atw - International Journal for Nuclear Power | 04.2019

inforum

nucmag.com

2019

4

The Role of Resources

and Reserves for the

Global Energy Supply

The New Radiation Protection

Law (II): The Approval

The Nuclear Fission Table

in the Deutsches Museum

ISSN · 1431-5254

24.– €

Register Now!

50 Years KTG – 50 Years

for Society and Technology


www.amnt2019.com

#50AMNT

7 – 8 May 2019

Estrel Convention Center Berlin, Germany

Who will you meet?

AiNT • Alpiq • ASKETA • atw • August Alborn • Axpo Power • Baltic Scientific Instruments • Berthold Technologies • Beuth

Hochschule für Technik Berlin • BGZ Gesellschaft für Zwischenlagerung • BKW Energie • Blastrac • Brenk Systemplanung

• British Embassy • Bundesanstalt für Materialforschung und -prüfung • Bundesgesellschaft für Endlagerung • Chalmers

University of Technology • City of Biblis • Cyprus International University • DAHER • DAtF • Department for International

Trade • Deutsche Gesellschaft für Zerstörungsfreie Prüfung • Deutscher Arbeitgeber Verband • Deutscher Bundestag •

Deutsches Museum Munich • Deutsches Zentrum für Luft- und Raumfahrt • EDF • Eidgenössische Kommission für nukleare

Sicherheit • Eidgenössisches Nuklearsicherheitsinspektorat • Elektriciteits- Produktiemaatschappij Zuid-Nederland N.V.

• Embassy of the Czech Republic • EnBW Kernkraft • Energieanlagen Greifswald • Energus • ENGIE • Enrichment

Technology Company • ETH Zürich • European Commission • European Nuclear Society • EWN Entsorgungswerk für

Nuklearanlagen • Federal Ministry for Economic Affairs and Energy • Federal Ministry for Environment • FH Aachen •

Forschungsinstitut für Kerntechnik und Energiewandlung • Forschungszentrum Jülich • Framatome • Fraunhofer ISE •

French Alternative Energies and Atomic Energy Commission • FRM II • Gesellschaft für Anlagen- und Reaktorsicherheit

• GNS Gesellschaft für Nuklear-Service • Helmholtz-Zentrum Dresden-Rossendorf • Helmholtz-Zentrum Geesthacht •

Hochschule für Politik München • Hochschule Zittau/ Görlitz • IAF- Radioökölogie • Imperial College London • INFORUM

• Institut für Demoskopie Allensbach • Institut für Festkörper- Kernphysik • International Irradiation Association • Joint

Research Center • Karlsruher Institute of Technology • Kernkraft Gösgen-Däniken • Kernkraftwerk Biblis • Kernkraftwerk

Brunsbüttel • Kernkraftwerk Isar • Kernkraftwerk Leibstadt • Kernkraftwerk Stade • Kompetenzverbund Kerntechnik

• Kompetenzzentrum Ost für Kerntechnik • Kraftanlagen Heidelberg • Krantz • KROHNE Messtechnik • KSB • KSG

Kraftwerks-Simulator-Gesellschaft • KTG • LaGuardia & Associates • LTZ- Consulting • Mammoet • Marubeni Utility

Services • Materialprüfungsanstalt Universität Stuttgart • Mauell • Ministerium für Energiewende • Mirion Technologies

• National Citizens’ Oversight Committee • National Institute for Physics and Nuclear Engineering • Nawah Energy

Company • NKM NOELL Special Cranes • Nuclear Energy Agency • Nuclear Engineering InternationalNuclear

Regulatory Commission • Nuclear Veterans • Nuclear Waste Management Commission • NUKEM • Nuklearforum

Schweiz • Orano • Pinsent Masons • PreussenElektra • pro-beam • Reactor Safety Commission • RIS Industrie- und

Kraftwerksservice • Rosatom • Roschiwal + Partner Ingenieur • Ruhr-Universität Bochum • RWE • SAT Kerntechnik

• Schule für ABC-Abwehr und Gesetzliche Schutzaufgaben • Siemens • Siempelkamp • ŠKODA JS • STEAG Energy

Services • Straub Werke • Taipei Economic and Cultural Office in Austria • Technische Universität Dresden • Technische

Universität Kaiserslautern • Technische Universität München • Tractebel Engineering • TÜV NORD • TÜV SÜD •

ÚJV Řež • Uniper • United States Nuclear Regulatory Commission • Universitätsklinikum Hamburg-Eppendorf •

University of Fukui • University of Stuttgart • University of Technology Slovakia • URENCO • Vattenfall • Verband der

TÜV • VGB PowerTech • VKTA • VPC • Westinghouse • Wirtschaftsverband Kernbrennstoff-Kreislauf und Kerntechnik •

Women in Nuclear • Wood • World Nuclear Association • WTI Wissenschaftlich Technische-Ingenieurberatung • Young

Generation Network • Zukunftsinstitut • ZWILAG

Register now at

› www.amnt2019.com

In alphabetical order. Subject to change.

Celebrate with us our 50 th anniversary!


atw Vol. 64 (2019) | Issue 4 ı April

EPR – No Swan Song

Dear reader, At the end of last year, the EPR was already the subject of this editorial. In the course of 2018, the first

EPR to be commissioned worldwide was Taishan, China, one of five Generation III+ nuclear power plants commissioned.

Another identical unit is about to be completed during 2019. Generation III+ reactors combine the technically wellengineered

and successful concepts of power reactor developments of the 1970s to 1990s with additional safety features

and economic improvements.

The EPR, originally known as the “European Pressurized

Reactor”, today known as the “Evolutionary Power

Reactor”, is the most powerful nuclear and power plant in

the world. It is the consistent result of a successful

collaboration of thousands of employees from all areas of

science and technology and companies from several

countries. The EPR has its origins in the successful

construction lines for pressurized water reactors of the

then French Framatome and German Siemens/KWU.

Both nuclear power plant manufacturers, including

predecessor companies, had built and commissioned

around 100 light water reactors since the 1960s. On the

part of Siemens/KWU, the Konvoi plants, Emsland, Isar 2

and Neckar westheim II, which were build between 1982

and 1988/89, in some cases even with a shorter construction

period than planned, deserve particular mention.

On the Framatome side, the N4 plants in Civaux and

Chooz with a gross electrical output of 1561 MW formed a

cornerstone of reactor development.

In the mid-1990s, when the expansion programmes for

nuclear power plants in Western countries were virtually

completed for the time being due to the saturation of the

generation market and the deliberate influence of political

interest groups on the public debate surrounding the

energy industry, the idea of designing a reactor concept for

the 21 st century in a Franco-German cooperation took

shape. Framatome and Siemens as manufacturer as well as

EDF and the companies operating the German nuclear

power plants agreed to develop the “Basic Design” for

the EPR.

The EPR reached its first milestones in Finland and

France in 2005 and 2007 with the launch of the Olkiluoto

3 and Flamanville 3 projects. Germany had ceased to be a

location with the signing of the 2001 nuclear consensus

agreement. It should not be overlooked that project risks

and cost increases for these two plants turned out to be

much higher than expected during the approval phases.

The extent to which individual, location-dependent

reasons have to be taken into account cannot currently be

estimated. It should also not be overlooked that the Taishan

project in China was started four years later and is now in

commercial operation after 9 years of construction, ahead

of the plants in Olkiluoto and Flamanville. Considerable

construction delays seem to be developing into a cultural

problem in western industrial countries.

consumption, this is about 17 % lower than with other

nuclear fuel strategies to date.

pp

Space requirement: The space requirement for the

entire power plant is around 1250 square meters per

megawatt and thus 150 times lower than for freestanding

photovoltaic plants.

Technology

pp

Technically projected operating life: 60 years, today

common for existing plants with originally planned

operating lives of 30 to 40 years, i.e. with prospects for

operation beyond that.

pp

The reactor core has a volume of roughly 50 cubic

metres, which is comparable to the volume of a 40-foot

sea container; in other words, the reactor core

continuously generates electricity for the supply of an

EU budget in about 15 cubic centimetres.

Safety and security

pp

Four independent systems ensure safe operation and

also protection in exceptional situations such as earthquakes

and floods, including beyond-design-basis

events.

pp

The core damage frequency for the EPR is in the range

of approx. 10 -7 and thus more than a power of ten, i.e. a

factor of 10 lower than that recommended by the

International Atomic Energy Agency (IAEA) for new

plants.

pp

A core catcher provides additional protection for

the foundation of the reactor building and would

stabilise it in the reactor building in the event of a core

meltdown.

pp

An internal spraying system is an additional measure to

ensure the long-term integrity of the reactor building in

case of accidents.

Honour to whom honour is due: The EPR, a joint European

development project on the way to late, but not too

late, international success – also beyond the year 2022:

according to the current announcement of the French

President Emmanuel Macron, a decision is to be made

around the year 2022 as to whether further new nuclear

power plants should be built in France on the basis of the

EPR, the German-French cooperation.

183

EDITORIAL

Some key figures

on the concept of the EPR reactor:

Resources

pp

Avoidance of around 10 million tonnes of carbon

dioxide emissions per year (related to the electricity

mix of countries using nuclear energy worldwide) and

avoidance of further emissions via air and water.

pp

Electricity supply to around 3 million households (with

average EU consumption).

pp

Uranium requirement of around 20 tonnes of enriched

nuclear fuel per year. In terms of natural uranium

Christopher Weßelmann

– Editor in Chief –

Editorial

EPR – No Swan Song


atw Vol. 64 (2019) | Issue 4 ı April

EDITORIAL 184

EPR – kein Abgesang

Liebe Leserin, lieber Leser, zum Ende des vergangenen Jahres war der EPR schon einmal Thema dieses

Editorials. Im Verlaufe des Jahres 2018 war der erste weltweit in Betrieb genommene EPR im chinesischen Taishan,

ein weiterer baugleicher Block befindet sich vor seiner Fertigstellung, eines von fünf in Betrieb genommenen Kernkraftwerken

der Generation III+. Generation III+ Reaktoren kombinieren die technisch ausgereiften erfolgreichen

Konzepte der Leistungsreaktorentwicklungen der 1970er- bis 1990er-Jahre mit zusätzlichen Sicherheitsmerkmalen und

wirtschaftlichen Verbesserungen.

Der EPR, ursprünglich im Original als „European

Pressurized Reactor“ bezeichnet, heute „Evolutionary

Power Reactor“, ist das leistungsstärkste Kernkraftwerk

und Kraftwerk überhaupt der Welt. Er ist das konsequente

Ergebnis einer erfolgreichen Zusammenarbeit von

tausenden Beschäftigten aus allen Bereichen der Naturwissenschaften

und Technik und Unternehmen aus

mehreren Ländern. Seine Ursprünge hat der EPR in den

erfolgreichen Baulinien für Druckwasserreaktoren der –

damaligen – französischen Framatome und deutschen

Siemens/KWU. Beide Kernkraftwerkshersteller, inklusive

Vorgängergesellschaften, hatten seit den 1960er-Jahren

rund 100 Leichtwasserreaktoren errichtet und in Betrieb

genommen. Aufseiten von Siemens/KWU sind dabei

insbesondere die Konvoi-Anlagen, Emsland, Isar 2 und

Neckarwestheim II, zu nennen, die von 1982 bis 1988/89

errichtet wurden, teils sogar mit kürzerer Bauzeit

als vorgesehen. Aufseiten von Framatome bildeten

die N4- Anlagen in Civaux und Chooz mit 1561 MW

elektrischer Bruttoleistung einen Eckpunkt der Reaktorentwicklung.

Mitte der 1990er-Jahre, als aus Gründen der energiewirtschaftlichen

Rahmenbedingungen mit einer Sättigung

des Erzeugungsmarktes und der gezielt beeinflussten

öffentlichen Diskussionen durch politische Interessengruppen

die Zubauprogramme für Kernkraftwerke in

westlichen Ländern quasi vorerst abgeschlossen waren,

nahm die Idee Gestalt an, in einer deutsch-französischen

Kooperation ein Reaktorkonzept für das 21. Jahrhundert

zu konzipieren. Framatome und Siemens als Hersteller

sowie EDF und die deutschen Kernkraftwerke betreibenden

Unternehmen vereinbarten dazu die Entwicklung

des „Basic Designs“ für den EPR.

Den erste Meilenstein erreichte der EPR in Finnland

und Frankreich in den Jahren 2005 und 2007 mit dem

Start der Projekte Olkiluoto 3 und Flamanville 3.

Deutschland war mit Unterzeichnen der Atomkonsensvereinbarung

von 2001 als Standort weggefallen. Es

soll nicht übersehen werden, dass sich Projektrisiken und

Kostensteigerungen für diese beiden Anlagen in den

Genehmigungsphasen viel höher als erwartet herausgestellt

haben. Inwieweit individuelle, standortabhängige

Gründe dafür herangezogen werden müssen, lässt sich

aktuell nicht abschätzen. Es soll ebenso wenig übersehen

werden, dass das Projekt Taishan in China vier Jahre später

in Angriff genommen wurde und jetzt, nach 9 Jahren

Bauzeit in kommerziellem Betrieb ist, also noch vor den

Anlagen in Olkiluoto und Flamanville. Erhebliche Bauzeitverzögerungen

scheinen sich zu einem kulturellen

Problem in westlichen Industrieländern zu entwickeln.

weltweit Kernenergie nutzenden Staaten) und Vermeidung

weiterer Emissionen über die Luft und das Wasser

pp

Versorgung von rund 3 Millionen Haushalten (mit dem

Durchschnittsverbrauch der EU) mit Strom.

pp

Uranbedarf von rund 20 t angereichertem Kernbrennstoff

pro Jahr. Bezogen auf den Natururanverbrauch liegt dieser

rund 17 % niedriger als bei bisherigen anderen Kernbrennstoffstrategien.

pp

Flächenbedarf: Der Flächenbedarf für die gesamte Kraftwerksanlage

liegt bei rund 1250 Quadratmeter pro Megawatt

und damit z.B. um den Faktor 150 niedriger als bei

Freiflächen-Photovoltaikanlagen.

Technik

pp

Technisch projektierte Laufzeit: 60 Jahre, heute für bestehende

Anlagen mit ursprünglich geplanten Laufzeiten

von 30 bis 40 Jahren üblich, also mit Perspektive für einen

darüber hinaus gehenden Betrieb.

pp

Der Reaktorkern umfasst ein Volumen von grob gerade

einmal 50 Kubikmetern, vergleichbar mit dem Volumen

eines 40-Fuß Seecontainers; anders ausgedrückt wird in

rund 15 Kubikzentimetern Reaktorkern kontinuierlich der

Strom für die Versorgung eines EU-Haushalts erzeugt.

Sicherheit

pp

Vier unabhängige Systeme gewährleisten einen sicheren

Betrieb und auch Schutz in Ausnahmesituationen wie

Erdbeben und Überflutungen einschließlich auslegungsüberschreitender

Ereignisse.

pp

Die Kernschadenshäufigkeit für den EPR liegt im Bereich

von ca. 10 -7 und damit um mehr als eine Zehnerpotenz,

also dem Faktor 10 niedriger, als der von der Internationalen

Atomenergie-Agentur (IAEA) für Neuanlagen

empfohlen.

pp

Ein Core-Catcher gewährleistet zusätzlichen Schutz für

das Fundament des Reaktorgebäudes und würde im Falle

einer Kernschmelze diese im Reaktorgebäude stabilisieren.

pp

Ein internes Sprühsystem ist eine zusätzliche Maßnahme,

um die langfristige Integrität des Reaktorgebäudes bei

Unfällen sicher zu stellen.

Ehre, wem Ehre gebührt: Der EPR, ein gemeinsames

europäisches Entwicklungsprojekt auf dem Weg zu

spätem, aber nicht zu spätem internationalen Erfolg –

auch über das Jahr 2022 hinaus: nach aktueller Ankündigung

des französischen Präsidenten Emmanuel Macron

soll um das Jahr 2022 entschieden werden, ob in

Frankreich weitere neue Kernkraftwerke auf Basis des

EPR, der deutsch-französischen Kooperation, gebaut

werden sollen.

Einige Kennzahlen

zum Konzept des EPR-Reaktors:

Ressourcen

pp

Vermeidung von rund 10 Millionen Tonnen Kohlendioxidemissionen

pro Jahr (Bezug auf den Strommix der

Christopher Weßelmann

– Chefredakteur –

Editorial

EPR – No Swan Song


Kommunikation und

Training für Kerntechnik

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort

3 Atom-, Vertrags- und Exportrecht

Atomrecht – Ihr Weg durch Genehmigungs- und

Aufsichtsverfahren

RA Dr. Christian Raetzke 02.04.2019

22.10.2019

Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.04.2019 Berlin

Export kerntechnischer Produkte und Dienstleistungen –

Chancen und Regularien

RA Kay Höft M. A.

O. L. Kreuzer

Dr.-Ing. Wolfgang Steinwarz

Berlin

12.06. - 13.06.2019 Berlin

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019 Berlin

Atomrecht – Was Sie wissen müssen

3 Kommunikation und Politik

RA Dr. Christian Raetzke

Akos Frank LL. M.

07.11.2019 Berlin

Public Hearing Workshop –

Öffentliche Anhörungen erfolgreich meistern

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –

Themen und Formate

Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin

November 2019

3 Rückbau und Strahlenschutz

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:

3 Nuclear English

Das neue Strahlenschutzgesetz –

Folgen für Recht und Praxis

Stilllegung und Rückbau in Recht und Praxis

Dr. Maria Poetsch

RA Dr. Christian Raetzke

Dr. Matthias Bauerfeind

RA Dr. Christian Raetzke

25.06. - 26.06.2019

10.09. - 11.09.2019

15.10. - 16.10.2019

13.11. - 14.11.2019

Berlin

24.09. - 25.09.2019 Berlin

Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.2019 Berlin

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 18.09. - 19.09.2019 Berlin

3 Wissenstransfer und Veränderungsmanagement

Veränderungsprozesse gestalten – Heraus forderungen

meistern, Beteiligte gewinnen

Dr. Tanja-Vera Herking

Dr. Christien Zedler

26.11. - 27.11.2019 Berlin

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30

Kontakt

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de

Die INFORUM-Seminare können je nach

Inhalt ggf. als Beitrag zur Aktualisierung

der Fachkunde geeignet sein.


atw Vol. 64 (2019) | Issue 4 ı April

186

Issue 4 | 2019

April

CONTENTS

Contents

Editorial

EPR – No Swan Song E/G 183

Inside Nuclear with NucNet

The Key Role of the IAEA’s Integrated Regulatory

Review Service in Improving Nuclear Safety 188

DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

Feature | Major Trends in Energy Policy and Nuclear Power

The Role of Resources and Reserves

for the Global Energy Supply 191

Spotlight on Nuclear Law

The New Radiation Protection Law (II): The Approval G 196

Energy Policy, Economy and Law

Successful Co-Existance of Nuclear Power Plants

with Their External Stakeholders 197

The Nuclear Fission Table in the Deutsches Museum:

A Fundamental Discovery on Display 203

The 15 th Deutsche Atomrechtssymposium:

An Determination of the Curent Situation G 208

Operation and New Build

Failure Analysis of the Jet Pumps Riser

in a Boiling Water Reactor-5 213

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’:

The Nuclear Waste Management Strategy: Russia, Asia

and the Southern Hemisphere | Part I 221

Special Topic | A Journey Through 50 Years AMNT

Accountability to the Democratic Public G 225

KTG Inside

50 Years KTG – 50 Years for Society and Technology

An Interview with Frank Apel and Dr. Florian Gremme G 227

Cover:

Uranium mine

Mary Kathleen in Queensland/Australia.

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232

Nuclear Today

Events of the Past Need Not Dictate an Industry’s Future 238

G

E/G

= German

= English/German

Imprint 192

Contents


atw Vol. 64 (2019) | Issue 4 ı April

Feature

Major Trends in Energy Policy

and Nuclear Power

187

CONTENTS

191 The Role of Resources and Reserves

for the Global Energy Supply

Hans-Wilhelm Schiffer

Spotlight on Nuclear Law

196 The New Radiation Protection Law (II): The Approval

Das neue Strahlenschutzrecht (II): Die Freigabe

Dr. Christian Raetzke

Energy Policy, Economy and Law

203 The Nuclear Fission Table in the Deutsches Museum:

A Fundamental Discovery on Display

Susanne Rehn-Taube

Special Topic | A Journey Through 50 Years AMNT

225 Accountability to the Democratic Public

Rechenschaft gegenüber der demokratischen Öffentlichkeit

Richard von Weizsäcker

KTG Inside

227 50 Years KTG – 50 Years for Society and Technology

An Interview with Frank Apel and Dr. Florian Gremme

50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie

Ein Interview mit Frank Apel und Dr. Florian Gremme

Contents


atw Vol. 64 (2019) | Issue 4 ı April

188

INSIDE NUCLEAR WITH NUCNET

The Key Role of the IAEA’s Integrated

Regulatory Review Service in Improving

Nuclear Safety

The International Atomic Energy Agency (IAEA) is responding to member state needs and making the

Integrated Regulatory Review Service (IRRS) more effective and efficient, David Senior, head of the agency’s

regulatory activities section, and Hilaire Mansoux, head of the regulatory infrastructure and transport safety

section, told NucNet in an interview.

Feedback from member states over the past five years has

been used in the development of updated IRRS guidelines

on the preparation and conduct of missions, which will be

published soon and see the implementation of further

improvements to the service

The IRRS helps IAEA member states strengthen and

improve their national regulatory framework and infrastructure

for nuclear, radiation, radioactive waste and

transport safety. In line with other safety related peer

review services offered by the IAEA, the IRRS supports

member states in applying IAEA safety standards. The

IRRS began in 2006, when the IAEA integrated several

existing regulatory review services.

IRRS teams evaluate a state’s regulatory infrastructure

for safety against IAEA safety standards, which provide the

fundamental principles, requirements and guidance to

ensure nuclear safety. The standards serve as a global

reference for protecting people and the environment and

contribute to a harmonised high level of safety worldwide.

The teams compile their findings in reports that provide

recommendations and suggestions for improvement, and

note good practices that can be adapted for use elsewhere

internationally to strengthen safety. Mission reports

describe the effectiveness of the regulatory oversight of

nuclear, radiation, radioactive waste and transport safety

and highlight how it can be further strengthened.

States that have requested an IRRS mission prepare by

conducting a “self-assessment” using an IAEA-developed

methodology and software tool. During preparations, the

IAEA and the host country meet to agree on the scope

of the mission, including by defining which regulated

facilities and activities will be reviewed.

In October 2018 the IRRS held its 100 th mission, to

Hungary, where experts carried out an eight-day follow-up

mission to review the country’s implementation of recommendations

and suggestions made during a 2015 visit.

According to Mr Senior and Mr Mansoux, the service

helps member states by identifying opportunities for

improvement, but also allows countries to learn from one

another because the results of missions are shared through

mission reports and “lessons learned” workshops.

By judging the mission against IAEA safety standards,

the service has brought about greater harmonisation of

regulatory practices amongst member states. The agency

sees the informal exchange of experience between expert

reviewers and regulatory staff across the world as another

valuable learning opportunity.

The IRRS carries out from nine to 12 missions a year

and is being used increasingly by countries that do not

have a commercial nuclear power programme but are

thinking about starting one.

The service has established itself as the “preferred

choice” for EU member states who must complete a peer

review every 10 years to comply with the bloc’s nuclear

safety directive, Mr Senior and Mr Mansoux told NucNet

In response to requests from member states, the IAEA

can also offer combined IRRS and Artemis missions. Artemis

is the Agency’s integrated expert peer review service for

radioactive waste and spent fuel management, decommissioning

and remediation programmes. It is intended for

facility operators and organisations responsible for radioactive

waste management, and for regulators, national

policy and other decision-makers.

