber hinaus<br />

berücksichtigen die Nationen,<br />

bis auf sehr wenige Ausnahmen, unwahrscheinliche<br />

Entwicklungen. Bei<br />

den Ausnahmen handelt es sich um<br />

Nationen, die in den entsprechenden<br />

Regularien Schwellwerte für Wahrscheinlichkeiten<br />

(probability cut-offs)<br />

vorgeben, unter denen z. B. sehr unwahrscheinliche<br />

FEP und Szenarien<br />

nicht weiter zu berücksichtigen sind.<br />

So brauchen exemplarisch, gemäß der<br />

Regularien in der Tschechischen Republik,<br />

Szenarien mit einer Wahrscheinlichkeit<br />

von 10 -7 pro Jahr nicht<br />

weiter betrachtet werden [NEA 16].<br />

Unwahrscheinliche Szenarien<br />

und Einteilung<br />

von Entwicklungen<br />

In der Realität wird ein Endlagersystem<br />

nur eine Entwicklung durchlaufen,<br />

die aufgrund von Prognoseunsicherheiten<br />

nicht exakt bestimmt<br />

werden kann. Aus diesem Grund hat<br />

die Szenarienentwicklung alle für das<br />

Endlagersystem sicherheitstechnisch<br />

relevanten potenziellen FEP zu erfassen.<br />

Die so erfassten FEP haben unterschiedliche<br />

Eintrittswahrscheinlichkeiten,<br />

die in den Szenarien berücksichtigt<br />

werden müssen.<br />

Von den meisten Nationen, die sich<br />

mit der Endlagerung von radioaktiven<br />

Abfällen auseinandersetzen, werden<br />

unterschiedliche Szenarien in den<br />

Sicherheitsanalysen zugrunde gelegt.<br />

Ausgehend von einer wahrscheinlichen<br />

Entwicklung des Endlagersystems<br />

werden davon abweichende<br />

Szenarien identifiziert. Die Nomenklatur<br />

der unterschiedlichen Wahrscheinlichkeitsklassen<br />

variiert dabei<br />

(vgl. Tabelle 3 in [NEA 16]). Wahrscheinliche<br />

Szenarien werden z. B.<br />

als Normalentwicklung, Referenzszenarium,<br />

erwartete Entwicklung,<br />

Nominalszenarium und Hauptszenarium<br />

bezeichnet. Davon abweichende<br />

Szenarien erhalten z. B. die Bezeichnung<br />

alternative Szenarien, weniger<br />

wahrscheinliche Szenarien, zusätzliche<br />

Szenarien und Nebenszenarien.<br />

Szenarien, die gemäß [NEA 16] z. B.<br />

zur Untersuchung oder Demonstration<br />

der Systemrobustheit herangezogen<br />

werden, werden als What-If<br />

Szenarien oder What-If Fälle, sehr<br />

unwahrscheinliche Szenarien oder<br />

übrige Szenarien bezeichnet.<br />

Die in deutschen Vorhaben [BUH<br />

08, BEU <strong>12</strong>] und [LOM 15, LOM 18]<br />

entwickelte Methode sieht die<br />

Entwicklung eines Referenzszenariums<br />

und davon abweichender alternativer<br />

Szenarien, die wahrscheinlich<br />

oder weniger wahrscheinlich sein<br />

können, vor. Sowohl die Ableitung des<br />

Referenzszenariums als auch der<br />

Alternativszenarien erfolgt unter Zugrundelegung<br />

einer systematischen<br />

Vorgehensweise, die die Berücksichtigung<br />

von spezifischen Ansatzpunkten<br />

vorgibt. Die Übertragung<br />

dieser Methode zur Ableitung von<br />

unwahrscheinlichen Szenarien ist<br />

nur eingeschränkt möglich. Der AKS<br />

empfiehlt, unwahrscheinliche Szenarien<br />

getrennt von einer systematischen<br />

Entwicklung wahrscheinlicher<br />

und weniger wahrscheinlicher<br />

Szenarien zu behandeln (s. u.).<br />

Die Sicherheitsanforderungen sind<br />

aus Sicht des AKS bezüglich des<br />

Begriffes unwahrscheinliche Szenarien<br />

und deren geforderter Behandlung<br />

mehrdeutig. Im Folgenden wird<br />

auf zu klärende Fragen im Zusammenhang<br />

mit den Anforderungen zur<br />

Behandlung von unwahrscheinlichen<br />

Szenarien näher eingegangen. Die<br />

wesentlichen Ergebnisse des AKS zur<br />

jeweiligen Fragestellung sind im<br />

weiteren Verlauf unterhalb der zu<br />

klärenden Fragen eingefügt.<br />

Ableitung von unwahrscheinlichen<br />

Entwicklungen<br />

Unter Berücksichtigung der o. g. Begriffsbestimmung<br />

zu unwahrscheinlichen<br />

Entwicklungen aus [BMU 10]<br />

lässt sich eine Charakterisierung<br />

von Entwicklungen (unwahrscheinlich<br />

und nicht unwahrscheinlich)<br />

gemäß der Abbildung 1 vornehmen.<br />

Um eine Einordnung nach diesem<br />

Schema vornehmen zu können,<br />

müssen eine Reihe von Fragen geklärt<br />

werden. Zunächst erfolgt eine Fokussierung<br />

auf die (a) Begrifflichkeiten<br />

im Entscheidungsablauf (Abbildung<br />

1). Anschließend wird auf die (b) Verknüpfungen<br />

der Entscheidungsfelder<br />

eingegangen. Darüber hinaus wird<br />

eine zusätzliche Option für die<br />

Ableitung von unwahrscheinlichen<br />

Szenarien vorgeschlagen.<br />

a) Begrifflichkeiten<br />

im Entscheidungsablauf:<br />

• Was heißt: „vergleichbarer<br />

Standort“ bzw. „vergleichbare<br />

geolo gische Situation“ (Entscheidungsfeld<br />

1.3)?<br />

Vergleichbare Standorte sind<br />

solche, die eine ähnliche Ent wicklungsgeschichte<br />

durchlaufen haben<br />

und dadurch eine ähnliche geologische<br />

Situation aufweisen. Eine<br />

Ver gleichbarkeit ist auch gegeben,<br />

DECOMMISSIONING AND WASTE MANAGEMENT 595<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

DECOMMISSIONING AND WASTE MANAGEMENT 596<br />

| | Abbildung 1<br />

Darstellung eines qualitativen Entscheidungsablaufes zur Ableitung von unwahrscheinlichen Entwicklungen unter Berücksichtigung der Begriffsbestimmung<br />

gemäß [BMU 10] (Entscheidungsfelder sind durch nummerierte Symbole von 1.1 bis 1.5 gekennzeichnet).<br />

wenn Hinweise für die Möglichkeit<br />

des Auftretens ähnlicher Entwicklungen<br />

in der Zukunft vorliegen.<br />

• Welcher Zeitraum in der Vergangenheit<br />

ist für das Auftreten<br />

von Prozessen am Vergleichsstandort<br />

zu betrachten (Entscheidungsfeld<br />

1.3)?<br />

Die Wahl des zu betrachtenden<br />

Zeitraums ist in Abhängigkeit vom<br />

jeweiligen betrachteten Prozess zu<br />

treffen. Beispiele hierfür sind die<br />

Prozesse Halokinese und Inlandvereisung.<br />

Für den Prozess der<br />

Halokinese ist der Zeitraum von<br />

der Ablagerung der betrachteten<br />

Salzformation bis zur Gegenwart<br />

(ca. 250 Mio. Jahre für Salzformationen<br />

des Zechsteins) zu betrachten,<br />

während für den Prozess<br />

der Inlandvereisung das Quartär<br />

(ca. 2 Mio. Jahre) zu betrachten<br />

ist.<br />

• Was heißt: Die Entwicklung<br />

kann durch Maßnahmen praktisch<br />

ausgeschlossen werden<br />

(Entscheidungsfeld 1.4)?<br />

Praktisch ausgeschlossen bedeutet,<br />

dass trotz getroffener Maßnahmen<br />

immer noch eine Restwahrscheinlichkeit<br />

bestehen kann,<br />

dass die betrachtete Entwicklung<br />

eintritt. Es bedeutet nicht notwendiger<br />

Weise: vollständig ausschließbar.<br />

• Was ist unter einer Komponente<br />

zu verstehen (Entscheidungsfeld<br />

1.1)?<br />

Eine Komponente ist ein Bestandteil<br />

des Endlagersystems, sie kann<br />

natürlichen oder technischen Ursprungs<br />

sein.<br />

• Was bedeutet: gleichzeitiges<br />

unabhängiges Versagen von<br />

mehreren Komponenten (Entscheidungsfeld<br />

1.5)?<br />

Innerhalb einer kurzen Zeitspanne<br />

erfüllen mehrere Komponenten<br />

aufgrund voneinander unabhängiger<br />

Ursachen ihre Sicherheitsfunktion<br />

nicht mehr.<br />

b) Verknüpfung<br />

In Abbildung 1 werden Verknüpfungen<br />

zwischen Entscheidungsfeldern<br />

dargestellt. Diese Verknüpfungen stellen<br />

keine kausalen Zusammenhänge<br />

dar, sondern Entscheidungswege. Die<br />

Definition zu unwahrscheinlichen<br />

Entwicklungen [BMU 10] lässt aus<br />

der Sicht des AKS hinsichtlich der<br />

technischen Komponenten mehrere<br />

Interpretationen zu, die zu unterschiedlichen<br />

Entscheidungsabläufen<br />

führen können. Der dargestellte Entscheidungsbaum<br />

in Abbildung 1 ist<br />

eine Interpretationsmöglichkeit. Der<br />

AKS empfiehlt, die Definition in<br />

den Sicherheitsanforderungen entsprechend<br />

zu konkretisieren.<br />

Aus den Verknüpfungen ergibt<br />

sich, dass geologische Prozesse, die<br />

nicht am Standort selbst und an vergleichbaren<br />

Standorten oder geologischen<br />

Situationen erwartet werden,<br />

als unwahrscheinliche Prozesse zu<br />

behandeln sind (linker Strang in<br />

Abbildung 1). Nach Auffassung des<br />

AKS ist eine umfassende Identifizierung<br />

derartiger Prozesse nicht<br />

möglich.<br />

Hinsichtlich der technischen Komponenten<br />

(rechter Strang in Abbildung<br />

1) sind die beiden Kriterien<br />

nach zu treffenden Maßnahmen und<br />

nach Unterstellung eines gleichzeitigen<br />

unabhängigen Versagens von<br />

mehreren Komponenten zur Einordnung<br />

von unwahrscheinlichen<br />

Entwicklungen vorgesehen. Aus der<br />

Sicht des AKS sind diese Kriterien ausreichend.<br />

Zusammenfassend ergeben sich<br />

gemäß der Abbildung 1 die folgenden<br />

Aspekte, die für die Ableitung von<br />

unwahrscheinlichen Entwicklungen<br />

essenziell sind:<br />

• Unwahrscheinliche Prozesse<br />

• Kombination des unabhängigen<br />

Versagens mehrerer technischer<br />

Komponenten<br />

Darüber hinaus schlägt der AKS vor,<br />

dass die unwahrscheinlichen Entwicklungen<br />

auch dadurch abgeleitet<br />

werden können, dass für FEP mit<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

einem wahrscheinlichen oder weniger<br />

wahrscheinlichen Eintreten eine unwahrscheinliche<br />

Ausprägung unterstellt<br />

wird.<br />

Allgemein ist es für die Entwicklung<br />

von Szenarien essenziell, die<br />

einwirkenden FEP hinsichtlich ihres<br />

Eintretens und ihrer Ausprägung<br />

zu charakterisieren. So ergibt sich<br />

bei einer Vorgehensweise gemäß<br />

[BUH 08, BEU <strong>12</strong> und LOM 15,<br />

LOM 18] das Referenzszenarium aus<br />

der Berücksichtigung der wahrscheinlichen<br />

FEP, die die Sicherheitsfunktionen<br />

des Endlagersystems<br />

direkt beeinträch tigen und die<br />

Mobilisierung bzw. den Transport<br />

von Radionukliden aus den Abfällen<br />

bestimmen. Für diese FEP wird im<br />

Referenzszenarium die wahrscheinliche<br />

Ausprägung zugrunde gelegt.<br />

Zur Ableitung von unwahrscheinlichen<br />

Entwicklungen könnten z. B.<br />

die o. g. wahrscheinlichen FEP mit<br />

direkter Beeinträchtigung von Initial-<br />

Barrieren und der Mobili sierung bzw.<br />

dem Transport von Radionukliden aus<br />

dem Referenz szenarium herangezogen<br />

werden. Für diese FEP sind<br />

dann potenzielle unwahrscheinliche<br />

Ausprägungen zugrunde zu legen.<br />

Analog könnten aus der Methodik<br />

zur Ableitung von Alternativszenarien<br />

unwahrscheinliche Entwicklungen<br />

abgeleitet werden.<br />

Nach dem Klassifizierungsschema<br />

zur Einordnung von Entwicklungen in<br />

Wahrscheinlichkeitsklassen [ESK <strong>12</strong>a,<br />

BEU 13] ist das FEP mit der geringsten<br />

Wahrscheinlichkeit bestimmend (soweit<br />

die FEP voneinander unabhängig<br />

sind). Das bedeutet, es wird das Referenzszenarium<br />

herangezogen und<br />

für die entsprechenden FEP wird<br />

die unwahrscheinliche Ausprägung<br />

betrachtet. Insgesamt ist dieses<br />

Szenarium dann als unwahrscheinlich<br />

zu charakterisieren. Die Bewertung<br />

der Konsequenzen kann ebenfalls zur<br />

Darstellung der Robustheit des Endlagersystems<br />

dienen. Werden die<br />

als unwahrscheinlich eingestuften<br />

Szenarien mit Modellierung oder<br />

Berechnung dargestellt, bietet sich<br />

zudem die Möglichkeit eines direkten<br />

Vergleiches mit dem zu Grunde<br />

gelegten Referenzszenarium.<br />

Umgang mit unwahrscheinlichen<br />

Szenarien<br />

Neben der Charakterisierung von<br />

unwahrscheinlichen Entwicklungen<br />

beinhalten die Sicherheitsanforderungen<br />

Vorgaben, wie mit resultierenden<br />

Szenarien im Sicherheitsnachweis<br />

weiter zu verfahren ist (Absatz<br />

6.4 in [BMU 10]).<br />

| | Abbildung 2<br />

Grafische Darstellung der Sicherheitsanforderung zum Umgang mit unwahrscheinlichen Szenarien gemäß<br />

/BMU 10/ (Entscheidungsfelder sind durch nummerierte Symbole von 2.1 bis 2.3 gekennzeichnet).<br />

| | Abbildung 3<br />

Einteilung der unterschiedlichen Szenarien nach Wahrscheinlichkeiten bzw. Charakterisierungsmerkmalen.<br />

Die Abbildung 2 zeigt eine<br />

gra fische Interpretation der Sicherheitsanforderung<br />

zum Umgang mit<br />

unwahrscheinlichen Szenarien.<br />

Auf die normative Fragestellung<br />

zu hohen Strahlenexpositionen<br />

( Entscheidungsfeld 2.1) wird nicht<br />

ein gegangen. Aus der Sicht des<br />

AKS sind die folgenden Fragen zu<br />

klären:<br />

• Was ist ein vertretbarer Aufwand<br />

(Entscheidungsfeld 2.2)?<br />

Es existieren keine Kriterien oder<br />

Richtgrößen zur Beurteilung des<br />

DECOMMISSIONING AND WASTE MANAGEMENT 597<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

DECOMMISSIONING AND WASTE MANAGEMENT 598<br />

Klimaänderung<br />

(aus [PAC 15] entnommen)<br />

vertretbaren Aufwands. Dieser erscheint<br />

aus der Sicht des AKS dann<br />

gegeben, wenn hierdurch die möglichen<br />

Auswirkungen auf Mensch<br />

und Umwelt merklich abgeschwächt<br />

würden und die Umsetzung<br />

der damit verbundenen<br />

Maßnahmen technisch machbar<br />

und finanzierbar ist. Mögliche Auswirkungen<br />

auf Mensch und Umwelt<br />

bei Eintreten anderer (wahrscheinlicherer)<br />

Szenarien dürfen<br />

durch die Maßnahmen nicht<br />

erhöht werden. Risiken in der<br />

Betriebsphase dürfen gleichfalls<br />

nicht erhöht werden.<br />

• Welche anderen Entwicklungen<br />

sind gemeint (Entscheidungsfeld<br />

2.3)?<br />

Mit der Formulierung wird auf die<br />

Möglichkeit hingewiesen, dass<br />

durch vorgesehene Maßnahmen<br />

eine Optimierung hinsichtlich anderer<br />

Entwicklungen behindert<br />

wird. Diese anderen Entwicklungen<br />

können dabei wahrscheinlich,<br />

weniger wahrscheinlich oder auch<br />

unwahrscheinlich sein.<br />

Abgrenzung<br />

Der AKS hält es für zwingend notwendig,<br />

eine Unterscheidung zwischen<br />

unwahrscheinlichen Entwicklungen<br />

mit einer Restwahrscheinlichkeit und<br />

ausgeschlossenen Entwicklungen<br />

(siehe Abbildung 3) vorzunehmen.<br />

Planungsrechnung<br />

(aus [ZIM 68] entnommen)<br />

Eine quantitative Vorgabe von Kriterien<br />

hält der AKS für nicht praktikabel.<br />

Stattdessen schlägt der AKS<br />

vor, methodisch über folgende<br />

Optionen unwahrscheinliche Entwicklungen<br />

mit einer Restwahrscheinlichkeit<br />

abzuleiten unter der<br />

Voraussetzung, dass diese nicht<br />

bereits im Rahmen des Standortauswahlverfahrens<br />

im Zusammenhang<br />

mit den Ausschlusskriterien ausgeschlossen<br />

wurden:<br />

• Unwahrscheinliche Ereignisse und<br />

Prozesse, die im Rahmen der<br />

Einteilung in Wahrscheinlichkeitsklassen<br />

identifiziert wurden.<br />

• Unwahrscheinliche Ausprägung<br />

von Ereignissen und Prozessen,<br />

die auf die Barrieren des Endlagersystems<br />

wirken.<br />

• Gleichzeitiges Versagen mehrerer<br />

technischer Komponenten aufgrund<br />

voneinander unabhängiger<br />

Ursachen.<br />

Optimierung<br />

Insgesamt vertritt der AKS die Auffassung,<br />

dass die Optimierung des<br />

Endlagersystems eine wesentliche<br />

übergeordnete Zielsetzung ist und zur<br />

steten Aufgabe während der Entwicklungsphasen<br />

eines Endlagers gehört.<br />

Gemäß den Sicherheitsanforderungen<br />

wird jedoch u. U. eine Optimierung<br />

des Endlagersystems gegen<br />

Prozesse verfolgt, die selbst unter<br />

Endlager<br />

(aus [ROS 89] entnommen)<br />

virtually certain, 99–100 % Ereignis ist völlig sicher (100 %) Very likely or certain (p = 1)<br />

extremely likely, 95–100 %<br />

very likely, 90–100 %<br />

likely, 66–100 %<br />

more likely than not,<br />

>50–100 %<br />

Ereignis ist außerordentlich<br />

wahrscheinlich (90 – 99 %)<br />

Ereignis ist sehr wahrscheinlich<br />

(80 – 95 %)<br />

Ereignis ist recht wahrscheinlich<br />

(70 – 90 %)<br />

Ereignis ist wahrscheinlich<br />

(60 – 80 %)<br />

Less than certain,<br />

but reasonably likely (10 -1 )<br />

Not likely, but cannot be ruled<br />

out (10 -2 )<br />

Probably will not occur (10 -3 )<br />

Very unlikely, based on reliable<br />

data (10 -4 )<br />

about as likely as not, 33–66 % Ereignis ist sehr möglich (50 – 70 %) Extremly unlikely (10 -5 )<br />

unlikely, 0–33 %<br />

very unlikely, 0–10 %<br />

extremely unlikely, 0–5 %<br />

exceptionally unlikely, 0–1 %<br />

Ereignis ist durchaus möglich<br />

(40 – 60 %)<br />

Ereignis ist immerhin möglich<br />

(30 – 50 %)<br />

Ereignis ist unwahrscheinlich<br />

(20 – 40 %)<br />

Ereignis ist recht unwahrscheinlich<br />

(10 – 30 %)<br />

Ereignis ist sehr unwahrscheinlich<br />

(5 – 20 %)<br />

Ereignis ist außerordentlich<br />

unwahrscheinlich (1 – 10 %)<br />

Ereignis ist völlig unmöglich (0 %)<br />

Physically possible, but almost<br />

certain not to occur (10 -6 )<br />

Assumed to be physically<br />

impossible, based on the currently<br />

available data (0)<br />

| | Tabelle 1<br />

Gegenüberstellung von Beispielen zur Zuordnung von quantitativen zu qualitativen Wahrscheinlichkeitsangaben<br />

ungünstigen Annahmen nicht am<br />

Standort über den Nachweiszeitraum<br />

zu erwarten sind. Daher sollten diejenigen<br />

Prozesse, die auf Naturereignissen<br />

basieren und durch Auswahlkriterien<br />

am entsprechenden<br />

Standort ausgeschlossen wurden,<br />

nicht weiter behandelt werden. Aus<br />

der Sicht des AKS sollten die Sicherheitsanforderungen<br />

in Bezug auf die<br />

Optimierung des Endlagersystems im<br />

Zusammenhang mit unwahrscheinlichen<br />

Prozessen und Szenarien mit<br />

Restwahrscheinlichkeiten konkretisiert<br />

werden.<br />

Hier sollte generell die Forderung<br />

erhoben werden, dass sich durch Optimierungsmaßnahmen<br />

zum Schutz<br />

vor den Auswirkungen unwahrscheinlicher<br />

Entwicklungen keine Beeinträchtigungen<br />

hinsichtlich der wahrscheinlichen<br />

oder weniger wahrscheinlichen<br />

Entwicklungen ergeben<br />

dürfen.<br />

Über den Optimierungsgedanken<br />

hinaus erscheint es nach Ansicht des<br />

AKS zu Anschauungszwecken praktikabel,<br />

eine begrenzte Auswahl von<br />

unwahrscheinlichen und/oder What-<br />

If Fällen zusammenzustellen und die<br />

Robustheit des Endlagersystems und<br />

einzelner Komponenten zu testen und<br />

darzustellen. Der AKS ist jedoch nicht<br />

der Auffassung, dass hierzu regulatorische<br />

Vorgaben erforderlich sind.<br />

Einteilung von Entwicklungen<br />

Unter Berücksichtigung der gemachten<br />

Ausführungen, des Positionspapiers<br />

zum menschlichen Ein dringen<br />

(HI-Szenarien) [AKS 08] und der<br />

Sicherheitsanforderungen [BMU 10]<br />

ergibt sich aus Sicht des AKS für die<br />

Einteilung der Szenarien das in<br />

Abbildung 3 dargestellte Schema.<br />

Der AKS stützt die Festlegungen<br />

in den Sicherheitsanforderungen<br />

[BMU 10], für unwahrscheinliche<br />

Szenarien und Szenarien aufgrund<br />

eines unbeabsichtigten menschlichen<br />

Eindringens in ein Endlager auf<br />

Grenzwerte für zumutbare Risiken<br />

oder zumutbare Strahlenexpositionen<br />

zu verzichten.<br />

Mit Bezug auf die eingangs erwähnte<br />

Fragestellung der Kommission<br />

zur Einteilung von Entwicklungen<br />

in Wahrscheinlichkeitsklassen<br />

ist festzustellen, dass eine solche<br />

Einteilung auch in anderen Fachbzw.<br />

Wissensbereichen vorge nommen<br />

wird.<br />

Die Tabelle 1 beinhaltet Beispiele<br />

von Zuordnungen von qualitativen<br />

zu quantitativen Wahrscheinlichkeitsangaben.<br />

Auffällig ist hierbei, dass<br />

im Vergleich zu den genannten<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Entwicklungen in den Sicher heitsanforde<br />

rungen deutlich mehr als drei<br />

Klassen vorkommen und sowohl die<br />

qualita tive Beschreibung als auch<br />

Wert zuweisung erheblich abweicht.<br />

Die Einordnung in Wahrscheinlichkeitsklassen<br />

erscheint insgesamt<br />

subjektiv geprägt unter Berücksichtigung<br />

der jeweiligen zu beurteilenden<br />

Problem- bzw. Aufgabenstellung.<br />

Aus dem dargelegten Sachverhalt<br />

kommt der AKS zu dem Schluss, dass<br />

die Einteilung von Entwicklungen in<br />

Wahrscheinlichkeitsklassen eine übliche<br />

Vorgehensweise ist und dass eine<br />

solche Klassifizierung im Rahmen des<br />

Langzeitsicherheitsnachweises einen<br />

wesentlichen Aspekt für die Zusammenstellung<br />

von Argumenten darstellt<br />

sowie für die allgemeine Diskussion<br />

ein hilfreiches Unterscheidungsmerkmal<br />

sein kann. Diese Aussage bezieht<br />

sich auch auf die Unterscheidung von<br />

wahrscheinlichen und weniger wahrscheinlichen<br />

Entwicklungen. Insgesamt<br />

ist die Einteilung in drei Klassen<br />

durchführbar. Um eine weitere Differenzierung<br />

in Klassen vorzunehmen,<br />

sind verlässliche Daten notwendig, die<br />

oftmals nicht vor liegen. Darüber hinaus<br />

ist aus der Sicht des AKS für die<br />

Diskussion von Eintrittswahrscheinlichkeiten<br />

eine Vielzahl von Klassen<br />

nicht praktikabel.<br />

Fazit<br />

Die Betrachtung von möglichen Entwicklungen,<br />

die ein Endlagersystem<br />

zukünftig durchlaufen kann, ist ein<br />

wesentlicher Bestandteil im Rahmen<br />

eines Sicherheitsnachweises. Als Voraussetzung<br />

für eine solche Betrachtung<br />

ist es essenziell, den regulatorischen<br />

Rahmen vorzugeben. Insgesamt<br />

stellen die Sicherheitsanforderungen<br />

/BMU 10/ eine solide Grundlage<br />

für die Ableitung von Entwicklungen<br />

und den Umgang mit ihnen<br />

dar. Die Unterteilung der darin geforderten<br />

verschiedenen zu betrachtenden<br />

Entwicklungen ist nicht nur üblich,<br />

sondern kommt einer strukturierten<br />

Vorgehensweise in der weiteren<br />

Beurteilung entgegen. Der AKS<br />

empfiehlt, unwahrscheinliche Szenarien<br />

getrennt von einer systematischen<br />

Entwicklung wahrscheinlicher<br />

und weniger wahrscheinlicher<br />

Szenarien zu behandeln, und hat<br />

einen Vorschlag zur Ableitung von<br />

unwahrscheinlichen Entwicklungen<br />

erarbeitet. Dieser Vorschlag enthält<br />

KONTEC 2019<br />

vom 27. - 29. März 2019 in Dresden<br />

neben den beiden durch die Sicherheitsanforderungen<br />

vorgezeichneten<br />

Vorgehensweisen einen ergänzenden<br />

Ansatz.<br />

Der AKS schlägt vor, unwahrscheinliche<br />

Entwicklungen anhand<br />

ihrer Eintrittswahrscheinlichkeit in<br />

residuale und auszuschließende Entwicklungen<br />

einzuteilen.<br />

Im Folgenden wird in allgemeiner<br />

Form skizziert, welche inhaltlichen<br />

Merkmale von Anforderungen hinsichtlich<br />

Beschreibung, Ableitung,<br />

Umgang und Abgrenzung der zu betrachtenden<br />

Entwicklungen und insbesondere<br />

unwahrscheinlicher Entwicklungen<br />

aus der Sicht des AKS als<br />

wesentlich erachtet werden. Der AKS<br />

ist sich dessen bewusst, dass die o. g.<br />

inhaltlichen Merkmale sich vermutlich<br />

nicht in allen Punkten in dem erforderlichen<br />

Detaillierungsgrad ausgestalten<br />

lassen:<br />

• Die Begriffsbestimmungen zu<br />

unterschiedlichen Entwicklungen<br />

sind klar, unmissverständlich und<br />

eindeutig zu formulieren.<br />

• Der Interpretationsspielraum bei<br />

der Deutung von Begrifflichkeiten<br />

ist dabei soweit wie möglich zu<br />

reduzieren.<br />

Advertisement<br />

DECOMMISSIONING AND WASTE MANAGEMENT 599<br />

14. Internationales Symposium „Konditionierung radioaktiver Betriebs- und Stilllegungsabfälle“<br />

einschließlich 14. Statusbericht des BMBF „Stilllegung und Rückbau kerntechnischer Anlagen“<br />

