nucmag.com
2019
4
The Role of Resources
and Reserves for the
Global Energy Supply
The New Radiation Protection
Law (II): The Approval
The Nuclear Fission Table
in the Deutsches Museum
ISSN · 1431-5254
24.– €
Register Now!
50 Years KTG – 50 Years
for Society and Technology
www.amnt2019.com
#50AMNT
7 – 8 May 2019
Estrel Convention Center Berlin, Germany
Who will you meet?
AiNT • Alpiq • ASKETA • atw • August Alborn • Axpo Power • Baltic Scientific Instruments • Berthold Technologies • Beuth
Hochschule für Technik Berlin • BGZ Gesellschaft für Zwischenlagerung • BKW Energie • Blastrac • Brenk Systemplanung
• British Embassy • Bundesanstalt für Materialforschung und -prüfung • Bundesgesellschaft für Endlagerung • Chalmers
University of Technology • City of Biblis • Cyprus International University • DAHER • DAtF • Department for International
Trade • Deutsche Gesellschaft für Zerstörungsfreie Prüfung • Deutscher Arbeitgeber Verband • Deutscher Bundestag •
Deutsches Museum Munich • Deutsches Zentrum für Luft- und Raumfahrt • EDF • Eidgenössische Kommission für nukleare
Sicherheit • Eidgenössisches Nuklearsicherheitsinspektorat • Elektriciteits- Produktiemaatschappij Zuid-Nederland N.V.
• Embassy of the Czech Republic • EnBW Kernkraft • Energieanlagen Greifswald • Energus • ENGIE • Enrichment
Technology Company • ETH Zürich • European Commission • European Nuclear Society • EWN Entsorgungswerk für
Nuklearanlagen • Federal Ministry for Economic Affairs and Energy • Federal Ministry for Environment • FH Aachen •
Forschungsinstitut für Kerntechnik und Energiewandlung • Forschungszentrum Jülich • Framatome • Fraunhofer ISE •
French Alternative Energies and Atomic Energy Commission • FRM II • Gesellschaft für Anlagen- und Reaktorsicherheit
• GNS Gesellschaft für Nuklear-Service • Helmholtz-Zentrum Dresden-Rossendorf • Helmholtz-Zentrum Geesthacht •
Hochschule für Politik München • Hochschule Zittau/ Görlitz • IAF- Radioökölogie • Imperial College London • INFORUM
• Institut für Demoskopie Allensbach • Institut für Festkörper- Kernphysik • International Irradiation Association • Joint
Research Center • Karlsruher Institute of Technology • Kernkraft Gösgen-Däniken • Kernkraftwerk Biblis • Kernkraftwerk
Brunsbüttel • Kernkraftwerk Isar • Kernkraftwerk Leibstadt • Kernkraftwerk Stade • Kompetenzverbund Kerntechnik
• Kompetenzzentrum Ost für Kerntechnik • Kraftanlagen Heidelberg • Krantz • KROHNE Messtechnik • KSB • KSG
Kraftwerks-Simulator-Gesellschaft • KTG • LaGuardia & Associates • LTZ- Consulting • Mammoet • Marubeni Utility
Services • Materialprüfungsanstalt Universität Stuttgart • Mauell • Ministerium für Energiewende • Mirion Technologies
• National Citizens’ Oversight Committee • National Institute for Physics and Nuclear Engineering • Nawah Energy
Company • NKM NOELL Special Cranes • Nuclear Energy Agency • Nuclear Engineering International • Nuclear
Regulatory Commission • Nuclear Veterans • Nuclear Waste Management Commission • NUKEM • Nuklearforum
Schweiz • Orano • Pinsent Masons • PreussenElektra • pro-beam • Reactor Safety Commission • RIS Industrie- und
Kraftwerksservice • Rosatom • Roschiwal + Partner Ingenieur • Ruhr-Universität Bochum • RWE • SAT Kerntechnik
• Schule für ABC-Abwehr und Gesetzliche Schutzaufgaben • Siemens • Siempelkamp • ŠKODA JS • STEAG Energy
Services • Straub Werke • Taipei Economic and Cultural Office in Austria • Technische Universität Dresden • Technische
Universität Kaiserslautern • Technische Universität München • Tractebel Engineering • TÜV NORD • TÜV SÜD •
ÚJV Řež • Uniper • United States Nuclear Regulatory Commission • Universitätsklinikum Hamburg-Eppendorf •
University of Fukui • University of Stuttgart • University of Technology Slovakia • URENCO • Vattenfall • Verband der
TÜV • VGB PowerTech • VKTA • VPC • Westinghouse • Wirtschaftsverband Kernbrennstoff-Kreislauf und Kerntechnik •
Women in Nuclear • Wood • World Nuclear Association • WTI Wissenschaftlich Technische-Ingenieurberatung • Young
Generation Network • Zukunftsinstitut • ZWILAG
Register now at
› www.amnt2019.com
In alphabetical order. Subject to change.
Celebrate with us our 50 th anniversary!
atw Vol. 64 (2019) | Issue 4 ı April
EPR – No Swan Song
Dear reader, At the end of last year, the EPR was already the subject of this editorial. In the course of 2018, the first
EPR to be commissioned worldwide was Taishan, China, one of five Generation III+ nuclear power plants commissioned.
Another identical unit is about to be completed during 2019. Generation III+ reactors combine the technically wellengineered
and successful concepts of power reactor developments of the 1970s to 1990s with additional safety features
and economic improvements.
The EPR, originally known as the “European Pressurized
Reactor”, today known as the “Evolutionary Power
Reactor”, is the most powerful nuclear and power plant in
the world. It is the consistent result of a successful
collaboration of thousands of employees from all areas of
science and technology and companies from several
countries. The EPR has its origins in the successful
construction lines for pressurized water reactors of the
then French Framatome and German Siemens/KWU.
Both nuclear power plant manufacturers, including
predecessor companies, had built and commissioned
around 100 light water reactors since the 1960s. On the
part of Siemens/KWU, the Konvoi plants, Emsland, Isar 2
and Neckar westheim II, which were build between 1982
and 1988/89, in some cases even with a shorter construction
period than planned, deserve particular mention.
On the Framatome side, the N4 plants in Civaux and
Chooz with a gross electrical output of 1561 MW formed a
cornerstone of reactor development.
In the mid-1990s, when the expansion programmes for
nuclear power plants in Western countries were virtually
completed for the time being due to the saturation of the
generation market and the deliberate influence of political
interest groups on the public debate surrounding the
energy industry, the idea of designing a reactor concept for
the 21 st century in a Franco-German cooperation took
shape. Framatome and Siemens as manufacturer as well as
EDF and the companies operating the German nuclear
power plants agreed to develop the “Basic Design” for
the EPR.
The EPR reached its first milestones in Finland and
France in 2005 and 2007 with the launch of the Olkiluoto
3 and Flamanville 3 projects. Germany had ceased to be a
location with the signing of the 2001 nuclear consensus
agreement. It should not be overlooked that project risks
and cost increases for these two plants turned out to be
much higher than expected during the approval phases.
The extent to which individual, location-dependent
reasons have to be taken into account cannot currently be
estimated. It should also not be overlooked that the Taishan
project in China was started four years later and is now in
commercial operation after 9 years of construction, ahead
of the plants in Olkiluoto and Flamanville. Considerable
construction delays seem to be developing into a cultural
problem in western industrial countries.
consumption, this is about 17 % lower than with other
nuclear fuel strategies to date.
pp
Space requirement: The space requirement for the
entire power plant is around 1250 square meters per
megawatt and thus 150 times lower than for freestanding
photovoltaic plants.
Technology
pp
Technically projected operating life: 60 years, today
common for existing plants with originally planned
operating lives of 30 to 40 years, i.e. with prospects for
operation beyond that.
pp
The reactor core has a volume of roughly 50 cubic
metres, which is comparable to the volume of a 40-foot
sea container; in other words, the reactor core
continuously generates electricity for the supply of an
EU budget in about 15 cubic centimetres.
Safety and security
pp
Four independent systems ensure safe operation and
also protection in exceptional situations such as earthquakes
and floods, including beyond-design-basis
events.
pp
The core damage frequency for the EPR is in the range
of approx. 10 -7 and thus more than a power of ten, i.e. a
factor of 10 lower than that recommended by the
International Atomic Energy Agency (IAEA) for new
plants.
pp
A core catcher provides additional protection for
the foundation of the reactor building and would
stabilise it in the reactor building in the event of a core
meltdown.
pp
An internal spraying system is an additional measure to
ensure the long-term integrity of the reactor building in
case of accidents.
Honour to whom honour is due: The EPR, a joint European
development project on the way to late, but not too
late, international success – also beyond the year 2022:
according to the current announcement of the French
President Emmanuel Macron, a decision is to be made
around the year 2022 as to whether further new nuclear
power plants should be built in France on the basis of the
EPR, the German-French cooperation.
183
EDITORIAL
Some key figures
on the concept of the EPR reactor:
Resources
pp
Avoidance of around 10 million tonnes of carbon
dioxide emissions per year (related to the electricity
mix of countries using nuclear energy worldwide) and
avoidance of further emissions via air and water.
pp
Electricity supply to around 3 million households (with
average EU consumption).
pp
Uranium requirement of around 20 tonnes of enriched
nuclear fuel per year. In terms of natural uranium
Christopher Weßelmann
– Editor in Chief –
Editorial
EPR – No Swan Song
atw Vol. 64 (2019) | Issue 4 ı April
EDITORIAL 184
EPR – kein Abgesang
Liebe Leserin, lieber Leser, zum Ende des vergangenen Jahres war der EPR schon einmal Thema dieses
Editorials. Im Verlaufe des Jahres 2018 war der erste weltweit in Betrieb genommene EPR im chinesischen Taishan,
ein weiterer baugleicher Block befindet sich vor seiner Fertigstellung, eines von fünf in Betrieb genommenen Kernkraftwerken
der Generation III+. Generation III+ Reaktoren kombinieren die technisch ausgereiften erfolgreichen
Konzepte der Leistungsreaktorentwicklungen der 1970er- bis 1990er-Jahre mit zusätzlichen Sicherheitsmerkmalen und
wirtschaftlichen Verbesserungen.
Der EPR, ursprünglich im Original als „European
Pressurized Reactor“ bezeichnet, heute „Evolutionary
Power Reactor“, ist das leistungsstärkste Kernkraftwerk
und Kraftwerk überhaupt der Welt. Er ist das konsequente
Ergebnis einer erfolgreichen Zusammenarbeit von
tausenden Beschäftigten aus allen Bereichen der Naturwissenschaften
und Technik und Unternehmen aus
mehreren Ländern. Seine Ursprünge hat der EPR in den
erfolgreichen Baulinien für Druckwasserreaktoren der –
damaligen – französischen Framatome und deutschen
Siemens/KWU. Beide Kernkraftwerkshersteller, inklusive
Vorgängergesellschaften, hatten seit den 1960er-Jahren
rund 100 Leichtwasserreaktoren errichtet und in Betrieb
genommen. Aufseiten von Siemens/KWU sind dabei
insbesondere die Konvoi-Anlagen, Emsland, Isar 2 und
Neckarwestheim II, zu nennen, die von 1982 bis 1988/89
errichtet wurden, teils sogar mit kürzerer Bauzeit
als vorgesehen. Aufseiten von Framatome bildeten
die N4- Anlagen in Civaux und Chooz mit 1561 MW
elektrischer Bruttoleistung einen Eckpunkt der Reaktorentwicklung.
Mitte der 1990er-Jahre, als aus Gründen der energiewirtschaftlichen
Rahmenbedingungen mit einer Sättigung
des Erzeugungsmarktes und der gezielt beeinflussten
öffentlichen Diskussionen durch politische Interessengruppen
die Zubauprogramme für Kernkraftwerke in
westlichen Ländern quasi vorerst abgeschlossen waren,
nahm die Idee Gestalt an, in einer deutsch-französischen
Kooperation ein Reaktorkonzept für das 21. Jahrhundert
zu konzipieren. Framatome und Siemens als Hersteller
sowie EDF und die deutschen Kernkraftwerke betreibenden
Unternehmen vereinbarten dazu die Entwicklung
des „Basic Designs“ für den EPR.
Den erste Meilenstein erreichte der EPR in Finnland
und Frankreich in den Jahren 2005 und 2007 mit dem
Start der Projekte Olkiluoto 3 und Flamanville 3.
Deutschland war mit Unterzeichnen der Atomkonsensvereinbarung
von 2001 als Standort weggefallen. Es
soll nicht übersehen werden, dass sich Projektrisiken und
Kostensteigerungen für diese beiden Anlagen in den
Genehmigungsphasen viel höher als erwartet herausgestellt
haben. Inwieweit individuelle, standortabhängige
Gründe dafür herangezogen werden müssen, lässt sich
aktuell nicht abschätzen. Es soll ebenso wenig übersehen
werden, dass das Projekt Taishan in China vier Jahre später
in Angriff genommen wurde und jetzt, nach 9 Jahren
Bauzeit in kommerziellem Betrieb ist, also noch vor den
Anlagen in Olkiluoto und Flamanville. Erhebliche Bauzeitverzögerungen
scheinen sich zu einem kulturellen
Problem in westlichen Industrieländern zu entwickeln.
weltweit Kernenergie nutzenden Staaten) und Vermeidung
weiterer Emissionen über die Luft und das Wasser
pp
Versorgung von rund 3 Millionen Haushalten (mit dem
Durchschnittsverbrauch der EU) mit Strom.
pp
Uranbedarf von rund 20 t angereichertem Kernbrennstoff
pro Jahr. Bezogen auf den Natururanverbrauch liegt dieser
rund 17 % niedriger als bei bisherigen anderen Kernbrennstoffstrategien.
pp
Flächenbedarf: Der Flächenbedarf für die gesamte Kraftwerksanlage
liegt bei rund 1250 Quadratmeter pro Megawatt
und damit z.B. um den Faktor 150 niedriger als bei
Freiflächen-Photovoltaikanlagen.
Technik
pp
Technisch projektierte Laufzeit: 60 Jahre, heute für bestehende
Anlagen mit ursprünglich geplanten Laufzeiten
von 30 bis 40 Jahren üblich, also mit Perspektive für einen
darüber hinaus gehenden Betrieb.
pp
Der Reaktorkern umfasst ein Volumen von grob gerade
einmal 50 Kubikmetern, vergleichbar mit dem Volumen
eines 40-Fuß Seecontainers; anders ausgedrückt wird in
rund 15 Kubikzentimetern Reaktorkern kontinuierlich der
Strom für die Versorgung eines EU-Haushalts erzeugt.
Sicherheit
pp
Vier unabhängige Systeme gewährleisten einen sicheren
Betrieb und auch Schutz in Ausnahmesituationen wie
Erdbeben und Überflutungen einschließlich auslegungsüberschreitender
Ereignisse.
pp
Die Kernschadenshäufigkeit für den EPR liegt im Bereich
von ca. 10 -7 und damit um mehr als eine Zehnerpotenz,
also dem Faktor 10 niedriger, als der von der Internationalen
Atomenergie-Agentur (IAEA) für Neuanlagen
empfohlen.
pp
Ein Core-Catcher gewährleistet zusätzlichen Schutz für
das Fundament des Reaktorgebäudes und würde im Falle
einer Kernschmelze diese im Reaktorgebäude stabilisieren.
pp
Ein internes Sprühsystem ist eine zusätzliche Maßnahme,
um die langfristige Integrität des Reaktorgebäudes bei
Unfällen sicher zu stellen.
Ehre, wem Ehre gebührt: Der EPR, ein gemeinsames
europäisches Entwicklungsprojekt auf dem Weg zu
spätem, aber nicht zu spätem internationalen Erfolg –
auch über das Jahr 2022 hinaus: nach aktueller Ankündigung
des französischen Präsidenten Emmanuel Macron
soll um das Jahr 2022 entschieden werden, ob in
Frankreich weitere neue Kernkraftwerke auf Basis des
EPR, der deutsch-französischen Kooperation, gebaut
werden sollen.
Einige Kennzahlen
zum Konzept des EPR-Reaktors:
Ressourcen
pp
Vermeidung von rund 10 Millionen Tonnen Kohlendioxidemissionen
pro Jahr (Bezug auf den Strommix der
Christopher Weßelmann
– Chefredakteur –
Editorial
EPR – No Swan Song
Kommunikation und
Training für Kerntechnik
Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?
Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort
3 Atom-, Vertrags- und Exportrecht
Atomrecht – Ihr Weg durch Genehmigungs- und
Aufsichtsverfahren
RA Dr. Christian Raetzke 02.04.2019
22.10.2019
Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.04.2019 Berlin
Export kerntechnischer Produkte und Dienstleistungen –
Chancen und Regularien
RA Kay Höft M. A.
O. L. Kreuzer
Dr.-Ing. Wolfgang Steinwarz
Berlin
12.06. - 13.06.2019 Berlin
Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019 Berlin
Atomrecht – Was Sie wissen müssen
3 Kommunikation und Politik
RA Dr. Christian Raetzke
Akos Frank LL. M.
07.11.2019 Berlin
Public Hearing Workshop –
Öffentliche Anhörungen erfolgreich meistern
Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –
Themen und Formate
Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin
November 2019
3 Rückbau und Strahlenschutz
In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:
3 Nuclear English
Das neue Strahlenschutzgesetz –
Folgen für Recht und Praxis
Stilllegung und Rückbau in Recht und Praxis
Dr. Maria Poetsch
RA Dr. Christian Raetzke
Dr. Matthias Bauerfeind
RA Dr. Christian Raetzke
25.06. - 26.06.2019
10.09. - 11.09.2019
15.10. - 16.10.2019
13.11. - 14.11.2019
Berlin
24.09. - 25.09.2019 Berlin
Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.2019 Berlin
Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 18.09. - 19.09.2019 Berlin
3 Wissenstransfer und Veränderungsmanagement
Veränderungsprozesse gestalten – Heraus forderungen
meistern, Beteiligte gewinnen
Dr. Tanja-Vera Herking
Dr. Christien Zedler
26.11. - 27.11.2019 Berlin
Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30
Kontakt
INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin
Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de
Die INFORUM-Seminare können je nach
Inhalt ggf. als Beitrag zur Aktualisierung
der Fachkunde geeignet sein.
atw Vol. 64 (2019) | Issue 4 ı April
186
Issue 4 | 2019
April
CONTENTS
Contents
Editorial
EPR – No Swan Song E/G 183
Inside Nuclear with NucNet
The Key Role of the IAEA’s Integrated Regulatory
Review Service in Improving Nuclear Safety 188
DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
Feature | Major Trends in Energy Policy and Nuclear Power
The Role of Resources and Reserves
for the Global Energy Supply 191
Spotlight on Nuclear Law
The New Radiation Protection Law (II): The Approval G 196
Energy Policy, Economy and Law
Successful Co-Existance of Nuclear Power Plants
with Their External Stakeholders 197
The Nuclear Fission Table in the Deutsches Museum:
A Fundamental Discovery on Display 203
The 15 th Deutsche Atomrechtssymposium:
An Determination of the Curent Situation G 208
Operation and New Build
Failure Analysis of the Jet Pumps Riser
in a Boiling Water Reactor-5 213
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’:
The Nuclear Waste Management Strategy: Russia, Asia
and the Southern Hemisphere | Part I 221
Special Topic | A Journey Through 50 Years AMNT
Accountability to the Democratic Public G 225
KTG Inside
50 Years KTG – 50 Years for Society and Technology
An Interview with Frank Apel and Dr. Florian Gremme G 227
Cover:
Uranium mine
Mary Kathleen in Queensland/Australia.
News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
Nuclear Today
Events of the Past Need Not Dictate an Industry’s Future 238
G
E/G
= German
= English/German
Imprint 192
Contents
atw Vol. 64 (2019) | Issue 4 ı April
Feature
Major Trends in Energy Policy
and Nuclear Power
187
CONTENTS
191 The Role of Resources and Reserves
for the Global Energy Supply
Hans-Wilhelm Schiffer
Spotlight on Nuclear Law
196 The New Radiation Protection Law (II): The Approval
Das neue Strahlenschutzrecht (II): Die Freigabe
Dr. Christian Raetzke
Energy Policy, Economy and Law
203 The Nuclear Fission Table in the Deutsches Museum:
A Fundamental Discovery on Display
Susanne Rehn-Taube
Special Topic | A Journey Through 50 Years AMNT
225 Accountability to the Democratic Public
Rechenschaft gegenüber der demokratischen Öffentlichkeit
Richard von Weizsäcker
KTG Inside
227 50 Years KTG – 50 Years for Society and Technology
An Interview with Frank Apel and Dr. Florian Gremme
50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie
Ein Interview mit Frank Apel und Dr. Florian Gremme
Contents
atw Vol. 64 (2019) | Issue 4 ı April
188
INSIDE NUCLEAR WITH NUCNET
The Key Role of the IAEA’s Integrated
Regulatory Review Service in Improving
Nuclear Safety
The International Atomic Energy Agency (IAEA) is responding to member state needs and making the
Integrated Regulatory Review Service (IRRS) more effective and efficient, David Senior, head of the agency’s
regulatory activities section, and Hilaire Mansoux, head of the regulatory infrastructure and transport safety
section, told NucNet in an interview.
Feedback from member states over the past five years has
been used in the development of updated IRRS guidelines
on the preparation and conduct of missions, which will be
published soon and see the implementation of further
improvements to the service
The IRRS helps IAEA member states strengthen and
improve their national regulatory framework and infrastructure
for nuclear, radiation, radioactive waste and
transport safety. In line with other safety related peer
review services offered by the IAEA, the IRRS supports
member states in applying IAEA safety standards. The
IRRS began in 2006, when the IAEA integrated several
existing regulatory review services.
IRRS teams evaluate a state’s regulatory infrastructure
for safety against IAEA safety standards, which provide the
fundamental principles, requirements and guidance to
ensure nuclear safety. The standards serve as a global
reference for protecting people and the environment and
contribute to a harmonised high level of safety worldwide.
The teams compile their findings in reports that provide
recommendations and suggestions for improvement, and
note good practices that can be adapted for use elsewhere
internationally to strengthen safety. Mission reports
describe the effectiveness of the regulatory oversight of
nuclear, radiation, radioactive waste and transport safety
and highlight how it can be further strengthened.
States that have requested an IRRS mission prepare by
conducting a “self-assessment” using an IAEA-developed
methodology and software tool. During preparations, the
IAEA and the host country meet to agree on the scope
of the mission, including by defining which regulated
facilities and activities will be reviewed.
In October 2018 the IRRS held its 100 th mission, to
Hungary, where experts carried out an eight-day follow-up
mission to review the country’s implementation of recommendations
and suggestions made during a 2015 visit.
According to Mr Senior and Mr Mansoux, the service
helps member states by identifying opportunities for
improvement, but also allows countries to learn from one
another because the results of missions are shared through
mission reports and “lessons learned” workshops.
By judging the mission against IAEA safety standards,
the service has brought about greater harmonisation of
regulatory practices amongst member states. The agency
sees the informal exchange of experience between expert
reviewers and regulatory staff across the world as another
valuable learning opportunity.
The IRRS carries out from nine to 12 missions a year
and is being used increasingly by countries that do not
have a commercial nuclear power programme but are
thinking about starting one.
The service has established itself as the “preferred
choice” for EU member states who must complete a peer
review every 10 years to comply with the bloc’s nuclear
safety directive, Mr Senior and Mr Mansoux told NucNet
In response to requests from member states, the IAEA
can also offer combined IRRS and Artemis missions. Artemis
is the Agency’s integrated expert peer review service for
radioactive waste and spent fuel management, decommissioning
and remediation programmes. It is intended for
facility operators and organisations responsible for radioactive
waste management, and for regulators, national
policy and other decision-makers.
The first combined IRRS-Artemis mission was recently
conducted in Spain. The combined mission approach option
aims to exploit the synergies between the respective reviews.
The IRRS is also available to countries that do not have
commercial nuclear power and do not have plans to introduce
it. The service helps them regulate the use of radiation
sources in industry, medicine, agriculture and research.
Mr Senior said: “High standards of nuclear safety can be
achieved through a culture of continuous improvement, and
all countries – including those with extensive experience –
can use the IRRS to improve and demonstrate closer alignment
of their national arrangements with IAEA safety
standards.”
“In short, all countries need to regulate nuclear and
radiation safety, and the IRRS programme helps them do
so in line with its safety standards,” he said.Some countries
have a well-established regulatory infrastructure, based on
decades of experience, to regulate all types of installations
and activities. Other countries are just establishing a legal
and regulatory framework for safety.
“Regardless of the approach to nuclear regulation and
the maturity of the arrangements in each country, there is
always room for improvement,” Mr Mansoux said
The IAEA safety standards are continuously evolving to
reflect developments including feedback from the IRRS
missions, and it is a continuous process to ensure that
the national regulatory infrastructure is in line with the
standards.
Challenges remain, said Mr Senior and Mr Mansoux,
particularly those associated with ensuring adequate
financial and human resources, and the independence of
the regulatory body.
NucNet was speaking to David Senior, head of the IAEA’s
regulatory activities section, and Hilaire Mansoux, head of
the regulatory infrastructure and transport safety section.
Author
NucNet
The Independent Global Nuclear News Agency
Editor responsible for this story: Kamen Kraev
Avenue des Arts 56
1000 Brussels, Belgium
www.nucnet.org
Inside Nuclear with NucNet
The Key Role of the IAEA’s Integrated Regulatory Review Service in Improving Nuclear Safety
atw Vol. 64 (2019) | Issue 4 ı April
Notes
Phase-Out:
Nuclear Before Coal – Almost Half of Germans Think This Is a Mistake
The customer portal Verivox released the results of their survey, in
which they asked if it was a mistake by politics in Germany to
phase-out nuclear before coal. The German coal phase-out is
envisaged for 2038, while the nuclear phase-out is scheduled until
2022. Almost half of Germans (44.1 %) considers this order to be a
“To reach the climate goals, Germany has decided to phase-out coal.
Do you think it was a mistake by politics to phase-out nuclear first?”
climate policy mistake. On the other hand, 49 per cent of the
respondents consider the preferred nuclear phase-out to be the right
choice. Apparently, they assess the potential hazards of nuclear
power higher than the climate load associated with coal-fired power
generation.
For further details
please contact:
Nicolas Wendler
DAtF
Robert-Koch-Platz 4
10115 Berlin
Germany
E-mail: presse@
kernenergie.de
www.kernenergie.de
DATF EDITORIAL NOTES
189
All respondents
Yes, in Any Case
Rather Yes
Undecided
Rather No
No, in No Way
29 %
15 %
6 %
17 %
33 %
Responses by age group
18-29
24 %
18 %
9 %
23 %
26 %
30-39
31 %
10 %
5 %
20 %
34 %
40-49
29 %
18 %
6 %
14 %
34 %
50-64
28 %
14 %
8 %
16 %
35 %
65+
31 %
16 %
5 %
15 %
33 %
Yes, in Any Case
Rather Yes
Undecided
Rather No
No, in No Way
Source: Verivox
DAtF Notes
atw Vol. 64 (2019) | Issue 4 ı April
Calendar
190
2019
CALENDAR
01.04.-03.04.2019
CIENPI – 13 th China International Exhibition on
Nuclear Power Industry. Beijing, China,
Coastal International, www.coastal.com.hk
02.04.-04.04.2019
Workshops on Autonomous and Remotely
Operated Systems: Benefits and Challenges
to Nuclear Security. Vienna, Austria,
World Institue for Nuclear Security, www.wins.org
09.04.-11.04.2019
World Nuclear Fuel Cycle 2019. Shanghai, China,
World Nuclear Association (WNA), Miami, Florida,
USA, www.wnfc.info
ATOMEXPO 2019. Sochi, Russia,
2019.atomexpo.ru/en/
15.04.-16.04.2019
22.04.-28.04.2019
World Nuclear University Short Course:
The World Nuclear Industry Today.
Istanbul, Turkey, World Nuclear University,
www.world-nuclear-university.org
07.05.-08.05.2019
50 th Annual Meeting on Nuclear Technology
AMNT 2019 | 50. Jahrestagung Kerntechnik.
Berlin, Germany, DAtF and KTG,
www.amnt2019.com – Register Now!
15.05.-17.05.2019
1 st International Conference of Materials,
Chemistry and Fitness-For-Service Solutions
for Nuclear Systems. Toronto, Canada, Canadian
Nuclear Society (CNS), www.cns-snc.ca
16.05.-17.05.2019
Emergency Power Systems at Nuclear Power
Plants. Munich, Germany, TÜV SÜD,
www.tuev-sued.de/eps-symposium
24.05.-26.05.2019
International Topical Workshop on Fukushima
Decommissioning Research – FDR2019. Fukushima,
Japan, The University of Tokyo, fdr2019.org
29.05.-31.05.2019
Global Nuclear Power Tech. Seoul, South Korea, Korea
Electric Engineers Association, electrickorea.org/eng
03.06.-05.06.2019
Nuclear Energy Assembly. Washington DC, USA,
Nuclear Energy Institute (NEI), www.nei.org
03.06.-07.06.2019
World Nuclear University Short Course:
The World Nuclear Industry Today.
Rio de Janeiro, Brazil, World Nuclear University,
www.world-nuclear-university.org
04.06.-07.06.2019
FISA 2019 and EURADWASTE ‘19. 9 th European
Commission Conferences on Euratom Research
and Training in Safety of Reactor Systems and
Radioactive Waste Management. Pitesti, Romania,
www.nucleu2020.eu
17.06.-21.06.2019
MIT Nuclear Plant Safety Course. Cambridge, MA,
USA, Massachusetts Institute of Technology (MIT),
professional.mit.edu/programs/short-programs/
nuclear-plant-safety
23.06.-27.06.2019
World Nuclear University Summer Institute.
Romania and Switzerland, World Nuclear University,
www.world-nuclear-university.org
24.06.-28.06.2019
2019 International Conference on the Management
of Spent Fuel from Nuclear Power Reactors.
Vienna, Austria, International Atomic Energy Agency
(IAEA), www.iaea.org
25.06.-26.06.2019
ICNDRWM 2019 – 21 st International Conference
on Nuclear Decommissioning and Radioactive
Waste Management. Venice, Italy, World Academy
of Science, Engineering & Technology,
www.waset.org
21.07.-24.07.2019
14 th International Conference on CANDU Fuel.
Mississauga, Ontario, Canada, Canadian Nuclear
Society (CNS), www.cns-snc.ca
28.07.-01.08.2019
Radiation Protection Forum. Memphis TN, USA,
Nuclear Energy Institute (NEI), www.nei.org
29.07.-02.08.2019
27 th International Nuclear Physics Conference
(INPC). Glasgow, Scotland, inpc2019.iopconfs.org
04.08.-09.08.2019
PATRAM 2019 – Packaging and Transportation
of Radioactive Materials Symposium.
New Orleans, LA, USA. www.patram.org
21.08.-30.08.2019
Frédéric Joliot/Otto Hahn (FJOH) Summer School
FJOH-2019 – Innovative Reactors: Matching the
Design to Future Deployment and Energy Needs.
Karlsruhe, Germany, Nuclear Energy Division
of Commissariat à l’énergie atomique et aux
énergies alternatives (CEA) and Karlsruher Institut
für Technologie (KIT), www.fjohss.eu
04.09.-06.09.2019
World Nuclear Association Symposium 2019.
London, UK, World Nuclear Association (WNA),
www.wna-symposium.org
04.09.-05.09.2019
VGB Congress 2019 – Innovation in Power
Generation. Salzburg, Austria, VGB PowerTech e.V.,
www.vgb.org
08.09.-11.09.2019
4 th Nuclear Waste Management,
Decommissioning and Environmental Restoration
(NWMDER). Ottawa, Canada, Canadian Nuclear
Society (CNS), www.cns-snc.ca
09.09.-12.09.2019
24 th World Energy Congress. Abu Dhabi, UAE,
www.wec24.org
09.09.-12.09.2019
Jahrestagung 2019 – Fachverband für
Strahlenschutz | Strahlenschutz und Medizin.
Würzburg, Germany,
www.fs-ev.org/jahrestagung-2019
16.09.-20.09.2019
63 rd Annual Conference of the IAEA. Vienna,
Austria, International Atomic Energy Agency (IAEA),
www.iaea.org/about/governance/generalconference
07.10. – 11.10.2019
International Conference on Climate Change and
the Role of Nuclear Power. Vienna, Austria,
IAEA, www.iaea.org
07.10. – 18.10.2019
ICTP-IAEA Nuclear Energy Management School.
Trieste, Italy, IAEA, www.iaea.org
15.10. – 18.10.2019
Technical Meeting on Siting for Nuclear Power
Plants. Vienna, Austria, IAEA, www.iaea.org
22.10.-25.10.2019
SWINTH-2019 Specialists Workshop on Advanced
Instrumentation and Measurement Techniques
for Experiments Related to Nuclear Reactor
Thermal Hydraulics and Severe Accidents.
Livorno, Italy, www.nineeng.org/swinth2019/
23.10.- 24.10.2019
Chemistry in Power Plants. Würzburg, Germany,
VGB PowerTech e.V., www.vgb.org/en/
chemie_im_kraftwerk_2019.html
27.10.-30.10.2019
FSEP CNS International Meeting on Fire Safety
and Emergency Preparedness for the Nuclear
Industry. Ottawa, Canada, Canadian Nuclear Society
(CNS), www.cns-snc.ca
12.11.-14.11.2019
International Conference on Nuclear
Decommissioning – ICOND 2019. Eurogress
Aachen, Aachen Institute for Nuclear Training GmbH,
www.icond.de
25.11.-29-11.2019
International Conference on Research Reactors:
Addressing Challenges and Opportunities to
Ensure Effectiveness and Sustainability.
Buenos Aires, Argentina, International Atomic
Energy Agency (IAEA), www.iaea.org/events/
conference-on-research-reactors-2019
This is not a full list and may be subject to change.
Calendar
atw Vol. 64 (2019) | Issue 4 ı April
Feature | Major Trends in Energy Policy and Nuclear Power
The Role of Resources and Reserves
for the Global Energy Supply
Hans-Wilhelm Schiffer
The assured availability and competitiveness of the various energy sources, as well as climate compatibility, determine
their use. Conditions on the energy markets are also subject to continuous change. This article examines the extent to
which the availability of energy resources and the orientation of energy policies influence the energy mix, particularly
power generation. It also outlines strategies for achieving the energy policy goals – security of supply, value for money
and environmental compatibility (including climate protection) – in the best possible way.
Changes in the global energy mix since 1985
Global energy consumption has almost doubled since the
mid 1980s. Fossil fuels, i.e. oil, natural gas and coal, have
covered 80 % of this growth. Thus, the share of fossil fuels
in the coverage of total primary energy consumption has
decreased only slightly, from 89 % in 1985 to 85 % in 2017.
Although renewable energies have gained massively in
importance, especially in the last ten years, the contribution
of hydropower, wind and solar energy, biomass
and geothermal energy was still limited to a total of
11 % even in 2017. In 2017, nuclear power covered 4 %
of primary energy consumption (Figure 1).
The transport sector and the petrochemical industry
are the main users of oil. Natural gas is used primarily in
the heating market, by industry, private households and
small consumers, and additionally in power generation.
Coal is used predominantly and nuclear power exclusively
for power generation. To date, the renewable energies
have also been used preferably for power generation.
This applies to hydropower but also to solar energy and
wind power and, albeit to a lesser extent, to biomass and
geothermal energy.
Global power generation has almost tripled since 1985.
Two thirds of the growth achieved since then has been covered
by coal and natural gas. At 38 %, coal’s share of global
power generation in 2017 was exactly the same as in 1985.
It is true that oil’s contribution to power generation has
dropped by eight percentage points, but this was more
than offset by a nine percentage point increase in the share
of natural gas. Accordingly, there was no significant
change in fossil fuel’s share in power generation between
1985 and 2017. It was 65 % in 2017 and also in 2000 compared
to 64 % in 1985. From 1985 to 2017, the share of
nuclear power decreased by five percentage points to 10 %,
while the contribution of renewables increased by four
percentage points to 25 %. The strongest growth was in
solar and wind, particularly in the last ten years. Despite
absolute growth, the share of hydropower has fallen by
four percentage points since 1985. Nevertheless, hydropower
continues to make the greatest contribution to
power generation among the renewable energies in 2017
(Figure 2).
| | Fig. 1.
Worldwide primary energy consumption 1985 to 2017 in million (10 6 ) tce.
| | Fig. 2.
Worldwide mix in electricity generation 1985 to 2017 in TWh (terawatt hours = 10 12 watt hours).
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 191
Determining factors for the energy mix
in power generation by country
The energy mix of power generation in the various
countries and regions of the world is very different from
the global structures described above. There are two
crucial factors for this: the resource situation in each case
and the orientation of the energy policy. This becomes
clear in an exemplary examination of the situation in
selected countries (Figure 3).
| | Fig. 3.
Mix in electricity generation of selected countries in 2017 in %.