The first combined IRRS-Artemis mission was recently

conducted in Spain. The combined mission approach option

aims to exploit the synergies between the respective reviews.

The IRRS is also available to countries that do not have

commercial nuclear power and do not have plans to introduce

it. The service helps them regulate the use of radiation

sources in industry, medicine, agriculture and research.

Mr Senior said: “High standards of nuclear safety can be

achieved through a culture of continuous improvement, and

all countries – including those with extensive experience –

can use the IRRS to improve and demonstrate closer alignment

of their national arrangements with IAEA safety

standards.”

“In short, all countries need to regulate nuclear and

radiation safety, and the IRRS programme helps them do

so in line with its safety standards,” he said.Some countries

have a well-established regulatory infrastructure, based on

decades of experience, to regulate all types of installations

and activities. Other countries are just establishing a legal

and regulatory framework for safety.

“Regardless of the approach to nuclear regulation and

the maturity of the arrangements in each country, there is

always room for improvement,” Mr Mansoux said

The IAEA safety standards are continuously evolving to

reflect developments including feedback from the IRRS

missions, and it is a continuous process to ensure that

the national regulatory infrastructure is in line with the

standards.

Challenges remain, said Mr Senior and Mr Mansoux,

particularly those associated with ensuring adequate

financial and human resources, and the independence of

the regulatory body.

NucNet was speaking to David Senior, head of the IAEA’s

regulatory activities section, and Hilaire Mansoux, head of

the regulatory infrastructure and transport safety section.

Author

NucNet

The Independent Global Nuclear News Agency

Editor responsible for this story: Kamen Kraev

Avenue des Arts 56

1000 Brussels, Belgium

www.nucnet.org

Inside Nuclear with NucNet

The Key Role of the IAEA’s Integrated Regulatory Review Service in Improving Nuclear Safety


atw Vol. 64 (2019) | Issue 4 ı April

Notes

Phase-Out:

Nuclear Before Coal – Almost Half of Germans Think This Is a Mistake

The customer portal Verivox released the results of their survey, in

which they asked if it was a mistake by politics in Germany to

phase-out nuclear before coal. The German coal phase-out is

envisaged for 2038, while the nuclear phase-out is scheduled until

2022. Almost half of Germans (44.1 %) considers this order to be a

“To reach the climate goals, Germany has decided to phase-out coal.

Do you think it was a mistake by politics to phase-out nuclear first?”

climate policy mistake. On the other hand, 49 per cent of the

respondents consider the preferred nuclear phase-out to be the right

choice. Apparently, they assess the potential hazards of nuclear

power higher than the climate load associated with coal-fired power

generation.

For further details

please contact:

Nicolas Wendler

DAtF

Robert-Koch-Platz 4

10115 Berlin

Germany

E-mail: presse@

kernenergie.de

www.kernenergie.de

DATF EDITORIAL NOTES

189

All respondents

Yes, in Any Case

Rather Yes

Undecided

Rather No

No, in No Way

29 %

15 %

6 %

17 %

33 %

Responses by age group

18-29

24 %

18 %

9 %

23 %

26 %

30-39

31 %

10 %

5 %

20 %

34 %

40-49

29 %

18 %

6 %

14 %

34 %

50-64

28 %

14 %

8 %

16 %

35 %

65+

31 %

16 %

5 %

15 %

33 %

Yes, in Any Case

Rather Yes

Undecided

Rather No

No, in No Way

Source: Verivox

DAtF Notes


atw Vol. 64 (2019) | Issue 4 ı April

Calendar

190

2019

CALENDAR

01.04.-03.04.2019

CIENPI – 13 th China International Exhibition on

Nuclear Power Industry. Beijing, China,

Coastal International, www.coastal.com.hk

02.04.-04.04.2019

Workshops on Autonomous and Remotely

Operated Systems: Benefits and Challenges

to Nuclear Security. Vienna, Austria,

World Institue for Nuclear Security, www.wins.org

09.04.-11.04.2019

World Nuclear Fuel Cycle 2019. Shanghai, China,

World Nuclear Association (WNA), Miami, Florida,

USA, www.wnfc.info

ATOMEXPO 2019. Sochi, Russia,

2019.atomexpo.ru/en/

15.04.-16.04.2019

22.04.-28.04.2019

World Nuclear University Short Course:

The World Nuclear Industry Today.

Istanbul, Turkey, World Nuclear University,

www.world-nuclear-university.org

07.05.-08.05.2019

50 th Annual Meeting on Nuclear Technology

AMNT 2019 | 50. Jahrestagung Kerntechnik.

Berlin, Germany, DAtF and KTG,

www.amnt2019.com – Register Now!

15.05.-17.05.2019

1 st International Conference of Materials,

Chemistry and Fitness-For-Service Solutions

for Nuclear Systems. Toronto, Canada, Canadian

Nuclear Society (CNS), www.cns-snc.ca

16.05.-17.05.2019

Emergency Power Systems at Nuclear Power

Plants. Munich, Germany, TÜV SÜD,

www.tuev-sued.de/eps-symposium

24.05.-26.05.2019

International Topical Workshop on Fukushima

Decommissioning Research – FDR2019. Fukushima,

Japan, The University of Tokyo, fdr2019.org

29.05.-31.05.2019

Global Nuclear Power Tech. Seoul, South Korea, Korea

Electric Engineers Association, electrickorea.org/eng

03.06.-05.06.2019

Nuclear Energy Assembly. Washington DC, USA,

Nuclear Energy Institute (NEI), www.nei.org

03.06.-07.06.2019

World Nuclear University Short Course:

The World Nuclear Industry Today.

Rio de Janeiro, Brazil, World Nuclear University,

www.world-nuclear-university.org

04.06.-07.06.2019

FISA 2019 and EURADWASTE ‘19. 9 th European

Commission Conferences on Euratom Research

and Training in Safety of Reactor Systems and

Radioactive Waste Management. Pitesti, Romania,

www.nucleu2020.eu

17.06.-21.06.2019

MIT Nuclear Plant Safety Course. Cambridge, MA,

USA, Massachusetts Institute of Technology (MIT),

professional.mit.edu/programs/short-programs/

nuclear-plant-safety

23.06.-27.06.2019

World Nuclear University Summer Institute.

Romania and Switzerland, World Nuclear University,

www.world-nuclear-university.org

24.06.-28.06.2019

2019 International Conference on the Management

of Spent Fuel from Nuclear Power Reactors.

Vienna, Austria, International Atomic Energy Agency

(IAEA), www.iaea.org

25.06.-26.06.2019

ICNDRWM 2019 – 21 st International Conference

on Nuclear Decommissioning and Radioactive

Waste Management. Venice, Italy, World Academy

of Science, Engineering & Technology,

www.waset.org

21.07.-24.07.2019

14 th International Conference on CANDU Fuel.

Mississauga, Ontario, Canada, Canadian Nuclear

Society (CNS), www.cns-snc.ca

28.07.-01.08.2019

Radiation Protection Forum. Memphis TN, USA,

Nuclear Energy Institute (NEI), www.nei.org

29.07.-02.08.2019

27 th International Nuclear Physics Conference

(INPC). Glasgow, Scotland, inpc2019.iopconfs.org

04.08.-09.08.2019

PATRAM 2019 – Packaging and Transportation

of Radioactive Materials Symposium.

New Orleans, LA, USA. www.patram.org

21.08.-30.08.2019

Frédéric Joliot/Otto Hahn (FJOH) Summer School

FJOH-2019 – Innovative Reactors: Matching the

Design to Future Deployment and Energy Needs.

Karlsruhe, Germany, Nuclear Energy Division

of Commissariat à l’énergie atomique et aux

énergies alternatives (CEA) and Karlsruher Institut

für Technologie (KIT), www.fjohss.eu

04.09.-06.09.2019

World Nuclear Association Symposium 2019.

London, UK, World Nuclear Association (WNA),

www.wna-symposium.org

04.09.-05.09.2019

VGB Congress 2019 – Innovation in Power

Generation. Salzburg, Austria, VGB PowerTech e.V.,

www.vgb.org

08.09.-11.09.2019

4 th Nuclear Waste Management,

Decommissioning and Environmental Restoration

(NWMDER). Ottawa, Canada, Canadian Nuclear

Society (CNS), www.cns-snc.ca

09.09.-12.09.2019

24 th World Energy Congress. Abu Dhabi, UAE,

www.wec24.org

09.09.-12.09.2019

Jahrestagung 2019 – Fachverband für

Strahlenschutz | Strahlenschutz und Medizin.

Würzburg, Germany,

www.fs-ev.org/jahrestagung-2019

16.09.-20.09.2019

63 rd Annual Conference of the IAEA. Vienna,

Austria, International Atomic Energy Agency (IAEA),

www.iaea.org/about/governance/generalconference

07.10. – 11.10.2019

International Conference on Climate Change and

the Role of Nuclear Power. Vienna, Austria,

IAEA, www.iaea.org

07.10. – 18.10.2019

ICTP-IAEA Nuclear Energy Management School.

Trieste, Italy, IAEA, www.iaea.org

15.10. – 18.10.2019

Technical Meeting on Siting for Nuclear Power

Plants. Vienna, Austria, IAEA, www.iaea.org

22.10.-25.10.2019

SWINTH-2019 Specialists Workshop on Advanced

Instrumentation and Measurement Techniques

for Experiments Related to Nuclear Reactor

Thermal Hydraulics and Severe Accidents.

Livorno, Italy, www.nineeng.org/swinth2019/

23.10.- 24.10.2019

Chemistry in Power Plants. Würzburg, Germany,

VGB PowerTech e.V., www.vgb.org/en/

chemie_im_kraftwerk_2019.html

27.10.-30.10.2019

FSEP CNS International Meeting on Fire Safety

and Emergency Preparedness for the Nuclear

Industry. Ottawa, Canada, Canadian Nuclear Society

(CNS), www.cns-snc.ca

12.11.-14.11.2019

International Conference on Nuclear

Decommissioning – ICOND 2019. Eurogress

Aachen, Aachen Institute for Nuclear Training GmbH,

www.icond.de

25.11.-29-11.2019

International Conference on Research Reactors:

Addressing Challenges and Opportunities to

Ensure Effectiveness and Sustainability.

Buenos Aires, Argentina, International Atomic

Energy Agency (IAEA), www.iaea.org/events/

conference-on-research-reactors-2019

This is not a full list and may be subject to change.

Calendar


atw Vol. 64 (2019) | Issue 4 ı April

Feature | Major Trends in Energy Policy and Nuclear Power

The Role of Resources and Reserves

for the Global Energy Supply

Hans-Wilhelm Schiffer

The assured availability and competitiveness of the various energy sources, as well as climate compatibility, determine

their use. Conditions on the energy markets are also subject to continuous change. This article examines the extent to

which the availability of energy resources and the orientation of energy policies influence the energy mix, particularly

power generation. It also outlines strategies for achieving the energy policy goals – security of supply, value for money

and environmental compatibility (including climate protection) – in the best possible way.

Changes in the global energy mix since 1985

Global energy consumption has almost doubled since the

mid 1980s. Fossil fuels, i.e. oil, natural gas and coal, have

covered 80 % of this growth. Thus, the share of fossil fuels

in the coverage of total primary energy consumption has

decreased only slightly, from 89 % in 1985 to 85 % in 2017.

Although renewable energies have gained massively in

importance, especially in the last ten years, the contribution

of hydropower, wind and solar energy, biomass

and geothermal energy was still limited to a total of

11 % even in 2017. In 2017, nuclear power covered 4 %

of primary energy consumption (Figure 1).

The transport sector and the petrochemical industry

are the main users of oil. Natural gas is used primarily in

the heating market, by industry, private households and

small consumers, and additionally in power generation.

Coal is used predominantly and nuclear power exclusively

for power generation. To date, the renewable energies

have also been used preferably for power generation.

This applies to hydropower but also to solar energy and

wind power and, albeit to a lesser extent, to biomass and

geothermal energy.

Global power generation has almost tripled since 1985.

Two thirds of the growth achieved since then has been covered

by coal and natural gas. At 38 %, coal’s share of global

power generation in 2017 was exactly the same as in 1985.

It is true that oil’s contribution to power generation has

dropped by eight percentage points, but this was more

than offset by a nine percentage point increase in the share

of natural gas. Accordingly, there was no significant

change in fossil fuel’s share in power generation between

1985 and 2017. It was 65 % in 2017 and also in 2000 compared

to 64 % in 1985. From 1985 to 2017, the share of

nuclear power decreased by five percentage points to 10 %,

while the contribution of renewables increased by four

percentage points to 25 %. The strongest growth was in

solar and wind, particularly in the last ten years. Despite

absolute growth, the share of hydropower has fallen by

four percentage points since 1985. Nevertheless, hydropower

continues to make the greatest contribution to

power generation among the renewable energies in 2017

(Figure 2).

| | Fig. 1.

Worldwide primary energy consumption 1985 to 2017 in million (10 6 ) tce.

| | Fig. 2.

Worldwide mix in electricity generation 1985 to 2017 in TWh (terawatt hours = 10 12 watt hours).

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 191

Determining factors for the energy mix

in power generation by country

The energy mix of power generation in the various

countries and regions of the world is very different from

the global structures described above. There are two

crucial factors for this: the resource situation in each case

and the orientation of the energy policy. This becomes

clear in an exemplary examination of the situation in

selected countries (Figure 3).

| | Fig. 3.

Mix in electricity generation of selected countries in 2017 in %.

Feature

The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer


atw Vol. 64 (2019) | Issue 4 ı April

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 192

| | Editorial Advisory Board

Frank Apel

Erik Baumann

Dr. Erwin Fischer

Carsten George

Eckehard Göring

Florian Gremme

Dr. Ralf Güldner

Carsten Haferkamp

Christian Jurianz

Dr. Guido Knott

Prof. Dr. Marco K. Koch

Ulf Kutscher

Herbert Lenz

Jan-Christan Lewitz

Andreas Loeb

Dr. Thomas Mull

Dr. Ingo Neuhaus

Dr. Joachim Ohnemus

Prof. Dr. Winfried Petry

Dr. Tatiana Salnikova

Dr. Andreas Schaffrath

Dr. Jens Schröder

Norbert Schröder

Prof. Dr. Jörg Starflinger

Prof. Dr. Bruno Thomauske

Dr. Brigitte Trolldenier

Dr. Walter Tromm

Dr. Hans-Georg Willschütz

Dr. Hannes Wimmer

Ernst Michael Züfle

In countries with a high potential for using hydropower,

in many cases this source of energy accounts for a

high share of power generation. In Europe (data for 2017),

this applies above all to Norway (96 %), Iceland (73 %),

Austria (60 %), Switzerland (59 %) and Albania (100 %),

in North America to Canada (57 %), in South America to

Paraguay (100 %), Brazil (63 %), Colombia (76 %),

Venezuela (65 %), Uruguay (59 %) and Peru (55 %), in

Oceania to New Zealand (58 %) and in Asia to Laos, Nepal,

Bhutan and North Korea. The world leader in the use of

hydropower to generate electricity is China. In spite of this,

the share of hydropower in the country’s total power

generation was limited to 18 % in 2017. In Africa too,

hydropower has a high share of power generation in some

countries. This applies to Ethiopia (93 %) among others.

The share of hydropower in Zambia and the Congo is more

than 90 % and in Mozambique more than 80 %. Nevertheless,

the total electricity generated by hydropower

throughout the African continent in 2017 was 9 % lower

than Norway’s hydropower-generated electricity.

In some countries, geothermal energy also plays an

important role in power generation. In absolute terms, the

highest installed capacity based on geothermal energy

(TOP 10) exists in the USA, Indonesia, the Philippines,

Turkey, New Zealand, Mexico, Italy, Iceland, Kenya and

Japan. As measured by the power generation of each

country, the share of geothermal energy is above-average

in Iceland at 27 % and in New Zealand at 17 %.

In the case of bioenergies (solid, liquid and gaseous),

Brazil tops the global rankings with an electricity generation

capacity of 15 GW, followed by the USA (13 GW),

China (11 GW), India (10 GW) and Germany (9 GW). The

share of bioenergies in the electricity generation volume is

above the global average of 2 % in countries such as Brazil

(9 %) and Germany (7 %).

Imprint

| | Editorial Office

Christopher Weßelmann (Editor in Chief)

Im Tal 121, 45529 Hattingen, Germany

Phone: +49 2324 4397723

Fax: +49 2324 4397724

E-mail: editorial@nucmag.com

Martin Schneibel (Editor)

INFORUM, Berlin, Germany

Phone: +49 30 498555-43

Fax: +49 30 498555-18

E-Mail: martin.schneibel@nucmag.com

| | Official Journal of

Kerntechnische Gesellschaft e. V. (KTG)

| | Publisher

INFORUM Verlags- und

Verwaltungsgesellschaft mbH

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-30

Fax: +49 30 498555-18

www.nucmag.com

| | General Manager

Christian Wößner

| | Advertising and Subscription

Petra Dinter-Tumtzak

Phone: +49 30 498555-30

Fax: +49 30 498555-18

E-mail: petra.dinter@nucmag.com

| | Layout

zi.zero Kommunikation

Antje Zimmermann

Berlin, Germany

| | Printing

inpuncto:asmuth

druck + medien gmbh

Baunscheidtstraße 11, 53113 Bonn, Germany

Although the natural conditions play an important role

in solar energy and wind power, the orientation of

energy policy in the various countries, expressed by the

intensity of government support, is even more decisive for

the utilization ratio of these renewables. The most

important example in this context is Germany. At the end

of 2017, Germany ranked third in terms of installed wind

turbine capacity, third only behind China and the USA, and

fourth in terms of solar energy, behind China, Japan and

the USA. As measured by the power generation volume,

the share of wind and solar in Germany was 23 % in 2017,

compared to a global average of 6 % and despite the fact

that Germany is not one of the most favored locations in

the world in terms of natural conditions. With regard to

wind power, this applies more to a country such as Denmark.

In 2017, around half of the electricity generated

there was provided on the basis of wind power. [1]

Political decisions are key drivers for the intensity of

nuclear power use for power generation. France, for

example, puts its faith in nuclear power after the first oil

price crisis in 1973. In 2017, nuclear power accounted for

72 % of total power generation there. In absolute terms,

the USA is currently the leader in the use of nuclear power.

In 2017, twice as much electricity was generated from

nuclear power there as in France. However, at 20 % the

share of nuclear power in the USA is considerably lower

than in France. Nuclear power accounts for double the

share in Sweden compared to the USA. In the Ukraine this

is 54 % and in Belgium 49 %. Countries such as Germany

and Japan, backed by the government energy policy, also

relied heavily on nuclear power in the past. In both

countries, nuclear power accounted for just under one

third of power generation at times. After the Fukushima

nuclear disaster in 2011, Japan suspended the power

generation of all nuclear reactors for mandatory safety

| | Price List for Advertisement

Valid as of 1 January 2019

Published monthly, 9 issues per year

Germany:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT and postage) 187.- €

All EU member states without VAT number:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT, excl. postage) 187.- €

EU member states with VAT number

and all other countries:

Per issues/copy (no VAT, excl. postage) 22.43 €

Annual subscription (no VAT, excl. postage) 174.77 €

| | Copyright

The journal and all papers and photos contained in it are protected by

copyright. Any use made thereof outside the Copyright Act without the

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft

mbH, is prohibited. This applies to reproductions, translations,

micro filming and the input and incorporation into electronic systems.

The individual author is held responsible for the contents of the

respective paper. Please address letters and manuscripts only to the

Editorial Staff and not to individual persons of the association´s staff.

We do not assume any responsibility for unrequested contributions.

Signed articles do not necessarily represent the views of the editorial.

ISSN 1431-5254

Feature

The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer


atw Vol. 64 (2019) | Issue 4 ı April

inspections and retrofits with the result that no nuclearenergy-based

electricity generation took place there

between September 2013 and August 2015. In 2018,

additional five nuclear power plants in Japan that had

been shut down after the Fukushima reactor accident were

restarted. This means that nine nuclear power plants with

a capacity of 8.7 GW are now in operation again. [2] After

the Fukushima reactor accident, the seven oldest nuclear

power plant units and the Krümmel nuclear power plant in

Germany were deprived of further operating permits.

Accordingly, the commercial operation of these eight

facilities came to an end at the beginning of August 2011.

For the remaining nine German nuclear power plants, a

staggered exit plan was envisaged, which had been

implemented in a legally binding manner by the Thirteenth

Law amending the Atomic Energy Act of 31 July 2011. Two

of the nine plants mentioned are now decommissioned.

The remaining seven nuclear power plant units will

gradually be shut down for good by the end of 2022. [3]

With a share of 38 %, coal is still the world’s most

important source of energy for power generation. The

share of coal in power generation in countries that have

economically recoverable deposits is disproportionately

high. This applies, among others, to South Africa (88 %),

Poland (78 %), India (76 %), China (67 %) and Australia

(62 %). But even in Germany (38 %) and in the USA

(31 %), coal was significantly involved in power generation

in 2017. For economic reasons, the share of coal in

power generation has fallen in the USA in recent years.

This is explained by the increased use of shale gas. In 2017,

natural gas accounted for 31 % of power generation in the

USA, the same share as coal. The situation in Germany is

different. Despite the economic viability of coal (lignite

and imported hard coal), a politically imposed complete

phase-out of coal-fired power generation is envisaged by

2038 at the latest in order to help meet the national greenhouse

gas reduction targets. [4]

With a share of 23 %, natural gas was the second-most

important energy source for power generation in 2017.

In this case as well, a disproportionately high share of this

energy source is characteristic of power generation in

countries that have large natural gas reserves. This applies

especially to the Gulf States. The share of natural gas in

power generation in Iran was 81 % in 2017, and even more

in the United Arab Emirates, Qatar, Oman and Bahrain at

95 %. In Saudi Arabia it was still 59 % in 2017. In the

Caspian countries, such as Turkmenistan, Uzbekistan and

Azerbaijan, natural gas accounts for a share of 75 % and

more. Shares of more than 60 % and sometimes significantly

higher are identified for Libya, Egypt, Algeria, Tunisia and

Nigeria. In South America, Bolivia is the country with the

largest share of natural gas in power generation (around

75 %). Around half of power generation in Argentina is

based on the use of natural gas. But even in some European

countries with larger natural gas reserves, such as Russia,

the United Kingdom and the Netherlands, in 2017 the share

of natural gas in power generation was disproportionately

high at 49 % (Russia), 48 % (Netherlands) and 40 %

( United Kingdom). In Japan, a country that has practically

no fossil fuel resources of its own, the share of natural gas

(imported LNG) in power generation increased to 39 % in

2017 due to the nuclear power situation. In the USA, due to

the shale gas boom, natural gas is on a par with coal,

accounting for 31 % of power generation.

On average, oil now accounts for only 4 % of power

generation worldwide. However, in the Gulf States oil is

one of the most important generation sources. This applies

to Saudi Arabia (41 %) and even more so to Kuwait and

Iraq with oil shares of around two thirds. In Libya, around

a third of power generation is still oil based.

Prospects for power generation

by energy sources

Unlike in previous decades, the renewable energies will

cover much of the expected further growth in electricity

demand. This cannot be explained by any limitations in

reserves and resources of fossil fuels. Reserves and especially

resources are abundant. This applies above all to coal, but

also to natural gas and oil (Figures 4 to 9). Improved

extraction technologies and higher prices on global markets

have even increased the static range of reserves, defined as

reserves in relation to the current global annual production

| | Fig. 4.