Begleitende Fachausstellung + + + wissenschaftlich-technisches Programm in<br />

3 Sektionen +++ 43 Plenarvorträge +++ 16 KONTEC DIREKT Kurzvorträge +++<br />

60 Postervorträge +++ Special: Forschung trifft Industrie<br />

Frühbuchertarif<br />

www.kontec-symposium.de<br />

bis 11. Januar 2019<br />

KONTEC<br />

Gesellschaft für technische Kommunikation mbH<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

DECOMMISSIONING AND WASTE MANAGEMENT 600<br />

• Der Einfluss durch subjektive<br />

Beurteilung bzw. Auslegung von<br />

Anforderungen sollte durch entsprechende<br />

Vorgaben so gering<br />

wie möglich gehalten werden.<br />

• Der Umgang mit den Entwicklungen<br />

muss praktikabel sein.<br />

• Die Abgrenzung der Entwick lungen<br />

untereinander muss eindeutig sein.<br />

Die Übergänge zwischen den einzelnen<br />

Entwicklungen sollten nach<br />

Möglichkeit keine bzw. nur geringe<br />

Überlappungsbereiche aufweisen.<br />

• Insbesondere eine Argumentation<br />

zur Identifizierung auszuschließen<br />

der Entwicklungen aus<br />

der Gruppe der unwahrscheinlichen<br />

Entwicklungen unter<br />

Berücksichtigung des Nachweiszeitraumes<br />

ist vorzusehen.<br />

Referenzen<br />

[AKS 08]<br />

[BEU <strong>12</strong>]<br />

[BEU 13]<br />

[BMU 10]<br />

[BUH 08]<br />

Arbeitskreis “Szenarienentwicklung”<br />

(AKS): Position des Arbeitskreises<br />

„Szenarienentwicklung“,<br />

Behandlung des menschlichen Eindringens<br />

in ein Endlager für radioaktive<br />

Abfälle in tiefen geologischen<br />

Formationen. <strong>atw</strong> – Internationale<br />

Zeitschrift für Kernenergie,<br />

Bd. 53, Heft 8/9 August/<br />

September, 2008.<br />

Beuth, T., Bracke, G., Buhmann, D.,<br />

Dresbach, C., Keller, S., Krone, J.,<br />

Lommerzheim, A., Mönig, J.,<br />

Mrugalla, S., Rübel, A., Wolf, J.:<br />

Szenarienentwicklung, Methodik<br />

und Anwendung, Bericht zum<br />

Arbeitspaket 8, Vorläufige Sicherheitsanalyse<br />

für den Standort<br />

Gorleben. Bundesanstalt für<br />

Geowissenschaften und Rohstoffe<br />

(BGR), DBE TECHNOLOGY GmbH<br />

(DBETEC), Gesellschaft für<br />

Anlagen- und Reaktorsicherheit<br />

(GRS) mbH, GRS-284, 239 S., ISBN<br />

978-3-939355-60-1, Gesellschaft<br />

für Anlagen- und Reaktorsicherheit<br />

(GRS) mbH: Köln, 20<strong>12</strong>.<br />

Beuth, T.: Vorschlag zur Einordnung<br />

von Szenarien für tiefe geologische<br />

Endlager in Wahrscheinlichkeitsklassen.<br />

GRS-296, 39 S.,<br />

ISBN 978-3-939355-75-5, Gesellschaft<br />

für Anlagen- und Reaktorsicherheit<br />

(GRS) mbH: Köln, 2013.<br />

Bundesministerium für Umwelt,<br />

Naturschutz und Reaktorsicherheit<br />

(BMU): Sicherheitsanforderungen<br />

an die Endlagerung<br />

wärmeentwickelnder radioaktiver<br />

Abfälle. 22 S.: Bonn,<br />

30. September 2010.<br />

Buhmann, D., Mönig, J., Wolf, J.,<br />

Heusermann, S., Keller, S., Weber,<br />

J. R., Bollingerfehr, W., Filbert, W.,<br />

Kreienmeyer, M., Krone, J., Tholen,<br />

M.: Zusammenfassender Abschlussbericht,<br />

Überprüfung und<br />

Bewertung des Instrumentariums<br />

für eine sicherheitliche Bewertung<br />

von Endlagern für HAW (Projekt<br />

ISIBEL). Gesellschaft für<br />

Anlagen- und Reaktorsicherheit<br />

(GRS) mbH, DBE TECHNOLOGY<br />

GmbH (DBETEC), Bundesanstalt<br />

für Geo wissenschaften und Rohstoffe<br />

(BGR), TEC-09-2008-AB:<br />

Braunschweig, April 2008.<br />

[ESK <strong>12</strong>a] Entsorgungskommission (ESK):<br />

Empfehlung der Entsorgungskommission;<br />

Leitlinie zur Einordnung<br />

von Entwicklungen in Wahrscheinlichkeitsklassen;<br />

Revidierte<br />

Fassung vom 13.11.20<strong>12</strong> nach<br />

Verabschiedung durch die ESK<br />

im Umlaufverfahren (diese<br />

Fassung ersetzt die Fassung vom<br />

21.06.20<strong>12</strong>). Bonn, 13. November<br />

20<strong>12</strong>.<br />

[ESK <strong>12</strong>b] Entsorgungskommission (ESK):<br />

Empfehlung der Entsorgungskommission;<br />

Leitlinie zum menschlichen<br />

Eindringen in ein Endlager<br />

für radioaktive Abfälle; Fassung<br />

vom 26.04.20<strong>12</strong>. Bonn, 26. April<br />

20<strong>12</strong>.<br />

[IAEA 11]<br />

[IAEA <strong>12</strong>]<br />

International Atomic Energy<br />

Agency (IAEA): Disposal of Radioactive<br />

Waste. IAEA Specific Safety<br />

Requirements, SSR-5, 62 S., ISBN<br />

978-92-0-103010-8: Vienna, 2011.<br />

International Atomic Energy<br />

Agency (IAEA): The Safety Case<br />

and Safety Assessment for the<br />

Disposal of Radioactive Waste.<br />

IAEA Safety Standards Series,<br />

Specific Safety Guide SSG-23, ISBN<br />

978-92-0-<strong>12</strong>8310-8: Vienna, 20<strong>12</strong>.<br />

[KOM 16] Kommission Lagerung hoch radioaktiver<br />

Abfallstoffe: Abschlussbericht<br />

der Kommission Lagerung<br />

hoch radioaktiver Abfallstoffe.<br />

K-Drs. 268, 683 S.: Berlin,<br />

30. August 2016.<br />

[LOM 15]<br />

[LOM 18]<br />

[NEA 16]<br />

[PAC 15]<br />

Lommerzheim, A., Bebiolka, A.,<br />

Jahn, S., Jobmann, M., Meleshyn,<br />

A., Mrugalla, S., Rheinhold, K.,<br />

Rübel, A., Stark, L.: Szenarienentwicklung<br />

für das Endlagerstandortmodell<br />

NORD, Methodik und<br />

Anwendung, Projekt ANSICHT. DBE<br />

TECHNOLOGY GmbH (DBETEC),<br />

Technischer Bericht, TEC-17-2014-<br />

AP, 92 S.: Peine, 30. Juni 2015.<br />

Lommerzheim, A., Jobmann, M.,<br />

Meleshyn, A., Mrugalla, S., Rübel,<br />

A., Stark, L.: Safety Concept, FEP<br />

Catalogue, and Scenario Development<br />

as Fundamentals of Longterm<br />

Safety Demonstration for<br />

High-Level Waste Repositories in<br />

German Clay Formations. In: Norris,<br />

S., Neeft, E.A.C., van Geet, M. (E.)<br />

(Hrsg.): Multiple Roles of Clays in<br />

Radioactive Waste Confinement.<br />

SP482, S. SP482.6, DOI 10.1144/<br />

SP482.6, Geological Society,<br />

London, Special Publications,<br />

<strong>2018</strong>.<br />

Organization for Economic<br />

Co-operation and Development –<br />

Nuclear Energy Agency (OECD-<br />

NEA): Scenario Development<br />

Workshop Synopsis, Integration<br />

Group for the Safety Case. NEA/<br />

RWM/R(2015)3, 2016.<br />

Pachauri, R. K., Meyer, L. (Hrsg.):<br />

Climate change 2014, Synthesis<br />

report, Contribution of Working<br />

Groups I, II and III to the Fifth<br />

[ROS 89]<br />

[STA 13]<br />

Assessment Report of the Intergovernmental<br />

Panel on Climate<br />

Change. Intergovernmental Panel<br />

on Climate Change (IPCC), 151 S.,<br />

ISBN 978-92-9169-143-2: Geneva,<br />

Switzerland, 2015.<br />

Ross, B.: Scenarios for repository<br />

safety analysis. Engineering<br />

Geology, Bd. 26, Nr. 4, S. 285–299,<br />

DOI 10.1016/0013-<br />

7952(89)90018-5, 1989.<br />

Gesetz zur Suche und Auswahl<br />

eines Standortes für ein Endlager<br />

für Wärme entwickelnde radioaktive<br />

Abfälle (Standortauswahlgesetz<br />

– StandAG) in der Fassung<br />

vom 23. Juli 2013 (BGBl. I 2013,<br />

Nr. 41, S. 2553).<br />

[WEN 14] Working Group on Waste and<br />

Decommissioning (WGWD)<br />

(Hrsg.): Radioactive Waste Disposal<br />

Facilities Safety Reference Levels.<br />

Western European Nuclear<br />

Regulators Association (WENRA),<br />

22. Dezember 2014.<br />

[ZIM 68]<br />

Authors<br />

Zimmermann, W.: Planungsrechnung,<br />

Optimierungsrechnungen,<br />

Wirtschaftlichkeitsrechnungen,<br />

Netzplantechnik. Das moderne<br />

Industrieunternehmen, Betriebswirtschaft<br />

für Ingenieure, ISBN<br />

9783663009252, Vieweg+-<br />

Teubner Verlag: Wiesbaden, 1968.<br />

Bundesgesellschaft für<br />

Endlagerung mbH (BGE):<br />

Orzechowski, J.; Stolzenberg, G.;<br />

Wollrath, J.<br />

BGE TECHNOLOGY GmbH<br />

(BGE TEC):<br />

Lommerzheim, A.<br />

Bundesanstalt für Geowissenschaften<br />

und Rohstoffe (BGR):<br />

Mrugalla, S.<br />

Gesellschaft für Anlagen- und<br />

Reaktorsicherheit (GRS) gGmbH:<br />

Beuth, T.; Bracke, G.; Mayer, K.-M.;<br />

Mönig, J.; Rübel, A.; Wolf, J.<br />

Karlsruher Institut für Technologie,<br />

Institut für Nukleare Entsorgung<br />

(KIT-INE):<br />

Metz, V.<br />

Technische Universität Clausthal,<br />

Institut für Endlagerforschung<br />

(TUC-IELF):<br />

Chaudry, S.; Plischke, E.; Röhlig, K.-J.<br />

Anschrift des Verfassers:<br />

Arbeitskreis<br />

„Szenarienentwicklung“<br />

Kontakt: Gesellschaft für Anlagenund<br />

Reaktorsicherheit (GRS)<br />

gGmbH<br />

Bereich Stilllegung und Entsorgung<br />

Schwertnergasse 1<br />

50667 Köln, Deutschland<br />

Decommissioning and Waste Management<br />

Position paper: Probability Classes and Handling of Improbable Developments ı<br />

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Der Rückbau kerntechnischer Anlagen:<br />

Eine interdisziplinäre Aufgabe<br />

für Nachwuchskräfte<br />

David Anton, Manuel Reichardt, Thomas Hassel und Harald Budelmann<br />

1 Einleitung Nur wenige Monate nach der Havarie des japanischen Kernkraftwerks Fukushima Daiichi im<br />

März 2011 wurde von der deutschen Bundesregierung der schrittweise Ausstieg aus der kommerziellen Nutzung der<br />

Kernenergie bis spätestens Ende 2022 beschlossen. Anfang des Jahres <strong>2018</strong> befanden sich nach [3] in Deutschland<br />

noch sieben Kernreaktoren im Leistungsbetrieb. Entsprechend [4] wurde bei drei Leistungsreaktoren der Betrieb<br />

eingestellt, während sich 23 Leistungs- bzw. Prototypreaktoren bereits in Stilllegung befinden. Mit dem Inkrafttreten<br />

des „Gesetzes zur Neuordnung der Verantwortung in der kerntechnischen Entsorgung” im Juni 2017 wurde der „Fonds<br />

zur Finan zierung der kerntechnischen Entsorgung“ errichtet. Durch die Bildung des Fonds durch die Betreiber und den<br />

damit verbundenen Übergang der Verantwortlichkeit für die Reststoffe an den Bund ist der Weg für den von den<br />