Feature
The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer
atw Vol. 64 (2019) | Issue 4 ı April
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 192
| | Editorial Advisory Board
Frank Apel
Erik Baumann
Dr. Erwin Fischer
Carsten George
Eckehard Göring
Florian Gremme
Dr. Ralf Güldner
Carsten Haferkamp
Christian Jurianz
Dr. Guido Knott
Prof. Dr. Marco K. Koch
Ulf Kutscher
Herbert Lenz
Jan-Christan Lewitz
Andreas Loeb
Dr. Thomas Mull
Dr. Ingo Neuhaus
Dr. Joachim Ohnemus
Prof. Dr. Winfried Petry
Dr. Tatiana Salnikova
Dr. Andreas Schaffrath
Dr. Jens Schröder
Norbert Schröder
Prof. Dr. Jörg Starflinger
Prof. Dr. Bruno Thomauske
Dr. Brigitte Trolldenier
Dr. Walter Tromm
Dr. Hans-Georg Willschütz
Dr. Hannes Wimmer
Ernst Michael Züfle
In countries with a high potential for using hydropower,
in many cases this source of energy accounts for a
high share of power generation. In Europe (data for 2017),
this applies above all to Norway (96 %), Iceland (73 %),
Austria (60 %), Switzerland (59 %) and Albania (100 %),
in North America to Canada (57 %), in South America to
Paraguay (100 %), Brazil (63 %), Colombia (76 %),
Venezuela (65 %), Uruguay (59 %) and Peru (55 %), in
Oceania to New Zealand (58 %) and in Asia to Laos, Nepal,
Bhutan and North Korea. The world leader in the use of
hydropower to generate electricity is China. In spite of this,
the share of hydropower in the country’s total power
generation was limited to 18 % in 2017. In Africa too,
hydropower has a high share of power generation in some
countries. This applies to Ethiopia (93 %) among others.
The share of hydropower in Zambia and the Congo is more
than 90 % and in Mozambique more than 80 %. Nevertheless,
the total electricity generated by hydropower
throughout the African continent in 2017 was 9 % lower
than Norway’s hydropower-generated electricity.
In some countries, geothermal energy also plays an
important role in power generation. In absolute terms, the
highest installed capacity based on geothermal energy
(TOP 10) exists in the USA, Indonesia, the Philippines,
Turkey, New Zealand, Mexico, Italy, Iceland, Kenya and
Japan. As measured by the power generation of each
country, the share of geothermal energy is above-average
in Iceland at 27 % and in New Zealand at 17 %.
In the case of bioenergies (solid, liquid and gaseous),
Brazil tops the global rankings with an electricity generation
capacity of 15 GW, followed by the USA (13 GW),
China (11 GW), India (10 GW) and Germany (9 GW). The
share of bioenergies in the electricity generation volume is
above the global average of 2 % in countries such as Brazil
(9 %) and Germany (7 %).
Imprint
| | Editorial Office
Christopher Weßelmann (Editor in Chief)
Im Tal 121, 45529 Hattingen, Germany
Phone: +49 2324 4397723
Fax: +49 2324 4397724
E-mail: editorial@nucmag.com
Martin Schneibel (Editor)
INFORUM, Berlin, Germany
Phone: +49 30 498555-43
Fax: +49 30 498555-18
E-Mail: martin.schneibel@nucmag.com
| | Official Journal of
Kerntechnische Gesellschaft e. V. (KTG)
| | Publisher
INFORUM Verlags- und
Verwaltungsgesellschaft mbH
Robert-Koch-Platz 4, 10115 Berlin, Germany
Phone: +49 30 498555-30
Fax: +49 30 498555-18
www.nucmag.com
| | General Manager
Christian Wößner
| | Advertising and Subscription
Petra Dinter-Tumtzak
Phone: +49 30 498555-30
Fax: +49 30 498555-18
E-mail: petra.dinter@nucmag.com
| | Layout
zi.zero Kommunikation
Antje Zimmermann
Berlin, Germany
| | Printing
inpuncto:asmuth
druck + medien gmbh
Baunscheidtstraße 11, 53113 Bonn, Germany
Although the natural conditions play an important role
in solar energy and wind power, the orientation of
energy policy in the various countries, expressed by the
intensity of government support, is even more decisive for
the utilization ratio of these renewables. The most
important example in this context is Germany. At the end
of 2017, Germany ranked third in terms of installed wind
turbine capacity, third only behind China and the USA, and
fourth in terms of solar energy, behind China, Japan and
the USA. As measured by the power generation volume,
the share of wind and solar in Germany was 23 % in 2017,
compared to a global average of 6 % and despite the fact
that Germany is not one of the most favored locations in
the world in terms of natural conditions. With regard to
wind power, this applies more to a country such as Denmark.
In 2017, around half of the electricity generated
there was provided on the basis of wind power. [1]
Political decisions are key drivers for the intensity of
nuclear power use for power generation. France, for
example, puts its faith in nuclear power after the first oil
price crisis in 1973. In 2017, nuclear power accounted for
72 % of total power generation there. In absolute terms,
the USA is currently the leader in the use of nuclear power.
In 2017, twice as much electricity was generated from
nuclear power there as in France. However, at 20 % the
share of nuclear power in the USA is considerably lower
than in France. Nuclear power accounts for double the
share in Sweden compared to the USA. In the Ukraine this
is 54 % and in Belgium 49 %. Countries such as Germany
and Japan, backed by the government energy policy, also
relied heavily on nuclear power in the past. In both
countries, nuclear power accounted for just under one
third of power generation at times. After the Fukushima
nuclear disaster in 2011, Japan suspended the power
generation of all nuclear reactors for mandatory safety
| | Price List for Advertisement
Valid as of 1 January 2019
Published monthly, 9 issues per year
Germany:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT and postage) 187.- €
All EU member states without VAT number:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT, excl. postage) 187.- €
EU member states with VAT number
and all other countries:
Per issues/copy (no VAT, excl. postage) 22.43 €
Annual subscription (no VAT, excl. postage) 174.77 €
| | Copyright
The journal and all papers and photos contained in it are protected by
copyright. Any use made thereof outside the Copyright Act without the
consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft
mbH, is prohibited. This applies to reproductions, translations,
micro filming and the input and incorporation into electronic systems.
The individual author is held responsible for the contents of the
respective paper. Please address letters and manuscripts only to the
Editorial Staff and not to individual persons of the association´s staff.
We do not assume any responsibility for unrequested contributions.
Signed articles do not necessarily represent the views of the editorial.
ISSN 1431-5254
Feature
The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer
atw Vol. 64 (2019) | Issue 4 ı April
inspections and retrofits with the result that no nuclearenergy-based
electricity generation took place there
between September 2013 and August 2015. In 2018,
additional five nuclear power plants in Japan that had
been shut down after the Fukushima reactor accident were
restarted. This means that nine nuclear power plants with
a capacity of 8.7 GW are now in operation again. [2] After
the Fukushima reactor accident, the seven oldest nuclear
power plant units and the Krümmel nuclear power plant in
Germany were deprived of further operating permits.
Accordingly, the commercial operation of these eight
facilities came to an end at the beginning of August 2011.
For the remaining nine German nuclear power plants, a
staggered exit plan was envisaged, which had been
implemented in a legally binding manner by the Thirteenth
Law amending the Atomic Energy Act of 31 July 2011. Two
of the nine plants mentioned are now decommissioned.
The remaining seven nuclear power plant units will
gradually be shut down for good by the end of 2022. [3]
With a share of 38 %, coal is still the world’s most
important source of energy for power generation. The
share of coal in power generation in countries that have
economically recoverable deposits is disproportionately
high. This applies, among others, to South Africa (88 %),
Poland (78 %), India (76 %), China (67 %) and Australia
(62 %). But even in Germany (38 %) and in the USA
(31 %), coal was significantly involved in power generation
in 2017. For economic reasons, the share of coal in
power generation has fallen in the USA in recent years.
This is explained by the increased use of shale gas. In 2017,
natural gas accounted for 31 % of power generation in the
USA, the same share as coal. The situation in Germany is
different. Despite the economic viability of coal (lignite
and imported hard coal), a politically imposed complete
phase-out of coal-fired power generation is envisaged by
2038 at the latest in order to help meet the national greenhouse
gas reduction targets. [4]
With a share of 23 %, natural gas was the second-most
important energy source for power generation in 2017.
In this case as well, a disproportionately high share of this
energy source is characteristic of power generation in
countries that have large natural gas reserves. This applies
especially to the Gulf States. The share of natural gas in
power generation in Iran was 81 % in 2017, and even more
in the United Arab Emirates, Qatar, Oman and Bahrain at
95 %. In Saudi Arabia it was still 59 % in 2017. In the
Caspian countries, such as Turkmenistan, Uzbekistan and
Azerbaijan, natural gas accounts for a share of 75 % and
more. Shares of more than 60 % and sometimes significantly
higher are identified for Libya, Egypt, Algeria, Tunisia and
Nigeria. In South America, Bolivia is the country with the
largest share of natural gas in power generation (around
75 %). Around half of power generation in Argentina is
based on the use of natural gas. But even in some European
countries with larger natural gas reserves, such as Russia,
the United Kingdom and the Netherlands, in 2017 the share
of natural gas in power generation was disproportionately
high at 49 % (Russia), 48 % (Netherlands) and 40 %
( United Kingdom). In Japan, a country that has practically
no fossil fuel resources of its own, the share of natural gas
(imported LNG) in power generation increased to 39 % in
2017 due to the nuclear power situation. In the USA, due to
the shale gas boom, natural gas is on a par with coal,
accounting for 31 % of power generation.
On average, oil now accounts for only 4 % of power
generation worldwide. However, in the Gulf States oil is
one of the most important generation sources. This applies
to Saudi Arabia (41 %) and even more so to Kuwait and
Iraq with oil shares of around two thirds. In Libya, around
a third of power generation is still oil based.
Prospects for power generation
by energy sources
Unlike in previous decades, the renewable energies will
cover much of the expected further growth in electricity
demand. This cannot be explained by any limitations in
reserves and resources of fossil fuels. Reserves and especially
resources are abundant. This applies above all to coal, but
also to natural gas and oil (Figures 4 to 9). Improved
extraction technologies and higher prices on global markets
have even increased the static range of reserves, defined as
reserves in relation to the current global annual production
| | Fig. 4.
Reserves and resources of non-renewable energy sources.
| | Fig. 5.
Worldwide supply of non-renewable energy sources in billion (10 9 ) tce.
| | Fig. 6.
Reserves and resources of non-renewable energy sources in billion (10 9 ) tce.
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 193
Feature
The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer
atw Vol. 64 (2019) | Issue 4 ı April
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 194
| | Fig. 7.
Worldwide distribution of coal reserves in billion (10 9 ) tce.
| | Fig. 8.
Worldwide distribution of oil and natural gas reserves* in billion (10 9 ) tce.
| | Fig. 9.
Worldwide distribution of uranium reserves and resources in billion (10 9 ) tce.
(Figure 10). Reserves are to be understood as “proven
quantities of energy resources that are economically
recoverable at today’s prices and with today’s technology”.
The resources existing beyond these, defined as “proven
quantities of energy resources but which are currently
technically and/or econo mically unre cover able, as well as
not proven quantities of energy resources which are geologically
possible and recoverable in the future”, are more
than ten times as large as the reserves according to information
provided by the Federal Institute for Geosciences
and Natural Resources. [5]
Restrictions on the use of fossil energy resources exist
due to emissions of greenhouse gases associated with their
use. To meet the goals of climate protection and the
requirements of the Paris Agreement, the countries party
to the United Nations Framework Convention on Climate
Change committed themselves to specific limitations on
the emission of greenhouse gases. The European Union,
for example, has made a legally binding commitment to
reduce greenhouse gas emissions by 40 % by 2030
compared to 1990 levels. [6]
There are basically four strategies available for the
reduction of greenhouse gas emissions required for climate
protection:
pp
Expansion of the renewable energies
pp
Improvement of energy efficiency
pp
Extended use of nuclear power
pp
Capture and utilization or storage of CO 2
The governments which, through their respective policies,
determine the priorities in the orientation of the necessary
investments for the transformation of the global energy
supply, are decisive for progress in implementing these
possible paths.
In its World Energy Outlook published in November
2018, the International Energy Agency (IEA) identified
cumulative investment requirements of 2 trillion dollars
per year in the global energy supply. [7] According to IEA’s
data, more than 70 % of these investments are made by
state-run companies or are triggered by state regulation,
for example in the form of a guaranteed return. Only just
less than 30 % of global investment is private and marketdriven,
according to the IEA’s assessment in the main
scenario of the World Energy Outlook, i.e. the New Policies
Scenario. In the power supply, even more than 90 % of
the investment deemed necessary worldwide by 2040 is
government and regulation-driven (Figure 11).
In the New Policies Scenario, the IEA makes the
following statements about the level and structure of
global energy consumption and power generation by
2040: The future growth expected in primary energy
consumption, and especially in power generation, will be
met to a much greater extent than in the past by renewable
energies. Thus, the share of renewables in global
primary energy consumption will rise to 20 % in 2040. The
contribution of renewable energies to power generation is
set to grow from 25 % in 2017 to 42 % in 2040 (Figure 12).
Renewables are therefore replacing coal as the most
important source of energy for the power supply. The
largest increases are expected for solar energy and wind
power. This development is favored by the economies of
scale achieved in recent years, above all in solar plants, but
also in wind power.
Significant progress will also be made in improving
energy efficiency, supported by public policies. This is
reflected in increasing decoupling of the development of
energy consumption from economic growth. In Germany,
this has already been observed in recent decades. Thus,
the specific energy consumption, i.e. the primary energy
consumption per unit gross domestic product, in Germany
has declined by 42 % in the period from 1990 to 2018. [8]
Similar developments are also likely to take place in other
countries in the future.
The expansion of nuclear power is restricted to
countries where the governments support this technology
with appropriate political backing. This applies particularly
to China, India, Russia and some countries of the
Middle East and Europe. In the World Energy Outlook
2018, the IEA points out that at 270 GW nuclear power will
account for only 3.5 % of the new power generation
capacity amounting to a total of 7,730 GW that is expected
Feature
The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer
atw Vol. 64 (2019) | Issue 4 ı April
to be built worldwide by 2040. Up to two thirds of the new
construction will be plants based on renewable energies,
with 20 % being gas and 10 % coal capacities (Figure 13).
By 2040, it is expected that around half of the world’s
electricity demand will still be provided by fossil-fired
power plants. According to the New Policies Scenario of
the IEA, in 2040, coal, oil and natural gas will still contribute
75 % to the coverage of primary energy consumption.
In addition, primary energy consumption will increase by
about 25 % by 2040, and the demand for electricity is
expected to grow by even more than 50 % compared to
2017. If this development is realized, then in absolute
terms at least the same amount of fossil fuels will be used
in 2040 as in 2017, both to cover the total primary energy
consumption and also for power generation.
Therefore, to comply with the ambitious climate goals
of the Paris Agreement, broad implementation of the
technology for capturing and utilizing or storing CO 2 is
indispensable, in both industrial processes and also in
power generation. At the Global Summit on Carbon
Capture, Utilization and Storage (CCUS) in Edinburgh on
28 November 2018, the General Secretary of the IEA, Fatih
Birol, said: “Without CCUS as part of the solution, reaching
our international climate goals is practically impossible.”
[9]
The World Energy Council (London) will present new
energy scenarios on the global energy supply prospects at
the World Energy Congress, which will be held in Abu
Dhabi from 9 to 12 September 2019. The central theme of
the congress, which is expected to attract several thousand
participants, is Energy for Prosperity.
Strategy of the Federal Government –
Conclusion
The climate protection policy promises the greatest success
if the instruments are selected in such a way that priority is
given to the most cost-effective approaches of reducing
greenhouse gas emissions. The European Greenhouse Gas
Emissions Trading Scheme is a market-based instrument
which, in principle, ensures this EU-wide for the sectors it
covers, energy and industry. However, technology bans,
such as the legal provision existing in Germany preventing
the capture and storage of CO 2 , are restrictions that
contradict this alignment. This makes climate protection
more expensive, which worsens the prospects of other
countries joining Germany in its ambitious approach to
reducing greenhouse gases.
Author
Dr. Hans-Wilhelm Schiffer
Executive Chair World Energy Resources,
World Energy Council
London, United Kingdom
| | Fig. 10.
Static range of non-renewable energy reserves in years.
| | Fig. 11.
Drivers for investment in worldwide energy supply in trillion (10 12 ) USD (2017).
| | Fig. 12.
Global electricity generation up to 2040 in terawat thours (10 12 watt hours).
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 195
| | Fig. 13.
Global new build electricity generation capacities according to IEA's New Policies Scenario, 2018 to 2040.
Feature
The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer
atw Vol. 64 (2019) | Issue 4 ı April
Das neue Strahlenschutzrecht (II): Die Freigabe
196
SPOTLIGHT ON NUCLEAR LAW
Christian Raetzke
Die Freigabe – also grob gesagt die Entlassung von Reststoffen, die aus dem Kontrollbereich kerntechnischer Anlagen
stammen, aus dem Regelungsbereich des Atom- und Strahlenschutzrechts und damit aus der atomrechtlichen Aufsicht,
woran sich in der Regel die konventionelle Entsorgung anschließt – ist gerade im Zusammenhang mit dem umfangreichen
Rückbau der deutschen Kernkraftwerke von großer praktischer Bedeutung. Insofern ist es zu begrüßen, dass
das Instrument der Freigabe in seinen wesentlichen Zügen ins neue, seit dem 31.12.2018 geltende Strahlenschutzrecht
übernommen wurde. Dennoch gibt es durchaus Änderungen, deren wichtigste hier kurz dargestellt werden sollen.
Zuerst etwas Formales: während die Freigabe in der alten
Strahlenschutzverordnung (StrlSchV) in § 29 geregelt war,
findet sie sich jetzt in der neuen Verordnung in den
§§ 31-42. Der erste Eindruck, die Regelung sei um ein
Mehrfaches aufgebläht worden, täuscht, denn der alte § 29
war ja sehr umfangreich. Er wurde nunmehr in seine
Bestandteile zerlegt, diese wurden teils neu geordnet, in
Einzelheiten auch durchaus geändert, um neue Passagen
ergänzt und dann als gesonderte Paragraphen in die neue
Verordnung übernommen. Das ist insgesamt freilich etwas
länger, aber jedenfalls besser lesbar und zitierbar als früher.
Der Dualismus der uneingeschränkten und der zweckgerichteten
Freigabe ist im Grundsatz beibehalten. Die
früher “zweckgerichtete” Freigabe heisst jetzt aber “spezifische”
Freigabe und ist systematisch etwas breiter angelegt.
Sie umfasst nämlich nicht mehr nur Stoffe, die einem
bestimmten Entsorgungsweg (Deponierung, Verbrennung,
Abriss, Einschmelzen) zugeführt werden (siehe früher § 29
Abs. 2 S. 2 Nr. 2 StrlSchV a.F.), sondern auch Stoffe, deren
Weiterverwendung oder Entsorgung aufgrund ihrer materiellen
Eigenschaften eingeschränkt ist (siehe jetzt § 32
Abs. 3 Nr. 1 StrlSchV n.F.). Konkret heisst dies, dass etwa
Bauschutt (ab 1000 t), Bodenflächen und Gebäude zur
Wieder- und Weiterverwendung in diese Kategorie “hinübergewandert”
sind. Da die nuklidspezifischen Freigabewerte
gleichgeblieben sind, bleibt abzuwarten, ob dies in
der Praxis zu wesentlichen Änderungen führen wird.
Das bringt uns zu den Grenzwerten für die Freigabe.
Hier gibt es eine wichtige Änderung, die auf der Umsetzung
der Euratom-Grundnorm 2013/59 beruht: die
Werte für die uneingeschränkte Freigabe und die (massenspezifischen)
Freigrenzen in Bq/g sind nunmehr identisch
und sind deshalb in der Tabelle 1 der Anlage 4 zur neuen
StrlSchV (der Nachfolgerin der Anlage III zur alten
StrlSchV) in einer einzigen gemeinsamen Spalte, der
Spalte 3, enthalten. Für die meisten Werte gab es Vorgaben
durch die Euratom-Grundnorm. Dadurch haben sich die
Freigabewerte für einzelne Nuklide zum Teil geändert;
sie wurden teils angehoben, teils abgesenkt. Wie bereits
im ersten Teil dieses Aufsatzes im Februarheft der atw
erläutert, gelten die neuen Werte ab 01.01.2021, sofern sie
nicht schon früher durch eine Änderung der jeweiligen
Freigabebescheide eingeführt werden. Die Werte für die
spezifische Freigabe sind dagegen gleichgeblieben.
Auch für das Verfahren der Freigabe sind interessante
Änderungen zu vermerken. An der Grundstruktur des Verfahrens
hat sich freilich nichts geändert: Die Freigabe ist,
juristisch gesehen, ein Verwaltungsakt, der sog. “Freigabebescheid”
(jetzt in § 33 Abs. 2 StrlSchV n.F. ausdrücklich so
bezeichnet), der in allgemeiner, nicht auf eine konkrete
Reststoffcharge bezogener Form die Bedingungen für die
Entlassung von Stoffen aus dem Atom- und Strahlenschutzrecht
festschreibt. Die tatsächliche Entlassung,
bezogen auf konkrete Reststoffchargen, tritt dann ein,
wenn der Strahlenschutzverantwortliche oder, nach entsprechender
Delegierung, der Strahlenschutzbeauftragte
nach dem Freimessungsvorgang die Übereinstimmung mit
den im Freigabebescheid festgelegten Anforderungen
feststellt. In diesem Moment verlieren die Reststoffe den
Charakter als radioaktive Stoffe und unterfallen, sofern –
was in der Regel der Fall ist – ihre Entsorgung beschlossen
ist, dem Kreislaufwirtschaftsgesetz.
Bereits in der Vergangenheit haben sich einige Behörden
über die ohnehin immer gegebene atomrecht liche Aufsicht
hinaus in unterschiedlichem Ausmaß eine Mitwirkung an
dem eigentlichen Entlassungsakt vor behalten. Diese –
rechtmäßige – Praxis ist jetzt in § 33 Abs. 3 StrlSchV n.F.
ausdrücklich aufgegriffen worden. Hiernach kann die
Behörde die Freigabe unter der aufschiebenden Bedingung
erteilen, dass sie die Feststellung des Strahlenschutzverantwortlichen
bestätigt. Das bedeutet, dass eine Reststoffcharge
tatsächlich erst dann aus dem Atom- und
Strahlenschutzrecht entlassen wird, wenn die Behörde die
Bestätigung, bezogen auf diese konkrete Charge, erteilt.
Eine solche Bedingung steht jedoch im Ermessen der
Behörde und es ist auch weiterhin möglich, dass die Entlassung
ohne weiteres mit der Feststellung durch den
Strahlenschutzverantwortlichen erfolgt. Das bleibt der
“Normalfall” oder “Grundfall”, solange die Behörde nicht
ausdrücklich etwas anderes bestimmt hat.
Interessant ist auch § 33 Abs. 4 S. 2 StrlSchV n.F., der
der Behörde u.a. die Möglichkeit einräumt, den Freigabebescheid
mit einem Widerrufsvorbehalt zu versehen.
Diese Regelung ist auf Initiative der Länder getroffen
worden. Gedacht ist sie vor allem für denkbare Fälle der
spezifischen Freigabe, in denen der eigentlich vorgesehene
Entsorgungsweg (z. B. Verbringen auf eine bestimmte
Deponie) vereitelt wird; in solchen Fällen kann die
Behörde, sofern sie sich dies vorbehalten hat, die Freigabe
widerrufen und die entsprechenden Reststoffe damit
wieder in den Status radioaktiver Stoffe “zurück versetzen”.
Damit unterfallen sie wieder der atomrechtlichen Aufsicht.
Juristisch ist diese “Zurückverwandlung” höchst
spannend; ob sie in der Praxis große Bedeutung erlangen
wird, bleibt abzuwarten. Nach der amtlichen Begründung
erlischt die Widerrufsmöglichkeit jedenfalls dann, wenn
der “notwendige Endpunkt der Entsorgung”, also etwa der
Einbau in eine Deponie, erreicht ist.
Autor
Rechtsanwalt Dr. Christian Raetzke
CONLAR Consulting on Nuclear Law and Regulation
Beethovenstr. 19
04107 Leipzig, Deutschland
Spotlight on Nuclear Law
The New Radiation Protection Law (II): The Approval ı Christian Raetzke
atw Vol. 64 (2019) | Issue 4 ı April
Successful Co-Existance of Nuclear Power
Plants with Their External Stakeholders
Milan Simončič and Gordana Žurga
The article deals with the expectations expressed by the external stakeholders of the Krško Nuclear Power Plant (NPP)
in Slovenia and conditions necessary for their successful coexistence with the nuclear facility. In the survey, several
types of external stakeholders of the NPP participated. Besides them, 45 NPPs joined the research, basically in regard to
their awareness to act in a socially responsible way. The research proved that respecting the interests of stakeholders is
a prerequisite for the acceptability of NPPs in society, and that this strengthens quality of life of all involved parties.
For analysis of essential relationships, the method of structural equation modelling (SEM) was used, in combination
with some relevant statistical tests. NPPs have expressed awareness of their responsibility for possible effects on wider
society, and for respecting interests of their external stakeholders as well. An optimal model of involvement of external
stakeholders that was developed in the research, includes strong partnership relation. Important components of the
model are effective communication, vision, objectives and orientation, strategy, socially responsible actions, the
introduction of continuous improvements and tools for achieving the sustainable excellence of the NPPs as a neverending
process. The research conducted contributes to the scientific fields of organizational theory and management
with special emphasis on social responsibility of NPPs.
1 Introduction
Nuclear energy remains a reality in
many countries even after the events
in Fukushima [Afgan, 2013; Campbell,
2013; Goodfellow, Dewick, Wortley, &
Azapagic, 2015; Horvath & Rachlew,
2016; Kato, Takahara, Nishikawa, &
Homma, 2013; Shadrina, 2012;
Truelove & Greenberg, 2013]. Program
Harmony [2018], managed by the
World Nuclear Association, supports
climate change mitigation efforts to
limit warming below 2 ˚C. Nuclear
energy is proven, available and can be
expanded quickly – making it an
important part of the solution to
problems of air pollution and climate
change. This requires a large increase
of all low-carbon energy sources, of
which nuclear is an important part.
Achieving this means nuclear energy
generation must triple globally by
2050.
Coexistence of the nuclear power
plants (NPPs) and various stakeholders
in society is a current and
future challenge. In a socially responsible
environment, a key commitment
for NPPs and their external stakeholders
is ensuring a partnership and
mutual respect. Due to physical placement
of NPPs in the environment,
their external stakeholders expect
certain benefits and respect of their
interests. They also expect responsibility
of NPPs for possible consequences,
which may arise in society
and affect their quality of life. The
challenges for the NPPs are how to
establish the necessary confidence of
their external stakeholders, how to
present specific activities and promote
benefits of nuclear energy. Challenges
for the external stakeholders of NPPs
are how to express and realize own
interests, understand the activities of
NPPs, how to cope with demanding
technology, understand it, and how to
communicate with the NPPs. Trufanov
[2013] says that the number of stakeholders
involved in the development
of the electric power industry has increased
and their priorities and the
ability to influence decision making
processes have changed.
Matuleviciene and Stravinskiene
[2015] found two basic factors of
stakeholder trust: corporate reputation
and organizational trustworthiness.
Other factors as emotions,
propensity to trust, experience with
the organization and sociocultural
factors, same as inborn factors or
acquired during growth, factors
related with the environment where
the person lives or other factors are of
secondary importance. Avetisyan and
Ferrary [2012] analyzed the process
of introducing social responsibility in
France and the USA and described
the role of stakeholders in this field.
They prove the assumption that the
development of social responsibility in
different environments depends on
the nature of the participating local
and global stakeholders and their
interactions. A steady form of social
responsibility in the USA is more
market- oriented (influenced by companies
and investors), while in France
it reflects a significant influence of the
government that promotes corporate
social responsibility and the implementation
of good practices. They
also argue that convergence of stakeholders’
interests strengthens social
responsibility.
The involvement of different groups
of external stakeholders that critically
evaluate activities of NPPs, enables the
NPPs adoption of practical, administrative,
technical and socially responsible
practices. The social responsibility of
the NPPs is an integral part of the
safety culture, which is shown by the
actors involved at all levels. Owners
and operators of the NPPs have to meet
the expected obligations towards
society and the environment. ISO
26000 [2010] argue, that identification
and engagement of stakeholders
are fundamental to social responsibility.
An organization should determine
who has an interest in its decisions and
activities, so that it can understand its
impacts and how to address them.
Banerjee and Bonnefous [2011] claim
that the external stakeholders play a
significant role in shaping the future of
the nuclear power industry. They
identified three different stakeholder
management strategies of NPPs:
reinforcement strategies for supportive
stakeholders, containment strategies
for obstructive stakeholders and
stabilization strategies for passive
stakeholders. The groups differ in their
power to influence policies of NPP. He,
Mol, Zhang and Lu [2013] studied the
attitude of stakeholders to nuclear
energy in China. The case study was
conducted three months after the
Fukushima event. Their results show
that development and decision- making
on NPPs are dominated by ‘iron nuclear
triangle’ of national governmental
agencies, nuclear industries, and
research organizations. The Fukushima
crisis has shown that a lack of transparency,
public participation and
public scrutiny can have severe consequences
for the NPPs.
The optimal strategy for integrating
external stake holders into the
focus sets an effective communication
197
ENERGY POLICY, ECONOMY AND LAW
Energy Policy, Economy and Law
Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 198
model. The 2014 survey in Slovenia
confirmed that the external stakeholders
of NPP had high expectations
of accessible, comprehensive, real and
timely information on the operation
and impacts of the NPPs and their
short-term and long-term activities
[Simončič & Žurga, 2016].
Stakeholder involvement in nuclear
safety issues requires established communication
mechanisms and channels
for discussions between the interested
parties and those responsible for
decision- making. It should be an
integral part of the management of
nuclear facilities from their conception
through final closure and decommissioning.
Thus, implementation of
managerial plan will need to include
mechanisms to continually monitor
the effectiveness of the program and
make changes and improvements
based upon the results of this evaluation.
[IAEA, 2011]
Purpose and hypothesis
of the research
In the research we examined the hypothesis
that respecting the interests
of stakeholders is a prere quisite for
the acceptability of the NPPs in society
and the environment and strengthens
quality of their coexistence. We
demonstrated and proved that NPPs
are aware of their impact and that
they want to satisfy the interests of
their stakeholders. Considering importance
of effective stakeholder
strategy for respect of their interests,
we developed and presented the
optimal model for involving external
stakeholders in the NPPs.
2 Research methodology
Questionnaires
For the purpose of the research, two
questionnaires with closed type
questions (statements) were developed,
one for external stakeholders
and another for NPPs. Respondents
expressed level of their agreement
with statements by: 1 – Completely
disagree, 2 – Disagree, 3 – Undecided,
4 – Agree, 5 – Fully agree. For basic
analysis, descriptive statistics methods
were used. For analyzing the completed
questionnaires, we used frequency
statistics, Cronbach Alpha
Test, Exploratory Factorial Analysis
of Ordinal Variables, Structured Equation
Modelling (SEM) with Lisrel,
Mann-Whitney and Kruskal- Wallis
test.
Sample and timeframe,
data collecting
External stakeholders of the only
Slovenian NPP included in the
research were:
pp
Representatives of local com munities,
namely 432 randomly
selected citizens from the Posavje
region in which the NPP is located
and, in the sample of “other
Slovenian regions”, four randomly
selected statistical units were
included, i.e. the Jugovzhodna
Slovenija region, the Obalno-kraška
region, the Savinjska region
and the Zasavska region (488 persons);
pp
Suppliers of goods and service
providers of the NPP that are
registered in the Republic of
Slovenia. This stakeholders group
comprised of companies that
supplied goods or services in the
years 2012–2017. We randomly
selected 110 suppliers;
pp
Journalists: invitations for journalists
were sent to 177 addresses;
pp
Non-governmental organizatios. In
June 2017, thirty non-government
organizations (NGOs) were registered
in Slovenia with the status of
acting in the public interest in the
field of environmental protection
and 36 associations operating in
public interest in nature conservation.
They were all included in
the research;
pp
Political public. Slovenian political
public represented by the President
of the Republic of Slovenia, the
Prime Minister, ministers, members
of the National Council, members
of the National Assembly, constitutional
judges and mayors of
Slovenian municipalities elected in
the 2014–2018 term was included
in the research. We sent invitations
to co-operate in the survey to e-mail
addresses of all official representatives
(offices, cabinets), that are
listed on their official websites,
except municipalities. Concerning
mayors, 22 municipalities (approximately
10 % of all) were randomly
selected.
As representatives of NPPs, we invited
members of World Association of
Nuclear Operators (WANO), Paris
centre to co-operate in the research.
At the time of the research, the
regional Paris centre represented 147
nuclear reactors from 13 countries.
The WANO organization allowed us to
invite the power plants to participate
in the research through their internal
information system. In this way, we
have ensured good responsiveness.
Representatives of NPPs were invited
to indicate whether they were operators
or owners of their respective NPP.
Web based surveys were con ducted
in October 2017. The research was
carried out at a time when the next
European concept of electricity supply
was primarily oriented towards lowcarbon
sources what included nuclear
power, as an important part of the
solution in the long-term supply of
electricity in many countries.
3 Results and hypothesis
testing
Responsiveness and
characteristics of the sample
Almost 36 % of respondents live up to
30 km from the NPP, app. 12 % of
them are up to 10 km from the NPP.
Invited
Group of
stakeholders
Number of
participant (N)
Response
(%)
432 Local communities – Posavje 95 22.0
488
110
Local communities –
other Slovenian regions
Suppliers of goods and service
providers of NPP
91 18.6
21 19.1
66 NGOs 17 25.8
124 Slovenian political public 21 16.9
177 Journalists 23 13.0
Others 24
1397 292 20.9
| | Tab. 1.
Response and number of participating stakeholders of NPP.
Function in the organization: operators of NPPs (N)
Top management 23
Representative in organization WANO 17
Public relations of NPPs 5
NPPs together 45
Function in the organization: owners of NPPs (N)
Top management 1
Representative in the WANO 1
Public relations of owner 1
Owners together 3
| | Tab. 2.
Number of participating NPPs, and organizational function of respondents.
Energy Policy, Economy and Law
Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
atw Vol. 64 (2019) | Issue 4 ı April
Statement N Mdn Min Max SD
(1) NPP is obliged to recognize and respect the interests and legitimate rights of various stakeholders
and respond to their initiatives.
| | Tab. 3.
Statements from the questionnaire, basic statistics.
Note. N= total number of responses; Mdn = median; Min = minimum value; Max = maximal value; SD = standard deviation.
App. 35 % of the participants in the
survey have a residence of more than
100 km from the NPP (Table 1).
Response rate of the NPPs was
about 30 %. All together, 45 respondents
were operators and three
respondents were among owners of
NPPs. Table 2 shows involvement of
NPPs’ representatives, namely members
of top management, representatives
in the WANO organization and
public relation officers.
Due to low response rate of the
owners, we consider in continuation
of this article only responses from the
operators.
Data analysis
for hypothesis testing
For testing the hypothesis set, 11
statements from the questionnaire for
stakeholders were used, for which the
respondents expressed their degree of
agreement (Table 3).
Ordinal variables were not normally
distributed. We used factor
analysis for the ordinal variables, the
Maximum Likelihood (ML) method,
which is more robust in terms of
abnormal distribution. Using the
histograms, we also verified that there
were no outliers. Using the Lisrel tool,
we performed exploratory factor
analysis for the Varimax rotation
ordinal variables. We found that three
factors offered a suitable solution
( Table 4).
With the Cronbach alpha test, we
found that variables 5 and 8 differed
significantly, so we excluded them.
Variables 1 to 4 were combined in
Factor 1, “Respect” ( respecting stakeholder
interests). In Factor 2 “Acceptability”
(acceptability of NPP) we
combined variables 6 and 7. In Factor
3 “Coexistence” (quality of coexistence)
we combined variables 9 to 11.
The correlations between the factors
are given in Table 5. It is evident that
the correlation between factors 1 and
3 is weak (0.057).
In all three data constructs, the
Cronbach Alpha was greater than
0.7, what ensures good reliability
( Table 6).
Calculation was performed using
the SEM method (structural equation
modelling). Namely, according to
Civelek [2018] SEM tests the relationships
between observed and latent
variables. Observed variables are the
measured variables in the data collection
process and latent variables are
the variables measured by connecting
to the observed variables because they
cannot be directly measured. SEM
consists of two basic components as
structural model and measurement
model. Another reason for the widespread
adoption of this method is the
ability of taking into the account
measurement errors and the relationships
between errors in the observed
variables.
In the basic model, we used all three
defined latent variables: respec ting
| | Tab. 5.
Correlations between factors.
289 4 3 5 0.566
(2) NPP should be aware that some stakeholders might have a significant influence on its operation. 289 4 3 5 0.565
(3) NPP must take into account the relationships between the interests of its stakeholders, the broader
expectations of society and nuclear power plants.
287 4 2 5 0.601
(4) NPP must know how its stakeholders are satisfied with the activities it is carrying out. 288 4 3 5 0.549
(5) NPP can also be located in the vicinity of residential areas. 288 2 1 5 1.065
(6) The acceptability of a NPP in the environment is possible only if NPP respect and take into account
the interests of their stakeholders.