Reserves and resources of non-renewable energy sources.

| | Fig. 5.

Worldwide supply of non-renewable energy sources in billion (10 9 ) tce.

| | Fig. 6.

Reserves and resources of non-renewable energy sources in billion (10 9 ) tce.

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 193

Feature

The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer


atw Vol. 64 (2019) | Issue 4 ı April

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 194

| | Fig. 7.

Worldwide distribution of coal reserves in billion (10 9 ) tce.

| | Fig. 8.

Worldwide distribution of oil and natural gas reserves* in billion (10 9 ) tce.

| | Fig. 9.

Worldwide distribution of uranium reserves and resources in billion (10 9 ) tce.

(Figure 10). Reserves are to be understood as “proven

quantities of energy resources that are economically

recoverable at today’s prices and with today’s technology”.

The resources existing beyond these, defined as “proven

quantities of energy resources but which are currently

technically and/or econo mically unre cover able, as well as

not proven quantities of energy resources which are geologically

possible and recoverable in the future”, are more

than ten times as large as the reserves according to information

provided by the Federal Institute for Geosciences

and Natural Resources. [5]

Restrictions on the use of fossil energy resources exist

due to emissions of greenhouse gases associated with their

use. To meet the goals of climate protection and the

requirements of the Paris Agreement, the countries party

to the United Nations Framework Convention on Climate

Change committed themselves to specific limitations on

the emission of greenhouse gases. The European Union,

for example, has made a legally binding commitment to

reduce greenhouse gas emissions by 40 % by 2030

compared to 1990 levels. [6]

There are basically four strategies available for the

reduction of greenhouse gas emissions required for climate

protection:

pp

Expansion of the renewable energies

pp

Improvement of energy efficiency

pp

Extended use of nuclear power

pp

Capture and utilization or storage of CO 2

The governments which, through their respective policies,

determine the priorities in the orientation of the necessary

investments for the transformation of the global energy

supply, are decisive for progress in implementing these

possible paths.

In its World Energy Outlook published in November

2018, the International Energy Agency (IEA) identified

cumulative investment requirements of 2 trillion dollars

per year in the global energy supply. [7] According to IEA’s

data, more than 70 % of these investments are made by

state-run companies or are triggered by state regulation,

for example in the form of a guaranteed return. Only just

less than 30 % of global investment is private and marketdriven,

according to the IEA’s assessment in the main

scenario of the World Energy Outlook, i.e. the New Policies

Scenario. In the power supply, even more than 90 % of

the investment deemed necessary worldwide by 2040 is

government and regulation-driven (Figure 11).

In the New Policies Scenario, the IEA makes the

following statements about the level and structure of

global energy consumption and power generation by

2040: The future growth expected in primary energy

consumption, and especially in power generation, will be

met to a much greater extent than in the past by renewable

energies. Thus, the share of renewables in global

primary energy consumption will rise to 20 % in 2040. The

contribution of renewable energies to power generation is

set to grow from 25 % in 2017 to 42 % in 2040 (Figure 12).

Renewables are therefore replacing coal as the most

important source of energy for the power supply. The

largest increases are expected for solar energy and wind

power. This development is favored by the economies of

scale achieved in recent years, above all in solar plants, but

also in wind power.

Significant progress will also be made in improving

­energy efficiency, supported by public policies. This is

reflected in increasing decoupling of the development of

energy consumption from economic growth. In Germany,

this has already been observed in recent decades. Thus,

the specific energy consumption, i.e. the primary energy

consumption per unit gross domestic product, in Germany

has declined by 42 % in the period from 1990 to 2018. [8]

Similar developments are also likely to take place in other

countries in the future.

The expansion of nuclear power is restricted to

countries where the governments support this technology

with appropriate political backing. This applies particularly

to China, India, Russia and some countries of the

Middle East and Europe. In the World Energy Outlook

2018, the IEA points out that at 270 GW nuclear power will

account for only 3.5 % of the new power generation

capacity amounting to a total of 7,730 GW that is expected

Feature

The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer


atw Vol. 64 (2019) | Issue 4 ı April

to be built worldwide by 2040. Up to two thirds of the new

construction will be plants based on renewable energies,

with 20 % being gas and 10 % coal capacities (Figure 13).

By 2040, it is expected that around half of the world’s

electricity demand will still be provided by fossil-fired

power plants. According to the New Policies Scenario of

the IEA, in 2040, coal, oil and natural gas will still contribute

75 % to the coverage of primary energy consumption.

In addition, primary energy consumption will increase by

about 25 % by 2040, and the demand for electricity is

expected to grow by even more than 50 % compared to

2017. If this development is realized, then in absolute

terms at least the same amount of fossil fuels will be used

in 2040 as in 2017, both to cover the total primary energy

consumption and also for power generation.

Therefore, to comply with the ambitious climate goals

of the Paris Agreement, broad implementation of the

technology for capturing and utilizing or storing CO 2 is

indispensable, in both industrial processes and also in

power generation. At the Global Summit on Carbon

Capture, Utilization and Storage (CCUS) in Edinburgh on

28 November 2018, the General Secretary of the IEA, Fatih

Birol, said: “Without CCUS as part of the solution, reaching

our international climate goals is practically impossible.”

[9]

The World Energy Council (London) will present new

energy scenarios on the global energy supply prospects at

the World Energy Congress, which will be held in Abu

Dhabi from 9 to 12 September 2019. The central theme of

the congress, which is expected to attract several thousand

participants, is Energy for Prosperity.

Strategy of the Federal Government –

Conclusion

The climate protection policy promises the greatest success

if the instruments are selected in such a way that priority is

given to the most cost-effective approaches of reducing

greenhouse gas emissions. The European Greenhouse Gas

Emissions Trading Scheme is a market-based instrument

which, in principle, ensures this EU-wide for the sectors it

covers, energy and industry. However, technology bans,

such as the legal provision existing in Germany preventing

the capture and storage of CO 2 , are restrictions that

contradict this alignment. This makes climate protection

more expensive, which worsens the prospects of other

countries joining Germany in its ambitious approach to

reducing greenhouse gases.

Author

Dr. Hans-Wilhelm Schiffer

Executive Chair World Energy Resources,

World Energy Council

London, United Kingdom

| | Fig. 10.

Static range of non-renewable energy reserves in years.

| | Fig. 11.

Drivers for investment in worldwide energy supply in trillion (10 12 ) USD (2017).

| | Fig. 12.

Global electricity generation up to 2040 in terawat thours (10 12 watt hours).

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 195

| | Fig. 13.

Global new build electricity generation capacities according to IEA's New Policies Scenario, 2018 to 2040.

Feature

The Role of Resources and Reserves for the Global Energy Supply ı Hans-Wilhelm Schiffer


atw Vol. 64 (2019) | Issue 4 ı April

Das neue Strahlenschutzrecht (II): Die Freigabe

196

SPOTLIGHT ON NUCLEAR LAW

Christian Raetzke

Die Freigabe – also grob gesagt die Entlassung von Reststoffen, die aus dem Kontrollbereich kerntechnischer Anlagen

stammen, aus dem Regelungsbereich des Atom- und Strahlenschutzrechts und damit aus der atomrechtlichen Aufsicht,

woran sich in der Regel die konventionelle Entsorgung anschließt – ist gerade im Zusammenhang mit dem umfangreichen

Rückbau der deutschen Kernkraftwerke von großer praktischer Bedeutung. Insofern ist es zu begrüßen, dass

das Instrument der Freigabe in seinen wesentlichen Zügen ins neue, seit dem 31.12.2018 geltende Strahlenschutzrecht

übernommen wurde. Dennoch gibt es durchaus Änderungen, deren wichtigste hier kurz dargestellt werden sollen.

Zuerst etwas Formales: während die Freigabe in der alten

Strahlenschutzverordnung (StrlSchV) in § 29 geregelt war,

findet sie sich jetzt in der neuen Verordnung in den

§§ 31-42. Der erste Eindruck, die Regelung sei um ein

Mehrfaches aufgebläht worden, täuscht, denn der alte § 29

war ja sehr umfangreich. Er wurde nunmehr in seine

Bestandteile zerlegt, diese wurden teils neu geordnet, in

Einzelheiten auch durchaus geändert, um neue Passagen

ergänzt und dann als gesonderte Paragraphen in die neue

Verordnung übernommen. Das ist insgesamt freilich etwas

länger, aber jedenfalls besser lesbar und zitierbar als früher.

Der Dualismus der uneingeschränkten und der zweckgerichteten

Freigabe ist im Grundsatz beibehalten. Die

früher “zweckgerichtete” Freigabe heisst jetzt aber “spezifische”

Freigabe und ist systematisch etwas breiter angelegt.

Sie umfasst nämlich nicht mehr nur Stoffe, die einem

bestimmten Entsorgungsweg (Deponierung, Verbrennung,

Abriss, Einschmelzen) zugeführt werden (siehe früher § 29

Abs. 2 S. 2 Nr. 2 StrlSchV a.F.), sondern auch Stoffe, deren

Weiterverwendung oder Entsorgung aufgrund ihrer materiellen

Eigenschaften eingeschränkt ist (siehe jetzt § 32

Abs. 3 Nr. 1 StrlSchV n.F.). Konkret heisst dies, dass etwa

Bauschutt (ab 1000 t), Bodenflächen und Gebäude zur

Wieder- und Weiterverwendung in diese Kategorie “hinübergewandert”

sind. Da die nuklidspezifischen Freigabewerte

gleichgeblieben sind, bleibt abzuwarten, ob dies in

der Praxis zu wesentlichen Änderungen führen wird.

Das bringt uns zu den Grenzwerten für die Freigabe.

Hier gibt es eine wichtige Änderung, die auf der Umsetzung

der Euratom-Grundnorm 2013/59 beruht: die

Werte für die uneingeschränkte Freigabe und die (massenspezifischen)

Freigrenzen in Bq/g sind nunmehr identisch

und sind deshalb in der Tabelle 1 der Anlage 4 zur neuen

StrlSchV (der Nachfolgerin der Anlage III zur alten

StrlSchV) in einer einzigen gemeinsamen Spalte, der

Spalte 3, enthalten. Für die meisten Werte gab es Vorgaben

durch die Euratom-Grundnorm. Dadurch haben sich die

Freigabewerte für einzelne Nuklide zum Teil geändert;

sie wurden teils angehoben, teils abgesenkt. Wie bereits

im ersten Teil dieses Aufsatzes im Februarheft der atw

erläutert, gelten die neuen Werte ab 01.01.2021, sofern sie

nicht schon früher durch eine Änderung der jeweiligen

Freigabebescheide eingeführt werden. Die Werte für die

spezifische Freigabe sind dagegen gleichgeblieben.

Auch für das Verfahren der Freigabe sind interessante

Änderungen zu vermerken. An der Grundstruktur des Verfahrens

hat sich freilich nichts geändert: Die Freigabe ist,

juristisch gesehen, ein Verwaltungsakt, der sog. “Freigabebescheid”

(jetzt in § 33 Abs. 2 StrlSchV n.F. ausdrücklich so

bezeichnet), der in allgemeiner, nicht auf eine konkrete

Reststoffcharge bezogener Form die Bedingungen für die

Entlassung von Stoffen aus dem Atom- und Strahlenschutzrecht

festschreibt. Die tatsächliche Entlassung,

bezogen auf konkrete Reststoffchargen, tritt dann ein,

wenn der Strahlenschutzverantwortliche oder, nach entsprechender

Delegierung, der Strahlenschutzbeauftragte

nach dem Freimessungsvorgang die Übereinstimmung mit

den im Freigabebescheid festgelegten Anforderungen

feststellt. In diesem Moment verlieren die Reststoffe den

Charakter als radioaktive Stoffe und unterfallen, sofern –

was in der Regel der Fall ist – ihre Entsorgung beschlossen

ist, dem Kreislaufwirtschaftsgesetz.

Bereits in der Vergangenheit haben sich einige Behörden

über die ohnehin immer gegebene atomrecht liche Aufsicht

hinaus in unterschiedlichem Ausmaß eine Mitwirkung an

dem eigentlichen Entlassungsakt vor behalten. Diese –

rechtmäßige – Praxis ist jetzt in § 33 Abs. 3 StrlSchV n.F.

ausdrücklich aufgegriffen worden. Hiernach kann die

Behörde die Freigabe unter der aufschiebenden Bedingung

erteilen, dass sie die Feststellung des Strahlenschutzverantwortlichen

bestätigt. Das bedeutet, dass eine Reststoffcharge

tatsächlich erst dann aus dem Atom- und

Strahlenschutzrecht entlassen wird, wenn die Behörde die

Bestätigung, bezogen auf diese konkrete Charge, erteilt.

Eine solche Bedingung steht jedoch im Ermessen der

Behörde und es ist auch weiterhin möglich, dass die Entlassung

ohne weiteres mit der Feststellung durch den

Strahlenschutzverantwortlichen erfolgt. Das bleibt der

“Normalfall” oder “Grundfall”, solange die Behörde nicht

ausdrücklich etwas anderes bestimmt hat.

Interessant ist auch § 33 Abs. 4 S. 2 StrlSchV n.F., der

der Behörde u.a. die Möglichkeit einräumt, den Freigabebescheid

mit einem Widerrufsvorbehalt zu versehen.

Diese Regelung ist auf Initiative der Länder getroffen

worden. Gedacht ist sie vor allem für denkbare Fälle der

spezifischen Freigabe, in denen der eigentlich vorgesehene

Entsorgungsweg (z. B. Verbringen auf eine bestimmte

Deponie) vereitelt wird; in solchen Fällen kann die

Behörde, sofern sie sich dies vorbehalten hat, die Freigabe

widerrufen und die entsprechenden Reststoffe damit

wieder in den Status radioaktiver Stoffe “zurück versetzen”.

Damit unterfallen sie wieder der atomrechtlichen Aufsicht.

Juristisch ist diese “Zurückverwandlung” höchst

spannend; ob sie in der Praxis große Bedeutung erlangen

wird, bleibt abzuwarten. Nach der amtlichen Begründung

erlischt die Widerrufsmöglichkeit jedenfalls dann, wenn

der “notwendige Endpunkt der Entsorgung”, also etwa der

Einbau in eine Deponie, erreicht ist.

Autor

Rechtsanwalt Dr. Christian Raetzke

CONLAR Consulting on Nuclear Law and Regulation

Beethovenstr. 19

04107 Leipzig, Deutschland

Spotlight on Nuclear Law

The New Radiation Protection Law (II): The Approval ı Christian Raetzke


atw Vol. 64 (2019) | Issue 4 ı April

Successful Co-Existance of Nuclear Power

Plants with Their External Stakeholders

Milan Simončič and Gordana Žurga

The article deals with the expectations expressed by the external stakeholders of the Krško Nuclear Power Plant (NPP)

in Slovenia and conditions necessary for their successful coexistence with the nuclear facility. In the survey, several

types of external stakeholders of the NPP participated. Besides them, 45 NPPs joined the research, basically in regard to

their awareness to act in a socially responsible way. The research proved that respecting the interests of stakeholders is

a prerequisite for the acceptability of NPPs in society, and that this strengthens quality of life of all involved parties.

For analysis of essential relationships, the method of structural equation modelling (SEM) was used, in combination

with some relevant statistical tests. NPPs have expressed awareness of their responsibility for possible effects on wider

society, and for respecting interests of their external stakeholders as well. An optimal model of involvement of external

stakeholders that was developed in the research, includes strong partnership relation. Important components of the

model are effective communication, vision, objectives and orientation, strategy, socially responsible actions, the

introduction of continuous improvements and tools for achieving the sustainable excellence of the NPPs as a neverending

process. The research conducted contributes to the scientific fields of organizational theory and management

with special emphasis on social responsibility of NPPs.

1 Introduction

Nuclear energy remains a reality in

many countries even after the events

in Fukushima [Afgan, 2013; Campbell,

2013; Goodfellow, Dewick, Wortley, &

Azapagic, 2015; Horvath & Rachlew,

2016; Kato, Takahara, Nishikawa, &

Homma, 2013; Shadrina, 2012;

Truelove & Greenberg, 2013]. Program

Harmony [2018], managed by the

World Nuclear Association, supports

climate change mitigation efforts to

limit warming below 2 ˚C. Nuclear

energy is proven, available and can be

expanded quickly – making it an

important part of the solution to

problems of air pollution and climate

change. This requires a large increase

of all low-carbon energy sources, of

which nuclear is an important part.

Achieving this means nuclear energy

generation must triple globally by

2050.

Coexistence of the nuclear power

plants (NPPs) and various stakeholders

in society is a current and

future challenge. In a socially responsible

environment, a key commitment

for NPPs and their external stakeholders

is ensuring a partnership and

mutual respect. Due to physical placement

of NPPs in the environment,

their external stakeholders expect

certain benefits and respect of their

interests. They also expect responsibility

of NPPs for possible consequences,

which may arise in society

and affect their quality of life. The

challenges for the NPPs are how to

establish the necessary confidence of

their external stakeholders, how to

present specific activities and promote

benefits of nuclear energy. Challenges

for the external stakeholders of NPPs

are how to express and realize own

interests, understand the activities of

NPPs, how to cope with demanding

technology, understand it, and how to

communicate with the NPPs. Trufanov

[2013] says that the number of stakeholders

involved in the development

of the electric power industry has increased

and their priorities and the

ability to influence decision making

processes have changed.

Matuleviciene and Stravinskiene

[2015] found two basic factors of

stakeholder trust: corporate reputation

and organizational trustworthiness.

Other factors as emotions,

propensity to trust, experience with

the organization and sociocultural

factors, same as inborn factors or

acquired during growth, factors

related with the environment where

the person lives or other factors are of

secondary importance. Avetisyan and

Ferrary [2012] analyzed the process

of introducing social responsibility in

France and the USA and described

the role of stakeholders in this field.

They prove the assumption that the

development of social responsibility in

different environments depends on

the nature of the participating local

and global stakeholders and their

interactions. A steady form of social

responsibility in the USA is more

market- oriented (influenced by companies

and investors), while in France

it reflects a significant influence of the

government that promotes corporate

social responsibility and the implementation

of good practices. They

also argue that convergence of stakeholders’

interests strengthens social

responsibility.

The involvement of different groups

of external stakeholders that critically

evaluate activities of NPPs, enables the

NPPs adoption of practical, administrative,

technical and socially responsible

practices. The social responsibility of

the NPPs is an integral part of the

safety culture, which is shown by the

actors involved at all levels. Owners

and operators of the NPPs have to meet

the expected obligations towards

society and the environment. ISO

26000 [2010] argue, that identification

and engagement of stakeholders

are fundamental to social responsibility.

An organization should determine

who has an interest in its decisions and

activities, so that it can understand its

impacts and how to address them.

Banerjee and Bonnefous [2011] claim

that the external stakeholders play a

significant role in shaping the future of

the nuclear power industry. They

identified three different stakeholder

management strategies of NPPs:

reinforcement strategies for supportive

stakeholders, containment strategies

for obstructive stakeholders and

stabilization strategies for passive

stakeholders. The groups differ in their

power to influence policies of NPP. He,

Mol, Zhang and Lu [2013] studied the

attitude of stakeholders to nuclear

energy in China. The case study was

conducted three months after the

Fukushima event. Their results show

that development and decision- making

on NPPs are dominated by ‘iron nuclear

triangle’ of national governmental

agencies, nuclear industries, and

research organizations. The Fukushima

crisis has shown that a lack of transparency,

public participation and

public scrutiny can have severe consequences

for the NPPs.

The optimal strategy for integrating

external stake holders into the

focus sets an effective communication

197

ENERGY POLICY, ECONOMY AND LAW

Energy Policy, Economy and Law

Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 198

model. The 2014 survey in Slovenia

confirmed that the external stakeholders

of NPP had high expectations

of accessible, comprehensive, real and

timely information on the operation

and impacts of the NPPs and their

short-term and long-term activities

[Simončič & Žurga, 2016].

Stakeholder involvement in nuclear

safety issues requires established communication

mechanisms and channels

for discussions between the interested

parties and those responsible for

decision- making. It should be an

integral part of the management of

nuclear facilities from their conception

through final closure and decommissioning.

Thus, implementation of

managerial plan will need to include

mechanisms to continually monitor

the effectiveness of the program and

make changes and improvements

based upon the results of this evaluation.

[IAEA, 2011]

Purpose and hypothesis

of the research

In the research we examined the hypothesis

that respecting the interests

of stakeholders is a prere quisite for

the acceptability of the NPPs in society

and the environment and strengthens

quality of their coexistence. We

demonstrated and proved that NPPs

are aware of their impact and that

they want to satisfy the interests of

their stakeholders. Considering importance

of effective stakeholder

strategy for respect of their interests,

we developed and presented the

optimal model for involving external

stakeholders in the NPPs.

2 Research methodology

Questionnaires

For the purpose of the research, two

questionnaires with closed type

questions (statements) were developed,

one for external stakeholders

and another for NPPs. Respondents

expressed level of their agreement

with statements by: 1 – Completely

disagree, 2 – Disagree, 3 – Undecided,

4 – Agree, 5 – Fully agree. For basic

analysis, descriptive statistics methods

were used. For analyzing the completed

questionnaires, we used frequency

statistics, Cronbach Alpha

Test, Exploratory Factorial Analysis

of Ordinal Variables, Structured Equation

Modelling (SEM) with Lisrel,

Mann-Whitney and Kruskal- Wallis

test.

Sample and timeframe,

data collecting

External stakeholders of the only

Slovenian NPP included in the

research were:

pp

Representatives of local com munities,

namely 432 randomly

selected citizens from the Posavje

region in which the NPP is located

and, in the sample of “other

Slovenian regions”, four randomly

selected statistical units were

included, i.e. the Jugovzhodna

Slovenija region, the Obalno-kraška

region, the Savinjska region

and the Zasavska region (488 persons);

pp

Suppliers of goods and service

providers of the NPP that are

registered in the Republic of

Slovenia. This stakeholders group

comprised of companies that

supplied goods or services in the

years 2012–2017. We randomly

selected 110 suppliers;

pp

Journalists: invitations for journalists

were sent to 177 addresses;

pp

Non-governmental organizatios. In

June 2017, thirty non-government

organizations (NGOs) were registered

in Slovenia with the status of

acting in the public interest in the

field of environmental protection

and 36 associations operating in

public interest in nature conservation.

They were all included in

the research;

pp

Political public. Slovenian political

public represented by the President

of the Republic of Slovenia, the

Prime Minister, ministers, members

of the National Council, members

of the National Assembly, constitutional

judges and mayors of

Slovenian municipalities elected in

the 2014–2018 term was included

in the research. We sent invitations

to co-operate in the survey to e-mail

addresses of all official representatives

(offices, cabinets), that are

listed on their official websites,

except municipalities. Concerning

mayors, 22 municipalities (approximately

10 % of all) were randomly

selected.

As representatives of NPPs, we invited

members of World Association of

Nuclear Operators (WANO), Paris

centre to co-operate in the research.

At the time of the research, the

regional Paris centre represented 147

nuclear reactors from 13 countries.

The WANO organization allowed us to

invite the power plants to participate

in the research through their internal

information system. In this way, we

have ensured good responsiveness.

Representatives of NPPs were invited

to indicate whether they were operators

or owners of their respective NPP.

Web based surveys were con ducted

in October 2017. The research was

carried out at a time when the next

European concept of electricity supply

was primarily oriented towards lowcarbon

sources what included nuclear

power, as an important part of the

solution in the long-term supply of

electricity in many countries.

3 Results and hypothesis

testing

Responsiveness and

characteristics of the sample

Almost 36 % of respondents live up to

30 km from the NPP, app. 12 % of

them are up to 10 km from the NPP.