Betreibern verantworteten Rückbau koordiniert gestaltet.<br />

Beim Rückbau von Kernkraft werken<br />

müssen vielfältige Rand bedingungen<br />

und Anforderungen beachtet werden,<br />

die neben den rechtlichen insbesondere<br />

auch komplexe verfah -<br />

rens- und strahlenschutztechnische<br />

Aspekte berühren. Wesentlich ist in<br />

diesem Zusammenhang auch die Aufgabe<br />

des fachgerechten Umgangs<br />

mit den beim Rückbau anfallenden<br />

Materialien. Mit Schacht Konrad befindet<br />

sich bereits ein planfestgestelltes<br />

Endlager für Abfälle mit vernachlässigbarer<br />

Wärmeentwicklung<br />

in der Errichtung. Jedoch sind Ort<br />

und Zeitpunkt für die Inbetriebnahme<br />

eines Endlagers für hoch radioaktive,<br />

Wärme entwickelnde Abfälle in<br />

Deutschland bis heute noch relativ<br />

ungewiss.<br />

Sowohl für den Rückbau der zahlreichen<br />

Kernkraftwerke als auch<br />

für den fachgerechten Umgang mit<br />

den dabei anfallenden radioaktiven<br />

Abfällen wird Fachpersonal der unterschiedlichsten<br />

Disziplinen benötigt.<br />

Die große Komplexität der Gesamtaufgabe<br />

erfordert darüber hinaus eine<br />

interdisziplinäre Herangehensweise<br />

an die jeweiligen Einzelaspekte.<br />

Im folgenden Artikel wird daher<br />

am Beispiel des Rückbaus von Kernkraftwerken<br />

schlaglichtartig anhand<br />

der vielfältigen Herausforderungen<br />

auf die große Bedeutung des Kompetenzerhalts<br />

hingewiesen. Für die<br />

erfolgreiche Durchführung der zahlreich<br />

anstehenden Rückbauprojekte<br />

ist dies dringend erforderlich – die<br />

Notwendigkeit fachspezifischer Ausbildungswege,<br />

Forschungsarbeiten<br />

und der Weitergabe von Erfahrungen<br />

an junge Nachwuchskräfte bleibt auch<br />

deutlich über das Jahr 2022 hinaus<br />

bestehen. Zudem kann die Kompetenz<br />

im Bereich des Rückbaus auch<br />

zukünftig im internationalen Maßstab<br />

genutzt werden.<br />

Die folgenden Ausführungen<br />

geben die wesentlichen Inhalte einer<br />

Bachelorarbeit mit dem Titel Der<br />

Rückbau von Leichtwasserreaktoren<br />

unter verfahrens- und strahlenschutztechnischen<br />

Gesichtspunkten wieder,<br />

die im Rahmen des Forschungsprojektes<br />

ENTRIA – Entsorgungsoptionen<br />

für radioaktive Reststoffe: Interdisziplinäre<br />

Analysen und Entwicklung von<br />

Bewertungsgrundlagen an der TU<br />

Braunschweig in Kooperation mit der<br />

LU Hannover angefertigt wurde.<br />

2 Herausforderungen und<br />

Randbedingungen<br />

Die Entwicklung eines Rückbaukonzeptes<br />

für eine kerntechnische Anlage<br />

nimmt idealerweise schon mit der<br />

Inbetriebnahme ihren Anfang. Bis<br />

zur Durchführung der einzelnen<br />

Rückbaumaßnahmen durchläuft das<br />

Rückbaukonzept mehrere Iterationsschritte,<br />

in denen der Detailgrad zunehmend<br />

erhöht wird.<br />

Die Ausarbeitung des Konzeptes<br />

für eine Rückbaumaßnahme wird<br />

wesentlich durch die vorliegenden<br />

Randbedingungen beeinflusst, wie<br />

z. B. durch die gewählte Rückbaustrategie,<br />

den Reaktortyp, die räumliche<br />

Struktur, die vorhandene Infrastruktur,<br />

die radiologische Situation<br />

oder weitere strahlenschutztechnische<br />

Aspekte in der kerntechnischen<br />

Anlage. Weitere Randbedingungen<br />

lassen sich [24] entnehmen.<br />

Die einzelnen Randbedingungen<br />

sind nicht isoliert voneinander zu<br />

betrachten, sondern stehen in vielfachen<br />

Wechselwirkungen und sind<br />

dabei häufig individuell vom jeweiligen<br />

Stilllegungsprojekt abhängig.<br />

Die Erstellung eines universell<br />

anwend baren Rückbaukonzeptes ist<br />

daher nicht möglich und muss vielmehr<br />

unter Berücksichtigung der<br />

vorlie genden Gegebenheiten für jede<br />

kerntechnische Anlage individuell<br />

erstellt bzw. angepasst werden.<br />

2.1 Stilllegungsziel und<br />

Rückbaustrategie<br />

Der Rückbau einer kerntechnischen<br />

Anlage ist abgeschlossen, sobald diese<br />

aus dem Geltungsbereich des Atomgesetzes<br />

(AtG) entlassen ist. Eine<br />

Möglichkeit besteht im kompletten<br />

Rückbau der kerntechnischen Anlage<br />

bis hin zur Wiederherstellung der<br />

sprichwörtlichen „Grünen Wiese“.<br />

Alternativ können Gebäudestrukturen<br />

auf dem Gelände verbleiben,<br />

freigegeben und einer anderen<br />

Nutzung zugeführt werden.<br />

Zur Erreichung des Stilllegungsziels<br />

standen in Deutschland bisher<br />

grundsätzlich zwei unterschiedliche<br />

Rückbaustrategien zur Verfügung:<br />

der direkte Rückbau und der sichere<br />

Einschluss mit anschließendem<br />

Rückbau. Mit Inkrafttreten des o. g.<br />

Gesetzes zur Neuordnung der Verantwortung<br />

in der kerntechnischen<br />

Entsorgung wurde das AtG u. a. dahingehend<br />

geändert, dass der sichere<br />

Einschluss als Option für noch stillzulegende<br />

bzw. rückzubauende Anlagen<br />

ausgeschlossen ist. Für die Zukunft<br />

entfällt damit zumindest in Deutschland<br />

die Abwägung zwischen dem<br />

direkten Rückbau und dem sicheren<br />

Einschluss des jeweiligen Kraftwerks.<br />

Für einzelne Komponenten der Anlage<br />

sind aus strahlenschutztechnischen<br />

Gründen jedoch Ausnahmen<br />

möglich. Die betreffenden Komponenten<br />

werden ausgebaut und erst im<br />

Anschluss an eine Abklinglagerung<br />

zerlegt. Dieses Vorgehen bietet sich<br />

DECOMMISSIONING AND WASTE MANAGEMENT 601<br />

Decommissioning and Waste Management<br />

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

DECOMMISSIONING AND WASTE MANAGEMENT 602<br />

z. B. für Reaktordruckbehälter (RDB)<br />

und die Dampferzeuger aus Druckwasserreaktoren<br />

an und wird z. B.<br />

im KKW Greifswald in Lubmin verfolgt.<br />

Dem Rückbau der kerntechnischen<br />

Anlage ist die Nachbetriebsphase<br />

vorangestellt, die sich an die Leistungs<br />

betriebsphase anschließt und bis<br />

zur Erteilung der Stilllegungsgenehmigung<br />

andauert. In diesem<br />

Zeitraum können nach immer noch<br />

gültiger Betriebsgenehmigung bereits<br />

vorbereitende Maßnahmen getroffen<br />

werden, wie. z. B die Entladung des<br />

Brennstoffs aus dem RDB.<br />

2.2 Anlagenart<br />

Weltweit sind verschiedenste Reaktorkonzepte<br />

in Betrieb. In Deutschland<br />

werden als Leistungs- und Prototypreaktoren<br />

fast ausschließlich Leichtwasserreaktoren<br />

(LWR) eingesetzt,<br />

in denen leichtes Wasser (H 2 O) als<br />

Moderator und zugleich als Kühlmittel<br />

verwendet wird. Der Einfluss<br />

des Reaktortyps auf das Rückbaukonzept<br />

kann gut an einem wesentlichen<br />

Unterschied zwischen Siedewasser-<br />

(SWR) und Druckwasserreaktoren<br />

(DWR) verdeutlicht werden.<br />

Sowohl im SWR als auch im DWR<br />

befinden sich die Brennstäbe im RDB.<br />

Im SWR verdampft das Kühlmittel<br />

direkt und wird über den Wasser-<br />

Dampf-Kreislauf in die Turbine geleitet,<br />

die an einen Generator gekoppelt<br />

ist. Neben den durch Aktivierung entstandenen<br />

Radionukliden führt das<br />

Kühlmittel auch freigewordene Spaltprodukte<br />

mit sich, sodass alle Komponenten<br />

des Kreislaufs kontaminiert<br />

werden. Aus diesem Grund muss bei<br />

SWR das Maschinenhaus, welches<br />

Rohrleitungen, Generator und Kondensator<br />

umgibt, ebenfalls als<br />

Kontrollbereich ausgewiesen werden.<br />

Im Unterschied zu SWR werden<br />

DWR mit zwei separaten Kreisläufen<br />

ausgeführt. Das Kühlmittel führt die<br />

Wärme aus dem RDB ab und transportiert<br />

sie über den Primärkreislauf zu<br />

den Dampferzeugern. In den Dampferzeugern,<br />

der Schnittstelle zwischen<br />

Primär- und Sekundärkreislauf, verdampft<br />

das Speisewasser des Sekundärkreislaufs<br />

und wird über diesen in<br />

die Turbine geführt. Durch diesen<br />

konstruktiven Unterschied beschränkt<br />

sich die Kontamination in DWR<br />

lediglich auf die Komponenten des<br />

Primärkreislaufs.<br />

Auch weitere Bestandteile des<br />

Kraftwerks sind jeweils reaktor- bzw.<br />

anlagenspezifisch auslegt und begründen<br />

jeweils eigene Randbedingungen<br />

für deren Rückbau.<br />

2.3 Kontamination und<br />

Aktivierung<br />

Genauso wie der Leistungsbetrieb ist<br />

der Rückbau einer kerntechnischen<br />

Anlage unvermeidbar mit dem<br />

Umgang mit aktivierten und/oder<br />

kontaminierten Materialien verbunden.<br />

Hiervon können unterschiedliche<br />

Strahlenbelastungen ausgehen.<br />

Die Aktivierung von Materialien<br />

tritt durch die Absorption von Neutronen<br />

ein. Durch diese Wechselwirkung<br />

mit Neutronen werden die bestrahlten<br />

Materialien selbst radioaktiv. Betroffen<br />

sind hiervon hauptsächlich die<br />

Kernbereiche des RDB, seine Einbauten<br />

und der den RDB umgebende<br />

biologische Schild. Eine Dekontamination<br />

aktivierter Materialien ist<br />

nicht möglich, weshalb diese als<br />

radio aktiver Abfall entsorgt werden<br />

müssen. Als Kontamination bezeichnet<br />

man im Gegensatz dazu u. a. die<br />

Anlagerung von Radionukliden an<br />

Oberflächen. Kontaminierte Oberflächen<br />

können durch Dekontaminationsmaßnahmen<br />

zum größten Teil<br />

von Radionukliden befreit werden.<br />

Durch Dekontaminationsmaßnahmen<br />

kann erreicht werden, dass die<br />

nuklidspezifischen Freigabewerte der<br />

Strahlenschutzverordnung (StrlSchV)<br />

unterschritten werden. Die Materialien<br />

verlassen in diesem Fall den<br />

Geltungsbereich des AtG sowie<br />

die strahlenschutzrechtliche Überwachung<br />

und werden freigemessen.<br />

Den rechtlichen Rahmen zur Freigabe<br />

bildet aktuell (s. u.) § 29 StrlSchV.<br />

Die Möglichkeiten der weiteren Verwendung<br />

oder Verwertung bzw. der<br />

Entsorgung sind jeweils abhängig von<br />

der gewählten Freigabeoption. Die<br />

Freigabe von Materialien ist ein entscheidendes<br />

Werkzeug zur Reduktion<br />

des endzulagernden Abfallvolumens.<br />

Beim Rückbau von kerntech nischen<br />

Anlagen entstehen ver schiedene<br />

Materialströme. Unter Anwendung<br />

von Dekontaminationsmaßnahmen<br />

kann die Masse des endzulagernden<br />

radio aktiven Abfalls erheblich verringert<br />

werden. Ent sprechend [2] reduziert<br />

sich beispielhaft die Masse des<br />

endzulagernden radioaktiven Abfalls<br />

für den Rückbau eines DWR-Referenzkraftwerks<br />

durch Dekontamination auf<br />

nur etwa 2,6 % der Gesamtmasse des<br />

Kontroll bereichs. Neben dem Reaktortyp<br />

und der Größe des KKW beeinflusst<br />

auch die Rückbaustrategie die Menge<br />

des endzulagernden Abfalls erheblich<br />

(s. o.).<br />

2.4 Strahlenschutz<br />

Ein weiterer wesentlicher Aspekt<br />

beim Rückbau eines KKW ist der<br />

Strahlenschutz. Insbesondere für<br />

Nachwuchskräfte können die verschiedenen<br />

Dosisbegriffe (Energiedosis,<br />

Organdosis, effektive Dosis,<br />

Ortsdosis, Personendosis etc.) und<br />

die vielfältigen Regelungen zunächst<br />

irritierend wirken.<br />

Zum Schutz von Mensch und Umwelt<br />

vor Schäden durch ionisierende<br />

Strahlung ist der Umgang mit radioaktiven<br />

Stoffen gesetzlich geregelt.<br />

Aktuell wird in der Bundesrepublik<br />

Deutschland die EURATOM-Richtlinie<br />

2013/59/EURATOM in nationales<br />

Recht umgesetzt. Ein wesentlicher<br />

Bestandteil dessen ist das „Gesetz zur<br />

Neuordnung des Rechts zum Schutz<br />

vor der schädlichen Wirkung ionisierender<br />

Strahlung“. Ein Großteil der<br />

rechtlichen Vorschriften zum Strahlenschutz<br />

in kerntechnischen Anlagen<br />

war bisher in der StrlSchV enthalten,<br />

die sich an den Empfehlungen der<br />

Internationalen Strahlenschutzkommission<br />

(International Commission<br />

on Radiological Protection, ICRP), der<br />

ICRP Publikation 103 [5] orientieren.<br />

Im Strahlenschutz gelten im Allgemeinen<br />

die drei Grundsätze Rechtfertigung,<br />

Dosisbegrenzung und Optimierung.<br />

Durch die Beachtung dieser<br />

Prinzipien sollen deterministische<br />

Schäden vermieden und stochastische<br />

Schäden eingegrenzt werden.<br />

Für beruflich strahlenexponierte<br />

Personen werden größere effektive<br />

bzw. Organdosen zugelassen als für<br />

Einzelpersonen der Bevölkerung. In<br />

kerntechnischen Anlagen werden<br />

Strahlenschutzbereiche ausgewiesen,<br />

die in Überwachungs-, Kontroll- und<br />

Sperrbereich eingeteilt sind. Die Einteilung<br />

orientiert sich an der möglichen<br />

Strahlenexposition, die eine<br />

Person im jeweiligen Bereich erfahren<br />

könnte. Die Grenzwerte für beruflich<br />

strahlenexponierte Personen geben<br />

jedoch keine unmittelbare Information<br />

über die tatsächlich vorhandene<br />

Strahlenexposition. Auch für<br />

den Rückbau besteht eine wesentliche<br />

Herausforderung für den Strahlenschutz<br />

darin, die Schutzmaßnahmen<br />

unter gleichzeitiger Beachtung der<br />

Randbedingungen und der Wirtschaftlichkeit<br />

der gewählten Maßnahmen<br />

zu optimieren. International<br />

wird diese Optimierungsaufgabe auch<br />

als ALARA-Prinzip (as low as reasonably<br />

achievable) bezeichnet.<br />

2.5 Verfahrenstechnik<br />

Ein wesentlicher Bestandteil der Erarbeitung<br />

eines Rückbaukonzeptes ist<br />

die Auswahl einer Zerlegetechnik für<br />

die vorgesehene Rückbaumaßnahme.<br />

Hierzu steht eine Vielzahl bereits<br />

Decommissioning and Waste Management<br />

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

bewährter thermischer und mechanischer<br />

Verfahren zur Verfügung. Die<br />

Auswahl einer geeigneten Zerlegetechnik<br />

geschieht ebenfalls unter<br />

Berücksichtigung der vorliegenden<br />

Randbedingungen, auf deren Grundlage<br />

sich die Zerlegetechniken nach<br />

ihrer technischen Eignung und unter<br />

strahlenschutztechnischen Gesichtspunkten<br />

bewerten lassen. Die technischen<br />

Eigenschaften umfassen u. a.<br />

die trennbare Materialart und -stärke,<br />

die Schnittgeschwindigkeit, die Eignung<br />

zur fernhantierten Manipulation<br />

sowie zum Unterwassereinsatz<br />

und die Prozessrobustheit. Zu den<br />

strahlenschutztechnischen Aspekten<br />

gehören z. B. die Art und Menge des<br />

erzeugten Abfalls, die Bewährtheit<br />

der Zerlegetechnik, die Universalität<br />

und deren Rüst- und Wartungsaufwand.<br />

Die folgenden Beispiele bereits<br />

durchgeführter Rückbaumaßnahmen<br />

an RDB verdeutlichen die Vielfalt<br />

bereits verfügbarer technischer Verfahren.<br />

Trockene Zerlegung<br />

im KKW Würgassen<br />

Das Rückbaukonzept des KKW Würgassen<br />

sah eine trockene Zerlegung<br />

des RDB in Einbaulage vor. Der Rückbau<br />

wurde mit dem Entfernen des<br />

Reaktordruckbehälterdeckels und der<br />

Entnahme der Einbauten aus dem<br />

RDB eingeleitet.<br />

Nach der Trockenlegung wurde<br />

die Innenseite des RDB durch Hochdruckwasserstrahlen<br />

dekontaminiert<br />

und anschließend aus strahlenschutztechnischen<br />

Gründen lackiert: Der<br />

Lack hatte die Aufgabe, verbliebene<br />

Kon taminationen zu binden und<br />

die Freisetzung von kontaminierten<br />

Aero solen während der Zerlegung<br />

zu reduzieren. Zudem wurde der<br />

RDB zur Strahlenabschirmung mit<br />

Wasser gefüllt und der Füllstand<br />

jeweils an den Zerlegefortschritt angepasst.<br />

Die Zerlegung des RDB begann<br />

am Flansch, dem oberen Ende des<br />

zylindrischen Bereichs, auf den<br />

der Reaktordruckbehälterdeckel aufgesetzt<br />

und mit dem dieser verschraubt<br />

wird. Von dort wurde der<br />

RDB von oben nach unten entsprechend<br />

des Schnittplans in insgesamt<br />

252 Segmente geteilt.<br />

Für die Segmentierung des Flansches<br />

kam eine Bandsäge zum<br />

Einsatz. Der zylindrische Teil des<br />

RDB wurde fernbedient durch Wasserabrasivsuspensionsstrahlschneiden<br />

in kleine Teile geschnitten. Anschließend<br />

wurde die Bodenkalotte aus<br />

ihrer Einbaulage gehoben und mit<br />

Hilfe thermischer Verfahren zerlegt.<br />

Die Segmente des Reaktordruckbehälterdeckels,<br />

des Flansches, des<br />

oberen zylindrischen Bereiches und<br />

der Bodenkalotte konnten nach erfolgter<br />

Dekontamination freigegeben<br />

werden. Die restlichen Segmente<br />

mussten endlagergerecht konditioniert<br />

und der Zwischenlagerung am<br />

Standort zugeführt werden.<br />

Zur Vermeidung der Ausbreitung<br />

von Aerosolen fand die trockene<br />

Zerlegung des RDB in einem luftdicht<br />

abgeschlossenen Arbeitsbereich mit<br />

Absaug- und Filtervorrichtung statt.<br />

Unterwasserzerlegung<br />

im Japan Power Demonstration<br />

Reactor (JPDR)<br />

Der Rückbau des RDB im JPDR fand<br />

unter Wasser in Einbaulage statt. Die<br />

besondere Herausforderung lag daher<br />

in der fernbedienten Zerlegung geometrisch<br />

komplexer Strukturen im<br />

Unterwassereinsatz und unter beengten<br />

räumlichen Verhältnissen.<br />

Zuerst wurde der RDB vollständig<br />

freigestellt und seine inneren Einbauten<br />

durch Plasmaschneiden im RDB<br />

fernbedient unter Wasser zerlegt, aus<br />

diesem entnommen und in Stahlcontainern<br />

verpackt. Um den RDB<br />

herum wurde für dessen Rückbau ein<br />

Wasserbecken errichtet, das für die<br />

Zerlegearbeiten mit Wasser geflutet<br />

wurde. Das Wasser diente der Strahlenabschirmung<br />

und zugleich der<br />

Aufnahme der entstehenden Hydrosole.<br />

Die Errichtung des Beckens im<br />

Strahlungsfeld des RDB war allerdings<br />

mit einem hohen technischen<br />

Aufwand verbunden.<br />

Für die fernbediente Zerlegung<br />

des RDB und seines bis zu 270 mm<br />

dicken Flansches wurde die dafür<br />

entwickelte Technik „Arc Saw“ angewendet,<br />

die dem Kontakt-Lichtbogen-<br />

Metall-Trennschleifen (CAMG) entspricht.<br />

Bei diesem Verfahren werden<br />

Hydrosole freigesetzt, was für eine<br />

ausreichende Sichtfähigkeit zusätzliche<br />

Absaug- und Filteranlagen erforderlich<br />

machte.<br />

Die Schnittstücke wurden über<br />

eine fernbediente Einrichtung aus<br />

dem Arbeitsbereich entnommen,<br />

woraufhin diese der Konditionierung<br />

zugeführt wurden.<br />

Abklinglagerung<br />

im KKW Greifswald (KGR)<br />

Im Gegensatz zur direkten Zerlegung<br />

in den beiden vorherigen Beispielen<br />

wird im Rückbaukonzept von fünf<br />

RDB des KGR vor der Zerlegung eine<br />

Abklinglagerung vorgesehen.<br />

Zu den vorbereitenden Maßnahmen<br />

für den Ausbau gehörte<br />

das vollständige Freistellen der RDB<br />

und die Demontage der Einbauten,<br />

die einer separaten Behandlung<br />

zugeführt wurden.<br />

Nach dem Ausbau der RDB aus<br />

ihrer Einbauposition wurden sie<br />

mittels Schwerlasttransporter zur Abklinglagerung<br />

in das Zwischenlager<br />

Nord (ZLN) verbracht, das sich direkt<br />

am Standort des KGR befindet.<br />

Die RDB mussten für den Transport<br />

und die Zwischenlagerung an<br />

stark aktivierten Bereichen abgeschirmt<br />

werden.<br />

Während der mehrjährigen Abklinglagerung<br />

verliert die Komponente<br />

an Aktivität, wodurch die<br />

spätere Zerlegung des RDB verfahrens-<br />

und strahlenschutztechnisch<br />

vereinfacht wird. Die Durchführung<br />

eines solchen Rückbaukonzeptes setzt<br />

voraus, dass die Infrastruktur und die<br />

räumliche Struktur des KKW einen<br />

Ausbau des RDB zulassen. Außerdem<br />

bedingt das Konzept die Verfügbarkeit<br />

von ausreichend Lagerkapazität.<br />

Beim Ausschleusen der RDB muss<br />

zudem sichergestellt werden, dass<br />

keine Radionuklide in die Umwelt<br />

gelangen.<br />

2.6 Entsorgung der<br />

radioaktiven Abfälle<br />

Neben den vielfältigen Herausforderungen<br />

in den Phasen der Planung<br />

und Umsetzung des Rückbaukonzeptes<br />

ergibt sich eine weitere wichtige<br />

Aufgabenstellung aus der Entsorgung<br />

der durch die Kernenergienutzung<br />

entstandenen radioaktiven Abfälle. In<br />

Deutschland wird zwischen Wärme<br />

entwickelnden Abfällen und Abfällen<br />

mit vernachlässigbarer Wärmeentwicklung<br />

unterschieden.<br />

Die hochradioaktiven, Wärme entwickelnden<br />

Abfälle setzen sich in<br />

Deutschland vor allem aus bestrahlten<br />

Brennelementen und den verglasten<br />

Abfällen aus der Wiederaufarbeitung<br />

zusammen. Die radioaktiven Abfälle<br />

aus dem Rückbau kerntechnischer<br />

Anlagen gehören zu den schwachund<br />

mittelradioaktiven Abfällen mit<br />

vernachlässigbarer Wärmeentwicklung.<br />

Für diese ist eine Endlagerung<br />

im planfestgestellten Schacht Konrad<br />

vorgesehen. Die radioaktiven Abfälle<br />

mit vernachlässigbarer Wärmeentwicklung<br />

nehmen nach [16] weniger<br />

als 1 % des Aktivitätsgehalts, jedoch<br />

etwa 90 % des Abfallvolumens ein.<br />

Schacht Konrad befindet sich derzeit<br />

noch im Ausbau zu einem Endlager,<br />

sodass die radioaktiven Abfälle aktuell<br />

noch zwischengelagert werden<br />

DECOMMISSIONING AND WASTE MANAGEMENT 603<br />

Decommissioning and Waste Management<br />

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

DECOMMISSIONING AND WASTE MANAGEMENT 604<br />

müssen. Mit der Fertigstellung des<br />

betriebsbereiten Endlagers wird nach<br />

[6] im Jahr 2027 gerechnet.<br />

Bevor der radioaktive Abfall in<br />

das Endlager verbracht werden<br />

kann, muss dieser konditioniert<br />

und verpackt werden. Durch die Konditionierung<br />

sollen die Anforderungen<br />

der chemischen Stabilität,<br />

Verfestigung und Abwesenheit von<br />

freiem Wasser erfüllt werden. Zusätzlich<br />

kann durch die Konditionierung<br />

eine Volumenreduktion des Abfalls<br />

erreicht werden. Die Verpackung des<br />

radioaktiven Abfalls ist abhängig von<br />

dessen Aktivität und Volumen und hat<br />

die Aufgabe, die Radionuklide sicher<br />

einzuschließen und eine bessere<br />

Handhabbarkeit zu gewährleisten.<br />

3 Resümee<br />

In den vorherigen Abschnitten werden<br />

einige Herausforderungen und<br />

Randbedingungen skizziert, die mit<br />

dem Rückbau kerntechnischer Anlagen<br />

einhergehen. Im Vergleich zum<br />

Rückbau konventioneller Anlagen<br />

werden die Arbeiten in kerntechnischen<br />

Anlagen durch die radiologische<br />

Belastung erheblich erschwert.<br />

Das Rückbaukonzept muss unter<br />

Berücksichtigung der vielfältigen<br />

Randbedingungen für jede kerntechnische<br />

Anlage individuell erarbeitet<br />

bzw. angepasst werden.<br />

Die Vielseitigkeit der Herausforderungen<br />

im Zusammenhang mit dem<br />

Rückbau kerntechnischer Anlagen<br />

und der Zwischen- bzw. Endlagerung<br />

der radioaktiven Abfälle unterstreicht<br />

die Notwendigkeit einer interdisziplinären<br />

Herangehensweise. Aus rein<br />

technischer Sicht werden für den<br />

erfolgreichen Rückbau nicht nur<br />

fundierte Kenntnisse in der Verfahrenstechnik<br />

und im Strahlenschutz<br />

benötigt, sondern insbesondere auch<br />

auf dem Gebiet der Kerntechnik.<br />

Wegen der großen Anzahl an anstehenden<br />

Rückbauprojekten und noch<br />

ungeklärten Fragen der Zwischenund<br />

Endlagerung der hochradioaktiven<br />

Abfälle wird das Themenfeld<br />

der kerntechnischen Entsorgung<br />

generationenübergreifend präsent<br />

sein. Eine ganzheitliche Betrachtung<br />

schließt damit beispielsweise auch gesellschaftswissenschaftliche,<br />

ethische<br />

und rechtliche Aspekte mit ein, sodass<br />

Spannungsfelder entstehen, die<br />

unterschiedlichste Fachgebiete disziplinär<br />

und interdisziplinär fordern<br />

und transdisziplinär in die Gesellschaft<br />

ausstrahlen müssen. Ein Abriss<br />

über Spannungsfelder, die bei der<br />

Erarbeitung eines Entsorgungskonzeptes<br />

für radioaktive Reststoffe<br />

aufkommen, wird im ENTRIA-Memorandum<br />

[30] gegeben.<br />

Für die erfolgreiche Bewältigung<br />

dieser Aufgabe ist es unabdingbar, die<br />

Entsorgungsforschung und den Nachwuchs<br />

an jungen Fachkräften nach<br />

dem Ausstieg aus der Kernenergie<br />

noch langzeitig zu fördern, um das<br />

Wissen und bereits gewonnene Erfahrungen<br />

weiterzugeben. Jedoch<br />

werden schon heute nur noch wenige<br />

Studierende in der Kerntechnik ausgebildet,<br />

sodass sich nur wenige<br />

Studienangebote mit Bezug zur Kerntechnik<br />

finden lassen. Darüber hinaus<br />

wird in traditionellen technischen<br />

Studiengängen wie dem Maschinenbau<br />

oder Bauingenieurwesen nur<br />

vereinzelt und randständig auf die<br />

vielseitigen Herausforderungen des<br />

Rückbaus und der kerntechnischen<br />

Entsorgung aufmerksam gemacht.<br />

Die wenigen Masterstudiengänge,<br />

die den Rückbau kerntechnischer-<br />

Anlagen thematisieren, sind meist<br />

sehr spezifisch aufgestellt.<br />

Aus der persönlichen Erfahrung:<br />

Aus den vorgenannten Gründen ist es<br />

beispielsweise für mich, David Anton,<br />

als Absolvent des interdisziplinär<br />

angelegten Bachelorstudiengangs<br />

Umweltingenieurwesen, schwierig,<br />

eine Zulassung zu diesen Masterstudiengängen<br />

zu erhalten bzw. die<br />

Zulassung ist mit umfangreichen<br />

Auflagen verbunden.<br />

Für die Hochschulausbildung wäre<br />

es aus meiner Sicht wünschenswert,<br />

die Aufmerksamkeit auch vermehrt<br />

auf den Rückbau kerntechnischer<br />

Anlagen und die Entsorgung radioaktiver<br />

Abfälle zu lenken und dies<br />

durch interdisziplinäre Studienangebote<br />

zu untermauern. Ein Beispiel<br />

für solche Ansätze ist die interdisziplinäre<br />

Ringvorlesung „Kernenergie<br />

und Brennstoffkreislauf“, gehalten<br />

von ENTRIA-Wissenschaftlern unterschiedlicher<br />

Fachrichtungen.<br />

Ich selbst wurde eher zufällig<br />

auf das Gebiet der Kerntechnik aufmerksam,<br />

weil ich über eine Tätigkeit<br />

als studentische Hilfskraft am Institut<br />

für Baustoffe, Massivbau und Brandschutz<br />

(iBMB) der TU Braunschweig<br />

in Kontakt mit Forschungsarbeiten<br />

zum bereits erwähnten Verbund projekt<br />

ENTRIA gekommen bin. Schließlich<br />

verfasste ich die überblicksartig<br />

wiedergegebene Bachelorarbeit, die<br />

gemeinsam vom iBMB und dem<br />

Unterwassertech nikum am Institut<br />

für Werkstoffkunde an der LU Hannover<br />

betreut und geprüft wurde.<br />

In diesem Zusammenhang möchte<br />

ich abschließend den Beteiligten<br />

des Forschungsprojektes ENTRIA<br />

für die Betreuung meiner Bachelorarbeit<br />

und besonders für das Heranführen<br />

an dieses komplexe aber auch<br />

sehr interessante Themenfeld meinen<br />

Dank aussprechen.<br />

Referenzen<br />

[1] Anton, David: Der Rückbau von Leichtwasserreaktoren<br />

unter verfahrens- und<br />

strahlenschutztechnischen Gesichtspunkten.<br />

Technische Universität Braunschweig,<br />

Bachelorarbeit, 2016<br />

[2] “Arbeitskreis Abfallmanagement” VGB<br />

PowerTech e. V. (Hrsg.): Entsorgung von<br />

Kernkraftwerken : Eine technisch<br />

gelöste Aufgabe. Essen : 2011<br />

[3] Bundesamt für kerntechnische Entsorgungssicherheit:<br />

Kerntechnische<br />

Anlagen in Deutschland “In Betrieb“.<br />

URL: https://www.bfe.bund.de/<br />

SharedDocs/Downloads/BfE/DE/<br />

berichte/kt/kernanlagen-betrieb.<br />

pdf?__blob=publicationFile&v=7.<br />

Stand: Januar <strong>2018</strong>;<br />

Zugriff: 30. August <strong>2018</strong><br />

[4] Bundesamt für kerntechnische Entsorgungssicherheit:<br />

Kerntechnische<br />

Anlagen in Deutschland “In Stilllegung“.<br />

URL: https://www.bfe.bund.de/<br />

SharedDocs/Downloads/BfE/DE/<br />

berichte/kt/kernanlagen-stilllegung.<br />

pdf?__blob=publicationFile&v=14.<br />

Stand: April <strong>2018</strong>;<br />

Zugriff: 30. August <strong>2018</strong><br />

[5] Bundesamt für Strahlenschutz: Die<br />

Empfehlungen der Internationalen<br />

Strahlenschutzkommission (ICRP) von<br />

2007 : ICRP-Veröffentlichung 103<br />

verabschiedet im März 2007;<br />

BfS-Schriften; 47/09. 2009<br />

[6] Bundesgesellschaft für Endlagerung:<br />

Meldung – BGE : 31. März <strong>2018</strong>: Einblicke<br />

Nr. 2 unter dem Titel „Konrad.<br />

Einblicke: Fertigstellung 2027 – was<br />

passiert nun?“ URL: https://<br />

www.bge.de/de/meldungen/<strong>2018</strong>/3/<br />

einblicke-nr-2-veroeffentlicht.<br />

Stand: 31. März <strong>2018</strong>;<br />

Zugriff: 30. August <strong>2018</strong><br />

[7] Bundesministerium für Umwelt, Naturschutz,<br />

Bau und Reaktorsicherheit:<br />

Bundeskabinett beschließt neues<br />

Strahlenschutzgesetz. URL: http://<br />

www.bmub.bund.de/pressemitteilung/<br />

bundeskabinett-beschliesst-neuesstrahlenschutzgesetz/?tx_<br />

ttnews%5BbackPid%5D=2471.<br />

Stand: 25. Januar 2017;<br />

Zugriff: 30. August <strong>2018</strong><br />

[8] Bundesministerium für Umwelt, Naturschutz,<br />

Bau und Reaktorsicherheit:<br />

Bundesrat macht den Weg frei für<br />

modernes Strahlenschutzrecht.<br />

URL: http://www.bmub.bund.de/<br />

pressemitteilung/bundesrat-machtden-weg-frei-fuer-modernesstrahlenschutzrecht/.<br />

Stand: <strong>12</strong>. Mai<br />

2017; Zugriff: 30. August <strong>2018</strong><br />

[9] Bundesministerium für Umwelt, Naturschutz,<br />

Bau und Reaktorsicherheit:<br />

Neue europäische Vorgaben sollen<br />

umfassenden Strahlenschutz gewährleisten.<br />

Decommissioning and Waste Management<br />

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


Call for Papers<br />

VGB Congress 2019<br />

Innovation in Power Generation<br />

4 and 5 September 2019, Salzburg, Austria<br />

Submit your presentation proposal now!<br />

Innovations are a constant feature of our industry, in our day-to-day business and in<br />

activities involving a long-term planning horizon alike. They are an important means<br />

of reacting to challenges and processes of change. Our goal is to find, develop and<br />

implement technically clever and efficient solutions, because life without the secured<br />

generation and storage of power and heat is unimaginable.<br />

Innovations in power and heat supply are therefore the central themes for the VGB<br />

Congress to be held in Salzburg, Austria on 4 and 5 September 2019.<br />

Topical political, strategic and energy sector related issues will be discussed in the<br />

plenary session on the first day of the congress.<br />

Your Contact<br />

Angela Langen and Ines Moors<br />

E-mail<br />

vgb-congress@vgb.org<br />

Phone<br />

+49 201 8<strong>12</strong>8-310/-274<br />

The second day will focus on your topics relating to:<br />

ı Generation and storage technologies for the future<br />

ı Flexibility options in generation and storage of power and heat<br />

ı Digitalisation in power generation<br />

ı Lessons learned in projects and O&M<br />

ı Optimisation, monitoring and diagnosis<br />

ı Training and education<br />

ı Mothballing and decommissioning of plants<br />

Use your speech to present innovative concepts, developments and solutions<br />

at the VGB Congress 2019, the knowledge-sharing platform for the technical aspects<br />

of the future energy supply.<br />

Selected papers will also be published in the renowned journal VGB POWERTECH,<br />

allowing you to reach an wider readership.<br />

The accompanying exhibition gives operators, manufacturers and service providers<br />

the opportunity to maintain and develop their industry network.<br />

Conference languages<br />

German and English,<br />

simultaneous interpreting service<br />

will be provided.<br />

Please submit your proposal online:<br />

www.vgb.org/kongress_2019_call_for_papers.html<br />

no later than 14 December <strong>2018</strong><br />

VGB PowerTech e.V.<br />

Deilbachtal 173<br />

45257 Essen<br />

Germany<br />

Are you interested in participating as an exhibitor?<br />

Contact: Angela Langen<br />

E-mail: angela.langen@vgb.org<br />

Phone: +49 201 8<strong>12</strong>8-310<br />

VGB PowerTech Service GmbH<br />

Deilbachtal 173<br />

45257 Essen<br />

Germany


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

DECOMMISSIONING AND WASTE MANAGEMENT 606<br />

URL: http://www.bmub.<br />

bund.de/themen/atomenergiestrahlenschutz/strahlenschutz/<br />

rechtsvorschriften-technische-regeln/<br />

regelungen-der-eu/. Stand: 05. Dezember<br />

2013; Zugriff: 30. August <strong>2018</strong><br />

[10] Bundesministerium für Umwelt, Naturschutz<br />

und nukleare Sicherheit: Gesetz<br />

zur Neuordnung des Rechts zum Schutz<br />

vor der schädlichen Wirkung ionisierender<br />

Strahlung | Laws | BMU. URL:<br />

https://www.bmu.de/en/law/<br />

gesetz-zur-neuordnung-des-rechtszum-schutz-vor-der-schaedlichenwirkung-ionisierender-strahlung.<br />