288 4 1 5 0.968
(7) The trust between local communities and the NPP is a prerequisite for the acceptance of NPP. 288 4 1 5 0.870
(8) Donations and other material incentives for local communities increase the acceptability of the NPP. 287 4 1 5 1.145
(9) NPP can be placed in the environment where I live, but only if they are socially responsible. 286 4 1 5 1.323
(10) NPP creates new jobs, expands economic activity and technological development. 288 4 1 5 1.001
(11) NPP influences the higher quality of life in the local community. 286 3 1 5 1.171
Statement Factor 1 Factor 2 Factor 3 Unique variance
(1) 0.844 0.021 0.026 0.287
(2) 0.973 0.010 0.025 0.052
(3) 0.790 0.319 0.033 0.272
(4) 0.688 0.367 0.146 0.370
(5) -0.058 0.116 0.656 0.553
(6) 0.333 0.640 0.460 0.268
(7) 0.305 0.646 0.529 0.210
(8) 0.037 0.271 0.604 0.561
(9) 0.073 0.206 0.764 0.368
(10) 0.108 0.167 0.808 0.307
(11) 0.076 0.042 0.882 0.214
Factor 1
(“Respect”)
Factor 2
(“Acceptability”)
Factor 3
(“Coexistence”)
Factor 1
(“Respect”)
1.000
Factor 2
(“Acceptability”)
0.479 1.000
Factor 3
(“Coexistence”)
0.057 0.534 1.000
Factor Statement Number of
statements
Factor 1
(“Respect”)
Factor 2
(“Acceptability”)
Factor 3
(“Coexistence”)
Cronbach
Alfa
(1) 4 0.839
(2)
(3)
(4)
(6) 2 0.812
(7)
(9) 3 0.835
(10)
(11)
ENERGY POLICY, ECONOMY AND LAW 199
| | Tab. 4.
Exploratory factor analysis.
| | Tab. 6.
Test Cronbach Alfa.
Energy Policy, Economy and Law
Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 200
| | Fig. 1.
Standardized adapted structural model.
stakeholder interests, accept ability of
NPPs and quality of coexistence.
Values between latent variables
can be explained by regression equations:
p p “Acceptability” = 0.641 x “Coexistence”
+ 0.361 x “ Respect”
p p “Coexistence” = 0.167 x “Respect”
p p “Respect” relatively poorly explains
“Coexistence”. By adapting
the model, we wanted to improve
the basic model. We removed
the variable 11 and added the
covariance errors between 1, 2, 3,
and 4. In the modified model, we
included two covariance (1-2 and
3-4). In the improved model,
“ Respect” better explains “Coexistence”
(p 0.90–0.95
SRMR 0.075 0.033 < 0.08
NNFI 0.866 0.994 > 0.90–0.95
| | Fig. 2.
Level of agreement with the statement, that “NPP influences the higher quality of life in the local community.”
| | Tab. 8.
Statistics of the basic and adapted structural model.
Note. χ 2 : HI = square statistics; df = degrees of freedom; RMSEA = Root
mean square error of approximation; CFI = Comparative fit index; SRMR =
Standardized root mean square residual; NNFI=Non-normed fit index.
Energy Policy, Economy and Law
Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
atw Vol. 64 (2019) | Issue 4 ı April
account belonging to the group of
stakeholders or other features. We
illustrate differences in the per ception
of nuclear energy and nuclear facility
on the case of the statement 11: “NPP
influences the higher quality of life in
the local community.”. In Figure 2
we see higher agreement among the
respondents living closer to the
nuclear facility, among the political
public, journalists and suppliers.
There is also important share of those
who do not have an opinion on presented
issue (undecided).
Respecting interests of NPPs’
stakeholders
Representatives of NPPs have expressed
high level of agreement with
the four statements that describe the
principle of respecting the interests of
their stakeholders (Figure 3). With
the Mann-Whitney test, we confirmed
that there were no statistically significant
differences in responses of
owners nor operators. The same was
confirmed taking into account the
function in the organization – the
Kruskal- Wallis test proved no statistical
significance in any case.
4 Discussion
The NPPs shape the environment in
which they are located and affect lives
of their external stakeholders. They
all want to promote their interests,
expectations and live a quality life.
Respecting the interests of external
stake holders of the NPPs is an important
principle of social responsibility,
and it was proved within the research
| | Fig. 3.
Level of agreement of NPPs’ representatives with statements related to stakeholders.
that NPPs are aware of it. We have
demonstrated that it affects the
acceptability of the NPPs in the society
and the quality of coexistence.
Successful organizations, and
NPPs strive to be among them, differ
from others by their exceptional
ability to quickly detect and effectively
adapt to changes in an unpredictable
environment. The appropriate strategy
for involvement of stakeholders
in strategic decisions of the NPPs
should be set up and implemented.
This is a pre requisite for the placement
of the NPPs in the environment,
its operation and coexistence. The
target groups with which trust is
particularly needed are local communities
(surrounding and more distant),
NGOs, political public, NPPs’
suppliers and journalists. These external
stakeholders groups differ according
to the understanding of nuclear
technology, interests and impacts on
the NPPs, what effective strategy of
NPPs must take into account. Our
research demonstrated that a certain
proportion of external stakeholders of
NPP in Slovenia still not have clear
understanding of the functions, influences
and many other issues related to
nuclear energy. This is an important
challenge for owners and operators of
NPPs that want to achieve confidence
and acceptance.
Coexistence with NPPs depends on
trust of stake holders into the NPP, the
perception of their quality of life, the
awareness of the impacts on coexistence,
and the willingness to respect
the interests of stakeholders of NPPs,
which the power plant should implement
with socially responsible practices.
The optimal model of involving
external stakeholders in the operation
of the NPPs is the one that establishes
the quality coexistence of the nuclear
facility and its external stakeholders.
We have proven that coexistence with
the NPPs positively affects quality of
ENERGY POLICY, ECONOMY AND LAW 201
| | Fig. 4.
Optimal model for the involvement of external stakeholders.
Energy Policy, Economy and Law
Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 202
life. The optimal model for the
involvement of external stakeholders
into NPPs that we have established is
shown in Figure 4.
The effective model of involvement
of external stakeholders integrates
internal resources (employees) and
external stakeholders in a meaningful
and responsible manner. It is necessary
to take into account social, legal,
political, cultural and all other diversity,
interests and expectations. The
key position in the model is given
to effective communication model
between the NPP and its external
stakeholders. Social responsibility of
the NPPs begins with top management
and is deployed to whole
organizational structure. The optimal
model establishes self-assessment
mechanisms and continuous implemen
tation of improvements, which
consequently allows redefinition of
the vision and mission of the NPPs.
The self-assessment logic and the
establishment of conditions for
continuous improvements (EFQM
RADAR, Deming’s PDCA circle or
some other managers tool) is included
in the process loop to achieve the
strategic goals. Socially responsible
activities of the NPPs are not inferior
to achieving the maximum possible
profit. Potential conflicts between
social responsibility and economic
concern can be solved by rising awareness
of long-term (positive) effects
and benefits of socially responsible
organizations. Namely, overcoming
conflicts between NPPs and their
stakeholders has positive implications
on higher social and economic efficiency,
on safety and acceptability of
the NPPs. A critical analysis of efficiency
and the introduction of improvements
represent the way to
greater acceptability of the NPPs in
the environment, sustainability of
nuclear energy and excellence in
relations to external stakeholders.
Acceptability of the NPPs in the environment
enhances the quality of life.
In addition to responsible owners and
operators, the important condition for
successful coexistence with the NPPs
are responsible, critical and objective
external stakeholders as well.
Additional research areas
The article presents the optimal model
of participation of external stakeholders
in important decisions related
to nuclear energy. We are aware that
the integration of stakeholders in
the NPPs is not always and everywhere
optimal, and is influenced
by many factors. Therefore, there is a
possibility for gaps between practice
and the model. NPPs should evaluate
causes of such inconsistencies, find
ways to overcome them, and include
owners and operators of the NPPs in
the analysis, to express their view of
this area.
Further research could focus on
studying interactions with influential
other groups of external stakeholders,
e.g. it would make sense to include
stakeholders who live in neighbouring
countries that do not have NPPs on
their territory. It would be practical to
better define the specific interests and
impacts of individual groups of external
stakeholders.
5 Conclusion
NPPs are aware of their impact on the
wider society. As expressed in the
survey by NPPs’ operators and owners,
they are ready to satisfy interests of
their external stakeholders and with
full responsibility. Using the SEM
method, we have proven that the
acceptance of NPPs and quality of
coexistence depend on respect of
interests of the NPPs’ external stakeholders.
Involvement of external stakeholders
into the whole life cycle of the
NPPs enables rational and systematic
solutions to challenges of coexistence
and quality of life. Strengthening
social responsibility in the field of
nuclear energy offers some starting
points and answers to environmental
issues and sustainability also in the
light of global economy. It affects the
acceptability of the NPPs and the
quality of life of individuals and
different groups in a modern society
and in the environment in which
nuclear facilities are located. The
research contributes to the society,
owners and operators of the NPPs.
The con tribution is in the field of
relations between the NPPs and its
stakeholders. The impact of the NPPs
addresses many areas and can represent
important social, economic and
cultural indicators in all structures
of society. Any additional research,
especially from specific and unexplored
areas of coexistence with the
NPPs, and the implementation of
socially responsible principles, therefore
represents an important contribution.
Acknowledgement
We would like to thank the WANO
organization for enabling us to spread
invitation to NPPs to participate in the
survey through their information
system. By supporting our research,
WANO demonstrates own social
responsibility and the importance of
common concern for prosperity of a
wider society.
We would also like to thank all
respondents that participated in the
research for their interest and cooperation
as our thanks to them was
not possible earlier due to anonymity
of the survey.
References
| | Afgan, N. H. (2013). Sustainable nuclear energy dilemma.
Thermal Science, 17(2), 305–321. doi: 10.2298/TSCI121022214A.
| | Avetisyan, E., & Ferrary, M. (2012). Dynamics of stakeholders’
implications in the institutionalization of the CSR field in France
and in the United States. Journal of Business Ethics, 115(1),
115–133. doi: 10.1007/s10551-012-1386-3.
| | Banerjee, S. B., & Bonnefous, A. M. (2011). Stakeholder
management and sustainability strategies in the French nuclear
industry. Business Strategy and the Environment, 20(2), 124–140.
doi: 10.1002/bse.681.
| | Campbell, M. D. (2013). Uranium, thorium, and associated rare
earth elements of industrial interest. Houston: EMD Uranium
( Nuclear Minerals and REE) Committee.
| | Civelek, M. E. (2018). Essentials of Structural Equation Modeling.
Lincoln, Nebraska: Zea Books. doi: 10.13014/K2SJ1HR5.
| | Goodfellow, M. J., Dewick, P., Wortley, J., & Azapagic, A. (2015).
Public perceptions of design options for new nuclear plants in
the UK. Process Safety and Environmental Protection, 94, 72–88.
doi: 10.1016/j.psep.2014.12.008.
| | Guidance on social responsibility ISO 26000:2010, 1st edition.
(2010). Geneve: International Organization for Standardization.
| | He, G., Mol, A. P., Zhang, L., & Lu, Y. (2013). Public participation
and trust in nuclear power development in China. Renewable
and Sustainable Energy Reviews, 23, 1–11. doi:
10.1016/j.rser.2013.02.028.
| | Horvath, A., & Rachlew, E. (2016). Nuclear power in the 21st
century: Challenges and possibilities. Ambio, 45(1), 38–49. doi:
10.1007/s13280-015-0732-y.
| | IAEA. (2011). Stakeholder involvement throughout the life cycle of
nuclear facilities. Vienna: International Atomic Energy Agency.
| | Kato, T., Takahara, S., Nishikawa, M., & Homma, T. (2013). A
case study of economic incentives and local citizens’ attitudes
toward hosting a nuclear power plant in Japan: Impacts of the
Fukushima accident. Energy Policy, 59, 808–818. doi: 10.1016/j.
enpol.2013.04.043.
| | Matuleviciene, M., & Stravinskiene, J. (2015). Identifying the
factors of stakeholder trust: a theoretical study. Procedia -
Social and Behavioral Sciences, 213, 599–604. doi:
10.1016/j.sbspro.2015.11.456.
| | Shadrina, E. (2012). Fukushima fallout: gauging the change in
Japanese nuclear energy policy. International Journal of Disaster
Risk Science, 3(2), 69–83. doi: 10.1007/s13753-012-0008-0.
| | Simončič, M., & Žurga, G. (2016). Social responsible communication
of nuclear power plant with external stakeholders. Atw –
International Journal for Nuclear Power, 61(11), 653–659.
| | Truelove, H. B., & Greenberg, M. (2013). Who has become more
open to nuclear power because of climate change? Climatic
Change, 116, 389–409. doi: 10.1007/s10584-012-0497-2.
| | Trufanov, V. V. (2013). Modeling development options of electric
power systems in conditions of multiple stakeholders. Thermal
Engineering, 60(13), 931–937.
| | World Nuclear Association. (2018). Harmony 2018 Edition.
London.
Authors
Dr. M. Simončič
(corresponding author)
Lead engineer of analytical
chemistry and radiochemistry
Nuclear Power Plant Krško
Vrbina 12
8270 Krško, Slovenia.
Dr. G. Žurga
Professor and independent
researcher in the area
of management
Slovenia
Energy Policy, Economy and Law
Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
atw Vol. 64 (2019) | Issue 4 ı April
The Nuclear Fission Table in the
Deutsches Museum: A Fundamental
Discovery on Display
Susanne Rehn-Taube
The Deutsches Museum in Munich is one of the largest science and technology museums in the world.
At 50,000 square meters, it shows masterpieces from such diverse disciplines such as chemistry, physics, aircraft,
marine, biotechnology, or glass technology.
| | The table carrying the original instruments with which nuclear fission was discovered in 1938
is one of the most famous objects of the Deutsches Museum.
Since the beginning of the museum,
there has been an exhibition about
chemistry. The chemistry collection
contains dye samples, laboratory
equipment, and many other objects –
about 10,000 in total.
One of the most famous objects is
the table displaying the original
equipment used by the researchers
who discovered nuclear fission of
uranium atoms in 1938: Otto Hahn,
Lise Meitner and Fritz Straßmann. [1]
The discovery
of nuclear fission
Since the 1890s, the scientific community
had formed an increasingly accurate
idea of the atom. After the first investigations
of radioactive substances
by Becquerel and the Curies, Ernest
Rutherford and his coworker Frederick
Soddy noticed in 1902 that by radioactive
decay chemical elements change
into each other. In 1913, Niels Bohr
established his atomic model, postulating
a positive nucleus with negative
electron shells. In 1919, the first manmade
change of elements took place,
again by Rutherford: by bombarding
nitrogen atoms with helium nuclei, he
obtained oxygen atoms and a posi tively
charged particle which, a short time
later, he identified as the proton. [2]
As a result, several research groups
attempted to obtain element changes
by bombarding atomic nuclei with
protons. In this case, however, the
repulsion of the positive particles and
the positive nucleus had always been
an obstacle.
It was not until the discovery of the
neutron by James Chatwick in 1932
that a new possibility was opened:
this nucleon should be able to penetrate
the nucleus without electrostatic
repulsion. [3] Bohr spoke of a possible
“explosion” [4] or “breaking” [5] of
atomic nuclei. He formulated the
theory that the nucleus behaves
similar to a large water drop.
Enrico Fermi then irradiated a
variety of elements with neutrons.
By neutron capture and subsequent
β-decay, he was hoping to obtain
elements with an atomic number
increased by one compared to the
starting materials. In the case of
uranium, at the time believed to be
the heaviest chemical element, this
transformation would lead to an artificial
element. A transuranic element
should be formed. [6]
Lise Meitner thought these results
so fascinating that in 1934 she
persuaded Otto Hahn to join forces
again. She wanted to bombard heavy
nuclei, including uranium and thorium,
with neutrons, in order to obtain
transuranic elements. [7] The two scientists
had known each other since
1907. [8] In the late 1930ies, Hahn led
the department of radiochemistry and
was director of the Kaiser Wilhelm
Institute for Chemistry in Berlin. Lise
Meitner directed the radio-physical
department.
The collaboration of the physicist
and the chemist must have been
extremely fruitful and affected by
great friendship. Hahn described it
in 1963 as “stroke of luck” to have
met Lise Meitner. [9] Together with
the chemist Fritz Straßmann, they
conducted the following experiments:
A sample of purified uranium was
brought into a paraffin block and put
next to a neutron source of beryllium
and radium. After different exposure
times, the uranium sample was
removed and chemically analyzed.
After dissolving it in hydrochloric
acid, a compound similar to the suspected
product was added. By doing
so, the team expected that this added
compound and the reaction product
should precipitate together from the
solution. Excessive uranium remained
in the solution. Subsequently, the
filtrates were dried and the filter
papers were put into the cylindrical
hollow of a lead block. Home-made
Geiger-Muller counters were set onto
the filter papers. The counter tube
consisted of an aluminum cylinder
filled with a special argon gas mixture
with a wire in the center. Strong batteries
put the wire under voltage. The
negative β-particles emitted from the
radioactive sample were accele rated
toward the wire and caused a cascade
of ionizations and an elec trical pulse.
This pulse was amplified and displayed
by a mechanical counter. Plotting
the counts against time yielded
the radioactive decay rates of the reaction
products.
ENERGY POLICY, ECONOMY AND LAW 203
Energy Policy, Economy and Law
The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 204
| | Fritz Straßmann and Otto Hahn explain the objects to Heinz Haber for a
television documentary in 1963. Hahn does NOT arrange the instruments
for the museum and never has.
The team indeed found reaction
products emitting β-particles and
concluded that transuranic elements
were formed. They assumed the
finding of nuclei with atomic numbers
93 to 96 which chemical properties
met the expectations. Despite a long
series of β-decay, which was never
observed before, the finding of new
chemical elements was published and
not doubted by anyone. [10]
It was the summer of 1938. At this
exciting point of their work, Lise
Meitner had to flee Germany. After
the “Anschluss” of Austria by Germany,
she was threatened with persecution
by the Nazis as an Austrian Jew. With
the help of Otto Hahn and other
colleagues, she left Germany on July
13, 1938 for the Netherlands and
eventually Sweden. Her scientific
celebrity status did not protect her in
any way: she could only cross the
German border because she was fortunate
enough not to be controlled by
the SS guards on the train. The flight
must have left a great break in the
Berlin team. Otto Hahn wrote later:
“I’ll never forget the 13 th of July 1938”.
[11] “Hähnchen” and “Lieschen”, as
they called themselves according to
legend, remained in frequent contact
by correspondence nonetheless.
In Berlin, the team focused on the
chemical analysis of the irradiation
product. The results seemed to indicate
radium as product. [12] This could be
the result of two consecutive αdecays
of uranium. This had never been
observed before, and many experts
were skeptical. To identify radium
chemically, Hahn and Straß mann first
added barium chloride to the uranium
solution and hoped to precipitate a
radium barium mixture. The precipitate
was filtered and dissolved again.
From this solution, the team tried to
separate barium and radium by fractional
crystallization. The solution was
heated and first treated with acid, until
a small portion crystallized. This precipitate
was filtered off. The solution
formed a second precipitate, which
was also filtered off. Subsequently, a
third fraction was crystallized. Since
radium salts are usually less soluble
than barium salts, the former should
be enriched in the first fraction and the
latter in the last fraction. The radioactive
decay of all fractions was analyzed.
Since different nuclei were
assumed present, each fraction should
emit their specific radioactive activity.
However, Hahn and Straßmann discovered
that there were no differences
in the activities of the fractions.
Apparently, a chemical separation had
not taken place.
To verify this, the team also conducted
the fractional crystallization
with radium salts. It seemed possible
that radium in such small quantities
behaved in a peculiar and unexpected
way. Finally, the now famous indicator
experiment should bring clarity:
Hahn and Straßmann irradiated the
uranium sample, mixed it with a
radium sample of known radioactive
activity and conducted the fractional
crystallization with this mixture. [13]
All these series of experiments showed
that all the differences in the activity
of the separate fractions were only
due to the “honest” (Quote: O. Hahn
[14]), i.e. the added radium. The
supposed artificial radium showed
constant activity through all fractions.
Thus, it was a nucleus inseparable
from barium. The product of the
irradiation experiments had to be
barium. These results left Hahn and
Straßmann clueless. They had no
| | Otto Hahn and Lise Meitner (picture: 1950ies) always communicated in a friendly
and professional tone and spoke with great respect for each other and each
other’s scientific achievements.
explanation how irradiation of
uranium could lead to barium, a much
lighter element.
In a letter written on December
19 th , 1938 Otto Hahn asked Lise
Meitner for an explanation, because
he knew that “[uranium] cannot burst
into barium”. “The more we think
about it, the more we come to this
terrible conclusion: Our radium
isotopes do not behave like radium,
but like barium. [...] If you could
suggest anything, it would still be like
a result of the three of us!” [15]
His point of view that Lise Meitner
was still part of the team led to this
wish that the results would still be a
work of the whole team. Meitner was
skeptical and asked very critically
whether all other possibilities had
been “ruled out”. [15 a), p. 171] She
spent Christmas of 1938 with her
nephew, physicist Otto Robert Frisch,
in Kungälv, Sweden. According to
legend, the both spent hours of
walking in the snow and then
developed a revolutionary interpretation
of the experiments. According
to Bohr’s liquid drop model, the
uranium nucleus started to move after
penetration by a neutron. [16] This
movement led to constriction and
finally separation into two roughly
equal-sized fragments, which were
each much smaller than the uranium
nucleus itself. Thus, an explanation
for the light nucleus barium was
found. The fragments flew apart with
high kinetic energy. Otto Robert Frisch
had the honor of giving the new
process its name: nuclear disintegration
and later nuclear fission. On
New Year’s Day, 1939, Lise Meitner
told Otto Hahn in a letter “perhaps it is
energetically possible that such a
heavy nucleus bursts into pieces.” [17]
Energy Policy, Economy and Law
The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
atw Vol. 64 (2019) | Issue 4 ı April
Today, one can only try to sympathize
with Meitner’s feelings, which
probably oscillated between frustration
and excitement. Her entire life
had been turned upside down and
apparently, she had missed the most
important discovery of her former
team. Additionally, this discovery
would question her own work about
the transuranic elements too. Hahn
and Meitner did correspond about
their feelings in their letters. Hahn
wrote, “How beautiful and exciting it
would be if we could have done this
work together like before.” From
Meitner’s reply, he could read the fear
that her participation in the discovery
could not be adequately approved.
And Hahn replied immediately: “It
shocked me to see you so depressed.”
[15 a), pp 171, 177]
On January 6 th , 1939, the results of
Hahn and Straßmann were published.
The interpretation culminated in the
famous phrase: “As chemists, we
should actually call the new nuclei not
radium but barium.” [18] And the
next major publication by Hahn and
Straßmann followed February 10 th ,
1939. [19] The authors reported with
absolute certainty that all the previously
suspected radium isotopes
were in truth barium isotopes. Hahn
and Straßmann apparently tried to
show that there was indeed a group of
three that had obtained the results.
The previous publications of the
trio and Lise Meitner’s name were
mentioned several times. Hahn and
Straßmann mentioned the transuranic
elements as well: “We are still
certain, that the transuranic elements
remain.” The second fission product
was stated to be a noble gas, either
krypton or xenon. The publication
concluded with the statement that
the finding of the new irradiation
products was “only possible by the
experience we have gained in the
earlier, systematic experiments on the
trans uranic elements, carried out in
asso ciation with L. Meitner.”
Meitner and Frisch published their
conclusions in Nature in February
1939. [20] They predicted the other
fission product correctly as krypton.
This work also explicitly stressed the
existence of transuranic elements. In
subsequent publications, Frisch and
Meitner already provided calculations
of the enormous amount of energy
released during the reaction. [21, 22]
After those publications, various
groups all over the world instantly
began to repeat, confirm and continue
the experiments. Frédéric Joliot-Curie
realized that the fission reaction led to
the emersion of free neutrons. These
could lead to the subsequent fission of
further uranium atoms and a selfmaintaining
chain reaction was thinkable.
[23] Soon the whole world was
interested in nuclear fission. Frisch
and Bohr explained the energy
released during the reaction with Einstein’s
equation E = mc 2 . [24] The
fragments of the nuclear fission
reaction combined had a smaller mass
than the uranium core. The equivalent
of this mass difference was
released as free energy.
The different isotopes of uranium
have been extensively studied. As
early as 1939, Niels Bohr recognized
that the fission process only occurs
in the rare uranium isotope 235 U. [25]
In the following year, the American
group led by McMillan and Abelson
published confirmation that, by
irradiation of uranium-238, a transuranic
element could be produced.
Investigations of these elements led
to nothing less than a reorganization
of the periodic table. [26] Below
the lanthanides follows a series of
elements later called actinides. Hahn
and Straßmann confirmed and
supple mented the results. They provisionally
named the new element
block “uranides”. [27] Otto Hahn
was later kind of annoyed about the
fact that he did not recognize one
uranium isotope with the half-life
of 23 minutes as a precursor of the
transuranic element 93.
Later [28], Seaborg and McMillan
also found the heaviest natural
element with an atomic number of 94.
It emerged from the bombardment
of uranium atoms with deuterium
nuclei. [29]
The transuranic elements 93 and
94 were later called neptunium and
plutonium in the order of the planets
Uranus, Neptune, and Pluto. [30] Plutonium
is considered the heaviest naturally
occurring element. It was found
in trace amounts in natural uranium
ore. The naturally occurring transuranic
elements are just like the ones
in the laboratory created via neutron
capture by uranium-238 atoms.
During World War II, Otto Hahn
was a member of the “Uranium
Association,” a group of scientists
who were supposed to work on the
technical use of nuclear fission in
Germany. Due to this fact, the British
held him captive after the war. During
his captivity, he learned of the nuclear
explosions in Japan by the Americans
and of the fact that he had been
awarded the Nobel Prize for
| | In 1972 the chemistry exhibition in the Deutsches Museum was reopened presenting the “Arbeitstisch von Otto Hahn”
in a niche next to a large model of an uranium atom. After more than 20 years on display, Lise Meitner’s contribution to the discovery
was still not mentioned.
ENERGY POLICY, ECONOMY AND LAW 205
Energy Policy, Economy and Law
The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 206
Chemistry in 1944. Later, Otto Hahn
referred to the use of nuclear fission
for military purposes as a “mess” that
he wanted no part of. [31] He initiated
action against the military use of
nuclear power, such as the Mainau
Declaration in 1955 or the Göttingen
Declaration in 1957.
To receive his Nobel Prize, Hahn
had to wait until the ceremony of 1946.
Awarding the prize to Otto Hahn alone
probably remains one of the most
debated decisions of the Nobel committee
until today. In his Nobel Lecture
on December 13 th , 1946, Hahn
explained the work of the team Hahn,
Meitner, and Straßmann in great
detail. [11, p. 247 and following pages]
Being a Nobel Laureate, Otto Hahn
later led the Kaiser- Wilhelm- Gesellschaft
and its successor, the Max-
Planck- Gesellschaft, whose presidency
he held until 1960.
Nevertheless, the developments
that occurred in other fields after the
discovery of nuclear fission have
certainly had a tremendous impact on
humanity. The enormous energy
release of the fission process soon led
the scientific community to think
about the possibilities of a power
reactor or an explosive bomb, in the
beginning cautiously called machine.
Enrico Fermi built the first nuclear
reactor in the world in Chicago in
1942. The first atomic bomb was
developed in the Manhattan Project.
With an incredible amount of money
and workforce, the Americans pushed
their nuclear program. Today, we see
it as the beginning of a new era when
the first atomic bomb was detonated
on July 16, 1945 in the New Mexico
desert. The nuclear arms race was just
about to begin. To this day, the earth
has been shaken by 2053 nuclear
explosions. [32]
The artifact:
The “Otto-Hahn-table”
Since the 1920s, the Deutsches
Museum has had contact with Lise
Meitner, Otto Hahn and colleagues in
Berlin. They exchanged letters with
regard to donations of books or
samples of the element protactinium
discovered by Meitner and Hahn. [33]
Especially the director Jonathan
Zenneck corresponded with Otto
Hahn at length and in a friendly tone.
In 1952, the director of the Max
Planck Institute for Chemistry in
Mainz got in touch with the Deutsches
Museum to discuss the existing equipment
by Otto Hahn. Parts of the
original equipment that had been
moved after the war from Berlin via
the small city of Tailfingen to Mainz
had been arranged there on a table
and presented to the public. Once the
table and the apparatus were erected
in the museum, they waited for a text
to explain their meaning. It was
planned that a marble tablet should
bear the following text:
OTTO HAHN
Discovered in 1938, together with
Fritz Straßmann, the fission of
uranium by neutrons, thus creating
the basis for the technical realization
of atomic energy. [34]
Otto Hahn was specifically asked
by Jonathan Zenneck about his opinion
of this synopsis. In his reply dated
April 8, 1953, Hahn was unenthusiastic
about the plans of the Museum:
“As much as I am delighted about
the attention [...] I’m a little depressed
about the presentation that is
apparently intended. It seems to me
somewhat exaggerated to construct a
special niche with a marble table,
because if the fission of uranium has
been found in aftermath to be very
important, neither Mr. Straßmann nor
I had any share in this development.”
In his letter, he goes on to mention
Lise Meitner and again asks for his
name not to be “mentioned with a
special appearance”. [35]
This letter clearly contradicts the
image that has sometimes been drawn
of Otto Hahn that he had spoken
too rarely about the share of his
colleagues in the discovery, particularly
Lise Meitner’s share. The mere
mentioning of the two colleagues in
this letter should have demonstrated
to Zenneck that the display as “Otto
Hahn table” was wrong. Zenneck and
his successors, however, did not
change anything and for several
decades the name “Otto-Hahn table”
stuck.
This is how the visitors found
the artifact: It was called workbench,
but displayed devices, which were
never used together on one table.
The paraffin block and the neutron
sources (which were displayed as
reproductions) were used in an irradiation
room, while the chemical
analysis was undertaken in the
chemical laboratory of Straßmann.
The measurement of the radioactive
activities was conducted in the
measuring room. The pairwise
arrangement of the counters on the
table had no scientific grounding, but
gave the whole thing a wonderful
symmetry. That the measurements
would have been impossible if set
so closely to the neutron source
was never mentioned in one of the
museum texts. [36]
Otto Hahn was in the museum in
1963 for the 25th anniversary of
the discovery. He gave a television
interview to Heinz Haber, a pioneer in
scientific journalism at the time, in
which Hahn told the entire story in
great detail. [9] Hahn emphasized
the contributions and the great teamwork
between himself, Meitner and
Straßmann. A still image from the
movie is now regarded as the moment
Hahn arranges the devices for the
museum himself, a legend that is just
as persistent as it is wrong. [37]
In 1972, the chemistry exhibition
was reopened with a new architecture.
In a niche next to a large
model of a uranium atom, the table
stood in a new showcase. The marble
plaque had been removed, but the
sign “ Arbeitstisch von Otto Hahn”
(workbench of Otto Hahn) had
been taken from the old display. Lise
Meitner’s contribution to the discovery
still did not occur in the
Deutsches Museum.
Only in 1989, on the occasion of
a major exhibition, a balanced and
correct presentation of Meitner’s and
Straßmann’s contributions was finally
shown in the museum. [15 a)] Subsequently,
the museum worked together
with Meitner’s biographer Ruth Lewin
Sime to present a balanced account of
events.
In December 2012, the object
moved to the exhibition about
museum history. The caption today
tries – with all brevity – to satisfy all
those involved in the decisive experiments,
and the table was officially
renamed Hahn-Meitner-Straßmann
table or simply nuclear fission table. It
will be presented in the new permanent
exhibition on chemistry from
2020 onwards.
Conclusion: The responsibility
of the museum curators
For the majority of visitors, it can be
assumed that they see the development
of nuclear power, with all its
consequences for the world, as more
important than the exact story of its
discovery. The table is presented as an
icon of the history of science and is at
the same time an arranged art object
whose aura is nourished by its almost
altar-like form. The global technical
and political significance of nuclear
fission certainly served as an amplifier
for the object’s glory, but was never
described in the exhibition. How did
the reputation of the acting persons
change over time?
Energy Policy, Economy and Law
The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
atw Vol. 64 (2019) | Issue 4 ı April
Immediately after the war, Hahn
and Strassmann were put on a
pe destal: Look, here are two German
scientists who have discovered
something significant! The Deutsches
Museum proudly presented an object
that was saved under certainly difficult
circumstances and moved three
times through post-war Germany.
Whether the instruments were original
ones or the arrangement made
sense was not examined. One did not
bother to describe the components
and the experiments exactly. The
presentation aroused the feeling that
one stood at the desk of a Nobel Prize
winner and could almost look over his
shoulder.
That the contribution of Lise
Meitner was not mentioned is beyond
understanding: one glance into the
original literature would have been
enough to get a more complete picture.
Everyone involved was alive and
well, detailed first-hand documentation
would have been achievable.
However, the fact that nothing was
changed after Hahn’s rather unsatisfied
comment on the first text panel
suggests that it was already hanging
in the exhibition and the text was
literally carved into stone. Therefore,
the label of the exhibit was created:
“workbench of Otto Hahn”. Possibly, it
was also the glory of the Nobel Prize,
which put Meitner in the shade after
the war. In any case, there was no
effort to tell the whole story. General
Director Zenneck would have had to
question the exhibition more critically.
Judging from the friendlysubmissive
tone of his letters to Hahn,
however, this is completely unthinkable.
Hahn was the sole contact for
nuclear fission for Zenneck.
It must be stressed at this point
that Hahn and Meitner, both during
their direct cooperation and after the
war, communicated in an extremely
friendly and professional tone and
spoke with great appreciation of each
other and the scientific achievements
of each other. Surely they saw in the
other an equal scientific partner.
The post-war generation of exhibition
curators saw no need to change
anything in the presentation, and so
Meitner really fell into oblivion. She
lived abroad, was certainly not as
present at events in the Deutsches
Museum and on the German science
stage as Hahn. And it is precisely this
constellation that leads to the allegation
that Hahn had made his mark as a
leading figure in German science,
as a “good German” at the expense
of his colleagues and especially his
colleague with Jewish roots after
the war. [38] The ignorance of the
Museum concerning Meitner implied
that Hahn had built a memorial for
himself in the museum with “his”
object. Parts of today’s history of
science draw a strong picture, according
to which Hahn later “refused
to let Meitner participate in the
discovery.” [39] The fact that Hahn
collected the Nobel Prize alone is
often mentioned in this context, too.
The impression remains Hahn would
be personally responsible for that as
well.
Since the 1990s, the museum has
sought a differentiated and more
detailed presentation. If this had
happened 40 years earlier, Hahn’s
reputation would probably be dif ferent
today. We can assume that Hahn
certainly would not have objected to
such a representation.
The curator’s dream may serve as
a last prospect, who would like to cut
the object – purely virtually, of course,
not in reality – in order to present the
individual parts of the experimental
set-up finally in a scientifically correct
way.
Footnotes
1. This is a revised copy of: Rehn, The Nuclear Fission Table in the
Deutsches Museum: A Special Piece of Science History on the
Eve of World War II. In: M. Kaji, Y. Furukawa (Hg.): Proceedings
of the International Workshop on the History of Chemistry:
Transformation of Chemistry from the 1920s to the 1960s
(IWHC 2015, Tokyo). Tokio 2016, p. 20-27
See also: a) S. Rehn: Der Kernspaltungstisch im Deutschen
Museum. In: Keiser, V. (Hg.): Radiochemie, Fleiß und Intuition.
Neue Forschungen zu Otto Hahn. GNT-Verlag, Berlin, 2018,
p. 63 – 82 b) S. Rehn, Kultur und Technik 3/2013, p. 18-25
2. For milestones in Rutherford’s scientific life, see (last viewed
3.3.2019): http://www.nobelprize.org/nobel_prizes/
chemistry/laureates/1908/rutherford-bio.html
3. J. Chadwick, Nature 129, 1932, S. 312; J. Chadwick, Proc. Roy.
Soc. 136, 1932, p. 692-708
4. N. Bohr, Nature 137, 1936, p. 344-348
5. N. Bohr, Science, 80, 1937, p. 161-165
6. E. Fermi, Nature 133, 1934, p. 757; E. Fermi, ibid., p. 898-899
7. Lise Meitner: Wege und Irrwege zur Kernenergie (1963).
In: L. Meitner, D. Hahn (Ed.), Erinnerungen an Otto Hahn.
Hirzel Verlag Stuttgart, 2005, p. 69 – 73
8. F. Krafft, Otto Hahn und die Kernchemie, Museumsverein für
Technik und Arbeit, Mannheim, 1991, p. 14 - 15
9. Otto Hahn – 25 Jahre Atomzeitalter. Television movie
produced by the German television network NDR, 1963.
In German, Hahn uses the term “Glückszufall”, which is a
mixture of the words “luck” and “chance”. Deutsches Museum
archive, AV-F 0026 & 1743. (All translations of original
German quotes by S. Rehn-Taube.)
10. a) L. Meitner, O. Hahn, F. Straßmann, Z. f. Physik 106, 1937,
p. 249 - 270; b) O. Hahn, L. Meitner, F. Straßmann, Chem.