Invited

Group of

stakeholders

Number of

participant (N)

Response

(%)

432 Local communities – Posavje 95 22.0

488

110

Local communities –

other Slovenian regions

Suppliers of goods and service

providers of NPP

91 18.6

21 19.1

66 NGOs 17 25.8

124 Slovenian political public 21 16.9

177 Journalists 23 13.0

Others 24

1397 292 20.9

| | Tab. 1.

Response and number of participating stakeholders of NPP.

Function in the organization: operators of NPPs (N)

Top management 23

Representative in organization WANO 17

Public relations of NPPs 5

NPPs together 45

Function in the organization: owners of NPPs (N)

Top management 1

Representative in the WANO 1

Public relations of owner 1

Owners together 3

| | Tab. 2.

Number of participating NPPs, and organizational function of respondents.

Energy Policy, Economy and Law

Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


atw Vol. 64 (2019) | Issue 4 ı April

Statement N Mdn Min Max SD

(1) NPP is obliged to recognize and respect the interests and legitimate rights of various stakeholders

and respond to their initiatives.

| | Tab. 3.

Statements from the questionnaire, basic statistics.

Note. N= total number of responses; Mdn = median; Min = minimum value; Max = maximal value; SD = standard deviation.

App. 35 % of the participants in the

survey have a residence of more than

100 km from the NPP (Table 1).

Response rate of the NPPs was

about 30 %. All together, 45 respondents

were operators and three

respondents were among owners of

NPPs. Table 2 shows involvement of

NPPs’ representatives, namely members

of top management, representatives

in the WANO organization and

public relation officers.

Due to low response rate of the

owners, we consider in continuation

of this article only responses from the

operators.

Data analysis

for hypothesis testing

For testing the hypothesis set, 11

statements from the questionnaire for

stakeholders were used, for which the

respondents expressed their degree of

agreement (­Table 3).

Ordinal variables were not normally

distributed. We used factor

analysis for the ordinal variables, the

Maximum Likelihood (ML) method,

which is more robust in terms of

abnormal distribution. Using the

histograms, we also verified that there

were no outliers. Using the Lisrel tool,

we performed exploratory factor

analysis for the Varimax rotation

ordinal variables. We found that three

factors offered a suitable solution

( Table 4).

With the Cronbach alpha test, we

found that variables 5 and 8 differed

significantly, so we excluded them.

Variables 1 to 4 were combined in

Factor 1, “Respect” ( respecting stakeholder

interests). In Factor 2 “Acceptability”

(acceptability of NPP) we

combined variables 6 and 7. In Factor

3 “Coexistence” (quality of coexistence)

we combined variables 9 to 11.

The correlations between the factors

are given in Table 5. It is evident that

the correlation between factors 1 and

3 is weak (0.057).

In all three data constructs, the

Cronbach Alpha was greater than

0.7, what ensures good reliability

( Table 6).

Calculation was performed using

the SEM method (structural equation

modelling). Namely, according to

Civelek [2018] SEM tests the relationships

between observed and latent

variables. Observed variables are the

measured variables in the data collection

process and latent variables are

the variables measured by connecting

to the observed variables because they

cannot be directly measured. SEM

consists of two basic components as

structural model and measurement

model. Another reason for the widespread

adoption of this method is the

ability of taking into the account

measurement errors and the relationships

between errors in the observed

variables.

In the basic model, we used all three

defined latent variables: respec ting

| | Tab. 5.

Correlations between factors.

289 4 3 5 0.566

(2) NPP should be aware that some stakeholders might have a significant influence on its operation. 289 4 3 5 0.565

(3) NPP must take into account the relationships between the interests of its stakeholders, the broader

expectations of society and nuclear power plants.

287 4 2 5 0.601

(4) NPP must know how its stakeholders are satisfied with the activities it is carrying out. 288 4 3 5 0.549

(5) NPP can also be located in the vicinity of residential areas. 288 2 1 5 1.065

(6) The acceptability of a NPP in the environment is possible only if NPP respect and take into account

the interests of their stakeholders.

288 4 1 5 0.968

(7) The trust between local communities and the NPP is a prerequisite for the acceptance of NPP. 288 4 1 5 0.870

(8) Donations and other material incentives for local communities increase the acceptability of the NPP. 287 4 1 5 1.145

(9) NPP can be placed in the environment where I live, but only if they are socially responsible. 286 4 1 5 1.323

(10) NPP creates new jobs, expands economic activity and technological development. 288 4 1 5 1.001

(11) NPP influences the higher quality of life in the local community. 286 3 1 5 1.171

Statement Factor 1 Factor 2 Factor 3 Unique variance

(1) 0.844 0.021 0.026 0.287

(2) 0.973 0.010 0.025 0.052

(3) 0.790 0.319 0.033 0.272

(4) 0.688 0.367 0.146 0.370

(5) -0.058 0.116 0.656 0.553

(6) 0.333 0.640 0.460 0.268

(7) 0.305 0.646 0.529 0.210

(8) 0.037 0.271 0.604 0.561

(9) 0.073 0.206 0.764 0.368

(10) 0.108 0.167 0.808 0.307

(11) 0.076 0.042 0.882 0.214

Factor 1

(“Respect”)

Factor 2

(“Acceptability”)

Factor 3

(“Coexistence”)

Factor 1

(“Respect”)

1.000

Factor 2

(“Acceptability”)

0.479 1.000

Factor 3

(“Coexistence”)

0.057 0.534 1.000

Factor Statement Number of

statements

Factor 1

(“Respect”)

Factor 2

(“Acceptability”)

Factor 3

(“Coexistence”)

Cronbach

Alfa

(1) 4 0.839

(2)

(3)

(4)

(6) 2 0.812

(7)

(9) 3 0.835

(10)

(11)

ENERGY POLICY, ECONOMY AND LAW 199

| | Tab. 4.

Exploratory factor analysis.

| | Tab. 6.

Test Cronbach Alfa.

Energy Policy, Economy and Law

Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 200

| | Fig. 1.

Standardized adapted structural model.

stakeholder interests, accept ability of

NPPs and quality of coexistence.

Values between latent variables

can be explained by regression equations:

p p “Acceptability” = 0.641 x “Coexistence”

+ 0.361 x “ Respect”

p p “Coexistence” = 0.167 x “Respect”

p p “Respect” relatively poorly explains

“Coexistence”. By adapting

the model, we wanted to improve

the basic model. We removed

the variable 11 and added the

covariance errors between 1, 2, 3,

and 4. In the modified model, we

included two covariance (1-2 and

3-4). In the improved model,

“ Respect” better explains “Coexistence”

(p 0.90–0.95

SRMR 0.075 0.033 < 0.08

NNFI 0.866 0.994 > 0.90–0.95

| | Fig. 2.

Level of agreement with the statement, that “NPP influences the higher quality of life in the local community.”

| | Tab. 8.

Statistics of the basic and adapted structural model.

Note. χ 2 : HI = square statistics; df = degrees of freedom; RMSEA = Root

mean square error of approximation; CFI = Comparative fit index; SRMR =

Standardized root mean square residual; NNFI=Non-normed fit index.

Energy Policy, Economy and Law

Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


atw Vol. 64 (2019) | Issue 4 ı April

account belonging to the group of

stakeholders or other features. We

illustrate differences in the per ception

of nuclear energy and nuclear facility

on the case of the statement 11: “NPP

influences the higher quality of life in

the local community.”. In Figure 2

we see higher agreement among the

respondents living closer to the

nuclear facility, among the political

public, journalists and suppliers.

There is also important share of those

who do not have an opinion on presented

issue (undecided).

Respecting interests of NPPs’

stakeholders

Representatives of NPPs have expressed

high level of agreement with

the four statements that describe the

principle of respecting the interests of

their stakeholders (Figure 3). With

the Mann-Whitney test, we confirmed

that there were no statistically significant

differences in responses of

owners nor operators. The same was

confirmed taking into account the

function in the organization – the

Kruskal- Wallis test proved no statistical

significance in any case.

4 Discussion

The NPPs shape the environment in

which they are located and affect lives

of their external stakeholders. They

all want to promote their interests,

expectations and live a quality life.

Respecting the interests of external

stake holders of the NPPs is an important

principle of social responsibility,

and it was proved within the research

| | Fig. 3.

Level of agreement of NPPs’ representatives with statements related to stakeholders.

that NPPs are aware of it. We have

demonstrated that it affects the

acceptability of the NPPs in the society

and the quality of coexistence.

Successful organizations, and

NPPs strive to be among them, differ

from others by their exceptional

ability to quickly detect and effectively

adapt to changes in an unpredictable

environment. The appropriate strategy

for involvement of stakeholders

in strategic decisions of the NPPs

should be set up and implemented.

This is a pre requisite for the placement

of the NPPs in the environment,

its operation and coexistence. The

target groups with which trust is

particularly needed are local communities

(surrounding and more distant),

NGOs, political public, NPPs’

suppliers and journalists. These external

stakeholders groups differ according

to the understanding of nuclear

technology, interests and impacts on

the NPPs, what effective strategy of

NPPs must take into account. Our

research demonstrated that a certain

proportion of external stakeholders of

NPP in Slovenia still not have clear

understanding of the functions, influences

and many other issues related to

nuclear energy. This is an important

challenge for owners and operators of

NPPs that want to achieve confidence

and acceptance.

Coexistence with NPPs depends on

trust of stake holders into the NPP, the

perception of their quality of life, the

awareness of the impacts on coexistence,

and the willingness to respect

the interests of stakeholders of NPPs,

which the power plant should implement

with socially responsible practices.

The optimal model of involving

external stakeholders in the operation

of the NPPs is the one that establishes

the quality coexistence of the nuclear

facility and its external stakeholders.

We have proven that coexistence with

the NPPs positively affects quality of

ENERGY POLICY, ECONOMY AND LAW 201

| | Fig. 4.

Optimal model for the involvement of external stakeholders.

Energy Policy, Economy and Law

Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 202

life. The optimal model for the

involvement of external stakeholders

into NPPs that we have established is

shown in Figure 4.

The effective model of involvement

of external stakeholders integrates

internal resources (employees) and

external stakeholders in a meaningful

and responsible manner. It is necessary

to take into account social, legal,

political, cultural and all other diversity,

interests and expectations. The

key position in the model is given

to effective communication model

between the NPP and its external

stakeholders. Social responsibility of

the NPPs begins with top management

and is deployed to whole

organizational structure. The optimal

model establishes self-assessment

mechanisms and continuous implemen

tation of improvements, which

consequently allows redefinition of

the vision and mission of the NPPs.

The self-assessment logic and the

establishment of conditions for

continuous improvements (EFQM

RADAR, Deming’s PDCA circle or

some other managers tool) is included

in the process loop to achieve the

strategic goals. Socially responsible

activities of the NPPs are not inferior

to achieving the maximum possible

profit. Potential conflicts between

social responsibility and economic

concern can be solved by rising awareness

of long-term (positive) effects

and benefits of socially responsible

organizations. Namely, overcoming

conflicts between NPPs and their

stakeholders has positive implications

on higher social and economic efficiency,

on safety and acceptability of

the NPPs. A critical analysis of efficiency

and the introduction of improvements

represent the way to

greater acceptability of the NPPs in

the environment, sustainability of

nuclear energy and excellence in

relations to external stakeholders.

Acceptability of the NPPs in the environment

enhances the quality of life.

In addition to responsible owners and

operators, the important condition for

successful coexistence with the NPPs

are responsible, critical and objective

external stakeholders as well.

Additional research areas

The article presents the optimal model

of participation of external stakeholders

in important decisions related

to nuclear energy. We are aware that

the integration of stakeholders in

the NPPs is not always and everywhere

optimal, and is influenced

by many factors. Therefore, there is a

possibility for gaps between practice

and the model. NPPs should evaluate

causes of such inconsistencies, find

ways to overcome them, and include

owners and operators of the NPPs in

the analysis, to express their view of

this area.

Further research could focus on

studying interactions with influential

other groups of external stakeholders,

e.g. it would make sense to include

stakeholders who live in neighbouring

countries that do not have NPPs on

their territory. It would be practical to

better define the specific interests and

impacts of individual groups of external

stakeholders.

5 Conclusion

NPPs are aware of their impact on the

wider society. As expressed in the

survey by NPPs’ operators and owners,

they are ready to satisfy interests of

their external stakeholders and with

full responsibility. Using the SEM

method, we have proven that the

acceptance of NPPs and quality of

coexistence depend on respect of

interests of the NPPs’ external stakeholders.

Involvement of external stakeholders

into the whole life cycle of the

NPPs enables rational and systematic

solutions to challenges of coexistence

and quality of life. Strengthening

social responsibility in the field of

nuclear energy offers some starting

points and answers to environmental

issues and sustainability also in the

light of global economy. It affects the

acceptability of the NPPs and the

quality of life of individuals and

different groups in a modern society

and in the environment in which

nuclear facilities are located. The

research contributes to the society,

owners and operators of the NPPs.

The con tribution is in the field of

relations between the NPPs and its

stakeholders. The impact of the NPPs

addresses many areas and can represent

important social, economic and

cultural indicators in all structures

of society. Any additional research,

especially from specific and unexplored

areas of coexistence with the

NPPs, and the implementation of

socially responsible principles, therefore

represents an important contribution.

Acknowledgement

We would like to thank the WANO

organization for enabling us to spread

invitation to NPPs to participate in the

survey through their information

system. By supporting our research,

WANO demonstrates own social

responsibility and the importance of

common concern for prosperity of a

wider society.

We would also like to thank all

respondents that participated in the

research for their interest and cooperation

as our thanks to them was

not possible earlier due to anonymity

of the survey.

References

| | Afgan, N. H. (2013). Sustainable nuclear energy dilemma.

Thermal Science, 17(2), 305–321. doi: 10.2298/TSCI121022214A.

| | Avetisyan, E., & Ferrary, M. (2012). Dynamics of stakeholders’

implications in the institutionalization of the CSR field in France

and in the United States. Journal of Business Ethics, 115(1),

115–133. doi: 10.1007/s10551-012-1386-3.

| | Banerjee, S. B., & Bonnefous, A. M. (2011). Stakeholder

management and sustainability strategies in the French nuclear

industry. Business Strategy and the Environment, 20(2), 124–140.

doi: 10.1002/bse.681.

| | Campbell, M. D. (2013). Uranium, thorium, and associated rare

earth elements of industrial interest. Houston: EMD Uranium

( Nuclear Minerals and REE) Committee.

| | Civelek, M. E. (2018). Essentials of Structural Equation Modeling.

Lincoln, Nebraska: Zea Books. doi: 10.13014/K2SJ1HR5.

| | Goodfellow, M. J., Dewick, P., Wortley, J., & Azapagic, A. (2015).

Public perceptions of design options for new nuclear plants in

the UK. Process Safety and Environmental Protection, 94, 72–88.

doi: 10.1016/j.psep.2014.12.008.

| | Guidance on social responsibility ISO 26000:2010, 1st edition.

(2010). Geneve: International Organization for Standardization.

| | He, G., Mol, A. P., Zhang, L., & Lu, Y. (2013). Public participation

and trust in nuclear power development in China. Renewable

and Sustainable Energy Reviews, 23, 1–11. doi:

10.1016/j.rser.2013.02.028.

| | Horvath, A., & Rachlew, E. (2016). Nuclear power in the 21st

century: Challenges and possibilities. Ambio, 45(1), 38–49. doi:

10.1007/s13280-015-0732-y.

| | IAEA. (2011). Stakeholder involvement throughout the life cycle of

nuclear facilities. Vienna: International Atomic Energy Agency.

| | Kato, T., Takahara, S., Nishikawa, M., & Homma, T. (2013). A

case study of economic incentives and local citizens’ attitudes

toward hosting a nuclear power plant in Japan: Impacts of the

Fukushima accident. Energy Policy, 59, 808–818. doi: 10.1016/j.

enpol.2013.04.043.

| | Matuleviciene, M., & Stravinskiene, J. (2015). Identifying the

factors of stakeholder trust: a theoretical study. Procedia -

Social and Behavioral Sciences, 213, 599–604. doi:

10.1016/j.sbspro.2015.11.456.

| | Shadrina, E. (2012). Fukushima fallout: gauging the change in

Japanese nuclear energy policy. International Journal of Disaster

Risk Science, 3(2), 69–83. doi: 10.1007/s13753-012-0008-0.

| | Simončič, M., & Žurga, G. (2016). Social responsible communication

of nuclear power plant with external stakeholders. Atw –

International Journal for Nuclear Power, 61(11), 653–659.

| | Truelove, H. B., & Greenberg, M. (2013). Who has become more

open to nuclear power because of climate change? Climatic

Change, 116, 389–409. doi: 10.1007/s10584-012-0497-2.

| | Trufanov, V. V. (2013). Modeling development options of electric

power systems in conditions of multiple stakeholders. Thermal

Engineering, 60(13), 931–937.

| | World Nuclear Association. (2018). Harmony 2018 Edition.

London.

Authors

Dr. M. Simončič

(corresponding author)

Lead engineer of analytical

chemistry and radiochemistry

Nuclear Power Plant Krško

Vrbina 12

8270 Krško, Slovenia.

Dr. G. Žurga

Professor and independent

researcher in the area

of management

Slovenia

Energy Policy, Economy and Law

Successful Co-Existance of Nuclear Power Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


atw Vol. 64 (2019) | Issue 4 ı April

The Nuclear Fission Table in the

Deutsches Museum: A Fundamental

Discovery on Display

Susanne Rehn-Taube

The Deutsches Museum in Munich is one of the largest science and technology museums in the world.

At 50,000 square meters, it shows masterpieces from such diverse disciplines such as chemistry, physics, aircraft,

marine, biotechnology, or glass technology.

| | The table carrying the original instruments with which nuclear fission was discovered in 1938

is one of the most famous objects of the Deutsches Museum.

Since the beginning of the museum,

there has been an exhibition about

chemistry. The chemistry collection

contains dye samples, laboratory

equipment, and many other objects –

about 10,000 in total.

One of the most famous objects is

the table displaying the original

equipment used by the researchers

who discovered nuclear fission of

uranium atoms in 1938: Otto Hahn,

Lise Meitner and Fritz Straßmann. [1]

The discovery

of nuclear fission

Since the 1890s, the scientific community

had formed an increasingly accurate

idea of the atom. After the first investigations

of radioactive substances

by Becquerel and the Curies, Ernest

Rutherford and his coworker Frederick

Soddy noticed in 1902 that by radioactive

decay chemical elements change

into each other. In 1913, Niels Bohr

established his atomic model, postulating

a positive nucleus with negative

electron shells. In 1919, the first manmade

change of elements took place,

again by Rutherford: by bombarding

nitrogen atoms with helium nuclei, he

obtained oxygen atoms and a posi tively

charged particle which, a short time

later, he identified as the proton. [2]

As a result, several research groups

attempted to obtain element changes

by bombarding atomic nuclei with

protons. In this case, however, the

repulsion of the positive particles and

the positive nucleus had always been

an obstacle.

It was not until the discovery of the

neutron by James Chatwick in 1932

that a new possibility was opened:

this nucleon should be able to penetrate

the nucleus without electrostatic

repulsion. [3] Bohr spoke of a possible

“explosion” [4] or “breaking” [5] of

atomic nuclei. He formulated the

theory that the nucleus behaves

similar to a large water drop.

Enrico Fermi then irradiated a

variety of elements with neutrons.

By neutron capture and subsequent

β-decay, he was hoping to obtain

elements with an atomic number

increased by one compared to the

starting materials. In the case of

uranium, at the time believed to be

the heaviest chemical element, this

transformation would lead to an artificial

element. A transuranic element

should be formed. [6]

Lise Meitner thought these results

so fascinating that in 1934 she

persuaded Otto Hahn to join forces

again. She wanted to bombard heavy

nuclei, including uranium and thorium,

with neutrons, in order to obtain

transuranic elements. [7] The two scientists

had known each other since

1907. [8] In the late 1930ies, Hahn led

the department of radiochemistry and

was director of the Kaiser Wilhelm

Institute for Chemistry in Berlin. Lise

Meitner directed the radio-physical

department.

The collaboration of the physicist

and the chemist must have been

extremely fruitful and affected by

great friendship. Hahn described it

in 1963 as “stroke of luck” to have

met Lise Meitner. [9] Together with

the chemist Fritz Straßmann, they

conducted the following experiments:

A sample of purified uranium was

brought into a paraffin block and put

next to a neutron source of beryllium

and radium. After different exposure

times, the uranium sample was

removed and chemically analyzed.

After dissolving it in hydrochloric

acid, a compound similar to the suspected

product was added. By doing

so, the team expected that this added

compound and the reaction product

should precipitate together from the

solution. Excessive uranium remained

in the solution. Subsequently, the

filtrates were dried and the filter

papers were put into the cylindrical

hollow of a lead block. Home-made

Geiger-Muller counters were set onto

the filter papers. The counter tube

consisted of an aluminum cylinder

filled with a special argon gas mixture

with a wire in the center. Strong batteries

put the wire under voltage. The

negative β-particles emitted from the

radioactive sample were accele rated

toward the wire and caused a cascade

of ionizations and an elec trical pulse.

This pulse was amplified and displayed

by a mechanical counter. Plotting

the counts against time yielded

the radioactive decay rates of the reaction

products.

ENERGY POLICY, ECONOMY AND LAW 203

Energy Policy, Economy and Law

The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 204

| | Fritz Straßmann and Otto Hahn explain the objects to Heinz Haber for a

television documentary in 1963. Hahn does NOT arrange the instruments

for the museum and never has.

The team indeed found reaction

products emitting β-particles and

concluded that transuranic elements

were formed. They assumed the

finding of nuclei with atomic numbers

93 to 96 which chemical properties

met the expectations. Despite a long

series of β-decay, which was never

observed before, the finding of new

chemical elements was published and

not doubted by anyone. [10]

It was the summer of 1938. At this

exciting point of their work, Lise

Meitner had to flee Germany. After

the “Anschluss” of Austria by Germany,

she was threatened with persecution

by the Nazis as an Austrian Jew. With

the help of Otto Hahn and other

colleagues, she left Germany on July

13, 1938 for the Netherlands and

eventually Sweden. Her scientific

celebrity status did not protect her in

any way: she could only cross the

German border because she was fortunate

enough not to be controlled by

the SS guards on the train. The flight

must have left a great break in the

Berlin team. Otto Hahn wrote later:

“I’ll never forget the 13 th of July 1938”.

[11] “Hähnchen” and “Lieschen”, as

they called themselves according to

legend, remained in frequent contact

by correspondence nonetheless.

In Berlin, the team focused on the

chemical analysis of the irradiation

product. The results seemed to indicate

radium as product. [12] This could be

the result of two consecutive αdecays

of uranium. This had never been

observed before, and many experts

were skeptical. To identify radium

chemically, Hahn and Straß mann first

added barium chloride to the uranium

solution and hoped to precipitate a

radium barium mixture. The precipitate

was filtered and dissolved again.

From this solution, the team tried to

separate barium and radium by fractional

crystallization. The solution was

heated and first treated with acid, until

a small portion crystallized. This precipitate

was filtered off. The solution

formed a second precipitate, which

was also filtered off. Subsequently, a

third fraction was crystallized. Since

radium salts are usually less soluble

than barium salts, the former should

be enriched in the first fraction and the

latter in the last fraction. The radioactive

decay of all fractions was analyzed.

Since different nuclei were

assumed present, each fraction should

emit their specific radioactive activity.

However, Hahn and Straßmann discovered

that there were no differences

in the activities of the fractions.

Apparently, a chemical separation had

not taken place.