Stand: 27. Juni 2017;<br />

Zugriff: 31. August 2017<br />

[11] Bundesrat: Drucksache 768/16<br />

(16.<strong>12</strong>.2016) : Gesetz zur Neuordnung<br />

der Verantwortung in der kerntechnischen<br />

Entsorgung. Bundesanzeiger<br />

Verlag GmbH, ISSN 0720-2946<br />

[<strong>12</strong>] Bundesrat: Plenarprotokoll 957 :<br />

BUNDESRAT : Stenografischer Bericht :<br />

957. Sitzung : Berlin, Freitag, den <strong>12</strong>.<br />

Mai 2017. URL: http://www.bundesrat.<br />

de/SharedDocs/downloads/DE/<br />

plenarprotokolle/2017/<br />

Plenarprotokoll-957.pdf?__blob=<br />

publicationFile&v=2.<br />

Zugriff: 31. August <strong>2018</strong><br />

[13] Deutsches Atomforum e. V. (Hrsg.):<br />

Stilllegung und Rückbau von Kernkraftwerken.<br />

2013<br />

[14] Deutsches Atomforum e. V. (Hrsg.):<br />

Endlagerung von schwach- und mittelradioaktiven<br />

Stoffen. 2014<br />

[15] Deutsches Atomforum e. V. (Hrsg.): Der<br />

Reaktorunfall in Fukushima Daiichi :<br />

Folge fehlerhafter Auslegung und<br />

unzureichender Sicherheitstechnik.<br />

URL: http://www.kernenergie.de/<br />

kernenergie-wAssets/docs/service/<br />

024reaktorunfall_fukushima.pdf.<br />

Stand: März 2015;<br />

Zugriff: 31. August <strong>2018</strong><br />

[16] Deutsches Atomforum e. V. (Hrsg.):<br />

Endlagerung hochradioaktiver Abfälle.<br />

2015<br />

[17] Deutsches Atomforum e. V. (Hrsg.):<br />

Zwischenlagerung radioaktiver Abfälle<br />

in Deutschland. 2015<br />

Strahlenschutz e.V. zur Umsetzung der<br />

Direktive 2013/59/Euratom. URL:<br />

http://www.fs-ev.org/fileadmin/<br />

user_upload/09_Themen/EU_BSS/<br />

FS-Stellungnahme_zu_den_EU_BSS_<br />

final.pdf. Zugriff: 31. August <strong>2018</strong><br />

[22] Fujiki, Kazuo ; Kamike, Kouzou ; Seiki,<br />

Yoshihiro ; Yokota, Mitsuo: Techniques<br />

and experiences in Decommissioning of<br />

Japan power demonstration reactor. In:<br />

Société francaise d’énergie nucléaire<br />

(Hrsg.): International Conference on<br />

Dismantling of Nuclear Facilities :<br />

Policies – Techniques. 29.09.-<br />

02.10.1992 in Avignon. Paris, 1993,<br />

S. 219-232<br />

[23] Japan Atomic Energy Agency: JPDR<br />

( Japan Power Demonstration Reactor).<br />

URL: https://www.jaea.go.jp/<br />

english/04/ntokai/decommissioning/<br />

01/decommissioning_01_01_02.html.<br />

Zugriff: 22. Juni 2016<br />

[24] Kaulard, Jörg ; Brendebach, Boris ;<br />

Strub, Erik: Strahlenschutzaspekte<br />

gängiger Abbau- und Dekontaminationstechniken<br />

(GRS-270). URL: https://<br />

www.grs.de/sites/default/files/pdf/<br />

GRS-270.pdf. Stand: 2010;<br />

Zugriff: 31. August <strong>2018</strong><br />

[25] Klimmek, Peter ; E.ON (Hrsg.): AKW<br />

Würgassen : Das Rückbaufinale. URL:<br />

https://www.youtube.com/<br />

watch?v=McZz_r1QXWo. Stand: 11.<br />

Mai 2015; Zugriff: 31. August <strong>2018</strong><br />

[26] Klimmek, Peter ; E.ON (Hrsg.): AKW<br />

Würgassen : Zerlegung des Reaktordruckgefäßes.<br />

URL: https://<br />

www.youtube.com/watch?v=<br />

TBbHcma8Q9c. Stand: 11. Mai 2015;<br />

Zugriff: 31. August <strong>2018</strong><br />

[27] Kremer, Guido: Weiterentwicklung von<br />

Verfahren zur Kontakt-Lichtbogen-<br />

Metall-Bearbeitung. Leibniz Universität<br />

Hannover, Dissertation, 2008<br />

[28] Krieger, Hanno: Grundlagen der Strahlungsphysik<br />

und des Strahlenschutzes.<br />

Wiesbaden : Vieweg+Teubner Verlag,<br />

20<strong>12</strong><br />

[29] Neles, Julia Mareike ; Pistner, Christoph<br />

(Hrsg.): Eine Technik für die Zukunft?.<br />

Berlin ; Heidelberg : Springer-Verlag,<br />

20<strong>12</strong><br />

[37] Wilde, Felix: Rückbau kerntechnischer<br />

Anlagen. Fachhochschule Stuttgart,<br />

Diplomarbeit, GRIN Verlag, 2006<br />

[38] Zahoransky, Richard (Hrsg.): Energietechnik<br />

: Systeme zur Energieumwandlung.<br />

Kompaktwissen für Studium und<br />

Beruf. Wiesbaden : Vieweg+Teubner<br />

Verlag, 2010<br />

[39] Ziegler, Albert ; Allelein, Hans-Josef<br />

(Hrsg.): Reaktortechnik : Physikalischtechnische<br />

Grundlagen. Berlin ;<br />

Heidelberg : Springer-Verlag, 2013<br />

Authors<br />

David Anton<br />

Dipl.-Ing. Manuel Reichardt<br />

Dr.-Ing. Thomas Hassel<br />

Bereichsleiter Unterwassertechnikum<br />

Hannover (UWTH)<br />

Institut für Werkstoffkunde<br />

Unterwassertechnikum<br />

am Institut für Werkstoffkunde<br />

Produktionstechnisches Zentrum<br />

Hannover, UWTH<br />

Lise-Meitner-Str. 1<br />

30823 Garbsen, Deutschland<br />

Professor Dr.-Ing.<br />

Harald Budelmann<br />

Technische Universität<br />

Braunschweig<br />

Institut für Baustoffe, Massivbau<br />

und Brandschutz<br />

Fachgebiet Baustoffe<br />

Beethovenstraße 52<br />

38106 Braunschweig, Deutschland<br />

[18] Entsorgungswerk für Nuklearanlagen<br />

(EWN). URL: http://www.ewngmbh.de/.<br />

Stand: 1. September 2015;<br />

Zugriff: 18. Juni 2016<br />

[19] E.ON Kernkraft GmbH: Vom Kernkraftwerk<br />

zur “Grünen Wiese“ : Stilllegung<br />

und Rückbau des Kernkraftwerks<br />

Würgassen. URL: http://www.eon.com/<br />

content/dam/eon-com/<br />

Geschaeftsfelder/Nuclear/assetprofiles/wuergassen-power-plant/<br />

rueckbau_wuergassen_010403.pdf.<br />

Stand: August 2008;<br />

Zugriff: <strong>12</strong>. Juni 2016<br />

[20] E.ON Kernkraft GmbH: Kernkraftwerk<br />

Würgassen : <strong>12</strong> Jahre erfolgreicher<br />

Rückbau. URL: http://www.eon.com/<br />

content/dam/eon-com/<br />

Geschaeftsfelder/Nuclear/assetprofiles/wuergassen-power-plant/<br />

KKW_<strong>12</strong>J_Rueckbau.pdf.<br />

Zugriff: 13. Juni 2016<br />

[21] Fachverband für Strahlenschutz e.V.:<br />

Stellungnahme des Deutsch-Schweizerischen<br />

Fachverbandes für<br />

[30] Röhlig, Klaus-Jürgen et al.: ENTRIA<br />

2014 : Memorandum zur Entsorgung<br />

hochradioaktiver Reststoffe. Hannover<br />

[31] Stolz, Werner: Radioaktivität : Grundlagen<br />

– Messung – Anwendung. 5. Aufl.<br />

Wiesbaden : B. G. Teubner Verlag/<br />

GWV Fachverlage GmbH, 2005<br />

[32] Thierfeldt, S. ; Schartmann, F. ; Brenk<br />

Systemplanung GmbH (Hrsg.): Stilllegung<br />

und Rückbau kerntechnischer<br />

Anlagen. Aachen : 2009<br />

[33] Atomgesetz. In: Umweltrecht. 25. Auflage<br />

München : Beck-Texte im dtv, 2015<br />

[34] Vogt, Hans-Gerrit ; Schultz, Heinrich:<br />

Grundzüge des praktischen Strahlenschutzes.<br />

München ; Wien :Carl Hanser<br />

Verlag, 2011<br />

[35] Volkmer, Martin ; Deutsches Atomforum<br />

e. V. (Hrsg.): Radioaktivität und<br />

Strahlenschutz. Berlin : 20<strong>12</strong><br />

[36] Volkmer, Martin ; Deutsches Atomforum<br />

e. V. (Hrsg.): Kernenergie Basiswissen.<br />

Berlin: 2013<br />

Decommissioning and Waste Management<br />

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Kurchatov Institute’s Critical Assemblies<br />

Andrej Yurjewitsch Gagarinskiy<br />

Since its establishment, the Kurchatov Institute of Atomic Energy (now National Research Centre “Kurchatov<br />

Institute”) was always involved in R&D on nuclear reactors for various applications. This activity required dedicated<br />

critical facilities (whose number, design and purpose naturally varied with time).<br />