Ber. 70, 1937, p. 1374-1392
11. O. Hahn, Mein Leben. Bruckmann, München,1968, p. 150
12. O. Hahn, F. Straßmann, Naturwissenschaften 46, 1938,
p. 755 - 756
13. A very detailed description of the experiments is given in:
F. Krafft, Im Schatten der Sensation. Leben und Wirken von
Fritz Straßmann. Verl. Chemie, Weinheim 1981, p. 212 and
following pages
14. Quote by O. Hahn, note 9
15. Letter quoted in: a) J. Lemmerich, Die Geschichte der Entdeckung
der Kernspaltung. Catalogue of the exhibition by the
Deutsches Museum and the Hahn-Meitner-Institute of the
Technical University, Berlin, 1989, p. 166 - 170; b) W. Gerlach:
Otto Hahn, Ein Forscherleben in unserer Zeit. Deutsches
Museum Abhandlungen & Berichte, 37, 1969, p. 52 - 53
16. A modern essay about the finding of nuclear fission and the
liquid-drop model is found in: H. J. Krappe, K. Pomorski,
„ Theory of Nuclear Fission“. Springer Verlag Heidelberg, 2012
17. J. Lemmerich (Ed.), Gedächtnisausstellung zum 100.
Geburts tag von Albert Einstein, Otto Hahn, Max von Laue,
Lise Meitner 1.3. – 12.4. 1979. Catalogue oft he exhibition
held in the Staatsbibliothek Preußischer Kulturbesitz, Berlin.
Berlin, 1979, p. 122
18. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 11 - 15
19. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 89 - 95
20. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 239
21. O. R. Frisch, Nature 143, 1939, p. 276
22. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 471 - 472
23. H. v. Halban, F. Joliot, L. Kowarski, Nature 143, 1939,
p. 470 - 471
24. N. Bohr, J. A. Wheeler, Phys. Rev. 56, 1939, p. 426 - 450
25. N. Bohr, Phys. Rev. 55, 1939, p. 418-419
26. E. McMillan, P. H. Abelson, Phys. Rev. 57, 1940, p. 1185-1186
27. F. Straßmann, O. Hahn, Naturwissenschaften 30, 1942,
p. 256-260
28. The results were not published until 1946. In the publications
it was mentioned that the corresponding experiments took
place in 1941.
29. a) G. T. Seaborg, E. M. McMillan, J. W. Kennedy, A. C. Wahl,
Phys. Rev. 69, 1946, p. 366 - 367; b) G. T. Seaborg, A. C. Wahl,
J. W. Kennedy, Phys. Rev. 69, 1946, p. 367; c) J. W. Kennedy,
A. C. Wahl, Phys. Rev. 69, 1946, p. 367 - 368; d) J. W. Kennedy,
G. T. Seaborg, E. Segrè, A. C. Wahl, Phys. Rev. 70, 1946,
p. 555 - 556
30. Uranium was discovered in 1789 and named after the recently
discovered planet Uranus.
31. Radio interview with Otto Hahn (1967), Deutsches Museum
archive, AV-T 0457
32. http://www.ctbto.org
33. DMVA (Deutsches Museum administration archives) 1286/1;
DMVA 1290/2, DMVA 1291/1
34. „Otto Hahn entdeckte 1938 zusammen mit Fritz Straßmann
die Spaltung des Urans durch Neutronen und schuf damit
die Grundlage für die technische Verwertung der Atomkern-
Energie.“
35. Hahn to Zenneck, 8.4.1953, Archive of the Max-Planck-
Gesellschaft, Abt. III, Rep. 14, Nr. 5287, Bl. 14
36. The author thanks Jost Lemmerich for this special note.
Personal message (16.4.2013)
37. This can be found in various publications, e.g. (both published
by employees of the museum): T. Brandlmeir, Arbeitstisch zur
Uranspaltung. In: Meisterwerke aus dem Deutschen Museum
Band 1, Deutsches Museum, München (2004). In this paper,
Heinz Haber was even cut off the picture. The caption: Fritz
Straßmann and Otto Hahn during the installation of the
workbench for uranium fission; J. Teichmann, Das Deutsche
Museum. Ein Plädoyer für den Mythos von Objekt und
Experiment. In: G. Bayerl, W. Weber (Hrsg.), Sozialgeschichte
der Technik, Waxmann, Münster (1998), p. 199 – 208
38. R. L. Sime, Phys. Perspect, 12 (2010), p. 190 - 218
39. R. L. Sime, Angew. Chem. 103, 1991, p. 956 – 967
Author
Dr. Susanne Rehn-Taube
Deutsches Museum
Museumsinsel 1
80538 München, Germany
ENERGY POLICY, ECONOMY AND LAW 207
Energy Policy, Economy and Law
The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 208
Das 15. Deutsche Atomrechtssymposium:
Eine Standortbestimmung
Ulrike Feldmann
Vom 12. bis 13. November 2018 fand in Berlin auf Einladung des Bundesumweltministeriums das 15. Deutsche
Atomrechtssymposium (DARS) statt. Die wissenschaftliche Leitung der mit ca. 170 Teilnehmern gut besuchten
Veranstaltung oblag wie bereits beim 14. DARS erneut Prof. Dr. Martin Burgi, LMU München.
Das Symposium war 4 Themenblöcken
gewidmet, u.z.:
1) den juristischen Perspektiven nach
dem Ausstiegsurteil des Bundesverfassungsgerichts
(BVerfG),
2) den aktuellen Rechtsfragen der
nuklearen Sicherheit,
3) dem Strahlenschutzrecht sowie
4) Fragen des Standortauswahlverfahrens.
Den Einführungsvortrag zum aktuellen
Atom- und Strahlenschutzrecht
hielt Jochen Flasbarth, Staatssekretär
im Bundesumweltministerium (BMU).
Einen großen Schwerpunkt seines
Vortrages betraf die Frage einer rechtssicheren
Stilllegung der Anreicherungsanlage
in Gronau sowie der
Brennelementfabrik in Lingen und
eines Exportverbots für Brennelemente.
Flasbarth machte keinen Hehl
aus seiner Überzeugung, dass er
sowohl die Stilllegung der beiden
Anlagen als auch das Exportverbot für
notwendig hält, und bedauerte, dass
nicht alle Bundesressorts diese Auffassung
teilen. Allerdings müsse man
der Bevölkerung ehrlich sagen, dass
auch bei Stilllegung der kerntechnischen
Anlagen in Gronau und Lingen
die ausländischen Kernkraftwerke
(KKW) weiter laufen würden. Einer
Laufzeitverlängerung für ausländische
KKW stehe das BMU im Übrigen
kritisch gegenüber. Flasbarth forderte
für diese Fälle eine grenzüberschreitende
UVP. Ferner kritisierte
Flasbarth, dass die EVU über ihre
gemeinsame Tochtergesellschaft, die
Gesellschaft für Nuklear-Service mbH
(GNS), mit der Abfallentsorgung
„auch noch Geld verdient haben“. Im
Auditorium konnte sich mancher Teilnehmer
des Eindrucks nicht erwehren,
dass hier der regulatorische und
moralisierende Staat wieder einmal
grüßen ließ.
Nach dieser unmissverständlichen
Standortbestimmung des Gastgebers
eröffnete Burgi die 1. Fachsitzung
und fragte in seinem Vortrag nach
„Ver änderte(n) Maßstäbe(n) für
Gesetzgebung und Verwaltungsvollzug
im Atomrecht“ und danach,
ob das Atomrecht als Referenzrecht
für andere Rechtsgebiete dienen
könne. Den Grund für veränderte
Maß stäbe sah Burgi in einer Änderung
der Sicherheitsphilosophie. In
Bezug auf den atomrechtlichen Verwaltungsvollzug,
bei dem, wie vielen
Lesern noch in Erinnerung sein wird,
der ehemalige Präsident des Bundesver
waltungs gerichts Prof. Dr. Horst
Sendler in einem Vortrag 1991 bereits
den „ausstiegsorientierten Gesetzesvollzug“
ausgemacht hatte, stellte
Burgi nun diesem Begriff noch einen
„Zwillingsbruder“ zur Seite, den
„ausstiegs beschleunigenden Gesetzesvollzug“,
den er mit den Worten
beschrieb: „Piesacken, bis der Betreiber
aufgibt“. Einer Umsetzung der geänderten
Sicherheitsphilosophie mit
Hilfe reiner Verwaltungsmaßnahmen
erteilte Burgi – weil verfassungswidrig
– eine klare Absage. Für gesetzgeberische
Maßnahmen wiederum, z.B.
zur Beschleunigung des „Kohleausstiegs“,
gebe das Urteil des BVerfVG
vom 6.12.2016 „keinen Rückenwind“.
Ein gesetzlich fixierter fester Abschalttermin
wirke wie eine Übergangsregelung
mit Bestandsschutz. Ein ausstiegsbeschleunigender
Gesetzesvollzug
kurze Zeit nach Festsetzung des
Abschalttermins sei unverhältnismäßig,
also verfassungswidrig, und
könne nicht durch Ausgleichsmaßnahmen
geregelt werden.
Im letzten Teil seines Vortrags
wandte Burgi sich der verfassungsrechtlichen
Beurteilung einer Beendigung
der Brennelementfertigung und
der Urananreicherung in Deutschland
zu. Er wies darauf hin, dass es hier
nicht wie bei Kernkraft- und Kohlekraftwerken
eine vorfindliche Rechtslage
gibt, sondern diese Anlagen über
unbefristete Genehmigungen verfügen.
Das Ziel, die Beendigung des
Betriebs dieser Anlagen, hielt Burgi
dagegen für legitim. Es handele sich
um Hochrisikotechnologieanlagen,
auch wenn Eintrittswahrscheinlichkeit
und Schadenshöhe als geringer
einzustufen seien als bei Kernkraftwerken
(KKW).
Als Ergebnis der verfassungsrechtlichen
Prüfung stellte Burgi fest, dass
bei einer Beendigung von Urananreicherung
und Brennelementfertigung
auf jeden Fall höhere Laufzeiten und
ein deutlich höherer Ausgleich als bei
der 13. AtG-Novelle erforderlich
seien. Insgesamt sei festzuhalten, dass
die Relevanz des Urteils des BVerfG
vom 6.12.2016 für jeden Fall gesondert
zu betrachten sei.
Prof. Dr. Thomas Schomerus,
Universität Lüneburg und Dr. Ulrich
Karpenstein, Redeker Sellner Dahs
Rechtsanwälte PartG mbB, befassten
sich in ihren nachfolgenden Beiträgen
ebenfalls mit der Frage der „Konsequenzen
für den Umgang mit
anderen Technologien“.
Schomerus untersuchte die Frage
„Kohleausstieg nach dem Muster
des Atomgesetzes?“. Er nannte als
Parallelen bei der Umsetzung des
Kohleausstiegs die grundsätzliche
Vereinbarkeit mit EU-Recht sowie die
Qualifizierung von Stilllegungsregelungen
nicht als Enteignung,
sondern als Inhalts- und Schrankenbestimmung
gemäß Art. 14 Abs. 1 S. 1
GG und empfahl zur rechtlichen
Umsetzung ein Ausstiegsgesetz, das
insbesondere Laufzeitbefristungen
und zur Vermeidung einer Ausgleichspflicht
Übergangs- und Härtefallregelungen
enthalten solle. Für
empfehlenswert hielt Schomerus
ebenfalls einen „Kohlekonsens“ ähnlich
dem „Atomkonsens“.
Karpenstein stellte eingangs seines
Referates fest, dass auch Hochrisikotechnologien
grundrechtlichen
Schutz beanspruchen können. Dies
gelte erst recht für Unternehmen
ohne Hochrisikotechnologie bzw. für
Betriebe mit geringerem Risiko. Zwar
sei es richtig, dass der Gesetzgeber
frühzeitig Gefahren Rechnung tragen
solle, Grundrechtseingriffe bedürften
aber gleichwohl der Legitimierung.
Karpenstein betonte, der Rekurs auf
die Akzeptanz der Bevölkerung müsse
die absolute Ausnahme bleiben. So
habe es auch das Bundesverfassungsgericht
gesehen: Wo es nicht um
Hochrisikotechnologie gehe, dürfe die
Akzeptanz keine Rolle spielen. Das
Urteil vom 6.12.2016 zeige außerdem,
Energy Policy, Economy and Law
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
atw Vol. 64 (2019) | Issue 4 ı April
dass das BVerfG von einer Ausnahmestellung
des Atomrechts ausgehe und
dieses Urteil keine „Blaupause“ für
andere Technologien sei. Bei Technologien
wie der Kohleverstromung
oder der nuklearen Brennstoffversorgung
müsse sich das Verfassungsgericht
fragen, ob die Ausstiegsregelung
nicht eigentlich nur als
Symbolpolitik gemeint sei. Die
vom Bundesumweltministerium angestrebte
Schließung der Brennelementfabrikation
und der Urananreicherung
ziele auf eine Schließung
bzw. zumindest eine Nichtbelieferung
von ausländischen KKW. Karpenstein
konstatierte dazu: „Dies ist europarechtlich
kein legitimes Ziel“. Die Angemessenheit
einer Stilllegung müsse,
darin sei er sich mit Schomerus einig,
genau geprüft werden. Zum Beispiel
habe das BVerfG im Falle eines Tagebaubetriebs
eine Beschränkung der
Nutzungsberechtigung auf 4 Jahre als
schwerwiegenden Eingriff betrachtet.
Letzter Redner des 1. Themenblocks
war Prof. Dr. Markus Krajewski,
Universität Erlangen-Nürnberg, mit
dem Thema „Investitionsschutzabkommen
als Grenze zukünftigen
Ordnungsrechts“. Nach Darstellung
der Grundzüge des internationalen
Investitionsschutzrechts und des uneinheitlichen
materiellen Rechts (z.B.
Art. 10 Abs. 1 Energiecharta-Vertrag
im Vergleich zu Art. 8.10 CETA-Abkommen)
sowie der aktuell bestehenden
Unklarheiten bzgl. der Fortentwicklung
des Investitionsschutzrechts
durch die und in der EU merkte
Krajewski zu dem Achmea-Urteil des
EuGH (Rs C-284/16) an, dass nach
diesem Urteil nicht klar sei, ob es nur
für Intra-EU-Investitionsabkommen
gelte oder auch auf andere Abkommen
wie dem Energiecharta-Vertrag
übertragbar sei. Konkret zum anhängigen
Schiedsverfahren von
Vattenfall in Washington über die
Verletzung des Energiecharta-Vertrags
durch die 13. AtG-Novelle wies
Krajewski darauf hin, dass einseitige
Abweichungen der Regierung von
konsensual mit der Industrie vereinbarten
Lösungen investitionsschutzrechtlich
die Frage aufwerfe, ob in
der Vereinbarung eine spezifische
Zusicherung zu sehen sei, deren
Änderung legitime Erwartungen der
Investoren enttäuscht habe. Unter
Hinweis auf Art. 10 Abs. 1 Energiecharta-Vertrag
erinnerte Krajewski
daran, dass eine Abwägung im
Investitionsschutzrecht letztlich über
das „Equity“-Gebot (Gebot der fairen
und gerechten Behandlung) zu treffen
sei.
In der anschließenden lebhaften
Diskussion unterstrich Prof. Dr.
Michael Eichberger, Richter am
BVerfG a.D., der Berichterstatter im
Streitverfahren über die 13. AtG-
Novelle war, die Auffassung von
Burgi, durch das „Ausstiegsgesetz“
von 2002 habe es eine Vorfindlichkeit
der Rechtslage gegeben; ebenso sei
richtig, dass der Inhalt der Eigentumsund
Schrankenbestimmung in Art.
14 GG durch die Vorfindlichkeit
bestimmt werde. Zu der Frage, ob die
geänderte Risikowahrnehmung der
Bevölkerung ein hinreichender tragfähiger
Grund für einen Grundrechtseingriff
sei, stellte Eichberger unter
Zitierung von Satz 3 in Rdn. 308 des
Urteils vom 6.12.2016 fest, das BVerfG
habe hier sehr vorsichtig formuliert.
Das Urteil solle kein „Freibrief“ sein
für andere Fälle.
Karsten Möring, MdB und Berichterstatter
der CDU/CSU zur 16. AtG-
Novelle, zeigte sich irritiert über den
Begriff der Hochrisikotechnologie.
Seine Frage, wieweit dieser Begriff,
der auch bei der Brennelementfabrikation
und der Anreicherung eine
Rolle spiele, konkretisiert worden sei,
ließ Eichberger bewusst unbeantwortet.
Er wolle einzelne Teile des
Urteils, also auch den Begriff der
Hochrisikotechnologie nicht rechtfertigen.
Prof. Dr. Ferdinand Kirchhof,
Vizepräsident des Bundesverfassungsgerichts
a.D. (ab 30.11.2018), hielt es
dagegen für angezeigt, zu dem Begriff
anzumerken, dieser solle den Vertrauensschutz
in seiner geschichtlichen
Entwicklung beschreiben. Burgi ließ
es in seiner Entgegnung dahin gestellt
sein, ob dieser Begriff ein zentraler
Punkt des Urteils sei, jedenfalls brauche
man ihn nicht, um den Kohleausstieg
zu rechtfertigen. In Bezug
auf den Diskussionsbeitrag von Dr.
Manfred Rebentisch, Clifford Chance
LLP, bei der Kohle gehe es nicht um
Gefahrenabwehr, sondern um Vorsorgeanforderungen,
die unter dem
Verhältnismäßigkeitsgebot stünden,
merkte Prof. Dr. Sabine Schlacke, Universität
Münster, an, dass der Wandel
des Klimas, das durch Art. 20a GG
geschützt sei, ein legitimer Zweck des
Kohleausstiegsgesetzes sei, und wies
auf das vor dem OLG Hamm anhängige
Verfahren des peruanischen
Bauern gegen RWE hin, in dem das
Gericht davon ausgehe, dass der
Mitverursachungsanteil von RWE am
Abschmelzen des Palcaraju- Gletschers
in Peru und an der Gefahr einer Überflutung
des am Gletscher liegenden
Hausgrundstücks des Klägers 0,47 %
betrage.
Den Einwand von Dr. Christian
Müller-Dehn, PreussenElektra GmbH,
bzgl. der Einschätzung von KKW
als Hochrisikotechnologie, es seien
extrem hohe Anforderungen an die
Betreiber von KKW zwecks Risikominimierung
gestellt worden, so
dass das verbleibende probabilistische
Risiko mit anderen Technologien vergleichbar
sei, ließ Burgi nicht gelten.
Es gebe kein Indiz im Urteil vom
6.12.2016 dafür, dass der Grundrechtsschutz
des Betreibers eines
KKW höher oder zumindest gleichwertig
dem eines Betreibers anderer
Technologien sei.
Kirchhof kommentierte die Diskussion
mit der Feststellung, es handele
sich um eine typisch deutsche Diskussion,
und riet, „unser Ei nicht immer
im Verfassungsrecht zu suchen“.
Der zweite Tag der Veranstaltung
startete mit dem 2. Themenblock
„ Aktuelle Rechtsfragen der nuklearen
Sicherheit“.
Prof. Dr. Martin Beckmann, Baumeister
Rechtsanwälte Partnerschaft
mbH, untersuchte die Kriterien für
eine „Grenzüberschreitende Umweltverträglichkeitsprüfung
(UVP)
bei Laufzeitverlängerung“ von nuklearen
Zwischenlagern in Deutschland
und von ausländischen KKW. Er wies
darauf hin, dass Aufbewahrungs genehmigungen
in deutschen Zwischenlagern
auf 40 Jahre befristet seien, so
dass angesichts fehlender Endlagermöglichkeiten
eine Still legung der
Zwischenlager keine Option sei und
daher sehr zeitgerecht über eine Laufzeitverlängerung
(als Verlängerung
der Genehmigungsfrist oder ggf. auch
als Änderung einer Genehmigungsauflage)
entschieden werden müsse.
Bezüglich der Frage der Notwendigkeit,
eine grenzüberschreitende UVP
durchführen zu müssen, erläuterte
Beckmann, dass die für eine grenzüberschreitende
UVP beachtliche
Schwelle der erheblichen Umweltauswirkungen
dem Maßstab der Vorprüfung
bei Neuvorhaben nach § 7
Abs. 1 S. 2 UVPG („erhebliche nachteilige
Umweltauswirkungen“) entspreche.
Eine grenzüberschreitende
UVP bei Laufzeitverlängerung sei nicht
erforderlich, wenn das Vorhaben
nach Einschätzung der Behörde keine
erheblichen nachteiligen Umweltauswirkungen
haben könne oder wenn
erhebliche Umweltauswirkungen nicht
grenzüberschreitend seien. Bei ausländischen
KKW, wovon es ca. 120
KKW in den 14 deutschen Nachbarstaaten
gebe, hänge die Erforderlichkeit
einer grenzüberschreitenden UVP
u.a. davon ab, ob der Projektbegriff der
ENERGY POLICY, ECONOMY AND LAW 209
Energy Policy, Economy and Law
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 210
UVP-Richtlinie erfüllt sei (wird von
Beckmann verneint) oder ob jedenfalls
der Maßnahmebegriff der Espoo-
Konvention angenommen werden
könne. Fazit bei ausländischen KKW:
Man müsse im Einzelfall prüfen, wie
die Genehmigung des betreffenden
KKW geregelt sei.
Gregor Franßen, Heinemann &
Partner Rechtsanwälte – PartnerschaftsG
mbB, beschäftigte sich
anschließend mit „Rechtsschutz und
Beweislast in multipolaren Rechtsverhältnissen“.
Den Hintergrund
dieses Beitrags bilden Verwaltungsgerichtsverfahren,
in denen über den
Zugang zu entscheidungserheblichen
Informationen sowie über die prozessualen
Folgen für das Hauptsacheverfahren
im Falle des zu Recht
verweigerten Zugangs gestritten wird.
Franßen erläuterte die Defizite der
aktuellen Rechtslage (§§ 99, 100
VwGO) anhand atomrechtlicher
Streitverfahren, bei denen es um die
Verweigerung von in der Regel
geheimhaltungsbedürftigen Informationen
gehe, die den gesetzlich als
Zulassungsvoraussetzung geforderten
Schutz gegen Störmaßnahmen und
sonstige Einwirkungen Dritter
(SEWD) sicherstellen sollen. Zur
Klärung der behördlichen Verweigerung
des Informationszugangs sehe
§ 99 Abs. 2 VwGO ein „In- camera“-
Zwischenverfahren vor. Werde die
Verweigerung des Zugangs bestätigt,
werde der Kläger, der den Zugang
begehre, in seinem Grundrecht auf
effektiven Rechtsschutz beschränkt.
Im umgekehrten Falle werde die
geheimhaltungsbedürftige Information
dem Gericht bekannt und gelange
über § 100 VwGO zur Kenntnis des
Klägers. Damit werde das öffentliche
Geheimhaltungsinteresse, das Geheimhaltungsinteresse
des Genehmigungsinhabers
wie auch der verfassungsrechtlich
gebotene Schutz von
Grundrechten Dritter im potentiellen
Einwirkungsbereich der betroffenen
kerntechnischen Anlage konterkariert.
Ein Bekanntwerden sicherheitsrelevanter
SEWD-Informationen
gefährde die Sicherstellung des erforderlichen
Schutzes. Unter Hinweis auf
den Beitrag von Dr. Dieter Sellner zum
„In-camera“-Verfahren in Bezug auf
geheimhaltungsbedürftige Informationen
mit hohem Risikopotential
(EuRUP 2018, S. 100 ff) schlug
Franßen als Lösung ein „In- camera“-
Hauptsacheverfahren vor. Komme das
Hauptsachegericht dabei zu dem
Ergebnis, die Informationen seien zu
Recht verweigert worden, erhalte es
zwar die Informationen für seine
Entscheidungsfindung im Hauptsacheverfahren,
dem Kläger sei der
Zugang zu diesen Informationen
jedoch zu verweigern. Im umgekehrten
Fall sei dem Kläger der Informationszugang
zu gewährleisten.
Als letzter Redner des 2. Themenblocks
wandte sich Prof. Dr. Martin
Kment, Universität Augsburg, den
„Herausforderungen an die Rechtsetzung
durch untergesetzliches
Regelwerk (v.a. Legitimation und
Zugänglichkeit)“ zu. Kment skizzierte
das vorhandene untergesetzliche
Regelwerk im Atomrecht und die
Rechtsprechung des Bundesverwaltungsgerichts
zur Qualifizierung
normkonkretisierender Verwaltungsvorschriften
im Technik- und Umweltrecht
sowie zur eingegrenzten
Überprüfbarkeit der behördlichen
Risikoermittlung und Risikobewertung
durch die Gerichte.
In der Diskussion bezweifelte
Annette Pütz, BMU, ob es heute
tatsächlich noch so sei, dass nur
Standards im Technik- und Umweltrecht
festgelegt würden. Eher sei es
heutzutage so, dass Gesundheitsstandards
festgelegt würden, und
zwar von der Industrie. Der Zugang zu
den technischen Normen sei im
Übrigen teilweise schwierig. Die
Etablierung von Normen durch den
DIN sei fraglos sinnvoll. Jedoch
bestünden im BMU extreme Schwierigkeiten,
mit diesem Regelwerk zu
arbeiten.
Dr. Dörte Fouquet, Becker Büttner
Held PartGmbB, wies in Bezug auf
den Vortrag von Beckmann auf die
Fülle von Klageverfahren in Belgien
gegen die Laufzeitverlängerungen für
die belgischen KKW hin. Fouquet
bemängelte, dass diese Verfahren
ohne UVP in Belgien und ohne grenzüberschreitende
UVP stattgefunden
hätten. Beckmann merkte dazu an,
dass die belgischen KKW über unbefristete
bestandskräftige Genehmigungen
verfügten. Dies sei Fakt und
müsse man akzeptieren.
Prof. Dr. Tobias Leidinger, Luther
Rechtsanwaltsgesellschaft mbH, fragte,
was mit der Einschätzungsprärogative
der Exekutive sei und wer im
demokratischen Rechtsstaat die Verantwortung
für das Risiko trage. Nach
der Rechtsprechung des Bundesverfassungsgerichts
(„Kalkar“-Entscheidung)
trage eindeutig die Exekutive
die Verantwortung, die auch abschließend
die bei SEWD-Ereignissen
unterstellten Tatmittel definieren
müsse, die von der Judikative zu
beachten seien. Leidinger mahnte
an, dass die Gerichte einen klaren
Maßstab benötigten, ansonsten
komme man „in der Praxis nie zu einer
bestandskräftigen Genehmigung“.
Franßen stellte dazu fest, nach
Auffassung des Bundesverwaltungsgerichts,
für die er allerdings kein
Verständnis habe, unterlägen die geheimhaltungsbedürftigen
Tatmittel
der vollen gerichtlichen Überprüfung,
und fragte, wie Geheimhaltung einerseits
und Überprüfung andrerseits in
der Praxis funktionieren sollen.
Kment bemängelte die Störung der
Normsetzung durch politische Prozesse,
da sich Exekutive, Legislative
und Judikative zurückzögen. Er forderte
die Verwaltung auf, wieder ihrer
Aufgabe gerecht zu werden. Private
füllten nur die Lücken aus, die die Verwaltung
ihnen lasse.
Der 3. Themenblock widmete sich
dem „Strahlenschutzrecht“ und
wurde mit dem Übersichtsvortrag von
Dr. Goli-Schabnam Akbarian, BMU,
eröffnet. Da die Rednerin im diesjährigen
Januar-Heft der atw bereits
selbst zum neuen Strahlenschutzrecht
zu Wort gekommen ist, wird an dieser
Stelle deshalb auf weitere Ausführungen
zum Vortrag verzichtet.
Prof. Dr. Thomas Mann, Universität
Göttingen, befasste sich mit
„ Einwirkungen des Strahlenschutzrechts
auf andere Bereiche des
Ordnungsrechts“. Mann begann
seinen Vortrag mit einem kleinen
Paukenschlag, indem er den Umfang
des neuen Strahlenschutzrechts mit
dem Umfang des Werkes „Felix Krull“
seines Namensvetters verglich,
jedoch das neue Strahlenschutzrecht
nicht für nobelpreiswürdig hielt. Er
konstatierte, regulatorische Konflikte
zwischen StrlSchG und anderen
Bereichen des Ordnungsrechts seien
unausweichlich, da im StrlSchG auch
Parallelregelungen zum allgemeinen
Umweltrecht getroffen würden, z.B.
in § 95 StrlSchG, der eine Ermächtigung
für ergänzende Regelungen zum
Kreislaufwirtschaftsgesetz vorsehe.
Das StrlSchG schaffe außerdem einen
anderen Abfallbegriff und diene
damit nicht der rechtstechnischen
Vereinfachung. Der Altlastenbegriff
sei im StrlSchG ebenfalls anders als
im Bodenschutzgesetz und im Bundes-
Immissionsschutzgesetz geregelt. Da
der Altlastenbegriff jedoch eine
Prognoseentscheidung enthalte, sei es
insoweit richtig, von einem Referenzwert
auszugehen und nicht von einem
Grenzwert. Die bundesrechtlichen
Umweltfachgesetze könnten allerdings
modifiziert und die strahlenschutzrelevanten
Regelungen im
StrlSchG konzentriert werden, so dass
Energy Policy, Economy and Law
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
atw Vol. 64 (2019) | Issue 4 ı April
dieses insoweit lex specialis werde. In
den Fachbereichen mit Gesetzgebungszuständigkeit
der Länder werde
dagegen der Verwaltungsvollzug
weiterhin grundsätzlich durch Landesrecht
geregelt. Hier greife das „Verzahnungsmodell.
Der Bund erhalte
über das StrlSchG Verordnungsermächtigungen
und Ermächtigungen
für Notfallvorsorge/Notfallpläne,
um durch materielle Vorgaben eine
einheitliche Verwaltungspraxis zu
erreichen. Notfallschutzregelungen
im Bereich des Strahlenschutzes fielen
als ungeschriebene Annex- Kompetenz
regeln in die Kompetenz des
Bundes und sollten daher, so Mann,
nach der Rechtsprechung des BVerfG
keinen verfassungsrechtlichen Bedenken
begegnen.
Gerrit Niehaus, Umweltministerium
Baden-Württemberg, erläuterte
in seinem Beitrag „Entlassung von
Gegenständen aus der atomrechtlichen
Überwachung beim Abbau
von Kernkraftwerken“, dass im
neuen Strahlenschutzrecht mit der
Freimessung nicht mehr zeitgleich
eine Entlassung als radioaktiver Stoff
aus dem Strahlenschutzregime vorgesehen
sei. Ferner wies Niehaus auf
§ 33 Abs. 4 StrlSchG hin, der in Erweiterung
des bisherigen Rechts
zulässt, die Beendigung der staatlichen
Aufsicht mit einer Bedingung,
einem Vorbehalt des Widerrufs oder
einem Vorbehalt der nachträglichen
Aufnahme, Änderung oder Ergänzung
einer Auflage zu verknüpfen. Zum
Abbau von KKW stellte Niehaus fest,
das Abbaugenehmigungsregime könne
festlegen, dass und wie neben der
Freigabe Stoffe aus der Anlagenüberwachung
herausgegeben werden
könnten, soweit eine Aktivierung und
Kontamination ausgeschlossen sei.
Nach Beantragung des Abbaus sei
für Veränderungsgenehmigungen zur
Einschränkung des Anlagebegriffs
kein Raum mehr. Der Abbau ende,
wenn die nukleare Last beseitigt sei
und die notwendigen Freigaben und
Herausgaben im Rahmen des Abbauregimes
erfolgt seien. Zu der Frage,
welcher Anlagenbegriff – der (inzwischen
stark gewandelte) materielle
oder der formelle Anlagenbegriff –
zugrunde zulegen sei, bemerkte
Niehaus, dass nach seiner Auffassung
beim Abbau beide Begriffe zugrunde
gelegt werden müssten.
Im Anschluss an den Vortrag von
Niehaus kamen zum Thema „Freigabe
radioaktiver Stoffe – Rechtsund
Vollzugsfragen aus Betreibersicht“
Dr. Andreas Schirra und Dr.
Alexander Nüsser, PreussenElektra
GmbH, zu Wort. Sie begrüßten, dass
auch das neue Strahlenschutzrecht
am 10-Mikrosievert-Konzept festhalte
und die Freigabe nach Tabellenwerten
erfolge. Die neue Begründung zeige
allerdings, dass der Gesetzgeber verhindern
wolle, dass eine Beweislastumkehr
zugunsten des Antragstellers
angenommen werde. Jedoch bliebe
es bei der Vermutungswirkung der
Tabellenwerte und bei der Freigabe
als einer gebundenen Entscheidung:
Bei Einhaltung dieser Werte sei
weiter hin die Freigabe zu erteilen,
wenn nicht triftige Gründe dagegen
sprächen. Weiterhin sei auch die
Möglichkeit des Einzelfallnachweises
gegeben. Klarstellend betonte
Schirrer, dass das Dosiskriterium kein
Grenzwert sondern ein „Trivialwert“
sei, so dass auch andere Maßstäbe als
bei einem Grenzwert herangezogen
werden dürften. Zu § 33 Abs. 3
StrlSchV stellte Schirrer fest, dass der
Gesetzgeber mit dieser Vorschrift eine
teilweise in den letzten Jahren geübte
Praxis gesetzlich fixiere. Zu der Regelung
in § 33 Abs. 4 StrlSchV merkte
Schirrer an, dass zwar die Rücknehmbarkeit
einer rechtswidrigen Freigabe
nach allgemeinen Rechtsgrundsätzen
immer möglich sei, dass aber die Freigabe
einen statusändernden Verwaltungsakt
darstelle, zu dessen
Natur ein Widerruf im Grunde im
Widerspruch stehe. Trotz des Wortlauts
des § 33 Abs. 4 StrlSchV komme
ein Widerruf daher nur in besonderen
Fällen in Betracht.
In der Diskussion betonte Dr.
Renate Sefzig, BMU, dass mit der Ausweitung
der Paragraphen zur Freigaberegelung
keine Änderung bei der
Freigabe intendiert gewesen sei. Eine
Freigabe zur Untertagedeponierung
z.B. sei weiterhin im Einzelfall
möglich. Die Erweiterung der
Paragraphen zur Freigabe sei eine
Folge der formalen Anforderungen
des Bundesjustizministeriums.
Den nachfolgenden Vortrag „Aufsicht
und Öffentlichkeitsbeteiligung
im Rahmen der Standortauswahl
als integrative Aufgabe des
BfE“ hielt die Vizepräsidentin des BfE
Dr. Silke Albin anstelle des im Programm
angekündigten Präsidenten
des BfE Wolfram König und eröffnete
damit den Reigen der Vorträge
des 4. Themenblocks „Fragen des
Standortauswahlverfahrens“.
Albin skizzierte die Neuorganisation
der Verantwortung in der kerntechnischen
Entsorgung, wies auf die
nunmehr klare Trennung von Aufsichts-
und Vorhabenträgerfunktion
hin, erläuterte die Aufsichtsfunktion
des BfE (Überwachung des Vollzugs
des StandAG) über die BGE GmbH
während des gesamten Standortauswahlverfahrens
sowie die neuen
ENERGY POLICY, ECONOMY AND LAW 211
Advertisement
Your Ad Here...
Format: 1/4 Landscape
For more information please contact:
Petra Dinter-Tumtzak
Phone +49 30 498555-30
E-mail petra.dinter@nucmag.com
Your Ad Here 179x60v1.indd 1 27.03.19 09:55
Energy Policy, Economy and Law
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
atw Vol. 64 (2019) | Issue 4 ı April
ENERGY POLICY, ECONOMY AND LAW 212
Standards, die das StandAG bei der
Öffentlichkeitsbeteiligung setze (z.B.
mobile Endlagerausstellung, Statuskon
ferenzen und insbesondere die Informationsplattform
nach § 6 StandAG
mit allen wesentlichen Unterlagen des
BfE und der Vorhabenträgerin zum
Stand ortauswahlver fahren). Albin betonte,
dass das BfE mit der Vorlage des
Konzepts der Öffentlichkeitsbeteiligung
in der Startphase noch über die Anforde
rungen des Stand AG hinausgehe.
Mit dem Öffentlichkeits beteiligungs
verfahren befasste sich ebenfalls
Prof. Dr. Wolfgang Durner,
Universität Bonn. Sein Vortragstitel
lautete „Das Beteiligungsverfahren
nach dem Standortauswahlgesetz
im Vergleich mit anderen Großvorhaben“.
In der gebotenen Kürze
zeichnete Durner die Entwicklung
der Öffentlichkeitsbeteiligungsvorschriften
in verschiedenen Vorschriften
wie dem VwVfG, der
9. BImSchV, dem BauGB und vor
allem dem NABEG (Netzausbaubeschleunigungsgesetz)
nach und zog
die erhellende Quintessenz aus den
Erfahrungen mit der Anwendung
dieser Vorschriften – keine nennenswerte
Minderung der Widerstände
gegen die untersuchten Großvorhaben
durch zusätzliche Beteiligungsschritte
– , die er an den allgemeinen
Erkenntnissen der Partizipationsforschung
spiegelte. Das NABEG habe
weder eine Beschleunigungswirkung
noch eine Befriedungswirkung in
der Öffentlichkeit erzielt. Die Politik
habe außerdem über die zuständige
Behörde hinweg eigenmächtig Entscheidungen
getroffen, die den Aufgaben/Zielen
des NABEG diametral
entgegengesetzt gewesen seien. Auch
sei der Umfang der vorgesehenen
Beteiligungselemente zu groß gewesen,
und zu viele Gremien seien
beteiligt gewesen, die untereinander
auch noch konkurriert hätten. Zudem
seien die Erkenntnisse der Partizipationsforschung
außer Acht gelassen
worden. Dazu gehöre, dass der Staat
nichts versprechen solle, was er nicht
halten könne. Suggeriert werde aber
durch die Mitgestaltung des Verfahrens
auch eine Mitentscheidung
der Bürger. Jedoch könne der Rechtsstaat
solche Erwartungen nicht
erfüllen. Ziel müsse sein, ein Ergebnis
zu finden, mit dem die Betroffenen
„leben“ könnten. Ein Verfahren, das
vermutlich Jahrzehnte dauern werde,
führe schwerlich zu Akzeptanz.