To verify this, the team also conducted

the fractional crystallization

with radium salts. It seemed possible

that radium in such small quantities

behaved in a peculiar and unexpected

way. Finally, the now famous indicator

experiment should bring clarity:

Hahn and Straßmann irradiated the

uranium sample, mixed it with a

radium sample of known radioactive

activity and conducted the fractional

crystallization with this mixture. [13]

All these series of experiments showed

that all the differences in the activity

of the separate fractions were only

due to the “honest” (Quote: O. Hahn

[14]), i.e. the added radium. The

supposed artificial radium showed

constant activity through all fractions.

Thus, it was a nucleus inseparable

from barium. The product of the

irradiation experiments had to be

barium. These results left Hahn and

Straßmann clueless. They had no

| | Otto Hahn and Lise Meitner (picture: 1950ies) always communicated in a friendly

and professional tone and spoke with great respect for each other and each

other’s scientific achievements.

explanation how irradiation of

uranium could lead to barium, a much

lighter element.

In a letter written on December

19 th , 1938 Otto Hahn asked Lise

Meitner for an explanation, because

he knew that “[uranium] cannot burst

into barium”. “The more we think

about it, the more we come to this

terrible conclusion: Our radium

isotopes do not behave like radium,

but like barium. [...] If you could

suggest anything, it would still be like

a result of the three of us!” [15]

His point of view that Lise Meitner

was still part of the team led to this

wish that the results would still be a

work of the whole team. Meitner was

skeptical and asked very critically

whether all other possibilities had

been “ruled out”. [15 a), p. 171] She

spent Christmas of 1938 with her

nephew, physicist Otto Robert Frisch,

in Kungälv, Sweden. According to

legend, the both spent hours of

walking in the snow and then

developed a revolutionary interpretation

of the experiments. According

to Bohr’s liquid drop model, the

uranium nucleus started to move after

penetration by a neutron. [16] This

movement led to constriction and

finally separation into two roughly

equal-sized fragments, which were

each much smaller than the uranium

nucleus itself. Thus, an explanation

for the light nucleus barium was

found. The fragments flew apart with

high kinetic energy. Otto Robert Frisch

had the honor of giving the new

process its name: nuclear disintegration

and later nuclear fission. On

New Year’s Day, 1939, Lise Meitner

told Otto Hahn in a letter “perhaps it is

energetically possible that such a

heavy nucleus bursts into pieces.” [17]

Energy Policy, Economy and Law

The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


atw Vol. 64 (2019) | Issue 4 ı April

Today, one can only try to sympathize

with Meitner’s feelings, which

probably oscillated between frustration

and excitement. Her entire life

had been turned upside down and

apparently, she had missed the most

important discovery of her former

team. Additionally, this discovery

would question her own work about

the transuranic elements too. Hahn

and Meitner did correspond about

their feelings in their letters. Hahn

wrote, “How beautiful and exciting it

would be if we could have done this

work together like before.” From

Meitner’s reply, he could read the fear

that her participation in the discovery

could not be adequately approved.

And Hahn replied immediately: “It

shocked me to see you so depressed.”

[15 a), pp 171, 177]

On January 6 th , 1939, the results of

Hahn and Straßmann were published.

The interpretation culminated in the

famous phrase: “As chemists, we

should actually call the new nuclei not

radium but barium.” [18] And the

next major publication by Hahn and

Straßmann followed February 10 th ,

1939. [19] The authors reported with

absolute certainty that all the previously

suspected radium isotopes

were in truth barium isotopes. Hahn

and Straßmann apparently tried to

show that there was indeed a group of

three that had obtained the results.

The previous publications of the

trio and Lise Meitner’s name were

mentioned several times. Hahn and

Straßmann mentioned the transuranic

elements as well: “We are still

certain, that the transuranic elements

remain.” The second fission product

was stated to be a noble gas, either

krypton or xenon. The publication

concluded with the statement that

the finding of the new irradiation

products was “only possible by the

experience we have gained in the

earlier, systematic experiments on the

trans uranic elements, carried out in

asso ciation with L. Meitner.”

Meitner and Frisch published their

conclusions in Nature in February

1939. [20] They predicted the other

fission product correctly as krypton.

This work also explicitly stressed the

existence of transuranic elements. In

subsequent publications, Frisch and

Meitner already provided calculations

of the enormous amount of energy

released during the reaction. [21, 22]

After those publications, various

groups all over the world instantly

began to repeat, confirm and continue

the experiments. Frédéric Joliot-Curie

realized that the fission reaction led to

the emersion of free neutrons. These

could lead to the subsequent fission of

further uranium atoms and a selfmaintaining

chain reaction was thinkable.

[23] Soon the whole world was

interested in nuclear fission. Frisch

and Bohr explained the energy

released during the reaction with Einstein’s

equation E = mc 2 . [24] The

fragments of the nuclear fission

reaction combined had a smaller mass

than the uranium core. The equivalent

of this mass difference was

released as free energy.

The different isotopes of uranium

have been extensively studied. As

early as 1939, Niels Bohr recognized

that the fission process only occurs

in the rare uranium isotope 235 U. [25]

In the following year, the American

group led by McMillan and Abelson

published confirmation that, by

irradiation of uranium-238, a transuranic

element could be produced.

Investigations of these elements led

to nothing less than a reorganization

of the periodic table. [26] Below

the lanthanides follows a series of

elements later called actinides. Hahn

and Straßmann confirmed and

supple mented the results. They provisionally

named the new element

block “uranides”. [27] Otto Hahn

was later kind of annoyed about the

fact that he did not recognize one

uranium isotope with the half-life

of 23 minutes as a precursor of the

transuranic element 93.

Later [28], Seaborg and McMillan

also found the heaviest natural

element with an atomic number of 94.

It emerged from the bombardment

of uranium atoms with deuterium

nuclei. [29]

The transuranic elements 93 and

94 were later called neptunium and

plutonium in the order of the planets

Uranus, Neptune, and Pluto. [30] Plutonium

is considered the heaviest naturally

occurring element. It was found

in trace amounts in natural uranium

ore. The naturally occurring transuranic

elements are just like the ones

in the laboratory created via neutron

capture by uranium-238 atoms.

During World War II, Otto Hahn

was a member of the “Uranium

Association,” a group of scientists

who were supposed to work on the

technical use of nuclear fission in

Germany. Due to this fact, the British

held him captive after the war. During

his captivity, he learned of the nuclear

explosions in Japan by the Americans

and of the fact that he had been

awarded the Nobel Prize for

| | In 1972 the chemistry exhibition in the Deutsches Museum was reopened presenting the “Arbeitstisch von Otto Hahn”

in a niche next to a large model of an uranium atom. After more than 20 years on display, Lise Meitner’s contribution to the discovery

was still not mentioned.

ENERGY POLICY, ECONOMY AND LAW 205

Energy Policy, Economy and Law

The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 206

Chemistry in 1944. Later, Otto Hahn

referred to the use of nuclear fission

for military purposes as a “mess” that

he wanted no part of. [31] He initiated

action against the military use of

nuclear power, such as the Mainau

Declaration in 1955 or the Göttingen

Declaration in 1957.

To receive his Nobel Prize, Hahn

had to wait until the ceremony of 1946.

Awarding the prize to Otto Hahn alone

probably remains one of the most

debated decisions of the Nobel committee

until today. In his Nobel Lecture

on December 13 th , 1946, Hahn

explained the work of the team Hahn,

Meitner, and Straßmann in great

detail. [11, p. 247 and following pages]

Being a Nobel Laureate, Otto Hahn

later led the Kaiser- Wilhelm- Gesellschaft

and its successor, the Max-

Planck- Gesellschaft, whose presidency

he held until 1960.

Nevertheless, the developments

that occurred in other fields after the

discovery of nuclear fission have

certainly had a tremendous impact on

humanity. The enormous energy

release of the fission process soon led

the scientific community to think

about the possibilities of a power

reactor or an explosive bomb, in the

beginning cautiously called machine.

Enrico Fermi built the first nuclear

reactor in the world in Chicago in

1942. The first atomic bomb was

developed in the Manhattan Project.

With an incredible amount of money

and workforce, the Americans pushed

their nuclear program. Today, we see

it as the beginning of a new era when

the first atomic bomb was detonated

on July 16, 1945 in the New Mexico

desert. The nuclear arms race was just

about to begin. To this day, the earth

has been shaken by 2053 nuclear

explosions. [32]

The artifact:

The “Otto-Hahn-table”

Since the 1920s, the Deutsches

Museum has had contact with Lise

Meitner, Otto Hahn and colleagues in

Berlin. They exchanged letters with

regard to donations of books or

samples of the element protactinium

discovered by Meitner and Hahn. [33]

Especially the director Jonathan

Zenneck corresponded with Otto

Hahn at length and in a friendly tone.

In 1952, the director of the Max

Planck Institute for Chemistry in

Mainz got in touch with the Deutsches

Museum to discuss the existing equipment

by Otto Hahn. Parts of the

original equipment that had been

moved after the war from Berlin via

the small city of Tailfingen to Mainz

had been arranged there on a table

and presented to the public. Once the

table and the apparatus were erected

in the museum, they waited for a text

to explain their meaning. It was

planned that a marble tablet should

bear the following text:

OTTO HAHN

Discovered in 1938, together with

Fritz Straßmann, the fission of

uranium by neutrons, thus creating

the basis for the technical realization

of atomic energy. [34]

Otto Hahn was specifically asked

by Jonathan Zenneck about his opinion

of this synopsis. In his reply dated

April 8, 1953, Hahn was unenthusiastic

about the plans of the Museum:

“As much as I am delighted about

the attention [...] I’m a little depressed

about the presentation that is

apparently intended. It seems to me

somewhat exaggerated to construct a

special niche with a marble table,

because if the fission of uranium has

been found in aftermath to be very

important, neither Mr. Straßmann nor

I had any share in this development.”

In his letter, he goes on to mention

Lise Meitner and again asks for his

name not to be “mentioned with a

special appearance”. [35]

This letter clearly contradicts the

image that has sometimes been drawn

of Otto Hahn that he had spoken

too rarely about the share of his

colleagues in the discovery, particularly

Lise Meitner’s share. The mere

mentioning of the two colleagues in

this letter should have demonstrated

to Zenneck that the display as “Otto

Hahn table” was wrong. Zenneck and

his successors, however, did not

change anything and for several

decades the name “Otto-Hahn table”

stuck.

This is how the visitors found

the artifact: It was called workbench,

but displayed devices, which were

never used together on one table.

The paraffin block and the neutron

sources (which were displayed as

reproductions) were used in an irradiation

room, while the chemical

analysis was undertaken in the

chemical laboratory of Straßmann.

The measurement of the radioactive

activities was conducted in the

measuring room. The pairwise

arrangement of the counters on the

table had no scientific grounding, but

gave the whole thing a wonderful

symmetry. That the measurements

would have been impossible if set

so closely to the neutron source

was never mentioned in one of the

museum texts. [36]

Otto Hahn was in the museum in

1963 for the 25th anniversary of

the discovery. He gave a television

interview to Heinz Haber, a pioneer in

scientific journalism at the time, in

which Hahn told the entire story in

great detail. [9] Hahn emphasized

the contributions and the great teamwork

between himself, Meitner and

Straßmann. A still image from the

movie is now regarded as the moment

Hahn arranges the devices for the

museum himself, a legend that is just

as persistent as it is wrong. [37]

In 1972, the chemistry exhibition

was reopened with a new architecture.

In a niche next to a large

model of a uranium atom, the table

stood in a new showcase. The marble

plaque had been removed, but the

sign “ Arbeitstisch von Otto Hahn”

(workbench of Otto Hahn) had

been taken from the old display. Lise

Meitner’s contribution to the discovery

still did not occur in the

Deutsches Museum.

Only in 1989, on the occasion of

a major exhibition, a balanced and

correct presentation of Meitner’s and

Straßmann’s contributions was finally

shown in the museum. [15 a)] Subsequently,

the museum worked together

with Meitner’s biographer Ruth Lewin

Sime to present a balanced account of

events.

In December 2012, the object

moved to the exhibition about

museum history. The caption today

tries – with all brevity – to satisfy all

those involved in the decisive experiments,

and the table was officially

renamed Hahn-Meitner-Straßmann

table or simply nuclear fission table. It

will be presented in the new permanent

exhibition on chemistry from

2020 onwards.

Conclusion: The responsibility

of the museum curators

For the majority of visitors, it can be

assumed that they see the development

of nuclear power, with all its

consequences for the world, as more

important than the exact story of its

discovery. The table is presented as an

icon of the history of science and is at

the same time an arranged art object

whose aura is nourished by its almost

altar-like form. The global technical

and political significance of nuclear

fission certainly served as an amplifier

for the object’s glory, but was never

described in the exhibition. How did

the reputation of the acting persons

change over time?

Energy Policy, Economy and Law

The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


atw Vol. 64 (2019) | Issue 4 ı April

Immediately after the war, Hahn

and Strassmann were put on a

pe destal: Look, here are two German

scientists who have discovered

something significant! The Deutsches

Museum proudly presented an object

that was saved under certainly difficult

circumstances and moved three

times through post-war Germany.

Whether the instruments were original

ones or the arrangement made

sense was not examined. One did not

bother to describe the components

and the experiments exactly. The

presentation aroused the feeling that

one stood at the desk of a Nobel Prize

winner and could almost look over his

shoulder.

That the contribution of Lise

Meitner was not mentioned is beyond

understanding: one glance into the

original literature would have been

enough to get a more complete picture.

Everyone involved was alive and

well, detailed first-hand documentation

would have been achievable.

However, the fact that nothing was

changed after Hahn’s rather unsatisfied

comment on the first text panel

suggests that it was already hanging

in the exhibition and the text was

literally carved into stone. Therefore,

the label of the exhibit was created:

“workbench of Otto Hahn”. Possibly, it

was also the glory of the Nobel Prize,

which put Meitner in the shade after

the war. In any case, there was no

effort to tell the whole story. General

Director Zenneck would have had to

question the exhibition more critically.

Judging from the friendlysubmissive

tone of his letters to Hahn,

however, this is completely unthinkable.

Hahn was the sole contact for

nuclear fission for Zenneck.

It must be stressed at this point

that Hahn and Meitner, both during

their direct cooperation and after the

war, communicated in an extremely

friendly and professional tone and

spoke with great appreciation of each

other and the scientific achievements

of each other. Surely they saw in the

other an equal scientific partner.

The post-war generation of exhibition

curators saw no need to change

anything in the presentation, and so

Meitner really fell into oblivion. She

lived abroad, was certainly not as

present at events in the Deutsches

Museum and on the German science

stage as Hahn. And it is precisely this

constellation that leads to the allegation

that Hahn had made his mark as a

leading figure in German science,

as a “good German” at the expense

of his colleagues and especially his

colleague with Jewish roots after

the war. [38] The ignorance of the

Museum concerning Meitner implied

that Hahn had built a memorial for

himself in the museum with “his”

object. Parts of today’s history of

science draw a strong picture, according

to which Hahn later “refused

to let Meitner participate in the

discovery.” [39] The fact that Hahn

collected the Nobel Prize alone is

often mentioned in this context, too.

The impression remains Hahn would

be personally responsible for that as

well.

Since the 1990s, the museum has

sought a differentiated and more

detailed presentation. If this had

happened 40 years earlier, Hahn’s

reputation would probably be dif ferent

today. We can assume that Hahn

certainly would not have objected to

such a representation.

The curator’s dream may serve as

a last prospect, who would like to cut

the object – purely virtually, of course,

not in reality – in order to present the

individual parts of the experimental

set-up finally in a scientifically correct

way.

Footnotes

1. This is a revised copy of: Rehn, The Nuclear Fission Table in the

Deutsches Museum: A Special Piece of Science History on the

Eve of World War II. In: M. Kaji, Y. Furukawa (Hg.): Proceedings

of the International Workshop on the History of Chemistry:

Transformation of Chemistry from the 1920s to the 1960s

(IWHC 2015, Tokyo). Tokio 2016, p. 20-27

See also: a) S. Rehn: Der Kernspaltungstisch im Deutschen

Museum. In: Keiser, V. (Hg.): Radiochemie, Fleiß und Intuition.

Neue Forschungen zu Otto Hahn. GNT-Verlag, Berlin, 2018,

p. 63 – 82 b) S. Rehn, Kultur und Technik 3/2013, p. 18-25

2. For milestones in Rutherford’s scientific life, see (last viewed

3.3.2019): http://www.nobelprize.org/nobel_prizes/

chemistry/laureates/1908/rutherford-bio.html

3. J. Chadwick, Nature 129, 1932, S. 312; J. Chadwick, Proc. Roy.

Soc. 136, 1932, p. 692-708

4. N. Bohr, Nature 137, 1936, p. 344-348

5. N. Bohr, Science, 80, 1937, p. 161-165

6. E. Fermi, Nature 133, 1934, p. 757; E. Fermi, ibid., p. 898-899

7. Lise Meitner: Wege und Irrwege zur Kernenergie (1963).

In: L. Meitner, D. Hahn (Ed.), Erinnerungen an Otto Hahn.

Hirzel Verlag Stuttgart, 2005, p. 69 – 73

8. F. Krafft, Otto Hahn und die Kernchemie, Museumsverein für

Technik und Arbeit, Mannheim, 1991, p. 14 - 15

9. Otto Hahn – 25 Jahre Atomzeitalter. Television movie

produced by the German television network NDR, 1963.

In German, Hahn uses the term “Glückszufall”, which is a

mixture of the words “luck” and “chance”. Deutsches Museum

archive, AV-F 0026 & 1743. (All translations of original

German quotes by S. Rehn-Taube.)

10. a) L. Meitner, O. Hahn, F. Straßmann, Z. f. Physik 106, 1937,

p. 249 - 270; b) O. Hahn, L. Meitner, F. Straßmann, Chem.

Ber. 70, 1937, p. 1374-1392

11. O. Hahn, Mein Leben. Bruckmann, München,1968, p. 150

12. O. Hahn, F. Straßmann, Naturwissenschaften 46, 1938,

p. 755 - 756

13. A very detailed description of the experiments is given in:

F. Krafft, Im Schatten der Sensation. Leben und Wirken von

Fritz Straßmann. Verl. Chemie, Weinheim 1981, p. 212 and

following pages

14. Quote by O. Hahn, note 9

15. Letter quoted in: a) J. Lemmerich, Die Geschichte der Entdeckung

der Kernspaltung. Catalogue of the exhibition by the

Deutsches Museum and the Hahn-Meitner-Institute of the

Technical University, Berlin, 1989, p. 166 - 170; b) W. Gerlach:

Otto Hahn, Ein Forscherleben in unserer Zeit. Deutsches

Museum Abhandlungen & Berichte, 37, 1969, p. 52 - 53

16. A modern essay about the finding of nuclear fission and the

liquid-drop model is found in: H. J. Krappe, K. Pomorski,

„ Theory of Nuclear Fission“. Springer Verlag Heidelberg, 2012

17. J. Lemmerich (Ed.), Gedächtnisausstellung zum 100.

Geburts tag von Albert Einstein, Otto Hahn, Max von Laue,

Lise Meitner 1.3. – 12.4. 1979. Catalogue oft he exhibition

held in the Staatsbibliothek Preußischer Kulturbesitz, Berlin.

Berlin, 1979, p. 122

18. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 11 - 15

19. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 89 - 95

20. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 239

21. O. R. Frisch, Nature 143, 1939, p. 276

22. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 471 - 472

23. H. v. Halban, F. Joliot, L. Kowarski, Nature 143, 1939,

p. 470 - 471

24. N. Bohr, J. A. Wheeler, Phys. Rev. 56, 1939, p. 426 - 450

25. N. Bohr, Phys. Rev. 55, 1939, p. 418-419

26. E. McMillan, P. H. Abelson, Phys. Rev. 57, 1940, p. 1185-1186

27. F. Straßmann, O. Hahn, Naturwissenschaften 30, 1942,

p. 256-260

28. The results were not published until 1946. In the publications

it was mentioned that the corresponding experiments took

place in 1941.

29. a) G. T. Seaborg, E. M. McMillan, J. W. Kennedy, A. C. Wahl,

Phys. Rev. 69, 1946, p. 366 - 367; b) G. T. Seaborg, A. C. Wahl,

J. W. Kennedy, Phys. Rev. 69, 1946, p. 367; c) J. W. Kennedy,

A. C. Wahl, Phys. Rev. 69, 1946, p. 367 - 368; d) J. W. Kennedy,

G. T. Seaborg, E. Segrè, A. C. Wahl, Phys. Rev. 70, 1946,

p. 555 - 556

30. Uranium was discovered in 1789 and named after the recently

discovered planet Uranus.

31. Radio interview with Otto Hahn (1967), Deutsches Museum

archive, AV-T 0457

32. http://www.ctbto.org

33. DMVA (Deutsches Museum administration archives) 1286/1;

DMVA 1290/2, DMVA 1291/1

34. „Otto Hahn entdeckte 1938 zusammen mit Fritz Straßmann

die Spaltung des Urans durch Neutronen und schuf damit

die Grundlage für die technische Verwertung der Atomkern-

Energie.“

35. Hahn to Zenneck, 8.4.1953, Archive of the Max-Planck-

Gesellschaft, Abt. III, Rep. 14, Nr. 5287, Bl. 14

36. The author thanks Jost Lemmerich for this special note.

Personal message (16.4.2013)

37. This can be found in various publications, e.g. (both published

by employees of the museum): T. Brandlmeir, Arbeitstisch zur

Uranspaltung. In: Meisterwerke aus dem Deutschen Museum

Band 1, Deutsches Museum, München (2004). In this paper,

Heinz Haber was even cut off the picture. The caption: Fritz

Straßmann and Otto Hahn during the installation of the

workbench for uranium fission; J. Teichmann, Das Deutsche

Museum. Ein Plädoyer für den Mythos von Objekt und

Experiment. In: G. Bayerl, W. Weber (Hrsg.), Sozialgeschichte

der Technik, Waxmann, Münster (1998), p. 199 – 208

38. R. L. Sime, Phys. Perspect, 12 (2010), p. 190 - 218

39. R. L. Sime, Angew. Chem. 103, 1991, p. 956 – 967

Author

Dr. Susanne Rehn-Taube

Deutsches Museum

Museumsinsel 1

80538 München, Germany

ENERGY POLICY, ECONOMY AND LAW 207

Energy Policy, Economy and Law

The Nuclear Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 208

Das 15. Deutsche Atomrechtssymposium:

Eine Standortbestimmung

Ulrike Feldmann

Vom 12. bis 13. November 2018 fand in Berlin auf Einladung des Bundesumweltministeriums das 15. Deutsche

Atomrechtssymposium (DARS) statt. Die wissenschaftliche Leitung der mit ca. 170 Teilnehmern gut besuchten

Veranstaltung oblag wie bereits beim 14. DARS erneut Prof. Dr. Martin Burgi, LMU München.

Das Symposium war 4 Themenblöcken

gewidmet, u.z.:

1) den juristischen Perspektiven nach

dem Ausstiegsurteil des Bundesverfassungsgerichts

(BVerfG),

2) den aktuellen Rechtsfragen der

nuklearen Sicherheit,

3) dem Strahlenschutzrecht sowie

4) Fragen des Standortauswahlverfahrens.

Den Einführungsvortrag zum aktuellen

Atom- und Strahlenschutzrecht

hielt Jochen Flasbarth, Staatssekretär

im Bundesumweltministerium (BMU).

Einen großen Schwerpunkt seines

Vortrages betraf die Frage einer rechtssicheren

Stilllegung der Anreicherungsanlage

in Gronau sowie der

Brennelementfabrik in Lingen und

eines Exportverbots für Brennelemente.