This paper reviews the status of the<br />

Kurchatov Institute’s experimental<br />

park that includes more than ten<br />

critical assemblies intended for R&D<br />

for power (VVER, RBMK, HTGR), ship<br />

and space reactors.<br />

1 Introduction<br />

Even the very first critical experiments<br />

Igor Kurchatov has performed in 1946<br />

in the institute that now bears his<br />

name have confirmed unique advantages<br />

offered by so-called “zero power”<br />

reactors, or critical assemblies [1],<br />

that were widely used in experiments<br />

ever since. Thanks to their experimentfriendly<br />

range of kinetic response to<br />

varying critical conditions, as well as<br />

to their largely power-invariant neutronic<br />

parameters, critical assemblies<br />

enable realistic simulation of in-core<br />

neutronic processes.<br />

In 1953, the Kurchatov Institute has<br />

launched its first critical assembly<br />

simulating a power reactor core to<br />

identify water-cooled and -moderated<br />

reactor parameters, such as critical<br />

mass, efficiency of control rods and<br />

temperature effects [2].<br />

Since then, the Kurchatov Institute<br />

has performed thousands of experiments<br />

with uranium systems moderated<br />

by water, hydrogen-containing<br />

substances (zirconium hydride, polyethylene<br />

and their combinations),<br />

beryllium and graphite, with wideranging<br />

U-235 enrichments (to 96 %)<br />

and moderator-to-uranium nuclear<br />

concentrations’ ratios (Figure 1)<br />

[3, 4].<br />

Experiments simulating future<br />

reactor core as accurately as possible<br />

to assess the key reactor parameters<br />

with minimal error had a long-lasting<br />

significance. As time went on, other<br />

research centres and even some plants<br />

and design organizations have joined<br />

the Kurchatov Institute in performing<br />

critical experiments, since these have<br />

often been nothing else than fabrication<br />

quality tests and designer<br />

customization of actual cores. Such<br />

experiments yielded a major share of<br />

total criticality data; however, they<br />

often cannot be used for software improvement<br />

even at the state of the art.<br />

On the other hand, experiments<br />

with critical assemblies having simple<br />

geometry, well-described composition<br />

and hence relatively low measuring<br />

errors (mostly due to uncertain<br />

knowledge of these very geometry<br />

and composition) yielded the “gold<br />

data pool” that enabled – and still<br />

contributes to – further development<br />

and improvement of computational<br />

software.<br />

2 Benchmark experiments<br />

and international<br />

databases<br />

Selection of reference – or benchmark<br />

– experiments performed on simple<br />

critical systems were launched in the<br />

1960ies in order to ultimately produce<br />

a database to underlay reactor software<br />

verification (that proceeded<br />

from limited data arrays for many<br />

years).<br />

For example, measurements of<br />

critical parameters of uniform U-<br />

water bundles consisting of U dioxide<br />

rods performed at temperatures<br />

ranging between 20 and 280 °C can<br />

illustrate this class of experiments.<br />

These measurements – suggested by<br />

the author and performed by the<br />

research team he headed in the Kurchatov<br />

Institute in late 1970ies [5] –<br />

were unique in the world practice, as<br />

it turned out later. In these experiments,<br />

high excess reactivity that<br />

varied with the critical assembly<br />

heatup in a pressure vessel was compensated<br />

by the central core section<br />

moving relative to a fixed circle of<br />

rods. Critical size of “unexcited” uniform<br />

lattices were identified by aligning<br />

the moving core section with the<br />

fixed one; i.e. in fact the temperature<br />

when “correct-geometry” cores became<br />

exactly critical was actually<br />

measured. Figure 2 shows respective<br />

data for hexagonal lattices consisting<br />

of rods enriched to 10% of U-235 at<br />

three different ratios of hydrogen and<br />

U-235.<br />

In 1992, the U.S. Department of<br />

Energy has initiated – and Idaho<br />

National Laboratory has suggested<br />

and implemented – a new data<br />

selection approach called Criticality<br />

Safety Benchmark Evaluation Project<br />

( CSBEP) [6, 7], whose main idea<br />

was to collect all available – and<br />

meeting some specific requirements<br />

Revised version of a<br />

paper presented at<br />

the RRFM <strong>2018</strong>,<br />

11 - 15 May <strong>2018</strong> in<br />

Munich, Germany<br />

| | Fig. 1.<br />

235 U enrichment and moderator-to- 235 U uranium nuclear concentrations’<br />

ratio in critical experiments performed in the Kurchatov Institute.<br />

| | Fig. 2.<br />

Critical radius of hexagonal fuel rod bundles<br />

depending on temperature:<br />

1 – • – rH / r5 = 49; 2 – p – 331; 3 – i – 614<br />

(points = experiment; lines = computation).<br />

– experimental criticality data, convert<br />

them into some standard format<br />

and organize their evaluation by<br />

independent experts. In 1995, this<br />

initiative has developed into the International<br />

Criticality Safety Benchmark<br />

Evaluation Project (ICSBEP) performed<br />

under the auspices of the<br />

Organization for Economic Cooperation<br />

and Development (OECD) in order<br />

to preserve the hard-won data of<br />

the 20 th century’s “nuclear legacy”<br />

607<br />

RESEARCH AND INNOVATION<br />

Research and Innovation<br />

Kurchatov Institute’s Critical Assemblies ı Andrej Yurjewitsch Gagarinskiy


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

RESEARCH AND INNOVATION 608<br />

(including military experimental data<br />

that were declassified at that time)<br />

and to prevent their irretrievable loss<br />

with the demise of their authors.<br />

The rate of data contribution to<br />

the ICSBEP database was at its highest<br />

in late 1990ies – early 2000ies, and<br />

naturally died out by 2010, when<br />

archive data fit for the project came<br />

to the end. By 2014, this database<br />

included data on over 5000 configurations<br />

of critical (and even some subcritical)<br />

systems provided by 20 countries,<br />

including Russia, which joined<br />

the project in 1994 and became its<br />

second largest (after the United<br />

States) contributor providing over<br />

15% of its total data (this share is<br />

much higher if we consider uranium<br />

systems only).<br />

At the same time, the imperative<br />

need to preserve all reactor physics<br />

experimental data, including measuring<br />

methods and techniques became<br />

increasingly obvious. Therefore, in<br />

1999 the Nuclear Science Committee<br />

of the OECD Nuclear Energy Agency<br />

(NSC/NEA/OECD) has launched its<br />

International Reactor Physics Experiment<br />

Evaluation Project (IRPhEP)<br />

[7], as a logical follow-up and extension<br />

of the ICSBEP. In 2003, the<br />

IRPhEP became NEA’s official project<br />

aiming to compile a pre-evaluated<br />

reactor physics benchmark dataset to<br />

be used for next-generation reactor<br />

design and safety evaluation. As of<br />

2014, the IRPhEP database included<br />

the data yielded by 136 experiments<br />

performed on 48 critical assemblies in<br />

20 countries (including Russia and<br />

the Kurchatov Institute) [8].<br />

3 Neutronic experiments<br />

and critical assemblies of<br />

the Kurchatov Institute<br />

Most of Russian critical experiments<br />

of relatively simple geometry and<br />

composition were performed between<br />

1960ies and early 1980ies by just four<br />

nuclear research centres to develop<br />

various reactors and other facilities<br />

required at the time. The IPPE has<br />

mostly focused on U and Pu fast<br />

neutron systems (and, to a smaller<br />

extent, on liquid-salt and uraniumwater<br />

ones), while VNIIEF and VNIITF,<br />

starting from late 1990ies, have<br />

published the data of a large series of<br />

critical experiments that involved a<br />

quasi-homogeneous assemblies of<br />

simple geometry with highly enriched<br />

metallic U and Pu-239. The Kurchatov<br />

Institute, as mentioned above, has<br />

performed experiments with uranium<br />

systems moderated by water, hydrogen-containing<br />

substances (zirconium<br />

hydride, polyethylene and their combinations),<br />

beryllium and graphite.<br />

Below follows a brief overview of<br />

Kurchatov Institute’s critical experiments<br />

from their “golden age” to the<br />

present day, including the evolution of<br />

relevant experimental base, whose<br />

current status is shown in Table 1 [9].<br />

NPP reactors<br />

NPP reactor research developed along<br />

several lines. Critical experiments<br />

with water-moderated assemblies to<br />

validate VVER reactor physics have<br />

started in 1950ies from several assemblies,<br />

allowing for full-scale study of<br />

VVER-440 and VVER-1000 reactor<br />

cores.<br />

An important achievement regarding<br />

VVER lattices were high-precision<br />

experiments performed under scientific<br />

guidance and supervision of the<br />

Kurchatov Institute in Hungary and<br />

Czechoslovakia on ZR-6 and LR-0<br />

critical assemblies, respectively. It<br />

should be noted that ZR-6 experiments<br />

have set a pattern for many<br />

experimental groups, since they have<br />

included a detailed study of how the<br />

uncertainties associated with core<br />

geometry, composition, etc., impact<br />

on neutronic parameters [10].<br />

Today the Kurchatov Institute has<br />

three critical assemblies (P, SK-phys<br />

and V-1000) tailored to solve the<br />

tasks of evolutionary development<br />

of VVERs, including their very latest<br />

generation, so-called SUPER-VVER.<br />

The list of experiments already performed<br />

or planned on these assemblies<br />

includes:<br />

• spectral shift simulation;<br />

• identification of neutronic parameters<br />

of systems containing various<br />

fuels (U-Gd, U-Er; recovered U,<br />

ceramic- or steel-clad “tolerant”<br />

fuel, etc.);<br />

• effect of higher steam content on<br />

multiplication properties of the<br />

core (for larger VVERs);<br />

• identification of neutronic parameters<br />

of systems with square lattices<br />

(TVS-K fuel for PWRs).<br />

Multiple critical experiments were<br />

also performed with U-graphite<br />

assemblies, allowing for varied fuel<br />

content (metallic U or uranium<br />

dioxide), U-235 enrichment (from the<br />

natural level to 2.4%), lattice pitch<br />

and water content into channels<br />

Assembly name Assembly type Thermal power, kW Physical startup year Remark<br />

SF-1 U – H 2 O 0.1 1961 Modernized in 1996<br />

Efir-2M U – H 2 O 0.1 1973 Long-term shut-down<br />

SF-7 U – H 2 O 0.1 1975 Modernized with life extension to 2029<br />

Maket U – D 2 O 0.1 1977 Reconstructed in 1983<br />

Grog U – C 0.1 1980 Long-term shut-down<br />

Astra U – C 0.1 1981 Modernization with electric heat-up planned<br />

RBMK U – C 0.02 1982<br />

Narcisse-M2 U – ZrH x 0.01 1983 Permanent shut-down<br />

PIK (phys.model) U – H 2 O 0.1 1983<br />

Delta U – H 2 O 0.1 1985 Modernized with life extension to 2029<br />

V-1000 U – H 2 O 0.2 1986 Life extended to 2029<br />

P U – H 2 O 0.2 1987 Modernized with life extension to 2029<br />

Kvant U – H 2 O 1.0 1990<br />

SK-phys U – H 2 O 0.6 1997<br />

RP-50 (Aksamit) U – H 2 O – ZrH x 0.1 2013<br />

| | Tab. 1.<br />

Kurchatov Institute’s critical assemblies as of 2017.<br />

Research and Innovation<br />

Kurchatov Institute’s Critical Assemblies ı Andrej Yurjewitsch Gagarinskiy


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

– including the experiments with less<br />

graphite per cell and erbium burnable<br />

poison. The RBMK assembly con tinues<br />

to provide scientific support to operating<br />

RBMK reactors (that generate a<br />

half of the country’s total electricity)<br />

to further improve their safety and<br />

economy (tests of new scram rods<br />

and profiled assemblies, subcriticality<br />

tests, etc.). Testing at the Kurchatov<br />

Institute’s RBMK assembly is a mandatory<br />

prerequisite for any component<br />

to be loaded into the core of<br />

operating RBMK-1000.<br />

High-temperature gas-cooled<br />

reactors<br />

Since early 1980ies, the Kurchatov<br />

Institute operates its Grog and Astra<br />

critical assemblies intended for simulation<br />

of high-temperature gas-cooled<br />

reactors (HTGRs) and other uraniumgraphite<br />

reactors of varied core<br />

geometry, structure and composition,<br />

with spherical and cylindrical fuel<br />

elements enriched up to 21 % of<br />

U-235.<br />

In particular, multiple experiments<br />

were initially performed at the Astra<br />

to validate some safety parameters of<br />

Russian HTGR designs (VG-400, VGM<br />

and others). Later, international projects<br />

such as GT-MHR (Russia and<br />

USA) and RBMR (South Africa) used<br />

the Astra for high-precision experiments<br />

with circular cores.<br />

Astra’s plans for the next few years<br />

(so-called Hot Astra Project) are as<br />

follows:<br />

• equipment modification and experiments<br />

with electric heatup;<br />

• compilation of a new database to<br />

validate multi-physical approaches<br />

to future reactor designs.<br />

Ship and space reactors<br />

However, most systems explored in<br />

the Kurchatov Institute belong to<br />

small nuclear facilities intended for<br />

various applications [11]. Respective<br />

critical assemblies were moderated<br />

by water, zirconium hydride or beryllium,<br />

consisted of different fuel rods<br />

enriched from 5 to 96 % of U-235, and<br />

had hydrogen-to-U-235 concentration<br />

ratios and temperatures ranging from<br />

25 to 1000 and from 20 to 300 °C,<br />

respectively. For the very first time,<br />

the Kurchatov Institute has published<br />

its criticality data related to hydrogenand<br />

beryllium-moderated assemblies<br />

of simple geometry at the 3 rd Geneva<br />

Conference on Peaceful Uses of<br />

Atomic Energy. Subsequent publications<br />

were somewhat sporadic.<br />

Nevertheless, many of these experiments<br />

had simple geometry and<br />

well-described fuel composition, and<br />

were therefore included in the benchmark<br />

database.<br />

As regards ship reactor experiments,<br />

starting from the early 1960ies,<br />

the Kurchatov Institute has deployed<br />

eight universal critical assemblies,<br />

including a high-temperature one<br />

(with working coolant temperature of<br />

300 °C and pressure of up to 200 kg/<br />

cm 2 ) and a high-flux one (with neutron<br />

flux of up to ~10 9 cm -2 ×s -1 . The<br />

latter – Kvant – is currently in high<br />

demand as a reference thermal neutron<br />

source for calibration of in-core<br />

detectors, irradiation of test samples,<br />

etc. Today four of these assemblies<br />

(SF-1, SF-7, Delta and Kvant) will<br />

continue operating to minimize computer<br />

simulation errors and to confirm<br />

full-scale core parameters.<br />

For space reactor experiments, the<br />

Kurchatov Institute previously had<br />

the Narcisse critical assembly, where<br />

it has performed comprehensive<br />

experiments simulating the reactors<br />

with direct conversion of heat to<br />

electricity. Presently the Institute is<br />

actively operating its new critical<br />

assembly launched in 2013 – the only<br />

one built in this century to meet<br />

the new requirements of the space<br />

industry [<strong>12</strong>]. Intended for study of<br />

the RP-50 thermionic converter, this<br />

assembly uses highly enriched fuel<br />

(96 % of U-235), control rods with<br />

B-10-enriched boron carbide, and<br />

metallic beryllium/beryllium oxide<br />

reflectors (Figure 3). Current plans<br />

are to start moderating this assembly<br />

with zirconium hydride instead of<br />

water.<br />

It should be noted that the data<br />

yielded by these – and other – experiments<br />

performed at almost all critical<br />

assemblies of the Kurchatov Institute<br />

have been included in ICSBEP and<br />

IRPhEP international database.<br />

Conclusion<br />

National Research Centre “Kurchatov<br />

Institute” preserves all capacities –<br />

such as assemblies, nuclear fuel,<br />

instrumentation and qualified personnel<br />

– necessary for critical experiments.<br />

Such experiments – though<br />

not very numerous, but highly accurate<br />

and well documented – stay in<br />

demand due to continued development<br />

of new reactor facilities and<br />

assurance of safe operation of existing<br />

ones. These trends correspond to<br />

world practices, where the successfully<br />

developing IRPhEP Project<br />

does not focus on preserving and consolidating<br />

the available data only, but<br />

also identifies areas that need new<br />

| | Fig. 3.<br />

Critical assembly simulating RP-50 thermionic converter.<br />

data, as well as plans for further<br />

experiments.<br />

Multiple start-ups of VVERs-1000<br />

confirm that Russian experts, including<br />

the Kurchatov ones, are in good<br />

position to contribute to this expanding<br />

international base of multiphysical<br />

(i.e. neutronic plus thermohydraulic)<br />

experimental benchmark<br />

data.<br />

References<br />

1. I.V. Kurchatov, I.S. Panasyuk. In: Some<br />

papers of I.V. Kurchatov Institute of<br />

Atomic Energy. Energoatomizdat,<br />

Moscow, 1982, pp. 7-26 (in Russian).<br />

2. G.A. Gladkov, Yu.V. Nikolski. USSR’s first<br />

water-water critical assemblies.<br />

Atomnaya Energiya, v. 90, Issue 2,<br />

February 2001, pp. 88-90 (in Russian).<br />

3. A.Yu. Gagarinski. Critical benchmark<br />

experiments in RRC Kurchatov Institute.<br />

Atomnaya Energiya, v. 84, Issue 6, June<br />

1998, pp. 495-501 (in Russian).<br />

4. A.A. Bykov, A.Yu. Gagarinski, E.S. Glushkov<br />

et al. Programs of Experiments with<br />

Critical Assemblies at the Russian<br />

Research Centre “Kurchatov Institute”.<br />

Nuclear Science and Engineering,<br />

v. 145, 181-187 (2003).<br />

5. A.Yu. Gagarinski, N.A. Lazukov, D.A.<br />

Mastin et al. Reactivity temperature<br />

effects in uniform U-water critical<br />

assemblies in the range of 20-280 °C.<br />

Voprosy Atomnoi Nauki I Techniki,<br />

Issue 5(18), Moscow, NIKIET, 1981,<br />

pp. 113–117 (in Russian).<br />

6. J. Blair Briggs. The Activities of International<br />

Criticality Safety Benchmark<br />

Evaluation Project (ICSBEP). Journal of<br />

Nuclear Science and Technology,<br />

Suppl. 2, pp. 1427-1432, August 2002.<br />

7. J. Blair Briggs, John D. Bess, Jim<br />

Gulliford. Integral Benchmark Data for<br />

Nuclear Data Testing through the ICSBEP<br />

& IRPhEP. International Conference on<br />

Nuclear Data for Science and Technology,<br />

INL/CON-<strong>12</strong>-26696, March 2013.<br />

8. John D. Bess, J. Blair Briggs, Jim<br />

Guilford, Ian Hill. Current Status of the<br />

IRPhEP and ICSBEP (August 2014).<br />

THTR Conference, Portland, Oregon,<br />

August 4008, 2014.<br />

RESEARCH AND INNOVATION 609<br />

Research and Innovation<br />

Kurchatov Institute’s Critical Assemblies ı Andrej Yurjewitsch Gagarinskiy


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

610<br />

AMNT <strong>2018</strong><br />

9. M.V. Kovalchuk, V.I. Ilgisonis, Ya.I.<br />

Strombach, A.S. Kurski, D.V. Andreev.<br />

Development of experimental reactor<br />

base in NRC Kurchatov Institute: from<br />

the start of F-1 to the 60 th jubilee of<br />

IR-8. Voprosy Atomnoi Nauki I Techniki,<br />

Issue 3, 2017, pp. 4–17 (in Russian).<br />

10. Experimental Studies of the Physics of<br />

VVER-Type Uranium-Water Lattices. In:<br />

Proc. Temporary International Team,<br />

v.1, Academial Kiado, Budapest, 1984.<br />

11. A.Yu. Gagarinskiy. High-precision neutronic<br />

experiments in NRC Kurchatov<br />

Institute. Atomnaya Energiya, v. <strong>12</strong>0,<br />

Issue 4, 2016, pp. 191-197 (in Russian).<br />

<strong>12</strong>. V.A. Usov, N.P. Moroz, G.V. Kompaniets.<br />

Basic results of physical startup tests of<br />

the AKSAMIT critical assembly<br />

simulating RP-50 thermionic converter.<br />

In: Innovative nuclear energy designs<br />

and technologies, NIKIET, October<br />

2014.<br />

Authors<br />

Andrej Yurjewitsch Gagarinskiy<br />

National Research Centre<br />

“Kurchatov Institute”<br />

Moscow, Russian Federation<br />

Kurchatov square,<br />

<strong>12</strong>3182 Moscow, Russia<br />

49 th Annual Meeting on Nuclear Technology (AMNT <strong>2018</strong>)<br />

Key Topic | Enhanced Safety & Operation Excellence<br />

Focus Session<br />

“International Operational Experience”<br />

Ludger Mohrbach<br />

The following report summarises the presentations of the Focus International Operational Experience presented at<br />

the 49 th AMNT <strong>2018</strong>, Berlin, 29 to 30 May <strong>2018</strong>. The other Focus, Topical and Technical Sessions will be covered in<br />

further issues of <strong>atw</strong>.<br />

Today, 449 nuclear units with nearly<br />

400 GW of net capacity produce about<br />

11% of all world-wide electricity,<br />

equivalent to about 4.5 % of all human<br />

energy consumption.<br />

In the coming years, nuclear capacities<br />

and production will slowly rise,<br />

as six to ten units are earmarked for<br />

commissioning in every coming year,<br />

over-compensating capacity losses.<br />

Most of these units provide<br />

depend able baseload power, but in<br />

markets with volatile in-feeds also<br />

increasingly grid services and peakload<br />

power, for which nuclear plants<br />

are technically well equipped.<br />

Correspondingly, this focus session<br />

covered six exemplary facets from<br />

nuclear power plant operation:<br />

• Results of the QUENCH-LOCA<br />

experiments (improving the<br />

knowledge base on fuel performance<br />

under accident conditions),<br />

• Practical aspects of safeguards,<br />

• Employments effects of nuclear<br />

(in comparison to other power<br />

generation technologies),<br />

• The new QP-data bank (“Quality<br />

Products”) for lubricants and other<br />

consumables in nuclear power<br />

plants,<br />

• Flood protection for nuclear sites,<br />

and<br />

• Benefits of simulator training.<br />

The first presentation, titled Summary<br />

of the QUENCH-LOCA Ex perimental<br />

Programme was pro vided by<br />

Dr. Andreas Wensauer, PreussenElektra,<br />

Hannover, inter alia member of the<br />

working panel “Reactor Core” of the<br />

operator’s association VGB. This panel<br />

has been the operator’s representative<br />

body for the monitoring of these<br />

tests, performed at the KIT Karlsruhe<br />

Institute for Technology since 2010 (see<br />

Große/Walter/Stuckert/Steinbrück)<br />

and designed to re-validate the “LOCA<br />

Criteria”, i.e. to investigate the burst<br />

behavior of modern fuel claddings<br />

under Loss-Of-Coolant-Accident conditions<br />

and high burn-ups.<br />

The results have significantly improved<br />

the knowledge base for hydrogenation-<br />

and oxidation-driven fuel<br />

cladding embrittlement for cladding<br />

materials Zry-4, M5 and Optimized<br />

ZIRLO under these conditions, thus<br />

delivering a valuable extra input for<br />

the embrittlement behavior criteria<br />

definition like “maximum cladding<br />

temperature” and “equivalent cladding<br />

reacted”, as such defined as early<br />

as 1973 by the US-Nuclear Regulatory<br />

Commission for the modelling of fuel<br />

behavior under hypothetical Loss-of-<br />

Coolant-Accident conditions.<br />

The second contribution to the<br />

session came from Dr. Irmgard<br />

Niemeyer, Forschungszentrum Jülich<br />

GmbH, who reported on Practical<br />

Safeguards in Nuclear Power Plants.<br />

Mass balancing of nuclear, especially<br />

fissile material inventories is<br />

an obligation for every operator underlying<br />

the regulation of the United<br />

Nations “Non-Proliferation Treaty”,<br />

ratified in 1974, amended afterwards<br />

and effective now in 191 states. The<br />

UN has entitled the International<br />

Atomic Energy Agency IAEA with the<br />

task to supervise compliance with<br />

these rules, effectively applying safeguards<br />

on each site, e.g. by regular<br />

inspections and continuous monitoring.<br />

Within the EU, EURATOM has<br />

taken over responsibility.<br />

In general, one (announced) physical<br />

inventory verification per site per<br />

year, amended by random inspections<br />

and further announced inspections<br />

for MOX and spent fuel transfers to<br />

dry storage facilities. Main surveillance<br />

instruments are seals and<br />

cameras, but also advanced technologies<br />

like “Digital Cerenkov Viewing<br />

Devices” for spent fuel pool verifications<br />

or laser curtains.<br />

In order to minimize effort and<br />

costs for both inspectors and the<br />

inspected, the operators of nuclear<br />

installations (especially nuclear power<br />

plants) have qualified – and will subsequently<br />

increasingly apply – automated<br />

processes and online data transmission.<br />

Several applications have already<br />

been developed, including internetbased<br />

transmission of seal and camera<br />

data, thus saving physical inspections.<br />

As third contribution Comparison<br />

of Employment Effects of Low-<br />

Carbon Generation Technologies<br />

had been intended to be presented by<br />

Dr. ­Geoffrey Rothwell, OECD-Nuclear<br />

Energy Agency, Paris.<br />

AMNT <strong>2018</strong><br />

Focus Session “International Operational Experience” ı Ludger Mohrbach


Frühbucherrabatt!<br />

Bis 31. Januar 2019 registrieren<br />

und bis zu 170 € sparen.<br />

7. – 8. Mai 2019<br />

Estrel Convention Center Berlin, Deutschland<br />

www.unserejahrestagung.de<br />

#50AMNT<br />

Rückbau und Entsorgung<br />

im Fokus<br />

Unsere Jahrestagung bietet mit einer Vielzahl an Vorträgen und Diskussionen<br />

in Plenarsitzung, Technischen Sitzungen und Fokussitzungen ein zweitägiges<br />

Programm der Extraklasse. Experten aus Theorie und Praxis erörtern aktuelle<br />

Fragestellungen und neueste Erkenntnisse.<br />

Diskutieren auch Sie über Entwicklungen und Herausforderungen bei Stilllegung,<br />

Rückbau und Entsorgung.<br />

Registrieren Sie sich jetzt<br />

› www.amnt2019.com<br />

Key Topics<br />

Outstanding Know-How & Sustainable Innovations<br />

Enhanced Safety & Operation Excellence<br />

Decommissioning Experience & Waste Management Solutions<br />

Medien Partner<br />

Unsere Jahrestagung – das Original seit 50 Jahren.


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

6<strong>12</strong><br />

AMNT <strong>2018</strong><br />

This first-of-a-kind study had<br />

found a remarkable advantage of<br />

nuclear power production, often overlooked<br />

in public discussion: The fact<br />

that practically all of the money spent<br />

for a nuclear kWh remains within<br />

the domestic value chain, because<br />

uranium mining requires only less<br />

than 2 % of the production cost,<br />

whereas all the rest can be attributed<br />

to high-tech components, spare<br />

parts, services and mostly high-paid<br />

domestic jobs.<br />

With other types of electricity<br />

generation, much more than half of<br />

each Euro spent for a kWh goes to fuel<br />

providers (lignite, hard coal, even<br />

more extensively in the case of gas) or<br />

assembly-line produced hardware<br />

(solar, also wind). Because of this<br />

(economic) effect and because of its<br />

easy upfront fuel storage potential in<br />

the fuel production process, nuclear<br />

is in practice a “domestic” energy<br />

source, with all the benefits for its<br />

owners and customers. This significant<br />

quality has always been<br />

underestimated in public discussions<br />

and underweighted in power option<br />

scenarios.<br />

Nevertheless, the presentation was<br />

embargoed shortly before the event,<br />

and the trip to Berlin for its author was<br />

denied on short notice.<br />

However, the organizer could refer<br />

to a corresponding press release from<br />

WNN “www.World-Nuclear-News.or/<br />

NN-Jobs-for-two-centuries-in-nuclear”,<br />

from 15 September 2017, quoting:<br />

“Some 200.000 job-years of employment<br />

are created by each 1000<br />

MWe of nuclear capacity constructed,<br />

according to a new study by the<br />

OECD Nuclear Energy Agency and<br />

the IAEA”.<br />

The press release also quotes a<br />

2010 study by D Harker and<br />

P Hirschboeck, who found the job<br />

intensity of nuclear to be half of<br />

( photovoltaic) solar, comparable to<br />

small hydro and concentrating solar,<br />

but ten times higher in comparison to<br />

combined cycle gas or wind energy.<br />

After the break, the session continued<br />

with the presentation of a new<br />

practical tool for the Application of<br />

Lubricants and other Consumables<br />

in Nuclear Power Plants: The new<br />

VGB QP-Data Bank, presented by<br />

Dr. Fred Böttcher, EnBW Kernkraft,<br />

Neckarwestheim, and co-authored by<br />

Dr. rer. nat. Dittmar Rutschow, VGB<br />

PowerTech e.V., Essen.<br />

In this data bank all documentation<br />

for the application of today about<br />

1500 lubricants, detergents, fluids<br />

and other consumables (e.g. markers,<br />

degreasing agents, abrasives, testing<br />

agents, sealings) in nuclear power<br />

plants is collected and provided for<br />

day-to-day quick-notice application.<br />

The data bank follows similar external<br />

installations (by manufacturers), it is<br />

fed by the operators themselves on<br />

a non-profit base, and available to<br />

all contributing VGB members. For<br />

detailed information either the<br />

authors or the chairman of the VGB<br />

working group “Chemistry in Nuclear<br />

Power Plants”, Dr. Timo Stoll, Kernkraftwerk<br />

Emsland, can be contacted.<br />

In principle, the data bank is also open<br />

for non-nuclear applications. Furthermore,<br />

the VGB chemistry laboratory<br />

offers specimen tests for a reasonable<br />

remuneration.<br />

The fifth contribution covered<br />

Recent Developments for the Flood<br />

Protection Design Concerning<br />

Nuclear Power Plants, authored by<br />

Prof. Dr.-Ing. Jürgen Jensen ( presenter)<br />

and MSc Sebastian Niehüser, both<br />

Universität Siegen, Dipl.-Ing. Katrin<br />

Borowski, RWE Nuclear, Essen, and<br />

Dr. Thomas Tittel, PreussenElektra,<br />

Hannover.<br />

Triggered by the Fukushima event,<br />

nuclear sites around the world have<br />

been re-evaluated also in terms of<br />

their flooding resilience, both on<br />

coastal or river sites. In Europe the<br />

“EU Stress test” has found no deficiencies<br />

in nuclear site protection in any<br />

way comparable to Fukushima’s 10m<br />

ground height above sea level and a<br />

14m-high tsunami.<br />

In Germany, the parallel “RSK-<br />

Safety Check” performed in 2011<br />

came to the same conclusion, furthermore<br />

it identified extra robustness<br />

levels for each site.<br />

Prof. Jensen gave an overview on<br />

the historic development and today’s<br />

state-of-the-art, incorporating recent<br />

scientific evidence on increasing rainfall<br />

consequences and sea level rise<br />

due to global warming. Governing<br />

effect of course is the increased<br />

probability and intensity of gale force<br />

wind events with corresponding precipitation,<br />

requiring site-specific and<br />

prospective analyses. In consequence,<br />

levee heights and qualities are and<br />

will have to be increased and improved<br />

continuously on every coast<br />

and river bank, requiring investments<br />

and careful maintenance.<br />

Quantifying the “necessary” height<br />

of flood protection installations<br />

should, however, not only be based<br />

on probabilistic calculations using<br />

historical data, but should take also<br />

into account the “physically based<br />

upper limits”.<br />

The last contribution Benefits of<br />

Simulator Training was presented by<br />

Dipl.-Ing. Dietmar Dusmann, Simulatorzentrum<br />

KSG/ GfS, Essen.<br />

In Germany the simulator training<br />

for practically all nuclear power plants<br />

has traditionally been pooled in Essen,<br />

for the last decades in a purpose-build<br />

simulator center building in Essen-<br />

Kupferdreh. The operators of the<br />

Dutch plant Borssele have also delegated<br />

their simulator training to this<br />

installation.<br />

All regular education and retraining<br />

is performed at the training<br />

center, which thus could centralize<br />

and continuously develop and<br />

advance its expertise, including<br />

development of components, simulator<br />

software and control room<br />

procedures, the latter including<br />

human- factor related issues and<br />

beyond- design accident management<br />

procedures.<br />

In this capacity the center has<br />

gathered unique and world-class<br />

simulator know-how, now increasingly<br />

also available for non-nuclear<br />

applications, as the German nuclear<br />

units will continuously be released<br />

from regulator oversight in the course<br />

of the phase-out programme decided<br />

by the government.<br />

Author<br />

Dr. Ludger Mohrbach<br />

Head Nuclaer Power Plants<br />

VGB PowerTech e.V.<br />

Deilbachtal 173<br />

45257 Essen, Germany<br />

AMNT <strong>2018</strong><br />

Focus Session “International Operational Experience” ı Ludger Mohrbach


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Inside<br />

613<br />

Vielfalt der Kerntechnik<br />

Die KTG Junge Generation auf der<br />

Nachwuchstagung <strong>2018</strong> in Garching<br />

Atomei genannt – ermöglicht. Er wurde 1957 als erste<br />

kerntechnische Anlage Deutschlands erbaut, im Jahr<br />

2000 abgeschaltet und 2004 durch den danebenstehende<br />

FRM-ll mit einer höheren Leistung ersetzt. Die Außenhülle<br />

des alten FRM ist heute denkmalgeschützt.<br />

Im FRM-II wurden sowohl dessen technische Konzeption<br />

als auch aktuelle Forschungsarbeiten und<br />

Anwendungen z. B. in der Medizin vorgestellt. Neben der<br />

Herstellung von Radiopharmaka können bspw. mit<br />

Neutronenstrahlen materialtechnische Untersuchungen<br />

und Visualisierungen (ähnlich wie bei einem Röntgenbild)<br />

durchgeführt werden.<br />

KTG INSIDE<br />

Wie in jedem Jahr lud die Junge Generation innerhalb<br />

der KTG auch <strong>2018</strong> junge Nachwuchswissenschaftler,<br />

Studenten und interessierte Mitarbeiter von Unternehmen<br />

aus der Kerntechnik ein, um ihnen die Möglichkeit zu<br />

geben, interessante Vorträge zu verschiedensten Themen<br />

zu hören und an Führungen durch unterschiedlichste<br />

Einrichtungen teilzunehmen.<br />

Das vielseitige Programm der diesjährigen Nachwuchstagung<br />

ermöglichte den Teilnehmern in diesem Jahr einen<br />

breiten Überblick über die Anwendung von Strahlung von<br />

der Kerntechnik über die Fusion bis hin zur Medizin.<br />

Eröffnet wurde die Tagung durch Vorträge zu den<br />

Forschungsreaktoren FRM (alt) und II in Garching sowie<br />

zu den Aufgaben einer Behörde im Strahlenschutz.<br />

Die Vorträge wurden mit der einmaligen Möglichkeit<br />

kombiniert, nacheinander beide Forschungsanlagen zu<br />

besichtigen. Unter anderem wurden tiefe Einblicke in die<br />

Geschichte, Bauweise und den Rückbau des Forschungsreaktors<br />

München (FRM) in Garching bei München – auch<br />

Zusätzlich konnte das Fusionsexperiment Asdex<br />

Upgrade im benachbarten Max-Planck-Institut für<br />

Plasmaphysik (IPP) besichtigt werden. Aufgrund der<br />

Gruppengröße konnten Bereiche und Anlagenteile gezeigt<br />

werden, die sonst bei Führungen nicht oder nur kurzzeitig<br />

besichtigt werden.<br />

Im Brückenschlag zur zweiten Sektion am Folgetag,<br />

welche sich zu Beginn neuen modularen Reaktor konzepten<br />

und deren sicherheitstechnischer Einordnung widmete,<br />

wurde die Rechenkette der Gesellschaft für Anlagen- und<br />

Reaktorsicherheit (GRS) gGmbH vorgestellt. Außerdem<br />

wurde durch das Institut für Kernenergetik und Energiesysteme<br />

der Universität Stuttgart ein neues Sicherheitssystem<br />

zur Wärmeabfuhr im Sicherheitsbehälter von Kernkraftwerken<br />

präsentiert. Geschlossen wurde diese Sektion<br />

vom Karlsruher Institut für Technologie (KIT) mit der<br />

Darstellung des aktuellen Stands der Fusionsforschung.<br />

In der abschließenden dritten Sektion standen die<br />

Strahlentherapie und deren aktuellen Anwendungen im<br />

KTG Inside


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

KTG INSIDE<br />

614<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

Vordergrund. Einleitend bildeten zwei Vorträge zur grundlegenden<br />

Sicherheitstechnik im Strahlenschutz und den<br />

Nebeneffekten von Neutronen in der Strahlentherapie den<br />

Fokus. Der dritte Vortrag der Sektion widmete sich der<br />

Anwendung von Strahlung am Menschen und einem<br />

abschließenden Rundgang durch das Rinecker Protonentherapie<br />

Center (RPTC).<br />

Hierbei hatten die Teilnehmer die Möglichkeit, eine<br />

der größten Protonentherapieanlagen zu besichtigen, die<br />

derzeit in der Krebstherapie eingesetzt wird. Unter<br />

anderem durften die Behandlungs- und vor allem die<br />

gigantischen Technikräume mit den Gantrys besichtigt<br />

und in Aktion erlebt werden. Bei den Gantrys handelt es<br />

sich um 150 Tonnen schwere, um die Horizontalachse<br />

360° drehbare tonnenförmige Stahlkonstruktionen von elf<br />

Metern Durchmesser, die starke Magnete zur genauen<br />

Ausrichtung des Protonenstrahls enthalten. Innerhalb<br />

dieses Hohlkörpers wird der Patient auf einer Konturmatratze,<br />

die einer Liege aus Kohlefaser aufliegt, fixiert.<br />

Unser Dank gilt den Referenten, dem Team vom IPP in<br />

Garching, des FRM (alt) und FRM-II, der GRS gGmbH<br />

sowie dem RPTC für die interessanten Beiträge und die<br />

Unterstützung!<br />

Florian Gremme und Thomas Romming<br />

JUNGE GENERATION<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Maarten Becker<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Dr. Petra-Britt Hoffmann<br />

Christian Jurianz<br />

Dr. Guido Knott<br />

Prof. Dr. Marco K. Koch<br />

Dr. Willibald Kohlpaintner<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christian Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Ingo Neuhaus<br />

Dr. Joachim Ohnemus<br />

Prof. Dr. Winfried Petry<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Prof. Dr. Bruno Thomauske<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

Imprint<br />

| | Editorial<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal <strong>12</strong>1, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

| | Official Journal of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30, Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner, Berlin, Germany<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30, Fax: +49 30 498555-18<br />

E-mail: petra.dinter@kernenergie.de<br />

| | Price List for Advertisement<br />

Valid as of 1 January <strong>2018</strong><br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 176.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 176.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 164.49 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it<br />

are protected by copyright. Any use made thereof outside<br />

the Copyright Act without the consent of the publisher,<br />

INFORUM Verlags- und Verwaltungsgesellschaft mbH,<br />

is prohibited. This applies to reproductions, translations,<br />

microfilming and the input and incorporation into electronic<br />

systems. The individual author is held responsible for the<br />

contents of the respective paper. Please address letters and<br />

manuscripts only to the Editorial Staff and not to individual<br />

persons of the association´s staff. We do not assume any<br />

responsibility for unrequested contributions.<br />

Signed articles do not necessarily represent the views<br />

of the editorial.<br />

| | Layout<br />

zi.zero Kommunikation<br />

Berlin, Germany<br />

Antje Zimmermann<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11<br />

53113 Bonn<br />

ISSN 1431-5254<br />

KTG Inside


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag und wünscht ihnen weiterhin alles Gute!<br />