„ NIMBY“ könne dabei leicht zu „not
in my lifetime“ mutieren. Auch müsse
die Akzeptanz ständig neu mit
den Beteiligten „erarbeitet“ werden.
Durner unterstrich, dass eine aktive
und mutige politische Entscheidung
vonnöten sei. „Wo ein Kompromiss
unter Verantwortlichen nicht zu
finden ist, wird er auch in einem
Beteiligungsverfahren nicht erreicht
werden“, schloss Durner.
Der 3. Beitrag zur Öffentlichkeitsbeteiligung
kam von Dr. Peter Hocke,
Institut für Technikfolgenabschätzung
und Systemanalyse am KIT, der
zusammen mit seiner Kollegin Dr.
Sophie Kuppler den Vortrag „Die
Beteiligung der Öffentlichkeit bei
der Suche nach einem Endlager:
Ein problemorientierter Blick in die
Schweiz“ vorbereitet hatte. Die
Endlagerung radioaktiver Abfälle sei
ein technisch und sozial komplexes
Thema, bei dem die Entscheidungsträger
schwerlich Anerkennung für ihr
Handeln und ihre Entscheidungen
finden könnten. Mit einer Standortentscheidung
werde eine „Last“ übernommen,
die keine „Win-win“-Situation“
erlaube. Hocke schilderte die
Öffentlichkeitsbeteiligung in der
Schweiz, wie sie seit Mitte des letzten
Jahrzehnts erfolgreich in der Schweiz
durchgeführt werde. Dazu gehöre u.a.
: Abstimmung des „Sachplans“ auf
Bundesebene unter umfänglicher
Beteiligung der Öffentlichkeit; Einrichtung
von Regionalkonferenzen,
Ausschuss der Kantone, Forum Tiefenlager
zum Austausch von Argumenten
und unterschiedlichen Problemwahrnehmungen
und Positionen; Eingrenzung
von Standortgebieten, die ohne
großen öffentlichen Protest erfolgt
sei, nachdem einige wenige zentrale
Forderungen der nuklearkritischen
Öffentlichkeit erfüllt worden seien;
mehr deliberative, d.h. vermehrt
auf konsultative Öffentlichkeitsbeteiligung
und diskursiv angelegte
politische Kultur zielende Endlager-
Governance statt Endlager-Management.
Verschiedene Spannungsfelder
seien gleichwohl bestehen geblieben
(unterschiedliche Erwartungen an die
eingesetzten Beteiligungsformate,
keine inhaltliche Beratung von Erwartungen
an Entscheidungskriterien
z.B.). Aus sozialwissenschaftlicher
Sicht nannte Hocke als Fazit das
„selbst-lernende Verfahren“, wie es
auch das StandAG vorsehe: End lager-
Governance werde auf neue wissenschaftliche
Entwicklungen, Änderungen
gesellschaftlicher Erwartungen
und auch neues Behördenhandeln
reagieren müssen. Diese geforderte
Flexibilität betreffe auch die Rechtsentwicklung.
Im letzten Beitrag des Atomrechtssymposiums
wandte sich Prof.
Dr. Sabine Schlacke den „Rechtsfragen
bei der Umsetzung der Öffentlichkeitsbeteiligung
einschließlich
Rechtsschutz“ zu. Schlacke monierte,
dass im Rahmen der in den §§ 17 Abs.
3 S. 3, 19 Abs. 2 S. 6 StandAG geregelten
und über das Umweltrechtsbehelfsgesetz
hinausgehenden Klagebefugnis
der Regionalkonferenz kein
eigenes Klagerecht zugewiesen werde.
Damit werde ihrer Wächterfunktion
nicht ausreichend Rechnung getragen.
Schlacke wies ferner auf den unterschiedlichen
Umfang der Rügebefugnis
bzgl. des UVP-pflichtigen Bescheids
nach § 19 Abs. 2 S. 6 StandAG
(alle formellen und materiellen
Mängel des Bescheids können gerügt
werden) und dem die Standorte für
die untertägige Untersuchung feststellenden
Bescheid nach § 17 Abs. 3
S. 3 StandAG hin, bei dem lediglich die
Verletzung umweltbezogener Rechtsvorschriften
nach § 2 Abs. 1 S. 2
UmwRG gerügt werden könne. In
Bezug auf den gerichtlichen Kontrollumfang
erwartete Schlacke, dass das
Bundesverwaltungsgericht dem BfE
angesichts der Beurteilung technischwissenschaftlicher
und mit Unsicherheiten
behafteter Fragestellungen eine
Einschätzungsprärogative zugestehen
werde und sich die gerichtliche Kontrolle
insoweit nur auf ein Überschreiten
der Grenzen des dem BfE
eingeräumten Planungsermessens beschränken
werde. Insgesamt stellte
Schlacke dem StandAG mit seinem
erstmalig im deutschen Recht verankerten
phasenspezifischen Rechtsschutz
mit erweiterter Klagebefugnis
ein „gutes „Zeugnis“ aus. Das Gesetz
kombiniere „geschickt“ Interessenrechtsschutz
mit überindividuellem
Rechtsschutz.
Ob die von Schlacke erwartete Akzeptanzsteigerung
durch diese Rechtsschutzregelungen
und die Funktion
des Standortauswahlver fahrens, die
Richtigkeit der Standortentscheidung
zu indizieren, tatsächlich bewirken
wird, bleibt zu hoffen, erscheint insbesondere
vor dem Hintergrund des
Vortrags von Durner allerdings noch
längst nicht aus gemacht.
Das nächste Deutsche Atomrechtssymposium
soll, wie Flasbarth ankündigte,
bereits in 2020 stattfinden.
Author
Ulrike Feldmann
Berlin, Deutschland
Energy Policy, Economy and Law
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
atw Vol. 64 (2019) | Issue 4 ı April
Failure Analysis of the Jet Pumps Riser
in a Boiling Water Reactor-5
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza,
Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
The arrangement of a riser coupled with two jet pumps is an important element in the Reactor Recirculation Core
system of a Boiling Water Reactor. Its operational objective is to force the flow of water through the core for load variation
and for safety is to keep the core flooded. In order to avoid thermal stresses, they are supported in a flexible way. In
this case, the material expansion does not introduce stresses. The riser is only fixed at the upper zone welded at the
riser brace. An important concern happens when the assembly vibrates under a torsional mode around its longitudinal
axis. Under these conditions, helical cracks can be initiated at the riser brace weld. In this paper, a methodology for the
evaluation of the structural integrity of the cracked riser is presented. It is considered that failure can take place in a
brittle or in a ductile manner. For its evaluation, such cracks are projected along the axial and circumferential axis and
evaluated in both conditions. In the first case, Fracture Mechanics are used. The ductile failure is evaluated applying the
Collapse Limit Load analysis. The allowable crack length was determined when the flow through the core varied between
95% and 107%. These analyses were carried out when one or two recirculation circuits were in operation. In
order to demonstrate the application of these results, three cases were analyzed. The results were evaluated with the
Failure Assessment Diagram R6.
213
OPERATION AND NEW BUILD
1 Introduction
The Reactor Recirculation Core System
in a Boiling Water Reactor (BWR) plays
an important role. It induces a forced
flow of water through the core to
increase the power density and the
safety function is to provide coolability
for the core to maintain the water level
at two thirds of the height of the core.
There are twenty jet pumps in a
BWR-5. They are arranged in ten pairs
in the annular region between the
inner wall and the core shroud.
Each pair is joined with a riser pipe
(Figure 1).
In order to avoid thermal expansion
stresses, this arrangement is
supported in a flexible way. In other
words, the upper part of the riser is
stiff welded to a flexible brace, which
is clamped on the inner surface of the
reactor vessel. The bottom of the riser
is joined with an elbow, which connects
this arrangement to a circular
manifold. Besides, the bottom of each
jet pump has a slip joint. Thus, axial
displacement can take place without
any restriction. It has to be kept in
mind, that the two pumps and the
riser are joined by a joke. The stiffness
is increased while the three elements
are maintained together by such joke.
However, this stiffness is reduced
when wear of the wedge of the joke
has taken place. The worst condition
is when such wedge is completely
loosen.
The jet pumps are subjected to an
internal flow and an external cross
flow of water. Therefore, structural
vibrations are exacerbated when the
jet pumps are not completely tight. If
this situation arises, the weld at the
| | Fig. 1.
BWR-5 3-D view and detailed view of the jet pump section.
riser brace has to support the fatigue
loads which are developed. In the
open literature [1], it has been reported
that a 6.6 inch crack was developed
at the riser, close to the weld of the
riser of a brace of the unit 1 of the
Kousheng Nuclear Power Plant. It was
during the 16 nd outage in March of
2003.
In a 2014 work [2], the first five
modes of vibration were calculated. It
was observed that the fourth mode is
torsional around the axial axis of the
riser. Its resonance frequency is
43.4 Hz, which can induce helicoidal
cracks at the zone of the welds mentioned
above. These calculations were
done with SAP 2000 code [3]. In this
analysis, the mass of the riser and
the two jet pumps was considered.
Besides, the mass of water inside and
outside of this arrangement was also
taken into account. The considerations
for this purpose were based on
the works of Blevins [4]. The flexibility
of the bends, which took place
during its ovalization, was introduced.
The stiffness matrix was modified.
The boundary conditions at the riser
brace, riser bracket and slip joint were
introduced in the numerical model.
For the purpose of this work, a helical
crack was analyzed.
This analysis was also carried out
with ANSYS 14.5 code. The same
mode was obtained at 39.5 Hz,
following the same considerations.
These results are in agreement with
those reported by Stevens and
coworkers [5].
The analysis of potential cracks in
jet pumps has attracted attention [6].
Information on potential failure
locations in BWR/3-6 jet pumps is
provided in this document. Fatigue
and Intergranular Stress Corrosion
Cracking plays an important role.
Such document also mentions that
Operation and New Build
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5
ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
atw Vol. 64 (2019) | Issue 4 ı April
OPERATION AND NEW BUILD 214
significant cracking can be tolerated
without loss of essential jet pump
safety functions. Therefore, it is
important to evaluate the remaining
structural integrity when a riser is
cracked.
2 Statement
of the problem
The development of helical cracks at
the weld between the riser and the
riser brace compromise the structural
integrity of the jet pumps. Therefore,
it is very important to evaluate the
critical size of a crack that could
be tolerated, before a complicated
reparation has to be introduced. It can
be considered that the failure can be
in the range of brittle and ductile
conditions. So, a methodology which
considers both conditions of failure is
required.
3 Materials and methods
In order to obtain the critical size of
the crack, the loads applied on the jet
pump arrangement were evaluated.
The hydrodynamic loads are included.
It has to keep in mind that aging could
take place as hours of operation are
accumulated. For this purpose, brittle
and ductile failures were evaluated
with fracture mechanics and net
section collapse analysis approaches,
respectively. Then, these results were
compared against those obtained with
Failure Assessment Diagrams.
The hydraulic loads considered,
were the following: by cross flow, the
impulse loading of the pump of the
Reactor Recirculation Core (RRC)
system and the vibration induced by
fluid flow (fatigue). In the last case,
the dynamic loads are generated by
the bend located at the lower end of
the riser, the ram head at the top of
the riser and the mixer of the jet
pump. The thermohydraulic analysis
was carried out with the RELAP/
SCDAPSIM code [7, 8].
Another source of vibration are the
dynamic loads from strong earthquakes.
However, strong earth quakes
are not a source of fatigue because of
these events do not happen everyday
at the same place. Summarizing, it is
important to evaluate the impact of
the dynamic loads which will take
place on the structural integrity of the
jet pumps.
3.1 Cross flow
The simplified method, described in
the Part N1324.1 “Avoiding Lock-In
Synchronization” of Section III of the
ASME Code [9], was followed. Initially,
the Vortex Shedding frequency is
calculated with the following relationship.
(1)
Where: S is the Strouhal number
and it is a function of the Reynolds
number, U is the velocity of the cross
flow and D is the lower diameter of the
assembly of the jet pumps. The calculations
show that the Vortex Shedding
frequency was 10.7 Hz. In accordance
with the criterion of the ASME code
mentioned above, 1.3f s must be lower
than the first natural frequency
(26.3 Hz), in order to avoid “Lock-In
Synchronization” with the first mode.
So, as a conclusion, cross flow vibration
resonance did not take place.
3.2 Impulse loading of the
pump of the external
Reactor Recirculation Core
(RRC) system
In accordance with the open literature
[10, 11, 12], the centrifugal pump
of each circuit of RRC operates at
1,800 RPM. As a result, its frequency
is 30 Hz. The impeller of the centrifugal
pump has five blades. Therefore,
the impulse frequency is 5 (30 Hz) =
150 Hz. If this parameter is compared
with the range of the first 5 natural
frequencies (26.3 Hz – 67 Hz), it can
be concluded that resonance in operation
is not induced.
3.3 Flow-Induced Vibration
(fatigue)
The sources of fatigue on the jet pump
arrangement are the dynamic forces
and moments generated by the internal
flow of water.
Forces at the lower elbow of the riser:
These forces are generated by the inlet
flow of water at the elbow of the riser.
They were calculated by the following
relationships (Figure 2):
(2)
(3)
ρ is the water density. p 1 and p 2 are the
pressures at the inlet and outlet of the
bend, respectively. A 1 and A 2 are the
cross sections at the inlet and outlet of
the bend and θ is the angle of the
bend. For a 90° elbow, the forces
are resulting. F x = 15,500 lb and
F y = 15,500 lb horizontal and vertical
respectively.
Forces over the mixer nozzles of the
jet pumps (Figure 3): This force is
| | Fig. 2.
Forces on the bend.
| | Fig. 3.
Forces on the bend.
| | Fig. 4.
Forces generated by the ram head over the riser.
developed by the flow discharge,
which comes from the Reactor Recirculation
Core System, and is mixed
with the suctioned flow of the condensed
steam. The vertical force is:
(4)
ΔP is the differential pressure and A i is
the cross section of the nozzle. For the
jet pump assembly under study are
186.7 pound/inch 2 and 26.1 inch 2 ,
respectively. So, the resultant force is
4881 pounds upwards.
Forces generated by the ram head
over the riser (Figure 4): The vertical
loads over the riser, which are generated
by both elbows of the ram head,
were calculated with the following
equation:
(5)
F y is the vertical force, ρ is the water
density, p 1 and p 2 are inlet and outlet
Operation and New Build
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
atw Vol. 64 (2019) | Issue 4 ı April
pressure at the elbow, A 1 and A 2 are
cross sections of the inlet and outlet of
elbow, v 1 and v 2 are the flow velocities
at inlet and outlet of the elbow and Q
is water flow.
| | Fig. 5.
Resulting forces.
The upper load generated by the
change of direction of the flow of water
through one of the elbows is 12217.
2 pounds. The total force, which is
generated by the couple of elbows of
the “ram head,” is 24434.4 pounds.
The resultant moment was calculated
with SAP 2000 resulting 19496
pound-inch. The resultant forces are
illustrated in the Figure 5.
3.4 Vibration induced
by earthquake
Regarding the dynamic loads that
take place during an earthquake, the
response spectrum for a Safe Shutdown
Earthquake (SSE) and the
Operational Basis Earthquake (OBE)
were obtained. The criterion of 1.60
USNRC was followed [13]. In both
cases, the first natural frequencies of
the jet pump arrangement are above
20 Hz. Besides, the peaks of such
response spectrum are in the range
between 2 Hz and 8 Hz. The first five
natural frequencies are close to 33 Hz,
which is the zone of Zero Period
Acceleration (ZPA). Therefore, the
seismic loads should not affect the
structural integrity of the jet pumps
and these events are not related with
fatigue.
4 Failure analysis
4.1 Determination of the
allowable crack length
on the riser
For this purpose, an initial helical
crack length is postulated as an
envelope to cover horizontal and
vertical cracks (Figure 6). Then, it is
| | Fig. 6.
Determination of the allowable crack length
on the riser.
increased by steps until the maximum
permissible length is reached. The
following considerations apply.
pp
The evaluation of the loads showed
that the hydraulic forces are
relevant to determine the structural
integrity.
pp
As a critical case that helical cracks
are generated at the weld of the
riser brace, arising when the jet
pumps vibrate under a torsional
mode. In order to analyze this sort
of cracks, the Section XI of the
ASME code [14] is applied to evaluate
the crack along the axial and
circumferential projection, as it is
illustrated in the following Figure.
pp
The recirculation system varies the
flow through the core. In this way,
the power density of the reactor
changes. Therefore, the range of
the variation of the flow of water is
considered to be between 95 % and
107 %.
pp
Fragile and ductile failures should
be evaluated to cover all the aging
steps from ductile for the initial
condition for stainless steel to
fragile when neutron fluence
produces embrittlement of the
material.
4.1.1 Axial crack
Fracture mechanics analysis (brittle
failure): Initially, the permissible axial
crack length was evaluated. In this
case, equation 1.1, Vol. 2, Pag. 6.1-1
(through wall crack) [15] was considered.
This equation is valid when
is in the range 0 < λ ≤ 5 and
(6)
(7)
(8)
(9)
is the stress intensity factor in mode I.
σ is the circumferential stress and
depends on the mean radius. P and t
are the internal pressure and the
thickness, respectively. The half crack
length is c and the geometrical factor
is F. (Figure 7)
Limit load analysis (ductile failure):
An axial crack through thickness was
considered. Equation 3.1, vol 2, pag
6.3-1 [15] was taken into account.
(10)
This equation is valid when equation
(7) is in the range 0 < λ ≤ 5 and
(11)
P l is the internal pressure plastic collapse
limit. σ f is the flow stress. R and
t are the mean radius and thickness,
respectively. The half crack length is c
and M is a parameter which is in
function of λ.
The maximum length of an axial
crack was evaluated by the equations
mentioned above. The results are
summarized in the following graph.
The range of operation of the reactor
was considered. Two analyses were
carried out. One of them is when only
one header of the Reactor Recirculation
Core System is operating and the
other was when both of them were
operating.
In the same way like the last case:
All the equations mentioned in this
paper were introduced in Matlab
coupled with Excel to perform the
iterations. In this way, the maximum
allowable crack length was determined
in the range of operation
mentioned above. The results are
summarized in the following graph.
These analyses were carried on when
one single loop operation or the two
circuits (normal operation) of the
Reactor Recirculation System in
operation.
The allowable crack length is
constant no matter the core flow of
water, this happens because only the
internal pressure is considered for the
calculations. This internal pressure is
the difference of pressure between the
“Annulus” of the reactor and the interior
of the riser (Figure 8).
OPERATION AND NEW BUILD 215
Operation and New Build
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5
ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
Elektrische Energie stellt für die Funktionsfähigkeit jeder entwickelten Gesellschaft die Schlüsselenergie dar.
Sie wird heute in der Schweiz zu 60 % durch Wasserkraft und zu 40 % durch Kernenergie erzeugt.
Das KKG beschäftigt über 550 Mitarbeitende und strebt einen sicheren, zuverlässigen Betrieb bis 2039 an.
Zur Umsetzung dieser Vision suchen wir
in der Abteilung Sicherheit zur Ergänzung
unseres Teams Erdbebeningenieurwesen und
Strukturmechanik einen
Fachingenieur (m/w)
Ihr Aufgabengebiet umfasst:
P Durchführung sicherheitstechnischer Berechnungen mit Bezug
zur Beurteilung der Erdbebengefährdung
P Unterstützung der Fachabteilungen bei der Festlegung
der Erdbebenanforderungen
P Durchführen von Sicherheitsnachweisen
P Vorgabe und Beurteilung der Erdbebenauslegung für die steigende
Anzahl von Anlagenänderungen und Projekten im KKG
P Sicherstellung der Compliance mit dem Regelwerk in Fragen
der Erdbebenauslegung zur Vermeidung von Anlagenstillständen
P Eigenständige Erstellung von Beurteilungen und Berichten
P Strukturdynamische Untersuchungen
für andere extreme Sonderlasten
Ihr Profil:
P Abgeschlossenes Studium im Maschinenbau oder als Bauingenieur
P Erfahrung in dynamischen Analysen von Baustrukturen, maschinenund
elektrotechnischen Komponenten
P Vertrautheit mit den bautechnischen und kerntechnischen
Regelwerken, optional mit dem nuklearen Schweizer Regelwerk
P Bereitschaft zur Einarbeitung in Softwaretools, neue Themengebiete
und Problematiken
P Kommunikativ und verhandlungssicher
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich
P Deutsch und Englisch in Wort und Schrift
in der Abteilung Sicherheit zur Ergänzung
unseres Teams PSA und Erfahrungsauswertungen
einen
Fachingenieur (m/w)
Ihr Aufgabengebiet umfasst:
P Modellierung von Systemen und Funktionen
eines Druckwasserreaktors mit probabilistischer Software
P Erstellung von PSA Dokumentationen nach den betriebsinternen
Vorgaben
P Massgebliche Mitwirkung bei dem Neuaufbau des PSA-Modells
(Softwarewechsel von Riskman auf CAFTA oder RiskSpectrum)
Ihr Profil:
P Abgeschlossenes Studium der Ingenieurwissenschaften,
der Mathematik oder Physik
P Vertiefte Kenntnisse im Aufbau und der Anwendung probabilistischer
Werkzeuge (vorzugsweise CAFTA oder RiskSpectrum)
P Vorzugsweise Kenntnisse in der Entwicklung eines der Softwareprodukte
und /oder der Erstellung komplexer Modelle
P Wenn möglich Erfahrung innerhalb der kerntechnischen Branchen,
bevorzugt Sicherheitsanalysen
P Verhandlungssicher und kommunikativ
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich
P Deutsch und Englisch in Wort und Schrift
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie
Herr Stefan Heussen, Leiter Ressort PSA und Erfahrungsauswertungen,
gerne.
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie
Herr Andri Nykyforchyn, Leiter Ressort Erdbebeningenieurwesen
und Strukturmechanik, gerne.
Wir bieten Ihnen:
P Eine abwechslungsreiche Tätigkeit
in einem interessanten Umfeld
P Eine sorgfältige Einarbeitung in Ihr vielfältiges
und abwechslungsreiches Arbeitsgebiet
P Sehr gute Anstellungsbedingungen und Sozialleistungen
sowie ein den Anforderungen entsprechendes Gehalt
P Unterstützung in Ihrer persönlichen Weiterbildung
Wenn Sie sich für eine dieser Stellen interessieren, freuen
wir uns auf Ihre vollständigen Bewerbungsunterlagen.
KERNKRAFTWERK GÖSGEN-DÄNIKEN AG
Personalabteilung
4658 Däniken
Telefon 062 288 20 00
personal@kkg.ch
in der Abteilung Sicherheit zur Ergänzung
unseres Teams Sicherheitsanalysen und Systemtechnik
einen
Systemingenieur (m/w)
Ihr Aufgabengebiet umfasst:
P Periodische Bewertung von Systemen und Systemkomponenten mit
Fokus auf verfügbarkeitsrelevante und sicherheitstechnische Aspekte
P Pflege/Neuerstellung von Systemhandbüchern
P Beurteilung der Betriebsweise von Systemen und Komponenten unter
Berücksichtigung der Interaktionen mit angrenzenden Systemen und
unter Berücksichtigung aller Betriebsweisen der Gesamtanlage
P Sicherheitstechnische Beurteilung von Anlagenänderungen
P Enge Zusammenarbeit mit Komponenten- und Systemverantwortlichen
sowie Unterstützung von Projekten
P Verfolgung des Stands von Wissenschaft und Technik und Einbringen
dieses Wissens in den technischen Änderungsprozess
Ihr Profil:
P Abgeschlossenes Studium der Elektrotechnik und mehrjährige
Erfahrung im Kraftwerksbereich
P Fundiertes Wissen über elektrische, leittechnische Systeme und
Komponenten in Kraftwerksanlagen
P Idealerweise vorhandene Grundkenntnisse über Kernkraftwerke
P Idealerweise Erfahrung aus Instandhaltung und
Änderung technischer Systeme
P Verhandlungssicher und kommunikativ
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich
P Deutsch und Englisch in Wort und Schrift
für die Überwachung der Herstellung unserer
Brenn elemente in der Abteilung Kernbrennstoff
zur Ergänzung unseres Teams einen
Ingenieur (m/w)
Ihr Aufgabengebiet umfasst:
P Mitwirkung bei der Verhandlung und Abwicklung der Lieferverträge
für Kernbauteile (Brennelemente, Steuerelemente, Drosselkörper,
Materialteststäbe)
P Fertigungsbegleitende Prüfungen sowie Qualitäts- und
Umwelt management bei der Herstel-lung der Kernbauteile
P Qualifikation von und Audits bei Kernbauteillieferanten
P Koordination der Transporte unbestrahlter Brennelemente
Ihr Profil:
P Abgeschlossenes Hochschulstudium der Materialwissenschaften,
Maschinen- oder Nuklearingenieurwesen
P Interner und externer Auditor
P Deutsch und Englisch in Wort und Schrift, Französisch von Vorteil
P Einige Jahre Erfahrung in der Brennelementkonstruktion, -auslegung
oder -herstellung
P Ausgeprägtes Sicherheitsbewusstsein
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich
P Bereitschaft für häufige Dienstreisen ins Ausland
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie
Herr René Sarrafian, Stv. Leiter Res-sort Out of Core, gerne.
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie
Herr Dr. Rainer Kaulbarsch, Leiter Ressort Sicherheitsanalysen
und Systemtechnik, gerne.
www.kkg.ch
atw Vol. 64 (2019) | Issue 4 ı April
OPERATION AND NEW BUILD 218
| | Fig. 7.
Allowable size for axial crack.
4.1.2 Circumferential cracks
Fracture mechanics analysis (brittle
failure): The circumferential cracks in
all the risers of the jet pumps are under
tension and bending. Both loading
conditions have to be evaluated.
Tension: The allowable length of a
through thickness circumferential
crack was evaluated with equation 1.1,
vol. 1, pag 1-1 [16]. All the evaluation
was carried on with Matlab code. The
stress intensity factor was evaluated
with the following equation.
(12)
This relation is valid when 0 <
≤ 0.55, 10 ≤ ≤ 20 and .
The geo metrical factor is
(13)
(14)
K I is the stress intensity factor. σ is the
axial stress and depends on the mean
radius R. P is the axial load, t is the
thickness and θ is the mean angle of
the crack.
For the case of bending,
(15)
This relation is valid when 0 <
≤ 0.55, 10 ≤
≤ 20 and
(16)
(17)
K I is the mode I stress intensity factor,
σ b is the bending stress and it depends
on the mean radius, M is the bending
moment and t is the thickness. θ is the
mean angle of the crack and F b is a
geometric factor.
| | Fig. 8.
Allowable size for axial crack, limit load of collapse.
The maximum length of a circumferential
crack was evaluated with
loading conditions for the range of
operation considered. Two analyses
were carried out. In the first one, the
two circuits (normal operation) of the
Reactor Recirculation Core System
were operating. In the second, only
one of them was in operation (single
loop operation). The results are
summarized in the Figure 9. Again,
Matlab coupled with Excel are applied
to make the iterations.
The results showed that the allowable
crack length is reduced as the
core flow core is augmented. This
happens because of the hydraulic
forces exacerbate the vibration of the
riser and the jet pumps. As a result,
fatigue should be considered.
Limit load analysis (ductile failure):
In this case, the cross section of the
riser is under plastic collapse, the allowable
length of a through wall crack
is evaluated with the equation 1.2, Vol.
1, pag. 1-4 [16]. All the iterations were
done with Matlab coupled with Excel.
(18)
(19)
This equation is valid when ≤ 0.1
(20)
M is the limit moment for plastic
collapse, σ f is the flow stress, R is the
mean radius, t is the thickness and θ
is the mean angle of the crack. α is a
geometrical factor.
The results are summarized in
Figure 10. In this case, the maximum
allowable length of a circumferential
crack was evaluated with an analysis
of limit load under collapse conditions.
These evaluations were carried
out for a range of operations, which is
between 95 % and 107 % of the output
power. These evaluations considered
the operation of either, one or two
circuits of the Reactor Recirculation
Core system.
| | Fig. 9.
Allowable size for circumferential crack, LEFM.
| | Fig. 10.
Allowable size for circumferential crack,
limit load of collapse.
It can be observed that the allowable
circumferential crack length decreases
as the flow of water increases.
Under these conditions, the hydraulic
loads generate more vibrations and
fatigue.
5 Failure Assessment
Diagram R6
This is a methodology that is widely
used to evaluate the elasto-plastic
failures in structural components. In
general terms, the failure is determined
by the interaction between
ductile and brittle behavior of a
material. The first versions were based
on the “Strip-Yield” model. The Stress
Intensity Factor for an infinite plate
with a central crack through thickness
is a methodology that is widely used
to evaluate the elasto-plastic failures
in structural components. In general
terms, the failure is determined by
the interaction between ductile and
brittle behavior of a material. The
first versions were based on the
“ Strip-Yield” model. The Stress
Intensity Factor for an infinite
plate with a central crack through
thickness is
(21)
This equation is asymptotic with
respect to the yield strength of the
material; thus, it has to be modified. It
should be considered the flow stress,
instead the yield stress, and the effective
stress intensity factor has to be
obtained. An adimensional relation is
proposed for this purpose. The new
relation is divided by the Stress Intensity
Factor in mode I.
Operation and New Build
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
atw Vol. 64 (2019) | Issue 4 ı April
(22)
In this equation, the square root of
the semi-length is eliminated. In this
way, it is independent of the geometry,
as the strip model. In order to
use an adimesional form, the following
parameters have to be established.
and
The new equation is
(23)
This curve is the boundary between
the safe and unsafe zones (Fig. 9).
Fracture would take place when the
Effective Stress Intensity Factor is
bigger than the Fracture Toughness,
K r > 1 On the other hand, ductile
failure is expected if S r > 1. Also, it is
important to observe that in the
elastoplastic analysis, fracture and
collapse are in interaction. The points
defined by K r and S r have to be
localized in the failure diagram so as
to determine if they are in the safe or
unsafe zones.
The material hardening has not
been considered in the “Strip-Yield”
model. Therefore, this situation
can be included in an elastoplastic
analysis with the J-integral. The
equation proposed by the British
Standard BS 7910 is
(24)
The Failure Diagram shown in Figure
11 compares different failure
curves. This was used in the evaluations,
which were carried out in this
paper.
6 Cases of analyses
The allowable horizontal and vertical
projections of a helicoidal crack in the
riser were determined in the previous
section. In this section, some cases
have been postulated, as an example,
in order to show the application of the
evaluation of the structural integrity
of the riser.
6.1 Circumferential cracks
As an example, a circumferential
crack at the weld of the riser was
postulated. Its length was 4 inches.
The reactor is in operation with the
two loops of recirculation and 107 %
| | Fig. 11.
Diagram of evaluation of failure by plastic
deformation.
| | Fig. 12.
Postulated case circumferential length
of crack.
| | Fig. 13.
Failure Diagram R6.
of the flow of the water flowing
through the core.
Initially, the evaluation was done
in accordance with linear elastic
fracture mechanics. The allowable
crack length is 4.9 inches (Figure 9).
The length of the actual crack is
lower than this limit. So, this crack is
acceptable.
After this, the evaluation was done
under the scope of the Collapse Limit
Load analysis (Figure 10). The allowable
crack length is 16.36 inches. The
length of the actual crack is lower.
Therefore, it can be accepted.
This evaluation was complemented
with the Failure Assessment Diagram.
The following parameters were
calculated:
and
. As this point is located
within the safe zone. It is considered
safe. However, this point is located
close to the vertical axis in the zone in
which a brittle failure can take place.
So, this is the dominant failure mechanism,
it is recommended to increase
the inspection and to determine the
remaining life because a brittle failure
is undesirable (Figure 11 and 12).
| | Fig. 14.
Failure diagram, postulated case
circumferential projection of crack.
| | Fig. 15.
Failure Assessment Diagram, Postulated case
axial projection of crack.
| | Fig. 16.
Failure Assessment Diagram, Postulated case
circumferential projection of crack.
6.2 Safe helical crack
In this case, a helical crack close to the
weld of the riser brace is postulated. Its
length is 4 inches. Its projections along
the circumferential and the axial axis
are 3.5 inches and 1.94 inches, respectively.
The output power of the reactor
is 100 % and the two circuits of the
RRC system have been in operation.
Initially, the axial projection of the
crack was evaluated. In accordance
with Linear Elastic Fracture Mechanics,
brittle fracture is developed, when
the allowable crack length is greater
than 11.689 inches (Figure 7). Regarding
the ductile failure, the evaluation
was done with the Collapse Limit Load
analysis. The allowable crack length is
11.11 inches (Figure 8). It is greater
than the axial pro jection of the crack.
These results were evaluated with the
Failure Diagram R6. The following
parameters were calculated too.
and ,
then they are localized in the diagram,
Figure 13.
In the case of the circumferential
projection of the helical crack, it was
evaluated against the brittle fracture
with linear elastic fracture mechanics
OPERATION AND NEW BUILD 219
Operation and New Build
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5
ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
atw Vol. 64 (2019) | Issue 4 ı April
OPERATION AND NEW BUILD 220
(Figure 9). As the allowable crack
length is 4.9 inches and it is greater
than 4 inches. Thus, brittle failure is
not expected to occur.
The evaluation against ductile failure
showed that the allowable circumferential
projection of the crack length
is 16.36 inches (Figure 10). As this
value is greater than 4 inches. It is not
expected ductile failure to occur.
These conditions were also
evaluated with the R6 Failure
Diagram, Figure 14. For this purpose,
the following parameters were
calcu lated:
and
.
The results showed that this
arrangement has structural integrity
and can continue its operation. A
critical condition is expected along
the circumferential projection. There
is a tendency to a fragile fracture. It is
advisable to inspect this crack periodically.
6.3 Unsafe helical crack
A helical crack, which has a length
of 18”, was postulated. Its components
in the axial and circumferential directions
are 7.19 inches and 16.5 inches,
respectively. The reactor operates with
100 % of the output power and the flow
through the core is 107 %. The two
headers of the RRC are in operation
and 100 % of the flow of water has
been passing through the core.
The projection of the crack in the
axial direction is evaluated with Figure
7. The allowable crack length, in
accordance with Fracture Mechanics,
is 11.6 inches. It is bigger than
7.19 inches. So, it is acceptable.
Regarding the limit load collapse
analysis, it was carried out with Figure
8. The allowable crack length is
11.11 inches. As, it is bigger than
7.19 inches. It is accepted. These evaluations
were completed with the Failure
Assessment Diagram, Figure 15.
In a second phase, the projection in
the circumferential direction is evaluated,
considering the principles of
fracture mechanics. In accordance
with Figure 9, the allowable crack
length is 4.9 inches. This should not
be accepted, because the crack projection
(16.5 inches) is bigger than the
allowable crack length.
The same analysis was done with
the Collapse Limit Load analysis. The
allowable circumferential crack is
16.36 inches. However, the crack
projection is 16.5 inches. Under this
condition, it can be accepted. In order
to confirm these results, this situation
was analyzed with the Failure Assessment
Diagram. For this purpose,
the following parameters were
calcu lated:
and
.
These values are located outside of
the safe zone. It is illustrated in Figure
16 and it is confirmed that the structural
integrity of the riser has been
compromised. It can be expected a
failure in which brittle behavior will
be predominant.
7 Conclusions
The helical or diagonal cracks that
may take place on the riser close to the
weld of the riser brace weld. It was
considered that a torsional mode of
vibration around the axial axis of the
riser generated the loading conditions
for the crack propagation. The operational
loads that could take place were
considered in the methodology, which
was applied.
It is considered that the system has
enough structural integrity when the
conditions that avoid ductile and
brittle failures along the circumferential
and axial directions are fulfilled.
Otherwise, the component has to
be repaired. One alternative is to
substitute the damaged part. However,
it should to be cut and a new replacement
component should be
welded. These operations should have
to be done below the water level and
during the outage of the nuclear
power plant. Under these conditions,
it is difficult to get a good quality in
this job. It would be advisable to
install a reinforcement structure, in
such way that a compression load
must be applied to avoid fracture
mode I on the crack. Besides, torsion
and bending have to for limited.
Regarding the inspections, they
have to be done periodically. Crack
propagation has to be monitored and
the structural integrity of the reinforcement
frame has to be evaluated.
Misalignments, deterioration and
corrosion have to be avoided.
Acknowledgements
The authors kindly acknowledge the
grant for the development of the
Project 211704. It was awarded by the
National Council of Science and
Technology (CONACyT).
Statement
The conclusions and opinions stated
in this paper do not represent the
position of the National Commission
on Nuclear Safety and Safeguards,
where the co-author P. Ruiz-López is
working as an employee. Although
special care has been taken to maintain
the accuracy of the information
and results, all the authors do not
assume any responsibility on the
consequences of its use. The use of
particular mentions of countries,
territories, companies, associations,
products or methodologies do not
imply any judgment or promotion by
all the authors.
References
[1] K. B., Department of Nuclear Regulation, Atomic Energy
Council, Taiwan, Recent Material Ageing Degradation
Related Issues, Washington D.C.: The Fifth USNRC/TAEC
Bilateral Technical Meeting, June 2007.