Flasbarth machte keinen Hehl

aus seiner Überzeugung, dass er

sowohl die Stilllegung der beiden

Anlagen als auch das Exportverbot für

notwendig hält, und bedauerte, dass

nicht alle Bundesressorts diese Auffassung

teilen. Allerdings müsse man

der Bevölkerung ehrlich sagen, dass

auch bei Stilllegung der kerntechnischen

Anlagen in Gronau und Lingen

die ausländischen Kernkraftwerke

(KKW) weiter laufen würden. Einer

Laufzeitverlängerung für ausländische

KKW stehe das BMU im Übrigen

kritisch gegenüber. Flasbarth forderte

für diese Fälle eine grenzüberschreitende

UVP. Ferner kritisierte

Flasbarth, dass die EVU über ihre

gemeinsame Tochtergesellschaft, die

Gesellschaft für Nuklear-Service mbH

(GNS), mit der Abfallentsorgung

„auch noch Geld verdient haben“. Im

Auditorium konnte sich mancher Teilnehmer

des Eindrucks nicht erwehren,

dass hier der regulatorische und

moralisierende Staat wieder einmal

grüßen ließ.

Nach dieser unmissverständlichen

Standortbestimmung des Gastgebers

eröffnete Burgi die 1. Fachsitzung

und fragte in seinem Vortrag nach

„Ver änderte(n) Maßstäbe(n) für

Gesetzgebung und Verwaltungsvollzug

im Atomrecht“ und danach,

ob das Atomrecht als Referenzrecht

für andere Rechtsgebiete dienen

könne. Den Grund für veränderte

Maß stäbe sah Burgi in einer Änderung

der Sicherheitsphilosophie. In

Bezug auf den atomrechtlichen Verwaltungsvollzug,

bei dem, wie vielen

Lesern noch in Erinnerung sein wird,

der ehemalige Präsident des Bundesver

waltungs gerichts Prof. Dr. Horst

Sendler in einem Vortrag 1991 bereits

den „ausstiegsorientierten Gesetzesvollzug“

ausgemacht hatte, stellte

Burgi nun diesem Begriff noch einen

„Zwillingsbruder“ zur Seite, den

„ausstiegs beschleunigenden Gesetzesvollzug“,

den er mit den Worten

beschrieb: „Piesacken, bis der Betreiber

aufgibt“. Einer Umsetzung der geänderten

Sicherheitsphilosophie mit

Hilfe reiner Verwaltungsmaßnahmen

erteilte Burgi – weil verfassungswidrig

– eine klare Absage. Für gesetzgeberische

Maßnahmen wiederum, z.B.

zur Beschleunigung des „Kohleausstiegs“,

gebe das Urteil des BVerfVG

vom 6.12.2016 „keinen Rückenwind“.

Ein gesetzlich fixierter fester Abschalttermin

wirke wie eine Übergangsregelung

mit Bestandsschutz. Ein ausstiegsbeschleunigender

Gesetzesvollzug

kurze Zeit nach Festsetzung des

Abschalttermins sei unverhältnismäßig,

also verfassungswidrig, und

könne nicht durch Ausgleichsmaßnahmen

geregelt werden.

Im letzten Teil seines Vortrags

wandte Burgi sich der verfassungsrechtlichen

Beurteilung einer Beendigung

der Brennelementfertigung und

der Urananreicherung in Deutschland

zu. Er wies darauf hin, dass es hier

nicht wie bei Kernkraft- und Kohlekraftwerken

eine vorfindliche Rechtslage

gibt, sondern diese Anlagen über

unbefristete Genehmigungen verfügen.

Das Ziel, die Beendigung des

Betriebs dieser Anlagen, hielt Burgi

dagegen für legitim. Es handele sich

um Hochrisikotechnologieanlagen,

auch wenn Eintrittswahrscheinlichkeit

und Schadenshöhe als geringer

einzustufen seien als bei Kernkraftwerken

(KKW).

Als Ergebnis der verfassungsrechtlichen

Prüfung stellte Burgi fest, dass

bei einer Beendigung von Urananreicherung

und Brennelementfertigung

auf jeden Fall höhere Laufzeiten und

ein deutlich höherer Ausgleich als bei

der 13. AtG-Novelle erforderlich

seien. Insgesamt sei festzuhalten, dass

die Relevanz des Urteils des BVerfG

vom 6.12.2016 für jeden Fall gesondert

zu betrachten sei.

Prof. Dr. Thomas Schomerus,

Universität Lüneburg und Dr. Ulrich

Karpenstein, Redeker Sellner Dahs

Rechtsanwälte PartG mbB, befassten

sich in ihren nachfolgenden Beiträgen

ebenfalls mit der Frage der „Konsequenzen

für den Umgang mit

anderen Technologien“.

Schomerus untersuchte die Frage

„Kohleausstieg nach dem Muster

des Atomgesetzes?“. Er nannte als

Parallelen bei der Umsetzung des

Kohleausstiegs die grundsätzliche

Vereinbarkeit mit EU-Recht sowie die

Qualifizierung von Stilllegungsregelungen

nicht als Enteignung,

sondern als Inhalts- und Schrankenbestimmung

gemäß Art. 14 Abs. 1 S. 1

GG und empfahl zur rechtlichen

Umsetzung ein Ausstiegsgesetz, das

insbesondere Laufzeitbefristungen

und zur Vermeidung einer Ausgleichspflicht

Übergangs- und Härtefallregelungen

enthalten solle. Für

empfehlenswert hielt Schomerus

ebenfalls einen „Kohlekonsens“ ähnlich

dem „Atomkonsens“.

Karpenstein stellte eingangs seines

Referates fest, dass auch Hochrisikotechnologien

grundrechtlichen

Schutz beanspruchen können. Dies

gelte erst recht für Unternehmen

ohne Hochrisikotechnologie bzw. für

Betriebe mit geringerem Risiko. Zwar

sei es richtig, dass der Gesetzgeber

frühzeitig Gefahren Rechnung tragen

solle, Grundrechtseingriffe bedürften

aber gleichwohl der Legitimierung.

Karpenstein betonte, der Rekurs auf

die Akzeptanz der Bevölkerung müsse

die absolute Ausnahme bleiben. So

habe es auch das Bundesverfassungsgericht

gesehen: Wo es nicht um

Hochrisikotechnologie gehe, dürfe die

Akzeptanz keine Rolle spielen. Das

Urteil vom 6.12.2016 zeige außerdem,

Energy Policy, Economy and Law

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


atw Vol. 64 (2019) | Issue 4 ı April

dass das BVerfG von einer Ausnahmestellung

des Atomrechts ausgehe und

dieses Urteil keine „Blaupause“ für

andere Technologien sei. Bei Technologien

wie der Kohleverstromung

oder der nuklearen Brennstoffversorgung

müsse sich das Verfassungsgericht

fragen, ob die Ausstiegsregelung

nicht eigentlich nur als

Symbolpolitik gemeint sei. Die

vom Bundesumweltministerium angestrebte

Schließung der Brennelementfabrikation

und der Urananreicherung

ziele auf eine Schließung

bzw. zumindest eine Nichtbelieferung

von ausländischen KKW. Karpenstein

konstatierte dazu: „Dies ist europarechtlich

kein legitimes Ziel“. Die Angemessenheit

einer Stilllegung müsse,

darin sei er sich mit Schomerus einig,

genau geprüft werden. Zum Beispiel

habe das BVerfG im Falle eines Tagebaubetriebs

eine Beschränkung der

Nutzungsberechtigung auf 4 Jahre als

schwerwiegenden Eingriff betrachtet.

Letzter Redner des 1. Themenblocks

war Prof. Dr. Markus Krajewski,

Universität Erlangen-Nürnberg, mit

dem Thema „Investitionsschutzabkommen

als Grenze zukünftigen

Ordnungsrechts“. Nach Darstellung

der Grundzüge des internationalen

Investitionsschutzrechts und des uneinheitlichen

materiellen Rechts (z.B.

Art. 10 Abs. 1 Energiecharta-Vertrag

im Vergleich zu Art. 8.10 CETA-Abkommen)

sowie der aktuell bestehenden

Unklarheiten bzgl. der Fortentwicklung

des Investitionsschutzrechts

durch die und in der EU merkte

Krajewski zu dem Achmea-Urteil des

EuGH (Rs C-284/16) an, dass nach

diesem Urteil nicht klar sei, ob es nur

für Intra-EU-Investitionsabkommen

gelte oder auch auf andere Abkommen

wie dem Energiecharta-Vertrag

übertragbar sei. Konkret zum anhängigen

Schiedsverfahren von

Vattenfall in Washington über die

Verletzung des Energiecharta-Vertrags

durch die 13. AtG-Novelle wies

Krajewski darauf hin, dass einseitige

Abweichungen der Regierung von

konsensual mit der Industrie vereinbarten

Lösungen investitionsschutzrechtlich

die Frage aufwerfe, ob in

der Vereinbarung eine spezifische

Zusicherung zu sehen sei, deren

Änderung legitime Erwartungen der

Investoren enttäuscht habe. Unter

Hinweis auf Art. 10 Abs. 1 Energiecharta-Vertrag

erinnerte Krajewski

daran, dass eine Abwägung im

Investitionsschutzrecht letztlich über

das „Equity“-Gebot (Gebot der fairen

und gerechten Behandlung) zu treffen

sei.

In der anschließenden lebhaften

Diskussion unterstrich Prof. Dr.

Michael Eichberger, Richter am

BVerfG a.D., der Berichterstatter im

Streitverfahren über die 13. AtG-

Novelle war, die Auffassung von

Burgi, durch das „Ausstiegsgesetz“

von 2002 habe es eine Vorfindlichkeit

der Rechtslage gegeben; ebenso sei

richtig, dass der Inhalt der Eigentumsund

Schrankenbestimmung in Art.

14 GG durch die Vorfindlichkeit

bestimmt werde. Zu der Frage, ob die

geänderte Risikowahrnehmung der

Bevölkerung ein hinreichender tragfähiger

Grund für einen Grundrechtseingriff

sei, stellte Eichberger unter

Zitierung von Satz 3 in Rdn. 308 des

Urteils vom 6.12.2016 fest, das BVerfG

habe hier sehr vorsichtig formuliert.

Das Urteil solle kein „Freibrief“ sein

für andere Fälle.

Karsten Möring, MdB und Berichterstatter

der CDU/CSU zur 16. AtG-

Novelle, zeigte sich irritiert über den

Begriff der Hochrisikotechnologie.

Seine Frage, wieweit dieser Begriff,

der auch bei der Brennelementfabrikation

und der Anreicherung eine

Rolle spiele, konkretisiert worden sei,

ließ Eichberger bewusst unbeantwortet.

Er wolle einzelne Teile des

Urteils, also auch den Begriff der

Hochrisikotechnologie nicht rechtfertigen.

Prof. Dr. Ferdinand Kirchhof,

Vizepräsident des Bundesverfassungsgerichts

a.D. (ab 30.11.2018), hielt es

dagegen für angezeigt, zu dem Begriff

anzumerken, dieser solle den Vertrauensschutz

in seiner geschichtlichen

Entwicklung beschreiben. Burgi ließ

es in seiner Entgegnung dahin gestellt

sein, ob dieser Begriff ein zentraler

Punkt des Urteils sei, jedenfalls brauche

man ihn nicht, um den Kohleausstieg

zu rechtfertigen. In Bezug

auf den Diskussionsbeitrag von Dr.

Manfred Rebentisch, Clifford Chance

LLP, bei der Kohle gehe es nicht um

Gefahrenabwehr, sondern um Vorsorgeanforderungen,

die unter dem

Verhältnismäßigkeitsgebot stünden,

merkte Prof. Dr. Sabine Schlacke, Universität

Münster, an, dass der Wandel

des Klimas, das durch Art. 20a GG

geschützt sei, ein legitimer Zweck des

Kohleausstiegsgesetzes sei, und wies

auf das vor dem OLG Hamm anhängige

Verfahren des peruanischen

Bauern gegen RWE hin, in dem das

Gericht davon ausgehe, dass der

Mitverursachungsanteil von RWE am

Abschmelzen des Palcaraju- Gletschers

in Peru und an der Gefahr einer Überflutung

des am Gletscher liegenden

Hausgrundstücks des Klägers 0,47 %

betrage.

Den Einwand von Dr. Christian

Müller-Dehn, PreussenElektra GmbH,

bzgl. der Einschätzung von KKW

als Hochrisikotechnologie, es seien

extrem hohe Anforderungen an die

Betreiber von KKW zwecks Risikominimierung

gestellt worden, so

dass das verbleibende probabilistische

Risiko mit anderen Technologien vergleichbar

sei, ließ Burgi nicht gelten.

Es gebe kein Indiz im Urteil vom

6.12.2016 dafür, dass der Grundrechtsschutz

des Betreibers eines

KKW höher oder zumindest gleichwertig

dem eines Betreibers anderer

Technologien sei.

Kirchhof kommentierte die Diskussion

mit der Feststellung, es handele

sich um eine typisch deutsche Diskussion,

und riet, „unser Ei nicht immer

im Verfassungsrecht zu suchen“.

Der zweite Tag der Veranstaltung

startete mit dem 2. Themenblock

„ Aktuelle Rechtsfragen der nuklearen

Sicherheit“.

Prof. Dr. Martin Beckmann, Baumeister

Rechtsanwälte Partnerschaft

mbH, untersuchte die Kriterien für

eine „Grenzüberschreitende Umweltverträglichkeitsprüfung

(UVP)

bei Laufzeitverlängerung“ von nuklearen

Zwischenlagern in Deutschland

und von ausländischen KKW. Er wies

darauf hin, dass Aufbewahrungs genehmigungen

in deutschen Zwischenlagern

auf 40 Jahre befristet seien, so

dass angesichts fehlender Endlagermöglichkeiten

eine Still legung der

Zwischenlager keine Option sei und

daher sehr zeitgerecht über eine Laufzeitverlängerung

(als Verlängerung

der Genehmigungsfrist oder ggf. auch

als Änderung einer Genehmigungsauflage)

entschieden werden müsse.

Bezüglich der Frage der Notwendigkeit,

eine grenzüberschreitende UVP

durchführen zu müssen, erläuterte

Beckmann, dass die für eine grenzüberschreitende

UVP beachtliche

Schwelle der erheblichen Umweltauswirkungen

dem Maßstab der Vorprüfung

bei Neuvorhaben nach § 7

Abs. 1 S. 2 UVPG („erhebliche nachteilige

Umweltauswirkungen“) entspreche.

Eine grenzüberschreitende

UVP bei Laufzeitverlängerung sei nicht

erforderlich, wenn das Vorhaben

nach Einschätzung der Behörde keine

erheblichen nachteiligen Umweltauswirkungen

haben könne oder wenn

erhebliche Umweltauswirkungen nicht

grenzüberschreitend seien. Bei ausländischen

KKW, wovon es ca. 120

KKW in den 14 deutschen Nachbarstaaten

gebe, hänge die Erforderlichkeit

einer grenzüberschreitenden UVP

u.a. davon ab, ob der Projektbegriff der

ENERGY POLICY, ECONOMY AND LAW 209

Energy Policy, Economy and Law

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 210

UVP-Richtlinie erfüllt sei (wird von

Beckmann verneint) oder ob jedenfalls

der Maßnahmebegriff der Espoo-

Konvention angenommen werden

könne. Fazit bei ausländischen KKW:

Man müsse im Einzelfall prüfen, wie

die Genehmigung des betreffenden

KKW geregelt sei.

Gregor Franßen, Heinemann &

Partner Rechtsanwälte – PartnerschaftsG

mbB, beschäftigte sich

anschließend mit „Rechtsschutz und

Beweislast in multipolaren Rechtsverhältnissen“.

Den Hintergrund

dieses Beitrags bilden Verwaltungsgerichtsverfahren,

in denen über den

Zugang zu entscheidungserheblichen

Informationen sowie über die prozessualen

Folgen für das Hauptsacheverfahren

im Falle des zu Recht

verweigerten Zugangs gestritten wird.

Franßen erläuterte die Defizite der

aktuellen Rechtslage (§§ 99, 100

VwGO) anhand atomrechtlicher

Streitverfahren, bei denen es um die

Verweigerung von in der Regel

geheimhaltungsbedürftigen Informationen

gehe, die den gesetzlich als

Zulassungsvoraussetzung geforderten

Schutz gegen Störmaßnahmen und

sonstige Einwirkungen Dritter

(SEWD) sicherstellen sollen. Zur

Klärung der behördlichen Verweigerung

des Informationszugangs sehe

§ 99 Abs. 2 VwGO ein „In- camera“-

Zwischenverfahren vor. Werde die

Verweigerung des Zugangs bestätigt,

werde der Kläger, der den Zugang

begehre, in seinem Grundrecht auf

effektiven Rechtsschutz beschränkt.

Im umgekehrten Falle werde die

geheimhaltungsbedürftige Information

dem Gericht bekannt und gelange

über § 100 VwGO zur Kenntnis des

Klägers. Damit werde das öffentliche

Geheimhaltungsinteresse, das Geheimhaltungsinteresse

des Genehmigungsinhabers

wie auch der verfassungsrechtlich

gebotene Schutz von

Grundrechten Dritter im potentiellen

Einwirkungsbereich der betroffenen

kerntechnischen Anlage konterkariert.

Ein Bekanntwerden sicherheitsrelevanter

SEWD-Informationen

gefährde die Sicherstellung des erforderlichen

Schutzes. Unter Hinweis auf

den Beitrag von Dr. Dieter Sellner zum

„In-camera“-Verfahren in Bezug auf

geheimhaltungsbedürftige Informationen

mit hohem Risikopotential

(EuRUP 2018, S. 100 ff) schlug

Franßen als Lösung ein „In- camera“-

Hauptsacheverfahren vor. Komme das

Hauptsachegericht dabei zu dem

Ergebnis, die Informationen seien zu

Recht verweigert worden, erhalte es

zwar die Informationen für seine

Entscheidungsfindung im Hauptsacheverfahren,

dem Kläger sei der

Zugang zu diesen Informationen

jedoch zu verweigern. Im umgekehrten

Fall sei dem Kläger der Informationszugang

zu gewährleisten.

Als letzter Redner des 2. Themenblocks

wandte sich Prof. Dr. Martin

Kment, Universität Augsburg, den

„Herausforderungen an die Rechtsetzung

durch untergesetzliches

Regelwerk (v.a. Legitimation und

Zugänglichkeit)“ zu. Kment skizzierte

das vorhandene untergesetzliche

Regelwerk im Atomrecht und die

Rechtsprechung des Bundesverwaltungsgerichts

zur Qualifizierung

normkonkretisierender Verwaltungsvorschriften

im Technik- und Umweltrecht

sowie zur eingegrenzten

Überprüfbarkeit der behördlichen

Risikoermittlung und Risikobewertung

durch die Gerichte.

In der Diskussion bezweifelte

Annette Pütz, BMU, ob es heute

tatsächlich noch so sei, dass nur

Standards im Technik- und Umweltrecht

festgelegt würden. Eher sei es

heutzutage so, dass Gesundheitsstandards

festgelegt würden, und

zwar von der Industrie. Der Zugang zu

den technischen Normen sei im

Übrigen teilweise schwierig. Die

Etablierung von Normen durch den

DIN sei fraglos sinnvoll. Jedoch

bestünden im BMU extreme Schwierigkeiten,

mit diesem Regelwerk zu

arbeiten.

Dr. Dörte Fouquet, Becker Büttner

Held PartGmbB, wies in Bezug auf

den Vortrag von Beckmann auf die

Fülle von Klageverfahren in Belgien

gegen die Laufzeitverlängerungen für

die belgischen KKW hin. Fouquet

bemängelte, dass diese Verfahren

ohne UVP in Belgien und ohne grenzüberschreitende

UVP stattgefunden

hätten. Beckmann merkte dazu an,

dass die belgischen KKW über unbefristete

bestandskräftige Genehmigungen

verfügten. Dies sei Fakt und

müsse man akzeptieren.

Prof. Dr. Tobias Leidinger, Luther

Rechtsanwaltsgesellschaft mbH, fragte,

was mit der Einschätzungsprärogative

der Exekutive sei und wer im

demokratischen Rechtsstaat die Verantwortung

für das Risiko trage. Nach

der Rechtsprechung des Bundesverfassungsgerichts

(„Kalkar“-Entscheidung)

trage eindeutig die Exekutive

die Verantwortung, die auch abschließend

die bei SEWD-Ereignissen

unterstellten Tatmittel definieren

müsse, die von der Judikative zu

beachten seien. Leidinger mahnte

an, dass die Gerichte einen klaren

Maßstab benötigten, ansonsten

komme man „in der Praxis nie zu einer

bestandskräftigen Genehmigung“.

Franßen stellte dazu fest, nach

Auffassung des Bundesverwaltungsgerichts,

für die er allerdings kein

Verständnis habe, unterlägen die geheimhaltungsbedürftigen

Tatmittel

der vollen gerichtlichen Überprüfung,

und fragte, wie Geheimhaltung einerseits

und Überprüfung andrerseits in

der Praxis funktionieren sollen.

Kment bemängelte die Störung der

Normsetzung durch politische Prozesse,

da sich Exekutive, Legislative

und Judikative zurückzögen. Er forderte

die Verwaltung auf, wieder ihrer

Aufgabe gerecht zu werden. Private

füllten nur die Lücken aus, die die Verwaltung

ihnen lasse.

Der 3. Themenblock widmete sich

dem „Strahlenschutzrecht“ und

wurde mit dem Übersichtsvortrag von

Dr. Goli-Schabnam Akbarian, BMU,

eröffnet. Da die Rednerin im diesjährigen

Januar-Heft der atw bereits

selbst zum neuen Strahlenschutzrecht

zu Wort gekommen ist, wird an dieser

Stelle deshalb auf weitere Ausführungen

zum Vortrag verzichtet.

Prof. Dr. Thomas Mann, Universität

Göttingen, befasste sich mit

„ Einwirkungen des Strahlenschutzrechts

auf andere Bereiche des

Ordnungsrechts“. Mann begann

seinen Vortrag mit einem kleinen

Paukenschlag, indem er den Umfang

des neuen Strahlenschutzrechts mit

dem Umfang des Werkes „Felix Krull“

seines Namensvetters verglich,

jedoch das neue Strahlenschutzrecht

nicht für nobelpreiswürdig hielt. Er

konstatierte, regulatorische Konflikte

zwischen StrlSchG und anderen

Bereichen des Ordnungsrechts seien

unausweichlich, da im StrlSchG auch

Parallelregelungen zum allgemeinen

Umweltrecht getroffen würden, z.B.

in § 95 StrlSchG, der eine Ermächtigung

für ergänzende Regelungen zum

Kreislaufwirtschaftsgesetz vorsehe.

Das StrlSchG schaffe außerdem einen

anderen Abfallbegriff und diene

damit nicht der rechtstechnischen

Vereinfachung. Der Altlastenbegriff

sei im StrlSchG ebenfalls anders als

im Bodenschutzgesetz und im Bundes-

Immissionsschutzgesetz geregelt. Da

der Altlastenbegriff jedoch eine

Prognoseentscheidung enthalte, sei es

insoweit richtig, von einem Referenzwert

auszugehen und nicht von einem

Grenzwert. Die bundesrechtlichen

Umweltfachgesetze könnten allerdings

modifiziert und die strahlenschutzrelevanten

Regelungen im

StrlSchG konzentriert werden, so dass

Energy Policy, Economy and Law

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


atw Vol. 64 (2019) | Issue 4 ı April

dieses insoweit lex specialis werde. In

den Fachbereichen mit Gesetzgebungszuständigkeit

der Länder werde

dagegen der Verwaltungsvollzug

weiterhin grundsätzlich durch Landesrecht

geregelt. Hier greife das „Verzahnungsmodell.

