atw 2019-03

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

<strong>2019</strong><br />

3<br />

131<br />

Nuclear Power Plant<br />

Flexibility<br />

141 ı Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe<br />

149 ı Spotlight on Nuclear Law<br />

Extended Interim Storage – Impact on the<br />

Environmental Impact Assessment?<br />

151 ı Decommissioning and Waste Management<br />

The German Quiver Project<br />

ISSN · 1431-5254<br />

24.– €<br />

168 ı Special Topic | A Journey Through 50 Years AMNT<br />

Core Problems 1982 – More Open Discussion<br />

Register Now!

7. – 8. Mai <strong>2019</strong><br />

Estrel Convention Center Berlin, Deutschland<br />

www.unserejahrestagung.de<br />

#50AMNT<br />

Unsere 50. Jahrestagung gewährt einen Rückblick<br />

auf vergangene Tage und einen Ausblick auf die Zukunft<br />

– mit über raschenden Highlights, anspruchsvollen<br />

Vorträgen und spannenden Diskussionen.<br />

Registrieren Sie sich für die<br />

50. Jahrestagung Kerntechnik unter<br />

› www.amnt<strong>2019</strong>.com<br />

Medien Partner<br />

Lassen Sie sich dieses bemerkenswerte Jubiläum nicht entgehen!

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

0, the Facts Remain ...<br />

Dear reader, the number “0” certainly has a special meaning in the world of numbers, science and also in everyday<br />

life. For some it is a blessing, for others it is a curse. As the 37 th element in the roulette game, it guarantees the gambling<br />

casino a competitive advantage below the line on probabilities; as zero in philosophy, it represents nothing.<br />

Zero has a place in algebra and contrary to its “worthlessness”<br />

it is very meaningful: zero (0) is neither positive<br />

nor negative. It is completely harmless in addition and<br />

subtraction – it does not change a number in the result. In<br />

multiplication it makes everything null and void out of<br />

any number, no matter how large. As a divisor it is even<br />

forbidden in division, because it would overturn our<br />

complete number system.<br />

Since such numbers and number systems can be used<br />

independently of languages, they are also suitable for<br />

depicting connections uniformly and carefully, i.e. in an<br />

internationally understandable way.<br />

In the internationally agreed language of nuclear<br />

power, the “International Nuclear and Radiological Event<br />

Scale – INES” is certainly of particular importance as a<br />

­recognised classification system.<br />

Since 1990, i.e. for almost 30 years, events in the field of<br />

nuclear technology have been classified according to this<br />

scale, which was developed by the International Atomic<br />

Energy Agency (IAEA) and the Nuclear Energy Agency<br />

(NEA) of the Organisation for Economic Cooperation and<br />

Development (OECD). On the one hand, the INES scale<br />

should enable technical experts to explain the safety<br />

­significance of an event to the public in an understandable<br />

way. On the other hand, the public can interpret the<br />

­significance of events just as easily and clearly by means of<br />

absolute numbers. The INES evaluation scale comprises<br />

7 levels for the events recorded: from level 1 to level 7. The<br />

classification into the levels is based on safety-oriented or<br />

radiological criteria. Events of level 1 to 3 are classified as<br />

incident and events of level 4 to 7 are classified as accident<br />

with increasing consequences.<br />

In order to also record events that are neither incident<br />

nor accident and are generally referred to internationally<br />

as operating deviation, the level zero (0) below the actual<br />

INES scale has also been introduced. According to the<br />

­internationally valid and binding definition, these events<br />

have “no safety significance”.<br />

The application of the INES scale in 74 countries<br />

worldwide today – including all countries operating<br />

nuclear power plants – and the extension of the scale to<br />

other areas, such as medicine and the industrial application<br />

of radioisotopes and ionizing radiation sources,<br />

­underscores the practical benefits and broad acceptance of<br />

the scale. In addition, the IAEA contributes to the international<br />

public transparency of event reports by posting<br />

infor mation on the Internet platform www-news.iaea.org.<br />

The INES scale is not intended and not suitable for<br />

performance comparisons between the participating<br />

countries or for deriving safety-related developments<br />

from statistics – this has been agreed and recognised<br />

by all participating countries. Nevertheless, in the media<br />

context, “chronicles of incidents” or “evaluations” based<br />

on INES reports are sometimes almost ritualised. Germany<br />

is a well-known pioneer in this field and so the media,<br />

under the title “AKW Brokdorf und Grohnde melden<br />

meisten Störfälle” (“Brokdorf and Grohnde nuclear power<br />

plants report most incidents”), knew before the end of<br />

2018 on an internet blog post as a source that with<br />

79 incidents in 2018, “German nuclear power plants<br />

would have reported as many as they had not for 7 years”.<br />

However, all these incidents that have been cleverly<br />

verbally pushed into the realm of near catastrophes are<br />

­INES “zero” events, i.e. they have no safety significance<br />

and have no connection with the term “incident” nor the<br />

term “accident” – reading helps, understanding even more.<br />

It will now be a bit complicated for the interested citizen<br />

to get his own interpretation. The individual reports on<br />

“Reportable Events” available in the WWW at the Federal<br />

Office for the Safety of Nuclear Waste Management can<br />

be used to evaluate all reports and thus the safety-related<br />

“zero” summary for Germany's nuclear power plant<br />

operation in 2018 can be drawn – an optically differentiated<br />

presentation of these internationally agreed facts<br />

based on the INES criteria would already be helpful for the<br />

interested public at this point.<br />

Beyond journalistic attention, an evaluation of the<br />

­reportable events for Germany since their first application<br />

in 1991 shows that almost all (99 %) events are assigned to<br />

category “0” of the INES scale; i.e. with the participation<br />

and after determination by the responsible state authorities,<br />

events are "without safety-related" significance (this<br />

is no statement in terms of statistics!).<br />

The summary is: INES 0 = no “fault”, no “incident”, no<br />

“accident” – “0” in all its fullness of “nothing” and also<br />

actually a "zero report".<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

123<br />


Editorial<br />

0, the Facts Remain ...

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

EDITORIAL 124<br />

0, es bleibt dabei ...<br />

Liebe Leserin, lieber Leser, die Zahl „0“ besitzt in der Welt der Zahlen, der Wissenschaft und auch im Alltagsleben<br />

eine sicherlich besondere Bedeutung. Für die einen ist sie Segen, für die anderen ist sie Fluch. Dem Spielcasino<br />

garantiert sie als 37stes Element im Roulettespiel unter dem Strich über Wahrscheinlichkeiten den Wettbewerbsvorteil,<br />

als Null in der Philosophie stellt sie das Nichts dar.<br />

Die Null hat einen Platz in der Algebra und entgegen ihrer<br />

„Wertlosigkeit“ ist sie sehr bedeutungsvoll: Die Null (0) ist<br />

weder positiv noch negativ. In der Addition und Subtraktion<br />

ist sie völlig harmlos – sie verändert im Ergebnis<br />

keine Zahl. In der Multiplikation macht sie aus jeder noch<br />

so großen Zahl alles null und nichtig. Als Divisor ist sie<br />

in der Division sogar verboten, da sie unser komplettes<br />

Zahlensystem umwerfen würde.<br />

Da solche Zahlen und Zahlensysteme unabhängig von<br />

Sprachen verwendet werden können, eignen sie sich auch<br />

dazu, Zusammenhänge einheitlich und sorgfältig, also<br />

auch international verständlich, abzubilden.<br />

In der international vereinbarten Sprache der Kernenergie<br />

hat dabei sicherlich die „International Nuclear and<br />

Radiological Event Scale“, kurz INES, als anerkanntes<br />

Ordnungssystem einen besonderen Stellenwert.<br />

Seit 1990, also seit fast 30 Jahren, werden Ereignisse im<br />

Bereich der Kerntechnik gemäß dieser, von der Internationalen<br />

Atomenergie-Organisation (IAEO) und der<br />

Nuclear Energy Agency (NEA) der Organisation für wirtschaftliche<br />

Zusammenarbeit und Entwicklung (OECD)<br />

entwickelten, Skala eingestuft. Die INES-Skala soll es<br />

dabei einerseits den fachlichen Anwendern ermöglichen,<br />

der Öffentlichkeit auf verständliche Art und Weise die<br />

sicherheitstechnische Bedeutung eines Ereignisses zu<br />

erläutern, auf der anderen Seite kann die Öffentlichkeit<br />

anhand der Einordnung durch absolute Zahlenwerte<br />

ebenso einfach und deutlich die Bedeutung von Ereignissen<br />

interpretieren. Die INES-Bewertungskala umfasst dazu<br />

7 Stufen für die erfassten Ereignisse: von der Stufe 1 bis<br />

zur Stufe 7. Die Einordnung in die Stufen erfolgt anhand<br />

sicherheitsorientierter bzw. radiologischer Kriterien.<br />

Dabei sind Ereignisse der Stufen 1 bis 3 als Störungen<br />

(engl. incident) deklariert und Ereignisse der Stufen 4 bis<br />

7 als Unfälle (engl. accident) mit jeweils zunehmendem<br />

Ausmaß von Folgen.<br />

Um auch Ereignisse zu erfassen, die weder als Störfall<br />

noch als Unfall gelten und allgemein international als<br />

Betriebsabweichung bezeichnet sind, ist zudem die<br />

unterhalb der eigentlichen INES-Skala liegende Stufe<br />

„Null“ (0) eingeführt. Nach der international gültigen und<br />

­verbindlichen Definition haben diese Ereignisse „keine<br />

­sicherheitstechnische Bedeutung“ („no safety significance“).<br />

Die Anwendung der INES-Skala in heute 74 Ländern<br />

weltweit – mit dabei sind alle Kernkraftwerke betreibenden<br />

Staaten – und die Erweiterung der Skala auf<br />

­weitere Bereiche, wie z.B. die Medizin und die industrielle<br />

Anwendung von Radioisotopen und ionisierenden<br />

Strahlen quellen, unterstreicht den praktischen Nutzen<br />

und die breite Akzeptanz der Skala. Zudem trägt die IAEO<br />

durch das Einstellen von Informationen auf der Internetplattform<br />

www-news.iaea.org zur internationalen öffentlichen<br />

Transparenz von Ereignismeldungen bei.<br />

Die INES-Skala ist nicht dazu vorgesehen und auch<br />

nicht dafür geeignet Performance-Vergleiche unter den<br />

beteiligten Ländern anzustellen oder gar mittels Statistik<br />

sicherheitstechnische Entwicklungen abzuleiten – dies<br />

haben alle beteiligten Staaten vereinbart und anerkannt.<br />

Dennoch finden sich im medialen Kontext teils fast<br />

schon ritualisiert auf INES-Meldungen basierte „Störfallchroniken“<br />

oder „Auswertungen“. Deutschland ist hier<br />

­bekannter Vorreiter und so wussten Medien unter dem<br />

Titel „AKW Brokdorf und Grohnde melden meiste Störfälle“<br />

auf einem Internet-Blog-Beitrag als Quelle aufgesetzt<br />

schon vor Jahresende 2018, dass „deutsche Atomanlagen“<br />

mit 79 Vorfällen in 2018 so viele wie seit 7 Jahren<br />

nicht mehr gemeldet hätten. Alle diese geschickt verbal in<br />

den Bereich der Beinahekatastrophe geschobenen Vorfälle<br />

sind allerdings INES-„Null“-Ereignisse, die also keine<br />

sicherheitstechnische Bedeutung haben und in keinem<br />

Zusammenhang mit dem Begriff „Störfall“ stehen – Lesen<br />

hilft, verstehen noch mehr.<br />

Etwas aufwändig wird es nun für den interessierten<br />

Bürger sich dazu ein eigenes Bild zu verschaffen. Über die<br />

im WWW verfügbaren Einzelberichte zu „Meldepflichtigen<br />

Ereignissen“ beim Bundesamt für kerntechnische<br />

Entsorgungssicherheit lassen sich alle Meldungen auswerten<br />

und so kann das sicherheitstechnische „Null“­<br />

Resümee für Deutschlands Kernkraftwerksbetrieb des<br />

Jahres 2018 gezogen werden – eine optisch anhand der<br />

INES­ Kriterien offensichtliche Darstellung dieser international<br />

vereinbarten Fakten wäre an dieser Stelle für die<br />

interessierte Öffentlichkeit sicherlich auch hilfreich.<br />

Jenseits publizistischer Aufmerksamkeit ist mit einer<br />

Auswertung der Meldepflichtigen Ereignisse für Deutschland<br />

seit erster Anwendung im Jahr 1991 festzuhalten,<br />

dass nahezu alle (99 %) Ereignisse der Kategorie „0“<br />

der INES-Skala zugeordnet sind; also mit Beteiligung<br />

und nach Festlegung durch die verantwortlichen staatlichen<br />

Behörden Ereignisse „ohne sicherheitstechnische“<br />

Bedeutung sind (dies ist keine (!) statistische Aussage).<br />

Das Resümee lautet: INES 0 = keine „Störung“, kein<br />

„Störfall“, kein „Unfall“ – „0“ in seiner ganzen Fülle des<br />

„Nichts“ und auch eigentlich eine „Null-Meldung“.<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

0, the Facts Remain ...

Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.<strong>2019</strong> Berlin<br />

Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke 02.04.<strong>2019</strong><br />

22.10.<strong>2019</strong><br />

Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. <strong>03</strong>.04.<strong>2019</strong> Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chancen und Regularien<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

RA Kay Höft M. A.<br />

O. L. Kreuzer<br />

Dr.-Ing. Wolfgang Steinwarz<br />

Berlin<br />

04.06.<strong>2019</strong> Berlin<br />

12.06. - 13.06.<strong>2019</strong> Berlin<br />

Schlüsselfaktor Interkulturelle Kompetenz –<br />

International verstehen und verstanden werden<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –<br />

Themen und Formate<br />

Angela Lloyd 20.<strong>03</strong>.<strong>2019</strong> Berlin<br />

Dr. Nikolai A. Behr 05.11. - 06.11.<strong>2019</strong> Berlin<br />

November <strong>2019</strong><br />

Greifswald/<br />

Lubmin<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Matthias Bauerfeind<br />

RA Dr. Christian Raetzke<br />

04.04. - 05.04.<strong>2019</strong><br />

25.06. - 26.06.<strong>2019</strong><br />

10.09.-.11.09.<strong>2019</strong><br />

Berlin<br />

24.09. - 25.09.<strong>2019</strong> Berlin<br />

3 Nuclear English<br />

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 10.04. - 11.04.<strong>2019</strong><br />

18.09. - 19.09.<strong>2019</strong><br />

Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.<strong>2019</strong> Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Berlin<br />

Erfolgreicher Wissenstransfer in der Kern technik –<br />

Methoden und praktische Anwendung<br />

Veränderungsprozesse gestalten – Heraus forderungen<br />

meistern, Beteiligte gewinnen<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

26.<strong>03</strong>. - 27.<strong>03</strong>.<strong>2019</strong> Berlin<br />

26.11. - 27.11.<strong>2019</strong> Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


126<br />

Issue 3 | <strong>2019</strong><br />

March<br />

Contents<br />

Editorial<br />

0, the Facts Remain ... E/G . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

Inside Nuclear with NucNet<br />

Why UK Is Banking on SMRs as the Future of Nuclear . . . . . . . .128<br />

DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Nuclear Power Plant Flexibility at EDF. . . . . . . . . . . . . . . . . .131<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe . . . . . . . . . . . . . . . . . .141<br />

Spotlight on Nuclear Law<br />

Extended Interim Storage – Impact on the Environmental<br />

Impact Assessment? G . . . . . . . . . . . . . . . . . . . . . . . . . . .149<br />

Decommissioning and Waste Management<br />

The German Quiver Project<br />

Quivers for Damaged and Non-Standard Fuel Rods . . . . . . . . . 151<br />

Advanced Sectorial Gamma Scanning for the Radiological<br />

Characterization of Radioactive Waste Packages . . . . . . . . . . .160<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Annual Meeting in Mannheim:<br />

Core Problems 1982 – More Open Discussion on Old<br />

and New Insights and Barriers to Progress G . . . . . . . . . . . . . 168<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172<br />

Cover:<br />

Control rod drive mechanism of nuclear power<br />

plant Krümmel/Germany. Copyright: Bernhard<br />

Ludewig.<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173<br />

Nuclear Today<br />

Is the UK Ready to See Nuclear Fade Before It Can Shine? . . . . . 178<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

127<br />

Feature<br />

Major Trends in Energy Policy<br />

and Nuclear Power<br />


131 Nuclear Power Plant Flexibility at EDF<br />

Patrick Morilhat, Stéphane Feutry,<br />

Christelle Lemaitre and Jean Melaine Favennec<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

141 Wind Energy in Germany and Europe<br />

Thomas Linnemann and Guido S. Vallana<br />

Spotlight on Nuclear Law<br />

149 Extended Interim Storage – Impact<br />

on the Environmental Impact Assessment?<br />

Verlängerte Zwischenlagerung – Auswirkungen<br />

auf die Umweltverträglichkeitsprüfung?<br />

Tobias Leidinger<br />

Decommissioning and Waste Management<br />

151 The German Quiver Project<br />

Quivers for Damaged and Non-Standard Fuel Rods<br />

Sascha Bechtel, Wolfgang Faber, Hagen Höfer,<br />

Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft<br />

Special Topic | A Journey Through 50 Years AMNT<br />

168 Annual Meeting in Mannheim:<br />

Core Problems 1982 – More Open Discussion<br />

on Old and New Insights and Barriers to Progress<br />

Jahrestagung in Mannheim:<br />

Kernprobleme 1982 – Offenere Diskussion<br />

alter und neuer Erkenntnisse und Hemmnisse<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

128<br />

Why UK Is Banking on SMRs<br />

as the Future of Nuclear<br />


Vincent Zabielski is a<br />

specialist nuclear<br />

lawyer at Londonbased<br />

law firm<br />

Pillsbury, focusing on<br />

international nuclear<br />

energy matters,<br />

including advice<br />

related to new-build<br />

EPC contracts, power<br />

purchase agreements,<br />

operation and maintenance,<br />

fuel supply<br />

chain, liability issues,<br />

and export controls.<br />

Before joining<br />

Pillsbury, he was<br />

senior nuclear counsel<br />

for the United Arab<br />

Emirates’ nuclear new<br />

build programme,<br />

where he was<br />

responsible for<br />

integration of nuclear<br />

licensing strategy<br />

with the largest-ever<br />

public financing of a<br />

public works project.<br />

The UK is making significant investment in the development of small modular reactors and, despite<br />

­challenges, could have its first unit up and running in the early 2<strong>03</strong>0s, says London-based nuclear lawyer<br />

Vincent Zabielski.<br />

Small modular reactors (SMR) promise to bring<br />

nuclear power to the masses, revolutionising<br />

the nuclear power industry by making its production<br />

increasingly affordable and available to a far wider market.<br />

SMRs are standardised products that are made on a<br />

factory production line, rather than bespoke machines<br />

that are constructed onsite one at a time. Mass production<br />

will ensure consistency in quality and drive down unit<br />

costs, compared to traditional, one-off, and complex large<br />

reactor designs.<br />

SMR components will be much cheaper to transport<br />

than those used in traditional large reactors. SMR reactor<br />

plant and supporting components are all compact enough<br />

to be transported from factory to construction site by boat,<br />

lorry or railway; unlike the huge transporters and road<br />

closures that are required for larger conventional plants.<br />

These designs are also much safer: the smaller reactor<br />

cores, simpler systems, and reliance on built-in passive<br />

safety features all mean that the size of the emergency<br />

planning zone can be reduced to the boundary of the plant,<br />

in contrast to the “plume exposure pathway”, which is up<br />

to 16 km, for traditional large nuclear plants.<br />

In countries with a smaller electrical grid, for example<br />

sub-Saharan Africa and the polar north, SMRs offer<br />

advantages for ensuring grid stability. Their power can be<br />

delivered in bite-sized morsels to the wider grid, resulting<br />

in a stable and incremental expansion of the grid as<br />

demand increases.<br />

SMRs are also much less demanding in terms of siting<br />

as they do not require the same large, low-population<br />

zones as traditional reactors.<br />

Safety improvements aside, the largest economic<br />

advantage of modular design is the great reduction in<br />

­construction risk. Thanks to an SMR’s factory construction,<br />

the site hosting it can be prepared before it arrives,<br />

minimising expensive contract variations. This reduction<br />

in construction risk should mean that budgets and timelines<br />

will be met more reliably.<br />

The UK is easily the most progressive western country<br />

when it comes to nuclear power. The government is taking<br />

steps in the right direction with significant investment in<br />

SMRs, including a fund of up to £20m for supply chain<br />

­development, £7m for regulatory readiness, and up to<br />

£44m in an advanced modular reactor feasibility and<br />

­development project. In June 2018, the Department for<br />

Business, Energy & Industrial Strategy issued its ambitious<br />

nuclear sector deal policy paper. This paper presents plans<br />

for cooperation between the government and the civilian<br />

sector. Those plans include a 30 % reduction in the cost of<br />

new-build projects by 2<strong>03</strong>0; lower generation costs and a<br />

20 % reduction in decommissioning costs to the taxpayer;<br />

and a more competitive supply chain, with more UK<br />

companies using advanced manufacturing methods and<br />

entering domestic and export markets for nuclear goods<br />

and services.<br />

As part of the nuclear sector deal, the government will<br />

set out a framework to support the development and<br />

deployment of SMRs and the technologies that support<br />

them.<br />

The UK nuclear regulatory framework is goal-based<br />

rather than prescriptive, which makes the UK particularly<br />

attractive for deploying SMRs. While nuclear reactor<br />

vendors are required to demonstrate their safety case to<br />

the Office of Nuclear Regulation, the regulations do not<br />

prescribe any particular design solution. In other words,<br />

the ONR requires that SMRs be safe, but it doesn’t tell the<br />

manufacturer how to make them safe – that is the job of<br />

the designer.<br />

As for cost, the current market for nuclear power is<br />

largely limited to wealthy buyers with deep pockets. But,<br />

thanks to its small and modular design, the production<br />

time, introduction period and safety management of SMRs<br />

are all considerably reduced. With this in mind, the cost of<br />

implementing this technology into global power grids<br />

should be significantly lower than traditional large<br />

reactors.<br />

The other positive news is that development of SMRs in<br />

the UK should not be disproportionately impacted by<br />

Brexit and withdrawal from the Euratom treaty. In the very<br />

near term, the UK will need to establish bilateral nuclear<br />

cooperation treaties with major supplier countries in the<br />

EU and elsewhere, but it has already begun to do this.<br />

Western powers, such as Canada, France and the US,<br />

are developing SMRs. There are also promising new<br />

designs from China, Russia, and Japan. However, it seems<br />

that the UK is the most likely to make the greatest strides in<br />

SMR development, given the government’s support of<br />

nuclear.<br />

Realistically, the earliest an SMR will be operational in<br />

the UK is probably the early 2<strong>03</strong>0s. That may seem a long<br />

time, but there is a lot that needs to happen between now<br />

and commercial operation.<br />

Supply chains will need to be developed, ONR generic<br />

design assessments will need to be completed, the SMR<br />

manufacturing facility will need to be designed and built,<br />

and a site will need to be identified and prepared to accept<br />

the SMR. All of this takes time, but if the government holds<br />

its current course, all of these challenges can be overcome.<br />

Vincent Zabielski<br />

Inside Nuclear with NucNet<br />

Why UK Is Banking on SMRs as the Future of Nuclear

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Notes<br />

Will Electricity Demand Be Secured in Germany?<br />

The Ministry of the Environment, Climate Protection and the Energy<br />

Sector Baden-Württemberg published a study by the University of<br />

Stuttgart and the German Aerospace Centre (DLR) called “Security<br />

of Energy Supplies in Southern Germany till 2025 – Cover of<br />

Demand in Extreme Situations?”. The objective of this study is to<br />

show if the energy supply of Southern Germany and Germany<br />

as a whole will be secure under new circumstances.<br />

The table below shows the load balance of Germany as a whole.<br />

For self-sufficient consideration, there will be a deficit from the year<br />

<strong>2019</strong>. It could be covered on the one hand by the Guaranty Standby<br />

(2.6 GW) and the Capacity Reserve (1.9 GW) or on the other hand<br />

by imports from foreign countries. Despite all three reserves, the<br />

demand cannot be longer covered from the year 2023 after all<br />

nuclear power plants will be shut down.<br />


129<br />

There are two different scenarios. The scenario without accelerated<br />

coal phase-out is based on the shutdown of power plants referred<br />

to their supposed life cycle. In contrast to this, the scenario<br />

with accelerated coal phase-out assumes that there will be an<br />

accele rated decline of capacity of coal-fired power plants from<br />

the year 2021 (based on a study by Agora Energiewende, 2016*).<br />

Maximum Load, Secured Load and Balance of Germany<br />

[GW] 2017 2018 <strong>2019</strong> 2020 2021 2022 2023 2024 2025<br />

Max. Load 80.3 79.3 78.2 77.1 76.1 75.0 74.0 73.0 72.0<br />

Guaranty Standby (GS), Grid Reserve (GR), Capacity Reserve (CR)<br />

GS 0.9 1.8 2.6 2.6 2.2 1.7 0.7 0.0 0.0<br />

GR 6.6<br />

CR 0.0 0.0 1.9<br />

Scenario without accelerated coal phase-out<br />

Assured Capacity 86.8 79.3 74.5 71.5 70.4 66.8 62.4 60.9 59.8<br />

Balance 6.5 0.0 -3.7 -5.6 -5.7 -8.2 -11.6 -12.1 -12.2<br />

Balance (incl. GS & CR) 7.4 1.8 0.8 -1.1 -1.6 -4.6 -9.0 -10.2 -10.3<br />

Balance (incl. GS, GR & CR) 14.0 8.4 7.4 5.5 5.0 2.0 -2.4 -3.6 -3.7<br />

Scenario with accelerated coal phase-out<br />

Assured Capacity 86.8 79.3 74.5 71.5 70.4 65.0 58.8 56.5 54.1<br />

Balance 6.5 0.0 -3.7 -5.6 -5.7 -10.0 -15.2 -16.5 -17.9<br />

Balance (incl. GS & CR) 7.4 1.8 0.8 -1.1 -1.6 -6.4 -12.6 -14.6 -16.0<br />

Balance (incl. GS, GR & CR) 14.0 8.4 7.4 5.5 5.0 0.2 -6.0 -8.0 -9.4<br />

Guaranty Standby: Inoperative coal-fired power plants which can be restarted in extreme situations.<br />

Grid Reserve: Inoperative power plants in Southern Germany which can be restarted if the grid cannot transfer electricity from the windy north to<br />

the south (mainly in winter).<br />

Capacity Reserve: Inoperative power plants which can be restarted in less than 12 hours to cover load peaks (coal-fired plants are not suitable).<br />

https://bit.ly/2If853o<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

DAtF<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

kernenergie.de<br />

www.kernenergie.de<br />

DAtF Notes

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Calendar<br />

130<br />

<strong>2019</strong><br />


<strong>03</strong>.<strong>03</strong>.-07.<strong>03</strong>.<strong>2019</strong><br />

WM Symposia – WM<strong>2019</strong>. Phoenix, AZ, USA,<br />

www.wmsym.org<br />

05.<strong>03</strong>.-06.<strong>03</strong>.<strong>2019</strong><br />

VI. International Power Plants Summit.<br />

Istanbul, Turkey, INPPS Fair,<br />

www.nuclearpowerplantssummit.com<br />

10.<strong>03</strong>.-15.<strong>03</strong>.<strong>2019</strong><br />

83. Annual Meeting of DPG and DPG Spring<br />

Meeting of the Atomic, Molecular, Plasma Physics<br />

and Quantum Optics Section (SAMOP),<br />

incl. Working Group on Energy. Rostock, Germany,<br />

Deutsche Physikalische Gesellschaft e.V.,<br />

www.dpg-physik.de<br />

10.<strong>03</strong>.-14.<strong>03</strong>.<strong>2019</strong><br />

The 9 th International Symposium on Supercritical-<br />

Water-Cooled Reactors (ISSCWR-9). Vancouver,<br />

British Columbia, Canada, Canadian Nuclear Society<br />

(CNS), www.cns-snc.ca<br />

11.<strong>03</strong>.-13.<strong>03</strong>.<strong>2019</strong><br />

18 th Workshop of the European ALARA Network:<br />

ALARA in Decommissioning and Site Remediation.<br />

Marcoule, France, European ALARA Network<br />

www.eu-alara.net<br />

11.<strong>03</strong>.-12.<strong>03</strong>.<strong>2019</strong><br />

Carnegie International Nuclear Policy Conference.<br />

Washington D.C., U.S.A., Carnegie Endownment for<br />

International Peace, carnegieendowment.org<br />

13.<strong>03</strong>. – 14.<strong>03</strong>.<strong>2019</strong><br />

Nuclear Engineering for Safety,<br />

Control & Security. Bristol, UK,<br />

The IET, https://events.theiet.org<br />

13.<strong>03</strong>. – 15.<strong>03</strong>.<strong>2019</strong><br />

NUGENIA Forum <strong>2019</strong>. Paris, France, NUGENIA,<br />

www.nugenia.eu<br />

<br />

24.<strong>03</strong>.-28.<strong>03</strong>.<strong>2019</strong><br />

RRFM <strong>2019</strong> – <strong>2019</strong> the European Research<br />

Reactor Conference. Jordan, IGORR, the International<br />

Group Operating Research Reactors and European<br />

Nuclear Society (ENS), www.euronuclear.org<br />

25.<strong>03</strong>.-27.<strong>03</strong>.<strong>2019</strong><br />

Cyber Security Implementation Workshop.<br />

Boston MA, USA, Nuclear Energy Institute (NEI),<br />

www.nei.org<br />

01.04.-<strong>03</strong>.04.<strong>2019</strong><br />

CIENPI – 13 th China International Exhibition on<br />

Nuclear Power Industry. Beijing, China,<br />

Coastal International, www.coastal.com.hk<br />

09.04.-11.04.<strong>2019</strong><br />

World Nuclear Fuel Cycle <strong>2019</strong>. Shanghai, China,<br />

World Nuclear Association (WNA), Miami, Florida,<br />

USA, www.wnfc.info<br />

ATOMEXPO <strong>2019</strong>. Sochi, Russia,<br />

<strong>2019</strong>.atomexpo.ru/en/<br />

15.04.-16.04.<strong>2019</strong><br />

07.05.-08.05.<strong>2019</strong><br />

50 th Annual Meeting on Nuclear Technology<br />

AMNT <strong>2019</strong> | 50. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.amnt<strong>2019</strong>.com – Register Now!<br />

15.05.-17.05.<strong>2019</strong><br />

1 st International Conference of Materials,<br />

Chemistry and Fitness-For-Service Solutions<br />

for Nuclear Systems. Toronto, Canada, Canadian<br />

Nuclear Society (CNS), www.cns-snc.ca<br />

16.05.-17.05.<strong>2019</strong><br />

Emergency Power Systems at Nuclear Power<br />

Plants. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de/eps-symposium<br />

24.05.-26.05.<strong>2019</strong><br />

International Topical Workshop on Fukushima<br />

Decommissioning Research – FDR<strong>2019</strong>. Fukushima,<br />

Japan, The University of Tokyo, fdr<strong>2019</strong>.org<br />

29.05.-31.05.<strong>2019</strong><br />

Global Nuclear Power Tech. Seoul, South Korea, Korea<br />

Electric Engineers Association, electrickorea.org/eng<br />

<strong>03</strong>.06.-05.06.<strong>2019</strong><br />

Nuclear Energy Assembly. Washington DC, USA,<br />

Nuclear Energy Institute (NEI), www.nei.org<br />

<strong>03</strong>.06.-07.06.<strong>2019</strong><br />

World Nuclear University Short Course:<br />

The World Nuclear Industry Today.<br />

Rio de Janeiro, Brazil, World Nuclear University,<br />

www.world-nuclear-university.org<br />

04.06.-07.06.<strong>2019</strong><br />

FISA <strong>2019</strong> and EURADWASTE ‘19. 9 th European<br />

Commission Conferences on Euratom Research<br />

and Training in Safety of Reactor Systems and<br />

Radioactive Waste Management. Pitesti, Romania,<br />

www.nucleu2020.eu<br />

24.06.-28.06.<strong>2019</strong><br />

<strong>2019</strong> International Conference on the Management<br />

of Spent Fuel from Nuclear Power Reactors.<br />

Vienna, Austria, International Atomic Energy Agency<br />

(IAEA), www.iaea.org<br />

23.06.-27.06.<strong>2019</strong><br />

World Nuclear University Summer Institute.<br />

Romania and Switzerland, World Nuclear University,<br />

www.world-nuclear-university.org<br />

21.07.-24.07.<strong>2019</strong><br />

14 th International Conference on CANDU Fuel.<br />

Mississauga, Ontario, Canada, Canadian Nuclear<br />

Society (CNS), www.cns-snc.ca<br />

28.07.-01.08.<strong>2019</strong><br />

Radiation Protection Forum. Memphis TN, USA,<br />

Nuclear Energy Institute (NEI), www.nei.org<br />

29.07.-02.08.<strong>2019</strong><br />

27 th International Nuclear Physics Conference<br />

(INPC). Glasgow, Scotland, inpc<strong>2019</strong>.iopconfs.org<br />

04.08.-09.08.<strong>2019</strong><br />

PATRAM <strong>2019</strong> – Packaging and Transportation<br />

of Radioactive Materials Symposium.<br />

New Orleans, LA, USA. www.patram.org<br />

21.08.-30.08.<strong>2019</strong><br />

Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />

FJOH-<strong>2019</strong> – Innovative Reactors: Matching the<br />

Design to Future Deployment and Energy Needs.<br />

Karlsruhe, Germany, Nuclear Energy Division<br />

of Commissariat à l’énergie atomique et aux<br />

énergies alternatives (CEA) and Karlsruher Institut<br />

für Technologie (KIT), www.fjohss.eu<br />

04.09.-06.09.<strong>2019</strong><br />

World Nuclear Association Symposium <strong>2019</strong>.<br />

London, UK, World Nuclear Association (WNA),<br />

www.wna-symposium.org<br />

04.09.-05.09.<strong>2019</strong><br />

VGB Congress <strong>2019</strong> – Innovation in Power<br />

Generation. Salzburg, Austria, VGB PowerTech e.V.,<br />

www.vgb.org<br />

08.09.-11.09.<strong>2019</strong><br />

4 th Nuclear Waste Management,<br />

Decommissioning and Environmental Restoration<br />

(NWMDER). Ottawa, Canada, Canadian Nuclear<br />

Society (CNS), www.cns-snc.ca<br />

09.09.-12.09.<strong>2019</strong><br />

24 th World Energy Congress. Abu Dhabi, UAE,<br />

www.wec24.org<br />

09.09.-12.09.<strong>2019</strong><br />

Jahrestagung <strong>2019</strong> – Fachverband für<br />

Strahlenschutz | Strahlenschutz und Medizin.<br />

Würzburg, Germany,<br />

www.fs-ev.org/jahrestagung-<strong>2019</strong><br />

16.09.-20.09.<strong>2019</strong><br />

63 rd Annual Conference of the IAEA. Vienna,<br />

Austria, International Atomic Energy Agency (IAEA),<br />

www.iaea.org/about/governance/generalconference<br />

07.10. – 11.10.<strong>2019</strong><br />

International Conference on Climate Change and<br />

the Role of Nuclear Power. Vienna, Austria,<br />

IAEA, www.iaea.org<br />

07.10. – 18.10.<strong>2019</strong><br />

ICTP-IAEA Nuclear Energy Management School.<br />

Trieste, Italy, IAEA, www.iaea.org<br />

15.10. – 18.10.<strong>2019</strong><br />

Technical Meeting on Siting for Nuclear Power<br />

Plants. Vienna, Austria, IAEA, www.iaea.org<br />

22.10.-25.10.<strong>2019</strong><br />

SWINTH-<strong>2019</strong> Specialists Workshop on Advanced<br />

Instrumentation and Measurement Techniques<br />

for Experiments Related to Nuclear Reactor<br />

Thermal Hydraulics and Severe Accidents.<br />

Livorno, Italy, www.nineeng.org/swinth<strong>2019</strong>/<br />

23.10.- 24.10.<strong>2019</strong><br />

Chemistry in Power Plants. Würzburg, Germany,<br />

VGB PowerTech e.V., www.vgb.org/en/<br />

chemie_im_kraftwerk_<strong>2019</strong>.html<br />

27.10.-30.10.<strong>2019</strong><br />

FSEP CNS International Meeting on Fire Safety<br />

and Emergency Preparedness for the Nuclear<br />

Industry. Ottawa, Canada, Canadian Nuclear Society<br />

(CNS), www.cns-snc.ca<br />

12.11.-14.11.<strong>2019</strong><br />

International Conference on Nuclear<br />

Decommissioning – ICOND <strong>2019</strong>. Eurogress<br />

Aachen, Aachen Institute for Nuclear Training GmbH,<br />

www.icond.de<br />

25.11.-29-11.<strong>2019</strong><br />

International Conference on Research Reactors:<br />

Addressing Challenges and Opportunities to<br />

Ensure Effectiveness and Sustainability.<br />

Buenos Aires, Argentina, International Atomic<br />

Energy Agency (IAEA), www.iaea.org/events/<br />

conference-on-research-reactors-<strong>2019</strong><br />

This is not a full list and may be subject to change.<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Nuclear Power Plant Flexibility at EDF<br />

Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec<br />

Based upon existing experience feedback of French nuclear power plants operated by EDF (Electricité de France),<br />

this paper shows that flexible operation of nuclear reactors is possible and has been applied in France by EDF’s 58<br />

reactors for more than 30 years without any noticeable or unmanageable impacts: no effects on safety or on the<br />

environment, and no noticeable additional maintenance costs, with an additional unplanned capability load factor<br />

­estimated at only 0.5 %. EDF’s nuclear reactors have the capability to vary their output between 20 % and 100 % within<br />

30 ­minutes, twice a day, when operating in load-following mode. Flexible operation requires sound plant design (safety<br />

margins, auxiliary equipment) and appropriate operator skills, and early modifications were made to the initial<br />