[2] N. M. Cuahquentzi et al.: Evaluation of the Structural
Integrity of the Jet Pumps of a Boiling Water Reactor
under Hydrodynamic Loading, Defect and Diffusion Forum,
vol. 348, pp. 261-270, 2014.
[3] Inc. Computers and Structures: CSI Analysis Reference
Manual for SAP2000, in ETABS, SAFE and CSiBridge, March
2013.
[4] R. D. Blevins: Flow Induced Vibrations, New Orleans, USA:
Course ASME PD-146, 2012.
[5] G. L. Stevens et al.: Jet pump flaw evaluation procedures,
in 8 th International Conference on Nuclear Engineering,
Baltimore, USA, April 2000.
[6] EPRI: BWRVIP-41: BWR Vessel and Internals Project, in
BWR Jet Pump Assembly Inspection and Flaw Evaluation
Guidelines, USA, 1997.
[7] G. E. Paredes et al: Severe Accident Simulation of the
Laguna Verde Nuclear Power Plant, Science and
Technology of Nuclear Installations, vol. 2012, March.
[8] R. C. Camargo et al: Análisis de transitorios operacionales
con el Código RELAP/SCDAPSIM, Apoyo a las actividades
del proceso de certificación para el simulador de la CNLV a
condiciones de aumento de potencia, Comisión Nacional
de Seguridad Nuclear y Salvaguardias, México, June 2003.
[9] American Society of Mechanical Engineers: Section III,
Division 1-Appendices. Rules for Construction of Nuclear
Facility Components, in Boiler and Pressure Vessel Code,
USA, ASME, 2007, pp. 301-302.
[10] United States Nuclear Regulatory Commission: Technical
Training Center, BWR/4 Technology Manual (R-104B),
General Electric Systems, USA.
[11] United States Nuclear Regulatory Commission: Technical
Training Center, BWR/4 Technology Manual (R-304B),
General Electric Systems, USA.
[12] United States Nuclear Regulatory Commission: Technical
Training Center, BWR/4 Technology Manual (R-504B),
General Electric Systems, USA.
[13] U.S. Atomic Energy Commission: Regulatory Guide 1.60
Design Response Spectra for Seismic Design of Nuclear
Power Plants, U.S. Atomic Energy Commission, USA,
December 1973.
[14] American Society of Mechanical Engineers: Section XI.
Rules for Inservice Inspection of Nuclear Power Plant
Components, in Boiler and Pressure Vessel Code, USA,
American Society of Mechanical Engineers, 2007.
[15] A. Zahoor: Ductile Fracture Handbook, Vol. 2, Electric
Power Research Institute Report NP-6301, USA: EPRI,
October 1990, pp. 6.1-1, 6.3-1.
[16] A. Zahoor: Ductile Fracture Handbook, Vol. 1, Electric
Power Research Institute Report NP-6301, USA: EPRI,
October 1990, pp. 1-1, 1-4.
Authors
Pablo Ruiz-López, Ph.D.
Comisión Nacional de Seguridad
Nuclear y Salvaguardias
Head of the Licensing Area
México
Luis Héctor Hernández-Gómez, Ph.D.
Juan Cruz-Castro, M.Sc.
Gilberto Soto-Mendoza, M.Sc.
Juan Alfonso Beltrán-Fernánde, Ph.D.
Guillermo Manuel Urriolagoitia-
Calderón, Ph.D.
S.E.P.I. Zacatenco, I.P.N.
México
Operation and New Build
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
atw Vol. 64 (2019) | Issue 4 ı April
A World’s Dilemma ‘Upon Which
the Sun Never Sets’: The Nuclear Waste
Management Strategy: Russia, Asia
and the Southern Hemisphere
Part I
Mark Callis Sanders and Charlotta E. Sanders
Due to the length of the article, the article is published in three parts. The authors and editor hope you will enjoy and
look forward to reading the entire article, as each portion is published. Part I provides the background to the discussion.
Part II considers nuclear waste management from the perspective of Russia and Asia, while Part III considers those
States in the Southern Hemisphere.
This republication is a shortened
version of an article originally
published in the journal Progress in
Nuclear Energy. The full-length version
of the article may be found at: Sanders,
M, & Sanders, C 2019 “A world’s
dilemma ‘upon which the sun never
sets’ – The nuclear waste management
strategy (part II): Russia, Asia and the
Southern Hemisphere”, Progress in
Nuclear Energy 110, 148-169.
1 Introduction
This article contemplates the various
waste management schemes that are
being considered or undertaken to
include Russia, Japan, China, South
Korea, India, Argentina, Brazil and
South Africa. Except for Japan,
Argentina and South Korea, these
nation states are chosen for discussion
because these make up a charac teristic
collection of nation states able to shape
world policy and events as middle
powers commonly referred as ‘BRIC’ or
‘BRICS’ (Brazil, Russia, India, China
plus South Africa). These nation states
share certain positive and negative
similarities including: planned and/or
expanding nuclear power programs;
large or expanding populations with
emergent economies; “high GDP but
relatively low GDP per capita; large
domestic inequalities; and high absolute
poverty levels” [1]. Japan and
South Korea are chosen for discussion
due to their expansive nuclear power
programs, and their unique challenges
in finalizing a nuclear waste management
disposal facility because of internal
political struggles. Argentina is
unique in that while it developed and
maintained a small nuclear power program
for years, despite economic and
political difficulties, it is now expanding
its nuclear power program with the
help of Chinese financial support.
2 Future energy consumption
outlook – BRICS
Certainly, one of the parallel requirements
facing developed and new comer
nuclear nation states is the need to gain
access to stable, clean, and plentiful
sources of power production to drive a
burgeoning eco nomy in a cost effective
and environmentally friendly manner.
Techno logical advances starting in the
mid-2000’s have provided an abundance
of cheap natural gas through
fracking, with an 80 % growth in gas
demand led by mostly Asian nation
states, including China and India, over
the next 20 years [2]. Current predictions
for China estimate that it will
experience power growth at a rate of
3.8 to 4.6 % per annum through the
year 2020, with chronic pollution
estimated to cause China an economic
loss at almost 6 % of Gross Domestic
Product 1
[3]. In its fight to tackle
pollution, China is seeking to obtain
the environmental benefits of clean
energy technologies using wind, solar,
and nuclear power generation [4].
Brazil has a small but budding
nuclear power program generating
about 3 % of its electricity, with 84 %
generated through hydro. Brazil’s
overreliance on hydro generated
power is creating potential challenges
due to changing weather patterns and
climatic shifts [5]. From the early
1990’s, India has experienced rapid
growth in energy consumption as its
economic output has risen but is also
suffering extreme levels of pollution
in its major cities [6]. South Africa
currently has two nuclear reactors at
one site responsible for generating ~
5 to 6 % of its electricity with plans to
add 9.6 GW of nuclear generation
capability across the country over the
next 10 to 12 years, costing between
37 to 100 billion USD [7].
3 Legitimacy through
linkage
To ensure the long-term viability of a
nuclear waste management program,
the legal framework supporting the
program must be built upon trust and
fairness, with the flexibility of a State
to work within its own historical
processes establishing the rule of law.
The Joint Convention on the Safety of
Spent Nuclear Fuel Management and
on the Safety of Radioactive Waste
Management (Joint Convention) are
built upon the concept of adequacy,
allowing a nation state that is a party
to the convention to use its national
sovereignty to develop a nuclear waste
management strategy that is “comparable
to those of the other nation
states, which are [also] party to the
convention” [8]. The Joint Convention,
as the first international treaty
covering radioactive waste management,
does not provide explicit detail
for each intended action allowing for
Contracting Parties to enjoy certain
levels of flexibility in a nuclear waste
management strategy. Pronto adds
that this type of general working
structure is often the intended design
of the framers to guide the actions of
those parties at the international level
through non-formally binding rules of
engagement [9].
Additionally, there are four compartments
to consider when developing
a nuclear waste management
program and which potentially affects
its legitimacy. Shown in Figure 1,
these compartments comprise (1)
concerns surrounding the economic
viability towards the funding and
building of a nuclear waste disposal
facility; (2) that any environmental
concerns are duly considered to
ensure any negative effects on all
stakeholders have been thoroughly
221
DECOMMISSIONING AND WASTE MANAGEMENT
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders
atw Vol. 64 (2019) | Issue 4 ı April
DECOMMISSIONING AND WASTE MANAGEMENT 222
| | Fig. 1.
The Four Compartments of a Sustainable Radioactive Waste Management Program.
investigated and taken into consideration;
(3) the assurance that the
science and technology employed
are up to date and sound, being free
from political influences; (4) that
the waste management facility siting,
design, construction and operation
reflects the desires and will of the
society; and, (5) that all actions
provide for stability throughout any
legal action and/or policy making
decisions under taken by the nation
state to guarantee that such actions
are performed in accordance with the
rule of law found within that society
[8].
The values represented within
these four compartments are required
and important tools in developing a
stable and legitimate framework for
creating the necessary laws, statutes,
regulations, and rules in a nuclear
waste management program. As each
compartment harmoniously interacts
with the other, the process of effectively
meeting all the aspects of a
nuclear waste management program
from inception, to a time point far into
the future is achieved.
3.1 The concept
of legal stability
The primary objective for designing
and operating a nuclear reactor is “the
utilization of the energy or radiation
released by controlled chain reaction…
[h]owever the achievement of
a stable chain of fission reactions is
only a part of the responsibility of
the nuclear engineer. In addition, he
must learn how to extract and use the
energy liberated in these fission
reactions” [10]. Equally, only part of
the responsibility of the policymaker’s
primary objective is to provide the
written laws, statutes, regulations,
and rules, but more so, he must be
able to seize the ability to utilize the
energy or legal force created toward
a series of relevant actions, in a controlled
and sustained environment,
for achieving the desired end outcome.
The “issue of stability and
change in constitutional law” [11]
is continually hotly debated by academics,
having fervent partisans on
each side of the equation.
‘Stability’ is a word that is commonly
used to present something that
is stationary or unchangeable [12], or
when discussing legal stability, we
usually refer to the basic building
block structuring the personality of
the common law – stare decisis 2 [13].
Thus, the judicial or political system
has made some determination of a
particular path of progression so that
those engaged in an activity may
know with certainty that the decision/
determination is not an arbitrary one
and may therefore be relied upon
through a future time period. However,
a purpose of government, and a
duty of the courts, is to process change
as society and technology alters,
all while seeking to contain this
“ constant and restless motion [of
government]” [14] as it seeks a new
stable footing. The force called ‘stability’
creates an exceptional central
challenge for nuclear waste management
programs, as laws, statutes,
regulations, and rules written today,
as promulgated, are for an intended
extended outward period, projecting
forward today’s burden for tomorrow’s
generations to manage. Such laws,
statutes, regulations, and rules are not
promulgated in a vacuum of peace
and tranquility, but within complex
political systems, which at times
display outward chaotic change, even
though law should portray a sense of
stability [15]. In the 1930’s, Goodwin
declared:
“We are wont to look upon our
government as something permanent,
indestructible, and, in its fundamentals,
unchangeable. Anyone who
accepts this thought unqualifiedly disregards
world history. Governments
and civilizations arise, prosper, and
disintegrate.” 3 [16].
Human history is fraught with
political systems where seemingly
stable states become unstable and
falter. 4
The concern arises of what
happens to a nuclear waste management
program in a nation state should
that state cease to exist, because
that particular political or legal system
is unable to process change, in its
pursuit of a constant arrangement of
‘ stability’. 5 It is time consuming and
difficult to delve into the causes
leading to instability within any
nation state, and this would necessitate
contemplation of multiple and
varied factors, and thus will not be
intimately discussed within this
article. Suffice is to say, Posner explains
that political instability is an
inherent trait in all systems of government,
acknowledging that though
“[a]uthoritarian regimes may suppress
the symptoms of political
instability… [it would be incorrect to
assume that] only reliably stable
regimes are those in which the symptoms
of political unrest are absent
despite their not being forcibly suppressed”
[17].
Thus, as its most basic function,
government is designated with the
obligation to insure a stable political
and legal framework through mechanisms
“designed [with the preservation
of] certainty” [14]. Conflictingly,
given the reality that the human race
and their judicial and political systems
function in a world surrounded by
alteration, these societies must continue
in a forward progression where
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I
ı Mark Callis Sanders and Charlotta E. Sanders
atw Vol. 64 (2019) | Issue 4 ı April
“living law [flourishes and is not]
imprisoned by the past” [18].
It is the continual conflict between
the dynamics of ‘stability’ and ‘change’
which determines if a political or legal
system will collapse in on itself, or if it
will survive. Walker, et al., provides a
line of inquiry regarding a bridging
force for the ability of a stable system
to successfully process change:
“It is assumed that patterns of
behavior will be more stable and
enduring if they can be characterized
as legitimate; that actors who have
legitimacy attributed to them will
be more able to induce compliance
than those who do not share that
attribute…” [19].
3.2 The concept
of legal legitimacy
The search for legitimacy in any
political system may be considered
“the oldest problem of political
theory” [20]. Given that a nuclear
waste management program is expected
to last for hundreds of years from
inception to end of life, this search for
legitimacy when creating a nuclear
power and waste management program
is of great importance, as a
citizen living under any political
system must “have confidence in [the]
administrative processes [found
within that system], and [in the final
outcome, be able to] respect and
accept [those] decisions” [21].
Each political system, whether
democratic or authoritarian in nature,
shares certain legal traditions, which
provide it with legitimacy. These traditions
not only entail a similarity of
various institutions (e.g., parliament/
legislature, courts, and administrative
agencies) and processes, they encompass
common core values, such as
lawfulness, expertise, efficiency, and
effectiveness [22].
Because legitimacy is such an
essential quality of the law, it is a
subject that has, and continues to,
preoccupy legal scholars [23]. Barnett
argues law proceeds from two binding
sources: (1) laws created through the
people’s voice, though not all may
agree, and (2) laws created where the
State embarks on a course of action
believing it is the best arbiter of what
is appropriate without the full input
of such non-consenting persons [24].
Barnett’s model rests upon the precept
that any government is established,
and endowed, with powers of
competencies to do what is required
in fashioning the legal structure for
executing the desired undertaking
and is sufficiently broad in its scope to
encompass the similarities shared for
rule making by both democratic and
authoritarian regimes. This is that the
primary reason for any government,
as a function of its political system, is
to fashion a framework for what is
deemed by that system as necessary
and proper for initiating, building,
financing and operating a civilian
nuclear power and/or nuclear waste
management program.
A central notion that forms the
core of the concept of legitimacy is
the way a political system establishes
procedures “for law-making and
implementation [that appear to
the beholder] as acceptable, i.e., appropriate
and binding” [25]. The
highest ideal for any nation state
should
be
to promulgate laws, statutes, regulations,
and rules in a transparent, fair,
and equitable system. However, it is
respected that the world’s myriad of
intricate political systems each have
their own unique complexities, which
are acted upon by enormous pressure
from numerous interest groups,
leaving one to question one’s personal
consent granted to the governing
body within any system of government.
This raises questions regarding the
ability of access by individuals to a
political/legal system, and its assurance
that individual rights and/or
concerns have been considered and
protected. For citizens living under an
authoritarian system of government,
the anxiety arises whether the governing
body has considered the inherent
needs of the citizenry throughout the
decision-making and administrative
process, more so than with matters of
consent, as consent is implied. Within
both systems, the administrative process
initiates similar concerns given
that all bureaucratic systems do not
provide for political accountability of
these unelected individuals with
expansive powers and “[with] the
public lack[ing the necessary] tools
| | Fig. 2.
Milestone Demarcation for “Change” in a Nuclear Power & Waste Management Program.
DECOMMISSIONING AND WASTE MANAGEMENT 223
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders
atw Vol. 64 (2019) | Issue 4 ı April
DECOMMISSIONING AND WASTE MANAGEMENT 224
to assess adequately the quality of
regulatory policies and outcomes”
[26].
In examining “how the sausage is
made,” Barnett also discourses on
these procedural processes that affect
both validity and legitimacy within a
political law-making system as laws
created within that system can
potentially be “valid and illegitimate”
or “legitimate and unjust” [24]. Such
a paradoxical outcome is unfortunate
but is a consequence that the procedures
in practice do not provide the
necessary guarantees allowing the
promulgation of evenhanded laws
or rules, or because there was a failure
to adequately follow the correct procedures
in place.
The potential extended timelime of
envisioned nuclear waste management
programs demands these
programs must therefore stand firmly
on the concept of legal ‘stability’. Once
a civilian nuclear power program is
initiated, and certain milestones are
achieved, the space for deviation or
‘change’ diminishes in any nuclear
power and waste management program,
especially given that a number
of nation state’s deep geologic repositories
are not planned with retrievability
in mind. This shrinking space
for ‘change’ in a nuclear power and
waste management program is shown
in Figure 2.
Footnotes
1 According to Robert Higgs, “Estimates of gross domestic product
(GDP)... Became an essential part of economic analysis…
in the late 1930s and early 1940s”. See: HIGGS, R 2015,
'Gross Domestic Product – an Index of Economic Welfare or a
Meaningless Metric?', Independent Review, 20, 1, pp. 153-157,
Academic Search Premier, EBSCOhost, viewed 13 June 2017.
2 to stand by things decided.
3 From the pen of Clarence N. Goodwin.
4 Human history provides a number of examples of failed and
fallen empires. Certainly, for the western world, the collapse of
the Roman Empire is a striking and often discussed example.
Other examples might include the Arab Empire, also known as
the Caliphate, the Mongol Empire and the British Empire.
Common features leading to the decline of these empires
include a decline in the values underpinning the empire,
political corruption, and military spending. See: The Decline and
Fall of Empires, https://www.forbes.com/sites/stratfor/2015/
04/20/the-decline-and-fall-of-empires/#1248dd3d383e,
viewed July 11, 2018.
5 An example could be provided during the breakup of the Union
of Soviet Socialist Republic in the early 1990’s. The international
community rallied to provide assistance to these nation states
to successfully retain and maintain control over their nuclear
power plants, enrichment capabilities, as well as other fundamental
aspects of both their civilian and/or military nuclear
programs. However, these states as such did not cease to exist
and this was more of a transition between political systems,
while the central government structure was maintained. See:
Hill, F and Jewett, P “BACK IN THE USSR” Russia's Intervention in
the Internal Affairs Of the Former Soviet Republics and the Implications
for United States Policy Toward Russia, January 1994,
https://www.brookings.edu/wp-content/uploads/2016/06/
Back-in-the-USSR-1994.pdf, viewed June 15, 2018. Also see:
Allison, Graham. 2012. What Happened to the Soviet Superpower’s
Nuclear Arsenal? Clues for the Nuclear Security Summit.
HKS Faculty Research Working Paper Series RWP12- 038, John
F. Kennedy School of Government, Harvard University, https://
dash.harvard.edu/handle/1/9403176, viewed July 11, 2018.
References
[1] Dauvergne, P, & BL Farias, D 2012, ‘The Rise of Brazil as a
Global Development Power’, Third World Quarterly, 33, 5,
pp. 903-917, Academic Search Premier, EBSCOhost, viewed
18 April 2018.
[2] World Energy Outlook 2017, International Energy Agency,
https://www.iea.org/weo2017/, viewed April 19, 2018.
[3] Nuclear Power in China, World Nuclear Association, http://
www.world-nuclear.org/info/Country-Profiles/Countries-A-F/
China--Nuclear-Power, viewed April 21, 2018.
[4] China’s Engagement in Global Energy Governance, International
Energy Agency, http://www.iea.org/publications/
freepublications/publication/PartnerCountrySeries_
ChinasEngagementinGlobalEnergyGovernance_
Englishversion.pdf, viewed April 20, 2018.
[5] Nuclear Power in Brazil, World Nuclear Association,
http://www.world-nuclear.org/info/Country-Profiles/
Countries-A-F/Brazil/, viewed April 21, 2018.
[6] Nuclear Power in India, World Nuclear Association, http://
www.world-nuclear.org/info/Country-Profiles/Countries-
G-N/India/, viewed April 21, 2018.
[7] Boosting the Power Sector in Sub-Saharan Africa, International
Energy Agency, http://www.iea.org/publications/
freepublications/publication/Partner_Country_SeriesChina-
Boosting_the_Power_Sector_in_SubSaharan_Africa_
Chinas_Involvement.pdf, viewed April 20, 2018.
[8] Sanders, M, & Sanders, C 2016, ‘A world’s dilemma ‘upon
which the sun never sets’ – The nuclear waste management
strategy (part I): Western European Nation States and the
United States of America’, Progress In Nuclear Energy, 90, pp.
69-97, Academic Search Premier, EBSCOhost, viewed 16 April
2018.
[9] Pronto, AN 2015, ‘Understanding the Hard/Soft Distinction in
International Law’, Vanderbilt Journal Of Transnational Law,
48, 4, pp. 941-956, Academic Search Premier, EBSCOhost,
viewed 13 June 2017.
[10] Duderstadt, J.J., and Hamilton, L.J., Nuclear Reactor Analysis,
John Wiley & Sons, ISBN 0-471-22363-8, 1976.
[11] Williams, Jerre S. “Stability and Change in Constitutional
Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):
p. 221-238.
[12] Cambridge Dictionary, https://dictionary.cambridge.org/
dictionary/english/stability, viewed April 15, 2018.
[13] BLACK’S LAW DICTIONARY (STANDARD EDITION),
Thomson West; 8 th edition (June 1, 2004), ISBN-10:
0314151990.
[14] McKay, Robert B. “Stability and Change in Constitutional
Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):
p. 203-220.
[15] POUND, INTERPRETATION OF LEGAL HISTORY 1 (1923).
[16] “Efficiency, Stability,” Bar Briefs 8 (1931-1932):
p. 166-166.
[17] Posner, Richard A. “Equality, Wealth, and Political Stability,”
Journal of Law, Economics, & Organization vol. 13,
no. 2 (October 1997): p. 344-365.
[18] Thacher, Thomas D. “Judicial Stability,” Connecticut Bar
Journal vol. 13, no. 4 (October 1939): p. 215-219.
[19] Walker, Henry A.; Thomas, George M.; Zelditch, Morris Jr.
“ Legitimation, Endorsement, and Stability,” Social Forces
vol. 64, no. 3 (March 1986): p. 620-643.
[20] Francis, Daniel. “Exit Legitimacy,” Vanderbilt Journal of
Transnational Law vol. 50, no. 2 (March 2017): p. 297-354.
[21] Le Sueur, Andrew, 2011. People as “users” and citizens”:
the quest for legitimacy in British public administration.
In: Ruffert, Matthias (Ed.), Legitimacy in European
Administrative Law 3. Europe Law Publishing, Groningen,
pp. 30.
[22] M.C. Sanders and C.E. Sanders, “The Path Towards a
Legitimate Radioactive Waste Management Program:
A Comparative Analysis of the Legislative and Regulatory
Approach to the Management of Radioactive Waste in the
U.S.A. and China”, Proceedings of the International Nuclear
Law Association Inter Jura 2016, New Delhi, India,
November 7-11, 2016.
[23] Wisotsky, Steven. “Beyond Legitimacy,” University of
Miami Law Review vol. 33, no. 1 (November 1978):
p. 173-206.
[24] Barnett, Randy E. “Constitutional Legitimacy,” Columbia Law
Review vol. 103, no. 1 (January 2003): p. 111-148.
[25] Langdal, Fredrik; von Sydow, Goran. “Democracy, Legitimacy
and Constitutionalism,” Scandinavian Studies in Law 52
(2007): p. 351-370.
[26] Arkush, David. “Democracy and Administrative Legitimacy,”
Wake Forest Law Review vol. 47, no. 3 (2012):
p. 611-630.
Authors
Mark Callis Sanders
Sanders Engineering
1350 E. Flamingo Road Ste.
13B #290
Las Vegas NV 89119
USA
Charlotta E. Sanders
Department of Mechanical
Engineering
University of Nevada
Las Vegas (UNLV)
4505 S. Maryland Pwky
Las Vegas, NV 89154
USA
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I
ı Mark Callis Sanders and Charlotta E. Sanders
atw Vol. 64 (2019) | Issue 4 ı April
Special Topic | A Journey Through 50 Years AMNT
225
Rechenschaft gegenüber
der demokratischen Öffentlichkeit
Richard von Weizsäcker
Aus dem Grußwort des Regierenden Bürgermeisters von Berlin auf der Eröffnungssitzung der JK ’83 am
14. Juni 1983.
Was das Zusammenwirken oder die Arbeitsteilung
zwischen Wissenschaft, Wirtschaft und Behörden
anbetrifft, so würde ich mir wünschen, daß auch für
andere Bereiche, in denen es zu einer solchen Zusammenarbeit
kommen muß, eine so interessante Tagung
anberaumt würde, wie Sie sie am heutigen Vormittag auf
Ihrer Tagesordnung haben. Es ist ja wahr, daß in den
Behörden immer mehr auch wissenschaftlicher Sachverstand
angesammelt werden muß, weil die Sachverhalte,
mit denen es Genehmigungsverfahren zu tun haben, dies
erfordern. Es ist umgekehrt aber auch wahr, daß Wissenschaftler
und Wirtschaftler sich nicht in den Bereich der
sogenannten rein sachlichen, rein naturwissenschaftlichen,
rein technischen oder rein ökonomischen Fragen
allein zurückziehen können, sondern darauf angewiesen
sind, daß das, was sie tun, verstanden und auch irgendwie
angenommen wird. Und ich denke, gerade diese
Konferenz, zu der Sie jetzt wieder zusammen sind, hat ja
bei früheren Zusammenkünften in dieser Richtung wohl
auch schon notwendige Diskussionen geführt und
vielleicht auch die eine oder andere Erfahrung von außen
her begleitend zu Ihren Tagungen vermittelt bekommen.
Nun haben wir inzwischen ja eine geringfügige
Verlagerung des Schwerpunktes der öffentlichen Auseinandersetzung
erlebt, und ich nehme an, Ihnen kommt das
zugute. Wir Politiker sind noch nicht in der nötigen Weise
entlastet und ich will ja auch gar nicht behaupten, daß wir
das verdienen. In Ihrem Bereich, wenn ich das richtig sehe,
ist doch eine gewisse Normalisierung eingetreten. Das
liegt auch daran, daß vielleicht die Öffentlichkeit ein
bißchen besser verstanden hat, worum es geht, aber gewiß
liegt es primär daran, daß Wissenschaft und Wirtschaft
vielleicht besser als in der Eingangsphase in der Lage
gewesen sind, die Anfragen in der Öffentlichkeit auch
wirklich ernsthaft aufzugreifen und Schritt für Schritt den
Nachweis dafür zu erbringen, daß man eben auch wirklich
in der Lage ist, etwas Verantwortbares vorzuzeigen.
Demokratie erfordert
Informationsbereitschaft
In dem Bereich, in dem nun heute der Schwerpunkt
der Auseinandersetzung zu finden ist, also dort wo es
nicht um die friedliche Nutzung der Kernenergie geht,
sondern um die Sicherheitspolitik und um Abschreckungsmechanismen
in bezug auf die Verhinderung von Kriegen,
dort haben wir ja in der Grundstruktur dessen, was
die Sachverständigen, die Politiker, die Öffentlichkeit
miteinander zu tun haben, einen vergleichbaren Vorgang.
Wir haben im Rahmen dieser Friedensdiskussion, das ist
meine feste Überzeugung, auch bei den schrillen Tönen
und großen Bewegungen durchaus voneinander zu lernen
– wenn man das mal so schematisch sagen darf – die
politisch Verantwortlichen und die Friedensbewegung.
Das, was wir Politiker hier vor allem zu lernen hatten
und nach wie vor haben, ist, daß wir in bezug auf eine
Verteidigungsbereitschaft unseres Landes genauso in einer
Demokratie leben, wie in bezug auf jede andere Seite
unseres Lebens. Das heißt, was seitens der Verantwortlichen
getan wird, das muß von der überwiegenden
Mehrheit in der demokratischen Öffentlichkeit verstanden
und irgendwo auch bejaht werden. Und ähnlich wie bei
der friedlichen Nutzung der Kernenergie, ist es auch
bei dem von mir jetzt berührten Bereich so. daß er allzu
lange als mehr oder weniger geheimes Vorbehaltsgut von
einigen Sachverständigen behandelt worden ist. Das
kann auf die Dauer bei unserer Art von öffentlicher,
demokratischer, freiheitlicher Gesellschaft nicht gutgehen.
Wenn man allzu lange meint, daß die Herstellung
und die Modernisierung und die Dislozierung von Waffen
etwas sei, was eben nur ein paar Wissenschaftler, der
Am 7. und 8. Mai
2019 begehen wir
das 50. Jubiläum
unserer Jahrestagung
Kerntechnik. Zu
diesem Anlass öffnen
wir unser atw-Archiv
für Sie und präsentieren
Ihnen in jeder
Ausgabe einen
historischen Artikel.
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT
| | 1983: Jahrestagung Kerntechnik – JK ´83 in Berlin.
Special Topic | A Journey Through 50 Years AMNT
Rechenschaft gegenüber der demokratischen Öffentlichkeit ı Richard von Weizsäcker
atw Vol. 64 (2019) | Issue 4 ı April
226
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT
| | 1983: Inbetriebnahme mit ersten Experimenten an der Fusionstestanlage JET in Culham,
Großbritannien, Schematische Zeichnung.
Verteidigungsminister und Generäle verstehen und zu
behandeln haben und dies möglichst in kosmisch geheim
gehaltenen Räumen, dann ist die notwendige Folge
davon, daß sich jene Gefühle der Angst und Unsicherheit,
jene Sorge hinsichtlich der Undurchschaubarkeit dieses
Mechanismus in einer Weise Gehör verschaffen, wie wir
dies alle erleben.
Erklärungen ersetzen,
aber nicht Entscheidungen
Nur, auf der anderen Seite heißt verständlich machen und
erklären natürlich auch nicht nun einfach nachlaufen
gegenüber Gefühlen, die sich in der Öffentlichkeit zeigen.
Ein Land hat eine Verfassung, und nach der Verfassung
hat es eine Regierung, und die Regierung ist dazu da, das
eigene Land in seiner Freiheit zu schützen. Das Land kann
nicht den Wehrdienst verweigern, wie der einzelne dies
aus Gewissensgründen kann. Also muß auch erklärt
werden, was notwendig ist für diese Landesverteidigung
und warum. Und wir haben es allzu oft erlebt im Umgang
– ich sage jetzt mal, weniger der Wissenschaftler und
Wirtschaftler – sondern der Politiker mit der Öffentlichkeit,
daß sie diese Fragen zunächst so geheim behandelt
haben, dann sind sie gegenüber öffentlich sich Geltung
verschaffenden Regungen vielleicht zu schnell zu ängstlich
geworden und dann sind sie mehr hinterhergelaufen,
anstatt das Mandat wahrzunehmen, wozu sie doch
gewählt sind. Wir sind als Politiker nicht gewählt, um
hinzuhören und zu machen, was andere wollen, sondern
wir sind gewählt, um zu prüfen, was notwendig ist,
Entscheidungen zu treffen und die Entscheidungen
durchzusetzen und zu vertreten – kurzum wir sind
gewählt, voranzugehen und nicht hinterherzulaufen. Und
wenn der Weg, auf dem wir vorangehen, von der
Öffentlichkeit nicht akzeptiert wird, dann kann man
ja abgewählt werden. Aber wir sind – ich betone es
nochmals – in der Zeit, für die wir gewählt sind, dazu
gewählt worden, voranzugehen und nicht hinterherzulaufen.
Und das ist eben mitunter vernachlässigt
worden.
Wir haben nun in Berlin im engeren Sinn mit der
friedlichen Nutzung der Kernenergie nicht dieselben
Probleme wie manche anderen Bundesländer, und wenn
es um die Dislozierung von Mittelstreckenraketen geht,
dann erst recht nicht. Trotzdem aber haben wir hier
in Berlin wahrlich etwas, nämlich eine kritische Öffentlichkeit.
Und im Rahmen dieser kritischen Öffentlichkeit,
uns vor diesen Prozessen der Erörterung, der Auffindung
der Probleme, der Entscheidungen, der Vertretung
der Entscheidung, des Gewinnens eines öffentlichen
Verständnisses und einer Zustimmung, haben wir es
in der Tat in Berlin nicht leichter als es irgendein anderer
Platz hat. an dem Kernkraftwerke gebaut werden oder an
dem Waffen stationiert werden, die dem Ziel der eigenen
Landesverteidigung dienen sollen. Von daher gesehen und
mit diesen wenigen Gedanken wollte ich begründen,
warum wir dankbar sind, nicht nur daß Sie überhaupt
nach Berlin gekommen sind, sondern auch dafür, welche
Themen Sie auf Ihrer Tagesordnung haben und wie
Sie sie zu behandeln gedenken. Denn ich meine, sie sind
exemplarisch für den nötigen Umgang miteinander
zwischen Wissenschaft, Wirtschaft und Politik immer in
Beziehung zur Öffentlichkeit, in der wir alle leben, die wir
alle ernst nehmen müssen und vor der wir Rechenschaft
ablegen müssen, über das was wir als notwendig erkennen
und das wir demgemäß auch machen wollen.
Advertisement
Fotoausstellung „Der Nukleare Traum“ beim AMNT
Für den „Nuklearen Traum“ fotografierte Bernhard Ludewig über sieben Jahre zentrale
Orte der deutschen Atomlandschaft und -geschichte, um den noch vorhandenen Teil
visuell zu erhalten. Zu sehen sind Bau, Betrieb und Rückbau der deutschen Kraft werkstypen,
ihre Warten, Kühltürme und Arbeitsschritte, von der Reaktoröffnung bis zur
Castor-Beladung. Der Weg des Urans wird von den Zentrifugen über La Hague bis in
Endlagerbaustellen verfolgt, die Reaktorforschung von Haigerloch bis SNR und THTR.
Zu den über 50 besuchten Orten zählen auch Forschungsreaktoren, Trainingsanlagen
und auch der Sarkophag von Tschernobyl.
„Der Nukleare Traum“ erscheint voraussichtlich im Herbst als Bildband. Auf der
Jahrestagung ist eine Auswahl daraus vorab als Fotoausstellung zu sehen.
Special Topic | A Journey Through 50 Years AMNT
Accountability to the Democratic Public ı Richard von Weizsäcker
atw Vol. 64 (2019) | Issue 4 ı April
Inside
227
50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie
Die Kerntechnische Gesellschaft e. V. (KTG) wurde am
14. April 1969 zunächst als Kerntechnische Gesellschaft
im Deutschen Atomforum e. V. (DAtF) in Frankfurt am
Main gegründet. Bei der Gründungsversammlung in der
Aula der Universität Frankfurt traten 163 Mitglieder bei.
Zum Vorsitzenden wurde Prof. Wolf Häfele gewählt.
Die Mitgliederversammlung des DAtF stimmte am
28. November 1978 in Bonn einer Satzungsänderung zu,
der zufolge die bisher in das DAtF eingegliederte KTG ein
eigener eingetragener Verein wurde. Eine weiterhin enge
Zusammenarbeit zwischen beiden Organisationen sollte
unverändert bestehen bleiben.
Zum 50. Geburtstag kommen der Vorsitzende der KTG,
Frank Apel, sowie der Sprecher der Jungen Generation
(JG) der KTG, Dr. Florian Gremme, zu einem gemeinsamen
Gespräch mit der atw in Berlin zusammen.
atw: 50 Jahre – Ein Geburtstag, an dem man sowohl zurück
als auch nach vorne schaut. Herr Apel, wenn Sie Ihren Blick
einmal zurück schweifen lassen: In welchem Umfeld hat sich
die KTG damals gegründet?
Apel: Herr Schneibel, Sie erwähnten im Eröffnungsgespräch
zwei Jahreszahlen aus der Geschichte der KTG:
1969 als Gründungsjahr der Kerntechnischen Gesellschaft
im Deutschen Atomforum und 1978, als die KTG ein
eigener eingetragener Verein wurde.
Wie sah es um die deutsche Kerntechnik in diesen
Jahren aus?
Nach einer erfolgreichen Inbetriebnahme wurde 1969
das Kernkraftwerk Obrigheim an den Kunden übergeben.
Innerhalb von zehn Jahren wurde die Leistung der DWR-
Kraftwerke vervierfacht: beginnend mit Obrigheim
(300 MWe) über Stade (600 MWe) zu Biblis A (1200 MWe).
In der Zeit zwischen 1969 und 1978 wurden Aufträge für
10 DWR- und 7 SWR- Anlagen vergeben, Kraftwerke, die
in Deutschland und im Ausland errichtet wurden. Zunehmender
Wettbe werbsdruck aus dem Ausland, notwendige
signifikante Investitionen in Fertigungskapazitäten und ein
hoher Finanzbedarf für Entwicklungs programme führten
zu einer Bündelung der Kernkraftwerksaktivitäten der AEG
und SIEMENS: 1969 wurde die Kraftwerk Union
Aktiengesellschaft (KWU) gegründet. Bewegte Zeiten.
Zum Ende der genannten Periode war in Deutschland auch
die Verlängerung von Errichtungszeiträumen durch eine
Vielzahl von zusätzlichen Auflagen in den zahlreichen Teilerrichtungsgenehmigungen
und aufgrund unklarer politischer
Rahmenbedingungen zu verzeichnen. Es wuchs
die Verunsicherung gegenüber der Kernenergie in der
deutschen Öffentlichkeit. Kernenergie-Gegner monierten
den Atomstaat, unsichere Kernkraftwerke, ungelöste Entsorgungsfragen
und stellten die Wirtschaftlichkeit in Frage.