Der Bund erhalte

über das StrlSchG Verordnungsermächtigungen

und Ermächtigungen

für Notfallvorsorge/Notfallpläne,

um durch materielle Vorgaben eine

einheitliche Verwaltungspraxis zu

erreichen. Notfallschutzregelungen

im Bereich des Strahlenschutzes fielen

als ungeschriebene Annex- Kompetenz

regeln in die Kompetenz des

Bundes und sollten daher, so Mann,

nach der Rechtsprechung des BVerfG

keinen verfassungsrechtlichen Bedenken

begegnen.

Gerrit Niehaus, Umweltministerium

Baden-Württemberg, erläuterte

in seinem Beitrag „Entlassung von

Gegenständen aus der atomrechtlichen

Überwachung beim Abbau

von Kernkraftwerken“, dass im

neuen Strahlenschutzrecht mit der

Freimessung nicht mehr zeitgleich

eine Entlassung als radioaktiver Stoff

aus dem Strahlenschutzregime vorgesehen

sei. Ferner wies Niehaus auf

§ 33 Abs. 4 StrlSchG hin, der in Erweiterung

des bisherigen Rechts

zulässt, die Beendigung der staatlichen

Aufsicht mit einer Bedingung,

einem Vorbehalt des Widerrufs oder

einem Vorbehalt der nachträglichen

Aufnahme, Änderung oder Ergänzung

einer Auflage zu verknüpfen. Zum

Abbau von KKW stellte Niehaus fest,

das Abbaugenehmigungsregime könne

festlegen, dass und wie neben der

Freigabe Stoffe aus der Anlagenüberwachung

herausgegeben werden

könnten, soweit eine Aktivierung und

Kontamination ausgeschlossen sei.

Nach Beantragung des Abbaus sei

für Veränderungsgenehmigungen zur

Einschränkung des Anlagebegriffs

kein Raum mehr. Der Abbau ende,

wenn die nukleare Last beseitigt sei

und die notwendigen Freigaben und

Herausgaben im Rahmen des Abbauregimes

erfolgt seien. Zu der Frage,

welcher Anlagenbegriff – der (inzwischen

stark gewandelte) materielle

oder der formelle Anlagenbegriff –

zugrunde zulegen sei, bemerkte

Niehaus, dass nach seiner Auffassung

beim Abbau beide Begriffe zugrunde

gelegt werden müssten.

Im Anschluss an den Vortrag von

Niehaus kamen zum Thema „Freigabe

radioaktiver Stoffe – Rechtsund

Vollzugsfragen aus Betreibersicht“

Dr. Andreas Schirra und Dr.

Alexander Nüsser, PreussenElektra

GmbH, zu Wort. Sie begrüßten, dass

auch das neue Strahlenschutzrecht

am 10-Mikrosievert-Konzept festhalte

und die Freigabe nach Tabellenwerten

erfolge. Die neue Begründung zeige

allerdings, dass der Gesetzgeber verhindern

wolle, dass eine Beweislastumkehr

zugunsten des Antragstellers

angenommen werde. Jedoch bliebe

es bei der Vermutungswirkung der

Tabellenwerte und bei der Freigabe

als einer gebundenen Entscheidung:

Bei Einhaltung dieser Werte sei

weiter hin die Freigabe zu erteilen,

wenn nicht triftige Gründe dagegen

sprächen. Weiterhin sei auch die

Möglichkeit des Einzelfallnachweises

gegeben. Klarstellend betonte

Schirrer, dass das Dosiskriterium kein

Grenzwert sondern ein „Trivialwert“

sei, so dass auch andere Maßstäbe als

bei einem Grenzwert herangezogen

werden dürften. Zu § 33 Abs. 3

StrlSchV stellte Schirrer fest, dass der

Gesetzgeber mit dieser Vorschrift eine

teilweise in den letzten Jahren geübte

Praxis gesetzlich fixiere. Zu der Regelung

in § 33 Abs. 4 StrlSchV merkte

Schirrer an, dass zwar die Rücknehmbarkeit

einer rechtswidrigen Freigabe

nach allgemeinen Rechtsgrundsätzen

immer möglich sei, dass aber die Freigabe

einen statusändernden Verwaltungsakt

darstelle, zu dessen

Natur ein Widerruf im Grunde im

Widerspruch stehe. Trotz des Wortlauts

des § 33 Abs. 4 StrlSchV komme

ein Widerruf daher nur in besonderen

Fällen in Betracht.

In der Diskussion betonte Dr.

Renate Sefzig, BMU, dass mit der Ausweitung

der Paragraphen zur Freigaberegelung

keine Änderung bei der

Freigabe intendiert gewesen sei. Eine

Freigabe zur Untertagedeponierung

z.B. sei weiterhin im Einzelfall

möglich. Die Erweiterung der

Paragraphen zur Freigabe sei eine

Folge der formalen Anforderungen

des Bundesjustizministeriums.

Den nachfolgenden Vortrag „Aufsicht

und Öffentlichkeitsbeteiligung

im Rahmen der Standortauswahl

als integrative Aufgabe des

BfE“ hielt die Vizepräsidentin des BfE

Dr. Silke Albin anstelle des im Programm

angekündigten Präsidenten

des BfE Wolfram König und eröffnete

damit den Reigen der Vorträge

des 4. Themenblocks „Fragen des

Standortauswahlverfahrens“.

Albin skizzierte die Neuorganisation

der Verantwortung in der kerntechnischen

Entsorgung, wies auf die

nunmehr klare Trennung von Aufsichts-

und Vorhabenträgerfunktion

hin, erläuterte die Aufsichtsfunktion

des BfE (Überwachung des Vollzugs

des StandAG) über die BGE GmbH

während des gesamten Standortauswahlverfahrens

sowie die neuen

ENERGY POLICY, ECONOMY AND LAW 211

Advertisement

Your Ad Here...

Format: 1/4 Landscape

For more information please contact:

Petra Dinter-Tumtzak

Phone +49 30 498555-30

E-mail petra.dinter@nucmag.com

Your Ad Here 179x60v1.indd 1 27.03.19 09:55

Energy Policy, Economy and Law

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


atw Vol. 64 (2019) | Issue 4 ı April

ENERGY POLICY, ECONOMY AND LAW 212

Standards, die das StandAG bei der

Öffentlichkeitsbeteiligung setze (z.B.

mobile Endlagerausstellung, Statuskon

ferenzen und insbesondere die Informationsplattform

nach § 6 StandAG

mit allen wesentlichen Unterlagen des

BfE und der Vorhabenträgerin zum

Stand ortauswahlver fahren). Albin betonte,

dass das BfE mit der Vorlage des

Konzepts der Öffentlichkeitsbeteiligung

in der Startphase noch über die Anforde

rungen des Stand AG hinausgehe.

Mit dem Öffentlichkeits beteiligungs

verfahren befasste sich ebenfalls

Prof. Dr. Wolfgang Durner,

Universität Bonn. Sein Vortragstitel

lautete „Das Beteiligungsverfahren

nach dem Standortauswahlgesetz

im Vergleich mit anderen Großvorhaben“.

In der gebotenen Kürze

zeichnete Durner die Entwicklung

der Öffentlichkeitsbeteiligungsvorschriften

in verschiedenen Vorschriften

wie dem VwVfG, der

9. BImSchV, dem BauGB und vor

allem dem NABEG (Netzausbaubeschleunigungsgesetz)

nach und zog

die erhellende Quintessenz aus den

Erfahrungen mit der Anwendung

dieser Vorschriften – keine nennenswerte

Minderung der Widerstände

gegen die untersuchten Großvorhaben

durch zusätzliche Beteiligungsschritte

– , die er an den allgemeinen

Erkenntnissen der Partizipationsforschung

spiegelte. Das NABEG habe

weder eine Beschleunigungswirkung

noch eine Befriedungswirkung in

der Öffentlichkeit erzielt. Die Politik

habe außerdem über die zuständige

Behörde hinweg eigenmächtig Entscheidungen

getroffen, die den Aufgaben/Zielen

des NABEG diametral

entgegengesetzt gewesen seien. Auch

sei der Umfang der vorgesehenen

Beteiligungselemente zu groß gewesen,

und zu viele Gremien seien

beteiligt gewesen, die untereinander

auch noch konkurriert hätten. Zudem

seien die Erkenntnisse der Partizipationsforschung

außer Acht gelassen

worden. Dazu gehöre, dass der Staat

nichts versprechen solle, was er nicht

halten könne. Suggeriert werde aber

durch die Mitgestaltung des Verfahrens

auch eine Mitentscheidung

der Bürger. Jedoch könne der Rechtsstaat

solche Erwartungen nicht

erfüllen. Ziel müsse sein, ein Ergebnis

zu finden, mit dem die Betroffenen

„leben“ könnten. Ein Verfahren, das

vermutlich Jahrzehnte dauern werde,

führe schwerlich zu Akzeptanz.

„ NIMBY“ könne dabei leicht zu „not

in my lifetime“ mutieren. Auch müsse

die Akzeptanz ständig neu mit

den Beteiligten „erarbeitet“ werden.

Durner unterstrich, dass eine aktive

und mutige politische Entscheidung

vonnöten sei. „Wo ein Kompromiss

unter Verantwortlichen nicht zu

finden ist, wird er auch in einem

Beteiligungsverfahren nicht erreicht

werden“, schloss Durner.

Der 3. Beitrag zur Öffentlichkeitsbeteiligung

kam von Dr. Peter Hocke,

Institut für Technikfolgenabschätzung

und Systemanalyse am KIT, der

zusammen mit seiner Kollegin Dr.

Sophie Kuppler den Vortrag „Die

Beteiligung der Öffentlichkeit bei

der Suche nach einem Endlager:

Ein problemorientierter Blick in die

Schweiz“ vorbereitet hatte. Die

Endlagerung radioaktiver Abfälle sei

ein technisch und sozial komplexes

Thema, bei dem die Entscheidungsträger

schwerlich Anerkennung für ihr

Handeln und ihre Entscheidungen

finden könnten. Mit einer Standortentscheidung

werde eine „Last“ übernommen,

die keine „Win-win“-Situation“

erlaube. Hocke schilderte die

Öffentlichkeitsbeteiligung in der

Schweiz, wie sie seit Mitte des letzten

Jahrzehnts erfolgreich in der Schweiz

durchgeführt werde. Dazu gehöre u.a.

: Abstimmung des „Sachplans“ auf

Bundesebene unter umfänglicher

Beteiligung der Öffentlichkeit; Einrichtung

von Regionalkonferenzen,

Ausschuss der Kantone, Forum Tiefenlager

zum Austausch von Argumenten

und unterschiedlichen Problemwahrnehmungen

und Positionen; Eingrenzung

von Standortgebieten, die ohne

großen öffentlichen Protest erfolgt

sei, nachdem einige wenige zentrale

Forderungen der nuklearkritischen

Öffentlichkeit erfüllt worden seien;

mehr deliberative, d.h. vermehrt

auf konsultative Öffentlichkeitsbeteiligung

und diskursiv angelegte

politische Kultur zielende Endlager-

Governance statt Endlager-Management.

Verschiedene Spannungsfelder

seien gleichwohl bestehen geblieben

(unterschiedliche Erwartungen an die

eingesetzten Beteiligungsformate,

keine inhaltliche Beratung von Erwartungen

an Entscheidungskriterien

z.B.). Aus sozialwissenschaftlicher

Sicht nannte Hocke als Fazit das

„selbst-lernende Verfahren“, wie es

auch das StandAG vorsehe: End lager-

Governance werde auf neue wissenschaftliche

Entwicklungen, Änderungen

gesellschaftlicher Erwartungen

und auch neues Behördenhandeln

reagieren müssen. Diese geforderte

Flexibilität betreffe auch die Rechtsentwicklung.

Im letzten Beitrag des Atomrechtssymposiums

wandte sich Prof.

Dr. Sabine Schlacke den „Rechtsfragen

bei der Umsetzung der Öffentlichkeitsbeteiligung

einschließlich

Rechtsschutz“ zu. Schlacke monierte,

dass im Rahmen der in den §§ 17 Abs.

3 S. 3, 19 Abs. 2 S. 6 StandAG geregelten

und über das Umweltrechtsbehelfsgesetz

hinausgehenden Klagebefugnis

der Regionalkonferenz kein

eigenes Klagerecht zugewiesen werde.

Damit werde ihrer Wächterfunktion

nicht ausreichend Rechnung getragen.

Schlacke wies ferner auf den unterschiedlichen

Umfang der Rügebefugnis

bzgl. des UVP-pflichtigen Bescheids

nach § 19 Abs. 2 S. 6 StandAG

(alle formellen und materiellen

Mängel des Bescheids können gerügt

werden) und dem die Standorte für

die untertägige Untersuchung feststellenden

Bescheid nach § 17 Abs. 3

S. 3 StandAG hin, bei dem lediglich die

Verletzung umweltbezogener Rechtsvorschriften

nach § 2 Abs. 1 S. 2

UmwRG gerügt werden könne. In

Bezug auf den gerichtlichen Kontrollumfang

erwartete Schlacke, dass das

Bundesverwaltungsgericht dem BfE

angesichts der Beurteilung technischwissenschaftlicher

und mit Unsicherheiten

behafteter Fragestellungen eine

Einschätzungsprärogative zugestehen

werde und sich die gerichtliche Kontrolle

insoweit nur auf ein Überschreiten

der Grenzen des dem BfE

eingeräumten Planungsermessens beschränken

werde. Insgesamt stellte

Schlacke dem StandAG mit seinem

erstmalig im deutschen Recht verankerten

phasenspezifischen Rechtsschutz

mit erweiterter Klagebefugnis

ein „gutes „Zeugnis“ aus. Das Gesetz

kombiniere „geschickt“ Interessenrechtsschutz

mit überindividuellem

Rechtsschutz.

Ob die von Schlacke erwartete Akzeptanzsteigerung

durch diese Rechtsschutzregelungen

und die Funktion

des Standortauswahlver fahrens, die

Richtigkeit der Standortentscheidung

zu indizieren, tatsächlich bewirken

wird, bleibt zu hoffen, erscheint insbesondere

vor dem Hintergrund des

Vortrags von Durner allerdings noch

längst nicht aus gemacht.

Das nächste Deutsche Atomrechtssymposium

soll, wie Flasbarth ankündigte,

bereits in 2020 stattfinden.

Author

Ulrike Feldmann

Berlin, Deutschland

Energy Policy, Economy and Law

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


atw Vol. 64 (2019) | Issue 4 ı April

Failure Analysis of the Jet Pumps Riser

in a Boiling Water Reactor-5

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza,

Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón

The arrangement of a riser coupled with two jet pumps is an important element in the Reactor Recirculation Core

system of a Boiling Water Reactor. Its operational objective is to force the flow of water through the core for load variation

and for safety is to keep the core flooded. In order to avoid thermal stresses, they are supported in a flexible way. In

this case, the material expansion does not introduce stresses. The riser is only fixed at the upper zone welded at the

riser brace. An important concern happens when the assembly vibrates under a torsional mode around its longitudinal

axis. Under these conditions, helical cracks can be initiated at the riser brace weld. In this paper, a methodology for the

evaluation of the structural integrity of the cracked riser is presented. It is considered that failure can take place in a

brittle or in a ductile manner. For its evaluation, such cracks are projected along the axial and circumferential axis and

evaluated in both conditions. In the first case, Fracture Mechanics are used. The ductile failure is evaluated applying the

Collapse Limit Load analysis. The allowable crack length was determined when the flow through the core varied between

95% and 107%. These analyses were carried out when one or two recirculation circuits were in operation. In

order to demonstrate the application of these results, three cases were analyzed. The results were evaluated with the

Failure Assessment Diagram R6.

213

OPERATION AND NEW BUILD

1 Introduction

The Reactor Recirculation Core System

in a Boiling Water Reactor (BWR) plays

an important role. It induces a forced

flow of water through the core to

increase the power density and the

safety function is to provide coolability

for the core to maintain the water level

at two thirds of the height of the core.

There are twenty jet pumps in a

BWR-5. They are arranged in ten pairs

in the annular region between the

inner wall and the core shroud.

Each pair is joined with a riser pipe

(Figure 1).

In order to avoid thermal expansion

stresses, this arrangement is

supported in a flexible way. In other

words, the upper part of the riser is

stiff welded to a flexible brace, which

is clamped on the inner surface of the

reactor vessel. The bottom of the riser

is joined with an elbow, which connects

this arrangement to a circular

manifold. Besides, the bottom of each

jet pump has a slip joint. Thus, axial

displacement can take place without

any restriction. It has to be kept in

mind, that the two pumps and the

riser are joined by a joke. The stiffness

is increased while the three elements

are maintained together by such joke.

However, this stiffness is reduced

when wear of the wedge of the joke

has taken place. The worst condition

is when such wedge is completely

loosen.

The jet pumps are subjected to an

internal flow and an external cross

flow of water. Therefore, structural

vibrations are exacerbated when the

jet pumps are not completely tight. If

this situation arises, the weld at the

| | Fig. 1.

BWR-5 3-D view and detailed view of the jet pump section.

riser brace has to support the fatigue

loads which are developed. In the

open literature [1], it has been reported

that a 6.6 inch crack was developed

at the riser, close to the weld of the

riser of a brace of the unit 1 of the

Kousheng Nuclear Power Plant. It was

during the 16 nd outage in March of

2003.

In a 2014 work [2], the first five

modes of vibration were calculated. It

was observed that the fourth mode is

torsional around the axial axis of the

riser. Its resonance frequency is

43.4 Hz, which can induce helicoidal

cracks at the zone of the welds mentioned

above. These calculations were

done with SAP 2000 code [3]. In this

analysis, the mass of the riser and

the two jet pumps was considered.

Besides, the mass of water inside and

outside of this arrangement was also

taken into account. The considerations

for this purpose were based on

the works of Blevins [4]. The flexibility

of the bends, which took place

during its ovalization, was introduced.

The stiffness matrix was modified.

The boundary conditions at the riser

brace, riser bracket and slip joint were

introduced in the numerical model.

For the purpose of this work, a helical

crack was analyzed.

This analysis was also carried out

with ANSYS 14.5 code. The same

mode was obtained at 39.5 Hz,

following the same considerations.

These results are in agreement with

those reported by Stevens and

coworkers [5].

The analysis of potential cracks in

jet pumps has attracted attention [6].

Information on potential failure

locations in BWR/3-6 jet pumps is

provided in this document. Fatigue

and Intergranular Stress Corrosion

Cracking plays an important role.

Such document also mentions that

Operation and New Build

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5

ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


atw Vol. 64 (2019) | Issue 4 ı April

OPERATION AND NEW BUILD 214

significant cracking can be tolerated

without loss of essential jet pump

safety functions. Therefore, it is

important to evaluate the remaining

structural integrity when a riser is

cracked.

2 Statement

of the problem

The development of helical cracks at

the weld between the riser and the

riser brace compromise the structural

integrity of the jet pumps. Therefore,

it is very important to evaluate the

critical size of a crack that could

be tolerated, before a complicated

reparation has to be introduced. It can

be considered that the failure can be

in the range of brittle and ductile

conditions. So, a methodology which

considers both conditions of failure is

required.

3 Materials and methods

In order to obtain the critical size of

the crack, the loads applied on the jet

pump arrangement were evaluated.

The hydrodynamic loads are included.

It has to keep in mind that aging could

take place as hours of operation are

accumulated. For this purpose, brittle

and ductile failures were evaluated

with fracture mechanics and net

section collapse analysis approaches,

respectively. Then, these results were

compared against those obtained with

Failure Assessment Diagrams.

The hydraulic loads considered,

were the following: by cross flow, the

impulse loading of the pump of the

Reactor Recirculation Core (RRC)

system and the vibration induced by

fluid flow (fatigue). In the last case,

the dynamic loads are generated by

the bend located at the lower end of

the riser, the ram head at the top of

the riser and the mixer of the jet

pump. The thermohydraulic analysis

was carried out with the RELAP/

SCDAPSIM code [7, 8].

Another source of vibration are the

dynamic loads from strong earthquakes.

However, strong earth quakes

are not a source of fatigue because of

these events do not happen everyday

at the same place. Summarizing, it is

important to evaluate the impact of

the dynamic loads which will take

place on the structural integrity of the

jet pumps.

3.1 Cross flow

The simplified method, described in

the Part N1324.1 “Avoiding Lock-In

Synchronization” of Section III of the

ASME Code [9], was followed. Initially,

the Vortex Shedding frequency is

calculated with the following relationship.

(1)

Where: S is the Strouhal number

and it is a function of the Reynolds

number, U is the velocity of the cross

flow and D is the lower diameter of the

assembly of the jet pumps. The calculations

show that the Vortex Shedding

frequency was 10.7 Hz. In accordance

with the criterion of the ASME code

mentioned above, 1.3f s must be lower

than the first natural frequency

(26.3 Hz), in order to avoid “Lock-In

Synchronization” with the first mode.

So, as a conclusion, cross flow vibration

resonance did not take place.

3.2 Impulse loading of the

pump of the external

Reactor Recirculation Core

(RRC) system

In accordance with the open literature

[10, 11, 12], the centrifugal pump

of each circuit of RRC operates at

1,800 RPM. As a result, its frequency

is 30 Hz. The impeller of the centrifugal

pump has five blades. Therefore,

the impulse frequency is 5 (30 Hz) =

150 Hz. If this parameter is compared

with the range of the first 5 natural

frequencies (26.3 Hz – 67 Hz), it can

be concluded that resonance in operation

is not induced.

3.3 Flow-Induced Vibration

(fatigue)

The sources of fatigue on the jet pump

arrangement are the dynamic forces

and moments generated by the internal

flow of water.

Forces at the lower elbow of the riser:

These forces are generated by the inlet

flow of water at the elbow of the riser.

They were calculated by the following

relationships (Figure 2):

(2)

(3)

ρ is the water density. p 1 and p 2 are the

pressures at the inlet and outlet of the

bend, respectively. A 1 and A 2 are the

cross sections at the inlet and outlet of

the bend and θ is the angle of the

bend. For a 90° elbow, the forces

are resulting. F x = 15,500 lb and

F y = 15,500 lb horizontal and vertical

respectively.

Forces over the mixer nozzles of the

jet pumps (Figure 3): This force is

| | Fig. 2.

Forces on the bend.

| | Fig. 3.

Forces on the bend.

| | Fig. 4.

Forces generated by the ram head over the riser.

developed by the flow discharge,

which comes from the Reactor Recirculation

Core System, and is mixed

with the suctioned flow of the condensed

steam. The vertical force is:

(4)

ΔP is the differential pressure and A i is

the cross section of the nozzle. For the

jet pump assembly under study are

186.7 pound/inch 2 and 26.1 inch 2 ,

respectively. So, the resultant force is

4881 pounds upwards.

Forces generated by the ram head

over the riser (Figure 4): The vertical

loads over the riser, which are generated

by both elbows of the ram head,

were calculated with the following

equation:

(5)

F y is the vertical force, ρ is the water

density, p 1 and p 2 are inlet and outlet

Operation and New Build

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


atw Vol. 64 (2019) | Issue 4 ı April

pressure at the elbow, A 1 and A 2 are

cross sections of the inlet and outlet of

elbow, v 1 and v 2 are the flow velocities

at inlet and outlet of the elbow and Q

is water flow.

| | Fig. 5.

Resulting forces.