­Westinghouse design to enable flexible operation (e.g., use of “grey” control rods to vary reactor core thermal power<br />

more rapidly than with conventional “black” control rods). The nominal capacities of the present power stations are<br />

sufficient, safe and adequate to balance generation against demand and allow renewables to be inserted intermittently,<br />

without any additional CO 2 emissions. It is a clear demonstration of full complementarity between nuclear and<br />

renewable energies.<br />

1 Introduction: Nuclear and Renewable<br />

energies are the two pillars of France’s<br />

low carbon electricity<br />

The fight against climate change has entered a crucial<br />

phase with the objective set by COP 21 to keep global<br />

warming “well below” +2 °C at the horizon 2100. Today,<br />

energy accounts for most CO 2 emissions worldwide and the<br />

electricity sector in particular is a prime candidate for deep<br />

decarbonization. A recent MIT study [1] says that unless<br />

nuclear energy is incorporated into the global mix of<br />

low-carbon energy technologies, the challenge of climate<br />

change will be much more difficult and costly to meet.<br />

Although nuclear energy raises the problem of nuclear<br />

waste management, solutions have been identified, and it is<br />

the climate change challenge that is overwhelming.<br />

In this respect, France – which already has low carbon<br />

intensity facilities – is a step ahead of its major European<br />

neighbours. This low carbon and competitive mix must be<br />

preserved in the long term, drawing on the complementary<br />

relationship between renewable energy sources and<br />

­nuclear energy. France’s electricity generation is built on a<br />

mix of varied generation units, based upon nuclear power<br />

plants (NPPs), renewable energies sources (RES)<br />

consisting of hydropower plants, wind turbines, solar<br />

farms or biomass plants and a few remaining set of conventional<br />

units.<br />

With an overall net generation capacity of 129.3 GWe<br />

(92.3 GWe in mainland France), generating 580.8 TWh<br />

(424.7 TWh in mainland France) in 2017 [2], the EDF<br />

group is one of the world’s leading electricity producers.<br />

EDF’s fleet generates 87 % carbon-free electricity, due to<br />

the predominance of nuclear and hydropower generation<br />

facilities, in an increasingly restrictive environmental<br />

regulatory context.<br />

EDF is among the world’s 10 largest global power<br />

suppliers, and produces the smallest amount of CO 2<br />

per kilowatt-hour, with direct emissions currently at<br />

82 gCO 2 /kWh 2 (25gCO 2 /kWh for EDF France Mainland),<br />

which is far less than the world average for the sector<br />

(506gCO2/kWh in 2015) and the average for the main<br />

­European electricity providers (275gCO 2 /kWh in 2016).<br />

EDF group’s decarbonization strategy is first and foremost<br />

based on an ambitious industrial policy focused on a<br />

low-carbon generation with a balanced mix of nuclear and<br />

renewable energy.<br />

More specifically concerning nuclear power, EDF is the<br />

world’s biggest NPP operator. EDF operates 58 nuclear<br />

units in mainland France, based on PWR (Pressurized<br />

­Water Reactor) technology; A “unit” is defined here as<br />

a generation facility including a reactor, steam generators,<br />

a turbine, a generator, the related equipment and the<br />

buildings that house them. These units are spread over 19<br />

sites, with an average age of 32 years. They are divided into<br />

three series according to the electrical power available:<br />

a 900 MW series consisting of 34 units, a 1,300 MW series<br />

consisting of 20 units, and a 1,500 MW series consisting of<br />

4 units.<br />

Built in the 1980-90s and originally based on a<br />

Westinghouse design, with upgrades implemented by<br />

EDF and Framatome, the French nuclear fleet grew at a<br />

quick pace, reaching about 72 % of the total electricity<br />

generated in France [3] in 2017 (see Figure 1), 89 % of<br />

France's Installed capacity (130.7 GW)<br />

France's Electricity output (530 TWh)<br />

| | Fig. 1.<br />

France's 2017 installed capacity and electricity output [3].<br />


Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 2.<br />

EDF's 2017 installed capacity and electricity output in mainland France [2].<br />

electricity generated by EDF alone in mainland France [2]<br />

(see Figure 2). Thus, EDF’s nuclear facilities are already<br />

giving France a major lead compared to its neighbours<br />

in terms of curbing greenhouse gas emissions, while still<br />

ensuring lower electricity costs.<br />

In the past 30 years, EDF has striven to further increase<br />

the operational flexibility of its reactors, to make them<br />

more compatible with load fluctuations and to the<br />

intermittent renewable energy sources that are a crucial<br />

and growing part of any energy mix. France‘s situation is<br />

particular in that nuclear units must themselves be able<br />

to provide this flexibility of generation, because of their<br />

predominant share of electricity supply. EDF relies on<br />

feedback from 30 years’ experience, showing that, except<br />

for some minor impacts on the secondary system (water/<br />

steam cycle), flexibility has no significant operational<br />

impact: in particular, nuclear safety is not affected.<br />

In the rest of the world, most of nuclear plants run on<br />

a full-power basis, also known as base-load operation,<br />

since they contribute to a minor share of electricity supply<br />

(­typically 10 % to 30 %): flexibility is achieved by gas, coal<br />

and other fossil fuel units, contributing to additional CO 2<br />

emissions.<br />

To ensure a continuous supply of electricity, it is<br />

therefore necessary either to store a part of the electricity<br />

generated by renewables and use it when wind and sun<br />

are not available, or to introduce generation units able to<br />

easily modulate their own electricity output.<br />

2 What is Plant Flexibility?<br />

Although high electricity storage capacity is the current<br />

target for electricity utilities worldwide, electricity cannot<br />

yet be stored on a significant industrial scale [4]. Thus an<br />

electrical power system must be able to adjust to rapidly<br />

varying electricity demand/generation balance. Whereas<br />

balancing levers exist on the demand side, this document<br />

focuses on balance on the generation side.<br />

Base-load operation refers to a steady power output<br />

which depends on the unit series [5]. Power changes may<br />

occur, whether planned (reduction or shut-down for<br />

­refueling or periodic maintenance) or unplanned (specific<br />

maintenance to address emergent plant issues); but for a<br />

base-load operated plant, these are triggered by events<br />

occurring at plant level rather than grid system level.<br />

Historically, most of the nuclear power plants in the world<br />

have been operated as base-loaded units: operating at a<br />

constant power level is simpler and less demanding in<br />

terms of plant equipment and fuel, not to mention the<br />

­economic benefit to operate as long as possible nuclear<br />

power plants that have high investment costs with low<br />

variable costs. (nuclear variable costs are mainly fuelrelated<br />

costs and represent less than 30 % of operating<br />

costs).<br />

In contrast to base-load operation, flexible NPP<br />

operation refers to any mode of operation in which power<br />

output varies to meet the demand of the electrical grid<br />

system. As electricity demand varies continuously, the gap<br />

between output and demand results in variation in grid<br />

frequency: frequency drops when demand increases (lack<br />

of generation) and rises when demand decreases (excess<br />

of generation).<br />

Two types of flexibility are usually distinguished: large<br />

load variation programs agreed in advance between grid<br />

operator and plant operator, known as “load following”<br />

(applied to nuclear plants in France but not in all<br />

countries), and minor automatic load variations aimed<br />

at controlling grid frequency, known as “primary and<br />

secondary frequency control”, usually implemented on all<br />

nuclear plants when available. These two types of ­flexibility<br />

can be superimposed.<br />

In Load Following mode [6], the nuclear power plant<br />

follows a load pattern determined to match the electrical<br />

demand expected by the grid operator (depending on<br />

time, day, week, season or emergent grid events) and the<br />

actual capabilities of the plant. The power output is set<br />

manually by the plant operator. Power ranges between<br />

maximum output (depending on the series: i.e., 900 MW,<br />

1,300 MW or 1,500 MW) and a minimum output<br />

corresponding to the minimum required to supply the<br />

automatic plant controls (about 20 % of the nominal<br />

­power of the plant: i.e., 180 MW for standard 900 MW<br />

plants, 260 MW for 1,300 MW PWRs, and 370 MW for<br />

1,500 MW PWRs). In France, a nuclear power plant is able<br />

to ramp up or down between 100 % and 20 % of nominal<br />

power in half an hour, and again after at least two hours,<br />

twice a day.<br />

In Frequency Control mode, the power plant has to<br />

monitor the frequency of the grid and immediately adapt<br />

its level of generation in order to keep the frequency stable<br />

at the desired value (50 Hz ± 0.5 Hz in Europe). This<br />

is achieved through an Automatic Frequency Control<br />

(AFC) process, which acts at different amplitudes and time<br />

scales.<br />

Primary frequency control allows short-term adjustments<br />

(in less than 30 seconds) and is used to stabilize grid<br />

frequency transients. An automatic control implemented<br />

on the turbine increases the electrical output if the<br />

frequency falls, or decreases output if the frequency rises.<br />

Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

The magnitude of variation under primary frequency<br />

­control is set at ±2 % of the unit’s nominal power.<br />

Secondary frequency control operates over a longer<br />

timeframe (up to 15 minutes), and is aimed at what<br />

is known as the “frequency restoration reserve”, an<br />

operational reserve activated to restore grid frequency to<br />

the nominal frequency at national and European scale.<br />

An automatic signal is sent remotely by the grid operator<br />

to the plant to change its power output within a range of<br />

±5 % of the unit’s nominal power (i.e., 50 MW for 900 MW<br />

plants, 65 MW for 1,300 MW plants and 75 MW for 1,500<br />

MW plants).<br />

Taken together, primary and secondary control provide<br />

additional flexibility up to ±7 % of the unit’s nominal<br />

­power (i.e., 70 MW for 900 MW series, 90 MW for<br />

1,300 MW series and 100 MW for 1,500 MW series).<br />

An example of a flexible operation power record for<br />

a French NPP is shown in Figure 3 below. It illustrates<br />

typical power variations in a single reactor (unit) at a<br />

1,300 MW PWR plant over a 24-hour period.<br />

| | Fig. 3.<br />

Power generated by one plant reactor (1,300 MW capacity) over a 24-hour<br />

period in Sept’ 2015, in response to variations in electricity demand and in<br />

supply of local intermittent renewables.<br />

Load-following and frequency control are two levers<br />

of flexibility at the within-day timescale. Other levers<br />

are worth mentioning. On a timescale of a week, plant<br />

­availability can be adjusted by shifting routine tests<br />

by a few days. On a seasonal timescale, refueling and<br />

maintenance operations can be scheduled during periods<br />

of low demand, providing 100 additional TWh during the<br />

season of highest demand.<br />

A study by EDF showed that, until 2<strong>03</strong>0, the nominal<br />

capacities of EDF’s nuclear NPPs (2 variations per day:<br />

change from 100 % to 20 % power in half an hour) are<br />

­sufficient to balance the intermittency of renewables in<br />

most situations [7]. EDF is able to keep two in three units<br />

in flexible mode (capable of power variation between<br />

100 % and 20 % of nominal power). In spring or summer,<br />

when 12 to 15 reactors are shut down for maintenance<br />

or reloading, about 45 nuclear units out of 58 remain<br />

connected to the grid. If 30 units can vary their output<br />

by 500 MW each, the total fleet has a flexibility capacity<br />

of 15,000 MW, in addition to the existing capacities of<br />

hydro-generation, fossil-fuelled power stations and<br />

export/import surplus.<br />

EDF has also striven to limit or optimize operating<br />

rules which could reduce the present flexibility: a simple<br />

example is the optimization, so as to meet flexibility<br />

requirements, of scheduling of periodic full-power tests<br />

such as flux mapping tests (performed to calibrate core<br />

instrumentation).<br />

3 Nuclear and Renewable alliance:<br />

Getting along with flexibility<br />

There are two main constraints for dispatchable power<br />

plants: power variations due to consumers’ fluctuating<br />

­demand, and the inevitable fluctuations of intermittent<br />

renewable energy generation because of varying weather<br />

conditions and the day/night cycle. This requires flexibility<br />

from large power plants, such as nuclear or fossil-fuelled<br />

units, in addition to hydro-generation which is naturally<br />

flexible.<br />

3.1 Electricity consumption<br />

Electricity consumption obviously varies constantly. In<br />

France, the annual difference between maximum and<br />

minimum hourly consumption can exceed 60 GW:<br />

30,199 MW on August 13 at 7 am and 94,190 MW on<br />

January 20 at 9 am. Risk in supply-demand balance differs<br />

between winter and summer, as seen in Figure 4 and<br />

Figure 5, mainly due to heating in winter.<br />

| | Fig. 4.<br />

Demand in France in a 2017’ summer week.<br />

| | Fig. 5.<br />

Demand in France in a 2017’ winter week.<br />

In terms of frequency control, the winter risk (lack of<br />

capacity) is greatest at the peak hour of 7 pm on weekdays,<br />

whereas the summer risk (risk of over-capacity) is mainly<br />

around the lowest consumption levels, encountered early<br />

morning at weekends, between midnight and 5 am.<br />

French generating facilities are sized to meet the winter<br />

consumption peak.<br />

3.2 Inherently variable renewable energy:<br />

Wind and solar<br />

Renewable energy sources are of two types: dispatchable<br />

or controllable sources such as hydroelectricity, biomass<br />

and geothermal power; and non-dispatchable sources,<br />

also known as variable renewable energies (VRE), that<br />

are intrinsically highly fluctuating (like wind and solar<br />

power).<br />

Approximately 1,800 MW of renewable energy have<br />

been added to the French generation capacity every year<br />

since 2010, the equivalent of one new nuclear unit every<br />

year. Wind power capacity amounted to 13,559 MW as<br />

of December 31, 2017 [3]. Wind power generation saw<br />

a sharp increase of 14.8 % compared to 2016. A new<br />

maximum wind turbine production rate was recorded at<br />


Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 6.<br />

Trajectories for VRE in France. Source : RTE adequacy report' 2017.<br />

1.30 pm on December 30, with power output of 11,075 MW.<br />

With 887 MW new capacity in mainland France, solar<br />

­energy capacity reached 7,660 MW in 2017. Solar power<br />

generation increased by 9.2 % compared to 2016.<br />

The 2015 French “Energy transition for sustainable<br />

growth” law set a target of 40 % of renewables in power<br />

generation by 2<strong>03</strong>0 in France.<br />

In 2017, RTE – the French Transmission System<br />

Operator – issued a comprehensive study to identify<br />

challenges and solutions for upcoming developments in<br />

the electricity production/consumption balance [8]. The<br />

document forecast an increase in wind capacity of 1.5 to<br />

2 GW per year and an increase in solar capacity of 1.4 to<br />

1.8 GW per year up to 2023. Beyond 2023, the pace of<br />

development is expected to be maintained, reaching 40 to<br />

51 GW wind capacity and 28 to 36 GW solar capacity by<br />

2<strong>03</strong>0, for a production of 96 to 122 TWh for wind energy<br />

and of 33 to 43 TWh for solar energy (see Figure 6).<br />

At the European level, renewables have been a feature<br />

of the power system for many decades, in the form<br />

of hydroelectricity. The countries with the highest<br />

proportions of renewables today have a mix that is heavily<br />

reliant on hydro resources: Norway (96 %), Sweden<br />

(47 %), Switzerland (59 %) and Austria (60 %).<br />

The power systems of these countries have low carbon<br />

intensity (see Figure 7). Countries with higher carbon<br />

intensity, usually with limited hydro potential, are turning<br />

to VRE generation, in the form either of wind or solar<br />

power or a combination thereof, in a bid to lower CO 2<br />

emissions from power generation: for example, Germany,<br />

Ireland, Denmark and Spain. However, reducing CO 2<br />

emissions through massive VRE development greatly<br />

depends on the generation mix, and may not be immediately<br />

successful. France stands out in this regard, with<br />

carbon intensity comparable to countries with large hydro<br />

resources with only about 10 % hydroelectric generation,<br />

thanks to the development of nuclear energy combined<br />

with renewables.<br />

For the next decades, the European Commission has<br />

set targets for the reduction of CO 2 emissions and the<br />

development of renewable energy to help the EU achieve a<br />

more sustainable energy system. Targets for 2020 are<br />

binding and call for a reduction of 20 % in carbon emissions<br />

compared to 1990, a 20 % share of renewable energies in<br />

the final gross energy consumption, and a 20 % gain in<br />

­energy efficiency. Targets for further horizons call for a<br />

reduction in CO 2 emissions of 40 % by 2<strong>03</strong>0 and at least<br />

80 % by 2050 compared to 1990, and a renewable energy<br />

share of 27 % in the final gross energy consumption by<br />

2<strong>03</strong>0. This last target is under discussion and might be<br />

increased to 32 %, but the focus is mostly on the heating<br />

and transport sectors.<br />

For the power sector, a set of European reference<br />

scenarios, taking account of European targets and policies<br />

agreed upon at EU and member-state level, were developed<br />

in 2016. They include ambitious development of solar<br />

and wind power across Europe through 2<strong>03</strong>0, with<br />

most European countries able to lower their CO 2 emissions<br />

by 2<strong>03</strong>0. Therefore, the share of VRE is increasing in every<br />

country, changing the landscape of the power system.<br />

France’s neighbors will be net importers by 2<strong>03</strong>0 (see<br />

Figure 8), while France, with its renewable capacity and<br />

nuclear fleet, will continue to export a large volume of<br />

competitive low-carbon electricity.<br />

| | Fig. 8.<br />

European-wide yearly net exchange balance (Source: 2015 – eia.gov and<br />

2<strong>03</strong>0 – EU Reference Scenarios 2016).<br />

| | Fig. 7.<br />

Left – percentage of non carbon-free production in total country generation; Middle – percentage of RES<br />

production in country generation, Right – percentage of Variable Renewable Energy production in<br />

country generation. Source: 2015 – EIA.gov, 2<strong>03</strong>0 – EU Reference Scenarios (2<strong>03</strong>0).<br />

3.3 Merit order<br />

The term “merit order” refers to the order in which the<br />

electricity market uses the various sources of electricity<br />

production. Use of the fleet’s various components is managed<br />

by giving priority, at any given time, to the generation<br />

type offering the lowest variable costs: non-dispatchable<br />

production such as wind or photovoltaic solar power, and<br />

river hydropower plants are used for base generation,<br />

since these resources (river flow, wind, sun) are “free” and<br />

lost if not converted into electricity; nuclear plants, because<br />

of their low variable operation costs, are used for<br />

base and mid-merit generation; adjustable hydropower<br />

Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

| | Fig. 9.<br />

Impact of RES share increase on the merit order.<br />

generation (lakes, pumped storage stations) and the<br />

­thermal fleet (mostly gas turbines or combined cycles) are<br />

used for mid-merit and peak generation.<br />

But, obviously, VRE generation depends on local<br />

weather conditions (wind, sun, clouds, etc.), which are not<br />

necessarily present when needed. For instance, a sunny<br />

day in the summer will show a strong variation following<br />

sunrise, and production will be highest at 2 pm: the power<br />

increase rate can be as much as 900 MW in 1 hour, which is<br />

equivalent to one PWR, and therefore will be dispatched to<br />

several NPPs.<br />

A similar situation can occur with wind, in case of peak<br />

wind speed. On the other hand, a cloudy day in winter<br />

with no wind provides no renewable generation, and<br />

“ conventional” generation (fossil fuels, nuclear power,<br />

etc.) has to satisfy the demand. Nuclear power must adapt<br />

to the variations in residual demand.<br />

Therefore, as shown Figure 9, the introduction of a<br />

greater share of renewable energies (including hydro) will<br />

displace the merit order, shifting away high variable cost<br />

units (coal, gas, oil) and putting market price at the level of<br />

nuclear generation costs.<br />

The typical model for pure base-load generation is to<br />

produce at maximum power all year long and pay back the<br />

costs on the energy-only market by spreading the variable<br />

and marginal costs. Today, nuclear plants in France have to<br />

adapt to demand variations when net demand gets very<br />

low and deviates from the maximum power-only model.<br />

Load-following allows nuclear plants to provide ancillary<br />

services, for which they are paid: they provide an<br />

additional service needed for the stability of the power<br />

system. Load-following also allows the producer to<br />

optimize the scheduling of refueling operations, thereby<br />

giving additional value to the fuel loaded in the core. The<br />

periods where net demand is low have a marginal cost for<br />

the system that is low. Saving the fuel in the core when the<br />

spread is small, usually over the spring or summer, allows<br />

the power producer to use it when it is most needed and<br />

consequently when prices are highest, usually in winter.<br />

This ensures that the largest number of plants are available<br />

over the period of highest demand and that no plants are<br />

offline for refueling during these periods.<br />

A future with a large volume of renewable wind and<br />

solar energy entails a power system with a large proportion<br />

of non-synchronous generation. Therefore, complementary<br />

services not provided by non-synchronous generation<br />

will emerge, and the storage value of fuel will increase.<br />

Producers will find new compensations for their base<br />

plants. For example, the recent capacity market provides<br />

complementary payments to suppliers. In future, massive<br />

growth of renewable energy will lead to new services to<br />

ensure the safety of the power system, and these services<br />

will have payments associated.<br />

One example of new services could be payback for<br />

inertia service. The rotational speed of alternators is<br />

important to control and stabilize grid frequency.<br />

Conventional technologies such as nuclear or hydropower<br />

plant alternators comprise heavy rotating masses with<br />

high inertia, a physical phenomenon which impedes rapid<br />

slowdown or acceleration of rotation. Consequently, they<br />

have a very significant stabilizing effect on grid frequency.<br />

In contrast, wind turbines, not to mention solar panels,<br />

have lower inertia effects. Therefore, a major change in<br />

production technology could decrease grid frequency<br />

stability, which in turn could lead to a need to reward<br />

inertia capability.<br />

Nuclear plants can play a front role in these new<br />

services. At the same time, their fuel will be able to provide<br />

flexibility to the system, and optimizing fuel use throughout<br />

the campaign will allow producers to maximize return.<br />

In tomorrow’s power system, producers will be paid for<br />

their production from a variety of sources and not only<br />

from the energy market. Nuclear plants with their intrinsic<br />

characteristics will be a great asset for the power system<br />

and its safety.<br />

4 Safe and cost-effective plant flexibility<br />

at EDF’s nuclear plants<br />

4.1 Basics of flexible operation<br />

As can be seen in Figure 10, heat generated in the primary<br />

water by uranium fission and neutron absorption reactions<br />

in the vessel is transferred to a secondary system through<br />

| | Fig. 10.<br />

Typical 1,300 MWe unit able to perform power flexibility (power control in the reactor core, water/steam<br />

cycle energy conversion, and electrical power output from the generator).<br />


Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 11.<br />

Control rod.<br />

insertion in the<br />

reactor core<br />

a steam generator where water is transformed into<br />

steam, which feeds turbines in turn driving an electrical<br />

generator. The electricity is then transferred through<br />

transformers and lines to the electricity grid.<br />

The nuclear plant’s electrical output is controlled by<br />

changing the mass flow rate that enters the turbine. To do<br />

so, plant operators can vary the steam production from the<br />

steam generator, and thus the nuclear reaction in the vessel.<br />

An alternative solution is to maintain constant reactor<br />

core thermal power and divert steam away from the turbine<br />

through bypass or relief valves to the condenser or the<br />

atmosphere. However, this solution has some limitations:<br />

potential thermal pollution of the environment, condenser<br />

integrity concerns, impaired plant ­efficiency, etc.<br />

4.2 Control of reactor core thermal power<br />

Changing reactor-core thermal power, by modulating<br />

­fission reactions, is effective but has significant impact on<br />

core neutronics (flux distribution, burn-up rate, fission<br />

by-products), materials (thermal limit) and safety<br />

( response to transients). Two main means of reactivity<br />

control are used: control rods and boric acid concentration,<br />

both being neutron absorbers.<br />

Control rods allow real-time control of the uranium<br />

­fission process. Composed of materials that absorb<br />

neutrons, the rods provide a reactivity margin able to<br />

ensure reactor safety, and are used for rapid reactor power<br />

changes (e.g., shutdown and start-up).<br />

Compared to the original pressurized water reactors<br />

design (Westinghouse’s), the main change in EDF’s PWR<br />

fleet was to adjust the types of control rods and their<br />

positions in the reactor core [9] (Figure 11).<br />

It is noteworthy that French nuclear power plants (PWR<br />

900 and 1,300) have the greatest worldwide experience<br />

in using “grey” control rods specially adapted for plant<br />

­flexibility [10].<br />

Whereas most nuclear reactors are still fitted with<br />

standard “black” control rods, with high neutron­ absorbing<br />

effect, most of EDF’s reactors have “grey” control rods,<br />

designed to have lower neutron-absorption, allowing<br />

­adjustment to local power patterns. “Grey” control rods<br />

lessen the deformation of neutron flux distribution that<br />

occurs when standard “black” control rods are inserted in<br />

or withdrawn from the core. This feature makes them<br />

particularly suited to governing core thermal power<br />

changes: when power load has to be reduced, several<br />

groups of grey rods are gradually inserted.<br />

Another mean of controlling core reactivity is boric acid<br />

reactivity control. Boric acid is a soluble neutron absorber<br />

added to the reactor coolant to provide negative reactivity<br />

throughout the fuel cycle, thereby assisting regulation of<br />

the core’s long-term reactivity. Boric acid control, unlike<br />

control rods, ensures an even power and flux distribution<br />

over the entire core.<br />

When full power load is stabilized, xenon, a neutronabsorbing<br />

fission product, is distributed homogeneously in<br />

the reactor core. Xenon is produced by fission reactions<br />

(proportional to local power) and builds up and then later<br />

decreases, at a certain delay, if the power decreases. Once<br />

the power is lowered, the amount of xenon changes, its distribution<br />

varying locally: this is managed by injecting boric<br />

acid in the primary circuit, to compensate for an overall<br />

decrease in xenon concentration, or by dilution to reduce<br />

the concentration when xenon levels increase.<br />

Boron dilution explains the reduced amplitude of<br />

possible power variations in the last third of the cycle. With<br />

the boron concentration in the circuit decreasing along the<br />

cycle, it takes more and more water to remove the same<br />

quantity of boron. As the flow of dilution is limited, the<br />

amplitude of power decreases has to be reduced to manage<br />

power changes at the normal pace.<br />

4.3 Characterization of Load following<br />

transients recorded from 2002 to 2016<br />

In the following sections, analysis of the impact of flexible<br />

operation is based on load-following operations recorded<br />

by EDF. We focus on the period 2002-2016, representing<br />

15 years of experience feedback in flexible operation, for<br />

which a comprehensive study was conducted by EDF in<br />

order to obtain the most representative assessment of<br />

the potential impact of large load transients. Two main<br />

parameters were recorded: overall load transient duration,<br />

and depth of load drop.<br />

Statistical analysis showed that PWR 900 MW and<br />

1,500 MW units presented fewer load transients<br />

( respectively, about 40 transients/unit/year and 30<br />

­transients/unit/year) than 1300 MW units (average of<br />

about 70 transients/unit/year).<br />

Furthermore, the analysis indicated that the great<br />

­majority of load transients occurred when the fuel cycle<br />

(period between two refueling outages) had less than 60 %<br />

coverage. Only 13 % of load transients occurred in cycles<br />

with more than 80 % coverage.<br />

5 Impacts of power flexibility<br />

on plant systems and components<br />

Feedback from 40 years’ experience in reliable flexible<br />

operation allows EDF to draw some conclusions about the<br />

impact of load-following and frequency control on plant<br />

operation and maintenance [11]. The following sections<br />

­address the main fields (Figure 12) that have been<br />

assessed.<br />

| | Fig. 12.<br />

Relevant fields for assessing the safety of flexibility in existing PWR units.<br />

5.1 Safety first: additional safety studies<br />

to demonstrate the safety of flexibility<br />

conditions for nuclear core integrity<br />

EDF’s studies showed that operating in a flexible mode had<br />

no impact on reactor safety, since all variations in power<br />

were within areas of operation for which modeling and<br />

experimental studies demonstrated the absolute safety of<br />

the nuclear core.<br />

This also means that, if any incident occurred during an<br />

operation at intermediate load (lower than full nominal<br />

power), the reactor could be operated according to existing<br />

procedures, and also if the event occurred at full load.<br />

Feedback from EDF’s experience shows that safety-risk<br />

events (IAEA INES level 0 or 1) due to load-following<br />

were rare. No additional LCOs (Limited Conditions of<br />

Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

­Operation) or SCRAMs (automatic shutdown) were<br />

­reported due to flexible operation.<br />

For a reactor operating a few days per year at any level<br />

of intermediate power, safety studies have to be extended<br />

to the full operating power range. The operator must<br />

demonstrate that accidental situations would be handled<br />

safely regardless of the initial state of the reactor at the<br />

time of the event.<br />

Load reduction occurs firstly with partial insertion of<br />

rods in the core. The power flux pattern, roughly homogeneous<br />

at full load, is then locally modified: less power<br />

where rods are inserted, and proportionally more power in<br />

areas not reached by the rods. It follows that, if half of the<br />

rated power was provided by only a quarter of the height of<br />

the core, the concentration of power, and thus the<br />

fuel-cladding temperature (or other local parameters)<br />

would be locally very high, with a risk of exceeding acceptable<br />

limits.<br />

To avoid such a situation, load variation is maintained<br />

within an area of operation which ensures that the specified<br />

limits are respected at all times.<br />

5.2 Absence of impact on nuclear fuel integrity<br />

A specific safety concern is the phenomenon known as<br />

“pellet-clad interaction”. By design, there is a gap in a fuel<br />

rod between the cladding and the pellets. Inside the<br />

cladding of the fuel rods, there are uranium pellets (Figure<br />

13), but also gas: gas deliberately introduced during fuel<br />

rod fabrication, but also fission gas generated by the<br />

nuclear reactions. When the reactor is operating, fuel<br />

pellets expand, and exert contact stress on the cladding.<br />

At a given power level, a balance is reached between<br />

the external pressure of the cladding (155 bars: i.e., the<br />

pressure of the water in the vessel and primary system)<br />

and the internal contact stress to the cladding, and the fuel<br />

is then said to be “conditioned”. When thus “conditioned”,<br />

the fuel can be used for limited periods at power levels<br />

lower than the conditioned power level. But, if the power<br />

level is kept below the conditioned power level for an<br />

extended period of time, clad creeping reduces rod<br />

diameter. In that case, if reactor power increases, excessive<br />

contact stress between fuel and cladding (i.e., pellet-clad<br />

interaction) may occur, and may eventually lead to a crack<br />

in the cladding. Subsequently restrictions on power ramp<br />

rates and operating times at reduced power must be<br />

applied.<br />

Moreover, where control rods are inserted, local power<br />

decreases and fuel irradiation is lower. Once rods are<br />

extracted at full load, these areas provide increased local<br />

power. This increase must remain within certain limits,<br />

otherwise hot spots would appear. These limitations are<br />

taken into account by using specific credits that are defined<br />

for a fuel cycle (period between two unit outages) and<br />

followed on a daily basis.<br />

Therefore, EDF has implemented permanent monitoring<br />

of the state of fuel conditioning, to ensure sufficient<br />

margins in clad stress during power transients. The Operational<br />

Technical Specifications thus provide for monitoring<br />

of a coefficient, “credit K”, corresponding to the available<br />

stress margin and determining the number of days authorized<br />

at reduced power operation. Specific studies and feedback<br />

from years of experience have shown that current<br />

flexibility situations do not increase this particular risk in<br />

any way as long as credit K remains positive.<br />

The credit is consumed over time if the unit operates<br />

with extended reduced power: this is the case for all power<br />

decreases exceeding 8 hours over any 24 h period. The<br />

| | Fig. 13.<br />

Relevant fields for assessing the safety of flexibility in existing PWR units.<br />

credit is reconstituted when the plant operates at base<br />

load, over which the primary and secondary frequency<br />

controls can be superimposed.<br />

As long as credit K remains positive, contact stress<br />

between cladding and pellets is limited. These credits are<br />

sufficient to enable changes in power and the introduction<br />

of a significant share of renewable energy. The integrity of<br />

the first containment barrier is thus not jeopardized by<br />

­operation in the current flexibility mode.<br />

5.3 Nuclear flexibility has no impact on primary<br />

system components integrity<br />

Like the second containment barrier, the primary circuit<br />

(vessel, pressurizer, pumps, steam generators and<br />

associated pipes) has been designed with mechanical<br />

restrictions and a limited number of allowable stress cycles,<br />

based on the power changes expected over plant lifetime.<br />

The number of transients allowed for a given amplitude<br />

is determined by studies, and periodic inspections are<br />

scheduled. As long as the circuit has not reached this limit,<br />

impact on materials and welds is non-significant.<br />

Reactor thermal power changes during flexible operation<br />

result in more frequent variations in reactor coolant<br />

system temperature and volume, and in particular in the<br />

surge line and pressurizer, where hot water expands and<br />

pressure is controlled. While pressure remains stable at<br />

155 bar, temperature varies by more than 30 °C on the<br />

side of the hot legs (between the vessel and the steam<br />

generator).<br />

Regular cycle counting (counting the number of cycles<br />

at an expected stress level, to determine fatigue usage<br />

­factor) is implemented in EDF’s nuclear plants. Each<br />

change in temperature exceeding a certain threshold is<br />

logged as a situation of transient loading. Throughout<br />

plant lifetime, continuous monitoring counts and keeps<br />

track of the number of transients, to ensure that the<br />

­remaining margin is sufficient, by comparing accumulated<br />

cycles versus allowable limit. For some specific locations,<br />

online fatigue monitoring have been implemented and<br />

tested (determining actual fatigue based on measured<br />

conditions).<br />

Feedback shows that, in practice, actual power<br />

variations since unit commissioning remain well below<br />

allowed cycle-counting limits and are fully compatible<br />

with vessel aging.<br />

Operating in flexible mode increases wear in control<br />

rod drive mechanisms (CDRMs), depending on power<br />

­variation frequency and amplitude. CRDMs currently used<br />

in EDF’s French nuclear reactors were redesigned<br />

mechanically to allow for an increased number of rod<br />


Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


movement cycles under flexible operation. Cycle counting<br />

ensures they are replaced before fatigue failure occurs.<br />

­After a predefined number of maneuvers, CDRMs have to<br />

be changed, with associated direct and indirect costs<br />

( components, outage, dosimetry).<br />

No noticeable effect of flexible operation has been<br />

detected on I&C (Instrumentation and Control).<br />

5.4 Plant flexibility has no noticeable impact<br />

on the Environment<br />

In order to assess the impact of flexible plant operation<br />

on the environment, the following issues have been<br />

examined: additional waste quantities (solid, liquid,<br />

­gaseous), effluent temperature and discharge volume, and<br />

respect of environmental regulatory limits.<br />

1. Chemistry considerations<br />

One drawback of flexible operation is the increased<br />

demand on plant chemistry systems. Reactivity control<br />

by boric acid requires the operator to borate and dilute<br />

the reactor coolant system frequently. Primary coolant<br />

dilution uses large volumes of water, which must be<br />

stored and processed before use (to maintain reactor<br />

grade purity) and after use (due to presence of dissolved<br />

radionuclides) in the primary system. If water is added<br />

to the circuit, an equivalent amount must be removed:<br />

plant operation thus produces primary effluents,<br />

without, however, any additional emission into the<br />

­environment. These effluents are removed, stored in<br />

closed circuits and tanks and treated (gas stripper,<br />

evaporator to separate boron from water). Water is<br />

first degassed, then distilled to separate boron from<br />

pure water. The boron is returned to water tanks for<br />

re-injection of into the primary system. The hydrogen<br />

concentration in the primary circuit also needs continuous<br />

monitoring by the control room operator. Boric<br />

acid reactivity control affects reactor coolant chemistry<br />

pH. Lithium, in the form of lithium hydroxide (LiOH), is<br />

commonly added, to raise primary coolant pH and<br />

inhibit corrosion.<br />

Providing this monitoring and good coordination<br />

between chemistry and operation is adhered to, no<br />

­negative impact on chemistry has been noticed in EDF’s<br />

nuclear plants since the beginning of flexible operation<br />

It is noteworthy that, since tritium and carbon 14<br />

­releases are directly correlated to neutron flux, and<br />

hence to the energy produced, the total quantity of<br />

tritium produced and released in a plant operating<br />

under load-following (i.e., not at full load) tends to be<br />

less than with a base load unit.<br />

2. Liquid waste and chemical reagent<br />

consumption<br />

Feedback from EDF’s experience with its fleet identifies<br />

two main factors regarding liquid waste volume<br />

and chemical reagent consumption: power variation<br />

amplitude and the timing of the variation within the<br />

fuel cycle. Power variations at the end of the fuel cycle<br />

(later than 66 %) and at low power (below 45 % of<br />

nominal power) have the greatest impact. Therefore,<br />

planning large power variations at low burn-up and<br />

smaller variations at high burn-up is a straightforward<br />

way to reduce the volume of liquid effluent due to plant<br />

flexibility. Additional volume averaged +20 % of the<br />

annual volume released by the Nuclear Island Liquid<br />

Radwaste Monitoring and Discharge System. Impact in<br />

terms of additional radioactivity was undetectable. No<br />

impact of plant flexibility on liquid effluent from the<br />

secondary circuit, and hence on consumption of<br />

chemical reagents used for secondary-side chemistry<br />

control, was identified.<br />

3. Solid waste<br />

With increasing use of boric acid for reactivity control,<br />

nuclear units operating in flexible mode require greater<br />

volumes of primary water for boron dilution, generating<br />

greater volumes of liquid effluent, plus variations in<br />

primary circuit pH and corrosion product solubility,<br />

and requiring more demanding use of water purification<br />

systems circuits, filters and demineralizers.<br />

The impact, but still slight, of flexibility is on the boron<br />

recycling system, used for the treatment of primary<br />

­liquid effluent. This impact was estimated on two types<br />

of solid waste: spent ion exchange resins (+5.6 % of the<br />

average annual volume) and wastewater filters (+3.4 %<br />

of annual consumption). However, the increase had no<br />

impact on waste management (storage, emission limits,<br />

transportation or workforce).<br />

4. Thermal Discharge<br />

The maximum thermal discharge of a plant may be<br />

limited by a number of factors, including maximum<br />

plant outlet temperature, maximum temperature<br />

change from plant inlet to plant outlet, and maximum<br />

plant volumetric flow rates as specified in environmental<br />

permits.<br />

Flexible units have less impact on the open environment<br />

because they release less heat into the cooling<br />

source ( river or sea water, in either open or closed<br />

circuit: see Figure 14). Local conditions vary greatly<br />

from one plant to another (depending on river flow,<br />

temperature, and season). When the plant is operating<br />

| | Fig. 14.<br />

Cooling of a nuclear unit, by river or sea water in an open circuit (left), or with a cooling tower in a closed circuit (right).<br />

Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

under flexible con­ditions, the unit will obviously ­release<br />

less heat into the cooling source.<br />

The various chemicals used for water cleaning and<br />

treatment (e.g., in the condenser, which is the largest<br />

heat exchanger with the cooling source) are used in<br />

quantities limited by regulations.<br />

5. Environmental Limits<br />

Based on feedback from EDF’s flexible operations over<br />

the period 2012-2015, an internal study showed that<br />

flexible operation had very limited environmental<br />

impact, well within regulatory limits. No noticeable<br />

­effect was identified for additional radioactivity or<br />

­operation limitations, even for the most flexible plants<br />

(PWR 1,300 MW series).<br />

5.5 Flexibility has limited impact<br />

on the secondary systems<br />

The secondary system (water and steam thermal cycle)<br />

consists mainly of heat exchangers connected by pipes,<br />

valves and pumps. During variations in load, these circuits<br />

encounter variations in pressure, temperature and steam<br />

characteristics. Valves open or close, depending on power<br />

level. Repetition of these transients can accelerate erosion,<br />

possibly including circuit corrosion that can sometimes<br />

lead to short unplanned outages. Statistically, comparison<br />

of groups operating in load-following mode versus groups<br />

permanently at full load shows only very slight differences<br />

in performance, and certainly no impact on operational<br />

safety. The most noticeable impacts on secondary circuits<br />

are leakage at welded joints, erosion of pipes and ageing of<br />

heat exchangers.<br />

5.6 Flexibility does not significantly<br />

increase maintenance costs<br />

Feedback from experience with EDF’s PWR fleet showed<br />

no significant additional costs. From 2000 to 2014, 10 units<br />

were deliberately maintained at full stable load (no flexibility<br />

periods): in terms of operating performance, the<br />

difference between these base-load operated plants and<br />

other units operating in load­ following mode were within<br />

normal scatter: i.e., difficult to evaluate.<br />

Further investigations showed that, since 2010, the<br />

load factor unavailability capability in EDF NPPs has<br />

­remained around 2-2.5 %, 0.5 % of which is attributed to<br />

flexible operation (as observed for the PWR 900 series).<br />

Statistical studies showed a minimal increase in<br />

maintenance costs in EDF units resulting from increased<br />

flexibility.<br />

5.7 Plant operators’ skills are called upon<br />

to manage more frequent power ramps<br />

The ability to operate in load-following mode is part of the<br />

control room operator’s training and skill.<br />

While control rod positions are determined by power<br />

output, water and boron management is ensured manually<br />

by the control room operator. The operator’s skill is<br />

regularly called upon for control of the core. A good understanding<br />

of physical phenomena such as changes in xenon,<br />

water and boron levels and rod effects is required. As<br />

xenon effects are not immediate, the control room operator<br />

must be attentive to reactor control several hours after<br />

load­following.<br />

To help control room operators, full-scope simulators<br />

are used for training, and technical specifications and<br />

procedures provide general instructions.<br />

Detailed conditions depend strongly on recent core<br />

history. After 3 days at full load, power and xenon are<br />

balanced in the core; a power decrease ramp will have<br />

simple, foreseeable effects. But, if the reactor shows 3 or 4<br />

variations in the period, with different amplitudes and<br />

­durations, power profile and xenon distribution will be<br />

different.<br />

The next power decrease liable to change these balances<br />

should be managed with care; a control strategy must<br />

­always be defined and adjusted by the control room<br />

operators, under the control of the shift manager of the<br />

unit. Training courses include this issue, but controlassistance<br />

tools have also been developed over the last<br />

15 years. These applications calculate change power flux<br />

balance, and allow the operator to better anticipate<br />

phenomena and optimize control strategy so as to remain<br />

within the center of the authorized area and better predict<br />

transient following. Based on recent core history records,<br />

these dedicated simulators help control room operators to<br />

forecast xenon levels and prepare dilution/borication<br />

strategies.<br />

6 Conclusion and perspectives: Nuclear<br />

flexibility is the safe CO 2 -free solution to<br />

extend the share of renewables in France<br />

While renewable energies have a key role to play in the<br />

European strategy for the decarbonization of electricity<br />

production, dispatchable generation remains necessary in<br />

order to ensure system stability and security of supply.<br />

Long term study aimed at understanding the technical and<br />

economical feasibility of massive deployment of wind and<br />

solar across the European system shows that a con tribution<br />

of nuclear is necessary in order to obtain the required CO 2<br />

reductions [12].<br />

Flexible operation of nuclear reactors is possible, and<br />

has in fact been implemented in France in EDF’s fleet of 58<br />

reactors for more than 30 years without any noticeable or<br />

unmanageable impact on safety or the environment, nor<br />

any significant additional maintenance costs.<br />

Flexible operation requires sound plant design (safety<br />

margins, auxiliary equipment) and appropriate operator<br />

skills. But three decades of best practices and feedback<br />

from a huge experience show that the nominal capacities<br />

of the installed fleet (two significant power decreases<br />

per day, transitions from 100 % to 20 % of power in half<br />

an hour) are safe and able to balance demand with<br />

generation, even with renewables on the grid.<br />

New power plant designs with a larger capacity, such<br />

as EPRs, include flexibility features. Studies for future<br />

small modular reactors (SMRs, units ranging from 50 to<br />

300 MW) include flexibility features in their specifications.<br />

To remain the leader in very low carbon electricity<br />

generation, the EDF group is intensifying the development<br />

of renewable energies while ensuring the safety, performance<br />

and competitiveness of the existing nuclear<br />

facilities and new nuclear investments. EDF announced a<br />

plan to increase its portfolio of renewable energy<br />

generation by 2<strong>03</strong>0. Investments in renewable energy,<br />

with the launch of the Solar Power Plan, represent a<br />

­significant step towards meeting the Group’s goals. By<br />

2<strong>03</strong>5 in France, 30 GW of solar capacity will have been<br />

installed with partners. This amounts to quadrupling the<br />

country’s current solar capacity. In addition to its solar<br />

roadmap, EDF has recently introduced an electricity<br />

storage plan. EDF will invest to ramp up storage capacity<br />

to 10 GW. It is likely that the increase in renewables and<br />

storage facilities will keep on challenging the flexibility<br />

capabilities of nuclear power plants. R&D studies are<br />

on-going on to determine future prospects up to 2050.<br />


Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Guido Knott<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Ingo Neuhaus<br />

Dr. Joachim Ohnemus<br />

Prof. Dr. Winfried Petry<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Prof. Dr. Bruno Thomauske<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

Electricity is a key factor for the direct reduction of CO 2<br />

emissions, as well as a substitute for fossil fuels in the<br />

transport, construction and industrial sectors. In the<br />

forward­ looking scenarios limiting global warming to<br />

+2°C, low-carbon electricity should thus become the<br />

­leading source of energy by 2040-2050: the use of<br />

electricity should therefore be stepped up, in order to bring<br />

down emissions to a quarter of current levels by 2050, and<br />

to aim at carbon neutrality.<br />

In this perspective, a strong alliance between nuclear<br />

and renewables is a safe, cost-effective and clean solution<br />

to achieve a low-carbon generation mix to combat climate<br />

change and meet the goal of going beyond the 2°C target<br />

set by COP21.<br />

References<br />

1. The Future of Nuclear Energy in a Carbon-Constrained World, an interdisciplinary MIT study, MIT<br />

Energy Initiative, Massachusetts Institute of Technology (2018); http://energy.mit.edu/<br />

wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf<br />

2. EDF’s reference document for the 2017 financial year (2018); https://www.edf.fr/sites/default/<br />

files/contrib/groupe-edf/espaces-dedies/espace-finance-en/financial-information/<br />

regulated-information/reference-document/edf-ddr-2017-accessible-version-en.pdf<br />

3. RTE, 2017 Annual Electricity Report (2018); http://www.rte-france.com/sites/default/files/<br />

rte_elec_report_2017.pdf<br />

4. Comité de prospective de la Commission de Régulation de l’Electricité, “La flexibilité et le stockage<br />

sur les réseaux d’énergie d’ici les années 2<strong>03</strong>0“ (2018); http://www.eclairerlavenir.fr/wp-content/<br />

uploads/2018/07/Rapport_GT2.pdf<br />

5. “Non-baseload operation in nuclear power plants: load following and frequency control modes of<br />

flexible operation”, IAEA Nuclear Energy Series NP-T-3.23 (2018); https://www-pub.iaea.org/<br />

MTCD/Publications/PDF/P1756_web.pdf<br />

6. S. FEUTRY, “Load following EDF experience feedback”, presented at the International Atomic<br />

Energy Agency (IAEA) Technical Meeting on Flexible (Non-Baseload) Operation Approaches for<br />

Nuclear Power Plants, Paris, France, September 4-6, 2013.<br />

Imprint<br />

| | Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Martin Schneibel (Editor)<br />

INFORUM, Berlin, Germany<br />

Phone: +49 30 498555-43<br />

Fax: +49 30 498555-18<br />

E-Mail: martin.schneibel@nucmag.com<br />

| | Official Journal of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| | Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

7. S. FEUTRY, “Production renouvelable et nucléaire : deux énergies complémentaires”, Revue<br />

Générale Nucléaire, N°1 January-February, 23, (2017); https://doi.org/10.1051/rgn/20171023<br />

8. RTE Generation Adequacy Report, “Bilan prévisionnel de l’équilibre offre-demande<br />

d’électricité en France “ (2018); https://www.rte-france.com/sites/default/files/<br />

synthese-bilan-_previsionnel-2018.pdf<br />

9. S. FEUTRY, “Flexible nuclear and renewables alliance for low carbon electricity generation”,<br />

presented at the OECD meeting, July 18th, 2018<br />

10. H. HUPOND, “Load following and Frequency Control Transients vs. Loading and Design- EDF<br />

experience and practice” presented at the International Atomic Energy Agency (IAEA) Technical<br />

Meeting on Flexible (Non-Baseload) Operation Approaches for Nuclear Power Plants, Paris,<br />

France, September 4-6, 2013.<br />

11. “Program on Technology Innovation: Approach to Transition Nuclear Power Plants to Flexible<br />

Power Operations“, Final Report N°3002002612, Electric Power Research Institute (2014).<br />

12. A. BURTIN, V. SILVA, “Technical and economic analysis of the European electricity system<br />

with 60 % RES”, report INIS FR 15-0634 (2015). http://www.energypost.eu/wp-content/<br />

uploads/2015/06/EDF-study-for-download-on-EP.pdf<br />

Authors<br />

Patrick Morilhat<br />

EDF Research & Development<br />

6 Quai Watier<br />

78401, Chatou, France<br />

Stéphane Feutry<br />

EDF Generation Division<br />

Christelle Lemaitre<br />

Jean Melaine Favennec<br />

EDF R&D<br />

| | Price List for Advertisement<br />

Valid as of 1 January <strong>2019</strong><br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible for the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility for unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

Feature<br />

Nuclear Power Plant Flexibility at EDF ı Patrick Morilhat, Stéphane Feutry, Christelle Lemaitre and Jean Melaine Favennec

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe<br />

Status, potentials and challenges for baseload application:<br />

European Situation in 2017<br />

Thomas Linnemann and Guido S. Vallana<br />

Introduction Wind power is a cornerstone of rebuilding the electricity supply system completely into a renewable<br />

system, in Germany referred to as “Energiewende” (i. e. energy transition). Wind power is scalable, but as intermittent<br />

renewable energy can only supply electrical power at any time reliably (security of supply) in conjunction with<br />

­dispatchable backup systems. This fact has been shown in the first part of the VGB Wind Study, dealing with operating<br />

experience of wind turbines in Germany from 2010 to 2016 [1],[2]. This study states among other things that despite<br />

vigorous expansion of on- and offshore wind power to about 50,000 MW (92 % onshore, 8 % offshore) at year-end 2016<br />

and contrary to the intuitive assumption that widespread distribution of about 28,000 wind turbines, hereinafter<br />

­referred to as German wind fleet, should lead to balanced aggregate power output, no increase in annual minimum<br />

power output has been detected since 2010, each of which accounted for less than 1 % of the relevant nominal capacity.<br />

A question of grid losses<br />

These observations illustrate that an increased interconnection<br />

in Europe would necessitate the transmission<br />

of electricity over very long distances. This raises the<br />

question of the extent of grid losses, as it has so far been<br />

the rule of thumb in the electricity industry to build power<br />

plants as close as possible to the consumer to keep grid<br />

losses low. These comprise load-dependent and loadindependent<br />

losses, losses due to power transformation<br />

and losses from reactive power compensation. However,<br />

the majority of the losses are heat losses caused by the<br />

ohmic resistance of the power lines.<br />

With the transmission of electricity via high-voltage<br />

alternating current (HVAC) overhead lines, specific ­total<br />

losses of around 1 % per 100 km transport distance arise<br />

[26], which remain roughly constant across a broad range<br />

of transmission capacities.<br />

Current technical limits in terms of HVAC trans mission<br />

are extra high voltage of around 765 kV, transmission capacities<br />

of up to 3,000 MW and transport distances up to<br />

around 1,000 km, the latter being ­limited by transmission<br />

angle and reactive power requirement [27].<br />

With established high-voltage direct current (HVDC)<br />

transmission via overhead lines with ±500 kV, specific<br />

grid losses of around 0.5 % per 100 km have to be ­factored<br />

in [26]. Converter stations are required here at both end<br />

points of the transmission route to transform alternating<br />

current into direct current and vice versa, and each of<br />

these causes additional losses of around 1 % of the transmission<br />

capacity [26],[27].<br />

At present, HVDC transmission routes via overhead<br />

lines are designed for extra high voltages of ±800 kV,<br />

transmission capacities of around 6,400 MW and ­transport<br />

distances of up to about 2,000 km. With extra high ­voltages<br />

of this kind, the specific conduction losses fall to just under<br />

0.4 % per 100 km transport distance. Technical limits in<br />

terms of HVDC transmission are extra high voltages of<br />

±1,100 kV, transmission capa­cities up to 12,000 MW and<br />

distances up to 3,300 km [28].<br />

For HVAC transmission via 380kV overhead lines over<br />

an average transport distance of 1,500 km between centers<br />

of national wind fleets in 18 European countries, grid<br />

­losses of at least 15 % of the transmission ­capacity would<br />

have to be expected, if considered seriously at all. In the<br />

case of HVDC transmission with ±500 kV the level would<br />

be just under 10 % [26], [27].<br />

For long-distance transport of electricity over the<br />

longest single distances considered here between wind<br />

fleet centers of peripheral countries like Finland or ­Norway<br />

(Scandinavia), Portugal or Spain (Iberian Peninsula) and<br />

Greece (Aegean) and Romania (Balkan Peninsula) of<br />

around 3,000 km or more, HVAC transmission would<br />

­probably not be considered, as high grid losses of 40 % or<br />

more of the transmission capacity would have to be<br />

factored in [26]. In case of HVDC transmission, too, grid<br />

losses amounting to one fifth of the transmission capacity<br />

would have to be expected with transport distances of this<br />

order [26].<br />

In all cases cited above, further grid losses would have<br />

to be added for collecting and stepping up the power<br />

output of the wind turbines in the producing country to a<br />

suitable voltage level and the further distribution of the<br />

transmission capacity remaining after the long-distance<br />

transport to the end consumer in the country of destination<br />

via extra high, high, medium and low voltage networks.<br />

These grid losses can be quantified with data from the<br />

Council of European Energy Regulators (CEER) and the<br />

US Energy Information Authority (EIA) for the years 2010<br />

to 2015 (Table 2) [29],[30].<br />

In total, and averaged over several years and all<br />

18 countries, grid losses of around 6.6 % of the annual<br />

electric energy fed into the grid have to be factored in for<br />

an average European country for the transport and<br />

distribution of electricity from the power plant to the end<br />

consumer. These losses are split across the voltage levels<br />

extra high, high, medium and low [7].<br />

In Germany, voltage in the extra high voltage network is<br />

380 or 220 kV. At present, the extra high voltage network<br />

is responsible for large-scale, nationwide connections<br />

and supplies to regional electricity suppliers and large<br />

­industrial companies. It is almost 37,000 km long and is<br />

linked via interconnectors with the European grid.<br />

The high voltage network is operated at a voltage<br />

of 110 kV and about 97,000 km long. This regional<br />

distribution network particularly transfers electricity to<br />

industrial companies, local electricity suppliers or transformer<br />

substations. Voltage is stepped down to medium<br />

voltage level here, mostly 20 kV, for supplying to industrial<br />

companies and businesses. The circuit length of this<br />

­network is about 520,000 km.<br />

Private households, businesses and the agricultural<br />

sector only have electrical devices designed for voltages of<br />

230 V or 400 V. In order to be fed into the local low voltage<br />

network, medium voltage has to be converted again. With<br />

its circuit length of around 1,190,000 km, the low voltage<br />

network is the longest supply network.<br />

Part 2 * <br />

*) Part 1<br />

was published<br />

in <strong>atw</strong> 2 (<strong>2019</strong>),<br />

pp. 79 ff.<br />


Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


Country<br />

Table 1 illustrates that by far the lowest transport and<br />

distribution network losses across all voltage levels are to<br />

be found in Finland with around 3.3 % of the ­electric<br />

­energy fed in annually, followed by Germany (4.1 %), then<br />

Austria (4.8 %) and the Netherlands (4.8 %).<br />

The highest value is to be found in Romania, at 11.9 %,<br />

followed by Portugal (9.6 %) and Spain (9.5 %). In ­relation<br />

to electricity consumption, the grid losses averaged over<br />

several years and all 18 countries amount to around 7.3 %.<br />

In absolute figures, the losses from the transport and<br />

distribution networks of 18 countries in relation to the<br />

total annual electric energy fed into the grid to provide all<br />

end consumers in these countries at present add up to<br />

around 200 TWh per year [30]. This is around double last<br />

year’s generation of electricity from solar power of these<br />

countries, or about 60 % of their electricity ­generation<br />

from wind power [15].<br />

Averaged over several years and all 18 countries, grid<br />

losses of about 1.5 % of the annual electric energy fed in<br />

arise for an average European country when electricity is<br />

transported at extra high voltage level. Here, too, countryspecific<br />

differences can be observed. Finland, for example,<br />

has the lowest losses, with 0.8 % of the ­annual power fed<br />

in, followed by Austria (0.9 %), ­Sweden (0.9 %) and the<br />

Netherlands (0.9 %).<br />

In the case of Germany (1.0 %), it has to be added that<br />

the losses in the extra high voltage network doubled from<br />

around 0.7 % in 2010 to 1.4 % in 2015. With specific total<br />

losses at extra high voltage level of around 1 % per 100 km<br />

transport distance, the losses in the extra high voltage network<br />

can also be interpreted as doubling of the average<br />

power plant distance from the end consumer from around<br />

70 to 140 km in the past six years. The share of losses of the<br />

extra high and high voltage networks in the total grid<br />

losses has increased in Germany at the same time from 33<br />

to 43 % [7].<br />

Mean grid losses in % of total annual electric energy fed into the grid<br />

Transport and distribution 1) Transport only 2)<br />

Ø 3) 2010 2015 Ø 3) 2010 2015<br />

AT 4.8 4.7 4.9 0.9 0.8 0.9<br />

BE 4.9 4.7 4.7 1.7 1.6 1.7<br />

CZ 5.0 5.5 5.6 1.0 0.8 1.1<br />

DE 4.1 4.0 4.6 1.0 0.7 1.4<br />

DK 6.0 6.0 5.6 2.2 2.0 2.3<br />

ES 9.5 9.4 10.5 1.4 1.6 1.5<br />

FI 3.3 2.8 2.6 0.8 0.8 0.8<br />

FR 6.5 6.7 7.3 2.1 2.2 2.1<br />

GR 7.0 7.1 9.7 2.5 2.8 2.5<br />

IE 8.0 8.1 8.1 2.0 2.0 2.0<br />

IT 6.9 6.7 6.4 n.a. n.a. n.a.<br />

NL 4.8 5.0 4.6 0.9 1.1 1.0<br />

NO 6.3 7.6 6.2 1.7 1.9 1.5<br />

PL 7.0 8.2 6.9 1.2 1.2 1.2<br />

PT 9.6 8.5 10.1 1.4 1.5 1.3<br />

RO 11.9 12.6 12.5 1.6 1.8 1.5<br />

SE 5.0 4.9 3.8 0.9 1.0 0.9<br />

UK 7.8 7.2 8.5 1.8 1.5 2.1<br />

Ø 4) 6.6 6.7 6.6 1.5 1.4 1.4<br />

| | Tab. 2.<br />

Mean grid losses for transport and distribution in the 18 European countries in percent of total annual electric energy fed into the grid from 2010 to 2015.<br />

1) including extra high, high, medium and low voltage 2) extra high voltage only 3) Averaging for the years 2010 to 2015 and the sources CEER [29]<br />

and EIA [30] 4) Averaging for the 18 European countries<br />

In many European countries, the share of decen tralised<br />

power generation plants in the nationwide power plant<br />

­capacity has significantly increased over the past years.<br />

These plants normally feed into the medium and low<br />

voltage networks, and in some cases also into the high<br />

voltage networks. Grid losses should tend to fall when<br />

decentralised power plants move closer to the end consumer,<br />

as not only does the distance for transporting and<br />

distributing electric power output decrease, but so too<br />

does the need for transforming.<br />

However, this does not apply without restriction, as t<br />

he local synchronicity of generation and consumption<br />

­likewise influences the grid losses: if decentrally ­supplied<br />

electricity can be used at the same time directly by the local<br />

consumers, the grid losses diminish very significantly, as<br />

transport to consumers further afield is not necessary.<br />

In reality, however, weather-dependent power output<br />

from renewable energies frequently lead to situations in<br />

which decentrally generated electricity cannot be used<br />

­locally at the same time, resulting in backflows in the<br />

network which increase the grid losses. Wind farms, too,<br />

are often not in the direct vicinity of centres of consumption.<br />

Their power output has to be fed into extra high<br />

and high voltage networks and in some cases transported<br />

over long distances, as a result of which grid losses<br />

­increase. Here, too, the influence of the synchronicity of<br />

generation and consumption is not negligible.<br />

The example of the Spanish distribution system<br />

operator Viesgo [29] illustrates how grid losses can<br />

­increase significantly with a high share of decentralised<br />

power generation. This operator found that electricity<br />

generation from wind power in his distribution network<br />

led to grid losses significantly increasing at high voltage<br />

level (132 kV). Depending on the power flows in his grid<br />

area or power outputs transferred between two grid nodes,<br />

the distribution system operator registered an increase in<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana

10<br />

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

grid losses generally in the region of 2 to 4 % of the total of<br />

load and export-import balance to higher and extreme<br />

­values of up to 20 % in cases where net electricity imports<br />

into his grid area were necessary.<br />

These findings illustrate that grid losses in con­nection<br />

with further expansion of electricity generation from wind<br />

power with interconnection throughout Europe cannot be<br />

considered negligible, especially against the backdrop of<br />

European efforts to increase ­efficiency.<br />

In a scenario according to the motto “everyone helps<br />

everyone else”, it is true to state for the grid losses<br />

with enhanced interconnection across Europe that in the<br />

producing nation, the power output from all wind turbines<br />

would, in a first step, have to be collected and transformed<br />

to the appropriate voltage level before, in a second step,<br />

the long-distance transport either to the domestic consumer<br />

or to the country of destination over an average<br />

­distance of 1,500 km could take place. In a third step,<br />

the power output would then have to be transformed there<br />

to a lower voltage level and finally distributed further to<br />

the end consumer. As a simplified engineering estimate,<br />

the grid losses over all three stages in this scenario could<br />

add up to around one fifth to one third of the aggregate<br />

output fed into the grid (producing nation: ≈ 7 %,<br />

long-distance transport: ≈ 10 to 15 %, country of destination:<br />

≈ 7 %).<br />

On the question of the secured capacity of wind power<br />

available throughout Europe, this means that, in reality,<br />

lower values should result from the total power output of<br />

all wind turbines in 18 European countries with greatly<br />

idealising disregard of the transport and distribution<br />

network losses.<br />

Discussion<br />

Analyses of cumulative power time series of the European<br />

wind fleet in the high-wind years 2015 and 2017 suggest a<br />

secured capacity of around 5 % of the nominal capacity in<br />

Normalised power P/P N in %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

each case for the European wind fleet, on the assumption<br />

of linear expansion during the course of the year. The less<br />

windy year 2016 led to a secured capacity of the European<br />

wind fleet of 4 % of the nominal capacity (Figure 12).<br />

During the period 2015 to 2017 the power output of the<br />

European wind fleet ranges from 4 to 63 % of the nominal<br />

capacity and is highly volatile. The trend lines for the<br />

­power time series of the European wind fleet of these three<br />

years are included for clarity, and illustrate that changes<br />

are essentially determined by the annual availability of<br />

wind. The seasonal pattern of electricity generation from<br />

wind power familiar in Germany − higher aggregate<br />

­output in the winter than in the summer − also applies<br />

with distribution of wind turbines throughout Europe.<br />

Effects on the annual power output minimum of an<br />

expansion-induced increase in the distribution of wind<br />

turbines throughout Europe are not apparent, although<br />

the nominal capacity of 141,000 MW at the start of 2015<br />

increased by one third to just under 170,000 MW at<br />

year-end 2017.<br />

This means that even if, from a European perspective,<br />

statistically significant smoothing effects are to be seen,<br />

these effects clearly only help to achieve secured capacities<br />

to a limited extent, since 4 to 5 % of the nominal capacity<br />

with consideration of the grid losses means that, even at<br />

European level, dispatchable backup capacity of practically<br />

100 % of the nominal capacity of the European wind<br />

fleet has to be maintained, as long as its nominal capacity<br />

has not yet exceeded the cumulative annual peak load of<br />

all countries concerned plus reserves.<br />

In 2017 the European wind fleet supplied a total<br />

339 TWh of electricity, in 2016 and 2015 just under<br />

287 TWh and 285 TWh respectively. The capacity factor of<br />

the European wind fleet varied between 22 and 24 %. The<br />

results of the linear regression analysis described previously<br />

enable the capacity factor of a wind fleet in an<br />

individual European country to be determined with good<br />

Real data 2017<br />

Real data 2016<br />

Real data 2015<br />

Trend line 2015<br />

Trend line 2016<br />

Trend line 2017<br />

Capacity factor: ≈ 22 bis 24 %<br />

Hourly resolution<br />


10<br />

Secured: ≈ 4 bis 5 %<br />

Jan<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Dec<br />

Month<br />

Source: ENTSO-E<br />

| | Fig. 12.<br />

Cumulative time series of normalised power output of the European wind fleet for the years 2015 to 2017 with three trend lines illustrating the seasonal character<br />

of electricity generation from wind power, on the assumption of a linear increase in nominal capacity during the course of the year. The secured capacity of the<br />

European wind fleet is 4 to 5 % of its nominal capacity and the capacity factor 22 to 24 %.<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Monday, 8 February 2016 Tuesday, 7 June 2016<br />


H<br />

1005<br />

1000<br />

T<br />

1<strong>03</strong>0<br />

995<br />

990<br />

1025<br />

1010<br />

985<br />

T<br />

980<br />

975<br />

T<br />

985 990<br />

980<br />

995 1000 1005<br />

1010<br />

T<br />

970 T<br />

1015<br />

∆p Max<br />

≈ 65 hPa<br />

1020<br />

| | Fig. 13.<br />

Isobar maps of 8 February 2016 (winter day) and 7 June 2016 (summer day) as examples of pronounced high-wind and low-wind phases across much of Europe.<br />

approximation to an average of 18 %. European interconnection<br />

therefore indicates a capacity factor benefit of<br />

a few percentage points of the nominal capacity.<br />

In July 2017, researchers from ETH Zurich and Imperial<br />

College London concluded, on the basis of European<br />

weather data from the past 30 years and iRES model<br />

calculations [23], that weather regimes with spatial scales<br />

of around 1,000 km and temporal scales of more than five<br />

days regularly occur in Europe resulting in an extensive<br />

lack of power output of wind fleets of neighbouring<br />

European countries.<br />

Grams et al. recommended that expansion of wind<br />

power in Europe be better coordinated and account be<br />

taken of the fact that in peripheral European regions like<br />

the Iberian Peninsula, northern Scandinavia, the Balkan<br />

region or the Aegean, opposite wind conditions frequently<br />

prevail with which variations in the aggregate power<br />

output can be compensated at an overall European level.<br />

Expansion of wind power should thus focus more on<br />

peripheral European countries in order to balance<br />

electricity generation from wind power. Were the European<br />

nations to coordinate their expansion strategy even more<br />

closely, they could stabilise the generation of electricity<br />

from wind power, and it would then also be easier to<br />

integrate it into the energy system.<br />

Grams et al. state that photovoltaics could also be used<br />

at a local level (during the daytime) to achieve pan­<br />

European balance. However, the currently available<br />

­nominal capacity of around 114,000 MW at year-end 2017<br />

in Europe [15] would have to be increased at least ten-fold.<br />

As weather reports on television have shown, extensive<br />

weather regions can regularly occur throughout the whole<br />

of Europe with distinct phases in which strong wind or<br />

weak wind prevails across many European countries at the<br />

same time. The driving force behind the wind are largescale<br />

differences in air pressure, from which conclusions<br />

can be drawn about continental wind conditions on the<br />

basis of isobar maps (lines at constant pressure), as<br />

illustrated in Figure 13 with the example of a winter day<br />

(8 February 2016) with good wind over much of Europe<br />

and a summer day (7 June 2016) with weak wind over<br />

much of Europe.<br />

1025<br />

H<br />

1<strong>03</strong>0<br />

1<strong>03</strong>5<br />

H<br />

Surface level pressure in hPA<br />

1025<br />

1015<br />

1020<br />

H<br />

T<br />

H<br />

1020<br />

1020<br />

∆p Max<br />

≈ 20 hPa<br />

T<br />

H<br />

H<br />

1020<br />

1020<br />

T<br />

T<br />

1015<br />

H<br />

1020<br />

T<br />

T<br />

H<br />

H<br />

H<br />

H<br />

T<br />

1025<br />

H<br />

H<br />

On 8 February 2016, maximum differences in air<br />

pressure Dp Max up to around 65 hPA occurred across<br />

Europe. The isobar lines for this winter day run closely<br />

staggered next to each other. This indicates high gradients<br />

and good wind conditions. Wind turbines in the 18<br />

European countries considered here as European wind<br />

fleet supplied around 86,000 MW or 57 % of their nominal<br />

capacity of around 152,000 MW on daily average (prerequisite:<br />

copper plate across Europe, no grid losses).<br />

Between 20:00 and 21:00 in the evening, the power output<br />

of the European wind fleet reached its annual peak (hourly<br />

resolution) at 89,100 MW [13].<br />

On 7 June 2016, maximum differences in air pressure<br />

Dp Max of around 20 hPA occurred across Europe. In Figure<br />

13, comparatively few isobars are apparent, indicating<br />

low gradients and weak wind conditions across much of<br />

­Europe. The European wind fleet supplied around<br />

12,200 MW or 8 % of its nominal capacity on daily ­average.<br />

Between 06:00 and 09:00 in the morning, its power output<br />

fell to around 6,500 MW or 4 % of its nominal capacity<br />

(prerequisite: copper plate across Europe, no grid losses)<br />

[13].<br />

These examples illustrate that situations can occur<br />

again and again in which electricity generation from wind<br />

power is simultaneously strong or weak throughout much<br />

of Europe. In such cases this means: if wind conditions in<br />

Germany are favourable, then this is also often the case<br />

in neighbouring countries and vice versa. This is compounded<br />

by the fact that demand for electricity in<br />

European countries is also temporally correlated in<br />

many cases, so that a cross-border balancing effect is<br />

demon strably not a given certainty at the most critical<br />

point in the year for the load [31].<br />

According to the analyses carried out by Grams<br />

et al. [23], synchronicity and correlation of electricity<br />

generation from wind power in neighbouring European<br />

countries could be avoided by connecting up very remote<br />

countries at the peripheries of continental Europe. In view<br />

of an increased need for transport of electricity over very<br />

long distances of several thousand kilometres and average<br />

iRES capacity factors of currently typically around 21 % for<br />

onshore wind power, 32 % for offshore wind power and<br />

1015<br />

T<br />

1015<br />

1010<br />

T<br />

1005<br />

1010<br />

T<br />

1005<br />

H<br />

Surface level pressure in hPA<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

11 % for photovoltaics, this would raise justified questions<br />

as to the grid losses to be expected with expansion<br />

strategies of this kind, the capacity factor of the new<br />

­infrastructure required with a focus on intensified pan-­<br />

European long-distance transport of electricity and as to<br />

their profitability. The average capacity factors given above<br />

are calculated from hourly ENTSO-E power output data of<br />

18 European countries from 2015 to 2017 accounting for<br />

95 % of Europe’s wind power and photovoltaic nominal<br />

capacity.<br />

Even if China, for example, today has numerous HVDC<br />

routes for transport distances of one to two thousand<br />

kilometres, these are all designed to transmit electric<br />

power of several gigawatts from the large inland hydropower<br />

plants to supply the consumption centres on the<br />

country’s coasts with electricity. This electricity transmission<br />

technology is also referred to as bulk transmission<br />

of electric power, an indicator of continuous power transmission<br />

and consistently high capacity factors of such<br />

transmission routes – criteria which neither wind nor solar<br />

power has any prospect of fulfilling at a European level.<br />

At the beginning of March 2018, the German National<br />

Meteorological Service (DWD) published results of a study<br />

[24] showing that through the combined use of wind<br />

power and photovoltaics in the European power grid, risks<br />

due to wind lulls and phases with little sun could be<br />

­significantly reduced. With measurement data on the spatial<br />

and temporal structure of the weather conditions from<br />

1995 to 2015 and models to estimate electricity ­generation<br />

of representative wind power and photovoltaic systems,<br />

uniformly distributed across Europe without restrictions<br />

and disregarding any grid losses, the meteorologists determined<br />

how often the aggregate output of this iRES plant<br />

fleet would have been less than 10 % of the nominal capacity<br />

over a continuous period of two days in each case.<br />

The result for Germany: with restriction to onshore<br />

wind power, 23 cases per year would be probable. If<br />

offshore wind power in the German North and Baltic Seas<br />

is added, this number is reduced to 13 cases per year, while<br />

further addition of photovoltaic systems brings a reduction<br />

to two cases per year and, if Europe is considered as a<br />

whole, the result is just 0.2 cases per year. However, as the<br />

weather pleases itself, it can never be ruled out that an<br />

­extreme lull could occur in conjunction with a phase of<br />

little sun across Europe. Responsible energy policy must<br />

therefore not only be about expanding wind power and<br />

photovoltaic systems, but also ensuring sufficient reserve<br />

power plant capacities.<br />

In view of the grid being required to maintain a<br />

permanent balance between electricity generation and<br />

consumption, it is necessary here to point out that, contrary<br />

to taking into account two-day periods in the cited study,<br />

already a fraction of a second or minutes can be sufficient<br />

to cause a blackout.<br />

What would the consequences be, were wind turbines<br />

to be distributed in balanced form across Europe as<br />

recommended by Grams et al. [23] and Becker [24]?<br />

As Figure 3 illustrates, many countries have a considerable<br />

amount of catching up to do in relation to<br />

Germany: all 13 countries in the nominal capacity of their<br />

winds fleets ranking after Italy, for instance, would have to<br />

increase their wind fleet’s nominal capacity sixteen-fold on<br />

average with as balanced distribution of locations as<br />

­possible, in order to reach Germany’s level of development.<br />

When all 17 countries are considered, a total new<br />

­nominal capacity of around 840,000 MW would have to be<br />

established. With the already existing nominal capacity of<br />

wind turbines in these 18 countries, a nominal capacity of<br />

the balanced European wind fleet of around 1,000,000 MW<br />

in total could therefore be expected.<br />

By comparison: in 1995, power plants with a nominal<br />

capacity of around 620,000 MW were in operation in the<br />

18 European countries considered here [32]. This had<br />

­already risen to around 970,000 MW nominal capacity in<br />

2015, 47 % of which was accounted for by conventional<br />

power plants, followed by hydropower plants (16 %), wind<br />

turbines (14 %), nuclear power plants (12 %) and photovoltaic<br />

systems (10 %).<br />

With a long-term annual yield of the European wind<br />

fleet averaged across the 18 countries of around<br />

2,000 MWh electricity per megawatt of nominal capacity<br />

[15] and on the assumption that yield-boosting factors<br />

such as ever larger plants and hub heights as well as<br />

yield-reducing factors like ever lower potential wind yields<br />

of remaining wind turbine locations roughly maintain a<br />

balance in the course of further expansion, the annual<br />

­generation of around 2,000 TWh of electricity could be<br />

­assumed for the imaginary European wind fleet. In<br />

comparison, the gross power generation of the 18<br />

­European countries considered amounted to just under<br />

3,300 TWh in 2017 [15].<br />

With specific investment costs of 1.5 million euros ­per<br />

megawatt onshore nominal capacity [33] and 4.0 million<br />

euros per megawatt offshore nominal capacity [34], total<br />

investments of about 1,500 billion euros would have to be<br />

factored in for expansion of the European generation of<br />

electricity from wind power of this order, on the assumption<br />

that 90 % of the nominal capacity to be added would<br />

still be accounted for by onshore wind turbines and the<br />

rest by offshore wind turbines. Compared with the gross<br />

domestic product of the 18 countries in 2015 of almost<br />

11,500 billion euros, this is a considerable sum.<br />

At the same time, further investments worth billions<br />

would have to be factored in for still necessary dispatchable<br />

backup systems and in order to enhance the network<br />

infrastructure [35],[36]. According to ENTSO-E estimates,<br />

around four fifths of grid congestion problems identified<br />

throughout Europe are attributable to renewable energies.<br />

ENTSO-E puts the costs for enhancing and strengthening<br />

the European grid for further integration of renewable<br />

­energies at just under 130 billion euros [36].<br />

Another aspect to be considered: Assuming that today’s<br />

wind turbines have an operational lifespan of an average<br />

25 years, a renewal rate of 40,000 MW per year would be<br />

required with a plant level of around 1,000,000 MW<br />

nominal capacity. By comparison, wind turbines with an<br />

average nominal capacity of 12,000 MW per year went into<br />

operation in the 18 countries in the last six years, while in<br />

2017 the figure was slightly over 15,000 MW [15].<br />

Evaluations of long-term operating data from the<br />

United Kingdom and Denmark for 2002 to 2012, the<br />

­results of which indicate the influence of material ageing<br />

and an economic operational lifespan more in the region of<br />

twelve to fifteen years, demonstrate that the operational<br />

lifetime of wind turbines can, in reality, be considerably<br />

lower [37].<br />

This was confirmed, for example, in March 2018 [38]:<br />

the Danish energy company Ørsted identified unexpected<br />

damage to around 2,000 wind turbines in Danish and<br />

British waters which had only been in operation since<br />

2013. The leading edges and tips of the rotor blades were<br />

so severely damaged by the impact of salt particles and<br />

rain that they had to be replaced.<br />


Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


Further confirmation followed in April 2018 [39]: in<br />

the offshore wind park Alpha Ventus around 45 kilometres<br />

off Borkum, half a nacelle of a wind turbine, together with<br />

the plastic casing, plunged into the depths from a height of<br />

around 90 meters. At the time the damage occurred, the<br />

turbine was around eight years old. The wind farm<br />

operator reported a broken retaining bolt of the nacelle<br />

carrier as being the cause. No information was given as to<br />

whether this was an isolated incident or a case of serial<br />

damage. As a precautionary measure, the remaining five<br />

undamaged Alpha Ventus turbines have since run in idle<br />

mode and been closed for maintenance.<br />

Even if damage to offshore wind turbines, as a<br />

comparatively new technology, is not unusual, the German<br />

television channel NDR interpreted this incident as being<br />

major damage possibly in connection with material<br />

­fatigue, and called for speedy clarification of the cause of<br />

the damage, since more than 120 turbines of this type are<br />

currently in operation in the North Sea.<br />

Wind turbines do not only transport the wind intermittency,<br />

i.e. briefly occurring strong gusts of wind into<br />

the power grid, they also even intensify it when converting<br />

it into electrical output [40],[41],[42],[43].<br />

Measurement data with high temporal resolution<br />

­substantiate strong fluctuations in wind speed and ­changes<br />

in power output of a 2 MW wind turbine by 80 % of its<br />

nominal capacity in eight seconds, and of a wind farm<br />

comprising twelve 2 MW wind turbines by 50 % of its<br />

nominal capacity in two minutes at a northern German<br />

onshore location [40]. Within a quarter of an hour, therefore,<br />

wind turbines can pass through power outputs from<br />

almost zero up to the nominal capacity according to their<br />

power curve.<br />

The working conditions of wind turbines are characterised<br />

by intermittent, turbulent air flows which are<br />

­reflected in turbulent power output fluctuations of both<br />

individual wind turbines and larger turbine fleets [41].<br />

Peinke et al. [40] report that with individual wind<br />

­turbines and large wind farms alike, extreme fluctuations<br />

which would only be to be expected every three million<br />

years with normal distribution could occur once a month<br />

on statistical average. This property is particularly relevant<br />

for grid stability analyses and the design of wind turbines,<br />

as these face immense changes of load – comparable with<br />

those of an aeroplane in an imaginary landing approach<br />

lasting several years with severe wind turbulence.<br />

This is caused by turbulences impacting the turbines<br />

within a matter of seconds, the footprint of which is also<br />

reflected in the electric power output. Grid instabilities<br />

caused by power fluctuations of this kind would likely<br />

increase with the expansion of wind power – as too would<br />

the regulatory effort involved in compensating them [41].<br />

Redispatching measures on the part of transmission<br />

system operators are an indicator of grid instabilities and<br />

resulting regulatory network intervention. This is to be<br />

understood as intervention in the market-based original<br />

power plant schedule in order to relocate power feed-in so<br />

as to prevent or eliminate overloading in the power grid.<br />

During the period 2010 to 2015, the annual redispatched<br />

power output from domestic measures increased<br />

by more than 36 times to 11.2 TWh, then fell by one third<br />

in 2016 to 7.5 TWh before climbing to another new peak of<br />

11.3 TWh in 2017 [44]. The annual redispatched power<br />

output generated by the power plants in neighbouring<br />

countries and in the context of cross-border trade as of<br />

2014 amounting to around 25 to 50 % of the corresponding<br />

domestic annual power output has to be added to this.<br />

The development over the past years invites com parison<br />

with the electricity generation from wind power: 2015 and<br />

2017 were very windy years, while 2016 was considerably<br />

less windy. Overall, the development of the mean value P µ<br />

from 2010 to 2017 as shown in Figure 1 as a measure of<br />

the annual electricity supplied is similar to the development<br />

of the annual redispatched power output, which<br />

could indicate causal relationships [44].<br />

On account of massively increasing interventions in grid<br />

operation, the German Federal Network Agency introduced<br />

quarterly reports on grid and system security measures as<br />

of 2015 [45], pointing out that in view of the drastic<br />

increase in grid and security interventions, annual recording<br />

was no longer sufficient, and that measures for<br />

securing grid stability had become more important, as the<br />

transmission system operators were facing ever greater<br />

challenges in view of the changing power generation<br />

landscape. This change, it was stated, was characterised<br />

above all by the expansion and regional distribution of<br />

wind turbines with impacts on the conventional power<br />

plant fleet. Weather effects like low-pressure systems or<br />

long sunny periods additionally led to high peaks in power<br />

output from wind power and photovoltaics – a development<br />

which also becomes clear from a glimpse into the<br />

control rooms of the transmission system operators: whereas<br />

grid control engineers had to actively intervene twice in<br />

the whole of 20<strong>03</strong> to adjust the grid operation, three to four<br />

interventions per day have now become the norm.<br />

Apart from the fact that with each intervention the<br />

probability of human error by nature increases, this<br />

development also indicates that exceptional circumstances<br />

in the power grid necessitating intervention have<br />

drastically increased since 20<strong>03</strong>.<br />

Statements made in June 2017 by Dr. Klaus Kleinekorte,<br />

Technical Managing Director at Amprion GmbH in<br />

Dortmund, verify the occurrence of at times extreme loads<br />

in the transmission grid [46]. He stated that between<br />

December 2016 and February 2017 there were repeated<br />

occurrences of hours on various evenings during which the<br />

grid was at its limit and on several occasions had been on<br />

the verge of a large-scale collapse. Had just one large line<br />

shut down due to overload during these times, a deluge<br />

of shutdowns and power outages might have been<br />

­unavoidable. Moreover, on 18 January 2017, three days<br />

prior to the start of the ten-day dark doldrums in Germany,<br />

his company had written to the Federal Ministry for<br />

Economic Affairs and Energy and the Federal Network<br />

Agency, warning them of the temporary loss of (n-1)<br />

secure grid control. At the latest when the nuclear power<br />

plants in southern Germany cease to operate, high power<br />

transmission requirements will become the norm. The<br />

necessary grid expansion must therefore be pushed ahead<br />

with rapidly.<br />

Summary<br />

VGB PowerTech has carried out a plausibility check of<br />

electricity generation from wind power in Germany and<br />

17 neighbouring European countries and in the process<br />

explored questions as to whether adequate possibilities<br />

for mutual balancing exist within the interconnected<br />

European grid true to the motto “the wind is always<br />

blowing somewhere”.<br />

In the current energy policy environment which,<br />

against the backdrop of the international climate protection<br />

commitments facing Germany, seeks to abandon<br />

the power plant technology proven over decades and<br />

create extensive provision of electricity from renewable<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana

GNS Gesellschaft für Nuklear-Service mbH<br />

Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


energies, photovoltaics and wind power remain the only<br />

scalable technologies capable of further development for<br />

the Energiewende in the short to medium term. However,<br />

they are always reliant on complementary technologies.<br />

Looking back at the past year in Germany, it can be<br />

­concluded that additional operating experience confirms<br />

the statements made in the first part of the VGB Wind<br />

Study: from the perspective of security of supply, wind<br />

power, despite concerted efforts to expand since 2010, has<br />

for all practical purposes not replaced any conventional<br />

power plant capacity. Furthermore, offshore wind power<br />

at its current level of development is shown to be not<br />

capable of serving as a reliable source of baseload power<br />

and cannot replace conventional power plant capacity.<br />

Wind turbine locations spread throughout Germany are<br />

not a solution for a reliable and secure supply of electricity.<br />

Dispatchable complementary technologies are always<br />

­necessary in conjunction with wind power.<br />

From a European perspective, it can be concluded on<br />

the basis of 18 countries observed here that although<br />

­statistically significant smoothing effects are to be seen,<br />

these only help to a limited extent when it comes to security<br />

of supply: 4 to 5 % of the nominal capacity means with<br />

consideration of unavoidable grid losses that, even at a<br />

European level, dispatchable backup capacity of almost<br />

100 % of the nominal capacity of all European wind<br />

turbines has to be maintained, as long as this has not yet<br />

exceeded the annual peak load in Europe plus reserves.<br />

Acknowledgements<br />

The authors thank Professor Dr. Dr. h.c. mult. Friedrich<br />

Wagner from Max Planck Institute for Plasma Physics in<br />

Greifswald for his valuable suggestions and contributions<br />

to this publication.<br />

Literature<br />

1. Linnemann, Th.; Vallana, G. S.: Wind energy in Germany and Europe: Status, potentials and<br />

challenges for baseload application, Part 1: Developments in Germany since 2010. VGB<br />

PowerTech 97 (2017), No. 8, pp. 70 bis 79.<br />

2. Linnemann, Th.; Vallana, G. S.: Wind energy in Germany and Europe: Status, potentials and<br />

challenges for baseload application, Part 1: Developments in Germany since 2010. <strong>atw</strong> 62<br />

(2017), No. 11, pp. 678 to 688.<br />

3. Weber, H.: Versorgungssicherheit und Systemstabilität beim Übergang zur regenerativen<br />

elektrischen Energieversorgung. VGB PowerTech 94 (2014), No. 8, pp. 26-31.<br />

4. Bericht der deutschen Übertragungsnetzbetreiber zur Leistungsbilanz 2016 bis 2020.<br />

Version 1.1 dated 30 January 2018. www.netztransparenz.de<br />

5. BMWi-Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland von 1990 bis 2016.<br />

www.erneuerbare-energien.de<br />

6. Arbeitsgemeinschaft Energiebilanzen (AGEB): Bruttostromerzeugung in Deutschland ab 1990<br />

nach Energieträgern. www.ag-energiebilanzen.de<br />

7. BDEW: Stromerzeugung und -verbrauch 2017 in Deutschland. BDEW-Schnellstatistik dated<br />

14 February 2018. www.bdew.de<br />

8. Bundesnetzagentur: Monitoringbericht 2017. www.bundesnetzagentur.de<br />

9. Wagner, F.: Surplus from and storage of electricity generated by intermittent sources.<br />

European Physical Journal Plus 131 (2016): 445. https://epjplus.epj.org<br />

DOI 10.1140/epjp/i2016-16445-3<br />

10. Wagner, F.: Überschussstrom und Stromspeicherung unter den Bedingungen intermittierender<br />

Produktion. Tagungsband zur Frühjahrssitzung des Arbeitskreises Energie der Deutschen<br />

Physikalischen Gesellschaft (DPG), Münster, 2017, pp. 54 to 74.<br />

www.dpg-physik.de/veroeffentlichung/ake-tagungsband/tagungsband-ake-2017.pdf<br />

11. VDE-Infoblatt Störungsstatistik 2016. www.vde.com<br />

12. Wagner, F.: Considerations for an EU-wide use of renewable energies for electricity generation.<br />

Eur. Phys. J. Plus 129 (2014): 219. https://epjplus.epj.org<br />

DOI 10.1140/epjp/i2014-14219-7<br />

13. Rodriguez, R. A. et al.: Transmission needs across a fully renewable European power system.<br />

Renewable Energy, 63 (2014), pp. 467 to 476.<br />

DOI 10.1016/j.renene.2013.10.005<br />

14. ENTSO-E Transparency Platform. https://transparency.entsoe.eu<br />

15. Vaughan, A.: UK summer wind drought puts green revolution into reverse.<br />

Article dated 27 August 2018. www.theguardian.com<br />

16. BP Statistical Review of World Energy 2018 − data workbook: www.bp.com<br />

17. 50 Hertz, www.50hertz.com<br />

18. Amprion, www.amprion.net<br />

19. Tennet TSO, www.tennet.eu<br />

20. Transnet BW, www.transnetbw.de<br />

21. EEX Transparency, www.eex-transparency.com<br />

22. Online database on the global wind power market: www.thewindpower.net<br />

23. Buttler, A.; Dinkel, F.; Franz, S.; Spliethoff, H.: Variability of wind and solar power. An assessment<br />

of the current situation in the European Union based on the year 2014. Energy 106 (2016),<br />

pp. 147 to 161. DOI 10.1016/j.energy.2016.<strong>03</strong>.041<br />

24. Grams, C. M. et al.: Balancing Europe’s wind-power output through spatial development informed<br />

by weather regimes.<br />

Nature Climate Change 7 (2017), pp. 557 to 562, DOI 10.1<strong>03</strong>8/nclimate3338.<br />

25. Becker, P.: Wetterbedingte Risiken der Stromproduktion aus erneuerbaren Energien durch kombinierten<br />

Einsatz von Windkraft und Photovoltaik reduzieren. Deutscher Wetterdienst (DWD), 6<br />

March 2018, Berlin. www.dwd.de<br />

26. Baïle, R.; Muzy, J.-F.: Spatial Intermittency of Surface LayerWind Fluctuations at Mesoscale<br />

Range. Physical Review Letters 105 (2010), pp. 254501-1 to 254501-4.<br />

DOI 10.11<strong>03</strong>/PhysRevLett.105.254501<br />

27. Wilms, J.: Das SüdLink-Projekt. Technische Optionen für eine Hochspannungsgleichstromübertragung.<br />

Dialogue procedure for the SüdLink project Brunsbüttel-Großgartach on 21 May 2015 in<br />

Schwäbisch-Hall.<br />

28. Krontiris, A.: Von HGÜ zu UHGÜ. Entwicklungen und Perspektiven in der großräumigen Gleichstromübertragung.<br />

Vortrag zur Herbstsitzung des Arbeitskreises Energie der Deutschen<br />

Physikalischen Gesellschaft (DPG), Bad Honnef, 20 October 2017<br />

29. CEER Report on Power Losses. Reference C17-EQS-80-<strong>03</strong>, www.ceer.eu<br />

30. U.S. Energy Information Administration: www.eia.gov/beta/international<br />

31. Energy performance report 2015 of the German transmission system operators pursuant to<br />

EnWG § 12(4) and (5). Updated in February 2016,<br />

www.netztransparenz.de<br />

32. European Commission: EU energy in figures. Statistical pocketbook 2017.<br />

https://ec.europa.eu/energy/en/data-analysis/energy-statistical-pocketbook<br />

33. Lüers, S.; Wallasch, A.-K.; Rehfeldt, K.: Kostensituation der Windenergie an Land in Deutschland,<br />

Update. Varel, 2015, www.windguard.de<br />

34. Hughes, G.; Aris, C.; Constable, J.: Offshore wind strike prices behind the headlines. Global<br />

Warming Policy Foundation Briefing 26, 2017, www.thegwpf.org<br />

35. Hirschhausen, C. et al.: Europäische Energiewirtschaft. Hoher Investitionsbedarf für Nachhaltigkeit<br />

und Versorgungssicherheit. DIW-Wochenbericht No. 27, 2014.<br />

36. ENTSO-E Ten-year network development plan 2012. www.entsoe.eu<br />

37. Hughes, G.: The Performance of Wind Farms in the United Kingdom and Denmark. Renewable<br />

Energy Foundation, 2012. www.ref.org.uk<br />

38. Wolff, R.: Haltbarkeit von Windkraftanlagen. Erodierende Rotoren. taz edition dated 5 March<br />

2018. www.taz.de<br />

39. Schürmeyer, J.: Windpark Alpha Ventus vor Borkum. Abgestürzte Windpark-Gondel vor Austausch.<br />

NWZ online edition dated 27 July 2018. www.nwzonline.de<br />

40. Milan, P.; Wächter, M.; Peinke, J.: Turbulent character of wind energy. Physical Review Letters<br />

110 (2013), pp. 138701-1 to 138701-5.<br />

DOI 10.11<strong>03</strong>/PhysRevLett.110.138701<br />

41. Peinke, J.; Heinemann, D.; Kühn, M.: Windenergie − eine turbulente Sache? Physik Journal 13<br />

(2014) No. 7, pp. 35 to 41.<br />

42. Anvari, M.; Lohmann, G.; Wächter, M. et al.: Short term fluctuations of wind and solar power systems.<br />

New Journal of Physics 18 (2016) 063027, pp. 1 to 14.<br />

DOI 10.1088/1367-2630/18/6/063027<br />

43. Schmietendorf, K.; Peinke, J; Kamps, O.: On the stability and quality of power grids subjected to<br />

intermittent feed-in. https://arxiv.org/abs/1611.08235<br />

44. Laux, M.: Redispatch in Deutschland. Evaluation of transparency data, April 2013 to January<br />

2018. www.bdew.de<br />

45. Bundesnetzagentur: Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen für das dritte<br />

Quartal 2015. www.bundesnetzagentur.de<br />

46. Mihm, A.: Energiewende, Stromnetz kurz vor dem Zusammenbruch. FAZ edition dated 9 June<br />

2017. www.faz.net<br />

Authors<br />

Dipl.-Ing. Thomas Linnemann<br />

Dipl.-Phys. Guido S. Vallana<br />

VGB PowerTech e.V.<br />

Deilbachtal 173<br />

45257 Essen<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Verlängerte Zwischenlagerung – Auswirkungen auf die<br />

Umweltverträglichkeitsprüfung?<br />

149<br />

Tobias Leidinger<br />

Die in Deutschland erteilten Genehmigungen für die Aufbewahrung von Kernbrennstoffen sind auf 40 Jahre – gerechnet<br />

ab Einlagerung des ersten Behälters – befristet. Für die zentralen Zwischenlager Gorleben und Ahaus laufen die § 6<br />

AtG-Genehmigungen im Jahre 2<strong>03</strong>4 bzw. 2<strong>03</strong>6, für die dezentralen Zwischenlager an den KKW-Standorten in den<br />

Jahren danach aus. Angesichts einer – mangels Endlagerverfügbarkeit – zu erwartenden verlängerten Zwischenlagerung<br />

in Deutschland stellt sich die Frage, ob es im Zuge der „Verlängerung“ der Aufbewahrungsgenehmigungen der<br />

Durchführung einer Umweltverträglichkeitsprüfung nach Maßgabe des Gesetzes über die Umweltverträglichkeitsprüfung<br />

(UVPG) bedarf.<br />

I. Ausgangslage<br />

Durch das „Gesetz zur Neuordnung der Verantwortung in<br />

der kerntechnischen Entsorgung“ vom 27. Januar 2017<br />

wurden die organisatorischen und finanziellen Rahmenbedingungen<br />

für die Entsorgung der radioaktiven Abfälle<br />

neu geregelt. Für den Betrieb der Zwischenlager wurde<br />

2017 die bundeseigene BGZ Gesellschaft für die Zwischenlagerung<br />

mbH gegründet, die ab August 2017 die Verantwortung<br />

für die Zwischenlager Ahaus und Gorleben und<br />

ab 1. Januar <strong>2019</strong> auch den Betrieb der zwölf dezentralen<br />

Standort-Zwischenlager übernommen hat. Angesichts<br />

der ab Anfang der 2<strong>03</strong>0er-Jahre auslaufenden § 6 AtG­<br />

Genehmigungen ist – mit hinreichendem zeitlichen Vorlauf<br />

– zu klären, ob eine verlängerte Zwischenlagerung<br />

nach Ablauf der jeweiligen Befristung der bisherigen<br />

Genehmigungen die Durchführung einer UVP erfordert.<br />

Denn ein solches Verfahren ist mit erheblichem sachlichen<br />

und zeitlichen Aufwand verbunden.<br />

II. Zwischenlagerung bleibt – auch im Fall<br />

der Verlängerung – Zwischenlagerung<br />

Eine Zwischenlagerung im Sinne von § 6 AtG ist solange<br />

gegeben, wie die Überbrückung der Zeit bis zur Inbetriebnahme<br />

eines Bundesendlagers dauert. Eine bestimmte<br />

zeitliche Grenze sieht der Gesetzgeber für die Einordnung<br />

als Zwischenlagerung nicht vor. Werden die bislang auf<br />

40 Jahre befristeten Genehmigungen also anschließend<br />

„verlängert“, ändert dies nichts daran, dass auch eine verlängerte<br />

Aufbewahrung „Zwischenlagerung“ im Rechtssinne<br />

bleibt (vgl. OVG Münster, Urt. v. 30.10.1996 – 21 D<br />

2/89.AK, Rn. 93).<br />

III. Verfahrensrechtliche Ausgestaltung<br />

einer verlängerten Zwischenlagerung<br />

Eine „Verlängerung“ der Zwischenlagerung kommt im<br />

Ergebnis auf zwei unterschiedlichen Wegen in Betracht,<br />

die sich auf die UVP-Thematik auswirkt: Entweder als<br />

„ Änderungsgenehmigung“ oder als „Neugenehmigung“.<br />

Die Rechtsprechung lässt grundsätzlich beide Möglichkeiten<br />

zu. Die Verlängerung der Geltungsfrist der Genehmigung<br />

kann durch eine Neugenehmigung erfolgen oder<br />

durch eine bloße Änderung der der Genehmigung bislang<br />

schon beigefügten Frist, also durch eine Änderung der<br />

zeitlichen Erstreckung ihrer Geltungswirkung.<br />

Die inhaltlichen Zulassungsvoraussetzungen für eine<br />

Erteilung einer Änderungsgenehmigung oder einer<br />

Neugenehmigung unterscheiden sich grundsätzlich nicht:<br />

In beiden Fällen ergeben sie sich aus § 6 Abs. 2 AtG (vgl.<br />

dazu im Einzelnen: Leidinger, in: Frenz, Atomrecht, <strong>2019</strong>,<br />

§ 6 Rn. 23 ff.). Unterschiedlich ist grundsätzlich der<br />

Genehmigungsgegenstand: Gegenstand einer Änderungsgenehmigung<br />

sind zunächst nur die Teile, für die aus<br />

Anlass der Änderung die Genehmigungsfrage erneut<br />

aufgeworfen wird. Bei qualitativen Änderungen, die sich<br />

auf die gesamte Anlage beziehen, sind auch die unveränderten<br />

Anlagenteile Gegenstand der Änderungsgenehmigung,<br />

soweit sich die Änderung darauf auswirkt.<br />

Das führt dazu, dass sämtliche Umweltauswirkungen<br />

unmittelbarer Prüfungsgegenstand des Änderungsgenehmigungsverfahrens<br />

sind. Bei einer Verlängerung der<br />

Zwischenlagerung handelt es sich nicht um eine quantitative<br />

Erweiterung, sondern um eine qualitative –<br />

nämlich zeitliche – Änderung. Dies führt dazu, dass grundsätzlich<br />

sämtliche materiellen Zulassungsvoraus setzungen<br />

des § 6 Abs. 2 AtG erneut zu prüfen sind, denn die<br />

Änderung betrifft den gesamten Inhalt der Genehmigung.<br />

Das entspricht der Situation bei der Erteilung einer Neugenehmigung,<br />

durch die die Verlängerung der Aufbewahrungsdauer<br />

bewirkt werden soll: Sie verändert nicht<br />

die Aufbewahrung, sondern erlaubt sie über den bisherigen<br />

Befristungszeitraum hinaus neu. Mithin sind<br />

sämtliche Genehmigungsvoraussetzungen nach § 6 Abs. 2<br />

AtG auch dann zu prüfen.<br />

IV.<br />

Auswirkungen auf die Umweltverträglichkeitsprüfung<br />

nach UVPG<br />

Unterschiede zwischen Änderungs- und Neugenehmigung<br />

im Fall einer verlängerten Zwischenlagerung ergeben<br />

sich indes im Hinblick auf die Umweltverträglichkeitsprüfung,<br />

denn das UVPG unterscheidet zwischen Neuund<br />

Änderungsvorhaben.<br />

1. Neuvorhaben<br />

Für Neuvorhaben folgt die UVP-Pflichtigkeit aus § 6 S. 1<br />

UVPG i.V.m. Nr. 11.3 der Anlage 1 des UVPG. Danach<br />

bedarf es einer UVP, wenn es um die Lagerung bestrahlter<br />

Kernbrennstoffe oder radioaktiver Abfälle für mehr als<br />

zehn Jahre an einem anderen Ort als dem Ort geht, an dem<br />

diese Stoffe angefallen sind. Das ist sowohl bei zentralen<br />

als auch bei dezentralen Zwischenlagern der Fall, wenn<br />

die „Verlängerung“ für mehr als 10 Jahre erfolgen soll.<br />

Die danach zwingend durchzuführende UVP ist unselbständiger<br />

Teil des atomrechtlichen Genehmigungsverfahrens<br />

nach § 6 AtG. Zur Durchführung der UVP<br />

verweist § 2a Abs. 1 S. 2 AtG auf die Vorschriften der AtVfV,<br />

in denen die näheren Vorgaben zur UVP – entsprechend<br />

den Regelungen im UVPG selbst – speziell bestimmt sind.<br />

2. Änderungsvorhaben<br />

Ist hingegen von einem Änderungsvorhaben auszugehen,<br />

richtet sich die UVP-Pflicht nach § 9 UVPG. Hier ist zu<br />

unterscheiden zwischen Vorhaben, für die bereits eine<br />

UVP durchgeführt worden ist (§ 9 Abs. 1 UVPG) und<br />

Vorhaben, für die bislang keine UVP durchgeführt worden<br />

ist (§ 9 Abs. 2, Abs. 3 UVPG). Beide Fälle sind in der Praxis<br />

anzutreffen.<br />


Spotlight on Nuclear Law<br />

Extended Interim Storage – Impact on the Environmental Impact Assessment? ı Tobias Leidinger

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


a) UVP ursprünglich bereits durchgeführt<br />

Wurde für das Änderungsvorhaben ursprünglich bereits<br />

eine UVP durchgeführt, besteht nach § 9 Abs. 1 S. 1 Nr. 1<br />

UVPG nur dann eine UVP-Pflicht, wenn allein die Änderung<br />

die Größen- oder Leistungswerte für eine unbedingte<br />

UVP-Pflicht erreicht oder überschreitet. Die Lagerdauer<br />

eines Zwischenlagers ist aber kein Größen- oder Leistungswert<br />

im Sinne von § 6 S. 2 UVPG, denn die in Nr. 11.3 des<br />

Anhangs 1 UVPG genannte Lagerdauer dient allein der<br />

näheren Beschreibung der Art des Vorhabens. Gemäß<br />

§ 9 Abs. 1 S. 1 Nr. 2 UVPG besteht für das Änderungsvorhaben<br />

eine UVP-Pflicht aber dann, wenn eine allgemeine<br />

Vorprüfung ergibt, dass die Änderung zusätzliche<br />

erhebliche nachteilige oder andere erhebliche Umweltauswirkungen<br />

hervorrufen kann. Das ist Tatfrage und im<br />

Einzelfall insbesondere davon abhängig, ob die Aufbewahrung<br />

geänderten technischen oder verschärften<br />

normativen Anforderungen unterliegt.<br />

b) UVP bislang noch nicht durchgeführt<br />

Wird ein Vorhaben geändert, für das noch keine UVP<br />

durchgeführt worden ist, so besteht für das Änderungsvorhaben<br />

nach § 9 Abs. 2 S. 1 Nr. 2 UVPG die UVP-Pflicht,<br />

wenn eine Vorprüfung ergibt, dass die Änderung erhebliche<br />

nachteilige Umweltauswirkungen hervorrufen kann.<br />

Auch insoweit kommt es auf die Gegebenheiten im<br />

Einzelfall im Zeitpunkt der „Änderung“ an.<br />

sofern die Genehmigung nicht schon direkt als UVPpflichtige<br />

Neugenehmigung beantragt wird. Im Fall einer<br />

Änderungsgenehmigung kann der Antragssteller die UVP<br />

nach § 7 Abs. 3 UVPG selbst beantragen und damit Risiken<br />

im Hinblick auf sonst verbleibende Auslegungsspielräume<br />

– bei einer bloßen UVP-Vorprüfung – ausschließen. Bei der<br />

UVP-Prüfung selbst ist darzulegen, dass die „verlängerte“<br />

Zwischenlagerung nicht zu nachteiligen Umweltauswirkungen<br />

führt. Wird die Aufbewahrung nach Ablauf der<br />

ursprünglichen Befristung fortgesetzt und belegt, dass die<br />

erforderliche Schadensvorsorge weiterhin gewährleistet<br />

ist, wird dieser Nachweis im Ergebnis erfolgreich zu führen<br />

sein.<br />

Autor<br />

Prof. Dr. Tobias Leidinger<br />

Rechtsanwalt und Fachanwalt für Verwaltungsrecht<br />

Luther Rechtsanwaltsgesellschaft<br />

Graf-Adolf-Platz 15<br />

40213 Düsseldorf<br />

c) Prüftiefe im Rahmen der Vorprüfung<br />

Ist eine Vorprüfung erforderlich, ist diese nach § 7 Abs. 1<br />

S. 2 UVPG als überschlägige Prüfung – mit eingeschränkter<br />

Tiefe – durchzuführen. Die Vorprüfung darf nichts von<br />

der eigentlichen UVP vorwegnehmen. Andererseits darf<br />

sie sich nicht mit einer oberflächlichen Abschätzung<br />

begnügen. Damit sind Wertungsspielräume eröffnet und<br />

Fragen, die Rahmen einer gerichtlichen Nachprüfung zu<br />

Streit und – im schlechtesten Fall – zur Aufhebung der<br />

Änderungsgenehmigung führen können.<br />

V. Konsequenzen aus Sicht<br />

des Antragstellers<br />

Angesichts der Auslegungsspielräume im Hinblick auf die<br />

richtige Vorgehensweise bei einer verlängerten Zwischenlagerung<br />

(Neu- oder Änderungsgenehmigung mit UVP<br />

oder mit Vorprüfung zur UVP) ist der Vorhabenträger im<br />

Zweifel gut beraten, die Durchführung einer UVP von<br />

sich aus für ein „Neuvorhaben“ zu beantragen. Diese<br />

­Möglichkeit eröffnet ihm § 7 Abs. 3 S. 1 UVPG, wenn die<br />

zuständige Behörde das Entfallen der Vorprüfung als<br />

zweckmäßig erachtet. Dann wird das Vorhaben nach § 7<br />

Abs. 3 S. 3 UVPG als UVP-pflichtig behandelt. Vorteil ­dieser<br />

Vorgehensweise ist ein Gewinn an Zeit und Rechtssicherheit:<br />

Der Zeitbedarf für eine u.U. aufwendige<br />

Vorbereitung und die eigentliche Durchführung der Vorprüfung<br />

der UVP-Pflicht bei Antragssteller und Genehmigungsbehörde<br />

entfällt. Zugleich kann das Risiko<br />

vermieden werden, dass die Entscheidung im Rahmen der<br />

UVP-Vorprüfung – UVP-Pflicht ja oder nein – Gegenstand<br />

eines späteren Rechtsstreits wird, mit der Folge, dass<br />

eine unterbliebene UVP möglicherweise noch nachgeholt<br />

werden muss – sofern dann noch rechtlich zulässig.<br />

VI. Fazit<br />

Für eine über die ursprünglich befristet genehmigte<br />

Zwischenlagerung hinausgehende „verlängerte“ Aufbewahrung<br />

nach § 6 AtG ist – im Zweifel – nicht nur eine<br />

UVP-Vorprüfung, sondern eine UVP durchzuführen,<br />

Spotlight on Nuclear Law<br />

Extended Interim Storage – Impact on the Environmental Impact Assessment? ı Tobias Leidinger

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

The German Quiver Project<br />

Quivers for Damaged and Non-Standard Fuel Rods<br />

Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl,<br />

Bernhard Kühne and Marc Verwerft<br />

1 Introduction and background of the German Quiver Project During the operational<br />

phase of a nuclear power plant, damaged fuel rods are usually collected separately in the spent fuel pool for a later<br />

disposal after the plant’s final shut-down. In Germany the initially planned disposal path for damaged fuel rods was<br />

reprocessing. However, as part of the agreement on the first nuclear phase-out in 2000 in Germany (“Atomkonsens”),<br />

also transports of spent fuel to reprocessing plants were banned effective July 2005. With the first NPP to be shut-down<br />

in 2011 (KKI-1), its operator E.ON Kernkraft (EKK, now PreussenElektra) started a project in 2005 to establish a<br />

solution for the dry interim storage of their failed fuel rods in the on-site storage facilities, that had to be erected due to<br />

the end of reprocessing. Since the collected failed fuel rods were to be taken out of the pools only after the last regular<br />

fuel assemblies, a feasible storage solution for the failed fuel rods would have been needed by about 2016.<br />

In 2006 EKK asked GNS Gesellschaft<br />

für Nuklear-Service mbH to join the<br />

project to ensure compatibility with<br />

the requirements of the transport and<br />

storage casks. By early 2007 two companies,<br />

one of them already Höfer &<br />

Bechtel, provided first design ideas<br />

and drawings. In 2009 the four German<br />

utilities jointly asked GNS to take<br />

over one of the concepts and develop<br />

it towards cask-licensing. In June 2010<br />

this quiver solution was presented to<br />

Bundesanstalt für Materialforschung<br />

und -prüfung (BAM) to obtain a first<br />

authority feedback, in order to create<br />

a licensing documentation for transportation<br />

and storage.<br />

After the political decision to again<br />

extend the operating times of the<br />

German NPPs later in 2010, the focus<br />

in the back-end activities of the<br />

utilities temporarily shifted to the<br />

regular cask licenses to ensure undisturbed<br />

operation by timely caskloading<br />

campaigns. The first plant to<br />

be closed was still KKI-1, but now only<br />

in 2020. Hence the licensing of the<br />

quiver solution was temporarily<br />

suspended in favour of the ongoing<br />

licensing processes of transport and<br />

storage casks.<br />

The second and final German<br />

phase out decision of June 2011 again<br />

revived the demand for a solution for<br />

failed fuel rods. Since the oldest<br />

plants, that had been taken off the<br />

grid only days after the Fukushima<br />

accident, were to remain shut down<br />

permanently, suddenly the development<br />

of a failed-fuel-rod solution was<br />

on a five-year time schedule.<br />

As early as July 2011, the utilities<br />

asked GNS to resume the efforts<br />

with a special focus on the new time<br />

constraints. Regarding these new<br />

boundary conditions, GNS revised the<br />

requirements for such a quiver solution,<br />

now aiming at a very robust<br />

licensing concept as first priority,<br />

which was expected to reliably pass<br />

the licensing process faster than an<br />

economically optimized concept.<br />

During a workshop in August 2011<br />

GNS and the utilities discussed this<br />

concept in detail and until November<br />

2011 a specification was drafted.<br />

Based on that, five potential developers<br />

were invited to present their<br />

concepts in early 2012. Out of these<br />

five, the utilities finally agreed to<br />

adopt a hot-vacuum drying system<br />

with a quiver being able to accommodate<br />

several fuel rods as it was<br />

presented by Höfer & Bechtel. The<br />

quiver would regulatorily be treated<br />

as part of the cask and, to facilitate<br />

timely licensing, a cask-loading with<br />

only quivers was foreseen. In order to<br />

reduce the overall risk of the project,<br />

however, the utilities had also decided<br />

to pursue a second, different approach<br />

at the same time – hot-gas drying of<br />

individually capsuled fuel rods and<br />

assembling several capsules to a<br />

­quasi-assembly – until the major challenges<br />

in the Höfer & Bechtel concept<br />

have been overcome.<br />

At the time of the actual project<br />

start in mid-2012, there was very<br />

­limited scientific information available<br />

on irradiated fuel rods containing<br />

water after a cladding perforation<br />

during operation occurred. EKK then<br />

decided to launch a research project<br />

with the Belgian nuclear research<br />

center SCK•CEN in Mol. As an additional<br />

partner SYNATOM, the company<br />

responsible for the front and the<br />

back end of the nuclear fuel cycle<br />

in Belgium, decided to join the socalled<br />

WETFUEL project. As will be<br />

described in more detail later, hydraulic<br />

properties were measured, proof of<br />

principle for temperature assisted<br />

vacuum drying was provided and<br />

­finally water removal rates were<br />

determined. During this intensive<br />

research programme the overall concept<br />

could be validated and the industrial<br />

feasibility was shown.<br />

Based on these results GNS in<br />

cooperation with Höfer & Bechtel<br />

developed two quivers for non standard<br />

fuel rods to fit into the basket slots<br />

of the existing cask types CASTOR®<br />

V/19 (PWR) and CASTOR® V/52<br />

(BWR). The customizable internal<br />

baskets of the quivers facilitate the<br />

disposal of a large variety of nuclear<br />

inventory. Furthermore, the quiver<br />

features a robust design and a unique<br />

welded closure system, to provide a<br />

second cladding for the damaged fuel<br />

rods. This design and the accompanying<br />

dispatch equipment have been<br />

verified by a series of tests and qualification<br />

processes supervised by the<br />

German authorities, and have proven<br />

to be a reliable solution within the<br />

specified period of only five years.<br />

The package design approvals for<br />

the quiver for CASTOR® V/19 and<br />

V/52 have been issued by the German<br />

authorities in 2017 and 2018, respectively.<br />

This first of its kind quiver<br />

solution is thus able to assure the dry<br />

interim storage of all non-standard<br />

fuel rods from the German NPPs in<br />

standard transport and storage casks.<br />

In April 2018, the first three<br />

PWR-quivers were loaded at Unterweser<br />

NPP, while their final dispatch<br />

campaign including drying and<br />

welding was successfully carried out<br />

in October and November 2018. The<br />

next dispatch campaign has already<br />

started at Biblis NPP.<br />

2 The Quiver – Design<br />

and function<br />

The quiver for non standard fuel rods<br />

has been designed to be accommodated<br />

by the standard baskets of the<br />

CASTOR® V/19 or CASTOR® V/52.<br />

151<br />


Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 1.<br />

PWR-quiver with head- and foot-piece, inner basket, 32AR (upper-) and<br />

6AR (lower picture), lid of BWR-quiver (upper-), welded lid (lower picture) –<br />