Auf diese politischen und teilweise polemischen Fragestellungen
wurde mit technischer Kompetenz geantwortet.
Die Tatsache, dass wir in Deutschland die sichersten
Kernkraftwerke der Welt betreiben ist auch das Ergebnis
eines kritischen Diskurses und einem Genehmigungsverfahren,
das von fachlich äußerst versierten sowie
unabhängigen Behörden und Gutachtern in der Erteilung
und von kompetenten Antragstellern der Genehmigung
vollzogen wurde.
atw: Der erste Vorsitzende der KTG, Professor Häfele, sagte
bei ihrer feierlichen Gründung 1969: „Die Kern technische
Gesellschaft wird ihr Ziel, nämlich allen in der Kern technik
Tätigen wissenschaftlicher Heimathafen und Mittel der
Förderung der Kerntechnik zu sein, mit Ernst und Zielbewusstheit
verfolgen.“
Herr Gremme, Sie sind Sprecher der JG, also all jenen
Studierenden und Young Professionals, die ein gemein sames
Interesse an der Kerntechnik haben. Wird die KTG im Jahr
2019 diesem Grundgedanken immer noch gerecht?
Gremme: Ja, ich denke schon dass die KTG diesem
Grundgedanken gerecht wird und jedem Interessierten
Möglichkeiten bietet, sich zu informieren, auszutauschen
und einzubringen. Zentral sehe ich hier das jährliche
AMNT als Plattform an. Vertreter aus Lehre, Forschung
und Industrie präsentieren hier ihre Arbeiten und sind
daran interessiert, durch neue Kontakte und Vorträge
ihren Horizont und ihr Wissen zu erweitern. Besonders für
Studierende und Young Professionals bietet sich hier die
Gelegenheit, mit Personen aus anderen Bereichen der
Kerntechnik in Kontakt zu kommen. Dies gilt sowohl für
den fachlichen Austausch in Form von Vorträgen oder
Diskussionen als auch für junge Leute, die sich auf der
Jobsuche befinden – bei der Orientierung zu Joboptionen,
sei es in der Industrie oder Forschung, hilft es sehr, wenn
man ein Gesicht vor Augen hat, dem man Themen oder
einem Arbeitgeber zuordnen kann. Dies bringt meiner
Ansicht nach einen Sympathiegewinn mit sich und das
wirkt hinsichtlich der Motivation von Menschen für die
Faszination Kerntechnik.
| | Frank Apel (r.) und Dr. Florian Gremme (l.) im Gespräch mit Martin Schneibel
Apel: Da stimme ich Herrn Gremme zu. Professor Häfeles
Beschreibung der KTG als gemeinsamer kerntechnischer
„Heimathafen von Wissenschaft und Technik“ ist ein
schönes Bild und hat bis heute so Bestand.
Werner von Siemens beschrieb den Zusammenhang
von Wissenschaft und Technik übrigens wie folgt: „Die
naturwissenschaftliche Forschung bildet immer den
sicheren Boden des technischen Fortschritts, und die
Industrie eines Landes wird niemals eine internationale,
leitende Stellung erwerben und sich selbst erhalten
können, wenn das Land nicht gleichzeitig an der Spitze des
naturwissenschaftlichen Fortschritts steht.“
Das Interview führte
Martin Schneibel am
13.02.2019 in Berlin.
KTG INSIDE
KTG Inside
atw Vol. 64 (2019) | Issue 4 ı April
228
KTG INSIDE
Das Netzwerk ist
also ein ganz zentrales
Element, das wir
als JG der KTG knüpfen
möchten.
atw: Wie erwähnt ist das AMNT sicherlich die zentrale
Veranstaltung der Branche in Deutschland. Was bietet
insbesondere die JG darüber hinaus noch an, um ihr Netzwerk
weiter auszubauen und neue Kontakte her zustellen?
Immerhin bündelt sich in ihr der kern technische Nachwuchs.
Gremme: Einen Gewinn von Kontakten und damit Nahbarkeit
zu schaffen versuchen wir zudem auch mit unseren
regelmäßigen Kamingesprächen mit Führungskräften aus
der kerntechnischen Branche und unserer jährlichen
Nachwuchstagung. Das Netzwerk ist also ein ganz zentrales
Element, das wir als JG der KTG knüpfen möchten.
Dies zum einen zu potentiellen Arbeitgebern z.B. in den
Kamingesprächen, zum anderen unter
uns jungen Leuten selbst bei der Nachwuchstagung.
Dabei steht der fachliche
Austausch keines wegs hinten an. Wir
adressieren hier thematisch die aktuellen
und zukünftigen Themen in der Kerntechnik
aber auch weitere Anwendungsgebiete
wie die Medizintechnik. Bei
unseren letzten beiden Nachwuchstagungen haben wir
Rückbaustandorte besucht, den Mehrzweckforschungsreaktor
in Karlsruhe im Jahr 2017 und das Atomei in
Garching bei München im letzten Jahr. Zudem haben wir
hier einen Fokus auf Forschungsaktivitäten und strahlentherapeutische
Anwendungen gelegt. Das Wiedersehen
und Kennenlernen unterein ander bleibt dabei natürlich
nicht aus.
atw: Und wie groß ist hierbei das Interesse? Wie erreichen
Sie die Interessierten?
Gremme: Diese Möglichkeiten bieten sich, wie anfangs
erwähnt, allen Interessierten. Eine größer gewordene
Hürde ist es, diese Interessierten zu finden bzw. Interesse
und Motivation zu wecken. Da müssten sich die KTG und
das AMNT besonders für junge Leute attraktiver präsentieren.
Ich denke, dass die KTG alle notwendigen Themen
und Möglichkeiten hat und bietet, diese müssen die jungen
Leute nur sichtbar und nahbar erreichen. Wir versuchen
dies u.a. mit den Kamingesprächen, der Nachwuchs tagung
und für einen ersten Kontakt für Schüler mit dem Campus
Kerntechnik im Rahmen des AMNT. Auf dem Campus
möchten wir die Faszination Kerntechnik
vermitteln und die ein oder
andere Schülerin bzw. Schüler für
ein nachhaltiges Interesse an der
Kerntechnik gewinnen. Für unsere
Ich denke, dass die KTG alle
notwendigen Themen und
Möglichkeiten hat und
bietet, diese müssen die
jungen Leute nur sichtbar
und nahbar erreichen.
ge samte Informationsvermittlung
nutzen wir zudem auch Facebook
und Instagram. Eine Tatsache der
man sich stellen muss, um heutzutage
Informationen an junge
Menschen zu vermitteln ist, dass junge Leute sich hauptsächlich
über die sozialen Medien informieren. Hier kann
die KTG denke ich noch etwas tun, um so Interesse und
Motivation zu wecken. Dabei geht es nicht um möglichst
hohe Klick zahlen, sondern um zielgruppenorientierte
Nutzung von Kanälen zur nachhaltigen Informationsvermittlung,
mit denen man Interessenten auf die Angebote
der KTG lenken kann.
All unsere Aktivitäten zielen auf den fachlichen kerntechnischen
Austausch und auf die Bildung von Netzwerken
ab. Dies sind aus meiner Sicht wesentliche Benefits
einer Mitgliedschaft in der KTG.
atw: Wie bewerten Sie die Vorteile einer KTG- Mitgliedschaft,
Herr Apel? Gerade die Generation der 1980er- und 90er-Jahre
wird oftmals als die „Generation Y“ („Generation Why?“)
bezeichnet, also jene Generation, die vieles kritisch
| | Frank Apel, Vorsitzender der KTG
hinterfragt. Wie schaffen Sie es, diese Gruppe für eine
Mitgliedschaft in der KTG zu überzeugen? Welchen Mehrwert
bringt die Teilnahme am Vereinsleben?
Apel: Vieles in unserer Verbandsarbeit läuft richtig toll.
Wir haben viele engagierte Ortssektionen, die spannende
Vorträge und Exkursionen organisieren. Unsere Fachsektionen
mobilisieren eine breite Teilnehmerschaft an
hochinteressanten Fachtagungen und die JG trifft sich,
wie von Herrn Gremme eben gehört, regelmäßig zu
Exkursionen, Vorträgen und zum Netzwerken.
In vielen Gesprächen mit Mitarbeitern der Kerntechnik
(KTG-Mitglieder und Nicht-Mitglieder) wurde eine Frage
bezüglich der Mitgliedschaft in unserem Verband am
häufigsten gestellt: „Was ist drin für MICH?“. Die Frage
nach unserem „Mehrwert“ müssen wir zukünftig noch
besser und mit mehr „Inhalt“ beantworten. Mitglieder und
potentielle Mitglieder – viele auch aus der mir persönlich
gut bekannten „Generation Y“, auf die wir übrigens stolz
sein können – suchen Überschriften, wofür die KTG steht.
Die „friedliche Nutzung der Kernenergie“ ist als Rahmen
sicherlich korrekt.
Aber können wir KTG-Mitglieder in unserem Land –
auch wenn der Ausstieg aus der Kernenergie beschlossen
ist – nicht eine persön liche, technisch
fundierte Meinung haben und vertreten,
die weiter geht? Ich denke schon. Dazu
müssen wir uns weiter ver netzen und
austauschen: traditionell über „unsere
Seiten“ in der atw, unsere Homepage aber
auch über Social Media.
atw: Wie ist die Situation in der JG, Herr
Gremme? Sie haben eben ja bereits die
Benefits einer Mitgliedschaft angesprochen.
Möchten sich junge Leute in Ihrer Freizeit überhaupt noch
berufsnah einbringen?
Gremme: In dieser Generation, zu der ich laut Geburtsjahr
auch zähle, wird viel Wert auf einen Ausgleich
zwischen beruflicher Tätigkeit und Freizeit gelegt. Der Job
ist hauptsächlich dazu da, die freie Zeit gestalten zu
können und ist vielleicht weniger Berufung oder Teil
dessen, womit man sich identifizieren möchte – letzteres
aber nur als Vermutung. Ich denke viele haben daher einen
Vor behalt gegenüber einer Aktivität in einem Verein wie
der KTG, da es der
beruflichen Tätigkeit
sehr nah ist.
Dies hängt vielleicht
auch damit zusammen,
dass man in
Die Frage nach unserem
„ Mehrwert“ müssen wir
zukünftig noch besser und mit
mehr „ Inhalt“ beantworten.
KTG Inside
atw Vol. 64 (2019) | Issue 4 ı April
unserer multimedialen Welt mit Informationen und
Benachrichtigungen überschwemmt wird. Viele Prozesse
laufen zudem beschleunigt ab, wodurch im Vergleich zu
früher mehr in gleicher Zeit erledigt werden kann und
muss. Vielleicht ist das ein Faktor, weshalb sich jemand aus
der „Generation Y“ vor einer weiteren berufsnahen
Aktivität scheut.
Dabei lernt man im Vereinsleben und bei der Vereinsarbeit
eine Menge, was einem sowohl beruflich als auch
privat helfen kann. Wesentliche Benefits einer Mitgliedschaft
in der KTG sind zum einen das Netzwerk, ganz
einfach durch das Kennenlernen
anderer Menschen, der fachliche Austausch
und auch die Methoden und
Abläufe, die man z. B. bei der Organisation
von Aktivitäten lernt.
Wir versuchen jungen Leuten
genau diese Vorteile aufzuzeigen und
sie durch die nahbare Darstellung
unserer Aktivitäten davon zu über zeugen. Hier spielt sich
viel auf zwischenmenschlicher Ebene ab und dadurch
kann man auch neue Inte ressenten gewinnen.
atw: Die kerntechnische Branche hat in den vergangenen
Jahrzehnten Höhen und Tiefen erlebt. Die Nutzung der Kernenergie
zur Stromerzeugung wird in Deutschland mit Ablauf
des Jahres 2022 Geschichte sein. Auf der anderen Seite zeigt
die Kerntechnik ihre viel fältigen wei teren Anwendungsmöglichkeiten.
Sei es die Grundlagen forschung zur Kernfusion,
wie sie beispielsweise in Greifswald stattfindet, oder
auch Anwendungen in Medizin, Industrie und Forschung.
Spüren Sie, Herr Gremme, dass sich bei der JG das Interessengebiet
der Mitglieder diesbezüglich ändert?
Gremme: Einen wirklichen Ruck einer Änderung des
Interessengebiets der JG habe ich bisher nicht gespürt.
Viele JG-Mitglieder kommen beruflich bedingt aus dem
Gebiet der energetischen Nutzung der Kerntechnik. Das
heißt allerdings nicht, dass kein Interesse für Themen
wie die Nutzung der Kerntechnik in der Medizin oder
forschungsorientierte Themen wie Fusionstechnologie
besteht. Von den Teilnehmern unserer Nachwuchstagung
kam hier positives Feedback bzgl. der Themenauswahl.
Allerdings müssen wir feststellen, dass insgesamt die
Resonanz für Aktivitäten nachlässt. Hierfür kann es verschiedene
Gründe geben und wir ver suchen herauszufinden
welche dies sind. Zum einen werden wir älter,
wodurch interessierte und aktive JG-Mitglieder die JG
altersbedingt verlassen und die Gewinnung neuer
Mitglieder zuletzt leider schwer ist. Hier müssen die
Benefits einer Mitgliedschaft deutlicher gemacht und zielgruppenorientierter
platziert werden, um die Faszination
Kerntechnik zu vermitteln.
| | Dr. Florian Gremme, Sprecher der Jungen Generation
Wir Mitglieder der KTG
wollen gemeinsame Werte
schaffen, uns verbindet die
gemeinsame Identität: der
„Faszination Kerntechnik“.
atw: Und wie sieht es bei der KTG im Allgemeinen aus,
Herr Apel? Einige Mitglieder sind ja quasi seit der ersten
Stunde mit dabei. Wie werden sich die Mitglieder zukünftig
identifizieren?
Apel: Die KTG ist eine wissenschaftlich-technische Vereinigung,
unser Verein ist die „Heimat“ der in der Kerntechnik
in Deutschland Beschäftigten. Wir legen unseren
Fokus nicht auf Presse- und Öffentlichkeitsarbeit, dieses
Feld wird durch das DAtF abgedeckt. Wir Mitglieder der
KTG wollen gemeinsame Werte schaffen, uns verbindet
die gemeinsame Identität: der „Faszination Kerntechnik“.
Die Anwendungsfälle der Kerntechnik
sind mannigfaltig. Oft denken wir nur an
Kernkraftwerke, deren Betrieb oder den
Rückbau sowie die damit verbun denen
Entsorgungsfragen. Aber da gibt es noch
viele weitere Anwendungs fälle außerhalb
der Energiewirtschaft z. B. in der Medizin
oder der Werkstofftechnik. Schauen Sie
sich den Film „Viel könner Kerntechnik“ an und lassen Sie
sich von unserer Faszination anstecken.
atw: Sie haben es gerade angesprochen. Die Hauptaufgabe
eines wissen schaftlich-tech nischen Vereins besteht zweifelsohne
darin, kritischer Förderer der von ihm vertretenen
Wissenschaft und Technik zu sein. Die Diskussionen um
die Verantwortbarkeit der Kernenergie haben im Laufe
der Zeit Dimensionen erreicht, die es den KTG-Mitgliedern
immer schwerer machen, sich aus entsprechenden poli tischen
Diskus sionen herauszuhalten. Wie geht die KTG damit um?
Gremme: Aus meiner Sicht sollten wir als KTG vorsichtig
mit politischen Statements sein, da unsere Hauptaufgabe
als Verein, wie Sie in der Frage bereits formuliert haben,
nicht Politik ist. Nichtsdestotrotz kann und sollte die KTG
mit großem Know-How in den eigenen Reihen und als
großer kerntechnischer Verein einzelner Personen in
Deutschland Gebrauch seiner Stimme machen und faktenorientierte
Statements zu energietechnischen Entwicklungen
geben. Man muss allerdings deutlich darauf
achten, nicht in politische Orientierungen oder Parteiprogramme
gerückt zu werden.
Apel: Die KTG beabsichtigt auch weiterhin keine politische
Positionierung. Eine zielorientierte Kommunikation,
mit „Mehrwert“ für unsere Mitglieder, muss
die Attrak tivität unseres Verbandes verbessern. Wir
werden in der Zukunft unseren technisch fundierten
Standpunkt zu aktuellen Themen deutlich und ohne politische
Polemik in unseren KTG-Foren, wie dem Internet
oder der atw kundtun. Auch wenn „WIR“ in der KTG sehr
verschieden sind, haben „WIR“ gemeinsame Interessen
und Ziele. Und dazu müssen „WIR“ unseren Dialog
untereinander aber auch mit unseren „Brüdern im Geiste“
verbessern.
Auch wenn ein großer Teil unserer Mitglieder noch
im Arbeitsleben steht, müssen wir – mit unserer privaten
Mitgliedschaft in der KTG – nicht zwangsläufig nur
die Interessen unserer Arbeitgeber-Firmen vertreten,
sondern wir können über den Tellerrand herausschauen.
So habe ich auf der vorletzten Mitgliederversammlung
der KTG meine persönlichen Ansichten zur Kerntechnik
vorgestellt:
pp
Ich bin für eine Laufzeitverlängerung der europäischen
Atomkraftwerke im Sinne einer „Unterstützung der
Energiewende“ – wenn eben z. B. die Stromtrassen
doch nicht so schnell fertig werden – und einem „Mittel
zur CO 2 -Reduzierung“.
pp
Ich bin für einen Neubau von Kernkraftwerken z. B. der
nächsten Generation in Deutschland und Europa. Dies
229
KTG INSIDE
KTG Inside
atw Vol. 64 (2019) | Issue 4 ı April
230
KTG INSIDE
müssen aber unsere Kinder und Enkel – also die
nächste(n) Generation(en) – auch so wollen.
pp
Ich bin für einen effizienten und zügigen Rückbau der
abgeschalteten Anlagen in Deutschland.
pp
Ich bin für eine freie, breite und ausreichend ausgestattete
Grundlagen- und Anwendungsforschung zu
allen kerntechnischen Fragestellungen.
pp
Ich bin für eine fortgesetzt aktive konstruktive Beteiligung
Deutschlands an internationalen Entwicklungen
in der Kerntechnik und der Einbringung des deutschen
Know-hows und der deutschen Standards in die internationale
Sicherheitsentwicklung.
atw: Gerade ihr letzter Punkt scheint bei den KTG- Mitgliedern
ebenfalls von großem Interesse zu sein. Der im vergangenen
Jahr neu gegründeten Fachgruppe „Inter nationale Entwicklung
innovativer Reaktorsysteme“ haben sich direkt weit über
200 Mitglieder angeschlossen. Wie wird die KTG ihren Blick
künftig international ausrichten?
Apel: Es gibt gute Gründe, die internationale Entwicklung
innovativer Reaktorsysteme, der Fusionstechnologie oder
aber innovativer Entsorgungstechnologien – auch außerhalb
Deutschlands – zu verfolgen:
Ein vollständiger Ausstieg aus der Kernenergie ist international
die große Ausnahme und nicht die Regel. Der
deutsche Verzicht auf Stromerzeugung
aus Kernenergie ist
nicht mit einem völligen Ausstieg
aus der Technologie gleichzusetzen,
noch haben wir einen
fortlaufenden Betrieb und den
sicheren Nachbetrieb der Anlagen vor uns. Es gibt kommende
Aufgaben beim Rückbau der Kernkraftwerke und
der Entsorgung der Abfälle.
Deutschland ist ein Land der Spitzenforschung, das
Forschungsreaktoren betreibt und in internationalen
Nuklearforschungsprogrammen mitarbeitet. Deutschland
hat einzigartige wissenschaftliche und industrielle Fähigkeiten
in der Kerntechnik zu deren langfristigen Erhalt
eine ausreichend große kritische Masse von deutschen
Herstellern, ihren Zulieferern und Dienstleistern notwendig
ist. In unserem Land wurden und werden die verlässlichsten
Kernkraftwerke und kerntechnischen Anlagen
betrieben, nicht zuletzt, weil eine jahrzehntelange
kritische Diskussion über die Kernenergie zu sehr hohen
Sicherheitsstandards und zu einer hoch entwickelten
Sicherheitskultur geführt hat. Auf dieser Grundlage setzt
sich die Bundesregierung in der EU und weltweit für ein
hohes nukleares Sicherheitsniveau ein. Dieses Interesse
wird langfristig bestehen, da die Mehrzahl der anderen
Staaten, die Kernenergie nutzen, keinen Ausstieg anstreben.
Ohne eine eigene kerntechnische Industrie, die in
eine entsprechende Forschungslandschaft eingebettet ist,
wird es aber nicht möglich sein, weiter eine treibende Kraft
kerntechnischer Sicherheit weltweit zu sein.
Gremme: Ich unterschreibe die Ausführungen von Herrn
Apel und denke, dass die Entwicklung dieser Fachgruppe
unterstreicht, dass die KTG-Mitglieder an der Faszination
Kerntechnik und an zukünftigen Perspektiven interessiert
sind. Als JG sind wir im Wesentlichen durch zwei Netz werke
international verknüpft. Dies ist zum einen das Young
Generation Network (YGN) der European Nuclear Society
(ENS) und zum anderen der International Youth Nuclear
Congress (IYNC), eine Konferenz, die mit weltweiter
Beteiligung organisiert wird und auch weltweite Teil nehmer
hat. Der nächste IYNC findet im Jahr 2020 in Australien
statt. Sowohl hier als auch auf der Europäischen Konferenz
des YGN, dem European Nuclear Young Generation Forum
Ein vollständiger Aus stieg aus der
Kernenergie ist international die
große Ausnahme und nicht die Regel.
(ENYGF), planen wir, als KTG JG vertreten zu sein und
ermutigen die JG-Mitglieder daran teilzunehmen. Das
ENYGF findet dieses Jahr vom 23. bis 27. Juni in Gent statt.
Das sogenannte Core Committee des ENS YGN trifft
sich dreimal im Jahr, um sich über die nationalen
Aktivitäten zu informieren und gemeinsame Aktionen zu
organisieren. Hier vertreten wir unsere Interessen und
wirken an der Planung von Aktivitäten mit. Zudem
nehmen wir hierdurch an Aktionen wie dem Nuclear Pride
Fest oder den Weltklimakonferenzen teil. Hier unterstützen
wir z. B. die Initiative „Nuclear for Climate“.
atw: Herr Gremme, Sie haben mehrjährige Erfahrung in der
Forschung im kerntechnischen Bereich, genauer gesagt
in der Reaktorsicherheitsforschung, an der Ruhr- Universität
Bochum vorzuweisen. Damit gehören Sie zu jenem Personenkreis,
dessen Arbeit die Bundes regierung jüngst in ihrem
Energie forschungsprogramm als wichtig erachtet. Was
würden Sie einem jungen Menschen, der sich für eine Karriere
in der Kerntechnik interessiert, mit auf den Weg geben?
Gremme: Ich denke, dass man in der Kerntechnik viele
faszinierende Bereiche eines Maschinenbaustudiums
vertieft bearbeitet und diese in vielen Bereichen sowohl der
Forschung als auch der Industrie direkt anwenden kann.
Die Kerntechnik stellt immer noch Hightech der thermischen
Energieumwandlung dar.
Wenn man sich also für Thermodynamik,
Wärme- und Stoffübertragung
und/oder Strömungsmechanik
interessiert, findet man
diese Thematiken an vielen Stellen
in der Kerntechnik wieder, z. B. bei der Modellierung von
Wärmeüberträgern oder atmosphärischer Strömungen. In
der Reaktorsicherheitsforschung geht es im Speziellen zum
einen um die Modellierung von Phänomenen die während
eines Störfalls in Kernkraftwerken auftreten können. Die
auf tretenden Phänomene, wie Oxidationen, also chemische
Reaktionen, Wärmeüber tragungs- und Strö mungs prozesse
als auch Verlagerung von Materialien treten dabei z. T. stark
in Wechselwirkung. Dadurch lernt man viel über die Einzelphänomene,
bekommt aber vor allem auch einen integralen
Blick für die Einflüsse der Pro zesse untereinander. Ich
denke, durch diese umfäng lichen vertieften Betrachtungen
wird man auch bestens ausgebildet, das Gelernte auf andere
Bereiche der Energietechnik zu übertragen.
Zum anderen werden in der Reaktorsicherheits -
forschung aber auch neue Systeme entwickelt, die zur
Wärmeabfuhr aus dem Brenn elementlagerbecken eingesetzt
werden können. Weiterhin werden Sicher heitsanalysen
und Wirksamkeitsbetrachtungen von Maßnahmen
zur Prävention und Mitigation von Störfällen
durchgeführt, indem gesamte kerntechnische Anlagen
simuliert werden. Dabei lernt man viel über Regelwerke
Heruntergebrochen
ist eine Karriere in den
Themenfeldern der
Kerntechnik mit der
Verknüpfung zur
„ Industrie 4.0“ ein
zukunftsorientierter Weg.
und Störfallmanagement.
Viele dieser Betätigungsfelder
beinhalten dazu wie
bereits erwähnt Programmierung
und Modellierung.
Hierbei erlernt man das Handwerkszeug
der Digita lisierung
für viele Fragestellungen der
„Industrie 4.0“. Heruntergebrochen
ist eine Karriere in
den Themen feldern der Kerntechnik
mit der Verknüpfung zur „Indus trie 4.0“ ein
zukunftsorientierter Weg. Diese Benefits müssen allerdings
gemeinsam von Industrie, Forschung und Politik positiv
beleuchtet und an Schüler und Studierende herangetragen
KTG Inside
atw Vol. 64 (2019) | Issue 4 ı April
werden, damit der politisch gewollte Kompetenzerhalt auch
erreicht werden kann.
atw: Die KTG ist seit 50 Jahren Anlaufstelle für die Mitarbeiter
der kerntechnischen Branche in Deutschland. Von
163 Gründungsmitgliedern ist deren Zahl auf etwa 2000
Mitglieder gestiegen. Das Jubiläum möchten wir natürlich
auch als Gelegenheit nutzen, nach vorne zu blicken. Wie
sehen Sie beide die Zukunft der KTG?
Gremme: Zunächst möchte ich der KTG alles Gute zu
Ihrem 50. Geburtstag wünschen und hoffe, dass noch viele
runde Geburtstage gefeiert werden können. Zuletzt sind
die Mitgliederzahlen leider rückläufig, da wünsche ich
mir für die Zukunft der KTG, dass diese Entwicklung
aufge halten werden kann und sich stabile Mitgliederzahlen
einstellen. Generell sehe ich der Zukunft der KTG
positiv entgegen, da ich denke, dass dieser wissenschaftlich-
technische Verein in Deutschland eine zentrale Rolle
beim Kompetenzerhalt, auch für die politischen Ziele, einnehmen
kann. Dafür ist eine stärkere Zusammenarbeit
und Verknüpfung zwischen Industrie, Forschung und
Politik notwendig – ein gemeinsames Konzept muss
her, um den kerntechnischen Aufgaben in Deutschland
begegnen zu können. Hierfür bieten wir, die JG der KTG,
gerne unsere Unterstützung an.
Apel: Diesen Glückwünschen schließe ich mich natürlich
an. Kerntechnik „Made in Germany“ war in der Vergangenheit
ein Aushängeschild unserer Branche und wird es
bleiben, die Anwendungsfälle werden sich weiter verändern,
Schwerpunkte werden sich verschieben. Kerntechnik
als Einheit von Wissenschaft (der Lehre und der
Forschung) und Technik (Betreiber, Zulieferer) aber auch
unsere Gutachter und Behörden haben als wichtigstes Gut
(neudeutsch Asset) den Mitarbeiter, den Fachmann, den
Experten. Und dies wird für die nächsten Jahre so bleiben.
Wenn wir beim Erhalt und der Neugewinnung unserer
Mitglieder gute Antworten auf die Frage „Was ist drin
für mich“ finden, schaue ich in eine erfolgreiche Zukunft
der KTG.
231
KTG INSIDE
KTG
Wichtige Terminhinweise in eigener Sache
Ankündigungen zum Vortag unserer diesjährigen Jahrestagung, dem 50 th Annual Meeting on Nuclear Technology
(AMNT 2019) vom 7. bis 8. Mai 2018 im Estrel-Hotel, Berlin:
33
KTG-Mitgliederversammlung
• Wann? Montag, 6. Mai 2019, 17:00 Uhr
• Wo? Estrel Convention Center, Paris,
Sonnenallee 225, 12057 Berlin
33
Get-together der KTG (auch für Nicht-Mitglieder)
• Wann? Montag, 6. Mai 2019, 19:00 Uhr
• Wo? Estrel Convention Center, Große Galerie,
Sonnenallee 225, 12057 Berlin
Herzlichen Glückwunsch!
Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag
und wünscht ihnen weiterhin alles Gute!
Mai 2019
50 Jahre | 1969
14. Jens-Michael Hövelmann, Jülich
55 Jahre | 1964
18. Martin Franz, Erlangen
60 Jahre | 1959
18. Peter Klopfer, Neckarwestheim
75 Jahre | 1944
12. Peter Faber, Rödermark
76 Jahre | 1943
3. Dipl.-Ing. Hans Lettau, Effeltrich
76 Jahre | 1943
22. Wolfgang Schütz, Bruchsal
24. Dipl.-Ing. Rudolf Weh, Stephanskirchen
77 Jahre | 1942
5. Hans-Bernd Maier, Aschaffenburg
9. Dr. Egbert Brandau, Alzenau
11. Dr. Erwin Lindauer, Köln
17. Dr. Heinz-Peter Holley, Forchheim
28. Dr. Wolf-Dieter Krebs, Bubenreuth
78 Jahre | 1941
8. Prof. Dr.-Ing. Helmut Alt, Aachen
79 Jahre | 1940
15. Dipl.-Phys. Ludwig Aumüller, Freigericht
24. Dipl.-Ing. Herbert Krinninger,
Bergisch Gladbach
80 Jahre | 1939
4. Dipl.-Ing. Norbert Albert, Ettlingen
81 Jahre | 1938
13. Dipl.-Ing. Otto A. Besch, Geesthacht
13. Dr. Heinrich Werle, Karlsdorf-Neuthard
16. Dr. Hans-Dieter Harig, Hannover
21. Dr. Hans Spenke, Bergisch Gladbach
82 Jahre | 1937
6. Dr. Peter Strohbach, Mainaschaff
26. Dipl.-Ing. Rüdiger Müller, Heidelberg
27. Dr. Johannes Wolters, Düren
28. Dipl.-Ing. Heinz E. Häfner, Bruchsal
84 Jahre | 1935
8. Dipl.-Ing. Klaus Wegner, Hanau
22. Dr. Heinz Vollmer, Lampertheim
29. Dipl.-Ing. Karlheinz Orth, Marloffstein
85 Jahre | 1934
11. Dr. Eckhart Leischner, Rodenbach
14. Dr. Alexander Warrikoff, Frankfurt/Main
26. Dr. Günter Kußmaul, Manosque/FR
86 Jahre | 1933
4. Dr. Klaus Wiendieck, Baden-Baden
25. Dr. Reinhold Mäule, Walheim
89 Jahre | 1930
9. Dr. Hans-Jürgen Hantke, Kempten
91 Jahre | 1928
10. Dr. Heinz Büchler, Sankt Augustin
95 Jahre | 1924
22. Prof. Dr. Fritz Thümmler, Karlsruhe
Wenn Sie künftig eine
Erwähnung Ihres
Geburtstages in der
atw wünschen, teilen
Sie dies bitte der KTG-
Geschäftsstelle mit.
KTG Inside
Verantwortlich
für den Inhalt:
Die Autoren.
Lektorat:
Natalija Cobanov,
Kerntechnische
Gesellschaft e. V.
(KTG)
Robert-Koch-Platz 4
10115 Berlin
T: +49 30 498555-50
F: +49 30 498555-51
E-Mail:
natalija.cobanov@
ktg.org
www.ktg.org
KTG Inside
atw Vol. 64 (2019) | Issue 4 ı April
232
NEWS
Top
IAEA: Member states discuss
modelling human resource
development for nuclear
power
(iaea) Modelling human resource
development can be an effective tool
to assist nuclear newcomer countries
in understanding the required competencies
and workforce needed to
establish and maintain a safe, secure
and sustainable nuclear power programme.
The IAEA is providing a
modelling tool that can help countries
in planning and educating the
required human resources.
“Human resource development for
nuclear power requires a national
effort and will involve a Member
State’s government, education system,
existing nuclear organizations and
national utilities and industries,” said
Dohee Hahn, Director of the IAEA
Division of Nuclear Power. Planning
for this endeavor therefore requires
a comprehensive national analysis.
“Modelling is uniquely suited to
support this effort. The IAEA will continue
to assist Member States as they
examine their workforce.”
The IAEA provides helpful guidance
for Member States to survey their
workforce and educational systems to
identify and close gaps in their workforce
for nuclear power. One example
for its guidance and assistance is the
Nuclear Power Human Resource
(NPHR) Model, provided to Member
States for use in analyzing their
human resource development.
The NPHR modelling tool is a
system dynamics simulation of a
nuclear power programme and the
national nuclear workforce. The model
includes the educational tracks, training,
and career cycles for the workforce
supporting the owner/operator
organizations, the regulatory body,
and the construction workforce. The
tool is useful for providing a long perspective
look at the workforce to determine
any skill gaps that might present
risk to the programme. More than 14
Member States have so far been
trained in using the model.
Users of the modelling tool from
ten nuclear newcomer countries
(Egypt, Ghana, Kazakhstan, Kenya,
Morocco, Niger, Nigeria, Poland,
Saudi Arabia, Sudan, Turkey and
Uganda) gathered for the Technical
Meeting on Human Resource Development
Analysis and the Use of the
NPHR Modelling Tool for New Nuclear
Power Progammes, held from 12 to
15 February 2019 at the IAEA. In
addition, experts from operating
countries (France, Russia, the UK and
the USA) highlighted the status of
their nuclear workforce and the challenges
that every country may face.
Each of the embarking countries
presented results of their human
resource development studies and
explained how they used the model.
Most Member States indicated that
their national workforce studies were
directed by the nuclear energy programme
implementing organization
(NEPIO) and conducted with participants
from other relevant organizations.
The studies relied on data from
the national education system and the
national workforce.
Several Member States indicated
that modifications to the model were
needed to properly reflect their education
system. Participants reported on
additional modelling they did in their
countries to validate modelling results
and on national gaps that they had
identified as well as decisions made to
close them.
Main take-away points were the
identification of key events during
programme development with which
the human resource development
plan must be coordinated: the delivery
of a full scale simulator of a reactor
control room and the delivery of fuel
prior to commissioning. Participants
also discussed the other factors that
can affect the workforce requirements,
and the resources available to
embarking countries.
The model users highlighted that
working groups composed of representatives
from different national
organizations should support the
analysis and reiterated the need for a
national effort.
Human resource development
and the NPHR Model
Human resource development is one
of the 19 infrastructure issues identified
in the three-phased, comprehensive
IAEA Milestones Approach which
enables a sound programme development
process. It is an important component
for developing the nuclear
power infrastructure and must be
started at the earliest phases of a
nuclear power programme. Suitably
qualified and experienced workers are
required in every phase of the programme.
It can take more than a
decade to grow the required skills in
sufficient numbers for the organizations
that need them, and the resulting
workforce must be sustained
for the life time of the plant.
| | www.iaea.org
NEI: Why we should listen to
Bill Gates on nuclear energy
(nei) As the founder of one of the
world’s most recognized and successful
companies, Bill Gates receives a lot
of attention for what he says and does.
When Bill Gates talks, people listen.
And today, Bill Gates is talking about
nuclear energy.
In his 2018 year-in-review blog
post, Gates said: “Nuclear is ideal for
dealing with climate change, because
it is the only carbon-free, scalable
energy source that’s available 24 hours
a day.” But to Bill Gates, nuclear energy
is not just a technology that can
help us meet climate change goals; it
also can be used to reduce global poverty.
Gates believes that if we are able
to expand access to affordable and
clean electricity, it would drastically
improve living conditions for millions
and would ultimately be a huge step in
lifting those people out of poverty.
Gates has done more than just
write about the benefits of nuclear
energy. In 2006, he helped launch
TerraPower LLC, a nuclear reactor
design company that aims “to improve
the world through nuclear energy and
science.” In Gates’s view, investing in
advanced nuclear technology can help
America regain its position as the
global leader on nuclear energy while
fighting poverty and driving worldwide
decarbonization.
“Nuclear is ideal for dealing with
climate change, because it is the only
carbon-free, scalable energy source
that´s available 24 hours a day.” – Bill
Gates on why he believes in the potential
of nuclear. https://bit.ly/2DSSXUS
As important as Bill Gates’ voice is to
the cause of promoting nuclear energy
as a critical solution to solving complex
global problems, he is hardly alone
among technology entrepreneurs. The
late Paul Allen, who was co-founder of
Microsoft Corp. with Bill Gates, also
championed the benefits of nuclear energy.
And Peter Thiel, the co-founder of
PayPal, Palantir Technologies and
Founders Fund, wrote a New York Times
op-ed arguing for adapting U.S. energy
policy to support a new atomic age.
Thiel wrote: “If we are serious
about replacing fossil fuels, we are
going to need nuclear power, so the
choice is stark: We can keep on merely
talking about a carbon-free world, or
we can go ahead and create one.”