615<br />

Dezember <strong>2018</strong><br />

93 Jahre | 1925<br />

10. Dr. Arthur Pilgenröther, Kleinostheim<br />

90 Jahre | 1928<br />

4. Jean-Claude Leny, Ville d’Avray/FR<br />

86 Jahre | 1932<br />

6. Prof. Dr. Günter Flach, Dresden<br />

18. Dr. Manfred Simon, Hirschberg<br />

13. Dr. Siegfried Hagen,<br />

Eggenstein-Leopoldsh.<br />

24. Dr. Josef Bugl, Mannheim<br />

85 Jahre | 1933<br />

10 Prof. Dr. Jürgen Vollradt,<br />

Unna-Königsborn<br />

25. Ing. Siegfried Freiberger, Hemhofen<br />

84 Jahre | 1934<br />

8. Dr. Hans Mohrhauer, Jülich<br />

28. Dipl.-Phys. Bernhard Wigger, Ettlingen<br />

83 Jahre | 1935<br />

21. Dipl.-Phys. Christian-H. Weigel,<br />

Muri/CH<br />

23. Dipl.-Ing. Heinrich Semke,<br />

Wileroltingen/CH<br />

82 Jahre | 1936<br />

7. Dipl.-Ing. Aurel Badics,<br />

Bad Kreuznach<br />

17. Prof. Dr.-Ing. Rolf Theenhaus, Linnich<br />

81 Jahre | 1937<br />

30. Dipl.-Ing. Wilhelm Weiss, Weinheim<br />

80 Jahre | 1938<br />

1. Dr. Gert Spannagel,<br />

Linkenheim-Hochstetten<br />

<strong>12</strong>. Prof. Dr. Peter Mombaur, Emmerich<br />

79 Jahre | 1939<br />

1. Dipl.-Ing. Georg Dumsky, Gräfelfing<br />

6. Dipl.-Ing. Hans-Henn. Kuchenbuch,<br />

Laboe-Brodersdorf<br />

18. Dipl.-Ing. Hans Rasch, Berlin<br />

27. Dr. Horst Bauer, Sigless/AT<br />

31. Dipl.-Ing. Gerhard Güther, Detmold<br />

78 Jahre | 1940<br />

8. Dipl.-Ing. Wolfgang Heess,<br />

Laudenbach<br />

11. Rudolf de Millas, Mannheim<br />

13. Dr. Hans Többe, Köln<br />

16. Dipl.-Ing. Wolfgang Breyer,<br />

Buckenhof<br />

18. Dr. Gerd Haag, Linnich-Tetz<br />

19. Prof. Dr. Wernt Brewitz, Wolfenbüttel<br />

20. Dipl.-Ing. Horst Marek, St. Leon Rot<br />

21. Dr. Jürgen Wehmeier, Springe<br />

21. Obering. Klaus Vollenbruch, Erlangen<br />

77 Jahre | 1941<br />

13. Dipl.-Ing. Klaus-Dieter Hnilica,<br />

Rodenbach/Hanau<br />

76 Jahre | 1942<br />

6. Prof. Dr. Helmuth Böck, Wien/AT<br />

8. Dr. Dieter Herrmann, Brandis<br />

8. Karl Georg Weber, Neckarwestheim<br />

14. Günter Breiling, Weinheim<br />

15. Alban Dietrich, Neckartenzlingen<br />

29. Dr. Dankwart Struwe, Karlsruhe<br />

75 Jahre | 1943<br />

7. Norbert Bauer, Limburgerhof<br />

70 Jahre | 1948<br />

4. Dr. Alfred Sahm, Ludwigshafen<br />

10. Dr. Jürgen Götz, Dresden<br />

17. Christoph Barthe, Hamburg<br />

17. Dr. Manfred Klimm, Köln<br />

19. Dipl.-Phys. Werner Kaspari, Berlin<br />

29. Peter Hirt, Gontenschwil/CH<br />

60 Jahre | 1958<br />

8. Gerhard Hackel, Günzburg<br />

16. Joachim Ferdyn<br />

50 Jahre | 1968<br />

3. Dipl.-Ing. Stefan Lobin, Dortmund<br />

30. Dr. Beate Bletz, Haßloch<br />

Januar 2019<br />

92 Jahre | 1927<br />

1. Prof. Dr. Werner Oldekop,<br />

Braunschweig<br />

90 Jahre | 1929<br />

20. Dr. Devana Lavrencic-Cannata, Rom/IT<br />

89 Jahre | 1930<br />

10. Dipl.-Ing. Hans-Peter Schmidt,<br />

Weinheim<br />

87 Jahre | 1932<br />

3. Dipl.-Ing. Fritz Kohlhaas, Kahl/Main<br />

86 Jahre | 1933<br />

9. Prof. Dr. Hellmut Wagner, Karlsruhe<br />

84 Jahre | 1935<br />

10. Dipl.-Ing. Walter Diefenbacher,<br />

Karlsruhe<br />

17. Dipl.-Ing. Helge Dyroff, Alzenau<br />

24. Theodor Himmel, Bad Honnef<br />

83 Jahre | 1936<br />

5. Obering. Peter Vetterlein, Oberursel<br />

23. Prof. Dr. Hartmut Schmoock,<br />

Norderstedt<br />

30. Dipl.-Phys. Wolfgang Borkowetz,<br />

Rüsselsheim<br />

30. Dipl.-Ing. Friedrich Morgenstern,<br />

Essen,<br />

82 Jahre | 1937<br />

7. Dipl.-Ing. Albrecht Müller,<br />

Niederrodenbach<br />

9. Dipl.-Ing. Werner Rossbach,<br />

Bergisch Gladbach<br />

25. Dipl.-Ing. (FH) Heinz Wolf,<br />

Philippsburg<br />

81 Jahre | 1938<br />

7. Dipl.-Ing. Manfred Schirra, Stutensee<br />

10. Dr. Dieter Türck, Dieburg<br />

<strong>12</strong>. Dipl.-Ing. Hans Dieter Adami, Rösrath<br />

18. Dr. Werner Katscher, Jülich<br />

22. Dr. Franz Müller, Erlangen<br />

80 Jahre | 1939<br />

11. Dipl.-Ing. Gerwin H. Rasche, Hasloch<br />

13. Dr. Udo Wehmann, Hildesheim<br />

16. Dr. Wolfgang Kersting, Blieskastel<br />

21. Prof. Dr. Detlef Filges, Langerwehe<br />

28. Dr. Sigwart Hiller, Lauf<br />

79 Jahre | 1940<br />

4. Dipl.-Ing. Wolfgang Schemenau,<br />

Laudenbach<br />

78 Jahre | 1941<br />

3. Dipl.-Ing. Ferdinand Wind<br />

<strong>12</strong> Dr. Hans-Gerb. Bogensberger,<br />

Anthem/USA<br />

15. Dipl.-Ing. Ulf Rösser,<br />

Heiligkreuzsteinach<br />

26. Dr. Heinrich Pierer von Esch, Erlangen<br />

77 Jahre | 1942<br />

6. Dipl.-Ing. Günter Höfer, Mainhausen<br />

31. Dipl.-Phys. Werner Scholtyssek,<br />

Stutensee<br />

76 Jahre | 1943<br />

19. Dr. Gerd Habedank,<br />

Seeheim-Jugenheim<br />

24. Dr. Günter Bäro, Weinheim<br />

75 Jahre | 1944<br />

4. Dipl.-Ing. Norbert Manderla, Köln<br />

15. Dietmar Jorde, Zirndorf<br />

21. Dr. Bodo Kalthoff, Waldbüttelbrunn<br />

70 Jahre | 1949<br />

6. Josef Heinrich Platzköster, Bottrop<br />

6. Dr. Wolfgang Steinwarz, Grefrath<br />

10. Asmus Hansen, Duisburg<br />

20. Dr. Hans-Uwe Siebert, Lingen/Ems<br />

65 Jahre | 1954<br />

11. Angelika Debnar, Hamburg<br />

17. Hartmut Schulze, Greifswald<br />

23. Dr. Henrique Austregesilo, Freising,<br />

24. Dr. Wolfgang Lippmann, Dresden<br />

Wenn Sie keine<br />

Erwähnung Ihres<br />

Geburtstages in<br />

der <strong>atw</strong> wünschen,<br />

teilen Sie dies bitte<br />

rechtzeitig der KTG-<br />

Geschäftsstelle mit.<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

616<br />

27. Dr. Christoph Lierse, Garching<br />

27. Norbert Lügger, Adelsdorf<br />

28. Dr. Ingeborg Hagenlocher, Ittlingen<br />

60 Jahre | 1959<br />

20. Werner Mannsdörfer, Eberdingen<br />

50 Jahre | 1969<br />

9. Dr. Markus Nie, Bubenreuth<br />

16. Peter Juretzka, Stade<br />

16. Dr. Jens Schröder, Pulheim<br />

24. Harry Weirich, Bexbach<br />

31. Ulrich Sander, Brackenheim<br />

NEWS<br />

Top<br />

To fight climate change,<br />

environmentalists say yes<br />

to nuclear power<br />

(nei) The Boston Globe highlighted a<br />

recent report by the Union of Concerned<br />

Scientists (UCS) stressing<br />

nuclear energy’s role in reducing<br />

carbon emissions. In the editorial, the<br />

Globe noted that the urgency of protecting<br />

the climate swayed UCS to<br />

support conditional measures to preserve<br />

nuclear plants, which supply<br />

nearly 20 percent of U.S. electricity<br />

and more than 56 percent of the<br />

nation’s clean energy.<br />

In the report, the group outlined a<br />

hard truth about the future. With<br />

climate change accelerating, as a<br />

new U.N. report underscored, the<br />

time to be fussy about how to reduce<br />

emissions has passed.<br />

What’s New? A really big deal in<br />

the energy and environment D.C.<br />

scene. The Union of Concerned<br />

Scientists (UCS) released a report<br />

today acknowledging the impact that<br />

nuclear plant closures have on climate<br />

and air quality, and in it the organization<br />

advocated for policies such as<br />

those adopted in states like Illinois,<br />

New York, Connecticut and New<br />

Jersey in recent years to preserve well<br />

run, financially challenged nuclear<br />

plants. The report explicitly recognizes<br />

the need for nuclear power to<br />

play a substantial role in decarbonization<br />

efforts.<br />

Fast Facts<br />

• Out of the 21 nuclear plants (16.3<br />

GW) UCS identifies as “at-risk”, 5<br />

have already announced retirement.<br />

They note that this involves<br />

17 states where there are at-risk<br />

plants that likely will need some<br />

sort of policy to save them, and the<br />

at-risk retirements could go from<br />

16.3 GW to 28.7 GW with lower<br />

natural gas prices.<br />

• The report offers three key policy<br />

prescriptions for preserving at-risk<br />

plants: (1) a carbon tax; (2) a clean<br />

energy standard; and (3) a set<br />

of principles for state-based zero<br />

emission credit (ZEC) programs in<br />

the states.<br />

UCS’ commitment to nuclear safety<br />

is unwavering in this report. Policy<br />

remedies it advocates must be limited<br />

to plants operating at the highest<br />

levels of safety.<br />

Why it Matters: This is a big deal for<br />

UCS and the climate community. Prior<br />

to this report, UCS had remained silent<br />

on any climate impacts asso ciated with<br />

nuclear plant closures. With this report<br />

UCS recognizes the utility of a clean<br />

energy standard, as opposed to merely<br />

a renewable portfolio standard, and<br />

advocates that well-run nuclear plants<br />

receive credit for their low- emissions<br />

benefits through federal low-carbon<br />

policies or through state-based, ZEC<br />

style of programs that are already<br />

being deployed to help save plants.<br />

What NEI’s President and CEO<br />

Maria Korsnick has to say about this<br />

report: “This is a forward leaning<br />

moment for an organization of significant<br />

influence in America’s climate<br />

and science community. There is<br />

increasing consensus across broad<br />

cross- sections of American political,<br />

environmental, security and energy<br />

experts that nuclear energy is critical<br />

to resilient, reliable and clean power.<br />

This UCS report is explicit in recognizing<br />

the scale of contributions<br />

nuclear power makes to mitigate<br />

against carbon and pollutants. It adds<br />

significantly to increasing momentum<br />

for recognizing the role nuclear plays<br />

in America’s clean energy future.<br />

“Enacting technology-neutral policies<br />

and establishing programs that<br />

credit nuclear for its 24/7, clean and<br />

reliable attributes will ensure the<br />

viability and economic success of<br />

America’s largest source of clean<br />

energy. Industry experts have long<br />

warned of the severe consequences<br />

that plant closures would have on the<br />

environment. We join UCS in urging<br />

policymakers to take actions that will<br />

preserve the nuclear fleet and open<br />

doors for new nuclear construction<br />

and innovation in nuclear technology.”<br />

The Big Picture: This report joins a<br />

notably growing chorus of key voices<br />

sounding the alarm that the loss of<br />

nuclear energy would make it far more<br />

challenging to constrain carbon emissions<br />

and protect our environment.<br />

| | www.nei.org<br />

World<br />

Atomic Society calls for<br />

action on future of nuclear<br />

research in Europe<br />

(nucnet) Europe risks losing much of<br />

its nuclear research capacity because<br />

of a “crisis in political vision” on<br />

energy issues and limited public<br />

funds, the European Atomic Energy<br />

Society says in a position paper<br />

published today.<br />

The paper says investment is<br />

needed to enable advanced nuclear<br />

research and a renewed programme<br />

of public engagement is needed to<br />

allow a more balanced view of<br />

Europe’s future energy mix, particularly<br />

considering the need for<br />

decarbonisation.<br />

It says the successful development<br />

of new nuclear technologies can only<br />

be achieved by research laboratories<br />

with appropriate infrastructure and<br />

with cooperation and support by<br />

the industry. This requires “stable<br />

and dedicated funding programmes<br />

from national, European and private<br />

sources”.<br />

This, in turn, needs a change of<br />

political attitudes towards nuclear,<br />

focusing on the long-term societal<br />

benefits of a low-carbon, energy<br />

dense, stable baseload technology<br />

that is complementary to renewable<br />

technologies.<br />

According to the EAES, the investments<br />

needed would be considerably<br />

smaller than subsidies supporting<br />

the deployment and commissioning<br />

of renewable technologies.<br />

The paper says that with limited<br />

public funds available both nationally<br />

and in Europe, research<br />

institutions are increasingly relying on<br />

industrial support. This support,<br />

however, is decreasing, and in such<br />

a political environment, utilities<br />

prefer to invest in extending nuclear<br />

reactor lifetimes, rather than investing<br />

in new-build.<br />

“Vendors are finding it difficult to<br />

invest in new nuclear technologies<br />

and are relying on proven designs<br />

and plants. This is resulting in a lack of<br />

innovation and poor public perception,<br />

despite an exemplary safety<br />

record,” the paper says.<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

It says the gradual loss of nuclear<br />

skills within Europe is well documented,<br />

with an ageing workforce<br />

and challenges in attracting the best<br />

graduates into the industry.<br />

“This will result in a lack of competitiveness<br />

with respect to other<br />

nuclear players in the world and a lack<br />

of understanding of our nuclear<br />

legacy.”<br />

There are instruments available<br />

to stimulate nuclear research in<br />

Europe, with nuclear energy listed as<br />

a supported technology within the<br />

European Strategic Energy Technology<br />

Plan (SET-Plan). The Horizon<br />

2020 framework programme has<br />

funds dedicated to activities related to<br />

the Euratom Treaty.<br />

However, Euratom funds are<br />

only sufficient to maintain a modest<br />

R&D programme in selected areas.<br />

Moreover, there is a risk that these<br />

funds will have little impact if they<br />

are not appropriately supported<br />

by a clear policy at member state<br />

level, the paper says.<br />

US: Cost of nuclear generation<br />

reaches nearly 10-year low<br />

(nei) A new Nuclear Energy Institute<br />

study shows that the nuclear industry<br />

has reduced its total generating<br />

costs by 19 percent since their peak in<br />

20<strong>12</strong>. These reductions in cost are so<br />

dramatic that 2017 total generating<br />

costs of $33.50 per megawatt-hour<br />

(MWh) have gone down to almost<br />

what they were nearly 10 years ago in<br />

2008 ($32.75 per MWh).<br />

“Through the Delivering the<br />

Nuclear Promise campaign and other<br />

initiatives, Operations the hardworking men and<br />

women of the nuclear industry have<br />

done an amazing job reducing costs<br />

wherever they find them,” NEI Vice<br />

have remained flat compared to the past decade.<br />

President of Policy Development and<br />

Public Affairs John Kotek said. “As we<br />

continue to face economic headwinds<br />

in markets which do not properly<br />

compensate nuclear plants, the<br />

industry has been doing its part to<br />

reduce costs to remain com petitive.”<br />

“Some things are in urgent need of<br />

change if we are to keep the nation’s<br />

nuclear plants running and enjoy<br />

their contribution to a reliable,<br />

resilient and low-carbon grid. Namely,<br />

we need to put in place market<br />

reforms that fairly compensate<br />

nuclear similar to those already in<br />

place in New York, Illinois and<br />

other states.”<br />

Other findings of the Nuclear Costs<br />

in Context study include:<br />

• The average total generating costs<br />

for nuclear in 2017 of $33.50 per<br />

MWh, represents a 3.3 percent<br />

reduction from 2016.<br />

• The 19 percent reduction in costs<br />

since 20<strong>12</strong> includes a 41 percent<br />

reduction in capital expenditures,<br />

a 17 percent reduction in fuel<br />

costs, and a 9 percent reduction<br />

in operating costs.<br />

The report warns that despite these<br />

reduced prices, several nuclear power<br />

plants have been closed in recent<br />

years because of economic pressures.<br />

Since 2013, seven nuclear reactors<br />

(Crystal River 3 in Florida, San Onofre<br />

2 and 3 in California, Kewaunee in<br />

Wisconsin, Vermont Yankee, Fort<br />

Calhoun in Nebraska, and Oyster<br />

Creek in New Jersey) have shut<br />

down permanently. Another <strong>12</strong><br />

reactors have announced their<br />

permanent shutdown. If all these<br />

closures are taken together, they<br />

represent a massive loss of carbonfree<br />

electricity generation for the<br />

country: 55.5 million tons of carbon<br />

dioxide (CO 2 ) avoided annually. That<br />

is the equivalent of the carbon emissions<br />

avoided by approximately<br />

14,000 wind turbines per year or<br />

the electricity used by 8 million<br />

homes per year.<br />

Operations costs increased over the last twelve years from $19.25 per MWh in 2002 to $20.43 per MWh<br />

in 2017. Operations costs have declined 9.8 percent from the peak in 2011.<br />

This increase in operations costs was not driven by any single category. Operations costs in the 2002-2008<br />

period are similar to where money was being spent in the 2009-2017 period. However, operations costs<br />

The chart below breaks down operations spending over the last 11 years.<br />

$ Billions (in 2017 dollars)<br />

20<br />

18<br />

16<br />

14<br />

<strong>12</strong><br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

2006 2007 2008 2009 2010 2011 20<strong>12</strong> 2013 2014 2015 2016 2017<br />

Work Management (WM)<br />

Training (TR)<br />

Support Services (SS)<br />

Nuclear Industry Operations Cost, 2006-2017<br />

Operations (OP)<br />

Fuel Management (NF)<br />

Materials and Services (MS)<br />

| | US: Cost of nuclear generation reaches nearly 10-year low (NEI).<br />

Loss Prevention (LP)<br />

Engineering (ENG)<br />

Source: Electric Utility Cost Group<br />

The report cites various factors as<br />

contributing to premature closure of<br />

these plants including:<br />

• sustained low natural gas prices,<br />

which suppress prices in power<br />

markets<br />

• relatively low growth in electricity<br />

demand<br />

• federal and state mandates for<br />

renewable generation which suppress<br />

prices, particularly during<br />

off-peak hours when wind generation<br />

is highest and the electricity is<br />

needed the least<br />

• market designs that do not<br />

compensate nuclear plants for the<br />

value they provide to the grid.<br />

Certain states have implemented<br />

plans that recognize and place a value<br />

on nuclear’s contributions. New York,<br />

Illinois, New Jersey and Connecticut<br />

have enacted policies that will<br />

compensate nuclear plants for their<br />

environmental attributes, ensuring<br />

that a total of <strong>12</strong> reactors in these<br />

states will not be forced to shut down<br />

prematurely.<br />

Closed nuclear plants are often<br />

replaced with natural gas power<br />

plants which produce substantial<br />

amounts of CO 2 and come with a<br />

bigger price tag than existing nuclear<br />

plants. According to the U.S. Energy<br />

Information Administration, new<br />

natural gas-fired plants come with a<br />

levelized cost of $48 per MWh compared<br />

to existing nuclear’s cost of<br />

$33.50 per MWh.<br />

Cost information in the study was<br />

collected by the Electric Utility Cost<br />

Group with prior years converted to<br />

2017 dollars for accurate historical<br />

comparison.<br />

| | www.nei.org<br />

IAEA showcases global<br />

coordination on Small,<br />

Medium Sized or Modular<br />

Nuclear Reactors (SMRs)<br />

(iaea) The International Atomic<br />

Energy Agency’s (IAEA) expanding<br />

international coordination on the<br />

safe and secure development and<br />

deployment of small, medium sized or<br />

modular nuclear reactors (SMRs) has<br />

come into focus with new publications<br />

and expert meetings on these emerging<br />

technologies.<br />

Significant advances have been<br />

made in recent years on SMRs, some<br />

of which will use pre-fabricated<br />

systems and components to shorten<br />

construction schedules and offer<br />

greater flexibility and affordability<br />

than traditional nuclear power plants.<br />

Some 50 SMR concepts are at various<br />

stages of development around the<br />

617<br />

NEWS<br />

Fuel<br />

Fuel costs represent approximately 20 percent of the total generating cost. Fuel costs experienced a<br />

relatively rapid increase from 2009 to 2013. This was largely the result of an escalation in uranium prices,<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Operating Results July <strong>2018</strong><br />

618<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated. gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 716 636 758 3 676 095 258 330 281 96.22 80.22 93.88 78.84 94.05 79.41<br />

OL2 Olkiluoto BWR FI 910 880 687 606 170 4 258 260 248 557 441 92.34 92.13 90.<strong>12</strong> 91.04 88.56 90.99<br />

KCB Borssele PWR NL 5<strong>12</strong> 484 744 368 003 2 171 801 160 378 720 99.91 84.46 99.91 83.93 96.58 83.53<br />

KKB 1 Beznau 7) PWR CH 380 365 744 276 474 1 217 418 <strong>12</strong>5 963 505 100.00 63.38 100.00 63.<strong>12</strong> 97.71 62.90<br />

KKB 2 Beznau 1,7) PWR CH 380 365 538 194 981 1 811 079 132 975 952 72.31 93.81 71.03 93.59 68.56 93.61<br />

KKG Gösgen 7) PWR CH 1060 1010 744 773 627 4 802 648 309 997 235 100.00 89.85 99.99 89.29 98.10 89.07<br />

KKM Mühleberg BWR CH 390 373 744 269 800 1 930 260 <strong>12</strong>6 268 405 100.00 99.63 99.97 99.32 92.98 97.29<br />

CNT-I Trillo PWR ES 1066 1003 744 785 052 4 375 007 243 399 431 100.00 81.93 100.00 81.51 98.13 80.22<br />

Dukovany B1 1,2) PWR CZ 500 473 652 305 764 1 866 343 110 496 825 87.63 74.41 84.40 73.71 82.20 73.38<br />

Dukovany B2 PWR CZ 500 473 744 360 276 1 807 746 106 430 284 100.00 72.46 99.74 71.69 96.85 71.07<br />

Dukovany B3 PWR CZ 500 473 744 357 268 2 378 998 105 001 425 100.00 95.48 99.45 95.<strong>12</strong> 96.04 93.53<br />

Dukovany B4 PWR CZ 500 473 530 254 145 2 293 598 105 565 339 71.24 91.39 70.34 90.97 68.32 90.17<br />

Temelin B1 PWR CZ 1080 1030 744 796 140 3 916 116 110 397 410 100.00 71.73 99.66 71.41 98.90 71.20<br />

Temelin B2 2) PWR CZ 1080 1030 0 0 4 661 537 106 151 483 0 84.84 0 84.81 0 84.85<br />

Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 53.08 0 53.05 0 53.23<br />

Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 66.85 0 66.64 0 66.97<br />

Doel 3 2) PWR BE 1056 1006 154 116 819 116 819 251 286 041 20.73 3.03 14.55 2.13 14.55 2.13<br />

Doel 4 PWR BE 1084 1033 744 798 104 5 492 676 260 038 518 100.00 99.25 100.00 99.07 97.78 98.57<br />

Tihange 1 PWR BE 1009 962 744 717 709 5 101 230 295 940 106 100.00 99.66 98.87 99.36 95.54 99.64<br />

Tihange 2 PWR BE 1055 1008 691 684 179 5 271 687 254 221 225 92.89 98.96 88.55 97.98 87.39 98.78<br />

Tihange 3 2) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 42.02 0 41.97 0 42.07<br />

Operating Results July <strong>2018</strong><br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 744 1 002 201 5 663 244 345 855 303 100.00 83.92 94.23 79.45 90.59 74.91<br />

KKE Emsland 4) DWR 1406 1335 744 1 028 789 6 385 489 341 708 772 100.00 91.02 99.72 90.83 98.35 89.27<br />

KWG Grohnde DWR 1430 1360 740 988 782 5 972 523 372 600 102 99.40 87.63 98.55 85.57 92.24 81.56<br />

KRB C Gundremmingen SWR 1344 <strong>12</strong>88 744 976 015 5 472 761 326 052 654 100.00 83.48 99.40 82.81 97.11 79.58<br />

KKI-2 Isar 1,2,4) DWR 1485 1410 365 484 346 6 813 318 348 411 641 49.04 92.55 46.73 92.20 43.52 89.89<br />

KKP-2 Philippsburg DWR 1468 1402 744 1 038 977 5 948 826 361 116 342 100.00 84.03 100.00 83.87 93.58 78.36<br />

GKN-II Neckarwestheim DWR 1400 1310 744 996 350 6 957 650 327 080 784 100.00 100.00 98.04 99.61 95.74 97.91<br />

| | IAEA showcases global coordination on Small, Medium Sized or Modular<br />

Nuclear Reactors (SMRs).<br />

world, with commercial operations<br />

expected to begin in the coming years.<br />

Following an IAEA meeting in<br />

September on SMR design and technology,<br />

energy experts from around<br />

Europe gathered at the Agency’s<br />

Vienna headquarters for a workshop<br />

earlier this month to discuss infrastructure,<br />

economic and finance<br />

aspects of SMRs. The meetings are<br />

part of an ongoing SMR project<br />

involving the IAEA Departments of<br />

Nuclear Energy, Nuclear Safety and<br />

Security and Technical Cooperation.<br />

In addition, representatives of regulatory<br />

authorities and other stakeholders<br />

also met this month at the<br />

IAEA’s SMR Regulators’ Forum, which<br />

exchanges experiences on SMR regulatory<br />

reviews.<br />

“Many IAEA Member States are<br />

interested in the development and<br />

deployment of SMRs as a cleaner<br />

alternative to fossil fuels and for<br />

reducing greenhouse gas emissions,”<br />

said IAEA Deputy Director General<br />

Mikhail Chudakov, Head of the<br />

Department of Nuclear Energy. “The<br />

IAEA’s flurry of recent activities on<br />

SMRs is part of our efforts to respond<br />

to Member State requests for assistance<br />

on this exciting emerging technology.”<br />

The IAEA recently released two<br />

new publications on SMRs: Deployment<br />

Indicators for Small Modular<br />

Reactors, which provides Member<br />

States with a methodology for evaluating<br />

the potential deployment of<br />

SMRs in their national energy<br />

systems; and an updated edition of<br />

Advances in Small Modular Reactor<br />

Technology Developments, which<br />

provides a concise overview of the<br />

latest status of SMR designs around<br />

the world and is intended as a<br />

supplement to the IAEA’s Advanced<br />

Reactor Information System (ARIS).<br />

SMRs have the potential to meet<br />

the needs of a wide range of users and<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Operating Results August <strong>2018</strong><br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated. gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 744 669 103 4 345 198 258 999 384 100.00 82.75 99.92 81.53 98.83 81.89<br />