(from left to right).<br />

The boundary conditions for the<br />

design of the quiver were:<br />

pp<br />

restoring the limited or missing<br />

barrier of the damaged fuel<br />

pp<br />

equivalence to the size and weight<br />

of standard fuel assemblies to fit<br />

into the CASTOR® baskets<br />

pp<br />

full compliance with CASTOR®<br />

license, regarding<br />

pp<br />

criticality<br />

pp<br />

dose rate<br />

pp<br />

heat dissipation<br />

pp<br />

no negative impact especially on<br />

the CASTOR® lid system, regarding<br />

accident conditions<br />

pp<br />

ability to dry the fuel, that might be<br />

wet, due to cladding failure<br />

pp<br />

ability to get the license for processing<br />

the damaged fuel from the<br />

spent fuel pool to the loading of the<br />

final CASTOR®<br />

The quiver (Figure 1) comprises the<br />

following parts:<br />

pp<br />

A forged stainless steel body with<br />

the central cavity to accommodate<br />

the inner basket. The body is made<br />

of one single piece, comparable to<br />

the body of the CASTOR®.<br />

pp<br />

The inner basket, which accommodates<br />

the damaged fuel rods or<br />

even parts of fuel rods and thus<br />

provides a defined and calculable<br />

geometry. Furthermore, the inner<br />

basket is designed to facilitate the<br />

drying of the damaged fuel. There<br />

are different types of inner baskets<br />

to accommodate even geometrically<br />

distorted fuel rods.<br />

pp<br />

A lid that is screwed into the top of<br />

the body, after the cavity and the<br />

fuel have been successfully dried.<br />

Additionally, the lid is welded to<br />

the body, to provide the gas tight<br />

barrier for the fuel.<br />

pp<br />

The head- and foot-pieces are<br />

designed as shock absorbers to<br />

limit the impact on the quiver itself<br />

and on CASTOR® lid in case of an<br />

accident. The head-piece also<br />

serves as load attachment point.<br />

The inner basket of the PWR-quiver<br />

is licensed in two different variants.<br />

The most common type called 32AR<br />

features 32 tubes of three different diameters<br />

for fuel rods or encapsulated<br />

fuel rods of different diameters. The<br />

second type is called 6AR and is suited<br />

for geometrically distorted fuel rods.<br />

It is possible to load more than one<br />

fuel rod into one of the six tubes of the<br />

6AR inner basket.<br />

For the BWR-quiver three different<br />

types of inner baskets have been<br />

licensed. These are 18AR and 14AR<br />

for 18 resp. 14 fuel rods of different<br />

diameters as well as 8AR for geometrically<br />

distorted fuel rods. The 8AR can<br />

take up one or two fuel rods in each of<br />

its eight tubes.<br />

Unlike a fuel assembly, which<br />

bends under mechanical loads, the<br />

quiver is a much more rigid and stiff<br />

structure. One of the biggest challenges<br />

was the design and qualification<br />

of the head- and foot-pieces<br />

regarding their shock absorber functionality<br />

to prevent additional stress<br />

to the CASTOR® lid system under accident<br />

conditions of transport.<br />

To prove the effectiveness of the<br />

head- and foot-pieces, first the design<br />

was optimized using static loads of a<br />

hydraulic press with maximum force<br />

of 300 tons. Later on, the final design<br />

was proven in several drop tests. For<br />

that, the equipment for the drop tests<br />

was set up and qualified at the Höfer &<br />

| | Fig. 2.<br />

Drop test at -40°C, just before impact.<br />

Bechtel site at Mainhausen. All equipment<br />

for the drop tests of the 880 kg<br />

prototype quivers onto a rigid foundation<br />

was qualified in cooperation<br />

with BAM. Drop tests were performed<br />

at temperatures between -40°C<br />

( Figure 2) and +90°C (PWR) and<br />

-40°C to +110°C (BWR). The optimized<br />

design of the head- and footpieces<br />

was able to keep the maximum<br />

load to the quiver itself as well as the<br />

force on the lid system of the CASTOR®<br />

within the specified limits.<br />

Manufacturing of the quivers and<br />

all of its components is performed<br />

under supervision of different authorities<br />

in order to assure quality specifications<br />

laid down in the license.<br />

A second major challenge was the<br />

qualification of the drying process of<br />

the quiver cavity and even more so of<br />

potentially wet damaged fuel. Based<br />

on theoretical calculations and published<br />

experience with drying of<br />

damaged fuel, the drying concept was<br />

developed. Starting with a mock up<br />

for simulating a single damaged fuel<br />

rod up to the 1:1 original drying<br />

equipment, the qualification process<br />

for the drying was performed under<br />

supervision of BAM. The ability to<br />

monitor the drying process and to<br />

measure and verify dryness is as<br />

important as the drying process itself,<br />

as the test rods could be weighed and<br />

inspected for dryness, but the original<br />

damaged fuel rods can not.<br />

Fruitful discussions with the<br />

­experts of BAM led to the final design<br />

of the drying equipment and to the<br />

approved drying procedures. Participation<br />

in the international WETFUEL<br />

research program, which took place at<br />

SCK•CEN, Mol, Belgium, during the<br />

time of the development of the quiver<br />

drying system, was also a great opportunity<br />

to transform the experience<br />

from test rods to real fuel rods.<br />

3 The Quiver as part of the<br />

CASTOR® Cask and its<br />

licensing implications<br />

The disposal of spent nuclear fuel in<br />

Germany is essentially based on the<br />

established CASTOR® V casks. These<br />

casks consist of a thick-walled, monolithic<br />

cask body made of ductile cast<br />

iron with radial cooling fins, a basket<br />

for the spent fuel assemblies and an<br />

in-line double lid system. In case<br />

of CASTOR® V/19 for PWR-FA, the<br />

basket offers 19 positions while in case<br />

of CASTOR® V/52 for BWR-FA, the<br />

basket has 52 positions. Figure 3<br />

displays the design features using the<br />

example of CASTOR® V/52 in storage<br />

configuration.<br />

Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

| | Fig. 3.<br />

Design Features of the CASTOR® V/52<br />

(Storage configuration).<br />

In order to provide a comprehensive<br />

disposal concept also for damaged<br />

fuel rods, the quiver for damaged<br />

fuel rods had to be licensed as inventory<br />

for transport and storage in<br />

CASTOR® V casks. To achieve a<br />

straightforward and fast licensing<br />

process, the quiver was designed to be<br />

very robust and to comply with the<br />

existing boundary conditions of the<br />

CASTOR® V cask:<br />

pp<br />

equivalence of size and weight of<br />

standard fuel assemblies to fit into<br />

the CASTOR® baskets<br />

pp<br />

no negative impact on the cask,<br />

especially on the CASTOR® lid<br />

system under accident conditions<br />

pp<br />

ability to dry the damaged fuel<br />

rods to an extent, that no extra<br />

measures in the cask or quiver<br />

design are necessary.<br />

The licensing approach was further<br />

optimized regarding the situation of<br />

shut-down NPPs with the need for a<br />

fast track disposal concept for a<br />

complete removal of nuclear fuel from<br />

their spent fuel pools. This led to a<br />

two-step approach:<br />

1. Fast track concept featuring:<br />

pp<br />

Robust quiver design with significant<br />

safety margins<br />

pp<br />

Conservative cask loading pattern<br />

(quiver only)<br />

pp<br />

Safety report with very conservative<br />

boundary conditions<br />

pp<br />

Substantial experimental tests to<br />

accelerate the safety evaluation<br />

process<br />

2. Optimized concept featuring:<br />

pp<br />

Robust quiver design with higher<br />

load capacity<br />

pp<br />

Optimized cask loading patterns<br />

(quiver and spent fuel assemblies)<br />

pp<br />

Safety report with adequate<br />

boundary conditions<br />

The first approach proved successful:<br />

The first transport license for the<br />

leading PWR-quiver in CASTOR®<br />

V/19 casks was granted on schedule<br />

in April 2017, subsequently the first<br />

storage license for Biblis NPP in June<br />

2018. The transport license for the<br />

BWR-quiver in CASTOR® V/52 casks<br />

was granted in April 2018, the first<br />

storage license for Krümmel NPP in<br />

December 2018.<br />

In order to economically optimize<br />

the use of the quiver system, GNS<br />

works on improving the capacity of<br />

the quivers and enabling also mixed<br />

cask loadings with both quivers and<br />

regular fuel assemblies. First feasibility<br />

studies have been started.<br />

4 Quiver handling and<br />

service equipment<br />

The quiver project is divided into<br />

three subprojects. One of these subprojects<br />

was the development and<br />

manufacturing of equipment for<br />

handling and preparation of damaged<br />

fuel rods for the loading into the<br />

quivers.<br />

4.1 First step: Loading of<br />

damaged spent fuel into<br />

the Quiver<br />

Using trusted under water handling<br />

tools the damaged fuel rods are<br />

loaded under water into the quivers.<br />

This process is schematically shown<br />

in Figure 4 left.<br />

For the loading of the fuel rods<br />

with minor damages (e.g. gastight<br />

with reduced cladding thickness or<br />

gastight with deformations) the fuel<br />

rod is gripped at its upper pin by<br />

means of a plier. The operator lifts the<br />

tool with the crane and positions the<br />

attached fuel rod above the quiver.<br />

Subsequently, the fuel rod is lowered<br />

into a free loading position of the<br />

internal basket of the quiver. Examples<br />

of customized internal baskets for<br />

different kinds of damaged fuel rods<br />

are shown in Figure 4 right.<br />

Before loading into the quiver,<br />

heavily damaged fuel rods or even<br />

fuel rod sections down to the size of<br />

pellets, are placed in small handling<br />

tubes. The handling tubes are handled<br />

with a dedicated gripper (Figure 5).<br />

| | Fig. 4.<br />

Damaged fuel rods and handling tubes with fuel rod sections are placed in a receptacle, which is<br />

positioned in the fuel assembly storage rack. Next to that the quiver is waiting for the loading (left).<br />

Different internal baskets for varying kinds of bent damaged fuel rods (right).<br />

| | Fig. 5.<br />

Handling tube for the collection of heavily damaged fuel rods, smaller sections of fuel rods or even<br />

broken pieces down to the size of pellets (left). In analogy to the loading of fuel rods with an intact<br />

upper pin, the handling tubes are placed in the internal basket of the quiver (right). Example for a<br />

gripper to collect fuel debris for placement in cartridges before loading into the quiver (bottom).<br />


Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 6.<br />

The quiver is still placed in the fuel-assembly rack with the transfer-head piece already attached. The<br />

primary shielding is inside the loading station at the usual loading position of the CASTOR® V cask (left).<br />

The quiver is lifted out of the rack and positioned inside the primary shielding (center). After removal of<br />

the transfer-head piece the primary shielding is closed with a top shielding. Now the shielding basket is<br />

ready to be lifted out of the pool and handled on the reactor floor (right).<br />

| | Fig. 7.<br />

The quiver inside the primary shielding is lifted out of the pool and into the handling station on the<br />

reactor floor (left). Dewatering of the quiver inside the handling station (center). View into the mobile<br />

hot cell on top of the handling station (right).<br />

The actual process of loading the<br />

handling tubes into the internal basket<br />

of the quiver remains unchanged compared<br />

to the fuel rods with minor<br />

damages, which are directly loaded<br />

into the quiver.<br />

4.2 Second step: Dispatch<br />

of the Quiver<br />

In contrast to the regular dispatch of<br />

spent fuel assemblies under water in<br />

the spent fuel pool, the dispatch of the<br />

quiver is performed outside the spent<br />

fuel pool on the reactor floor. This<br />

approach is motivated by the possibility<br />

to use much simpler technology<br />

than would be required for underwater<br />

processing in the spent fuel<br />

pool. This also yields an increase<br />

in process stability. However, this<br />

approach requires some additional<br />

equipment especially with regard to<br />

shielding.<br />

After loading of the quiver with<br />

damaged fuel rods a transfer-head<br />

piece is attached to the top of the<br />

quiver for handling purposes. This<br />

transfer­ head piece allows the handling<br />

of the quiver like a standard fuel<br />

assembly with a gripper. The quiver is<br />

lifted out of the storage rack and is<br />

placed into a shielding basket on the<br />

bottom of the pool. The shielding<br />

basket is the primary shielding of the<br />

quiver during handling outside of<br />

the spent fuel pool. In the pool it is<br />

positioned in a loading station waiting<br />

to take up the quiver. As shown in<br />

Figure 6 the loading station is located<br />

at the position in the spent fuel pool,<br />

where the CASTOR® V casks are<br />

usually loaded during a standard<br />

defueling campaign. It consists of a<br />

stable base plate with welded lateral<br />

guide and support elements for the<br />

shielding basket. The loading station<br />

and the shielding basket are handled<br />

with the same crane system of the NPP.<br />

After transferring the quiver into<br />

the shielding basket, the transfer-head<br />

piece is removed and a top shielding,<br />

closing the top of the shielding basket<br />

is attached to the primary shielding.<br />

The shielding basket including the<br />

quiver is now lifted out of the pool and<br />

positioned into a handling station on<br />

the reactor floor (Figure 7).<br />

The handling station is where the<br />

actual dispatch of the quiver takes<br />

place. It consists of a secondary<br />

shielding system, an operating platform<br />

and a mobile hot cell, which is<br />

operated by remote control. The<br />

shielding block as the secondary<br />

shielding system for the quiver consists<br />

of a sandwich structure of polyethylene<br />

and steel. One side can be<br />

opened for placing the shielding<br />

basket with the traverse into the<br />

shielding block. An operation platform<br />

is fitted to the shielding block,<br />

enabling access to the upper part of<br />

the shielding block and for inspection<br />

works. Inside the mobile hot cell<br />

the drying and welding of the quiver<br />

is performed. The mobile hot cell provides<br />

a barrier between the damaged<br />

fuel rods in the quiver and the atmosphere<br />

of the controlled area in the<br />

NPP, retaining particles etc. The atmosphere<br />

inside the mobile hot cell is<br />

monitored and can be replaced with<br />

an inert gas atmosphere. The exhaust<br />

line from the mobile hot cell is<br />

connected to the building ventilation<br />

system via a particle filter, providing<br />

further contamination control.<br />

Now the dewatering and drying of<br />

the quiver can take place. While the<br />

dewatering is performed by suction of<br />

the water the drying process is more<br />

sophisticated: while the quiver is<br />

heated to temperatures above the<br />

boiling point of water by hot air from a<br />

heating unit, a vacuum drying device<br />

operates using a special throughput of<br />

hot air, utilizing humidity sensors to<br />

monitor the residual moisture in the<br />

quiver and its inventory.<br />

After drying, the quiver is filled<br />

with helium for helium leak testing<br />

and to provide inert conditions. The<br />

lid of the quiver is screwed in using<br />

remote manipulation tools. In order to<br />

provide the gas tightness of the quiver,<br />

a welding seam is produced by means<br />

of a remote welding machine. The<br />

welding process had to be qualified by<br />

the German authorities and it was<br />

shown that the automated process<br />

generates a gastight welding seam<br />

­fulfilling the design specifications.<br />

Finally, after the welding a leak tightness<br />

test of the welding seam is performed<br />

inside the mobile hot cell.<br />

As mentioned above, all the operations<br />

inside the mobile hot cell are<br />

performed by remote control and are<br />

monitored by video. This significantly<br />

reduces the radiation exposure of<br />

the personnel. Figure 8 shows the<br />

Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

| | Fig. 8.<br />

The remote controlled handling device inside the mobile hot cell with one of the six cameras inside<br />

the cell (top, left). The remote control terminal which is placed next to the handling station (top, right).<br />

The remote controlled automatic welding device (bottom).<br />

manipulation device and one of the<br />

six cameras inside the mobile hot cell.<br />

The remote control station is positioned<br />

beside the handling station and<br />

is connected to the mobile hot cell.<br />

After the dispatch, the quiver – still<br />

inside the primary shielding – is transferred<br />

back to the loading station in<br />

the pool. Here the quiver is lifted out<br />

of the shielding and put back into the<br />

storage rack, where it remains until<br />

being loaded into the CASTOR® cask.<br />

5 Drying spent nuclear fuel<br />

5.1 Boundary conditions<br />

for drying fuel<br />

Both the defining criteria of damaged<br />

fuel and the procedures for handling<br />

damaged spent nuclear fuel vary from<br />

country to country depending on<br />

the regulatory requirements [1]. For<br />

intact fuel assemblies, the transfer<br />

from wet to dry storage goes generally<br />

without problems as the intact cladding<br />

of the fuel rods ensures that all<br />

water is “easily accessible”. For<br />

non-intact fuel rods, one may expect<br />

that the inner parts of the rod such as<br />

the plenum, fuel-cladding gap, cracks<br />

and fissures in the UO 2 , pellet-pellet<br />

dishes etc. are partially or completely<br />

filled with water. Extraction of the<br />

water that has seeped into the fuel<br />

may be difficult. As-fabricated fuel<br />

rods have a fuel-cladding gap of<br />

several tens of micrometers, but<br />

progressively, the cladding creeps<br />

towards the fuel while the fuel undergoes<br />

thermal expansion and swells<br />

due to fission product accumulation<br />

and after a certain period of time, the<br />

fuel­ cladding gap is closed in hot<br />

operating conditions. In cold stage,<br />

the gap re-opens due to the larger<br />

thermal contraction of the fuel, but<br />

the gap size of spent fuel is much<br />

smaller than the as-fabricated gap.<br />

Already for non-failed fuels, the gas<br />

connectivity in an irradiated fuel rod<br />

is a complex phenomenon to describe<br />

quantitatively. Upon cladding breach,<br />

the fuel rod internals are exposed to<br />

the primary coolant and later to the<br />

spent fuel pool water. After cladding<br />

breach, e.g. as a result of debris<br />

fretting causing a pinhole defect,<br />

secondary cladding defects rapidly<br />

develop due to hydrogen uptake by<br />

the Zircaloy cladding [2, 3]. Furthermore,<br />

UO 2 potentially oxidizes to<br />

higher oxides upon exposure to oxidizing<br />

conditions (UO 2 → UO 2+x →<br />

U 4 O 9 → U 3 O 7 → U 3 O 8 ). Compared to<br />

UO 2 , the higher oxides which essentially<br />

keep the fluorite arrangement of<br />

the parent UO 2 structure (UO 2+x ,<br />

U 4 O 9 and U 3 O 7 ) show a net contraction<br />

of their structure [4-6], but when<br />

the U 3 O 8 phase forms, a huge expansion<br />

(36 %) occurs [7]. For non-intact<br />

fuel, one must thus take into account<br />

that water has interacted with the<br />

UO 2 fuel, and that hydriding and<br />

inner wall oxidation of zircaloy cladding<br />

may have occurred, which<br />

further complicates a theoretical prediction<br />

of water removal kinetics.<br />

5.2 Hot laboratory drying<br />

tests of real spent nuclear<br />

fuel segments (WETFUEL<br />

Project)<br />

In order to reduce the uncertainties of<br />

water removal rates from damaged<br />

irradiated spent fuel rods, an experimental<br />

setup was developed to perform<br />

wetting and drying tests under<br />

well-controlled conditions. The setup<br />

further allowed to measure the<br />

hydrau­lic resistance for gas flow as<br />

well as the removal rate of water<br />

through a spent fuel segment of<br />

variable length. The device consisted<br />

of two instrumented vessels holding a<br />

fuel rod segment in between them,<br />

sealed in such a way that any<br />

water, gas or vapor flow had to pass<br />

through the clamped fuel rod segment<br />

(Figure 9).<br />

Spent fuel samples were taken<br />

from a failed fuel rod and from a<br />

nearly identical unfailed fuel rod<br />

with a rod average burnup around<br />

50 GWd/tHM irradiated in the ­Belgian<br />

Tihange 1 PWR. Tested fuel samples<br />

showed the typical crack pattern for<br />

irradiated nuclear fuel (Figure 10).<br />

For analytical studies, fuel rod<br />

segments of various lengths were<br />

investigated. In this article the results<br />

obtained from two segments of 50 cm<br />

and one of 10 cm length are discussed.<br />

| | Fig. 9.<br />

Hot-cell installation for wetting and drying experiments on spent nuclear fuel segments: Design drawing<br />

of the two vessels: a large bottom vessel and a much smaller top vessel (left). 3D cutout view of the<br />

equipment with schematic indication of a mounted spent fuel segment (center). View of the equipment<br />

installed in hot-cell (right).<br />


Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 10.<br />

Cross section of the spent fuel segment WET1, taken from the failed fuel.<br />

The cracks and gap do not show any particular severe degradation. The<br />

missing part on the bottom side is caused by sample preparation. Inset:<br />

detail of the gap region, with an overlay of a Scanning Electron Microscopy<br />

(SEM) image. The greater depth of view of the SEM allows one to better<br />

assess the width of irregular areas such as cracks and the pellet-clad gap<br />

than observations made from optical micrographs.<br />

Prior to tests on real spent fuel rod<br />

segments, mock-up tests were performed<br />

with a segment filled with fine<br />

Al 2 O 3 powder and sealed on both ends<br />

with a porous filter plug.<br />

The test setup allowed various<br />

types of tests:<br />

pp<br />

Hydraulic resistance for dry gas<br />

flow<br />

pp<br />

Wetting-Drying sequence<br />

pp<br />

Water pocket drying<br />

The hydraulic resistance can be<br />

­derived by measuring a gas flow at<br />

constant pressure difference, which<br />

works well for low hydraulic resistance<br />

samples, or by measuring the<br />

rate of pressure change in either of the<br />

two vessels as a function of pressure<br />

difference over the sample, which<br />

proved to be more accurate for<br />

samples with high hydraulic resistance.<br />

Under conditions of laminar<br />

flow, the molar flow rate Q m (t) is<br />

equal to:<br />

length, R is the universal gas constant.<br />

From (Eq. 1), the effective hydraulic<br />

radius can be readily calculated (see<br />

also column 3 of Table 1:<br />

(2)<br />

A complete wetting and drying<br />

sequence consisted of inserting an<br />

excess amount of water in the lower<br />

vessel such that the lower part of the<br />

fuel rod segment would be completely<br />

immersed. The gas cushion above the<br />

water was then pressurized such that<br />

the sample segment was progressively<br />

filled with water until the moisture<br />

readout in the top vessel indicated the<br />

presence of liquid water i.e. full percolation<br />

did occur. The system was<br />

then soaked for a minimum period of<br />

2 hours to allow finer cracks and gaps<br />

to be wetted as well. The lower vessel<br />

was then drained and both top and<br />

bottom vessels were heated to a preset<br />

temperature while being pumped.<br />

During the pumping sequence, the<br />

pressure was monitored as well as the<br />

moisture content in the exhaust line.<br />

After reaching pressures below 1 mbar<br />

in both top and bottom vessel, a pressure<br />

rebound test was performed [8].<br />

To this end, the exhaust lines were<br />

shut and the pressure increment was<br />

monitored for 30 minutes. If the pressure<br />

would not exceed 4 mbar, the test<br />

was considered complete. The drying<br />

sequence, plotted in Figure 11, clearly<br />

showed several phases: in a first<br />

phase, the pressure rapidly dropped<br />

until ~10 mbar, at which point the<br />

pressure stabilized while liquid water<br />

was slowly removed from the fuel<br />

column. The humidity in the exhaust<br />

lines remained elevated (dew point<br />

between 10 °C and 20 °C). Once the<br />

liquid water was removed from the<br />

segment, the pressure and humidity<br />

further dropped. Considering the performance<br />

of the pumping system,<br />

the vacuum was expected to asymptotically<br />

approach ~0.5 mbar. In the<br />

example shown in Figure 11, the first<br />

pressure rebound test was nearly successful<br />

after around 6 h. Upon further<br />

drying, the pressure and humidity<br />

gradually evolved to 0.3 - 0.4 mbar<br />

and 40 °C. A successful dryness test<br />

was performed after 24 h. Further<br />

drying did not result in any significant<br />

changes in vessel pressure or relative<br />

humidity of the exhaust gas. The<br />

test was concluded after 96 h with a<br />

third dryness test, which was again<br />

successful.<br />

The wetting and drying sequence<br />

yielded a successful demonstration of<br />

the feasibility of the drying principle<br />

but was difficult to quantify. Quantification<br />

of water removal rates was<br />

approached by two methods. At first,<br />

the hydraulic resistance of a fuel rod<br />

segment was assessed under dry conditions<br />

(see above), and in a second<br />

stage, “water pocket tests” were performed<br />

at different temperatures. To<br />

this end, 10 ml of water was poured<br />

into the top vessel which was then<br />

sealed, the whole system was heated<br />

and pumping was performed from the<br />

bottom vessel. Depending on the<br />

drying temperature, the drying time<br />

was shorter or longer and correspondingly,<br />

the lower vessel pressure<br />

was at a higher or lower equilibrium<br />

during the drying process: ~4 mbar<br />

for 3 h when drying at 130 °C and at<br />

~2.5 mbar for more than twelve hours<br />

when drying at 110 °C.<br />

(1)<br />

where Q m (t) is the instantaneous<br />

mass flow rate (expressed in g.s 1 )<br />

through the segment, P 1 (t) and P 2 (t)<br />

are the top and bottom pressures as a<br />

function of time, V 1 is the volume of<br />

the top vessel, r is the radius for an<br />

­effective capillary for the gas flow<br />

path, η(T) is the dynamic viscosity of<br />

a certain gas at temperature T (e.g. Ar,<br />

air or H 2 O), M is the molar mass of<br />

the considered gas, L is the flow path<br />

| | Fig. 11.<br />

Drying sequence with monitoring of pressure evolution in both top and bottom vessel and evolution of the<br />

pressure during a 30 minutes dryness test, performed after approximately 6 h of drying, 24 h and 96 h.<br />

Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Sample ID Length Effective<br />

hydraulic radius<br />

| | Tab. 1.<br />

Hydraulic radius of different samples.<br />

From the same water pocket drying<br />

experiments, vapor flow rates can<br />

be determined by shortly closing the<br />

valves of the bottom chamber and<br />

monitoring the instantaneous pressure<br />

increment (see Eq. (1)). Once the<br />

macroscopic amounts of water were<br />

removed from the top vessel in a water<br />

pocket test, the pressure in the top<br />

vessel dropped and the system evolved<br />

to an apparently dry state. Although<br />

both pressure and relative humidity<br />

indicated that the system reached<br />

near perfect dryness, further tests indicated<br />

that the top vessel continued<br />

to contain a minute amount of water<br />

vapor at a pressure of about 60 mbar<br />

that could not escape through the fuel<br />

rod. This can be interpreted as leaving<br />

the laminar flow regime, for which<br />

the Knudsen number (Kn, i.e. the ratio<br />

of gas mean free path l¯ to the lateral<br />

­dimension w of the flow path) is less<br />

than 0.01.<br />

<br />

(3)<br />

The mean free path is proportional to<br />

the temperature and inversely proportional<br />

to the pressure (see e.g. [9]):<br />

Water removal rate<br />

(g/day)<br />

110 °C 120 °C 130 °C<br />

WET1 50 cm 89 ± 2 µm 15 ± 2 28 ± 2 44 ± 5<br />

WET2 50 cm 1<strong>03</strong> ± 2 µm 33 ± 4 63 ± 7 89 ± 10<br />

WET3 10 cm 85 ± 1 µm 73 ± 8 133 ± 15 207 ± 23<br />

WET5b 17 cm 102 ± 2 µm 90 ± 10 164 ± 18 321 ± 36<br />

drying times, thus substan tially reducing<br />

risks for the utilities. Furthermore,<br />

the amount of residual water not<br />

accessible with the technique of<br />

hot-vacuum drying can be quantified,<br />

showing a huge margin to design<br />

assumptions.<br />

6 The first Quiver<br />

Campaign and outlook<br />

on the industrial use<br />

6.1 Preparation and cold trial<br />

at Unterweser NPP<br />

Before the very first dispatch campaign<br />

at Unterweser NPP could start<br />

in October 2018, an extended work<br />

program had to be successfully completed.<br />

This comprised the loading of<br />

the damaged fuel rods into the quivers<br />

as well as the installation and site<br />

acceptance testing of the complete<br />

dispatch equipment (Figure 13).<br />

The loading of the PWR quivers<br />

(Figure 14) with the fuel rods was<br />

carried out according to a clearly<br />

­defined loading plan. Each loading<br />

step was precisely documented.<br />

| | Fig. 12.<br />

Vapor mass flow rates determined directly for different segments (symbols)<br />

and calculated on the basis of dry hydraulic resistance measurement (thin<br />

solid lines).A calculated release rate for a 4 m long rod with a hypothetical<br />

80 µm hydraulic radius is also calculated (thick red line).<br />

Before the dispatch campaign, the<br />

equipment had to be set up in the<br />

reactor building, where the site<br />

acceptance test was carried out. In<br />

addition, various supporting documents<br />

were submitted to the supervisory<br />

authority for approval. In order<br />

to prove that the welding equipment<br />

was set up correctly and in accordance<br />

with the requirements, a trial weld<br />

was carried out prior to the actual<br />

campaign.<br />

6.2 First Quiver Campaign –<br />

Sequence of Handling and<br />

Service Activities<br />

As described in chapter 4, the handling<br />

of the quivers takes place at two<br />

different levels inside the containment:<br />

The loading station is positioned<br />

in the spent fuel pool, while the<br />


<br />

(4)<br />

Herein, k B is Boltzman’s constant, T the<br />

absolute temperature, expressed in<br />

Kelvin, P the pressure, expressed in Pa<br />

and d the diameter of the gas molecules<br />

(d = 0.4 nm for H 2 O). With a vapor<br />

pressure of 60 mbar (6,000 Pa) at<br />

120 °C (393 K) and typical crack width<br />

of 15 µm the Knudsen number is<br />

Kn = 0.09, well in the transition ­regime<br />

to molecular flow. Within that flow<br />

­regime, mass-flow is con­siderably ­lower<br />

and vapor-removal effectively stops.<br />

Mass flow rates were calculated<br />

from the hydraulic radius as derived<br />

from the dry hydraulic resistance<br />

measurements (Figure 12 and Table<br />

1). The excellent agreement between<br />

the different water removal ap proaches<br />

provided a sound scientific basis,<br />

allowing quantitative assessment of<br />

| | Fig. 13.<br />

Preparation, cold trial and dispatch at Unterweser NPP.<br />

| | Fig. 14.<br />

Measuring the length for the spacers (left), insertion of the spacers into the quiver (right).<br />

Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 15.<br />

Shielding basket and loading station in the spent fuel pool (left) and the service station with mobile hot<br />

cell positioned on the shielding block and equipment on the reactor floor (right).<br />

| | Fig. 16.<br />

Storage rack and quiver (left), top shielding on shielding basket (right).<br />

| | Fig. 17.<br />

Transport of the shielding basket to the shielding block (left), mobile hot cell (right).<br />

service station is located at the reactor<br />

floor outside of the pool (Figure 15).<br />

After mounting the transfer head<br />

piece, the loaded quivers were lifted<br />

up out of the storage rack and transferred<br />

to the loading station into the<br />

shielding basket. Here the head piece<br />

was removed and a top shielding was<br />

installed to close the shielding basket<br />

(Figure 16).<br />

The shielding basket containing<br />

the loaded quiver was then lifted up to<br />

the reactor floor. Once the shielding<br />

basket is inside of the shielding block,<br />

in a first step the quiver was dewatered.<br />

Next, the mobile hot cell was<br />

mounted on top of the shielding block<br />

(Figure 17). Prior to drying the<br />

quiver, the top shielding was replaced<br />

with the multi cover, which provides<br />

connections to the drying device and<br />

the heating device.<br />

The quiver was then evacuated<br />

using vacuum pumps, the humidity<br />

was removed from the quiver and was<br />

recovered as condensate in a condenser.<br />

The operating data of the<br />

drying device were recorded and<br />

stored in a stationary computer. After<br />

finishing the drying procedure, the<br />

­interior of the quiver was filled with<br />

helium.<br />

Next, the lid screwing device<br />

( Figure 18) was positioned on the<br />

base body of the quiver. It screws the<br />

lid into the base body automatically,<br />

while all the parameters can be monitored<br />

remotely by the operator.<br />

Afterwards the welding machine<br />

was positioned, that automatically<br />

connected the lid and the base body of<br />

the quiver by means of a qualified<br />

welding procedure (Figure 19). As<br />

last step, the leak tightness of the<br />

welding seam was tested.<br />

Finally, the quiver could be transferred<br />

back to the storage rack in the<br />

spent fuel pool.<br />

| | Fig. 18.<br />

Close-up of the lid screwing device (left), welding machine and lid screwing device (right).<br />

| | Fig. 19.<br />

Welding device (left), welded lid (right).<br />

6.3 First Quiver campaign –<br />

Main results<br />

The dispatch of the first quiver started<br />

in Unterweser NPP on 12 October and<br />

was completed on 21 October 2018.<br />

The drying process lasted about<br />

6 days. The maximum dose rate at<br />

the service station was less than<br />

70 mSv/h. The second quiver dispatch<br />

started on 23 October and was completed<br />

on 01 November 2018. Again<br />

the drying process lasted 6 days. The<br />

third dispatch started on 02 November<br />

and lasted until 16 November. The<br />

drying process took about 11 days.<br />

The dose rate of the second and the<br />

third dispatch were comparable to the<br />

first dispatch.<br />

Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

The major results of the first three<br />

dispatch cycles are:<br />

pp<br />

The qualified processes for<br />

handling, drying and welding are<br />

robust and reliable.<br />

pp<br />

The “out of pool”-handling results<br />

in very low radiation exposures for<br />

the service personnel.<br />

pp<br />

It has been shown that it is feasible,<br />

to dry damaged fuel in an industrial<br />

process on site.<br />

6.4 Outlook on the upcoming<br />

Quiver Campaigns at Biblis<br />

and Krümmel NPP<br />

Meanwhile, the second PWR quiver<br />

campaign has already started at Biblis<br />

NPP, comprising 9 PWR quivers.<br />

After installation of the handling<br />

and service equipment, the test of<br />

the welding device by a trial weld<br />

was completed in December 2018.<br />

The actual campaign has started in<br />

­January <strong>2019</strong> and the first quiver was<br />

dispatched by January 20 th .<br />

The first BWR quiver campaign is<br />

planned at Krümmel NPP. The storage<br />

license has already been granted.<br />

Currently the preparations are mainly<br />

focused on the required documents.<br />

The campaign is scheduled for<br />

summer <strong>2019</strong> and will comprise 9<br />

BWR quivers.<br />

With the Krümmel campaign, the<br />

GNS quiver system will provide<br />

conclusive proof, that it can be used<br />

industrially for failed fuel rods both<br />

from PWR- as well as from BWR<br />

reactors.<br />

References<br />

[1] IAEA, Management of Damaged Spent Nuclear Fuel, NF-T-3.6<br />

IAEA Nuclear Energy Series. Vienna, IAEA, 2009.<br />

[2] Lewis, B.J., Macdonald, R.D., Ivanoff, N.V., Iglesias, F.C., Fuel<br />

performance and fission-product release studies for defected<br />

fuel elements, Nuclear Technology, 1993, 1<strong>03</strong>: p. 220-245.<br />

[3] Olander, D.R., Kim, Y.S., Wang, W.E., Yagnik, S.K., Steam<br />

oxidation of fuel in defective LWR rods, Journal of Nuclear<br />

Materials, 1999, 270: p. 11-20.<br />

[4] Leinders, G., Cardinaels, T., Binnemans, K., Verwerft, M.,<br />

Accurate lattice parameter measurements of stoichiometric<br />

uranium dioxide, Journal of Nuclear Materials, 2015, 459:<br />

p. 135-142.<br />

[5] Willis, B.T.M., Structures of UO 2 , UO 2+x and U 4 O 9 by neutron<br />

diffraction, Journal de Physique I, 1964, 25: p. 431-439.<br />

[6] Leinders, G., Delville, R., Pakarinen, J., Cardinaels, T.,<br />

Binnemans, K., Verwerft, M., Assessment of the U 3 O 7 Crystal<br />

Structure by X-ray and Electron Diffraction, Inorganic Chemistry,<br />

2016, 55: p. 9923-9936.<br />

[7] McEachern, R.J., Taylor, P., A review of the oxidation of<br />

uranium dioxide at temperatures below 400°C, Journal of<br />

Nuclear Materials, 1998, 254: p. 87-121.<br />

[8] ASTM, C1553-16, Standard Guide for Drying Behavior of Spent<br />

Nuclear Fuel, ASTM International, West Conshohocken, PA,<br />

2016.<br />

[9] Jitschin, W., Gas Flow, In: Jousten K, editor. Handbook of<br />

Vacuum Technology. Weinheim, Wiley-VCH, 2016.<br />

Authors<br />

Dr. Frank Jüttemann<br />

Martin Kaplik<br />

Michael Köbl<br />

Bernhard Kühne<br />

GNS Gesellschaft für Nuklear-<br />

Service mbH<br />

Frohnhauser Straße 67<br />

45127 Essen, Germany<br />

Sascha Bechtel<br />

Hagen Höfer<br />

Höfer & Bechtel GmbH<br />

Ostring 1<br />

63533 Mainhausen, Germany<br />

Dr. Wolfgang Faber<br />

PreussenElektra GmbH<br />

Tresckowstraße 5<br />

30457 Hannover, Germany<br />

Dr. Marc Verwerft<br />

Belgian Nuclear Research Centre<br />

(SCK•CEN), Institute for Nuclear<br />

Materials Science<br />

Boeretang 200<br />

B-2400 Mol, Belgium<br />

Advertisement<br />


Theoretisch<br />

ist die Energiewende<br />

eine Jahrhundertaufgabe.<br />

Praktisch<br />

ist sie unser<br />

täglicher Job.<br />

Gemeinsam bringen wir die Dinge voran: Wir von<br />

der EnBW Kernkraft GmbH kümmern uns an den<br />

Standorten Philippsburg, Neckarwestheim und<br />

Obrigheim um Betrieb, Stilllegung und Abbau<br />

unserer Kernkraftwerke. Bei allem, was wir tun,<br />

hat die Sicherheit stets oberste Priorität. Der<br />

Rückbau ist ein Mega-Projekt mit langfristiger<br />

Perspektive.<br />

Hierfür suchen wir Menschen, die mit viel Engagement,<br />

Einfallsreichtum und Know-how den Rückbau<br />

mit uns voranbringen und in die Tat umsetzen.<br />

Im Gegenzug bieten wir abwechslungsreiche Aufgaben<br />

und vielfältige Entwicklungsmöglichkeiten.<br />

Machen Sie jetzt mit:<br />

www.enbw.com/jobmarkt<br />

Decommissioning and Waste Management<br />

Quivers for Damaged and Non-Standard Fuel Rods ı Sascha Bechtel, Wolfgang Faber, Hagen Höfer, Frank Jüttemann, Martin Kaplik, Michael Köbl, Bernhard Kühne and Marc Verwerft

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


Advanced Sectorial Gamma Scanning<br />

for the Radiological Characterization<br />

of Radioactive Waste Packages<br />

M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann<br />

The management of radioactive waste is under strict regulatory control to ensure the compliance with safety guidelines.<br />

For the disposal in the Konrad geological repository for non-heat generating radioactive waste in Germany,<br />

acceptance criteria for radioactive waste packages have been derived from the safety case. The waste designated for<br />

disposal is subject to product control which is conditional for approval of the waste package by the operator of the<br />

disposal facility. The non-destructive assay using gamma radiation detection techniques is a cost-effective measure to<br />

characterize radioactive waste and serves to verify the conformity with the acceptance criteria. In the past decades, the<br />

pre-dominantly used method is segmented gamma scanning of waste drums, which is based on simplifying assumption<br />

of a uniformly distributed activity and a homogeneous waste matrix. The simplification reduces the accuracy of the<br />

measurement leading to large conservative estimates for the activity content which in turn leads to an excessive and<br />

inefficient exhaustion of activity limits for waste packages and to higher costs for disposal. An Advanced Sectorial<br />