Gates, Allen and Thiel are just a few
names of our nation’s most technologically
savvy business leaders who have
invested in promoting the value of
nuclear energy. And as more and more
organizations and environmental
News
atw Vol. 64 (2019) | Issue 4 ı April
Operating Results December 2018
Plant name Country Nominal
capacity
Type
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated, gross
[MWh]
Month Year Since
commissioning
Time availability
[%]
Energy availability
[%] *) Energy utilisation
[%] *)
Month Year Month Year Month Year
OL1 Olkiluoto BWR FI 910 880 744 680 983 7 001 022 261 655 208 100.00 88.25 99.05 87.24 100.58 87.82
OL2 Olkiluoto BWR FI 910 880 744 686 482 7 597 361 251 896 543 100.00 95.31 100.00 94.58 100.29 94.27
KCB Borssele PWR NL 512 484 744 379 826 3 514 770 161 721 689 99.47 79.32 99.46 79.00 100.03 78.49
KKB 1 Beznau 7) PWR CH 380 365 744 286 584 2 588 023 127 334 110 100.00 78.73 100.00 78.26 101.43 77.68
KKB 2 Beznau 7) PWR CH 380 365 744 285 074 3 185 534 134 350 407 100.00 96.40 100.00 96.28 100.84 95.62
KKG Gösgen 7) PWR CH 1060 1010 744 794 572 8 680 941 313 875 528 100.00 94.10 99.99 93.77 100.75 93.49
KKM Mühleberg BWR CH 390 373 744 283 870 3 066 170 127 404 315 100.00 92.84 98.80 92.01 97.83 89.75
CNT-I Trillo PWR ES 1066 1003 744 789 917 8 267 245 247 291 669 100.00 89.51 100.00 89.26 99.16 88.00
Dukovany B1 PWR CZ 500 473 729 362 664 3 599 011 112 229 493 97.98 83.36 97.06 82.84 97.49 82.17
Dukovany B2 2) PWR CZ 500 473 744 370 524 3 611 634 108 234 171 100.00 84.01 99.98 83.55 99.60 82.46
Dukovany B3 PWR CZ 500 473 161 70 038 3 875 614 106 498 041 21.64 90.72 21.25 90.37 18.83 88.48
Dukovany B4 PWR CZ 500 473 744 376 529 3 171 527 106 443 269 100.00 74.18 99.99 72.99 101.22 72.41
Temelin B1 PWR CZ 1080 1030 744 809 838 7 879 748 114 361 042 100.00 83.58 99.94 83.33 100.60 83.18
Temelin B2 PWR CZ 1080 1030 744 816 260 7 782 571 109 272 517 100.00 82.29 99.99 82.14 101.40 82.21
Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 30.83 0 30.81 0 30.91
Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 38.82 0 38.70 0 38.89
Doel 3 PWR BE 1056 1006 744 804 825 3 963 264 255 132 485 100.00 42.82 100.00 42.19 101.82 42.62
Doel 4 2) PWR BE 1084 1033 292 188 760 5 827 569 260 373 410 39.24 62.54 22.26 60.98 22.26 60.65
Tihange 1 PWR BE 1009 962 744 760 609 7 991 982 298 830 858 100.00 91.59 100.00 91.05 101.61 90.59
Tihange 2 3) PWR BE 1055 1008 0 0 5 702 393 254 651 930 0 62.33 0 61.67 0 62.04
Tihange 3 3) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 24.40 0 24.37 0 24.43
233
NEWS
Plant name
Type
Nominal
capacity
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated, gross
[MWh]
Time availability
[%]
Energy availability
[%] *) Energy utilisation
[%] *)
Month Year Since Month Year Month Year Month Year
commissioning
KBR Brokdorf DWR 1480 1410 744 952 106 10 375 751 350 567 810 100.00 90.60 94.33 84.72 86.08 79.65
KKE Emsland 4) DWR 1406 1335 744 1 007 298 11 495 686 346 818 969 100.00 94.78 100.00 94.67 96.21 93.33
KWG Grohnde DWR 1430 1360 744 1 013 399 10 946 635 377 574 214 100.00 92.82 99.98 91.61 94.60 86.79
KRB C Gundremmingen SWR 1344 1288 744 1 005 494 10 361 862 330 941 755 100.00 90.41 100.00 89.85 99.93 87.51
KKI-2 Isar DWR 1485 1410 744 1 084 754 12 127 490 353 725 813 100.00 95.46 100.00 95.24 97.90 92.92
KKP-2 Philippsburg DWR 1468 1402 744 1 068 384 10 993 639 366 161 155 100.00 90.63 100.00 90.47 96.33 84.05
GKN-II Neckarwestheim 2) DWR 1400 1310 744 1 025 400 9 703 700 329 826 834 100.00 81.35 100.00 81.00 98.80 79.29
groups stand behind carbon-free
nuclear energy, the support for nuclear
has never been so vast and varied.
Some of the smartest thinkers of
our time are calling on us to see
nuclear energy for its potential to
change the world.
It’s time we listen.
| | www.nei.org
EU needs all low-carbon
sources to achieve its 2050
decarbonisation goals
(foratom) Reflecting on how low-carbon
technologies can help the European
Union achieve its 2050 decarbonisation
objectives and what the needs of the
industrial sector are when it comes to
increased electrification were the main
topics discussed during an event hosted
in Brussels by the Permanent Representation
of Romania to the EU and
organised in the context of the country’s
Presidency of the Council.
The event “Solutions for a 2050
Carbon- free Europe”, organised by the
Romanian Ministry of Energy in cooperation
with FORATOM and the Romanian
Atomic Forum (ROMATOM),
gathered together more than 100 representatives
of EU Member States, EU
institutions and power industries. The
conference provided participants with a
platform to exchange views on how
low-carbon technologies can together
contribute to reaching EU climate goals.
During his keynote speech, EU Commissioner
for Climate Action & Energy
Miguel Arias Cañete stated that by 2050
the deployment of renewables and a
stable share of nuclear energy is the solution
to make the European power sector
carbon- free. He also underlined that the
role of low-carbon technologies is essential
in reaching carbon-neutrality.
This approach was echoed by the
Ro manian Minister of Energy Anton
Anton, who – in his introductory speech
– reiterated that all low-carbon energy
sources need to be explored in the
future in order to ensure a sustainable
development of economy. He also stated
that Europe has already managed to
achieve a lot in this field, also thanks to
the contribution of nuclear energy.
Fabien Roques, Executive Vice President
of FTI Compass Lexecon Energy
presented in detail a recent study
entitled “Pathways to 2050: role of
nuclear in a low-carbon Europe”, commissioned
by FORATOM pro viding the
vision for the nuclear sector by midcentury.
According to the study,
nuclear energy provides an important
contribution to an efficient transition
towards a decarbonised European
power system as it can help ensure
compliance with EU emissions targets,
avoid temporary increase of emissions
and locking in fossil fuels investments.
The complementarity role of nuclear
for renewables was also emphasised.
*)
Net-based values
(Czech and Swiss
nuclear power
plants gross-based)
1)
Refueling
2)
Inspection
3)
Repair
4)
Stretch-out-operation
5)
Stretch-in-operation
6)
Hereof traction supply
7)
Incl. steam supply
8)
New nominal
capacity since
January 2016
9)
Data for the Leibstadt
(CH) NPP will
be published in a
further issue of atw
BWR: Boiling
Water Reactor
PWR: Pressurised
Water Reactor
Source: VGB
News
atw Vol. 64 (2019) | Issue 4 ı April
234
NEWS
This last notion was addressed by
Giles Dickson, CEO of WindEurope,
who referred to the recent analysis
published by the International Energy
Agency. According to the IEA, the
share of electricity generated by wind
power will reach more than 30%
globally by 2039. However, as pointed
out by Mr Dickson, the power sector is
not the only sector which needs to be
significantly decarbonised in the
coming years. The same challenges
will need to be addressed by the transport
and heating sectors.
One of the possible solutions to
achieve this goal is increased electrification
which will play a key role
in achieving a low-carbon future.
Eurelectric Secretary General Kristian
Ruby presented a recent study carried
out by the organisation, which focuses
on decarbonising the European Union
through strong electrification, energy
efficiency, and support from other
non-emitting fuels. Each of the scenarios
developed by the association
will allow the EU power sector to be
fully decarbonised by 2045 and in
each of them the bulk of electricity
will be provided by renewables and
nuclear energy. Mr Ruby mentioned
also the importance of system reliability
and flexibility, which need to
be provided by multiple sources in the
power sector, including hydro, nuclear
and gas, but also emerging sources
such as hydrogen or battery storage.
The issue of storage was discussed
by Peter Claes, Vice President of the
International Federation of Industrial
Energy Consumers. During his speech,
Mr Claes pointed to the importance of
security of supply for efficient, reliable
and safe operation. In this context, the
current capability of battery storage as
a backup to renewables does not
guarantee the continuous supply of the
electricity needed by the industry.
Other potential pathways to decarbonise
the power sector, listed by Mr
Claes, were renewables with gas,
nuclear energy and geothermal energy.
The potential nuclear pathway and
the role nuclear energy has to play in
decarbonising Europe was underlined
during a speech given by Nuclearelectrica
CEO and ROMATOM President
Cosmin Ghita. Mr Ghita stressed that
there is no decarbonisation without
nuclear energy, and all low-carbon
energy sources should be treated
equally as they are all needed to reach
the decarbonisation goal and help the
EU achieve its climate objectives.
During his closing remarks,
FORATOM Director General Yves
Desbazeille briefly presented the key
takeaways of the FTI study commissioned
by FORATOM, noting that keeping
a share of nuclear provides clear
environmental, social and economic
benefits. The long-term operation of
existing reactors is a must and more
needs to be done to trigger investment
in new nuclear reactors. He also identified
some actions which must be undertaken
by both the EU and industry
in order to ensure nuclear remains part
of the mix and can help Europe achieve
its decar bonisation targets.
He was followed by Gerassimos
Thomas, Deputy Director-General of
DG Energy, who stressed the fact that
energy mix included in the long-term
greenhouse gas emissions reductions
strategy is based on the feedback
received from the Member States.
According to the information received,
two low-carbon sources will make up
the EU electricity mix: renewables
(80%) and nuclear (15-20%). These
two energy sources should work together
and not against each other as all
low-carbon energy sources are needed
in order to achieve the EU’s climate
objectives. Other innovative technologies
should be developed and therefore
increased attention to the R&D sector
should be paid. Competitiveness
should be improved, as this has an
impact on all technologies. Waste,
decommissioning and encouraging
young people to join the nuclear industry
were also points highlighted by
Mr Thomas.
At the end of the event, Elena
Popescu, Director General, DG Energy
and Climate Change, Romanian Ministry
of Energy, drew attention to the specificities
of each country in terms of
availability of energy sources and the
need to adapt to specific conditions.
Electrification will play an important
role in achieving the mid-century decarbonisation
targets, as long as it is
based on low-carbon electricity sources.
| | www.foratom.org
World
EU and IAEA review progress
and agree on priorities in
nuclear cooperation at annual
meeting
(iaea) The International Atomic Energy
Agency (IAEA) and the European
Union (EU) reviewed progress achieved
in working together on a range of
nuclear activities and agreed to further
enhance cooperation during their
seventh annual Senior Officials Meeting,
in Luxembourg, this week.
The talks provided a forum for
exchanging views on strengthening
collaboration on nuclear safety, security,
safeguards and nuclear research,
innovation and training. In particular,
the two organizations took note of
progress they have made in cooperation
on nuclear safety and security, as
well as nuclear safeguards. The role of
nuclear energy in addressing climate
change, for those countries choosing
to use it, was among the topics raised
in the discussions.
“We took stock of important developments
in areas of common interest
and steered the direction of our
cooperation for the year ahead. The
EU is one of our most relevant partners
and its support for the IAEA’s
mandate and work is valued,” said
Cornel Feruta, Assistant Director General,
Chief Coordinator for the IAEA.
“Nuclear safety and security remain
a major priority in the EU”, said
Gerassimos Thomas, Deputy Director
General in the Directorate-General for
Energy of the European Commission.
“In 2018, the EU completed its first
ever topical peer review on ageing
management of nuclear power plants
and research reactors under the
amended Nuclear Safety Directive.”
To support continuous safety improvements,
the EU would continue
to support the IAEA’s peer review services
IRRS and ARTEMIS, which were
being widely used by EU Member
States to fulfil their legal obligations
on nuclear safety and waste management.
Developments related to Small
Modular Reactors (SMRs), in particular
regulatory aspects, were also
discussed.
EU support for a variety of IAEA
activities has delivered consistent and
concrete results over the past year.
Officials commended the long-standing
and fruitful cooperation under the
Instrument for Nuclear Safety Cooperation
and in the Regulatory Cooperation
Forum. Joint efforts to address
environmental remediation in Central
Asia will continue following the successful
donors’ conference in 2018.
The EU reiterated its support for
the IAEA’s role in verifying and monitoring
the implementation of Iran’s
nuclear-related commitments under
the Joint Comprehensive Plan of
Action (JCPOA).
During the talks, the EU and the
IAEA agreed to further strengthen
cooperation in training as well as
research and development. In this
context, they welcomed progress
in advancing activities on nuclear
applications under the Practical
News
All results are from a survey of 2,061 people, conducted on behalf of the Nuclear Industry Association by YouGov, 29 November to 6 December2018
atw Vol. 64 (2019) | Issue 4 ı April
Arrangements over the second year of
their implementation.
The EU reaffirmed its support for
the IAEA’s 2018-2021 Nuclear Security
Plan, highlighting the importance of
the universalisation and implementation
of the Amendment to the Convention
on the Physical Protection of
Nuclear Material (A/CPPNM). Implementation
of the EU Council Decisions
in support of IAEA’s activities on
nuclear security was also discussed.
The two sides also reviewed cooperation
on technical matters in the field of
nuclear security.
Officials reviewed progress on the
implementation of nuclear safeguards
in EU Member States and on the European
Commission Safeguards Support
Programme to the IAEA.
The next Senior Officials Meeting
is expected to take place in Vienna in
early 2020
| | www.iaea.org
Did you miss the NEA webinar
on the true costs of decarbonisation?
(nea) The NEA hosted a webinar on
17 January to preview the findings
from the report The Costs of Decarbonisation:
System Costs with High
Shares of Nuclear and Renewables.
The webinar featured introductory
remarks by the OECD Secretary-
General Ángel Gurría and NEA
Director- General Magwood, who led a
discussion on the importance of
system costs in assessing the overall
costs of the energy transitions under
way. If you missed the live webcast,
the video recording is available at
oe.cd/nea‐system‐costs‐webinar‐2019
| | www.oecd-nea.org
Nuclear Industry Association
publishes 2018 public polling
(niauk) New research, carried out for
the Nuclear Industry Association by
YouGov has revealed what the public
thinks about nuclear energy.
The 2018 polling data has found
that 72% of people support nuclear as
part of a low carbon energy mix. In
addition, nuclear is seen as the most
secure for keeping the lights on, with
35% agreeing it is the most secure, followed
by 16% for solar, and 13% for
gas and offshore wind respectively.
The 2008 Climate Change Act established
a legally binding climate
change target aiming to reduce the
UK’s emissions by at least 80% by
2050. However, the research showed
that 73% of people agreed the government
should be doing more to combat
carbon emissions.
When asked about small reactors,
two in five of those asked agreed that
they could play a role in tackling climate
change, and 45% agreed they
could increase energy security.
The research also showed nuclear
is considered the best for job creation
and investment, when compared to
other energy sources.
| | www.niauk.org
Reactors
NIA Polling:
What the public think
YouGov, on behalf of the Nuclear Industry Association, has carried out polling to find
out what the public think about nuclear. Here are the findings of the 2018 research.
More people support nuclear as
part of a low carbon energy mix
Nuclear energy is ranked highest
for job creation and investment
Nuclear Industry Association is a company limited by guarantee registered in England No. 2804518.
Registered Office: 5 th Floor, Tower House, 10 Southampton Street, London WC2E 7HA
Nuclear energy is seen
as most secure for
keeping the lights on
Most agree government
should be doing more to
combat CO 2 emissions
45% agree, SMRs
could increase
energy security
Two in five agree
SMRs could tackle
climate change
Men favour new build
more than women
NIAUK.ORG
| | Nuclear Industry Association publishes 2018
public polling
40 years after Three Mile Island,
nuclear plants are among the
safest U.S. Facilities
(nei) March 28 marks 40 years since
the accident that damaged the core of
the Three Mile Island (TMI) 2 nuclear
reactor. The event was caused by a
combination of equipment failure and
the inability of plant operators to
understand the reactor’s condition at
certain times during the event.
The TMI accident was a cultural
touchstone for the nation and a turning
point for the industry. And while there
were no reported injuries or adverse
health effects from the accident, our
industry learned crucial lessons from
that day and has continued to enhance
the safety of our plants year after year.
As a result, safety is in the DNA of
every U.S. nuclear plant. By a variety
of metrics – rate of human error, worker
injury or equipment failure, number
of unplanned shutdowns and level
of occupational exposure – plant operations
are smooth, stable and smart.
Nuclear plants pursue excellence
All companies operating power reactors
have adopted a shared safety model
and formed an independent safety
organization, the Institute of Nuclear
Power Operations, to perform frequent
in-depth audits of all the reactors including
peer audits, in which operators
of similar plants travel from site to site
to critically examine each other’s practices,
successes and challenges.
Additionally, plant executives brief
each other on their malfunctions, personnel
errors and other events and
critique each other’s approach to operations.
The plants still adhere to a strict
code of regulations from the U.S.
Nuclear Regulatory Commission, but
the peer-to-peer interactions are more
comprehensive and promote a level of
safety and excellence in operations far
beyond what the government requires.
In fact, the Electric Power Research
Institute (EPRI) found that the risks
posed to public health and safety from
nuclear plants are much lower than
previously understood. While studies
in the 1980s and 1990s showed plants
had operated at a relatively modest
margin of safety, a recent EPRI study
shows that U.S. plants are nearly 100
times more safe than the NRC’s own
safety goals.
Nuclear plants are well-run
Highly trained experts run America’s
98 nuclear plants. With the NRC’s oversight
and layers of safety precautions, a
nuclear plant is one of the safest industrial
environments in the United States.
Plant workers are well- qualified: Reactor
operators must hold federal licenses
that require extensive training to
obtain and they typically spend one
week out of every five in training.
Following the accident at Three
Mile Island 2, the industry formed the
National Academy for Nuclear Training
to promote the highest levels of training
program excellence and consistency
across the industry. Every four
years nuclear power plants are required
to demonstrate high standards in their
training programs to maintain program
accreditation by the academy.
Plants also have training simulators,
which are exact duplicates of control
rooms, but connected to a computer,
not a reactor. That allows the operators
to practice responses to postulated accidents
that cannot be run on a real reactor,
similar to jet pilots who practice
engine failures or instrument malfunctions
on a simulated airliner.
Nuclear plants have evolved
since 1979
Innovation drives the nuclear industry.
These plants may look the same
on the outside, but throughout their
operation, they are continuously
235
NEWS
News
atw Vol. 64 (2019) | Issue 4 ı April
236
NEWS
* The Loviisa nuclear
power plant consists
of two pressurized
water reactors with
an installed net
capacity of 507 megawatt
each. It is situated
on the south
coast of Finland.
Loviisa 1 started
commercial operation
in 1977, Loviisa 2
followed in 1980.
upgraded with the latest technology
and monitored for optimal
performance.
By the time a facility seeks to
extend its operating license with
the NRC beyond 40 years –
because of improvements to
turbines, pumps, instrumentation
and other components – the
plants are extensively updated.
Through equipment upgrades,
many plants have been
able to raise the amount of
power they produce. These
improvements, along with other efficiencies,
have helped plants spend
more time generating elec tricity. The
average capacity factor for all nuclear
plants in 2018 was 92.3 percent,
which means that the plants were
almost always up and making electricity.
In contrast, in the 1970s,
reactors on average operated less than
60 percent of the hours in a year.
The industry has not stopped
improving either, as it continues to
develop advanced technology like
accident-tolerant fuels, which could
further boost plant performance,
increase safety and reduce costs.
Nuclear plants are prepared for
the worst
The operators at every nuclear plant
prepare detailed plans with one goal
in mind: to protect their communities
and employees.
These plans meet requirements
set by the NRC and the Federal
Emergency Management Agency. Plant
workers conduct training and drills
every month, and every two years they
test their plans with state and local
government agencies and the NRC.
Emergency plans are also updated
based on emerging issues. After the
terrorist attacks of Sept. 11, the
industry re-evaluated its plans to cover
a broader array of unforeseen events.
Additionally, after the Fukushima accident
in 2011, the industry stationed
more backup safety equipment at
plants and regional depots. The FLEX
strategy made about 1,500 pieces of
additional equipment, from nozzles to
generators, available to every nuclear
plant in case of an emergency.
Nuclear plants don’t just provide
more than 55 percent of carbon-free
electricity in the United States. They
also are among the safest and most
secure industrial facilities in the
country. And 40 years after the
accident at Three Mile Island, nuclear
energy remains the safest and cleanest
form of baseload power generation.
| | www.nei.org
| | Framatome. Innovation: Robotics
Company News
Framatome.
Innovation: Robotics
(framatome) They go by names such as
Charli, Eloise, Pelican or Forerunner
and they’ve joined the ranks at
Framatome to lend their iron hands to
our teams and our customers’ teams.
These robotic collaborators significantly
improve safety in the field and
enhance the performance of operations.
They are the illustration of our
innovation approach, aiming to offer
safe and increasingly competitive
nuclear energy.
Driven by major technological
advances, these robots represent years
of productive, collective research and
development. Experience some of this
innovation in action: from the Saint-
Marcel plant, where operators use robotic
arms to facilitate strenuous work
and reduce occupational risk, through
to dismantling of the Superphénix reactor,
where the laser robot Eloise has
become quite simply… indispensable.
Available in a variety of models,
SUSI can examine most reactor coolant
system components as well as reactor
pressure vessel, reactor pressure vessel
head, pumps, pressurizers and piping
in nuclear power plants worldwide.
SUSI also performs visual ultrasonic
inspections of baffle bolts. Plus,
it can serve as a gripping device to
retrieve foreign objects. In addition,
the robot can be calibrated under water
at any time during the inspection.
A separate satellite camera system
can be deployed with SUSI or on its
own to further enhance inspection
results in hard-to-reach areas.
| | www.framatome.com
Finland: Framatome successfully
completes modification
of Loviisa nuclear power
plant’s Control rod instrumentation
& control system
Framatome has successfully modified
the Preventive Protection System (PPS)
at the Loviisa* nuclear power plant,
operated by the Finnish utility Fortum.
The Preventive Protection System uses
control rods to monitor the reactor
power and contributes to the safe operation
of the plant. Implemen tation of
the PPS is part of the modernization of
the plant’s I&C system.
The project started in 2016 when
Fortum awarded Framatome the
contract for the PPS and included the
modification of the TELEPERM XS
technology, originally delivered by
Framatome in 2008 (Unit 1) and 2009
(Unit 2).
Framatome’s I&C teams prepared
the required documentation, designed
and engineered the system modification
and performed the final testing,
installation and commissioning on site
during the 2018 outage. These tasks
are essential for the functionality of
the entire system and are also mandatory
for obtaining the licensing by
the Finnish safety authority STUK.
A joint team approach and close
cooperation between Framatome and
Fortum at all stages of the project
were key to ensuring successful completion
on time and to budget.
“This successful modification
project proves Framatome’s ability to
provide I&C upgrades to different
reactor types worldwide. Our
TELEPERM XS I&C system is well
known to Finnish operators and the
authority STUK which is a perfect
basis for further projects”, said
Frédéric Lelièvre, Senior Executive
Vice President in charge of Sales,
Regional Platforms and the Instrumentation
and Control Business Unit
at Framatome.
| | www.framatome.com
GNS: Package design approval
for CASTOR® MTR3
(gns) On 17 January 2019, the German
Federal Office for the Safety of Nuclear
Waste Management (Bundesamt
für kerntechnische Entsorgungssicherheit/BfE)
issued the package design
approval certificate for the transport
and storage cask CASTOR® MTR3 as
type B(U)F packaging. The cask was
developed by GNS Gesellschaft für
Nuklear-Service mbH especially for
spent fuel elements from research
reactors. The approval complies with
the internationally valid regulations
of the International Atomic Energy
Agency (IAEA) for the safe transport
of radioactive materials.
The CASTOR® MTR3 will initially
be used for the transport and storage
of spent fuel elements of the research
reactor FRM II of the TU Munich. In
addition, the cask will be able to
News
atw Vol. 64 (2019) | Issue 4 ı April
accommodate further fuel assembly
types from other research reactors
(e.g. TRIGA, MTR) with the use of
individually adapted fuel baskets.
The casks, which are about 160 cm
high and weigh 16 t, essentially consist
of a body made of ductile cast iron, a
basket for accommodating the fuel
elements and a double lid system
with metallic sealings. These design
features ensure safe containment the
radioactive materials both during
transport and subsequent storage.
The comparatively small CASTOR®
MTR3 casks are made of the same
materials and have the same design
features and safety functions as
the CASTOR® casks from GNS for
fuel assemblies from commercial
power plants, which are up to four
times larger and have already
proven their reliability well over 1000
times.
| | www.gns.de
Uranium Prize range: Spot market [USD*/lb(US) U 3 O 8 ]
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00
Year
Yearly average prices in real USD,
base: US prices (1982 to1984) *
1980 1985 1990 1995 2000 2005 2010 2015 2019
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019
Separative work: Spot market price range [USD*/kg UTA]
180.00
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
| | Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.
In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.
0.00
Jan.
Year
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019
) 1
Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00
Jan.
Year
) 1
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019
Conversion: Spot conversion price range [USD*/kgU]
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
Jan.
Year
) 1
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019
237
NEWS
Market data
| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.
)1
In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.
(All information is supplied without
guarantee.)
Nuclear Fuel Supply
Market Data
Information in current (nominal)
U.S.-$. No inflation adjustment of
prices on a base year. Separative work
data for the formerly “secondary
market”. Uranium prices [US-$/lb
U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =
0.385 kg U]. Conversion prices [US-$/
kg U], Separative work [US-$/SWU
(Separative work unit)].
2014
pp
Uranium: 28.10–42.00
pp
Conversion: 7.25–11.00
pp
Separative work: 86.00–98.00
2015
pp
Uranium: 35.00–39.75
pp
Conversion: 6.25–9.50
pp
Separative work: 58.00–92.00
2016
pp
Uranium: 18.75–35.25
pp
Conversion: 5.50–6.75
pp
Separative work: 47.00–62.00
2017
pp
Uranium: 19.25–26.50
pp
Conversion: 4.50–6.75
pp
Separative work: 39.00–50.00
2018
January to June 2018
pp
Uranium: 21.75–24.00
pp
Conversion: 6.00–9.50
pp
Separative work: 35.00–42.00
February 2018
pp
Uranium: 21.25–22.50
pp
Conversion: 6.25–7.25
pp
Separative work: 37.00–40.00
March 2018
pp
Uranium: 20.50–22.25
pp
Conversion: 6.50–7.50
pp
Separative work: 36.00–39.00
April 2018
pp
Uranium: 20.00–21.75
pp
Conversion: 7.50–8.50
pp
Separative work: 36.00–39.00
May 2018
pp
Uranium: 21.75–22.80
pp
Conversion: 8.00–8.75
pp
Separative work: 36.00–39.00
June 2018
pp
Uranium: 22.50–23.75
pp
Conversion: 8.50–9.50
pp
Separative work: 35.00–38.00
July 2018
pp
Uranium: 23.00–25.90
pp
Conversion: 9.00–10.50
pp
Separative work: 34.00–38.00
August 2018
pp
Uranium: 25.50–26.50
pp
Conversion: 11.00–14.00
pp
Separative work: 34.00–38.00
September 2018
pp
Uranium: 26.50–27.50
pp
Conversion: 12.00–13.00
pp
Separative work: 38.00–40.00
October 2018
pp
Uranium: 27.30–29.00
pp
Conversion: 12.00–15.00
pp
Separative work: 37.00–40.00
November 2018
pp
Uranium: 28.00–29.25
pp
Conversion: 13.50–14.50
pp
Separative work: 39.00–40.00
December 2018
pp
Uranium: 28.50–29.20
pp
Conversion: 13.50–14.50
pp
Separative work: 40.00–41.00
2019
January 2019
pp
Uranium: 28.70–29.10
pp
Conversion: 13.50–14.50
pp
Separative work: 41.00–44.00
| | Source: Energy Intelligence
www.energyintel.com
Cross-border Price
for Hard Coal
Cross-border price for hard coal in
[€/t TCE] and orders in [t TCE] for
use in power plants (TCE: tonnes of
coal equivalent, German border):
2012: 93.02; 27,453,635
2013: 79.12, 31,637,166
2014: 72.94, 30,591,663
2015: 67.90; 28,919,230
2016: 67.07; 29,787,178
2017: 91.28, 25,739,010
2018
I. quarter: 89.88; 5,838,003
II. quarter: 88.25; 4,341,359
III. quarter: 100.79; 5,135,198
IV. quarter: 100.91; 6,814,244
| | Source: BAFA, some data provisional,
www.bafa.de
News
atw Vol. 64 (2019) | Issue 4 ı April
238
NUCLEAR TODAY
John Shepherd is a
journalist who has
covered the nuclear
industry for the past
20 years and is
currently editor-in-chief
of UK-based Energy
Storage Publishing.
Reference links:
Testimony from
Dr Fatih Birol
https://bit.ly/2EuwpsN
EPRI study
https://bit.ly/2VPA5MQ
Events of the Past Need Not Dictate
an Industry’s Future
The US will have reached an important milestone in March of this year, when it marks 40 years since the accident that
damaged the core of the Three Mile Island (TMI) 2 nuclear reactor.
As I write, there has been no public relations offensive of
note by nuclear energy opponents in the build up to the
memory of what happened in Pennsylvania on 28 March
1979 – which is perhaps testament to how the nuclear
debate has moved on since.
For the record, the event was caused by a combination
of equipment failure and the inability of plant operators to
understand the reactor’s condition at certain times during
the event.
And while there were no reported injuries or adverse
health effects from the accident, TMI was a turning point
for the industry in the US and arguably worldwide.
In the US, the event led to the establishment of the
Atlanta- based Institute of Nuclear Power Operations and
the formation of what is today the Nuclear Energy Institute.
Despite its setbacks, nuclear has powered ahead and is
increasingly recognised for its durability, reliability, safety
and sustainability in a world that sometimes seems to have
lost sight of the need for real energy security while
pursuing fads of the day. Indeed, a study published in 2018
by the Electric Power Research Institute (EPRI) indicated
that US plants are nearly 100 times more safe than the
safety goals set by the US Nuclear Regulatory Commission.
One welcome intervention came recently from the head
of the Paris-based International Energy Association (IEA),
Dr Fatih Birol, who gave testimony to the US Senate Energy
and Natural Resources Committee on prospects for global
energy markets, including the role of the US.
In his wide-ranging testimony, no one could be in
any doubt about the relevance – and the importance – of
nuclear energy now and into the future.
Birol said nuclear “should be seen as a key asset in the
US (which) has been a leader in nuclear power generation
technology for 60 years, alongside France, Japan and
Russia”.
Nuclear still generates “twice as much low-carbon
electricity in the US as wind and solar combined”, Birol
said, adding that nuclear’s baseload capacity in the country
also played a “major role in maintaining electricity
security”. He said this was especially true in the northern
regions, which “experience spikes in electricity and gas
demand during extreme cold spells like the recent polar
vortex – times when solar production can be challenged”.
But Birol pointed out that China is set to be the “new
leader” in terms of nuclear energy if US policies do not
change.
“China has rapidly developed nuclear power over the
past two decades, increasing from just three operating
reactors in 2000 to 46 at the end of last year,” Birol said.
“Nuclear capacity in China is set to overtake that of the US
within 10 years.”
According to the IEA chief, “effective policy action” is
needed in the US if it is to avoid the loss of “a substantial
proportion of its (nuclear) capacity”. “From my vantage
point, this would be detrimental to both energy security
and clean energy objectives.”
Birol said American innovation could also play a leading
role in the development of small modular reactors (SMRs),
pointing out that there was “significant international
appetite for innovative approaches to nuclear power,
including SMRs”, which could offer significant benefits,
such as factory fabrication, flexibility in where they can be
deployed and lower upfront investment.
The US has to continue to “accelerate innovation in new
nuclear technologies” such as SMRs to safeguard the long
term contribution of nuclear, Birol said.
However, “a first priority should be to safeguard the
existing fleet”. Birol told legislators: “Nuclear plant lifetimes
should be extended as long as safety considerations
allow. In large parts of the US this presents a challenge, as
wholesale markets don’t value the energy security and
clean energy contribution of nuclear.”
This was the third consecutive time the IEA’s executive
director has given testimony to the Senate committee, so
his remarks should not be seen as a dramatic intervention,
particularly in terms of nuclear, because the agency’s brief
is to cover the full spectrum of energy issues in its 30
member countries and beyond.
What is notable, however, is that nuclear is rightly
recognised by the IEA as a valued and much-needed
contributor to the international energy mix.
From a strictly personal point of view, I found it
refreshing to hear the head of an esteemed international
body talk about nuclear in such terms. I’ve heard no such
endorsement for some time now in the UK (although I
stand to be corrected). By the same token, I don’t recall any
public airing of note of late on the benefits of nuclear in the
European Parliament, regardless of that body’s largely
consultative role in such matters.
Nuclear continues to enjoy strong political support in
other countries, such as China (as Birol mentioned),
Russia, and nuclear newcomer the United Arab Emirates.
Policies in those countries are driven of course by a more
‘top-down approach’, but that does nothing to dilute the
value of nuclear in terms of energy security and its
contribution to supporting a nation’s economic well being.
Meanwhile, the Japan Atomic Industrial Forum
reported that two ‘nuclear recruiting’ events were held in
the country recently, attended by students expecting to
graduate in 2020 and looking to start their careers.
Memories of the Fukushima-Daiichi accident have not
faded in Japan, but lessons have been learned and the
country is moving on – and preparing for a new nuclear
generation at the industry’s helm.
We would do well to reflect on some words from Sir
Winston Churchill if the nuclear industry is to forge ahead
in helping to resolve the energy challenges of the future:
“A pessimist sees the difficulty in every opportunity; an
optimist sees the opportunity in every difficulty.”
Nuclear Today
Events of the Past Need Not Dictate an Industry’s Future ı John Shepherd
Kommunikation und
Training für Kerntechnik
Export in der Praxis
Seminar:
Export kerntechnischer Produkte und Dienstleistungen
– Chancen und Regularien
In diesem Seminar lernen Sie die ausfuhrrechtlichen Grundlagen unter besonderer
Berücksichtigung der neuen Dual-Use-Verordnung sowie die organisatorischen und
operativen Rückwirkungen auf Unternehmen kennen.
Sie erhalten einen umfangreichen Überblick über die internationalen Märkte, ausgewählte
regionale Spezifika und die unterschiedlichen Zertifizierungsregime ISO und ASME.
Seminarinhalte
ı Ausfuhrrechtliche Grundlagen
ı zentralen Ausfuhrbestimmungen für Produkte und Dienstleistungen
ı Verfahrensschritte und Zeitabläufe im Antragsverfahren
ı Veränderungen in der neuen Dual-Use-Verordnung
ı Märkte und regionale Spezifika
ı Die Welten von ISO und ASME
ı Organisatorische Rückwirkungen des Exportgeschäfts
Zielgruppe
Das Seminar richtet sich an Fach- und Führungskräfte, Projektverantwortliche sowie Mitarbeiterinnen
und Mitarbeiter in den Bereichen Außenwirtschaft/Exportkontrolle, Organisation,
Qualitätsmanagement, Vertrieb, Marketing, Recht oder Personalwesen, welche künftig für den
Export von Produkten, Dienstleistungen und Projekten verantwortlich sind.
Maximale Teilnehmerzahl: 12 Personen
Referenten
Lily Kreuzer
RA Kay Höft M. A.
Dr. Ing. Wolfgang Steinwarz
Wir freuen uns auf Ihre Teilnahme!
ı ehem. Rechtsanwältin, Ausfuhrspezialistin
ı Syndikusrechtsanwalt und Compliance-Verantwortlicher
für Außenwirtschaftsrecht
ı ehem. Geschäftsführer Technik,
Siempelkamp Ingenieur und Service GmbH
Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.
Termin
2 Tage
12. bis 13. Juni 2019
Tag 1: 10:00 bis 18:00 Uhr
Tag 2: 09:00 bis 12:45 Uhr
Veranstaltungsort
Geschäftsstelle der INFORUM
Robert-Koch-Platz 4
10115 Berlin
Teilnahmegebühr
998,– € ı zzgl. 19 % USt.
Im Preis inbegriffen sind:
ı Seminarunterlagen
ı Teilnahmebescheinigung
ı Pausenverpflegung,
inkl. Mittagessen
Kontakt
INFORUM
Verlags- und Verwaltungsgesellschaft
mbH
Robert-Koch-Platz 4
10115 Berlin
Petra Dinter-Tumtzak
Fon +49 30 498555-30
Fax +49 30 498555-18
seminare@kernenergie.de
www.unserejahrestagung.de
#50AMNT
7. – 8. Mai 2019
Estrel Convention Center Berlin, Deutschland
Unsere Partner, Aussteller und Sponsoren
› Partner
› Weitere Aussteller, Sponsoren und Medienpartner
Änderungen vorbehalten, weitere Unternehmen angekündigt.
Standanmeldung und Registrierung www.amnt2019.com