OL2 Olkiluoto BWR FI 910 880 744 666 6<strong>12</strong> 4 924 872 249 224 053 100.00 93.13 100.00 92.19 97.39 91.80<br />

KCB Borssele 3) PWR NL 5<strong>12</strong> 484 87 42 413 2 214 214 160 421 133 <strong>12</strong>.04 75.22 <strong>12</strong>.02 74.76 11.13 74.29<br />

KKB 1 Beznau 7) PWR CH 380 365 744 252 974 1 470 392 <strong>12</strong>6 216 479 100.00 68.05 96.15 67.33 89.13 66.25<br />

KKB 2 Beznau 1,7) PWR CH 380 365 744 262 373 2 073 452 133 238 325 100.00 94.60 100.00 94.40 92.51 93.47<br />

KKG Gösgen 7) PWR CH 1060 1010 744 772 515 5 575 163 310 769 750 100.00 91.14 99.94 90.65 97.96 90.20<br />

KKM Mühleberg 1,2) BWR CH 390 373 432 139 480 2 069 740 <strong>12</strong>6 407 885 58.07 94.32 56.45 93.85 48.07 91.01<br />

CNT-I Trillo PWR ES 1066 1003 744 785 558 5 160 565 244 184 989 100.00 84.24 100.00 83.87 98.22 82.51<br />

Dukovany B1 PWR CZ 500 473 744 359 880 2 226 223 110 856 705 100.00 77.67 100.00 77.06 96.74 76.36<br />

Dukovany B2 PWR CZ 500 473 744 358 886 2 166 632 106 789 170 100.00 75.97 100.00 75.30 96.48 74.31<br />

Dukovany B3 PWR CZ 500 473 744 355 026 2 734 024 105 356 451 100.00 96.06 99.98 95.74 95.44 93.78<br />

Dukovany B4 PWR CZ 500 473 738 356 094 2 649 692 105 921 433 99.19 92.39 98.67 91.96 95.72 90.88<br />

Temelin B1 PWR CZ 1080 1030 744 797 599 4 713 715 111 195 009 100.00 75.34 99.67 75.02 99.08 74.76<br />

Temelin B2 2) PWR CZ 1080 1030 47 36 816 4 698 353 106 188 299 6.32 74.82 6.32 74.79 4.58 74.61<br />

Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 46.31 0 46.28 0 46.44<br />

Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 58.32 0 58.14 0 58.43<br />

Doel 3 3) PWR BE 1056 1006 668 697 467 814 287 251 983 508 89.79 14.10 88.55 13.15 88.35 13.13<br />

Doel 4 2) PWR BE 1084 1033 138 146 133 5 638 809 260 184 650 18.53 88.95 18.38 88.78 17.88 88.27<br />

Tihange 1 PWR BE 1009 962 744 728 677 5 829 907 296 668 783 100.00 99.70 99.97 99.44 97.06 99.31<br />

Tihange 2 2) PWR BE 1055 1008 426 430 706 5 702 393 254 651 930 57.29 93.64 56.16 92.64 55.07 93.20<br />

Tihange 3 3) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 36.66 0 36.62 0 36.70<br />

619<br />

NEWS<br />

Operating Results August <strong>2018</strong><br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 739 954 469 6 617 713 346 809 772 99.30 85.88 92.74 81.15 86.10 76.34<br />

KKE Emsland DWR 1406 1335 744 1 032 1<strong>12</strong> 7 417 601 342 740 884 100.00 92.16 100.00 92.00 98.62 90.47<br />

KWG Grohnde DWR 1430 1360 744 1 004 431 6 976 954 373 604 533 100.00 89.21 100.00 87.41 93.68 83.11<br />

KRB C Gundremmingen SWR 1344 <strong>12</strong>88 744 977 634 6 450 395 327 030 288 100.00 85.59 100.00 85.00 97.24 81.83<br />

KKI-2 Isar DWR 1485 1410 726 1 036 464 7 849 782 349 448 105 97.55 93.19 97.30 92.85 93.38 90.33<br />

KKP-2 Philippsburg DWR 1468 1402 735.75 943 960 6 892 786 362 060 302 98.89 85.92 98.32 85.71 84.51 79.15<br />

GKN-II Neckarwestheim 2) DWR 1400 1310 740 957 150 7 914 800 328 037 934 99.42 99.93 99.32 99.57 91.80 97.13<br />

to be low carbon replacements for<br />

ageing fossil fuel fired power plants.<br />

They display enhanced safety features<br />

and are suitable for non-electric applications,<br />

such as cooling, heating and<br />

water desalination. SMRs also offer<br />

options for countries with smaller<br />

electricity grids as well as regions with<br />

less developed infrastructure and for<br />

energy systems that combine nuclear<br />

and alternative sources, including<br />

renewables.<br />

SMRs require less upfront capital<br />

per unit, but their electricity generating<br />

cost will probably be higher than<br />

that of large reactors. Their costs will<br />

be weighed against alternatives and<br />

competitiveness will need to be pursued<br />

through economies of scale. An<br />

expeditious deployment of SMRs will<br />

involve the development of a resilient<br />

supply chain, human resources and a<br />

robust regulatory framework.<br />

“There are safety and security<br />

considerations that have to be taken<br />

into account at all stages of the<br />

development and implementation of<br />

SMR projects,” IAEA Deputy Director<br />

General Juan Carlos Lentijo, Head of<br />

the Department of Safety and Security.<br />

“The IAEA safety standards and<br />

security guidance provide a framework<br />

that can support in this regard.”<br />

| | www.iaea.org<br />

ENSREG approves first peer<br />

review report on ageing<br />

management<br />

(nucnet) The European Nuclear Safety<br />

Regulators Group (ENSREG) has<br />

approved the first topical peer review<br />

report on ageing management of<br />

nuclear power plants and research<br />

reactors.<br />

The peer review concluded that<br />

there are “no major deficiencies”<br />

in European approaches to ageing<br />

management. However, it identified<br />

areas where further work would<br />

improve ageing management.<br />

The review concluded that<br />

ageing management programmes<br />

for research reactors are not<br />

regulated or implemented as systematically<br />

and comprehensively as for<br />

commercial nuclear plants. This<br />

may be justified by the variety of<br />

research reactor designs and their<br />

potentially lower risk significance<br />

compared to commercial plants, but<br />

further attention is needed from both<br />

regulators and licensees the review<br />

said.<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data for the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

620<br />

NEWS<br />

The review was carried out in 16<br />

EU member states and three non-EU<br />

member states – Norway, Switzerland<br />

and Ukraine – with commercial<br />

nuclear power plants or research<br />

reactors.<br />

The peer review process will<br />

continue with national action plans,<br />

to be produced by September 2019,<br />

that address the peer review results,<br />

Ensreg said.<br />

The review was the first in a series<br />

of peer reviews into nuclear safety in<br />

Europe that will take place every six<br />

years, in accordance with the EU’s<br />

revised nuclear safety directive.<br />

Ensreg said it was largely inspired<br />

by stress tests carried out after<br />

the March 2011 accident at the<br />

Fukushima- Daiichi nuclear power<br />

station in Japan.<br />

The review process was developed<br />

by Ensreg, an independent, expert<br />

advisory group with members from<br />

all EU countries.<br />

A public meeting will be held in<br />

Brussels on 22 November to present<br />

the results of the review.<br />

The peer review report is online:<br />

https://bit.ly/2JpUTWi<br />

| | www.ensreg.eu<br />

IAEA launches international<br />

training course on protecting<br />

nuclear facilities from<br />

cyber-attacks<br />

(iaea) The International Atomic<br />

Energy Agency (IAEA) has introduced<br />

a new international training course<br />

(ITC) on protecting nuclear facilities<br />

from cyber-attacks, highlighting the<br />

Agency’s role in supporting national<br />

efforts to strengthen nuclear security.<br />

The inaugural course, Protecting<br />

Computer-Based Systems in Nuclear<br />

Security Regimes, was held earlier<br />

this month. It brought together 37<br />

participants from 13 countries for two<br />

weeks of immersive training on best<br />

practices in computer security.<br />

Developed together with the U.S.<br />

Department of Energy’s National<br />

Nuclear Security Administration<br />

( NNSA) and hosted by the Idaho National<br />

Laboratory in the United States,<br />

it was the first in what will be a series<br />

of IAEA information and computer<br />

security ITCs focusing on raising<br />

awareness of the threat posed by<br />

cyber-attacks, and their potential<br />

impact on nuclear facilities.<br />

The course offered participants a<br />

chance to test their skills on mockups<br />

of actual state-of-the-art digital<br />

systems common in today’s nuclear<br />

facilities, which use digital technologies<br />

to provide functions that<br />

| | Dominion files to extend Surry operating license to 80 years.<br />

support safe operations, security,<br />

material accountancy and control,<br />

and pro tection of sensitive information.<br />

“Everyone with responsibility for<br />

nuclear security must have a thorough<br />

understanding of the vulnerabilities<br />

of their systems – they must know<br />

how to prevent and mitigate possible<br />

cyber-attacks on those systems,” said<br />

Raja Adnan, Director of the IAEA’s<br />

Division of Nuclear Security. “The<br />

IAEA offers a range of training courses<br />

in computer security to help ensure<br />

that governments and organizations<br />

have the necessary technical, regulatory<br />

and other tools to succeed<br />

when faced with highly skilled<br />

adversaries.”<br />

In developing the course, cybersecurity<br />

experts from the IAEA and<br />

the Department of Energy National<br />

Laboratories – Idaho National Laboratory,<br />

Pacific Northwest National<br />

Laboratory, and Los Alamos National<br />

Laboratory – designed a learning<br />

environment that replicated equipment<br />

typically found in a nuclear<br />

facility.<br />

“The hands-on lab environment,<br />

presentations, and exercises were<br />

conducted in a manner that allowed<br />

participants of varied experience to<br />

gain the full benefit of the training,”<br />

said James Byrne, a participant from<br />

EDF Energy in the United Kingdom.<br />

“It was a valuable training experience<br />

that provided me with many cyber<br />

security insights that will be helpful<br />

for me when I return to work.”<br />

| | www.iaea.org<br />

Reactors<br />

Dominion files to extend<br />

Surry operating license<br />

to 80 years<br />

(nei) Dominion Energy’s twin-reactor<br />

Surry Power Station will continue to<br />

provide carbon-free electricity to<br />

more than 400,000 homes in Virginia<br />

through the middle of the century,<br />

once the company’s application for<br />

a second renewed 20-year operating<br />

license is approved by the Nuclear<br />

Regulatory Commission (NRC).<br />

Dominion’s submittal, filed Tuesday,<br />

is the third “second license renewal”<br />

application to be sent by nuclear<br />

utilities to the NRC this year, reflecting<br />

the industry’s increasing interest in<br />

sustaining the future of its reactor fleet.<br />

“Our application to renew Surry<br />

Power Station’s licenses for another<br />

20-year period is good news for our<br />

customers, the regional economy and<br />

the environment,” said Dan Stoddard,<br />

Dominion Energy’s Chief Nuclear<br />

Officer in an Oct. 16 press release.<br />

“Our customers will benefit from<br />

continuing to receive safe, reliable,<br />

affordable, and clean electricity<br />

from the station through 2053.”<br />

“Renewing the operation of Surry also<br />

positions Virginia for economic<br />

growth and will help the Commonwealth<br />

remain a leader in the production<br />

of clean energy among<br />

other states in the mid-Atlantic and<br />

South,” Stoddard added. “It supports<br />

more than 900 high-paying jobs at<br />

the station and produces additional<br />

economic and tax benefits.”<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

All U.S. nuclear reactors are<br />

initially licensed to operate for 40<br />

years, with NRC regulations allowing<br />

for licenses to be renewed for 20 years<br />

at a time. The reactor license renewal<br />

process is well established. It entails<br />

a rigorous NRC review of reactor<br />

licensees’ plans for managing all plant<br />

structures and components for safe<br />

long-term operations throughout the<br />

renewal period.<br />

The NRC agrees with the industry<br />

that there are no technological<br />

limitations on restricting the operating<br />

lifetime of well-maintained nuclear<br />

reactors. Licensees have the discretion<br />

to decide whether to pursue extended<br />

operations based on economic and<br />

other considerations.<br />

Since the first 20-year license<br />

renewal was issued in 2000, nearly all<br />

the 98 operating reactors in the<br />

U.S. fleet have obtained their initial<br />

license extensions – Surry’s was<br />

obtained in 2003. The remaining<br />

few reactors have applications under<br />

review or pending submittal. Even<br />

so, half of these reactors are expected<br />

to reach the end of their 60-year<br />

extended periods by 2040, and all<br />

by 2050.<br />

The continued operation of<br />

America’s nuclear fleet is vital to<br />

ensuring an adequate supply of clean,<br />

carbon-free energy. Nuclear plants are<br />

the largest source of carbon-free<br />

electricity in the country. An NEI<br />

study finds that if all operating U.S.<br />

reactors were to run for 80 years<br />

instead of 60, a cumulative total of<br />

about 3.5 billion tons of CO 2 emissions<br />

would be avoided through<br />

2050.<br />

The first SLR application was<br />

submitted by Florida Power and Light<br />

in January <strong>2018</strong> for its Turkey Point<br />

Nuclear Plant in Florida, followed<br />

by Exelon’s filing in July for Peach<br />

Bottom Atomic Power Station in<br />

Pennsylvania. Including the two<br />

Surry units, there are now six reactors<br />

in the vanguard of the SLR program,<br />

with more to come.<br />

“The Peach Bottom SLR application<br />

has been an excellent example<br />

of industry cooperation. We could<br />

not have submitted a high quality<br />

application without EPRI and<br />

DOE research, and the Nuclear<br />

Energy Institute leading the way<br />

on inter facing with the NRC on<br />

this process,” Exelon Vice President<br />

for Licensing and Decommissioning<br />

Mike Gallagher said. “We look<br />

forward to safely and efficiently<br />

operating Peach Bottom for many<br />

years to come.”<br />

The NRC has committed to completing<br />

SLR application reviews within<br />

an 18-month period, and is piloting<br />

this review schedule with one of the<br />

initial license renewal applications<br />

under way.<br />

The success of the program to date,<br />

including the NRC’s expedited review<br />

schedule, has resulted in the industry’s<br />

increasing confidence in the process.<br />

As shown by industry surveys<br />

conducted in 2017 and <strong>2018</strong>, more<br />

than half of nuclear plant licensees<br />

now want to pursue SLR applications<br />

(see accompanying chart).<br />

Among them is Dominion Energy,<br />

which already announced its intention<br />

to file an SLR application for<br />

its two North Anna Power Station<br />

units in Louisa County by 2020.<br />

Additional announcements are expected<br />

in 2019.<br />

More than half of the operating<br />

reactor fleet is anticipated to pursue<br />

license renewals to operate for 80<br />

years.<br />

| | www.nei.org<br />

Modification work results in<br />

capacity increase at Finland’s<br />

Loviisa reactors<br />

(nucnet) The net capacity of both<br />

nuclear power units at the Loviisa<br />

nuclear power station in Finland is<br />

now 507 MW (net) after modification<br />

and improvement work carried out<br />

during recent outages.<br />

Both units have seen their net<br />

capacity increase from the original<br />

design net capacity as the result of<br />

modifications and improvement work<br />

since they began commercial operation.<br />

According to the International<br />

Atomic Energy Agency’s reactor<br />

database, the units’ original design<br />

net capacity was 420 MW.<br />

Fortum said the most recent<br />

outages included “the most challenging”<br />

work in the Loviisa station’s<br />

history, both in terms of workload and<br />

how demanding the work was.<br />

Unit 1 returned to commercial<br />

operation on 18 October after an<br />

annual outage that lasted just over<br />

26 days. Earlier, Unit 2 returned to<br />

service on 21 September after an<br />

outage that lasted nearly 47 days.<br />

Loviisa-2 underwent an extensive<br />

outage that involved the standard<br />

periodic inspections performed<br />

every eight years in addition to<br />

the plant modification and improvement<br />

work.<br />

Loviisa-1 underwent a shorter<br />

refuelling outage, but modification<br />

and improvement work waswere also<br />

carried out, Fortum told NucNet.<br />

Several safety improvements were<br />

implemented for both units, including<br />

improvements to critical safety functions,<br />

maintenance work on the main<br />

generators and the replacement of<br />

generator stators.<br />

Fortum and Rolls-Royce signed<br />

an agreement in May 2014 for the<br />

modernisation of the most critical<br />

safety automation systems on both<br />

units at Loviisa. The work done by<br />

Rolls-Royce included the design,<br />

licensing, installation and commissioning<br />

of the new safety systems.<br />

Both Loviisa units are pressurised<br />

water reactors supplied by Russia.<br />

Unit 1 began commercial operation<br />

in May 1977 and Unit 2 in January<br />

1981.<br />

In 2017, the load factor at Loviisa<br />

was 92.9%, among the best in the<br />

world for PWR plants. The plant<br />

produced a total of 8.16 TWh of<br />

electricity, which is more than 10%<br />

of Finland’s total electricity production.<br />

In 2017, Fortum invested about<br />

€ 90 m in the Loviisa nuclear station.<br />

| | www.fortum.com<br />

Anglesey hearings mark<br />

beginning of six-month<br />

Wylfa Newydd planning<br />

examination<br />

(nucnet) Three days of hearings have<br />

being held as part of a six-month<br />

formal examination of plans to build<br />

two UK Advanced Boiling Water<br />

Reactors at the Wylfa Newydd<br />

nuclear power station on the isle<br />

of Anglesey in North Wales.<br />

The hearings began on 23 October<br />

as part of Horizon Nuclear Power’s<br />

development consent order application<br />

for the station, which will<br />

generate enough power for about<br />

five million homes.<br />

A five-member panel will consider<br />

and make a recommendation on the<br />

proposed power station to business<br />

secretary Greg Clark.<br />

Mr Clark will then decide whether<br />

to grant planning permission to build<br />

the main power station and other<br />

off-site integral developments.<br />

As the host local authority,<br />

Anglesey Council said it will play a<br />

key role in the examination process,<br />

ensuring that the Wylfa Newydd<br />

plans are scrutinised and challenged<br />

to secure the best possible outcome<br />

for the Island.<br />

Council leader Llinos Medi said:<br />

“The Wylfa Newydd power station<br />

is a huge energy infrastructure<br />

project of national significance. The<br />

sheer scale and complexity of the<br />

621<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

622<br />

NEWS<br />

DOD and a private reactor development<br />

company to start working on a<br />

project next year. And keep a watch<br />

out for the submission of microreactor<br />

applications to the NRC<br />

sometime before 2021.<br />

| | www.nei.org<br />

Company News<br />

| | Anglesey hearings mark beginning of six-month Wylfa Newydd planning examination<br />