­Gamma Scanning (ASGS) method is developed, which includes a software module for the efficiency calculation of<br />

inhomogeneous activity distributions (ECIAD) to reconstruct the spatially resolved activity distribution from the<br />

acquired measurement data. This method can be applied for a wider range of the composition of the radioactive waste,<br />

which is of relevance in the qualification of legacy waste and the increasing stream of waste from decontamination and<br />

decommissioning of nuclear installations.<br />

Introduction<br />

The safe disposal of radioactive waste<br />

is one of the key factors in the sustainable<br />

and safe usage of nuclear energy<br />

for electric power generation. From<br />

the waste that is generated during<br />

operation of a nuclear power plant,<br />

the largest amount of radioactivity<br />

(99 %) is contained within the spent<br />

fuel for which dedicated waste management<br />

strategies are developed.<br />

The largest part (95 %) of the waste<br />

volume that is classified as radioactive<br />

waste, however, contains only approximately<br />

1 % of the radioactivity produced<br />

in the process of nuclear power<br />

generation [1]. The safe disposal is<br />

subject to regulatory control and strict<br />

safety requirements which have led to<br />

various approaches for the engineered<br />

disposal facility designs ranging from<br />

emplacement in constructed subsurface<br />

structures like caverns, vaults or<br />

silos to repositories in deep geological<br />

formations [2]. With a significant portion<br />

of the nuclear power reactors<br />

nearing the end of their licensed operation<br />

time and due to the decision of<br />

several countries for a nuclear phase<br />

out, the number of nuclear power<br />

installations under decontamination<br />

and decommissioning (D&D) is expected<br />

to increase significantly in the<br />

coming two decades [3]. Even if a<br />

large fraction of the material arising<br />

from dismantling of nuclear power<br />

plant can be classified as conventional<br />

waste after clearance, a fraction<br />

remains which cannot be released into<br />

the conventional waste management<br />

streams. Compared to normal operation,<br />

the decommissioning of reactors<br />

leads to a significant increase of the<br />

volume of radioactive waste with a<br />

higher diversity in material composition,<br />

activity and isotope content.<br />

Moreover, countries with early nuclear<br />

programs are confronted with the<br />

problem of significant inventories of<br />

radioactive waste, which were conditioned<br />

when the current regulatory<br />

requirements had not yet existed. For<br />

such kind of so-called ‘legacy waste’<br />

the main issue is in the lacking documentation<br />

of the waste contents such<br />

the composition of the waste is essentially<br />

unknown. In Germany, a geological<br />

repository is currently being<br />

set into operation in a former iron-ore<br />

mine which is operated by the federal<br />

company for radioactive waste disposal<br />

BGE (Bundesgesellschaft für<br />

Entsorgung). The regulatory requirements,<br />

which are derived from the<br />

site-specific safety case, have led to<br />

the formulation of acceptance criteria<br />

for the radioactive waste designated<br />

for disposal in the geological repository<br />

[4]. These criteria are derived<br />

from safety considerations for the<br />

operational safety during waste emplacement,<br />

and for the long-term disposal.<br />

To this end, radioactive waste is<br />

processed and packaged where the<br />

conformity with the acceptance criteria<br />

has been approved under a qualification<br />

process (‘Product control’) [5].<br />

The main hazard is caused from the<br />

radionuclide content of the waste, and<br />

therefore the deliverer is obliged to<br />

declare the radioactive inventory of<br />

each waste package based on the<br />

characterization of the waste product<br />

contained within the waste package.<br />

According to international safety<br />

guidelines the compliance of waste<br />

packages is to be verified [2]. If<br />

measure ments are evaluated in the<br />

process of verification, this implies the<br />

application of the current norms,<br />

standards and procedures. Since the<br />

operator of the disposal facility is<br />

obliged to adhere to upper limits for<br />

the radionuclide inventories, the<br />

uncertainty of the waste package data<br />

declared for the individual waste<br />

package needs to be considered and is<br />

subject to inspection by the operator<br />

of the repository. Such uncertainties<br />

are inherent to the measurement<br />

process and international guidelines<br />

exist on the quantitative evaluation of<br />

the uncertainty in measurement [6].<br />

Based on such a quantitative evaluation,<br />

a conservative value for the<br />

measurement results is determined<br />

for which a degree of confidence of<br />

95 % is stated based on the degree of<br />

information available during evaluation<br />

of the measurement result.<br />

Whereas a statistical (random) nature<br />

is inherent to measurements, so­ called<br />

Type A uncertainties, additional<br />

sources for the uncertainty are considered,<br />

so-called Type B uncertainties,<br />

such as the uncertainty of the<br />

calibration used for the measurement<br />

method. Mathematically, the evaluation<br />

framework is based on the<br />

Bayesian statistics, an example of its<br />

Decommissioning and Waste Management<br />

Advanced Sectorial Gamma Scanning for the Radiological Characterization of Radioactive Waste Packages ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

| | Fig. 1.<br />

Probability distribution describing the degree of knowledge in a measurement<br />

of a quantity value. The conservative estimate CE1 and CE2 depends<br />

on the total measurement uncertainty of the applied measurement method.<br />

application being the evaluation of<br />

radiation measurements and the<br />

determination of characteristic limits<br />

laid down in the Norm DIN ISO 11929<br />

[7]. Here, the prior information on<br />

the non-negativity of the radionuclide<br />

activity is included in the quantification<br />

of the degree of confidence associated<br />

with the measured quantity.<br />

For the evaluation of measurement<br />

results obtained in non-destructive<br />

assay using radiation measurements,<br />

the prior information on the physical<br />

and chemical characteristics of the<br />

waste is used and in consequence also<br />

its uncertainties need to be accounted<br />

for in accordance with the guidelines<br />

given in DIN ISO 11929.<br />

In the situation of unknown properties<br />

of the waste product, e.g.<br />

shielding properties or the lack of<br />

knowledge on the localization of the<br />

activity within the waste package, the<br />

conservative estimate is determined<br />

under assumption of a worst-case<br />

scenario which in many cases leads to<br />

a large uncertainty and therefore a<br />

much higher conservative estimate.<br />

This leads to large inventories of<br />

­‘virtual activity’ declared for the radioactive<br />

waste. On the other hand, if<br />

information can be acquired through<br />

the measurement or by other means,<br />

this Type B uncertainty can be reduced<br />

significantly, leading to a much lower<br />

conservative estimate (Figure 1). This<br />

facilitates the adherence to activity<br />

limits for the individual waste packages<br />

and helps to avoid exhaustion of<br />

permissive limits with the benefit of<br />

lower cost for the waste producer.<br />

Gamma scanning<br />

of waste drums<br />

In terms of dose minimization and<br />

economy, non-destructive testing and<br />

more specifically, gamma scanning, is<br />

a widespread and established method<br />

for characterization of radioactive<br />

waste. Typically, gamma scanning<br />

systems are used to simultaneously<br />

identify and quantify radioisotopes in<br />

cylindrical waste drums by measuring<br />

the gamma radiation emitted by<br />

radio nuclides using cooled highpurity<br />

germanium (HPGe) detectors,<br />

which offer high energy-resolution.<br />

The underlying assumptions for<br />

most gamma scanning measurement<br />

methods are the following:<br />

pp<br />

Uniform chemical composition and<br />

density of the active matrix<br />

pp<br />

Homogenous spatial distribution<br />

of the gamma emitting isotopes in<br />

the matrix<br />

In general, gamma scanning relies<br />

on the evaluation of the gamma spectrum<br />

obtained during the measurement.<br />

During its radioactive decay,<br />

the isotope emits gamma radiation<br />

with one or several characteristic lines<br />

in the gamma spectrum which is used<br />

to identify the nuclide inventory of the<br />

waste. The peak intensity of each line<br />

is used to determine the amount of the<br />

radionuclide activity through the correlation<br />

with the ­photopeak efficiency,<br />

which is determined for the specific<br />

measurement configuration. This<br />

photopeak efficiency reflects the physical<br />

inter actions of the gamma radiation<br />

including the self-attenuation<br />

within the active matrix, the attenuation<br />

in the drum wall and the collimator,<br />

and finally, the absorption of the<br />

entire photon energy in the detector<br />

crystal. This quantity is therefore<br />

termed the ‘efficiency calibration’<br />

which is spe­cific to the measurement<br />

object.<br />

Integrated and Segmented<br />

Gamma Scanning<br />

Several different scanning methods<br />

have been developed in the past<br />

decades. The Integrated Gamma<br />

Scanning (IGS) records a single<br />

gamma spectrum for the entire waste<br />

drum with a HPGe detector without<br />

collimation [8]. The data is recorded<br />

| | Fig. 2.<br />

Characterization of a waste drum using Segmented Gamma Scanning (left)<br />

and Advanced Sectorial Gamms Scanning (right) with a partitioned model of<br />

the active matrix.<br />

during a full rotation of the waste<br />

drum. The rotation serves two purposes:<br />

firstly, it ensures that any<br />

localized activity that is potentially<br />

unilaterally shielded by the waste<br />

matrix is registered by the detection<br />

system to the largest extent possible,<br />

and, secondly, the rotation leads to an<br />

averaging effect in case the spatial<br />

­homogeneity is not fulfilled. The<br />

so-called Segmented Gamma Scanning<br />

(SGS) represents the standard<br />

method for characterization of waste<br />

drums containing the waste product<br />

[9]. In the SGS method, a collimated<br />

detector is positioned in varying<br />

vertical positions of the waste drum,<br />

where for each vertical position<br />

gamma spectra are acquired while the<br />

drum is rotated (Figure 2). Hereby a<br />

full surface scan of the waste drum is<br />

achieved to ensure complete coverage<br />

of the volume. The field of view of the<br />

detection system is confined by the<br />

collimator opening angle, such that<br />

predominantly the gamma radiation<br />

emitted along the central axis of the<br />

detector is registered during the scan.<br />

The evaluation is performed on the<br />

summed spectrum obtained during a<br />

rotation scan and can be performed<br />

for each individual segment. The<br />

evaluation in IGS and SGS, however,<br />

is made using the ‘efficiency calibration’<br />

which is calculated using the assumption<br />

stated earlier, namely for a<br />

uniform matrix and for homo genous<br />

activity distribution of the isotopes. In<br />

its initial form, the ­efficiency calibration<br />

(photopeak efficiency) was determined<br />

by formu lating analytical expressions<br />

which are derived using<br />

reasoned simpli­fications and have<br />

been validated in experimental studies<br />

[10, 8]. With increasing computer<br />

processor speeds available, calculations<br />

for the collimated geometry<br />

in SGS are performed numerically,<br />

and the initial simpli­fications can be<br />

dropped leading to higher accuracy of<br />


Decommissioning and Waste Management<br />

Advanced Sectorial Gamma Scanning for the Radiological Characterization of Radioactive Waste Packages ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


the efficiency ­calculation [11, 12].<br />

Alternatively, the so-called mathematical<br />

efficiency ­calibration can be<br />

determined numeri cally using geometric<br />

modeling of the measurement<br />

object and using a parametrization<br />

of the detector specific photopeak<br />

­efficiency determined in an experimental<br />

characterization procedure<br />

[13, 14]. With a software tool the<br />

mathematical efficiency ­calibration is<br />

calculated using prior information on<br />

the measurement ­configuration and<br />

the measurement object, i.e. the parameters<br />

of the waste drum, external<br />

shielding and the active matrix. In<br />

principle, such a calibration can be<br />

calculated for a specific spatial activity<br />

distribution and for a non-uniform<br />

composition of the active matrix, if<br />

the information is available from the<br />

documentation or from other characterization<br />

methods.<br />

Advanced Gamma Scanning<br />

Methods<br />

Information on the spatial distribution<br />

is determined from measurements<br />

by using other scanning modes<br />

in gamma scanning. The so-called<br />

‘swivel scan’ is a scan mode which is<br />

realized by a slight modification of a<br />

segmented gamma scanner, where<br />

gamma spectra are recorded while the<br />

collimated detector performs an<br />

angular sweep perpendicular to the<br />

waste drum central axis [15]. Hereby,<br />

additional information on the radial<br />

localization of the isotope activity is<br />

obtained. Advanced scanning systems<br />

such as the tomographic gamma<br />

scanner (TGS) scan the waste drum to<br />

probe the attenuation properties of<br />

the drum content with an active<br />

source in the so-called transmission<br />

mode. Hereby, the mass attenuation<br />

coefficient of the active matrix and<br />

shielding structures is obtained with<br />

3D spatial information using tomographic<br />

reconstruction. In combination<br />

with the passive emission scanning<br />

mode in addition the spatial<br />

activity distribution of gamma emitting<br />

nuclides can be determined. Such<br />

scanners significantly increase the<br />

information on the waste drum<br />

content, and, since the determined<br />

activity inventory is measured without<br />

assumptions on the spatial distribution<br />

and the matrix, the overall<br />

performance surpasses that of SGS<br />

regarding measurement uncertainties<br />

where TGS reaches accuracies in the<br />

range of 14 % [16]. The drawback of<br />

tomographic systems are the high<br />

system costs, increased measurement<br />

time, and the increased effort required<br />

for the analysis of the extensive<br />

amount of acquired measurement data.<br />

Given the large stock of waste<br />

drums awaiting qualification, a cost<br />

effective and robust measurement<br />

method that can reach a throughput<br />

of several waste drum per day with an<br />

automated analysis is required. Moreover,<br />

the acquired measurement data<br />

should be such that it can be easily<br />

reviewed and inspected to provide<br />

quality-controlled measurement results.<br />

The SGS method fulfills these<br />

criteria with one major drawback that<br />

the actual measurement conditions<br />

deviate from the calibration conditions<br />

used for the efficiency calibration.<br />

Advanced Sectorial Gamma<br />

Scanning – ASGS<br />

In this paper, we present a novel gamma<br />

scanning method which addresses<br />

the reconstruction of radionuclide<br />

inventories with inhomogeneous distribution<br />

within the waste drum. To<br />

this end, a spatially resolved reconstruction<br />

method is developed which<br />

uses a partitioned model of a cylindrically<br />

shaped active matrix of a waste<br />

package instead of cylindrical segments<br />

(Figure 2 – right). In Advanced<br />

Sectorial Gamma Scanning (ASGS)<br />

the waste drum is scanned in the<br />

so­ called multi-rotation mode in a<br />

similar fashion as in SGS: At a fixed<br />

vertical position of the collimated<br />

HPGe detector, the drum is rotated in<br />

30° steps and a gamma spectrum is<br />

acquired separately at each static<br />

measurement position. The rotation<br />

scan is then repeated after the detector<br />

has been translated to the next<br />

vertical scanning position. As a result,<br />

measurement data is acquired for<br />

each individual sector and the additional<br />

spatial information is used for<br />

the evaluation of the measurement<br />

data.<br />

System overview<br />

An open collimator geometry is used<br />

where with an automated collimator<br />

changing unit different aperture sizes<br />

can be realized. The opening view<br />

angle of the collimation is such, that a<br />

full sector of the cylindrical drum is<br />

covered and therefore a full surface<br />

scan of the drum is accomplished<br />

within the entire scanning procedure.<br />

The collimator design choice was<br />

made to maximize efficiency of the<br />

detector at the same time maintaining<br />

a spatial selectivity for a sectorial<br />

partial volume of the waste drum. An<br />

interchangeable collimator permits<br />

switching to varying aperture sizes<br />

which in combination with the<br />

| | Fig. 3.<br />

Technical design of the ASGS.<br />

| | Fig. 4.<br />

Software used for the ASGS included the ECIAD module for reconstruction of inhomogeneous activities.<br />

Decommissioning and Waste Management<br />

Advanced Sectorial Gamma Scanning for the Radiological Characterization of Radioactive Waste Packages ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

horizontal translation to larger distances<br />

between detector and waste<br />

drum increases the dynamic range<br />

with respect to the activity inventory<br />

of the waste drum. The entire hardware<br />

design features industrial grade<br />

components offering reliable and stable<br />

operation in controlled areas and<br />

industrial facilities (Figure 3). The<br />

gamma scanner has an operation<br />

software which controls the entire<br />

gamma scanning and data analysis<br />

process (Figure 4). The hardware of<br />

the gamma scanner consisting of the<br />

mechanical drive for the translation of<br />

the detector, the rotation table and<br />

the drive for the interchangeable collimator<br />

are controlled via a Programmable<br />

Logic Controller (PLC). The<br />

system control also manages the<br />

readout of the sensor units consisting<br />

of a weighing scale integrated in the<br />

rotation table, dose rate sensors and<br />

the HPGe detector. The ASGS operation<br />

software itself is operated on a<br />

standard PC and provides means of<br />

user interaction to initialize the scanning<br />

process and to indicate the status<br />

of the gamma scanner hardware. In<br />

addition, a connection to a database<br />

with the waste drum data can be<br />

implemented whereby the manual<br />

data entry is kept at a minimal level. A<br />

multi-rotational step-wise sectorial<br />

scan is performed, and the acquired<br />

gamma spectra are analyzed automatically<br />

using well established spectrum<br />

analysis algorithms (GENIE<br />

2000) and the information from the<br />

gamma peak in each spectrum is<br />

extracted for the radionuclides of<br />

interest.<br />

Photopeak-efficiency calculation<br />

An essential core element is the<br />

mathematical calculation of the<br />

­efficiency and the reconstruction of<br />

activities using the newly developed<br />

software ECIAD module (‘Efficiency<br />

Calculation for Inhomogeneous Activity<br />

Distributions’). The calculation<br />

of photopeak efficiencies (‘efficiency<br />

calibration’) is performed using the<br />

a-priori information for the waste<br />

drum to be scanned, such as composition<br />

of the active matrix and geometrical<br />

dimensions. ECIAD creates a<br />

partitioned model of the active matrix<br />

and calculates the mathematical efficiency<br />

calibration for the specific<br />

detector setup of the measurement<br />

system. The partitioned model consists<br />

of sub-volumes of the active<br />

­matrix, where the efficiency calculation<br />

is performed under the<br />

assumption of a uniform spatial distribution<br />

of radionuclides and for a<br />

| | Fig. 5.<br />

Comparison of partial peak efficiencies calculated with ECIAD (dots) and MCNP (solid lines)<br />

for a partitioned model of a cement matrix with density 2 g cm -3 .<br />

homo genous composition and density<br />

only on the level of the sub-volumes.<br />

This way, the model can reflect a non-­<br />

homogeneously distributed activity<br />

within the waste drum. The attenuation<br />

is determined using a ray-tracing<br />

approach where a set of straight-line<br />

paths are generated which originate<br />

from randomly sampled positions<br />

within the source volume with random<br />

directions. For all paths that<br />

cross the detection volume, the attenuation<br />

is determined deterministically<br />

for all objects along the straight path<br />

from the source to the detector<br />

volume. The gamma interaction<br />

physics within the detector crystal is<br />

implemented using a Monte-Carlo<br />

sampling approach. For the path<br />

length within the detection volume<br />

the probability of interactions is determined<br />

for the gamma interaction by<br />

photo-absorption, inelastic scattering,<br />

pair-creation as well as generation of<br />

bremsstrahlung based on sampling<br />

distributions derived from physics<br />

cross section data. For each path the<br />

probability for full energy deposition<br />

is considered for the extraction of the<br />

peak efficiencies, which is obtained by<br />

averaging all sampled trajectories.<br />

The modeling and the efficiency<br />

calculation in ECIAD are validated for<br />

a n-type HPGe detector (40 % efficiency)<br />

for the energy range of 50 –<br />

1500 keV. A benchmark study was<br />

performed for several test cases<br />

( Figure 5). For the test case a cement<br />

active matrix with a simplified chemical<br />

composition with 60 wt. % O,<br />

35 wt. % Si and 5 wt. % Ca and a<br />

­density of 2 g/cm 3 was assumed. The<br />

radius of the drum is 28.15 cm, the<br />

height of the drum is 40.4 cm which is<br />

half the height of a 200-l waste drum.<br />

For the benchmark it is sufficient to<br />

simulate a reduced model of a waste<br />

drum. The thickness of the drum wall<br />

is 1.5 mm and pure iron was taken for<br />

material. The benchmark was performed<br />

for a single measurement<br />

position of the detector at the bottom<br />

of the drum. The partitioned model<br />

consists of three layers of 13.6 cm in<br />

height which are subdivided in 30°<br />

sectors and where each sector is subdivided<br />

radially at a radius of 14 cm.<br />

The benchmark shows very good<br />

agreement between the values obtained<br />

with the MCNP simulation<br />

with 1∙10 9 photons and the ECIAD calculation<br />

up to energies reaching<br />

3000 keV. As ECIAD is based on a<br />

semi-deterministic model, very low<br />

photo peak efficiencies can be calculated<br />

numerically, where with MCNP<br />

a much higher sampling statistics<br />

would be needed to calculate photopeak<br />

efficiencies below 1∙10 -8 with a<br />

sufficiently low uncertainty. In this<br />

respect, the ECIAD tool outperforms<br />

MCNP, where ECIAD require less computation<br />

time than MCNP by a factor<br />

of at least 5000. The calculation in<br />

Figure 5 was performed in less than<br />

5 minutes on a regular desktop PC<br />

which demonstrates that the efficiency<br />

calculation with ECIAD can be<br />

performed well within the duration of<br />

the scanning process.<br />

Reconstruction of activities<br />

The peak efficiency for a given radioactive<br />

source distribution links the<br />


Decommissioning and Waste Management<br />

Advanced Sectorial Gamma Scanning for the Radiological Characterization of Radioactive Waste Packages ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


| | Fig. 6.<br />

Left part: Modeled activity distribution with the form of a cylindrical 30°sector (red). The dots indicate the<br />

locations for which a localized point source was assumed in simulated measurements of SGS and ASGS.<br />

Right part: The field of view of the collimation geometry shown in comparison between Segmented<br />

Gamma Scanning (SGS) and Advanced Sectorial Gamma Scanning (ASGS).<br />

content in activity with the peak count<br />

rate for an individual gamma line<br />

determined from the gamma spectrum<br />

obtained during the measurement.<br />

Each single partial volume contributes<br />

additively to the count rate<br />

such that the total peak count rate for<br />

a given measurement position P i is<br />

expressed by the sum over all partial<br />

peak efficiencies weighted with the<br />

activity of the partial volume P i =<br />

∑ k ε ik · A k . With a source model consisting<br />

of 6 layers and 12 sectors, for<br />

example, this results in 72 summands<br />

for each measurement position. The<br />

number of measurement positions is<br />

determined by the scan mode, where<br />

the default mode is a scan of 12 angular<br />

sectors and 6 segments leading to<br />

in total 72 equations for all count rates<br />

obtained from the spectra that were<br />

recorded for each position. In its basic<br />

form, the reconstruction is based on a<br />

linear system of equations which is<br />

fully determined and can be solved for<br />

all partial activities A k , k = {1,..,m}<br />

using the P i , i = {1,..,n} obtained<br />

| | Fig. 7.<br />

Ratio of true to assumed efficiency in Segmented Gamma Scanning for a<br />

non-uniform activity distribution localized in a cylindrical sector for individual<br />

sectors (left) and after averaging over a rotation scan (right).<br />

during the measurement and the<br />

m × n calculated partial efficiencies.<br />

If the model is chosen with additional<br />

radial subdivisions, the number<br />

of volume partitions and the number<br />

of activities A k which need to be determined<br />

increases, whereas the number<br />

of equations remains the same. In this<br />

case, the system of equations is undetermined<br />

and special solvers are<br />

­needed. Mathematically, the problem<br />

becomes an optimization (minimization)<br />

problem for which several<br />

mathe matical algorithms exist. The<br />

use of non-negative least-squares solver<br />

determines the A k with the additional<br />

constraint that A k >0 for all k.<br />

The solution of this method therefore<br />

automatically fulfills the positivity<br />

condition for the activity because<br />

negative values would mean an<br />

unphysical result. The total activity of<br />

the radionuclide is obtained from the<br />

sum of partial activities obtained from<br />

solving the linear equations. The underdetermined<br />

set of equations has<br />

some additional degrees of freedom<br />

and the lack of information can lead to<br />

spurious results for the reconstructed<br />

activity distribution and the total activity.<br />

If more than one gamma line is<br />

emitted by the isotope of interest,<br />

however, the additional information<br />

can be used in the set of equations<br />

which provides a stable solution for<br />

the sum activity even for a large number<br />

of radial subdivisions of the source<br />

model.<br />

Performance assessment<br />

of ASGS<br />

The performance of the reconstruction<br />

method is compared using simulated<br />

measurements for the standard<br />

method SGS and the novel method<br />

ASGS. The test object has the material<br />

composition of a waste drum with a<br />

homogenously filled cement matrix,<br />

i.e. the same material composition of<br />

the benchmark case used for the<br />

­ECIAD efficiency calculation.<br />

Reconstruction of a localized<br />

activity distribution<br />

A test case was defined, where a hotspot<br />

activity is located at the drum<br />

bottom where an activity of 78 MBq<br />

Eu-152 is located within a shape of a<br />

30° sector of a cylinder with 14 cm<br />

radius (Figure 6). The activity is<br />

uniformly distributed within the<br />

cylindrical sub-volume. For SGS a<br />

typical setup with a cylindrical collimator<br />

with 20 cm length and a hole<br />

diameter of 4 cm was simulated<br />

( Figure 6 – uppper right) using the<br />

validated 40 % n-type detector model.<br />

The resulting segment that is scanned<br />

during every single rotation scan has<br />

the corresponding height of 4 cm and<br />

therefore in total 10 segments are<br />

scanned to cover the entire height of<br />

the test object. In SGS a simplified<br />

evaluation is performed on the basis<br />

that the matrix and the activity distribution<br />

is homogenous. In this case,<br />

the activity can be derived from a<br />

single expression A reco =<br />

P r/<br />

e hom ,<br />

where A reco is the reconstructed activity,<br />

P r is the peak rate and e hom is<br />

the assumed efficiency for the homogeneous<br />

activity distribution within<br />

the volume. Even if the activity is not<br />

equally distributed within the matrix<br />

an average peak rate is determined<br />

from the sum spectrum obtained<br />

during the rotation scan and the<br />

­evaluation is performed using the efficiency<br />

determined for homogeneous<br />

distribution. The error expressed as<br />

the ratio of the reconstructed to the<br />

true activity is related to the ratio of<br />

the true efficiency e true to the assumed<br />

efficiency for a homogeneous activity<br />

distribution e hom and therefore is<br />

determined by A reco/A true<br />

= e true/e hom .<br />

The true efficiency e true is calculated<br />

in a simulation for the assumed activity<br />

distribution with the entire<br />

activity located uniformly within a<br />

single sector-shaped volume. A strong<br />

deviation between e true and e hom is<br />

observed where the true efficiency is<br />

strongly underestimated when the<br />

­actual activity is not within the field of<br />

view during the scan, whereas a<br />

strong overestimation occurs when<br />

the activity is within the view of<br />

the detector (Figure 7). In SGS, the<br />

individual segments are evaluated<br />

which is performed on the sum<br />

of the registered events recorded<br />

during rotation, divided by the total<br />

Decommissioning and Waste Management<br />

Advanced Sectorial Gamma Scanning for the Radiological Characterization of Radioactive Waste Packages ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

measurement time for the individual<br />

segment. This results in an average<br />

over the ­angular profile for each segment,<br />

where the ratio of true to assumed<br />

­efficiency at a gamma energy<br />

of 1408 keV is reduced to maximally<br />

3.3 and therefore the activity of this<br />

segment would be overestimated by<br />

this factor. At this gamma energy, the<br />

summation over all 10 segments<br />

­results in a ratio of 0.95, which means<br />

that SGS reaches the true value of<br />

the activity. This, however, is pure<br />

coincidence and depends on the<br />

gamma energy of the line used for<br />

evaluation and the density of the<br />

matrix: at the gamma energies of 122,<br />

344, 779, 964, 1112 keV the ratio of<br />

reconstructed to true activity for SGS<br />

amounts 0.09, 0.32, 0.66, 0.75, 0.82,<br />

respectively.<br />

To evaluate the ASGS method, a<br />

MCNP model of the 78 MBq Eu-152<br />

activity distribution and the waste<br />

drum was implemented, where full<br />

gamma spectra for the 40 % n-type<br />

detector were simulated for every<br />

measurement position (Figure 8). A<br />

full sectorial scan for three segments<br />

and 12 sectors per layer was simulated<br />

with in total 36 measurement positions,<br />

where the measurement time<br />

for each position is 120 seconds. For<br />

the ASGS geometry, the collimator<br />

design is such that it covers a larger<br />

area of the drum surface in the vertical<br />

direction and therefore less vertical<br />

scan positions are needed (see Figure<br />

6 bottom-right). The spectra were<br />

analyzed using a gamma spectrum<br />

analysis software and the peak area<br />

was evaluated for six Eu-152 gamma<br />

lines at 122, 344, 779, 964, 1112, and<br />

1408 keV. The peak efficiencies were<br />

calculated for different source partition<br />

models using the ECIAD tool<br />

which were used as an input for the<br />

reconstruction using the non-negative<br />

least squares reconstruction algorithm.<br />

Using the analysis of two of the<br />

in total six gamma lines of Eu-152, the<br />

reconstruction algorithm can assign<br />

the activity to the correct location in<br />

the partitioned model and the total<br />

activity is reconstructed to 77.1 MBq<br />

(using the 1112 and 1408 keV lines),<br />

which is an underestimation of 1.3 %<br />

of the true activity. The result for the<br />

reconstructed activity did not vary<br />

strongly with the choice of gamma<br />

lines used and the deviation ranges<br />

from -1.3 % to +4.7 % of the true<br />

activity. The reconstruction algorithm<br />

leads to a solution, where a small part<br />

of the activity is assigned to the neighboring<br />

layers of the source partitions,<br />

however, this is only a minor effect<br />

| | Fig. 8.<br />

Simulated spectra for sectorial scanning of the simulated test case containing a localized Eu-152 activity distribution.<br />

and is attributed to the noise in the<br />

gamma spectrum. This showcase<br />

demonstrates, that the partitioned<br />

source model can reconstruct a<br />

non-uniform activity distribution.<br />

Uncertainties, decision<br />

threshold and detection limit<br />

For gamma scanning the largest<br />

uncertainty contribution stems from<br />

the unknown location of the uncertainty<br />

which is attributed as ‘model<br />

uncertainty’. These errors are evaluated<br />

by assuming worst-case scenarios<br />

for a non-homogeneous activity distribution<br />

and are treated as Type B<br />

­uncertainties according to the GUM<br />

and DIN ISO 11929. For the cement<br />

waste matrix used in the previously<br />

mentioned test case, single point<br />

sources located in various positions of<br />

the waste drum were simulated and<br />

evaluated with SGS and the ASGS<br />

reconstruction method. In ASGS a<br />

­finer radial subdivision was chosen<br />

with 6 radially subdivided partitions<br />

for each 30° sector. Hereby, an improved<br />

spatial resolution can be<br />

reached to reconstruct a localized<br />

activity distribution. With ASGS the<br />

reconstruction method localizes the<br />

point source and therefore this<br />

information reduces the ‘model uncertainty’<br />

relative to SGS. For ASGS<br />

the reconstruction is made for the<br />

evaluation of several combinations of<br />

two gamma lines of Eu-152. Even<br />

though the linear system of equations<br />

is underdetermined the reconstruction<br />

algorithm was able to solve the<br />

minimization problem. A comparison<br />

of the ratio for A reco/A true<br />

is shown for<br />

four different point source locations<br />

(indicated as green dots in Figure 6)<br />

representing locations where the<br />

radiation from the source experiences<br />

maximal and minimal self-attenuation<br />

within the active matrix (Table 1<br />

– Ratios of true to reconstructed<br />

activities for simulated point source<br />

activities located at four different<br />

positions within the waste drum for<br />

SGS and ASGS.). In SGS this ratio<br />

strongly depends on the gamma line<br />

chosen for evaluation and for the<br />

worst case for the gamma line at<br />

122 keV the activity is underestimated<br />

up to a factor of 50 and overestimated<br />

by a factor of 4. In ASGS multiple lines<br />

are used in the analysis, where<br />

the reconstruction of the simulated<br />

measurement of point source activity<br />

was performed using two lines, three<br />

lines, and six lines. For the line energy<br />

combinations shown in Table 1 the<br />

largest spread is observed when the<br />

122 and 1408 keV lines is chosen for<br />

the reconstruction with an underestimation<br />

by a factor of approximately<br />

1.2 and an overestimation<br />

by a factor of approximately 1.8. This<br />

spread represents also the worst case<br />

in ASGS for all line combinations of<br />

the six strongest Eu-152 lines. Therefore,<br />

ASGS reconstruction reduces the<br />

bandwidth of errors which is potentially<br />

caused by the unknown activity<br />

distribution and therefore this lack<br />

of information leads to lower model<br />

uncertainties and correspondingly<br />

much lower conservative estimates<br />

than in SGS.<br />

The ASGS system relies on the<br />

spatial reconstruction of the activity<br />

and therefore uses the spatial information<br />

of the gamma count rate recorded<br />

at the different measurement<br />

positions of the waste drum. The decision<br />

threshold determines the minimum<br />

amount of the radionuclide<br />


Decommissioning and Waste Management<br />

Advanced Sectorial Gamma Scanning for the Radiological Characterization of Radioactive Waste Packages ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />


E [keV] Center Drum wall<br />

activity for a given gamma line which<br />

can be detected with a high degree of<br />

certainty in the gamma scan. In ASGS,<br />

the evaluation of the decision threshold<br />

and the detection limit is performed<br />

based on the individual spectra<br />

and not on the averaged gamma<br />

spectrum as in conventional SGS.<br />

When a ‘hot spot’ of localized activity<br />

is present in the drum, the evaluation<br />

of the characteristic limits applied in<br />

SGS then becomes invalid whereas<br />

the variation in the count rate in<br />

different measurement positions is<br />

accounted for in the ASGS analysis of<br />

the measurement data. In terms of<br />

­increasing the detection efficiency,<br />

ASGS uses a larger aperture than the<br />

typical collimator geometry used for<br />

SGS which results in a photopeak<br />

­efficiency which is by a factor 50<br />

higher. Assuming the background<br />

emanates from the activity within the<br />

waste drum to be measured, the decision<br />

threshold for detection of radionuclides<br />

scales with the square root of<br />

the efficiency, such that a significant<br />

reduction by an order of magnitude<br />

can be reached for the ASGS system as<br />

compared to the SGS method within<br />

the same time for the measurement.<br />

Summary<br />

ASGS offers a measurement method<br />

for characterization of radioactive<br />

waste which significantly reduces the<br />

model uncertainty based on a spatially<br />

resolved reconstruction. The<br />

ASGS software is designed to permit<br />

the automated operation of the<br />

gamma scanning system which<br />

includes the analysis of the data. The<br />

dedicated ECIAD software module is<br />

developed for the calculation of<br />

Bottom Middle Bottom Middle<br />

SGS 122 0.02 0.04 2.76 4.08<br />

344 0.19 0.37 1.78 2.40<br />

779 0.59 1.13 1.26 1.99<br />

964 0.70 1.33 1.09 1.72<br />

1112 0.78 1.50 0.98 1.63<br />

1408 0.97 1.89 0.92 1.52<br />

ASGS 122 - 1408 0.82 0.99 1.56 1.79<br />

344 - 1408 0.85 1.<strong>03</strong> 1.16 1.41<br />

779 - 1408 0.83 1.01 1.02 1.27<br />

964 - 1408 0.80 0.97 1.01 1.25<br />

1112 - 1408 0.79 0.95 1.00 1.25<br />

122 - 779 - 1408 0.78 1.37 1.02 1.60<br />

all Lines 0.81 1.17 1.01 1.38<br />

| | Tab. 1.<br />

Ratios of true to reconstructed activities for simulated point source activities located at four different<br />

positions within the waste drum for SGS and ASGS.<br />

­mathematical efficiencies for a partitioned<br />

source model, the reconstruction<br />

of spatially resolved activities,<br />

and the uncertainty calculation. The<br />

ECIAD software operates without<br />

user­ guidance in an automated fashion<br />

using a priori information on the<br />

waste drum. With a suitable interface,<br />

this information can be retrieved by<br />

the software prior to the analysis from<br />

a database. As a result, lower conservative<br />

estimate can be reached<br />

than in conventional gamma scanning<br />

systems, since the spatial information<br />

on the activity distribution is used for<br />

the evaluation of the measurement<br />

data. Therefore, ASGS provides a far<br />

more accurate characterization of the<br />

true activity which facilitates a better<br />

use of the allowed activity limits. With<br />

ASGS, the evaluation is performed<br />

in a consistent manner and will be<br />

coupled with the calculation of uncertainties<br />

according to the current<br />

norms and guidelines for the evaluation<br />

of uncertainties. The evaluation<br />

model for the activity is based on a<br />

reconstruction algorithm which precludes<br />

the propagation of uncertainties<br />

using the general law of error<br />

propagation. Therefore, the propagation<br />

of uncertainties is calculated<br />

­using Monte-Carlo based methods for<br />

the determination of characteristic<br />

limits according to the requirements<br />

of the current guidelines. An experimental<br />

validation of the measurement<br />

method for various measurement<br />

­configurations for the active matrix<br />

compositions and density and for<br />

different activity distributions is<br />

planned for the near future using the<br />

newly designed gamma scanning<br />

system.<br />

References<br />

[1] VGB PowerTech e.V., Waste disposal for nuclear power<br />

plants, Essen, Germany: Working Panel Waste<br />

Management, VGB PowerTech e.V., 2012.<br />

[2] International Atomic Energy Agency, Disposal of Radioactive<br />

Waste – Specific Safety Requirements, IAEA Safety<br />

Standards Series No. SSR-5, International Atomic Energy<br />

Agency, Vienna, 2011.<br />

[3] International Atomic Energy Agency, Energy, Electricity and<br />

Nuclear Power Estimates for the Period up to 2050, Vienna,<br />

Austria: International Atomic Energy Agency, 2018.<br />

[4] P. Brennecke, Requirements on Radioactive Waste for<br />

Disposal (Waste Acceptance Requirements as of December<br />

2014) – Konrad Repository, BfS – Federal Office for<br />

Radiation Protection, Salzgitter, 2015.<br />

[5] S. Steyer, Produktkontrolle radioaktiver Abfälle, radio logische<br />

Aspekte – Endlager Konrad – Stand: Oktober 2010, BfS –<br />

Federal Office for Radiation Protection, Salzgitter, 2010.<br />

[6] ISO, Uncertainty of measurement – Part 3: Guide to the<br />

expression of uncertainty in measurement (GUM:1995) ISO/<br />

IEC Guide 98-3:2008, 2010.<br />

[7] ISO, Determination of the characteristic limits (decision<br />

threshold, detection limit and limits of the confidence<br />

interval) for measurements of ionizing radiation – Fundamentals<br />

and applications (ISO 11929:2010), 2011.<br />

[8] P. Filß, Relation between the activity of a high-density<br />

waste drum and its gamma count rate measured with an<br />

unshielded Ge-detector, Applied Radiation Isotopes,<br />

vol. 48, no. 8, pp. 805-812, 1995.<br />

[9] E. Martin, D. F. Jones and J. L. Parker, Gamma-Ray<br />

Measurements with the Segmented Gamma Scan –<br />

LA-7059-M, 1977.<br />

[10] P. Filß, Specific activity of large-volume sources determined<br />

by a collimated external detector, Kerntechnik, vol. 54, no.<br />

3, pp. 198-201, 1989.<br />

[11] M. Bruggeman and R. Carchon, Solidang, a computer<br />

code for the computation of the effective solid angle and<br />

correction factors for gamma spectroscopy-based waste<br />

assay, Applied Radiation and Isotopes, vol. 52, no. 3,<br />

pp. 771-7776, 2000.<br />

[12] T. Krings, C. Genreith, E. Mauerhofer and M. Rossbach, A<br />

numerical method to improve the reconstruction of the<br />

activity content in homogeneous radioactive waste<br />

drums, Nuclear Instruments and Methods in Physics Research<br />

A, vol. 701, pp. 262-267, 2013.<br />

[13] Venkataraman, Improved detector response characterization<br />

method in ISOCS and LabSOCS, Journal of Radioanalytical<br />

and Nuclear Chemistry, vol. 264, p. 213, 2005.<br />

[14] D. Nakazawa, F. Bronson, S. Croft, R. McElroy, W. F. Mueller<br />

and R. Venkataraman, The efficiency calilbration of<br />

non-destructive gamma assay systems using semi-analytical<br />

mathematical approaches, in Proceedings of the WM2010<br />

Conference, Phoenix, AZ, 2010.<br />

[15] T. Bücherl, Synopsis of Gamma Scanning Systems, European<br />

Commision, Garching, 1998.<br />

[16] R. Venkataraman, S. Croft, M. Villani, R. D. McElroy und<br />

R. J. Estep, Total Measurement Uncertainty Estimation for<br />

Tomographic Gamma Scanner, in Proceedings of 46 th<br />

Annual INMM Meeting, Phoenix, AZ, 2005.<br />

[17] R. Venkataraman, F. Bronson, V. Abashkevich, B. M. Young<br />

und M. Field, Validation of in situ object counting system<br />

(ISOCS) mathematical efficiency calibration software, Nuclear<br />

Instruments and Methods in Physics Research A,<br />

pp. 450-454, 1999.<br />

[18] T. Goorley, MCNP6.1.1-Beta Release Notes, Los Alamos<br />

National Laboratory, Los Alamos, 2014.<br />

Authors<br />

M. Dürr<br />

K. Krycki<br />

B. Hansmann<br />

T. Hansmann<br />

A. Havenith<br />

Aachen Institute for Nuclear<br />

Training GmbH<br />

M. Fritzsche<br />

D. Pasler<br />

T. Hartmann<br />

Mirion Technologies (Canberra)<br />

GmbH<br />

Decommissioning and Waste Management<br />

Advanced Sectorial Gamma Scanning for the Radiological Characterization of Radioactive Waste Packages ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

Kommunikation und<br />

Training für Kerntechnik<br />

Export in der Praxis<br />

Seminar:<br />

Export kerntechnischer Produkte und Dienstleistungen<br />

– Chancen und Regularien<br />

In diesem Seminar lernen Sie die ausfuhrrechtlichen Grundlagen unter besonderer<br />

Berücksichtigung der neuen Dual-Use-Verordnung sowie die organisatorischen und<br />

operativen Rückwirkungen auf Unternehmen kennen.<br />

Sie erhalten einen umfangreichen Überblick über die internationalen Märkte, ausgewählte<br />

regionale Spezifika und die unterschiedlichen Zertifizierungsregime ISO und ASME.<br />

Seminarinhalte<br />

ı Ausfuhrrechtliche Grundlagen<br />

ı zentralen Ausfuhrbestimmungen für Produkte und Dienstleistungen<br />

ı Verfahrensschritte und Zeitabläufe im Antragsverfahren<br />

ı Veränderungen in der neuen Dual-Use-Verordnung<br />

ı Märkte und regionale Spezifika<br />

ı Die Welten von ISO und ASME<br />

ı Organisatorische Rückwirkungen des Exportgeschäfts<br />

Zielgruppe<br />

Das Seminar richtet sich an Fach- und Führungskräfte, Projektverantwortliche sowie Mitarbeiterinnen<br />

und Mitarbeiter in den Bereichen Außenwirtschaft/Exportkontrolle, Organisation,<br />

Qualitätsmanagement, Vertrieb, Marketing, Recht oder Personalwesen, welche künftig für den<br />

Export von Produkten, Dienstleistungen und Projekten verantwortlich sind.<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

Lily Kreuzer<br />

RA Kay Höft M. A.<br />

Dr. Ing. Wolfgang Steinwarz<br />

Wir freuen uns auf Ihre Teilnahme!<br />

ı ehem. Rechtsanwältin, Ausfuhrspezialistin<br />

ı Syndikusrechtsanwalt und Compliance-Verantwortlicher<br />

für Außenwirtschaftsrecht<br />

ı ehem. Geschäftsführer Technik,<br />

Siempelkamp Ingenieur und Service GmbH<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termin<br />

2 Tage<br />

12. bis 13. Juni <strong>2019</strong><br />

Tag 1: 10:00 bis 18:00 Uhr<br />

Tag 2: 09:00 bis 12:45 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

998,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung,<br />

inkl. Mittagessen<br />

Kontakt<br />


Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Special Topic | A Journey Through 50 Years AMNT<br />

168<br />


Am 7. und 8. Mai<br />

<strong>2019</strong> begehen wir<br />

das 50. Jubiläum<br />

unserer Jahrestagung<br />

Kerntechnik. Zu<br />

diesem Anlass öffnen<br />

wir unser <strong>atw</strong>-Archiv<br />

für Sie und präsentieren<br />

Ihnen in jeder<br />

Ausgabe einen<br />

historischen Artikel.<br />

Ansprache des<br />

Ministerpräsidenten<br />

des Landes Baden-<br />

Württemberg<br />

anläßlich der<br />

Eröffnung der JK ’82<br />

am 4. Mai 1982<br />

Jahrestagung in Mannheim:<br />

Kernprobleme 1982 – Offenere<br />

Diskussion alter und neuer Erkenntnisse<br />

und Hemmnisse<br />

Das Deutsche Atomforum (DAtF) und die Kerntechnische Gesellschaft (KTG) hielten die Jahrestagung Kerntechnik<br />

1982 vom 4. bis 6. Mai 1982 in Mannheim ab. Die nach verschiedenen Änderungen im Vorjahr festgelegte Struktur der<br />

Tagung wurde auch in diesem Jahr beibehalten und sollte durchaus auch noch für weitere Tagungen maßgebend sein:<br />

Drei Plenarsitzungen am Dienstag vormittag sowie Donnerstag vor- und nachmittag, drei parallele Fachsitzungen am<br />

Mittwoch vormittag und Technische Sitzungen in neun Sitzungsreihen (Sektionen) am Dienstag und Mittwoch<br />

­nachmittag. Mit der Kürzung auf drei Tage ist sicherlich eine für eine so breit angelegte Tagung maximale Konzentration<br />

erreicht worden. Allerdings konnte auch durch ein attraktives Vortragsthema und die Ankündigung der<br />

Teilnahme des Bundesinnenministers an der Abschlußsitzung der früher am Freitag beobachtete Schwund der<br />

anwesenden Teilnehmer am Tagungsende nicht verhindert werden.<br />

Die Jahrestagung Kerntechnik hat zwei Hauptziele: Zum<br />

einen, einer größeren Zahl von Wissenschaftlern Gelegenheit<br />

zu geben, über eigene Arbeiten vorzutragen; zum<br />

anderen, in Plenarsitzungen usw. Überblicke über größere<br />

Fachgebiete und Orientierungen zur allgemeinen Situation<br />

der Kernenergie zu geben. Die JK ’82 zeichnete sich vor<br />

allem dadurch aus, daß hier aktuelle Probleme angesprochen<br />

und alte und neue Hemmnisse und Erkenntnisse<br />

wesentlich offener behandelt wurden als in den letzten<br />

Jahren, nicht zuletzt auch solche mit Relevanz für<br />

Genehmigungsverfahren und -politik. Dies zeigte sich<br />

nicht nur in der Thematik verschiedener Plenarvorträge<br />

und Referate der Fachsitzungen, sondern erfreulicherweise<br />

auch in ihrem Inhalt. Es zeigte sich sogar bei der<br />

Verleihung des erstmals vergebenen Günter-Wirths­ Preises<br />

für Arbeiten auf dem Gebiet des nuklearen Brennstoffkreislaufes,<br />

die als „heißes Eisen“ bezeichnet wurden.<br />

Es zeigte sich schließlich auch in Ansprachen und Reden,<br />

die sich auf die politische Situation der Kernenergie in der<br />

Bundesrepublik bezogen: der Rede des Minister­präsidenten<br />

von Baden-Württemberg, L. Späth, in der Eröffnungssitzung<br />

und den Ansprachen des Präsidenten des<br />

Deutschen Atomforums, R. Guck, sowie des wissenschaftlichen<br />

Tagungsleiters, H.-H. Hennies, in der Abschlußveranstaltung<br />

der JK ’82. Um so mehr wurde es deshalb<br />

bedauert, daß der Bundesminister des Innern, G. Baum,<br />

nicht selbst an der Abschlußsitzung teilnahm, sondern von<br />

seinem parlamentarischen Staatssekretär, A. von Schoeler,<br />

vertreten wurde.<br />

Politik ohne Vertrauen in die Wissenschaft<br />

ist nicht möglich<br />

Lothar Späth<br />

Herr Vorsitzender, meine sehr verehrten Damen und<br />

Herren, ich habe mir lange überlegt, was ich als Grußwort<br />

hier sagen könnte. Normalerweise, wenn ich auf einer<br />

Veranstaltung bin, in der es um Energieversorgung<br />

geht, versuche ich die Leute immer von der Kernkraft zu<br />

überzeugen. Endlich eine Veranstaltung, bei der ich mir<br />

das sparen kann.<br />

Dann versuche ich den Leuten immer klarzumachen,<br />

warum wir mehr Energie brauchen und preisgünstige<br />

Energie brauchen. Das kann ich mir auch sparen. Dann<br />

versuche ich den Leuten immer klarzumachen, daß selbst<br />

die Bundesregierung – das will immerhin was heißen –<br />

festgestellt hat, daß wir, wenn wir statt Kernkraft nur<br />

Kohle hätten, 100.000 Tonnen mehr Schwefeldioxid in der<br />

Luft hätten und, ich glaube, 83.000 Tonnen Stickoxid und<br />

73.000 Tonnen mehr Asche.<br />

Und dann lese ich wieder eine Umfrage, daß die Leute<br />

die Kernkraft immer noch für sehr viel umweltfeindlicher<br />

halten als Kohlekraftwerke. Das wird sich zwar ändern,<br />

wenn wir mit der selben Intensität jetzt die Zerstörung<br />

unserer Wälder durch die Kohlekraftwerke proklamieren.<br />

Ich habe die Sorge, daß wir eines Tages die Schwierigkeit<br />

haben, daß die Kernkraft im politisch-psychologischen<br />

Rahmen auf dem jetzigen Stand bleibt und wir die<br />

Kohlekraftwerke auch nicht mehr bauen können mit der<br />

­Begründung, das sei ja nun auch gefährlich. Und da wir es<br />

in der Politik zwar schaffen, viel Wind zu machen, aber<br />

nicht so viel, daß wir mit der alternativen Windenergie das<br />

ganze Problem lösen können, haben wir die ganz große<br />

Schwierigkeit, daß das Problem für mich nicht die marktwirtschaftliche<br />

Durchsetzung ist – ich meine vor allem der<br />

jetzt im Bau befindlichen oder geplanten Reaktoren –,<br />

sondern das hier ein Feld ist, das politisch fast nicht mehr<br />

kalkulierbar ist. Deshalb möchte ich die Bemerkung des<br />

Politikers auf dieses Feld konzentrieren.<br />

Ich glaube zuerst einmal: Der Satz, der vorhin gesprochen<br />

wurde, „die Entwicklung muß wieder kalkulierbar<br />

sein“, ist der entscheidende Gesichtspunkt. Und was<br />

wir in der Politik wieder schaffen müssen, ist, daß wir alle<br />

Einwände ernst nehmen, aber daß, wenn wir Einwände<br />

erörtert haben nach allen Richtungen, Entscheidungen,<br />

die getroffen sind, stehen müssen. Durch Wiederholung<br />

der Erörterung ist der Fortschritt nicht zu erzeugen. Das ist<br />

unser eigentliches Problem. Wir können ununterbrochen<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Core Problems 1982 – More Open Discussion on Old and New Insights and Barriers to Progress ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

diese Frage weiterdiskutieren. Oder wir können ununterbrochen<br />

die Entsorgungsproblematik neu diskutieren.<br />

Aber Tatsache ist doch, daß die Entwicklung, die für<br />

uns in Karlsruhe begonnen hat und jetzt in Frankreich im<br />

großen weitergeführt wird, im Grunde eine Struktur ist,<br />

„Ein Feld, das politisch<br />

fast nicht mehr<br />

kalkulierbar ist.“<br />

mit der wir zurechtkommen<br />

können. Daß, wenn wir<br />

über Gorleben diskutieren,<br />

wir wissen, daß wir dort<br />

alles sorgfältig prüfen müssen,<br />

aber daß es technische<br />

Möglichkeiten einer Endlagerung gibt mit Wiederzugriff<br />

zu dem Material; das ­führen uns die Franzosen vor. Und<br />

wir wissen, daß wir in den Kraftwerken Kompaktlagermöglichkeiten<br />

schaffen können und daß wir Zwischenlagermöglichkeiten<br />

schaffen können. Und wir wissen, daß<br />

wir Wiederaufbereitung technisch bewältigen können.<br />

Und dann fahren alle Leute nach Frankreich und kommen<br />

zurück und erklären, die französische Umwelt sei völlig<br />

anders. Ich kann nur feststellen, der Unterschied liegt<br />

vor allem darin, daß die Franzosen für richtig erkannte<br />

Lösungen konsequent angehen und sich nicht ununterbrochen<br />

von pseudowissenschaftlichen Leuten dreinreden<br />

lassen, sondern für richtig Erkanntes auch tun.<br />

Und ich glaube, wir müssen langsam den Mut haben,<br />

auch all den Leuten, die Lübbe mit dem Begriff Technosoziologen<br />

umschreibt, einmal in aller Offenheit sagen,<br />

daß Wissenschaft ein Gebiet ist, in<br />

dem sehr viele Grenzwerte erörtert<br />

und diskutiert werden müssen, aber<br />

daß es zum Schluß anerkannte<br />

­Meinungen und Positionen gibt – und<br />

dann gibt es ein paar Minderheitspositionen<br />

–, aber daß wir nicht die<br />

Fragen, die wir aus der Diskussion der Soziologie und der<br />

Philosophie kennen, bedingungslos auf die Naturwissenschaften<br />

übertragen können.<br />

Wir müssen einmal in aller Klarheit als Politiker sagen:<br />

Das kann die Wissenschaft nicht leisten. Wir müssen als<br />

Politiker einmal zu einem richtig erkannten Weg stehen,<br />

und wir müssen erklären, daß da eine Grundfrage aufkommt,<br />

nämlich die Frage des gegenseitigen Vertrauens.<br />

Ich will noch einmal ganz präzise festhalten: Politik ohne<br />

Vertrauen in die Wissenschaft und in die fachlichen<br />

Erkenntnisse ist nicht möglich.<br />

Der Politiker muß auf hören, politische Entscheidungen<br />

zu treffen, wenn er die nur noch treffen kann, wenn er<br />

persönlich beweisen kann, daß die ihm gegebenen Daten<br />

„Politik ohne Vertrauen<br />

in die Wissenschaft<br />

und in die fachlichen<br />

Erkenntnisse ist nicht<br />

möglich.“<br />

„Durch Wiederholung<br />

der Erörterung ist<br />

der Fortschritt nicht<br />

zu erzeugen.“<br />

richtig sind. Und das ist<br />

nämlich diese verrückte<br />

Diskussion. Die Kernkraftgegner<br />

in Whyl fragen<br />

mich immer, können Sie<br />

beweisen, daß die Kernkraftwerke<br />

sicher sind.<br />

Ich kann das nicht. Ich<br />

­begegne der Technik jeden Tag, nutze sie und kann immer<br />

persönlich noch nicht beweisen, daß das vernünftig ist,<br />

was da geschieht, z.B. Fliegen. Aber ich sage das aus einem<br />

ganz bestimmten Grund. Wenn die Diskussion so läuft,<br />

daß das Vertrauen in technische Erkenntnisse von der<br />

Politik nicht mehr umgesetzt werden darf, dann bekommt<br />

eine Diskussion die Oberhand, die deshalb lebensgefährlich<br />

ist in dieser Bundesrepublik, weil dann in der Politik<br />

das Prinzip gilt, daß Unbefangenheit erst möglich ist durch<br />

Inkompetenz. Mit anderen Worten, der Politiker wird dann<br />

in eine Entwicklung gedrängt, bei der er aufpassen muß,<br />

daß er von nichts was versteht, denn sonst gilt er als befangen.<br />

Und der Wissenschaftler, der heute sagt, er kommt<br />

heute zu dem Ergebnis, Kerntechnik sei in Ordnung, wird<br />

verdächtigt, er sei Lobbyist. Kommt derselbe Wissenschaftler<br />

zu dem Ergebnis, Kerntechnik sei Unsinn, ist er<br />

ein geachteter Mann in der Gesellschaft, er braucht auch<br />

nichts mehr weiter beweisen, denn er stimmt mit der<br />

herrschenden Unsicherheit überein. Nur – ich will auch<br />

dieses einmal erwähnen – es geht weit<br />

über die Frage der Entwicklung in<br />

diesem speziellen Bereich hinaus und<br />

treibt Blüten, die wir auf die Dauer<br />

in dieser Gesellschaft ohne großen<br />

Schaden nicht verkraften.<br />

Wenn Sie sich überlegen, daß jetzt<br />

die Leute, wenn sie von Frankreich<br />

zurückkommen, durchaus anderer<br />

­Meinung sind, aber nur bis sie wieder<br />

eingebettet sind in die Umwelt, in der sie sich wohl fühlen.<br />

Meistens sind sie bis zu 24 Stunden irritiert von der Realität<br />

in Frankreich. Es hält aber nie lang an. Seit neuestem<br />

haben wir einen neuen Tourismus, den ich eigentlich für<br />

die beachtenswerteste Entwicklung halte. Da gibt es jetzt<br />

z.B. eine Studienfahrt der Technischen Universität Berlin<br />

und wohin? An den geplanten Standort einer Wiederaufbereitungsanlage<br />

in Rheinland-Pfalz. Da ist zwar noch<br />

nichts; aber dort lassen sich heute die Zukunftsprobleme<br />

der Wiederaufbereitung schon abschließend<br />

mit den Bürgerinitiativen erörtern. Oder<br />

noch interessanter: Schwedische Schriftsteller<br />

reisen nach Schwandorf, um dort aus ihrer<br />

Erkenntnis der Gesamt zusammenhänge den<br />

Honoratioren vor Ort zu erklären, daß sie<br />

großes Verständnis für die Widerstände gegen<br />

die Wiederaufbereitung hätten.<br />

Nun habe ich nichts gegen Schriftsteller. Ich habe auch<br />

nichts gegen Leute, die Wissenschaft nicht mögen. Aber<br />

es geht nicht, daß langsam die Wissenschaftler aus der<br />

Wissenschaft verdrängt werden und Behauptungen in<br />

den Raum gestellt werden, die nicht mehr nach dem<br />

wissenschaftlichen Ergebnis, das kontrollierbar ist, beurteilt<br />

werden, sondern nach der gesellschaftspolitischen<br />

Relevanz. Das ist, glaube ich, z.Z. der gängige Ausdruck<br />

in diesem Sektor.<br />

Die Folge – das gilt nicht nur für die<br />

Kernkraft – ist, daß wir gegenwärtig<br />

eine besorgte Diskussion um die<br />

Zukunfts arbeitsplätze einer Industriegesellschaft<br />

haben. Und immer, wenn<br />

ich die Leute frage, „wo sind denn die<br />

Arbeitsplätze der Zukunft?“, dann ist<br />

großes Schweigen. Wenn wir davon<br />

reden, daß unser Lohn- und Sozialniveau<br />

erhalten bleiben muß, ist der<br />

Beifall noch da. Wenn man aber sagt,<br />

daß dieses hohe Niveau nur durch die<br />

Steigerung der Produktivität und die<br />

Innovation haltbar ist und auch<br />

gehalten wird, werden die Gesichter<br />

schon bedenklicher. Und wenn man<br />

dann noch erklärt, daß dieses Niveau<br />

dazu führt, daß immer mehr Betriebe<br />

immer mehr Arbeitskräfte freisetzen<br />

und damit die Arbeitslosigkeit steigt! Wer die Gutachten<br />

der fünf Weisen heute gelesen hat, der konnte gar nicht<br />

überrascht sein, denn das ist exakt die Entwicklung. Nur,<br />

wo sollen denn die neuen Arbeitsplätze herkommen?<br />

„Der Politiker wird in eine<br />

Entwicklung gedrängt,<br />

bei der er aufpassen muß,<br />

daß er von nichts etwas<br />

versteht, denn sonst gilt<br />

er als befangen.“<br />

| | 1982: Inbetriebnahme des Kernkraftwerks<br />

Grafenrheinfeld.<br />

169<br />


Special Topic | A Journey Through 50 Years AMNT<br />

Core Problems 1982 – More Open Discussion on Old and New Insights and Barriers to Progress ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

170<br />


Wir haben zum ersten Mal die Erkenntnis, daß es der<br />

Staat nicht leisten kann. Ich will zwar nicht bestreiten,<br />

daß unsere wissenschaftliche Entwicklung so gegangen<br />

ist, daß der Umfang der Diskussionswissenschaft im Verhältnis<br />

zu den Naturwissenschaften einen Umfang erreicht<br />

hat, bei dem im Grunde eine Entwicklung im Gange ist, die<br />

nur vom Staat gelöst werden könnte. Aber der Staat kann<br />

sie nicht bezahlen. Wenn wir jetzt den gesamten Zukunftsbereich<br />

der Technik vernachlässigen – und das ist die<br />

einzige zentrale Frage –, dann werden wir in große<br />

Bedrängnis kommen, weil wir neue Strukturen von<br />

Arbeitsplätzen nicht bereitstellen können, obwohl wir das<br />

könnten von unserem technischen Wissen her. Das gilt<br />

nicht nur für die Kernenergie, das gilt für die neue<br />

Kommunikationstechnologie genauso.<br />

Jeder, der beobachtet, was Frankreich, England, die<br />

USA und Japan machen, sieht, daß in dem, was die<br />

Amerikaner „Communications“ nennen, eine enorme<br />

Innovationswelle im Gange ist. Selbst die Umweltschützer<br />

müßten jetzt endlich einmal Hurra rufen, weil Kupfer<br />

gegen Sand ausgetauscht wird im Rahmen der Glasfasertechnologie<br />

und weil diese Technologiekommunikation<br />

zuletzt die Transporte erspart. Keine Spur. Es hat bei uns<br />

genau ein Jahr gedauert, dann hatten wir das Problem<br />

konzentriert auf die Frage, ob wir einen fernsehfreien Tag<br />

brauchen oder nicht. Wobei sich den jeder machen kann;<br />

es gibt immer noch keine Apparate ohne Knopf. Aber wir<br />

sind in einer freien Gesellschaft so weit, daß wir eine freie<br />

Bürgerinitiative aufbauen, die den Staat bittet, den Bürger<br />

daran zu hindern, solche Entscheidungen treffen zu<br />

müssen.<br />

Ich will damit zum Kern des Problems kommen:<br />

Dem, was sich abspielt im Rahmen der Diskussion um die<br />

Kernenergie. Da gibt es viele ernste Bedenken – vorhin<br />

wurde das ange sprochen. Und über diese Bedenken muß<br />

man dis kutieren und man muß sie<br />

ausräumen. In Whyl machen wir<br />

das seit acht Jahren. Wir sind jetzt<br />

erst in der zweiten Instanz. Wir<br />

haben auch schon Urteile, nur<br />

noch keine Begründung, und wissen<br />

ganz genau, daß wir auf die<br />

Baulinie 80 gehen müssen mit<br />

alldem, was da an neuen Unsicherheiten<br />

zusammenhängt.<br />

Aber wenn Sie einmal überlegen,<br />

wie wir es tun – und Sie können es im Grunde noch<br />

mit Sarkasmus betrachten –, oder wenn sie überlegen, daß<br />

wir alle über Beseitigung von Investitionshemmnissen<br />

reden – und ich hätte es viel lieber gesagt, wenn der Herr<br />

Bundesinnenminister hier wäre –, und während die<br />

Bundesregierung dieses laut erklärt, geht der Bundesinnenminister<br />

her, vorbei an Reaktorsicherheitskommission,<br />

und macht neue Auflagen und freut sich diebisch<br />

darüber, daß das Durcheinander wieder größer geworden<br />

ist. Ich kann hier nur warnen, weil in einer Gesellschaft, in<br />

der wir nun wirklich über den Rechtsweg und über die<br />

Abwicklung von Verfahren einen Weg eingebaut haben,<br />

der ja von denen, die ihn gehen müssen, nur noch mühsam<br />

akzeptiert und verstanden wird. Aber jetzt, behaupte ich,<br />

können wir nicht mehr mehr tun, weder in der Art, wie wir<br />

Verfahren abwickeln im Zeitalter der Entbürokratisierung<br />

oder wie wir die Entsorgungsfrage dauernd formulieren<br />

und neu pro­blematisieren, obwohl im Grunde jeder weiß,<br />

wie es geht. Mehr ist nicht mehr zu machen außer einer<br />

rigorosen Ablehnung der Kerntechnik. Wer sich dazu<br />

bekennt, muß dafür die Verantwortung übernehmen. Nur<br />

„Wenn wir jetzt den gesamten<br />

Zukunftsbereich der Technik<br />

vernachlässigen, werden wir<br />

in große Bedrängnis kommen,<br />

weil wir neue Strukturen<br />

von Arbeitsplätzen nicht<br />

bereitstellen können.“<br />

| | 1982: Baubeginn für die Urananreicherungsanlage Gronau. Bundesminister<br />

für Forschung und Technologie A. von Bülow (Mitte) mit den<br />

Geschäftsführern der Uranit GmbH bei der Grundsteinlegung für die UAG<br />

um 23. 9. 82 in Gronau. Foto: Heinr. Niehoff<br />

wäre das ehrlicher als die dauernde Erklärung, wieviel<br />

Kernenergie wir brauchen, und die stillschweigende Übereinstimmung,<br />

daß man jeden Tag was Neues erfindet, um<br />

diesen Weg so zu verunsichern, daß irgendwann alle<br />

­Beteiligten die ­Möglichkeit verlieren, ihn konsequent zu<br />

gehen.<br />

Mir ist es gleich, ob man über die eine oder andere<br />

Technik so oder so entscheidet. Ich sage das für die<br />

­Neuentwicklung. Ich bin persönlich der Meinung, daß wir<br />

viel zuwenig Geld indie Forschung stecken und daß die<br />

Milliarden für die Entwicklung des Schnellen Brüters und<br />

des Hochtemperaturreaktors richtig ausgegeben sind.<br />

Ich bin der Meinung, daß wir heute viel mehr sparen<br />

müssen, um die Forschungsinvestitionen auch in anderen<br />

Bereichen zu verstärken – denken Sie mal an die Gentechnik<br />

und an alle diese Bereiche. Überall dort, wo es<br />

um die Zukunft der Arbeitsplätze geht nämlich um die<br />

Grundlagenforschung, bauen wir ab und verbrauchen die<br />

Substanz unserer Gegenwartssicherung. Nur, was nicht<br />

passieren darf ist, daß die Politik öffentlich Forschungsruinen<br />

demonstrativ vorführt und glaubt, daß sie damit<br />

atmosphärisch bei der Bevölkerung das Gefühl erwecken<br />

könnte, wir seien in der Technologie auf einem guten Weg.<br />

Es ist auch eine Über forderung der öffentlichen<br />

­Meinung, wenn ich als Politiker den Leuten erkläre, Reaktoren<br />

in Deutschland<br />

sind besonders sicher,<br />

technisch ist alles klar.<br />

Der Mann kann doch<br />

gar nicht unterscheiden,<br />

wenn er in der<br />

Zeitung gelesen hat,<br />

der Reaktor wird jetzt<br />

stillgelegt, die Baustelle<br />

funktioniert nicht<br />

mehr, dort ist alles offen.<br />

Und wenn der den<br />

Streit verfolgt, daß die<br />

„Die rigorose Ablehnung der<br />

Kerntechnik wäre ehrlicher<br />

als die dauernde Erklärung,<br />

wieviel Kern energie wir<br />

brauchen, und die stillschweigende<br />

Übereinstimmung,<br />

daß man jeden<br />

Tag etwas Neues erfindet,<br />

diesen Weg zu verunsichern.“<br />

Elektrizitätswirtschaft den Schnellen Brüter bezahlen soll,<br />

aber der Deutsche Bundestag gegenwärtig nicht in der Lage<br />

sei, die politischen Vorbehalte aufzulösen, und dann würde<br />

die Bundesregierung zur Sicherung der nicht vorhandenen<br />

eigenen Mehrheit eine Bürgschaft geben, daß erst dann<br />

bezahlt wird, wenn sie sich entschließe, das zu tun, was sie<br />

vorhabe! Dann versteht draußen der Maier und der Müller<br />

überhaupt nicht mehr, was in dieser Republik los ist.<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Core Problems 1982 – More Open Discussion on Old and New Insights and Barriers to Progress ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Und ich will folgendes eigentlich zu Beginn dieser<br />

Tagung einbringen, zu Beginn einer Tagung, in der Fachleute<br />

leidenschaftslos abwägen, was geht und was nicht<br />

geht, in der sich ein Forschungs- und Wissenschaftspotential<br />

trifft, das groß ist: Nach meinem Eindruck beginnt<br />

jetzt der dynamische Teil der Forscher und der Wissenschaftler<br />

auch in unseren Hochschulbereichen zu<br />

ermüden; und zwar deshalb zu ermüden, weil wir nicht<br />

mehr die politischen, ordnungspolitischen und Sach<br />

„Der dynamische Teil<br />

der Forscher beginnt<br />

zu ermüden, weil<br />

wir nicht mehr die<br />

politischen und<br />

Sachvoraussetzungen<br />

bereitstellen.“<br />

Voraussetzungen bereitstellen,<br />

um dem Forscher<br />

die ­Möglichkeit zu geben,<br />

die Dinge weiterzuentwickeln.<br />

Und ich will hinzufügen,<br />

das gilt auch zunehmend<br />

für die Strukturen<br />

des Forschungs- und<br />

Hochschulbereiches insgesamt.<br />

Wir haben mit den<br />

Strukturplänen in unseren<br />

Hochschulen, bis hin zu den sogenannten Discountprofessoren,<br />

eine Entwicklung eingeleitet, bei der eine<br />

große Zahl von Menschen sich lebenslang auf eine relativ<br />

sichere Staatsstelle verlassen kann. Wir haben aber auch<br />

dafür gesorgt, daß dies so umfassend geschah, daß ich<br />

jetzt bange bin, ob der ­wissenschaftlich hochqualifizierte<br />

Nachwuchs an unseren Universitäten ausreichend Platz<br />

finden kann. Und ich ­sage auch dies zur Politik selbst:<br />

Wenn wir nicht bald korrigieren und dafür sorgen, daß<br />

wissenschaftliche Projekte dadurch entwickelt ­werden,<br />

daß wir strukturelles Personal und wissenschaftliches Zusatzpersonal<br />

zusammenführen und nach Abschluß einer<br />

Forschungsaufgabe auch wieder ausein ander nehmen und<br />

neuen Dingen zuführen, dann werden wir eine Verkrustung<br />

unserer Wissenschaft bekommen, bei der wir das<br />

nicht leisten können, was eine Industrienation leisten<br />

muß.<br />

Und wenn wir die Energieversorgung der Welt als eine<br />

Betrachtung nehmen und endlich aufhören über den<br />

Strombedarf in der Bundesrepublik als abschließendes<br />

Weltproblem zu diskutieren – wobei wir immer den Strombedarf<br />

aus der Rezession rechnen und die Sozialverteilung<br />

aus der Hochkonjunktur, und die Staatsverschuldung verbindet<br />

beides –, dann, meine ich, wird die Generation, die<br />

vielleicht heute mit großem Idealismus am lautesten argumentiert,<br />

die Folgen am schlimmsten spüren.<br />

Und ich sage das auch im Verhältnis der Generationen.<br />

Ich gebe jungen Leuten das Recht, aus einem Idealismus<br />

heraus radikal zu argumentieren. Das<br />

ist nicht das eigentliche Problem. Sondern<br />

das Problem sind die Leute, die<br />

es besser wissen und aus opportunistischen<br />

oder anderen Erwägungen sich<br />

vor diese Strömungen stellen und an<br />

der Spitze solcher Strömungen marschieren<br />

in dem Glauben, sie könnten<br />

den Idealismus dieser jungen Generation<br />

zu einer mißbräuchlichen Position<br />

nützen. Das ist das eigentliche<br />

Problem. Die Auseinandersetzung mit den jungen<br />

­Menschen schaffen wir. Da bin ich gar nicht skeptisch –<br />

und ich weiß von was ich rede, ich führe viele Diskussionen.<br />

Und ich habe oft das Gefühl, daß junge Leute,<br />

wenn sie erbitterten Widerstand merken, sachlich argumentiert,<br />

daß sie viel sprechbereiter sind als wir glauben.<br />

Aber wenn sie natürlich in Massen auftreten und vorne die<br />

marschieren, die ganz anderes im Sinn haben als diesen<br />

„Das Problem sind die<br />

Leute, die glauben,<br />

sie könnten den<br />

Idealismus der jungen<br />

Generation zu einer<br />

mißbräuchlichen<br />

Position nützen.“<br />

Idealismus, dann könnte sein, daß diese junge Generation<br />

ihre Zukunft sich selbst verbaut.<br />

Ich will noch einmal sagen: Auch wer die Gerechtigkeit<br />

im Nord-Süd-Bereich haben will, muß sich darauf einstellen,<br />

daß wir in vielen Bereichen Arbeitsplätze abgeben.<br />

Von was soll denn die Dritte Welt leben? Doch von den<br />

Produktionen, die lohnintensiv sind und die wir abgeben<br />

und importieren müssen und die wir dadurch bezahlen<br />

müssen, daß wir in der hochqualifizierten Technologie,<br />

wo wir über Generationen einen Vorsprung haben, neue<br />

Produkte zum Export entwickeln. Es ist im Grunde eine<br />

ganz einfache Philosophie. Aber wie so oft bei einfachen<br />

Dingen, sie sind meistens richtiger als die komplizierten<br />

oder die kompliziert gemachten. Zweitens, wir stehen ja<br />

nicht auf einer Insel, auch nicht in der Dritten Welt,<br />

sondern wir stehen in hartem Wettbewerb mit Industrienationen,<br />

die wie Japan oder die Vereinigten Staaten oder<br />

andere angetreten sind, eine schnellere technologische<br />

Entwicklung voranzubringen.<br />

Noch haben wir die Potentiale, um unseren Platz in der<br />

Zukunft zu behaupten. Meine größere Sorge ist, ob<br />

wir auch noch die politische und gesellschaftliche Kraft<br />

haben, der Vernunft eine Gasse in diesem Durcheinander<br />

zu schaffen. Was ich mir wünsche, was ich Ihnen<br />

wünsche und vielleicht dieser bundesrepublikanischen<br />

Gesellschaft, ist, daß wir wieder lernen, miteinander so<br />

umzugehen, wie es in einer freien Gesellschaft sein muß.<br />

Eine freie Gesellschaft funktioniert nicht nach dem<br />

­Prinzip: „Mir ist kein Opfer zu groß, das andere für mich<br />

bringen“; sondern eine freie Gesellschaft funktioniert,<br />

wenn Menschen wieder Vertrauen zueinander haben: die<br />

Politik zur Wissenschaft, die Menschen zur<br />

Politik. Dann bin ich überzeugt, könnte Ihre<br />

Tagung und unsere gesamte Diskussion<br />

wieder ein Stück dazu beitragen, daß wir auf<br />

den Boden der Vernunft zurückkehren.<br />

Wenn wir auf dem Boden der Vernunft<br />

eine große Anstrengung machen – ich halte<br />

uns dazu für fähig –, bin ich der ­Meinung, daß<br />

wir auch dort, wo wir in den letzten Jahren<br />

zurückgefallen sind, unseren Platz wieder<br />

erobern können. Wenn wir uns aber aus der<br />

Logik, aus der Vernunft verabschieden und selbstzu frieden<br />

die Tatsachen beschimpfen nach dem Prinzip „Wir lassen<br />

uns durch Tat sachen und Fakten nicht länger draus<br />

bringen“, dann könnte es ein bitteres Erwachen geben,<br />

und ich bin dann nicht so sicher, ob nicht diejenigen,<br />

die heute am lautesten rufen, die Empfindlichsten wären,<br />

wenn es um die öko nomischen und die s ozialen<br />

Konsequenzen einer solchen Entwicklung<br />

ginge.<br />

„Eine freie Gesellschaft<br />

funktioniert, wenn<br />

Menschen wieder<br />

Vertrauen zueinander<br />

haben: die Politik zur<br />

Wissenschaft, die<br />

Menschen zur Politik.“<br />

171<br />


Special Topic | A Journey Through 50 Years AMNT<br />

Core Problems 1982 – More Open Discussion on Old and New Insights and Barriers to Progress ı M. Dürr, M. Fritzsche, K. Krycki, B. Hansmann, T. Hansmann, A. Havenith, D. Pasler and T. Hartmann

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

172<br />


Inside<br />

Klausurtagung der Jungen Generation der KTG in Bochum<br />

Auf dem „Campus Kerntechnik“ des AMNT <strong>2019</strong> in<br />

Berlin (ehemals „Kernenergie Campus“) wird es in diesem<br />

Jahr mehr Stationen geben, um die Interaktion mit den<br />

Schülern zu erhöhen. Zudem ist die Durchführung eines<br />

Experiments zur Strahlenmessung geplant und sowohl<br />

dabei als auch während des weiteren Campus-Programms<br />

das Smartphone integriert.<br />

| | Der Vorstand der Jungen Generation der KTG in Bochum (v.l.): Florian Gremme, Natalija Cobanov,<br />

Sebastian Alexander Hahn, Jan Peschel und Jonathan C. J. Schade<br />

Vom 9. bis 10. Februar <strong>2019</strong> kam der Vorstand der Jungen<br />

Generation der KTG in Bochum an der Ruhr-Universität,<br />

nach der vorangegangenen, jährlichen Vorstandssitzung,<br />

zu einer Klausurtagung zusammen. Neben der Diskussion<br />

zu organisatorischen und inhaltlichen Fragen wurden<br />

­konkrete Aufgaben zur Erreichung der definierten Ziele<br />

umgesetzt. Dabei wurden z.B. Logos überarbeitet,<br />

die Website neu konzipiert, unsere Auftritte bei Facebook<br />

(https://www.facebook.com/KTGJungeGeneration)<br />

und ­Instagram (https://www.instagram.com/ktg_junge_­<br />

generation) aktualisiert und Konzepte für unsere jährlichen<br />

Aktivitäten weiterentwickelt.<br />

Ziel ist es, Menschen nachhaltig über unsere Aktivitäten<br />

zu informieren und mit Fakten kerntechnischer<br />

­Themen zu erreichen. Die Informationsaufnahme findet<br />

zunehmend, besonders bei jüngeren Menschen, über die<br />

sozialen Medien statt. Daher möchten wir die Nutzung<br />

dieser Kanäle für uns ausbauen, um so auch die bestehenden<br />

Inhalte z. B. auf www.ktg.org zu verbreiten.<br />

| | Hydraulikstempel und Abbaumaschine<br />

Im Rahmen der Tagung wurde zudem das Deutsche<br />

Bergbaumuseum in Bochum besichtigt. Hier können in<br />

den Ausstellungen und einem Anschauungsbergwerk die<br />

Montanindustrie erlebt und der Einfluss einer sicheren<br />

Energieversorgung auf gesellschaftliche Entwicklungen<br />

nachvollzogen werden. Dabei wurde auch die Geschichte<br />

der Abbautechniken erläutert. Angefangen beim Schürfen<br />

von Hand und dem Einsatz von Pferden zum Transport der<br />

abgebauten Kohlemengen, hin bis zum modernen Kohlebergbau<br />

mit Hydraulikstempeln und Abbaumaschinen, die<br />

mehrere Meter Kohleflöz in Stunden abbauen können.<br />

Beim Abbau eines Flözes und dem damit verbundenen<br />

Aufrücken der Hydraulikstempel und der Abbaumaschine<br />

kommt es zum Zusammenbruch des sog. „toten Mannes“,<br />

der Raum, der bereits abgebaut wurde. Die Folge sind<br />

oberflächliche Senkungen. Die Kumpel waren hohen<br />

Arbeitsbelastungen ausgesetzt, vor allem durch das<br />

„­Wetter“ unter Tage, da in der Regel etwa 50 °C während<br />

der Arbeit herrschten.<br />

Der Einsatz der Kohle zur Stromerzeugung hat in<br />

Deutschland stark zum wirtschaftlichen Aufschwung<br />

beigetragen und bildet eine historische Grundlage für die<br />

heutige wirtschaftliche Situation Deutschlands.<br />

Florian Gremme<br />

Sprecher Junge Generation<br />

Kerntechnische Gesellschaft e.V. (KTG)<br />

| | „Telefonkonferenz“ unter Tage<br />

KTG Inside

<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

April <strong>2019</strong><br />

55 Jahre | 1964<br />

08. Dipl.-Ing. Frank Ambos, Alsheim<br />

77 Jahre | 1942<br />

09. Prof. Dr. Hans-Christoph Mehner,<br />

Dresden<br />

79 Jahre | 1940<br />

18. Dipl.-Ing. Norbert Granner, Bergisch<br />

Gladbach<br />

80 Jahre | 1939<br />

08. Dr. Siegbert Storch, Aachen<br />

81 Jahre | 1938<br />

04. Prof. Dr.-Ing. Klaus Kühn,<br />

Clausthal-Zellerfeld<br />

05. Dr. Hans Fuchs, Gelterkinden/CH<br />

09. Dr. Carl Alexander Duckwitz,<br />

Alzenau-Kälberau<br />

28. Prof. Dr. Georg-Friedrich Schultheiss,<br />

Lüneburg<br />

82 Jahre | 1937<br />

13. Dr. Martin Peehs, Bubenreuth<br />

84 Jahre | 1935<br />

05. Prof. Dr. Hans-Henning Hennies,<br />

Karlsruhe-Bergwald<br />

88 Jahre | 1931<br />

09. Dr. Klaus Penndorf, Geesthacht<br />

<br />

20. Dezember 2018 ı<br />

Dr. Hans Mohrhauer<br />

Jülich<br />

2. Januar <strong>2019</strong> ı<br />

Dr. Hein-Jürgen Kriks<br />

Braunschweig<br />

Die KTG verliert in ihnen langjährige<br />

aktive Mitglieder, denen sie ein<br />

ehrendes Andenken bewahren wird.<br />

Ihren Familien gilt unsere Anteilnahme.<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