application cannot be underestimated<br />

and its examination is vital.”<br />

A big move toward small:<br />

Micro-reactors and the<br />

Pentagon<br />

(nei) What’s New? The Pentagon,<br />

with the support of Congress, is<br />

exploring the potential for the<br />

deployment of micro-reactors at its<br />

defense installations. These reactors<br />

could run for years, independent of<br />

the grid, to provide secure, reliable<br />

power and sustain defense functions,<br />

including during an extended blackout.<br />

The Nuclear Energy Institute<br />

has released a Roadmap on what<br />

steps are needed for deployment.<br />

Fast Facts<br />

The U.S. Congress and U.S. Department<br />

of Defense (DOD) have been<br />

interested in the use of small reactors<br />

for nearly a decade. Deployment of<br />

micro-reactors for DOD could happen<br />

in as soon as five to seven years,<br />

replace conventional diesel generators<br />

or coal boilers with a new source<br />

of electricity that would operate independently<br />

of the power grid, and run<br />

cleanly and quietly for years, with<br />

long intervals between re-fuelings.<br />

DOD manages more than 500 fixed<br />

installations and is the single largest<br />

energy consumer in the U.S.<br />

These reactors are quite small with<br />

military installations likely exploring<br />

technology in the one to 10 megawatts-electric<br />

range. Many military<br />

bases will need multiple microreactors.<br />

They could desalinate water,<br />

generate hydrogen for fuel, and power<br />

computer installations. The main<br />

challenges are licensing, regulatory<br />

and business issues, not technology.<br />

NEI’s Roadmap for Micro-Reactor<br />

Deployment lays out the necessary<br />

steps, describes the timeline, and<br />

offers recommendations for facilitating<br />

micro-reactor deployment for<br />

the military.<br />

NEI anticipates that the reactors<br />

would be licensed by the Nuclear<br />

Regulatory Commission. They would<br />

be powered by uranium of a type<br />

that the government already has in<br />

inventory, although the uranium<br />

would have to be processed into the<br />

proper fuel form. While the focus of<br />

the roadmap is for military use, such<br />

reactors would also be useful in small<br />

communities off the grid, and in<br />

remote mining operations.<br />

What NEI’s Marc Nichol, director<br />

of new reactor deployment, has to say<br />

about this technology: “Small reactors<br />

are one of the most promising new<br />

nuclear technologies to emerge in<br />

decades. Energy is important to our<br />

national security; it must be reliable<br />

and resilient so that it’s there when<br />

our men and women in uniform<br />

need it. Micro-reactors can enhance<br />

our capabilities by providing that<br />

resilient, 24/7 energy.”<br />

What DoD’s Troy Warshel, director<br />

of operations at the Office of the<br />

Deputy Assistant Secretary for<br />

Operational Energy, has to say: “Ultimately<br />

our goal is resilience. And<br />

what does resilience mean for the<br />

Department of Defense? It means for<br />

our critical missions, when we flip the<br />

switch – there’s power. We see nuclear<br />

energy as a huge potential partner in<br />

achieving our resilience goals.”<br />

The Big Picture: The Pentagon’s<br />

interest in the technology signals<br />

strong confidence in nuclear energy to<br />

meet the Pentagon’s energy resilience<br />

goals. Through the National Defense<br />

Authorization Act the President has<br />

directed the Secretary of Energy to<br />

develop a report on a pilot program<br />

for deploying micro-reactors at<br />

national security facilities. His signature<br />

on the bill points to the<br />

Administration’s confidence in the nuclear<br />

industry to support the country’s<br />

national security interests.<br />

What to Look for Next: Within the<br />

next year, the Department of Energy<br />

will develop a report on a pilot program<br />

for deploying micro-reactors at<br />

national security facilities. Also, look<br />

for a formal engagement between<br />

Framatome and Entergy sign<br />

contract for accident tolerant<br />

fuel coated cladding delivery<br />

to ANO<br />

(framatome) Framatome signed a<br />

contract with Entergy to deliver and<br />

insert lead use fuel rods that utilize<br />

chromium-coated rods into Unit 1<br />

at Arkansas Nuclear One (ANO).<br />

Chromium coating is a feature of<br />

the accident tolerant fuel design<br />

that Framatome has been developing<br />

for several years as a part of the<br />

Department of Energy’s (DOE)<br />

Enhanced Accident Tolerant Fuel<br />

(EATF) program. This work also<br />

builds on several years of collaboration<br />

with its European partners,<br />

CEA and EDF in France, as well as<br />

Goesgen Nuclear Power Plant in<br />

Switzerland. Entergy will insert the<br />

lead use rods in fall 2019.<br />

“Our team has decades of<br />

experience researching, developing<br />

and advancing nuclear fuel technologies,”<br />

said Bob Freeman, vice<br />

president of Contracts and Services<br />

for the Fuel Business Unit of<br />

Framatome in the U.S. “Our enhanced<br />

accident tolerant fuel design builds<br />

on this experience and provides<br />

operators more time to respond<br />

in the event of an emergency, while<br />

improving fuel performance during<br />

normal operations.”<br />

The addition of a chromium<br />

coating to the fuel’s existing alloy<br />

cladding offers advantages, including<br />

improved resistance to oxidation at<br />

high temperatures, reduced hydrogen<br />

generation in accident conditions, and<br />

increased wear and debris resistance<br />

in normal operations.<br />

“Maintaining operational excellence,<br />

while safely producing lowcost,<br />

carbon- free electricity, is at the<br />

core of what we do at Entergy,” said<br />

John Elnitsky, senior vice president,<br />

Engineering and Technical Services<br />

at Entergy Nuclear. “These chro miumcoated<br />

rods will not only help<br />

improve fuel reliability for our<br />

customers but will also advance<br />

this important technology for our<br />

industry.”<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

Since 2014, the experienced<br />

experts at Framatome have driven<br />

the company’s program, building on<br />

the collective knowledge, skills and<br />

expertise of nuclear professionals<br />

from utilities, U.S. and French Institute<br />

national labs, universities and<br />

industry organizations around the<br />

world. Support from DOE has allowed<br />

Framatome to significantly beat its<br />

initial target of 2023 to deploy this<br />

technology, further protecting and<br />

advancing nuclear power.<br />

| | www.framatome.com<br />

US: Framatome signs contract<br />

to deliver ATRIUM 11 fuel to<br />

Talen Energy’s Susquehanna<br />

Station<br />

(framatome) Framatome signed a<br />

contract with Talen Energy’s<br />

Susquehanna Nuclear, LLC, to supply<br />

its advanced ATRIUM 11 fuel<br />

design. The company will deliver the<br />

first of six fuel reloads – consisting of<br />

approximately 300 fuel assemblies –<br />

in January 2021 to the site located<br />

in Berwick, Pennsylvania.<br />

Framatome has supplied Susquehanna<br />

Nuclear with fuel for every<br />

reload since 1983 under a series of<br />

competitively awarded contracts. To<br />

date, Framatome has delivered more<br />

than 10,500 fuel assemblies to<br />

Susquehanna and supported Talen<br />

Energy in reducing generating costs<br />

through new, more efficient fuel<br />

designs, shifting operations to longer<br />

cycles and increasing plant output<br />

to <strong>12</strong>0 percent of the initial rated<br />

power.<br />

“Our team at Framatome brings<br />

together the highest level of expertise<br />

and experience to deliver exceptional<br />

performance for our customers,” said<br />

Lionel Gaiffe, senior executive vice<br />

president in charge of the Fuel<br />

Business Unit of Framatome. “Our<br />

new ATRIUM 11 product helps<br />

Boiling Water Reactor (BWR) facilities<br />

meet and adapt to technically<br />

demanding operating requirements<br />

so that they may continue to safely<br />

and reliably generate electricity.”<br />

ATRIUM 11 is Framatome’s latest<br />

BWR fuel, featuring an 11x11 rod<br />

array, which offers increased safety<br />

and fuel cycle savings. The unique<br />

geometry of ATRIUM 11 inherently<br />

increases the amount of energy<br />

extracted from the fuel while reducing<br />

the power demand on individual<br />

fuel rods. As a result, customers can<br />

buy less uranium to meet cycle energy<br />

targets and increase power maneuvering<br />

agility to adapt to an evolving<br />

regional generation mix. A number<br />

of innovative protective features also<br />

help ensure failure-free operation<br />

over the life of the fuel.<br />

Framatome’s fuel fabrication<br />

facility in Richland, Washington,<br />

which has been in operation for nearly<br />

50 years, will manufacture the fuel<br />

assemblies that Susquehanna will use.<br />

The company also manufactures<br />

ATRIUM 11 in Lingen, Germany.<br />

Susquehanna Nuclear is the<br />

second customer to choose ATRIUM<br />

11 fuel in the U.S., and the design is<br />

currently operating in five reactors<br />

around the world. Two reactors in<br />

Europe received reload batches of<br />

ATRIUM 11 in early <strong>2018</strong>.<br />

With a combined output of<br />

2,600 MW-electric, the dual-unit<br />

Susquehanna site sits on 2,100 acres<br />

and is one of the largest nuclear<br />

generation facilities in the United<br />

States. Its two BWRs, which came<br />

into commercial operation in 1984<br />

and 1985, respectively, produce<br />

enough power to meet the needs of<br />

approximately two million homes.<br />

The plant provides jobs for nearly<br />

1,000 full-time employees.<br />

| | www.framatome.com<br />

Orano and the CEA provide<br />

demonstration of an innovative<br />

waste vitrification<br />

technology for Fukushima<br />

nuclear site<br />

Vitrification proven technology may<br />

be part of the solution for waste<br />

treatment on the Fukushima nuclear<br />

site. Since April 27th <strong>2018</strong>, ANADEC,<br />

the CEA and Orano are working<br />

on a project to evaluate the compatibility<br />

of the In-can vitrification<br />

process developed by the CEA, to<br />

treat nuclear waste from Fukushima<br />

Daiichi water treatment, such as<br />

sludge and mineral adsorbents.<br />

This project is divided in two main<br />

parts:<br />

• Durable waste form conditioning<br />

matrix formulations and studies,<br />

laboratory scale (100 gr), bench<br />

scale (1kg) and near-industrial<br />

scale (100 kg) tests are led in<br />

France at the CEA Marcoule laboratories<br />

and technological platforms,<br />

• Feasibility studies for process<br />

implementation, operation and<br />

maintenance principles and waste<br />

disposal are led by Orano teams.<br />

Laboratory tests and part of bench<br />

scale tests have already been performed<br />

with success and nearindustrial<br />

scale tests are under way.<br />

Feasibility studies will follow, in<br />

order to deliver complete results<br />

before end march 2019.<br />

In this project, technical and<br />

commercial interfaces in Japan are<br />

ensured by ANADEC, a joint venture<br />

between Orano and ATOX, a Japanese<br />

company specialized in nuclear<br />

services and maintenance.<br />

The CEA and Orano have developed<br />

vitrification processes and<br />

operated industrial vitrification<br />

facilities in France and abroad for<br />

more than 40 years, with rare<br />

expertise on formulation and longterm<br />

behavior of glasses for encapsulation<br />

of nuclear waste.<br />

| | orano.group<br />

First Westinghouse AP1000<br />

plant sanmen 1 begins<br />

commercial operation<br />

(westinghouse) Westinghouse Electric<br />

Company and its customers, China<br />

State Nuclear Power Technology<br />

Corporation (SNPTC) and CNNC<br />

Sanmen Nuclear Power Company<br />

Limited (SMNPC) announced today<br />

that the world’s first AP1000 plant<br />

located in Sanmen, Zhejiang Province,<br />

China, is fully operational.<br />

“Many years have been dedicated<br />

to successfully bringing the first<br />

AP1000 unit to life,” said José<br />

Emeterio Gutiérrez, Westinghouse<br />

president and chief executive officer.<br />

He added, “Our Westinghouse design<br />

and technology is now live and generating<br />

safe, clean energy.”<br />

The AP1000 plant, a Generation<br />

III+ two-loop pressurized water<br />

reactor (PWR), is considered the most<br />

advanced commercially available<br />

plant, offering an industry-leading<br />

design. The AP1000 plant features a<br />

passive safety design, harnessing<br />

the laws of nature including gravity<br />

and convection to support safe<br />

and efficient plant performance. The<br />

AP1000 plant is designed to safely and<br />

automatically shut down without<br />

operator action for up to 72 hours in<br />

the event of a design-basis incident.<br />

Additionally, Sanmen 1 and the<br />

AP1000 fleet effectively incorporate<br />

Westinghouse’s leading digital<br />

instrumentation and controls that<br />

enhance the reliability of plant control<br />

and safety systems through an integrated,<br />

plant-wide approach.<br />

The global AP1000 fleet is comprised<br />

of Sanmen 1 as well as five<br />

additional nuclear power plants<br />

progressing through construction,<br />

testing and start-up. The projects<br />

progressing through testing and<br />

start-up include a second unit in<br />

Sanmen, Zhejiang Province, and two<br />

units in Haiyang, Shandong Province,<br />

all in China. Additionally, there are<br />

623<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

624<br />

NEWS<br />

two units currently under construction<br />

at the Alvin W. Vogtle Electric<br />

Generating Plant near Waynesboro,<br />

Georgia, USA. Westinghouse is providing<br />

the design, critical equipment,<br />

training and testing for each of the<br />

units.<br />

| | www.westinghousenuclear.com<br />

Rosatom: The first large-scale<br />

NPP construction project in<br />

Uzbekistan launched<br />

(rosatom) The event marked the beginning<br />

of site surveys to determine<br />

the best location for construction:<br />

Geo technical drilling is currently<br />

underway at one of the sites, preselected<br />

for the project based on seismological,<br />

geological, environmental<br />

and economic feasibility studies.<br />

Uzbekistan’s President Shavkat<br />

Mirziyoyev and Russia’s President<br />

Vladimir Putin have launched the<br />

drilling by pressing a symbolic button.<br />

The Uzbekistan nuclear power<br />

plant will be the first large-capacity<br />

NPP in the Central Asia. The project<br />

envisages building two Generation<br />

III+ power units based on VVER-<strong>12</strong>00<br />

reactors. Thanks to its enhanced<br />

reliability and modern design, the<br />

facility will be fully compliant with the<br />

IAEA safety standards.<br />

“Uzbekistan and Russia have been<br />

cooperating in nuclear for more than<br />

half a century, and we are proud that<br />

Uzbekistan has chosen the Russian<br />

technology to build its first nuclear<br />

plant,” Rosatom’s Director General<br />

Alexey Likhachev said, speaking at the<br />

event.<br />

As of now, natural gas accounts for<br />

nearly 84% of Uzbekistan’s energy<br />

mix. The local government seeks to<br />

replace some of its gas power plants<br />

with nuclear generation. Doing so will<br />

help in raising Uzbekistan’s natural<br />

gas exports and make its energy mix<br />

‘greener’.<br />

On October 19, <strong>2018</strong>, Rosatom, the<br />

Academy of Sciences of Uzbekistan<br />

and the Nuclear Energy Development<br />

Agency (Uzatom) signed a memorandum<br />

on cooperation in workforce<br />

training for the country’s nuclear<br />

power sector and related industries.<br />

The memorandum also provides for<br />

a branch of the National Research<br />

Nuclear University (MEPhI) to be set<br />

up in Tashkent. These agreements will<br />

help Uzbekistan in developing nuclear<br />

infrastructure to operate the NPP<br />

safely.<br />

General Director of Uzatom<br />

Zhurabek Mirzamakhmudov, and<br />

Alexey Likhachev also signed a memorandum<br />

of understanding to raise<br />

public awareness regarding nuclear<br />

power in Uzbekistan.<br />

Likhachev told reporters that<br />

the contract for construction of<br />

Uzbekistan’s first nuclear power<br />

plant could be signed as soon as the<br />

spring of 2019.<br />

| | www.rosatom.ru<br />

Market data<br />

(All information is supplied without<br />

guarantee.)<br />

Nuclear Fuel Supply<br />

Market Data<br />

Information in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data for the formerly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

2014<br />

• Uranium: 28.10–42.00<br />

• Conversion: 7.25–11.00<br />

• Separative work: 86.00–98.00<br />

2015<br />

• Uranium: 35.00–39.75<br />

• Conversion: 6.25–9.50<br />

• Separative work: 58.00–92.00<br />

2016<br />

• Uranium: 18.75–35.25<br />

• Conversion: 5.50–6.75<br />

• Separative work: 47.00–62.00<br />

2017<br />

• Uranium: 19.25–26.50<br />

• Conversion: 4.50–6.75<br />

• Separative work: 39.00–50.00<br />

<strong>2018</strong><br />

January <strong>2018</strong><br />

• Uranium: 21.75–24.00<br />

• Conversion: 6.00–7.00<br />

• Separative work: 38.00–42.00<br />

February <strong>2018</strong><br />

• Uranium: 21.25–22.50<br />

• Conversion: 6.25–7.25<br />

• Separative work: 37.00–40.00<br />

March <strong>2018</strong><br />

• Uranium: 20.50–22.25<br />

• Conversion: 6.50–7.50<br />

• Separative work: 36.00–39.00<br />

April <strong>2018</strong><br />

• Uranium: 20.00–21.75<br />

• Conversion: 7.50–8.50<br />

• Separative work: 36.00–39.00<br />

May <strong>2018</strong><br />

• Uranium: 21.75–22.80<br />

• Conversion: 8.00–8.75<br />

• Separative work: 36.00–39.00<br />

June <strong>2018</strong><br />

• Uranium: 22.50–23.75<br />

• Conversion: 8.50–9.50<br />

• Separative work: 35.00–38.00<br />

July <strong>2018</strong><br />

• Uranium: 23.00–25.90<br />

• Conversion: 9.00–10.50<br />

• Separative work: 34.00–38.00<br />

August <strong>2018</strong><br />

• Uranium: 25.50–26.50<br />

• Conversion: 11.00–14.00<br />

• Separative work: 34.00–38.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

for Hard Coal<br />

Cross-border price for hard coal in<br />

[€/t TCE] and orders in [t TCE] for<br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

20<strong>12</strong>: 93.02; 27,453,635<br />

2013: 79.<strong>12</strong>, 31,637,166<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

2017: 91.28, 25,739,010<br />

<strong>2018</strong><br />

I. quarter: 89.88; 5,838,003<br />

II. quarter: 88.8258; 4,341,359<br />

Source: BAFA, some data provisional<br />

www.bafa.de<br />

EEX Trading Results<br />

September <strong>2018</strong><br />

(eex) In September <strong>2018</strong>, the<br />

European Energy Exchange (EEX)<br />

increased volumes on its power<br />

derivatives markets by 42% to<br />

377.1 TWh (September 2017:<br />

265.8 TWh) and, as a result, reached<br />

the highest monthly volume since<br />

November 2016. In particular, record<br />

volumes in Phelix-DE Futures<br />

(232.8 TWh) and Phelix-AT Futures<br />

(0.5 TWh) as well as in Futures for<br />

the Italy (62.1 TWh) and Spain<br />

(<strong>12</strong>.2 TWh) contributed to this<br />

development. Furthermore, volumes<br />

in power options increased by 60 %<br />

to <strong>12</strong>.2 TWh (September 2017:<br />

7.7 TWh). The September volume<br />

comprised 204.6 TWh traded at EEX<br />

via Trade Registration with subsequent<br />

clearing. Clearing and settlement<br />

of all exchange transactions was<br />

executed by European Commodity<br />

Clearing (ECC).<br />

On the EEX markets for emission<br />

allowances, the total trading volume<br />

increased by 69 % to 317.0 million<br />

tonnes of CO 2 in September<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

NEWS<br />

625<br />

| | Uranium spot market prices from 1980 to <strong>2018</strong> and from 2008 to <strong>2018</strong>. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

| | Separative work and conversion market price ranges from 2008 to <strong>2018</strong>. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.<br />

(Sep tember 2017: 187.8 million<br />

tonnes of CO 2 ). The EUA derivatives<br />

market accounted for a major share of<br />

the total volume with 94.5 million<br />

tonnes of CO 2 traded in EUA Futures<br />

and 149.7 million tonnes of CO 2<br />

traded in EUA Options. Primary<br />

market auctions contributed<br />

68.6 million tonnes of CO 2 to the<br />

total volume.<br />

The Settlement Price for base load<br />

contract (Phelix Futures) with<br />

delivery in 2019 amounted to<br />

53.71 €/MWh. The Settlement<br />

Price for peak load contract (Phelix<br />

Futures) with delivery in 2019<br />

amounted to 65.65 €/MWh.<br />

The EUA price with delivery in<br />

December <strong>2018</strong> amounted to<br />

18.91/25.24 €/ EUA (min./max.).<br />

October <strong>2018</strong><br />

(eex) In October <strong>2018</strong>, the European<br />

Energy Exchange (EEX) increased<br />

volumes on its power derivatives<br />

markets by 30% to 339.3 TWh<br />

( October 2017: 261,3 TWh). In particular,<br />

the 4-fold increase in Phelix-<br />

DE Futures to 204.4 TWh as well as<br />

power futures for Italy (60.9 TWh,<br />

+42%) and Spain (9.1 TWh, +32%)<br />

contributed to this development. EEX<br />

recorded a positive trend also in the<br />

smaller markets: In power futures for<br />

Great Britain, at <strong>12</strong>5,070 MWh, EEX<br />

recorded the highest trading volume<br />

since the launch of these products. In<br />

the Dutch markets, volumes increased<br />

by 18% to 2.1 TWh (October 2017:<br />

1.8 TWh). The October volume comprised<br />

185.0 TWh traded at EEX via<br />

Trade Registration with subsequent<br />

clearing. Clearing and settlement of<br />

all exchange transactions was executed<br />

by European Commodity Clearing<br />

(ECC).<br />

On the EEX markets for emission<br />

allowances, the total trading volume<br />

increased by 70% to 241.5 million<br />

tonnes of CO 2 in October (October<br />

2017: 142.3 million tonnes of CO 2 ). In<br />

particular, this increase is driven by<br />

the EUA Options with 89.6 million<br />

tonnes of CO 2 traded in October.<br />

Primary market auctions contributed<br />

87.6 million tonnes of CO 2 to the total<br />

volume.<br />

The Settlement Price for base load<br />

contract (Phelix Futures) with<br />

delivery in 2019 amounted to<br />

49.10 €/MWh. The Settlement<br />

Price for peak load contract (Phelix<br />

Futures) with delivery in 2019<br />

amounted to 60.30 €/MWh.<br />

The EUA price with delivery in<br />

December <strong>2018</strong> amounted to<br />

16.20/22.15 €/ EUA (min./max.).<br />

| | www.eex.com<br />

MWV Crude Oil/<br />

Product Prices<br />

August <strong>2018</strong><br />

(mwv) According to information<br />

and calculations by the Association<br />

of the German Petroleum Industry<br />

MWV e.V. in August <strong>2018</strong> the prices<br />

for super fuel, fuel oil and heating<br />

oil noted slightly higher compared<br />

with the pre vious month July <strong>2018</strong>.<br />

The average gas station prices for<br />

Euro super consisted of 149.44 €Cent<br />

( June <strong>2018</strong>: 147.45 €Cent, approx.<br />

+1.35 % in brackets: each information<br />

for pre vious month or rather previous<br />

month comparison), for diesel fuel of<br />

130.03 €Cent (<strong>12</strong>8.92; +1.11 %) and<br />

for heating oil (HEL) of 69.03 €Cent<br />

(67.15 €Cent, +1.88 %).<br />

Worldwide crude oil prices<br />

(monthly average price OPEC/Brent/<br />

WTI, Source: U.S. EIA) were slightly<br />

lower, approx. -2.60 % (+1.48 %) in<br />

August <strong>2018</strong> compared to July <strong>2018</strong>.<br />

The market showed a stable<br />

development with slightly lower<br />

prices; each in US-$/bbl: OPEC<br />

basket: 72.26(73,27); UK-Brent:<br />

72.53 (74.25); West Texas Intermediate<br />

(WTI): 68.06 (70.98).<br />

| | www.mwv.de<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 11/<strong>12</strong> ı November/December<br />

626<br />

Brexit and Trump Among Fresh<br />

Challenges for Nuclear in Year Ahead<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

UK-based energy<br />

writer and editor-inchief<br />

of Energy<br />

Storage Publishing.<br />

Links to reference<br />

sources:<br />

UK commitment<br />

to SMRs –<br />

https://bit.ly/2PO0hIc<br />

President Trump’s<br />

Iran statement –<br />

https://bit.ly/2yNtB82<br />

IAEA report –<br />

https://bit.ly/2xlpbnl<br />

John Shepherd<br />

As <strong>2018</strong> draws to a close, there have been several developments that will mean the new year dawning with fresh<br />

uncertainties on the horizon for the global nuclear energy industry.<br />

The clock that ticks towards 2019 is also counting down<br />

towards the departure of the UK from the European Union<br />

on 29 March – and nuclear is part of the biggest headache<br />

facing UK leaders because of the uncertainties that still<br />

surround Brexit.<br />

As I write, a ‘deal’ over the UK’s future relationship with<br />

the remaining states of the EU has yet to be done. Under a<br />

‘no deal’ scenario, the UK will no longer be a member of<br />

the Euratom Research and Training Programme, no longer<br />

a member of Fusion for Energy and therefore unable to<br />

collaborate on the International Thermonuclear Experimental<br />

Reactor (Iter) project through the EU.<br />

Adding to the UK’s dilemma is the fact that its electricity<br />

and gas markets have become increasingly connected with<br />

continental Europe over the years and a large proportion<br />

of power is piped to the UK through underwater electricity<br />

cables and gas pipelines.<br />

Analysts say Brexit may have no impact on the UK’s<br />

ability to use these interconnectors, but a divorce from the<br />

EU is unlikely to make it easier to ensure essential power is<br />

delivered in the event of wider European shortages. Which<br />

is why nuclear has come under increasing focus to help<br />

shore up security of energy supply.<br />

In the first week of November, UK nuclear energy<br />

minister Richard Harrington invited developers to submit<br />

design proposals for small modular nuclear reactors. The<br />

minister said the goal was “to identify potential risks with<br />

proposals early on, reducing investment risks for potential<br />

backers”. Support for SMRs in the UK has been gathering<br />

pace among policymakers in recent years and now appears<br />

to be in even sharper focus.<br />

It is unclear how investors will view post-Brexit, which<br />

is why Harrington also unveiled a £ 32 million (approximately<br />

€ 37 m) ‘advanced manufacturing and construction<br />

programme’, to allow companies to bid for funds to test<br />

new technologies, which he said would “iron out potential<br />

flaws before they start producing at scale”.<br />

In a related development, the UK signed a bilateral<br />

Nuclear Cooperation Agreement with Canada. This was<br />

the third such agreement signed by the UK in <strong>2018</strong> in<br />

readiness for Brexit and it will allow both sides to continue<br />

what the UK said was “mutually beneficial” civil nuclear<br />

cooperation after Euratom arrangements cease to apply<br />

in the UK.<br />

But fears over the potential impact of a no-deal divorce<br />

from the EU on the UK’s nuclear industry have been rightly<br />

raised by the Nuclear Industry Association (NIA). According<br />

to the NIA, the industry generates around a fifth of all<br />

electricity used in the UK, directly employs more than<br />

63,000 professionals and has the support of more than<br />

70 % of the public. In 2016, nuclear activities directly<br />

contributed £6.4 billion to gross domestic product in the<br />

UK. There is much at stake!<br />

NIA chief executive Tom Greatrex has said “the movement<br />

of people, goods, and services are essential to civil<br />

nuclear” as for other industry sectors, but he has bemoaned<br />

the “lack of detail from government on how this would<br />

work in a no deal scenario”, saying it is “critical this is fully<br />

detailed before March 2019”.<br />

Further uncertainty facing global nuclear in 2019<br />

comes from the US, where the Trump administration has<br />

announced a new policy framework for curtailing civil<br />

nuclear commerce with China. According to the US Nuclear<br />

Energy Institute (NEI), the move follows “concerns over<br />

Chinese diversion of sensitive technologies to military and<br />

other unauthorised uses”.<br />

The NEI has warned the new policy framework risks<br />

“commercial harms” to the industry at home and abroad.<br />

In addition to blocking transfers to China of advanced<br />

reactor and non light water small reactor technology, the<br />

NEI said the framework “will establish a presumption of<br />

denial for transfers to the China General Nuclear Power<br />

Group, a Chinese energy company that constructs and<br />

operates nuclear power plants, and for all new technology<br />

transfers” after 1 January <strong>2018</strong>.<br />

President Trump has also risked the further destabilisation<br />

of the international civil nuclear order by formally<br />

terminating US participation in the Iran nuclear deal<br />

( officially known as the Joint Comprehensive Plan of<br />

Action – JCPOA). As of 5 November <strong>2018</strong>, the last set of US<br />

sanctions lifted under the existing “terrible nuclear deal”<br />

would come back into force, the President said.<br />

The JCPOA was designed to end years of tension and<br />

fears about military aspects of Iran’s nuclear activities. All<br />

other signatories to the agreement have said it is working<br />

and that they want to keep it in place, without the US if<br />

necessary. But President Trump’s decision to pull out risks<br />

undoing all that has been achieved.<br />

The US decision also puts confidence in nuclear safeguards<br />

at risk, because the actions of the Trump administration<br />

are effectively an attack on the credibility of the<br />

International Atomic Energy Agency (IAEA), which has been<br />

tasked with monitoring Iran’s compliance with the JCPOA<br />

deal. If the so-called leader of the free world cannot trust in<br />

the work of the IAEA to establish nuclear transparency in<br />

Iran, but can trust the promises of North Korea to scale<br />

down its secret nuclear programme, the whole world has a<br />

problem.<br />

However, it would be wrong to suggest there is doom<br />

and gloom for nuclear everywhere we look.<br />

According to a recent report from the IAEA, nuclear<br />

power still generates almost 11 % of the world’s electricity<br />

– amounting to one-third of our planet’s low-carbon<br />

electricity. Global electricity demand is expected to almost<br />

double by 2050, so nuclear still has everything to play for.<br />

Author<br />

John Shepherd<br />

Shepherd Communications<br />

3 Brooklands<br />

West Sussex BN43 5FE, United Kingdom<br />

Nuclear Today<br />

Brexit and Trump Among Fresh Challenges for Nuclear in Year Ahead ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Rückbau kerntechnischer Anlagen<br />

In Kooperation mit<br />

TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Seminar:<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Seminarinhalte<br />

Genehmigungen für die Stilllegung und den Rückbau<br />

ı<br />

ı<br />

Gestaltung der Übergänge zwischen der Betriebs- und der Stilllegungsgenehmigung<br />

Gestaltung der Übergänge zwischen Genehmigungs- und Aufsichtsphase<br />

Rechtliche Gestaltung des Genehmigungsverfahrens<br />

ı<br />

ı<br />

ı<br />

ı<br />

Elemente des Umweltbereiches<br />

UVP und Erörterungstermin<br />

Anfechtung von Genehmigungen<br />

Stellungnahmen der EU-Kommission<br />

Reststoffe und Abfälle<br />

ı<br />

ı<br />

ı<br />

ı<br />

Vorstellung von Reststoffkonzepten<br />

Bewertung der Reststoffkonzepte<br />

Neue Regelungen zum Übergang der Entsorgungsverantwortung<br />

Entsorgungsfragen rund um Abfälle aus dem Rückbau<br />

Zielgruppe<br />

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, Mitarbeiterinnen und Mitarbeiter<br />

von Betreibern, Industrie und Dienstleistern, die sich mit der Thematik aktuell bereits beschäftigen<br />

oder sich künftig damit auseinander setzen werden.<br />

Maximale Teilnehmerzahl: <strong>12</strong> Personen<br />

Referenten<br />

Dr. Matthias Bauerfeind<br />

Dr. Christian Raetzke<br />

Wir freuen uns auf Ihre Teilnahme!<br />

ı Abteilung Stilllegung, Entsorgung, Reaktorphysik, TÜV SÜD Energietechnik<br />

GmbH Baden-Württemberg<br />

ı Rechtsanwalt, Leipzig<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termine<br />

2 Tage<br />

29. bis 30. Januar 2019<br />

24. bis 25. September 2019<br />

Tag 1: 10:30 bis 17:45 Uhr<br />

Tag 2: 09:00 bis 16:45 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de


Early Bird Discount!<br />

Register by 31 January and<br />

save up to 170,– €<br />

7 – 8 May 2019<br />

Estrel Convention Center Berlin, Germany<br />

www.amnt2019.com<br />

#50AMNT<br />

Plenary Keynote Selection<br />

› Thomas Bareiß MdB, Parliamentary State Secretary at the Federal Ministry for Economic Affairs<br />

and Energy (BMWi), Germany<br />

› Matthias Horx, Trend Researcher and Futurologist, Austria<br />

› William D. Magwood, IV, Director-General, Nuclear Energy Agency (NEA), France<br />

› Prof. Dr. Martin Neumann MdB, Speaker on Energy Policy of the FDP Parliamentary Group,<br />

German Bundestag, Germany<br />

› Prof. Dr. Renate Köcher, CEO, Institut für Demoskopie Allensbach, Germany<br />

› Uwe Stoll, Scientific and Technical Director, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)<br />

gGmbH, Germany<br />

Celebrate with us our 50 th anniversary<br />

Key Topics<br />

Outstanding Know-How & Sustainable Innovations<br />

Enhanced Safety & Operation Excellence<br />

Decommissioning Experience & Waste Management Solutions<br />

Media Partner<br />

The International Expert Conference on Nuclear Technology

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!