173<br />

NEWS<br />

Top<br />

Only nuclear energy can save<br />

the planet<br />

(nei) Nuclear energy is key to any<br />

effort to protect the climate, so we<br />

must take action to support it, say<br />

Joshua Goldstein and Staffan Qvist in<br />

The Wall Street Journal. In their<br />

op-ed, Goldstein and Qvist urge that<br />

nuclear’s ability to scale quickly to<br />

meet worldwide demand and produce<br />

carbon-free power around-the-clock,<br />

regardless of the weather, offers the<br />

best means to reduce emissions as<br />

soon as possible. They also argue<br />

that opposition to nuclear is based<br />

more in preconceptions than in fact,<br />

debunking several common arguments<br />

against nuclear energy.<br />

“All the reasons put forward to<br />

oppose nuclear power amount to overhyped<br />

fears that in no way stack up to<br />

the real dangers facing humanity from<br />

climate change.”<br />

The op-ed is adapted from the authors’<br />

new book on climate change, “A<br />

Bright Future: How Some Countries<br />

Have Solved Climate Change and the<br />

Rest Can Follow.”<br />

| | www.brightfuturebook.com<br />

www.nei.org<br />

World<br />

IAEA: Construction progresses<br />

on Bangladesh’s first nuclear<br />

power plant<br />

(iaea) As <strong>2019</strong> starts, authorities in<br />

Bangladesh have presented in Vienna<br />

this week their progress towards<br />

­nuclear power at a Technical Meeting<br />

on Topical Issues in the Development<br />

of Nuclear Power Infrastructure, with<br />

more than one hundred participants<br />

from 40 IAEA Member States.<br />

This country of 160 million plans to<br />

produce 9% of its electricity from<br />

nuclear power and reduce its dependence<br />

on fossil fuels by the middle<br />

of the next decade when both reactors<br />

of the new power plant will have gone<br />

into operation.<br />

“By 2040 we estimate that Bangladesh<br />

will need to generate about<br />

78,000 megawatt of electricity in a<br />

high-demand scenario and about<br />

69,000 in a low one, and nuclear<br />

­power will play a significant role,” said<br />

Mohammad Shawkat Akbar, Project<br />

Director of the nuclear power plant<br />

construction project and Managing<br />

Director of Nuclear Power Plant Company<br />

Bangladesh Limited, an enterprise<br />

of the Bangladesh Atomic Energy<br />

Commission (BAEC).<br />

This, Akbar said, is according to<br />

the revised Power System Master Plan<br />

for Bangladesh from 2016. “We are<br />

confident that the first unit will be<br />

commissioned in 2023 and the second<br />

in 2024,” he said.<br />

The plant, being built in Rooppur,<br />

about 160 kilometers northwest of the<br />

capital, will have the capacity to generate<br />

2,400 megawatts of electricity.<br />

The construction project is being<br />

implemented by a subsidiary of<br />

­Russia’s State Atomic Energy Corporation<br />

ROSATOM. It is high on the Bangladeshi<br />

government’s agenda, all the<br />

way up to the Prime Minister’s office.<br />

| | NIA: Wylfa remains strong site for vital new nuclear. Artist´s view of the Wylfa site.<br />

Bangladesh is expected to be one of<br />

the countries to suffer the most from<br />

climate change. The Intergovernmental<br />

Panel on Climate Change<br />

(IPCC) anticipates that sea level rise<br />

from climate change is expected to<br />

subsume a large portion of its coastal<br />

land by 2080.<br />

The government has designed<br />

several national policies and actions<br />

to adapt to this threat. These focus on<br />

food security and health, as well as on<br />

energy security – an area where the<br />

construction of the nuclear power<br />

plant in Rooppur, which is not in<br />

coastal land, is expected to help.<br />

“All site-specific conditions, including<br />

protection from flooding and<br />

earthquakes, had to be addressed<br />

before getting the relevant licenses,”<br />

said Naiyyum Choudhury, Chairman<br />

of the Bangladesh Atomic Energy<br />

Regulatory Authority.<br />

| | www.iaea.org<br />

FORATOM announces priorities<br />

for <strong>2019</strong>: Climate change,<br />

sustainability and jobs<br />

(foratom) FORATOM President<br />

Teodor Chirica and Director General<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Operating Results November 2018<br />

174<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 720 664 826 6 320 <strong>03</strong>9 260 974 225 100.00 87.16 100.00 86.15 101.47 86.64<br />

OL2 Olkiluoto BWR FI 910 880 710 647 514 6 910 879 251 210 060 98.57 94.88 97.59 94.08 97.75 93.71<br />

KCB Borssele PWR NL 512 484 720 366 579 3 134 944 161 341 863 99.49 77.45 99.49 77.10 99.67 76.49<br />

KKB 1 Beznau 7) PWR CH 380 365 720 276 818 2 301 439 127 047 526 100.00 76.76 100.00 76.24 101.23 75.47<br />

KKB 2 Beznau 7) PWR CH 380 365 720 275 293 2 900 460 134 065 333 100.00 96.07 100.00 95.93 100.62 95.14<br />

KKG Gösgen 7) PWR CH 1060 1010 720 767 570 7 886 369 313 080 956 100.00 93.56 99.98 93.20 100.57 92.81<br />

KKM Mühleberg BWR CH 390 373 720 763 481 7 477 328 246 501 752 100.00 88.54 99.91 88.26 99.05 86.97<br />

CNT-I Trillo PWR ES 1066 10<strong>03</strong> 579 287 626 3 236 347 111 866 829 80.42 82.00 80.01 81.52 79.90 80.75<br />

Dukovany B1 PWR CZ 500 473 720 357 357 3 241 110 107 863 647 100.00 82.52 99.90 82.<strong>03</strong> 99.27 80.87<br />

Dukovany B2 PWR CZ 500 473 720 346 763 3 805 576 106 428 0<strong>03</strong> 100.00 97.13 99.41 96.78 96.32 94.95<br />

Dukovany B3 PWR CZ 500 473 367 145 306 2 794 998 106 066 740 50.97 71.78 39.97 70.48 40.36 69.74<br />

Dukovany B4 PWR CZ 500 473 720 782 566 7 069 910 113 551 204 100.00 82.06 99.94 81.79 100.64 81.57<br />

Temelin B1 PWR CZ 1080 1<strong>03</strong>0 720 788 510 6 966 311 108 456 257 100.00 80.65 99.98 80.48 101.22 80.43<br />

Temelin B2 PWR CZ 1080 1<strong>03</strong>0 0 0 1 229 715 135 444 462 0 33.69 0 33.67 0 33.78<br />

Doel 1 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 42.42 0 42.29 0 42.50<br />

Doel 2 2) PWR BE 454 433 720 778 160 3 158 439 254 327 660 100.00 37.52 100.00 36.82 101.79 37.12<br />

Doel 3 PWR BE 1056 1006 0 0 5 638 809 260 184 650 0 64.70 0 64.58 0 64.21<br />

Doel 4 2) PWR BE 1084 1<strong>03</strong>3 455 432 201 7 231 373 298 070 249 63.19 90.81 59.08 90.22 59.48 89.56<br />

Tihange 1 2) PWR BE 1009 962 0 0 5 702 393 254 651 930 0 68.12 0 67.39 0 67.80<br />

Tihange 2 2) PWR BE 1055 1008 0 0 2 332 443 271 227 273 0 26.67 0 26.64 0 26.70<br />

Tihange 3 2) PWR BE 1089 1<strong>03</strong>8 744 813 597 813 597 - 100.00 100.00 100.00 100.00 99.68 99.68<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 720 956 085 9 423 645 349 615 704 100.00 89.73 94.31 84.37 89.42 79.05<br />

KKE Emsland 4) DWR 1406 1335 720 1 018 214 10 488 388 345 811 671 100.00 94.30 100.00 94.18 100.69 93.07<br />

KWG Grohnde DWR 1430 1360 720 983 443 9 933 236 376 560 815 100.00 92.15 100.00 90.84 94.91 86.06<br />

KRB C Gundremmingen SWR 1344 1288 720 952 292 9 356 367 329 936 260 100.00 89.52 97.96 88.90 97.81 86.36<br />

KKI-2 Isar DWR 1485 1410 720 1 070 654 11 042 736 352 641 059 100.00 95.04 100.00 94.80 99.94 92.46<br />

KKP-2 Philippsburg DWR 1468 1402 720 989 567 9 925 255 365 092 771 100.00 89.76 99.85 89.58 91.97 82.91<br />

GKN-II Neckarwestheim 2) DWR 1400 1310 551 763 500 8 678 300 328 801 434 77.21 79.62 75.71 79.23 76.04 77.48<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data for the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

Yves Desbazeille highlight the association’s<br />

priorities for <strong>2019</strong>.<br />

2018 ended on a high for the<br />

nuclear industry. At international<br />

level, the IPCC made it clear that<br />

nuclear power is essential if the world<br />

is to keep global warming to below<br />

1.5 degrees. The IEA also issued a stark<br />

warning to the EU that, whilst nuclear<br />

is a low-carbon source of baseload<br />

electricity capable of ensuring security<br />

of supply, current EU policies are discouraging<br />

investments in new nuclear<br />

power plants and the long-term operation<br />

of existing reactors. And the European<br />

Commission (EC) confirmed<br />

that nuclear will form the backbone of<br />

a carbon-free European power system,<br />

together with renewables.<br />

But our work is certainly not over.<br />

Many political changes are coming<br />

over the next 12 months, most notably<br />

Brexit, the election of a new European<br />

Parliament and the appointment of a<br />

new European Commission, all of<br />

which will change the EU landscape.<br />

In the longer term, it is important for<br />

our industry to work together with<br />

decision makers to develop an investment-friendly<br />

framework which will<br />

encourage a significant nuclear new<br />

build programme.<br />

Going forward, we see many opportunities<br />

to engage on key issues of<br />

importance to the EU, and our three<br />

main policy priorities for the year can<br />

be summarised as follows:<br />

Climate Change: With the publication<br />

of both the EC’s ‘A Clean Planet for<br />

All’ communication and the FTI-CL<br />

­Energy Consulting study ’Pathways to<br />

2050: role of nuclear in a low-carbon<br />

Europe‘ commissioned by FORATOM<br />

at the end of 2018, the foundations<br />

have been laid for future actions on<br />

climate change. We are delighted that<br />

the EU now recognises the important<br />

role of nuclear in the electricity mix as<br />

part of the solution to a low­ carbon<br />

future. Over the next 12 months we<br />

will continue to feed into dis cussions at<br />

EU level, providing reliable facts and<br />

data which demonstrate how nuclear<br />

will help Europe reduce its CO 2 emissions,<br />

whilst at the same time providing<br />

people with the affordable electricity<br />

they need when they need it.<br />

Sustainability: Broader environmental<br />

impacts, including land use,<br />

raw materials and air pollution are<br />

key questions which FORATOM plans<br />

to tackle over the next 12 months.<br />

When assessing whether an energy<br />

source is sustainable or not, it is essential<br />

that a whole life cycle approach be<br />

considered to better account for all<br />

environmental impacts. Nuclear has a<br />

lot to offer, as it does not require vast<br />

volumes of land nor raw materials to<br />

produce significant amounts of<br />

energy. We will also be working hard<br />

to ensure that decisions relating to<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

sustainable finance are based on<br />

­objective criteria, rather than an<br />

ideological list of what people think<br />

are, or are not, sustainable.<br />

Jobs: As one of the flagship areas<br />

of the current EC, FORATOM will<br />

continue to promote nuclear as a<br />

European industry which generates a<br />

significant number of jobs throughout<br />

its value chain. To demonstrate this,<br />

FORATOM has engaged an external<br />

consultant to conduct a study which<br />

will identify exactly what the sector<br />

has to offer in terms of jobs in Europe.<br />

At the same time, the industry is concerned<br />

about the increasing skills<br />

shortage.We will therefore work<br />

together with our members, and via<br />

EU funded projects such as ENEN+, to<br />

attract the young generation towards<br />

a career in the nuclear field.<br />

We have many opportunities ahead<br />

of us and, as an industry, we will work<br />

together with policymakers and stakeholders<br />

to ensure the best possible<br />

future for Europe and its citizens.<br />

| | www.foratom.org<br />

Reactors<br />

Strategic French civil nuclear<br />

industry contract: Framatome<br />

is a committed actor of the<br />

sector in France and abroad<br />

(framatome) The French nuclear<br />

industry reached an important milestone<br />

on January 28 with the signature<br />

of a strategic contract covering<br />

the period <strong>2019</strong>-2022, by French<br />

­Minister for an Ecological and Solidarity<br />

Transition François de Rugy,<br />

French Minister of Economy and<br />

­Finance Bruno Le Maire, and the<br />

­major industrial actors of the sector,<br />

among which Framatome.<br />

The strategic contract is structured<br />

around six actions:<br />

pp<br />

Guarantee necessary skills and<br />

expertise for an attractive, safe and<br />

competitive nuclear sector<br />

pp<br />

Structure, with the help of the<br />

digital technologies, the supplychain<br />

and the innovation approach<br />

within the sector<br />

pp<br />

Promote a circular economy within<br />

the sector<br />

pp<br />

Define nuclear reactors of tomorrow<br />

and tools for the future<br />

pp<br />

Have a global sector strategy available<br />

worldwide<br />

pp<br />

Launch a sector approach to<br />

accelerate the transformation of<br />

the industrial structure towards<br />

the industry of the future.<br />

| | www.framatome.com<br />

NIA: Wylfa remains strong site<br />

for vital new nuclear<br />

(nia) Hitachi has announced (17 January<br />

<strong>2019</strong>) that it has suspended work<br />

on the Wylfa Newydd project on Anglesey.<br />

This follows formal discussions<br />

between Hitachi and the UK Government<br />

and the Government of Japan on<br />

the financial structure of the project to<br />

ensure it would deliver for both investors<br />

and the UK electricity consumer.<br />

Hitachi has announced today that<br />

it has suspended work on the Wylfa<br />

Newydd project on Anglesey. This<br />

follows formal discussions between<br />

Hitachi and the UK Government and<br />

the Government of Japan on the<br />

­financial structure of the project to<br />

ensure it would deliver for both investors<br />

and the UK electricity consumer.<br />

Tom Greatrex, chief executive of<br />

the Nuclear Industry Association, said:<br />

“Today’s news is disappointing, not<br />

just for the Wylfa Newydd project but<br />

for Anglesey and the nuclear industry<br />

as a whole. Wylfa remains a strong site<br />

for vital new nuclear power for the UK.<br />

“It’s regrettable that this project<br />

has been suspended, especially as a<br />

considerable amount of groundwork<br />

has already taken place on the Wylfa<br />

project, including creating a supply<br />

chain to deliver the project. Nuclear at<br />

Wylfa has local support, and the<br />

­Horizon project would provide 60<br />

years of reliable, secure, low carbon<br />

power for homes, businesses and<br />

public services – with a strike price<br />

much below any offshore wind project<br />

generating power now and cost<br />

competitive with all low carbon<br />

generation. It is imperative that new<br />

nuclear at this site goes ahead and the<br />

barriers to that are removed.<br />

“Wylfa is part of the UK’s nuclear<br />

new build programme, which is proceeding<br />

with Hinkley Point C build<br />

which is on track, with more than<br />

3,600 people currently working on the<br />

construction site. A third round of consultation<br />

for Sizewell C is underway<br />

and the approval process for the reactor<br />

design at Bradwell B is proceeding.<br />

“The urgent need for further new<br />

nuclear capacity in the UK should not<br />

be underestimated, with all but one of<br />

the UK’s nuclear power plant due to<br />

come offline by 2<strong>03</strong>0. If we want a<br />

balanced generation mix, Government<br />

must work with industry to<br />

deliver that vital capacity on this site.<br />

At stake are our ability to provide<br />

bulk, low carbon power, energy security,<br />

and the potential loss of the<br />

chance of thousands of highly skilled,<br />

well paid jobs in Wales and North<br />

West England.<br />

“Without a diverse low carbon mix<br />

and with increasing demand to power<br />

electric vehicles, we run the risk of<br />

becoming more reliant on burning<br />

fossil fuels to produce our electricity.”<br />

Nuclear power plays an important<br />

role in our energy mix, currently<br />

­providing 21 % of the UK’s electricity<br />

mix, and 40 % of the low-carbon<br />

electricity generated in the UK.<br />

New nuclear is an integral part of a<br />

future decarbonised power supply. For<br />

prolonged periods both this summer,<br />

in June and then again in December<br />

and the early days of January<br />

this year, wind produced less than<br />

7.5 % of our electricity demand. Relying<br />

exclusively on intermittent and<br />

variable sources of low carbon power<br />

alone will increase, not reduce, overall<br />

emissions.<br />

| | www.niauk.org<br />

Company News<br />

Framatome receives $49<br />

million grant to accelerate<br />

enhanced accident tolerant<br />

fuel development<br />

(framatome) Framatome recently received<br />

a $49 million, 28-month grant<br />

from the U.S. Department of Energy<br />

(DOE) to accelerate the development<br />

and commercialization of enhanced<br />

accident tolerant fuel (EATF). These<br />

fuel designs enhance performance<br />

during normal operations at nuclear<br />

power plants and provide operators<br />

with more time to respond in the<br />

event of loss of active cooling.<br />

“EATF designs represent the next<br />

evolution in technologies that will support<br />

today’s and tomorrow’s ­nuclear<br />

reactors and unlock value in Framatome’s<br />

products and the ­existing nuclear<br />

fleet,” said Bob Freeman, vice president,<br />

Contracts and Services, North<br />

America, Framatome Fuel Commercial<br />

and Customer Center. “With the support<br />

of DOE, Congress and our industry<br />

partners, we are ahead of schedule<br />

in making this fuel technology available<br />

to nuclear power plants so that<br />

they can continue to provide clean,<br />

efficient electricity.”<br />

Framatome is developing both nearand<br />

long-term EATF solutions for all<br />

types of nuclear power plants. The integrated<br />

near-term solution incorporates<br />

both chromia-enhanced pellets<br />

and chromium-coated cladding. These<br />

fuel pellets and clad coating have<br />

characteristics that, when combined<br />

with other recent advancements, will<br />

deliver value to the existing fleet of<br />

| | Framatome<br />

receives<br />

$49 million grant<br />

to accelerate<br />

enhanced accident<br />

tolerant fuel<br />

development<br />

175<br />

NEWS<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

176<br />

NEWS<br />

reactors through a variety of measures,<br />

including operator flexibility and fuel<br />

efficiency.<br />

In addition to this near-term work,<br />

Framatome continues research on a<br />

silicon carbide-based cladding with<br />

even greater potential. The ongoing<br />

research and development of these<br />

state-of-the-art materials and related<br />

manufacturing processes are critical<br />

to safe, clean and more efficient power<br />

generation.<br />

The funds from this DOE grant<br />

build on a $10 million, two-year grant<br />

that Framatome received from the Department<br />

in 2016, and will contribute<br />

to the advancement of laboratory testing<br />

and data collection, as well as irradiation<br />

test programs. Additionally,<br />

the grant will support further development<br />

of advanced manufacturing<br />

processes and the acceleration of<br />

long-term EATF solutions, including<br />

silicon carbide fuel cladding.<br />

Framatome’s EATF program is<br />

built on the collective knowledge,<br />

skills and expertise of leaders across<br />

the global nuclear sector, including<br />

U.S. national laboratories, utilities,<br />

university programs, industry organizations,<br />

and European research and<br />

worldwide partners. DOE’s accident<br />

tolerant fuel program has been a driving<br />

force in Framatome’s efforts to accelerate<br />

product development to better<br />

support the existing nuclear fleet.<br />

These additional funds are possible<br />

because of the recognition by Congress<br />

over the past two fiscal years of<br />

the importance of this program.<br />

| | www.framatome.com<br />

ROSATOM starts testing<br />

of accident tolerant fuels<br />

for light water reactors<br />

(rosatom) First Russian-made experimental<br />

nuclear fuel assemblies based<br />

on accident-tolerant fuel (ATF) have<br />

been loaded for testing into the water<br />

loops of MIR research reactor at the<br />

State Research Institute of Atomic<br />

Reactors in Dimitrovgrad, Ulyanovsk<br />

Region. This work is a part of the<br />

­project of TVEL Fuel Company of<br />

­ROSATOM to develop Russian accident<br />

tolerant fuel resistant to severe<br />

beyond-design basis accidents, and<br />

bring it to the market.<br />

Two experimental fuel assemblies,<br />

manufactured at Novosibirsk Chemical<br />

Concentrates Plant (a subsidiary of<br />

TVEL Fuel Company), consist either of<br />

VVER or PWR geometry fuel rods with<br />

four different combinations of cladding<br />

materials and fuel matrix. Fuel<br />

pellets are made of one of the two<br />

materials, either traditional uranium<br />

dioxide or uranium-molybdenum<br />

alloy with increased density and<br />

thermal conductivity. The fuel rods<br />

cladding is either a zirconium<br />

alloy with chromium coating or a<br />

chromium­nickel alloy.<br />

Each fuel assembly contains 24<br />

fuel rods with different combinations<br />

of materials. Fuel assemblies are being<br />

tested in the MIR reactor under conditions<br />

as close as possible to the<br />

operational ones, including the<br />

parameters of the VVER and PWR<br />

coolant. The research reactor design<br />

enables parallel studies in separate<br />

loops, which is especially important<br />

given the simultaneous fuel testing for<br />

reactors of Russian and foreign design.<br />

“The fabrication of the first accident<br />

tolerant fuel followed the largescale<br />

work of scientists and design<br />

­engineers of ROSATOM’s fuel unit,<br />

including in-depth materials research,<br />

introduction of new coating technologies<br />

and resistance butt-welding, and<br />

successful laboratory testing of the<br />

samples. Besides the research analysis,<br />

the choice of materials was based<br />

on the long-time experience of the<br />

Russian nuclear industry, considering<br />

that some of the materials are successfully<br />

used for research reactor nuclear<br />

fuels or the core of power and propulsion<br />

reactors,” Alexander Ugryumov,<br />

Vice President for Research and<br />

Development at TVEL JSC, commented.<br />

The first phase of the reactor tests<br />

and post-reactor studies of ATF will be<br />

completed in <strong>2019</strong>. Based on the data<br />

obtained, it will be necessary to select<br />

the optimal combination of cladding<br />

materials, calculate and validate the<br />

neutron-physical characteristics of<br />

light water reactors cores. The next<br />

important stage includes loading<br />

experimental fuel assemblies with<br />

some ATF fuel rods into a commercial<br />

power reactor in Russia.<br />

ATF is nuclear fuel resistant to<br />

severe beyond-design basis accidents<br />

at NPPs with the loss of coolant in the<br />

reactor. Even in case of heat removal<br />

failure in the core, ATF is supposed to<br />

keep its integrity for a long enough<br />

time without a zirconium-steam reaction<br />

inducing hydrogen release. ATF is<br />

of critical importance for further improvement<br />

of the integral safety and<br />

reliability of nuclear power. Research,<br />

design and testing of the accident<br />

tolerant fuel in TVEL Fuel Company is<br />

provided and coordinated by the<br />

­Bochvar High-Technology Scientific<br />

Research Institute of Inorganic Materials<br />

(Moscow).<br />

| | www.rosatom.ru<br />

Westinghouse awarded<br />

$ 93.6 million for accident<br />

tolerant fuel development<br />

(west) Westinghouse Electric Company<br />

has been awarded $93.6 million<br />

in funding from the U.S. Department<br />

of Energy (DOE) in support of their<br />

accident-tolerant fuel program,<br />

EnCore® Fuel.<br />

The EnCore Fuel program includes<br />

the development of both short- and<br />

long­ term products that provide<br />

advanced safety features, enhanced<br />

fuel cycles and economic advantages.<br />

The first phase of the program will<br />

deliver chromium-coated zirconium<br />

cladding for enhanced oxidation and<br />

corrosion resistance, and higher<br />

density ADOPT pellets for improved<br />

fuel economics. The second phase will<br />

introduce silicon carbide com posite<br />

cladding and high-density uranium<br />

­silicide pellets to offer sig­nificantly<br />

higher safety and economic benefits.<br />

“We are very pleased to be a technology<br />

leader in the accident-tolerant<br />

fuel initiative and to have been chosen<br />

by the DOE to receive this funding,”<br />

said Ken Canavan, Westinghouse’s<br />

chief technology officer. “This is a<br />

testament to the capabilities of<br />

Westinghouse as well as to the impact<br />

that these types of investments can<br />

make in bringing the safest and most<br />

advanced technologies to market.”<br />

The funding will be used by<br />

Westinghouse, in partnership with<br />

General Atomics, as well as our<br />

national laboratory and university<br />

partners to accelerate the introduction<br />

of lead test rods of silicon<br />

carbide cladding into a U.S. commercial<br />

reactor by 2022. The funding will<br />

also support the implementation of<br />

the first load fuel assemblies containing<br />

lead test rods of Encore Fuel,<br />

currently scheduled to be inserted in<br />

Exelon Generation’s Byron Unit 2 in<br />

spring of <strong>2019</strong>.<br />

| | www.westinghousenuclear.com<br />

Market data<br />

(All information is supplied without guarantee.)<br />

Nuclear Fuel Supply Market Data<br />

Information in current (nominal)<br />

­U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data for the formerly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

) 1<br />

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

) 1<br />

120.00<br />

120.00<br />

177<br />

100.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

80.00<br />

60.00<br />

40.00<br />

NEWS<br />

20.00<br />

20.00<br />

0.00<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

2015<br />

2018<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

| | Uranium spot market prices from 1980 to 2018 and from 2008 to 2018. The price range is shown. In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

0.00<br />

Jan. 2012<br />

Jan. 2013<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. <strong>2019</strong><br />

Separative work: Spot market price range [USD*/kg UTA]<br />

180.00<br />

160.00<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

16.00<br />

) 1<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Jan. 2012<br />

* Actual nominal USD prices, not real prices referring to a base year.<br />

Jan. 2013<br />

Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. <strong>2019</strong><br />

Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

| | Separative work and conversion market price ranges from 2008 to 2018. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.<br />

0.00<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. <strong>2019</strong><br />

2014<br />

pp<br />

Uranium: 28.10–42.00<br />

pp<br />

Conversion: 7.25–11.00<br />

pp<br />

Separative work: 86.00–98.00<br />

2015<br />

pp<br />

Uranium: 35.00–39.75<br />

pp<br />

Conversion: 6.25–9.50<br />

pp<br />

Separative work: 58.00–92.00<br />

2016<br />

pp<br />

Uranium: 18.75–35.25<br />

pp<br />

Conversion: 5.50–6.75<br />

pp<br />

Separative work: 47.00–62.00<br />

2017<br />

pp<br />

Uranium: 19.25–26.50<br />

pp<br />

Conversion: 4.50–6.75<br />

pp<br />

Separative work: 39.00–50.00<br />

2018<br />

January to June 2018<br />

pp<br />

Uranium: 21.75–24.00<br />

pp<br />

Conversion: 6.00–9.50<br />

pp<br />

Separative work: 35.00–42.00<br />

February 2018<br />

pp<br />

Uranium: 21.25–22.50<br />

pp<br />

Conversion: 6.25–7.25<br />

pp<br />

Separative work: 37.00–40.00<br />

March 2018<br />

pp<br />

Uranium: 20.50–22.25<br />

pp<br />

Conversion: 6.50–7.50<br />

pp<br />

Separative work: 36.00–39.00<br />

April 2018<br />

pp<br />

Uranium: 20.00–21.75<br />

pp<br />

Conversion: 7.50–8.50<br />

pp<br />

Separative work: 36.00–39.00<br />

May 2018<br />

pp<br />

Uranium: 21.75–22.80<br />

pp<br />

Conversion: 8.00–8.75<br />

pp<br />

Separative work: 36.00–39.00<br />

June 2018<br />

pp<br />

Uranium: 22.50–23.75<br />

pp<br />

Conversion: 8.50–9.50<br />

pp<br />

Separative work: 35.00–38.00<br />

July 2018<br />

pp<br />

Uranium: 23.00–25.90<br />

pp<br />

Conversion: 9.00–10.50<br />

pp<br />

Separative work: 34.00–38.00<br />

August 2018<br />

pp<br />

Uranium: 25.50–26.50<br />

pp<br />

Conversion: 11.00–14.00<br />

pp<br />

Separative work: 34.00–38.00<br />

September 2018<br />

pp<br />

Uranium: 26.50–27.50<br />

pp<br />

Conversion: 12.00–13.00<br />

pp<br />

Separative work: 38.00–40.00<br />

October 2018<br />

pp<br />

Uranium: 27.30–29.00<br />

pp<br />

Conversion: 12.00–15.00<br />

pp<br />

Separative work: 37.00–40.00<br />

November 2018<br />

pp<br />

Uranium: 28.00–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 39.00–40.00<br />

December 2018<br />

pp<br />

Uranium: 28.50–29.20<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 40.00–41.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

for Hard Coal<br />

Cross-border price for hard coal in<br />

[€/t TCE] and orders in [t TCE] for<br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2012: 93.02; 27,453,635<br />

2013: 79.12, 31,637,166<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

2017: 91.28, 25,739,010<br />

2018<br />

I. quarter: 89.88; 5,838,0<strong>03</strong><br />

II. quarter: 88.25; 4,341,359<br />

III. quarter: 100.79; 5,135,198<br />

| | Source: BAFA, some data provisional<br />

www.bafa.de<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 3 ı March<br />

178<br />


John Shepherd is a<br />

journalist who has<br />

covered the nuclear<br />

industry for the past<br />

20 years and is<br />

currently editor-in-chief<br />

of UK-based Energy<br />

Storage Publishing.<br />

Links to reference<br />

sources:<br />

Horizon Nuclear<br />

Power statement:<br />

https://bit.ly/2U1IH2b<br />

Is the UK Ready to See Nuclear Fade<br />

Before It Can Shine?<br />

John Shepherd<br />

What a mess the UK is in – and it’s nothing to do with Brexit. It’s all to do with energy policy (or the apparent lack<br />

of it) and a nuclear industry that is at risk of fading away before the ‘renaissance’ we had hoped for has gathered pace.<br />

Thirteen years ago it was all so very different. After what<br />

seemed an eternity in the energy doldrums, in July 2006, a<br />

UK government energy policy review concluded that a<br />

new fleet of nuclear power plants would be needed as an<br />

essential part of the country’s long-term energy mix.<br />

In November of that year, just over 12 months after<br />

leading his Labour Party to an historic third consecutive<br />

election win, prime minister Tony Blair put his full political<br />

weight behind a UK nuclear revival.<br />

Cleverly, and correctly, Blair played the climate change<br />

card to hammer home his message. He said the UK had to<br />

put nuclear energy back on the national agenda because,<br />

without it, the country would not be able to meet its<br />

climate change commitments or guarantee energy security.<br />

Blair told the House of Commons that in 15 years, the<br />

UK would move from a position of being about 80 % or<br />

90 % self-supportive and not reliant on imports on account<br />

of its own self-sufficiency in oil and gas, to one in which the<br />

country is importing 80 or 90 %.<br />

To combat the retirement of ageing nuclear power plants,<br />

he said “we need to put nuclear power back on the agenda<br />

and at least replace the nuclear energy that we will lose”.<br />

His pitch for nuclear came in the wake of the ‘Stern<br />

­Review’, produced by a former World Bank chief ­economist,<br />

Sir Nicholas Stern, for the UK government. Stern said the<br />

scientific evidence was overwhelming that climate change<br />

was a serious global threat and demanded an urgent<br />

response.<br />

However, it was left to a subsequent prime minister, the<br />

Conservative David Cameron, to announce in 2013 a deal<br />

with France’s EDF to build what would be the first new<br />

British nuclear power station in 20 years – HInkley Point C.<br />

But it took an extra three years for Cameron’s successor,<br />

the now Brexit-beleaguered Theresa May, to finally sign off<br />

on building Hinkley Point C.<br />

She had ordered a ‘review’ of the project before finally<br />

allowing it to go ahead, causing what was a further<br />

unnecessary and damaging delay. No.10 Downing Street<br />

had let it be known there were ‘security concerns’ about<br />

China’s involvement in the project and May told French<br />

leaders she needed more time to consider the issue.<br />

Needing ‘more time’ has sadly become a disappointing<br />

trait seen in the current resident of No.10 (although she<br />

has recently bowed to internal Conservative Party pressure<br />

and confirmed she will not contest another general ­election<br />

as Tory leader). She is on borrowed time.<br />

As I write, completion of the 4,500 tonne concrete<br />

platform on which the Hinkley Point C reactor buildings sit<br />

is scheduled for this year.<br />

Following May’s controversial intervention in the ­project,<br />

ministers said the government would impose a new legal<br />

framework for future foreign investment in UK’s critical<br />

infrastructure, to include nuclear and apply after Hinkley.<br />

The statement led everyone to understand that the<br />

British government would in future take a ‘special share in<br />

all future nuclear new-build projects. The aim, we were<br />

told, was to ensure that significant stakes could not be sold<br />

without the government’s knowledge or consent. Really..?<br />

Then how do you explain the mess the UK is in now?<br />

Time is something nuclear in the UK does not have. In<br />

the run-up to Christmas, Toshiba Corp confirmed what<br />

many had feared – that the company would withdraw from<br />

its UK nuclear new-build project at Moorside. Toshiba said<br />

that, “notwithstanding negotiations with multiple companies”,<br />

it was unable to anticipate being able to complete<br />

the sale of its NuGeneration (NuGen) company during<br />

­fiscal year 2018, which ends in March <strong>2019</strong>.<br />

Formed in 2009, NuGen had planned to build a nuclear<br />

power plant of up to 3.8 gigawatts-electric gross capacity<br />

at Moorside in West Cumbria, using AP1000 nuclear<br />

reactor technology provided by Westinghouse. That<br />

reactor design completed the UK regulatory assessment<br />

process in March 2017. At that time, Toshiba owned<br />

­Westinghouse – which filed for Chapter 11 protection with<br />

US courts the same month.<br />

Then, last month, another hammer blow. Horizon<br />

Nuclear Power said it would suspend its UK nuclear<br />

development programme, following a decision taken by its<br />

Japanese parent company Hitachi. Horizon had been<br />

developing the Wylfa Newydd nuclear plant on Anglesey<br />

in North Wales and has a second site at Oldbury on Severn<br />

in South Gloucestershire.<br />

Horizon Nuclear Power CEO Duncan Hawthorne said<br />

despite “close discussions” with the UK and Japanese<br />

­governments, talks had failed on the financing and<br />

associated commercial arrangements needed.<br />

In the 1992 UK general election, popular tabloid<br />

­newspaper ‘The Sun’ ran an infamous front page article<br />

deriding the then opposition Labour leader, Neil Kinnock,<br />

with the headline: “If Kinnock wins today will the last<br />

person to leave Britain please turn out the lights?”<br />

Kinnock did not win. And despite all the elections since,<br />

nuclear has not been a real winner either. Political leaders<br />

who have come and gone (in government or opposition)<br />

have consistently failed to demonstrate real leadership in<br />

terms of nuclear. They should all be condemned if (or<br />

when) the lights go out. The nuclear zeal expressed by<br />

Blair towards the end of his term of office was bold but not<br />

substantial enough to last.<br />

So what does the future hold? UK regulators confirmed<br />

last November that they had started the third step in a<br />

four-step independent generic design assessment process<br />

to seek approval for the French-Chinese ‘UK HPR1000’<br />

nuclear technology. This is the Hualong One design that<br />

General Nuclear Services, a subsidiary of EDF and China<br />

General Nuclear, proposes to use at a prospective new<br />

nuclear plant in England.<br />

But it will take more than regulatory acceptance to get<br />

that project – and others – on track. It will take clear<br />

political will and commitment too.<br />

Mrs May will soon be gone. Will a sensible successor<br />

emerge with the courage to take a leap of faith and invest<br />

capital and commitment in next generation nuclear<br />

technologies for the UK? Only time will tell, but the<br />

Doomsday Clock is ticking towards a catastrophe for<br />

security of electricity supply and the climate.<br />

John Shepherd<br />

Nuclear Today<br />

Is the UK Ready to See Nuclear Fade Before It Can Shine? ı John Shepherd

7 – 8 May <strong>2019</strong><br />

Estrel Convention Center Berlin, Germany<br />

www.amnt<strong>2019</strong>.com<br />

#50AMNT<br />

The 50 th AMNT offers a great variety<br />

of high level sessions showing<br />

the high competence in the nuclear<br />

technology industry.<br />

Hear from international experts about current issues and relevant<br />

developments. Expand your professional network in meetings<br />

with experts and decision-makers working in industry, utilities,<br />

research and development as well as politics and administration.<br />

Register now at<br />

› www.amnt<strong>2019</strong>.com<br />

Media Partners<br />

Celebrate with us our 50 th anniversary!


Repository Documentation Rethought – A comprehensive approach<br />

from untreated waste to packages for final disposal<br />

You can find out more about it VPC‘s in our Nuclear article in Services this magazine if you scan this QR code:<br />


www.vpc-group.biz<br />

Want to keep up with the latest news from our company?<br />

Then follow us on:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!