The upper load generated by the

change of direction of the flow of water

through one of the elbows is 12217.

2 pounds. The total force, which is

generated by the couple of elbows of

the “ram head,” is 24434.4 pounds.

The resultant moment was calculated

with SAP 2000 resulting 19496

pound-inch. The resultant forces are

illustrated in the Figure 5.

3.4 Vibration induced

by earthquake

Regarding the dynamic loads that

take place during an earthquake, the

response spectrum for a Safe Shutdown

Earthquake (SSE) and the

Operational Basis Earthquake (OBE)

were obtained. The criterion of 1.60

USNRC was followed [13]. In both

cases, the first natural frequencies of

the jet pump arrangement are above

20 Hz. Besides, the peaks of such

response spectrum are in the range

between 2 Hz and 8 Hz. The first five

natural frequencies are close to 33 Hz,

which is the zone of Zero Period

Acceleration (ZPA). Therefore, the

seismic loads should not affect the

structural integrity of the jet pumps

and these events are not related with

fatigue.

4 Failure analysis

4.1 Determination of the

allowable crack length

on the riser

For this purpose, an initial helical

crack length is postulated as an

envelope to cover horizontal and

vertical cracks (Figure 6). Then, it is

| | Fig. 6.

Determination of the allowable crack length

on the riser.

increased by steps until the maximum

permissible length is reached. The

following considerations apply.

pp

The evaluation of the loads showed

that the hydraulic forces are

relevant to determine the structural

integrity.

pp

As a critical case that helical cracks

are generated at the weld of the

riser brace, arising when the jet

pumps vibrate under a torsional

mode. In order to analyze this sort

of cracks, the Section XI of the

ASME code [14] is applied to evaluate

the crack along the axial and

circumferential projection, as it is

illustrated in the following Figure.

pp

The recirculation system varies the

flow through the core. In this way,

the power density of the reactor

changes. Therefore, the range of

the variation of the flow of water is

considered to be between 95 % and

107 %.

pp

Fragile and ductile failures should

be evaluated to cover all the aging

steps from ductile for the initial

condition for stainless steel to

fragile when neutron fluence

produces embrittlement of the

material.

4.1.1 Axial crack

Fracture mechanics analysis (brittle

failure): Initially, the permissible axial

crack length was evaluated. In this

case, equation 1.1, Vol. 2, Pag. 6.1-1

(through wall crack) [15] was considered.

This equation is valid when

is in the range 0 < λ ≤ 5 and

(6)

(7)

(8)

(9)

is the stress intensity factor in mode I.

σ is the circumferential stress and

depends on the mean radius. P and t

are the internal pressure and the

thickness, respectively. The half crack

length is c and the geometrical factor

is F. (Figure 7)

Limit load analysis (ductile failure):

An axial crack through thickness was

considered. Equation 3.1, vol 2, pag

6.3-1 [15] was taken into account.

(10)

This equation is valid when equation

(7) is in the range 0 < λ ≤ 5 and

(11)

P l is the internal pressure plastic collapse

limit. σ f is the flow stress. R and

t are the mean radius and thickness,

respectively. The half crack length is c

and M is a parameter which is in

function of λ.

The maximum length of an axial

crack was evaluated by the equations

mentioned above. The results are

summarized in the following graph.

The range of operation of the reactor

was considered. Two analyses were

carried out. One of them is when only

one header of the Reactor Recirculation

Core System is operating and the

other was when both of them were

operating.

In the same way like the last case:

All the equations mentioned in this

paper were introduced in Matlab

coupled with Excel to perform the

iterations. In this way, the maximum

allowable crack length was determined

in the range of operation

mentioned above. The results are

summarized in the following graph.

These analyses were carried on when

one single loop operation or the two

circuits (normal operation) of the

Reactor Recirculation System in

operation.

The allowable crack length is

constant no matter the core flow of

water, this happens because only the

internal pressure is considered for the

calculations. This internal pressure is

the difference of pressure between the

“Annulus” of the reactor and the interior

of the riser (Figure 8).

OPERATION AND NEW BUILD 215

Operation and New Build

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5

ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


Elektrische Energie stellt für die Funktionsfähigkeit jeder entwickelten Gesellschaft die Schlüsselenergie dar.

Sie wird heute in der Schweiz zu 60 % durch Wasserkraft und zu 40 % durch Kernenergie erzeugt.

Das KKG beschäftigt über 550 Mitarbeitende und strebt einen sicheren, zuverlässigen Betrieb bis 2039 an.

Zur Umsetzung dieser Vision suchen wir

in der Abteilung Sicherheit zur Ergänzung

unseres Teams Erdbebeningenieurwesen und

Strukturmechanik einen

Fachingenieur (m/w)

Ihr Aufgabengebiet umfasst:

P Durchführung sicherheitstechnischer Berechnungen mit Bezug

zur Beurteilung der Erdbebengefährdung

P Unterstützung der Fachabteilungen bei der Festlegung

der Erdbebenanforderungen

P Durchführen von Sicherheitsnachweisen

P Vorgabe und Beurteilung der Erdbebenauslegung für die steigende

Anzahl von Anlagenänderungen und Projekten im KKG

P Sicherstellung der Compliance mit dem Regelwerk in Fragen

der Erdbebenauslegung zur Vermeidung von Anlagenstillständen

P Eigenständige Erstellung von Beurteilungen und Berichten

P Strukturdynamische Untersuchungen

für andere extreme Sonderlasten

Ihr Profil:

P Abgeschlossenes Studium im Maschinenbau oder als Bauingenieur

P Erfahrung in dynamischen Analysen von Baustrukturen, maschinenund

elektrotechnischen Komponenten

P Vertrautheit mit den bautechnischen und kerntechnischen

Regelwerken, optional mit dem nuklearen Schweizer Regelwerk

P Bereitschaft zur Einarbeitung in Softwaretools, neue Themengebiete

und Problematiken

P Kommunikativ und verhandlungssicher

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich

P Deutsch und Englisch in Wort und Schrift

in der Abteilung Sicherheit zur Ergänzung

unseres Teams PSA und Erfahrungsauswertungen

einen

Fachingenieur (m/w)

Ihr Aufgabengebiet umfasst:

P Modellierung von Systemen und Funktionen

eines Druckwasserreaktors mit probabilistischer Software

P Erstellung von PSA Dokumentationen nach den betriebsinternen

Vorgaben

P Massgebliche Mitwirkung bei dem Neuaufbau des PSA-Modells

(Softwarewechsel von Riskman auf CAFTA oder RiskSpectrum)

Ihr Profil:

P Abgeschlossenes Studium der Ingenieurwissenschaften,

der Mathematik oder Physik

P Vertiefte Kenntnisse im Aufbau und der Anwendung probabilistischer

Werkzeuge (vorzugsweise CAFTA oder RiskSpectrum)

P Vorzugsweise Kenntnisse in der Entwicklung eines der Softwareprodukte

und /oder der Erstellung komplexer Modelle

P Wenn möglich Erfahrung innerhalb der kerntechnischen Branchen,

bevorzugt Sicherheitsanalysen

P Verhandlungssicher und kommunikativ

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich

P Deutsch und Englisch in Wort und Schrift

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie

Herr Stefan Heussen, Leiter Ressort PSA und Erfahrungsauswertungen,

gerne.

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie

Herr Andri Nykyforchyn, Leiter Ressort Erdbebeningenieurwesen

und Strukturmechanik, gerne.


Wir bieten Ihnen:

P Eine abwechslungsreiche Tätigkeit

in einem interessanten Umfeld

P Eine sorgfältige Einarbeitung in Ihr vielfältiges

und abwechslungsreiches Arbeitsgebiet

P Sehr gute Anstellungsbedingungen und Sozialleistungen

sowie ein den Anforderungen entsprechendes Gehalt

P Unterstützung in Ihrer persönlichen Weiterbildung

Wenn Sie sich für eine dieser Stellen interessieren, freuen

wir uns auf Ihre vollständigen Bewerbungsunterlagen.

KERNKRAFTWERK GÖSGEN-DÄNIKEN AG

Personalabteilung

4658 Däniken

Telefon 062 288 20 00

personal@kkg.ch

in der Abteilung Sicherheit zur Ergänzung

unseres Teams Sicherheitsanalysen und Systemtechnik

einen

Systemingenieur (m/w)

Ihr Aufgabengebiet umfasst:

P Periodische Bewertung von Systemen und Systemkomponenten mit

Fokus auf verfügbarkeitsrelevante und sicherheitstechnische Aspekte

P Pflege/Neuerstellung von Systemhandbüchern

P Beurteilung der Betriebsweise von Systemen und Komponenten unter

Berücksichtigung der Interaktionen mit angrenzenden Systemen und

unter Berücksichtigung aller Betriebsweisen der Gesamtanlage

P Sicherheitstechnische Beurteilung von Anlagenänderungen

P Enge Zusammenarbeit mit Komponenten- und Systemverantwortlichen

sowie Unterstützung von Projekten

P Verfolgung des Stands von Wissenschaft und Technik und Einbringen

dieses Wissens in den technischen Änderungsprozess

Ihr Profil:

P Abgeschlossenes Studium der Elektrotechnik und mehrjährige

Erfahrung im Kraftwerksbereich

P Fundiertes Wissen über elektrische, leittechnische Systeme und

Komponenten in Kraftwerksanlagen

P Idealerweise vorhandene Grundkenntnisse über Kernkraftwerke

P Idealerweise Erfahrung aus Instandhaltung und

Änderung technischer Systeme

P Verhandlungssicher und kommunikativ

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich

P Deutsch und Englisch in Wort und Schrift

für die Überwachung der Herstellung unserer

Brenn elemente in der Abteilung Kernbrennstoff

zur Ergänzung unseres Teams einen

Ingenieur (m/w)

Ihr Aufgabengebiet umfasst:

P Mitwirkung bei der Verhandlung und Abwicklung der Lieferverträge

für Kernbauteile (Brennelemente, Steuerelemente, Drosselkörper,

Materialteststäbe)

P Fertigungsbegleitende Prüfungen sowie Qualitäts- und

Umwelt management bei der Herstel-lung der Kernbauteile

P Qualifikation von und Audits bei Kernbauteillieferanten

P Koordination der Transporte unbestrahlter Brennelemente

Ihr Profil:

P Abgeschlossenes Hochschulstudium der Materialwissenschaften,

Maschinen- oder Nuklearingenieurwesen

P Interner und externer Auditor

P Deutsch und Englisch in Wort und Schrift, Französisch von Vorteil

P Einige Jahre Erfahrung in der Brennelementkonstruktion, -auslegung

oder -herstellung

P Ausgeprägtes Sicherheitsbewusstsein

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich

P Bereitschaft für häufige Dienstreisen ins Ausland

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie

Herr René Sarrafian, Stv. Leiter Res-sort Out of Core, gerne.

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie

Herr Dr. Rainer Kaulbarsch, Leiter Ressort Sicherheitsanalysen

und Systemtechnik, gerne.

www.kkg.ch


atw Vol. 64 (2019) | Issue 4 ı April

OPERATION AND NEW BUILD 218

| | Fig. 7.

Allowable size for axial crack.

4.1.2 Circumferential cracks

Fracture mechanics analysis (brittle

failure): The circumferential cracks in

all the risers of the jet pumps are under

tension and bending. Both loading

conditions have to be evaluated.

Tension: The allowable length of a

through thickness circumferential

crack was evaluated with equation 1.1,

vol. 1, pag 1-1 [16]. All the evaluation

was carried on with Matlab code. The

stress intensity factor was evaluated

with the following equation.

(12)

This relation is valid when 0 <

≤ 0.55, 10 ≤ ≤ 20 and .

The geo metrical factor is

(13)

(14)

K I is the stress intensity factor. σ is the

axial stress and depends on the mean

radius R. P is the axial load, t is the

thickness and θ is the mean angle of

the crack.

For the case of bending,

(15)

This relation is valid when 0 <

≤ 0.55, 10 ≤

≤ 20 and

(16)

(17)

K I is the mode I stress intensity factor,

σ b is the bending stress and it depends

on the mean radius, M is the bending

moment and t is the thickness. θ is the

mean angle of the crack and F b is a

geometric factor.

| | Fig. 8.

Allowable size for axial crack, limit load of collapse.

The maximum length of a circumferential

crack was evaluated with

loading conditions for the range of

operation considered. Two analyses

were carried out. In the first one, the

two circuits (normal operation) of the

Reactor Recirculation Core System

were operating. In the second, only

one of them was in operation (single

loop operation). The results are

summarized in the Figure 9. Again,

Matlab coupled with Excel are applied

to make the iterations.

The results showed that the allowable

crack length is reduced as the

core flow core is augmented. This

happens because of the hydraulic

forces exacerbate the vibration of the

riser and the jet pumps. As a result,

fatigue should be considered.

Limit load analysis (ductile failure):

In this case, the cross section of the

riser is under plastic collapse, the allowable

length of a through wall crack

is evaluated with the equation 1.2, Vol.

1, pag. 1-4 [16]. All the iterations were

done with Matlab coupled with Excel.

(18)

(19)

This equation is valid when ≤ 0.1

(20)

M is the limit moment for plastic

collapse, σ f is the flow stress, R is the

mean radius, t is the thickness and θ

is the mean angle of the crack. α is a

geometrical factor.

The results are summarized in

Figure 10. In this case, the maximum

allowable length of a circumferential

crack was evaluated with an analysis

of limit load under collapse conditions.

These evaluations were carried

out for a range of operations, which is

between 95 % and 107 % of the output

power. These evaluations considered

the operation of either, one or two

circuits of the Reactor Recirculation

Core system.

| | Fig. 9.

Allowable size for circumferential crack, LEFM.

| | Fig. 10.

Allowable size for circumferential crack,

limit load of collapse.

It can be observed that the allowable

circumferential crack length decreases

as the flow of water increases.

Under these conditions, the hydraulic

loads generate more vibrations and

fatigue.

5 Failure Assessment

Diagram R6

This is a methodology that is widely

used to evaluate the elasto-plastic

failures in structural components. In

general terms, the failure is determined

by the interaction between

ductile and brittle behavior of a

material. The first versions were based

on the “Strip-Yield” model. The Stress

Intensity Factor for an infinite plate

with a central crack through thickness

is a methodology that is widely used

to evaluate the elasto-plastic failures

in structural components. In general

terms, the failure is determined by

the interaction between ductile and

brittle behavior of a material. The

first versions were based on the

“ Strip-Yield” model. The Stress

Intensity Factor for an infinite

plate with a central crack through

thickness is

(21)

This equation is asymptotic with

respect to the yield strength of the

material; thus, it has to be modified. It

should be considered the flow stress,

instead the yield stress, and the effective

stress intensity factor has to be

obtained. An adimensional relation is

proposed for this purpose. The new

relation is divided by the Stress Intensity

Factor in mode I.

Operation and New Build

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


atw Vol. 64 (2019) | Issue 4 ı April

(22)

In this equation, the square root of

the semi-length is eliminated. In this

way, it is independent of the geometry,

as the strip model. In order to

use an adimesional form, the following

parameters have to be established.

and

The new equation is

(23)

This curve is the boundary between

the safe and unsafe zones (Fig. 9).

Fracture would take place when the

Effective Stress Intensity Factor is

bigger than the Fracture Toughness,

K r > 1 On the other hand, ductile

failure is expected if S r > 1. Also, it is

important to observe that in the

elastoplastic analysis, fracture and

collapse are in interaction. The points

defined by K r and S r have to be

localized in the failure diagram so as

to determine if they are in the safe or

unsafe zones.

The material hardening has not

been considered in the “Strip-Yield”

model. Therefore, this situation

can be included in an elastoplastic

analysis with the J-integral. The

equation proposed by the British

Standard BS 7910 is

(24)

The Failure Diagram shown in Figure

11 compares different failure

curves. This was used in the evaluations,

which were carried out in this

paper.

6 Cases of analyses

The allowable horizontal and vertical

projections of a helicoidal crack in the

riser were determined in the previous

section. In this section, some cases

have been postulated, as an example,

in order to show the application of the

evaluation of the structural integrity

of the riser.

6.1 Circumferential cracks

As an example, a circumferential

crack at the weld of the riser was

postulated. Its length was 4 inches.

The reactor is in operation with the

two loops of recirculation and 107 %

| | Fig. 11.

Diagram of evaluation of failure by plastic

deformation.

| | Fig. 12.

Postulated case circumferential length

of crack.

| | Fig. 13.

Failure Diagram R6.

of the flow of the water flowing

through the core.

Initially, the evaluation was done

in accordance with linear elastic

fracture mechanics. The allowable

crack length is 4.9 inches (Figure 9).

The length of the actual crack is

lower than this limit. So, this crack is

acceptable.

After this, the evaluation was done

under the scope of the Collapse Limit

Load analysis (Figure 10). The allowable

crack length is 16.36 inches. The

length of the actual crack is lower.

Therefore, it can be accepted.

This evaluation was complemented

with the Failure Assessment Diagram.

The following parameters were

calculated:

and

. As this point is located

within the safe zone. It is considered

safe. However, this point is located

close to the vertical axis in the zone in

which a brittle failure can take place.

So, this is the dominant failure mechanism,

it is recommended to increase

the inspection and to determine the

remaining life because a brittle failure

is undesirable (Figure 11 and 12).

| | Fig. 14.

Failure diagram, postulated case

circumferential projection of crack.

| | Fig. 15.

Failure Assessment Diagram, Postulated case

axial projection of crack.

| | Fig. 16.

Failure Assessment Diagram, Postulated case

circumferential projection of crack.

6.2 Safe helical crack

In this case, a helical crack close to the

weld of the riser brace is postulated. Its

length is 4 inches. Its projections along

the circumferential and the axial axis

are 3.5 inches and 1.94 inches, respectively.

The output power of the reactor

is 100 % and the two circuits of the

RRC system have been in operation.

Initially, the axial projection of the

crack was evaluated. In accordance

with Linear Elastic Fracture Mechanics,

brittle fracture is developed, when

the allowable crack length is greater

than 11.689 inches (Figure 7). Regarding

the ductile failure, the evaluation

was done with the Collapse Limit Load

analysis. The allowable crack length is

11.11 inches (Figure 8). It is greater

than the axial pro jection of the crack.

These results were evaluated with the

Failure Diagram R6. The following

parameters were calculated too.

and ,

then they are localized in the diagram,

Figure 13.

In the case of the circumferential

projection of the helical crack, it was

evaluated against the brittle fracture

with linear elastic fracture mechanics

OPERATION AND NEW BUILD 219

Operation and New Build

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5

ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


atw Vol. 64 (2019) | Issue 4 ı April

OPERATION AND NEW BUILD 220

(Figure 9). As the allowable crack

length is 4.9 inches and it is greater

than 4 inches. Thus, brittle failure is

not expected to occur.

The evaluation against ductile failure

showed that the allowable circumferential

projection of the crack length

is 16.36 inches (Figure 10). As this

value is greater than 4 inches. It is not

expected ductile failure to occur.

These conditions were also

evaluated with the R6 Failure

Diagram, Figure 14. For this purpose,

the following parameters were

calcu lated:

and

.

The results showed that this

arrangement has structural integrity

and can continue its operation. A

critical condition is expected along

the circumferential projection. There

is a tendency to a fragile fracture. It is

advisable to inspect this crack periodically.

6.3 Unsafe helical crack

A helical crack, which has a length

of 18”, was postulated. Its components

in the axial and circumferential directions

are 7.19 inches and 16.5 inches,

respectively. The reactor operates with

100 % of the output power and the flow

through the core is 107 %. The two

headers of the RRC are in operation

and 100 % of the flow of water has

been passing through the core.

The projection of the crack in the

axial direction is evaluated with Figure

7. The allowable crack length, in

accordance with Fracture Mechanics,

is 11.6 inches. It is bigger than

7.19 inches. So, it is acceptable.

Regarding the limit load collapse

analysis, it was carried out with Figure

8. The allowable crack length is

11.11 inches. As, it is bigger than

7.19 inches. It is accepted. These evaluations

were completed with the Failure

Assessment Diagram, Figure 15.

In a second phase, the projection in

the circumferential direction is evaluated,

considering the principles of

fracture mechanics. In accordance

with Figure 9, the allowable crack

length is 4.9 inches. This should not

be accepted, because the crack projection

(16.5 inches) is bigger than the

allowable crack length.

The same analysis was done with

the Collapse Limit Load analysis. The

allowable circumferential crack is

16.36 inches. However, the crack

projection is 16.5 inches. Under this

condition, it can be accepted. In order

to confirm these results, this situation

was analyzed with the Failure Assessment

Diagram. For this purpose,

the following parameters were

calcu lated:

and

.

These values are located outside of

the safe zone. It is illustrated in Figure

16 and it is confirmed that the structural

integrity of the riser has been

compromised. It can be expected a

failure in which brittle behavior will

be predominant.

7 Conclusions

The helical or diagonal cracks that

may take place on the riser close to the

weld of the riser brace weld. It was

considered that a torsional mode of

vibration around the axial axis of the

riser generated the loading conditions

for the crack propagation. The operational

loads that could take place were

considered in the methodology, which

was applied.

It is considered that the system has

enough structural integrity when the

conditions that avoid ductile and

brittle failures along the circumferential

and axial directions are fulfilled.

Otherwise, the component has to

be repaired. One alternative is to

substitute the damaged part. However,

it should to be cut and a new replacement

component should be

welded. These operations should have

to be done below the water level and

during the outage of the nuclear

power plant. Under these conditions,

it is difficult to get a good quality in

this job. It would be advisable to

install a reinforcement structure, in

such way that a compression load

must be applied to avoid fracture

mode I on the crack. Besides, torsion

and bending have to for limited.

Regarding the inspections, they

have to be done periodically. Crack

propagation has to be monitored and

the structural integrity of the reinforcement

frame has to be evaluated.

Misalignments, deterioration and

corrosion have to be avoided.

Acknowledgements

The authors kindly acknowledge the

grant for the development of the

Project 211704. It was awarded by the

National Council of Science and

Technology (CONACyT).

Statement

The conclusions and opinions stated

in this paper do not represent the

position of the National Commission

on Nuclear Safety and Safeguards,

where the co-author P. Ruiz-López is

working as an employee. Although

special care has been taken to maintain

the accuracy of the information

and results, all the authors do not

assume any responsibility on the

consequences of its use. The use of

particular mentions of countries,

territories, companies, associations,

products or methodologies do not

imply any judgment or promotion by

all the authors.

References

[1] K. B., Department of Nuclear Regulation, Atomic Energy

Council, Taiwan, Recent Material Ageing Degradation

Related Issues, Washington D.C.: The Fifth USNRC/TAEC

Bilateral Technical Meeting, June 2007.

[2] N. M. Cuahquentzi et al.: Evaluation of the Structural

Integrity of the Jet Pumps of a Boiling Water Reactor

under Hydrodynamic Loading, Defect and Diffusion Forum,

vol. 348, pp. 261-270, 2014.

[3] Inc. Computers and Structures: CSI Analysis Reference

Manual for SAP2000, in ETABS, SAFE and CSiBridge, March

2013.

[4] R. D. Blevins: Flow Induced Vibrations, New Orleans, USA:

Course ASME PD-146, 2012.

[5] G. L. Stevens et al.: Jet pump flaw evaluation procedures,

in 8 th International Conference on Nuclear Engineering,

Baltimore, USA, April 2000.

[6] EPRI: BWRVIP-41: BWR Vessel and Internals Project, in

BWR Jet Pump Assembly Inspection and Flaw Evaluation

Guidelines, USA, 1997.

[7] G. E. Paredes et al: Severe Accident Simulation of the

Laguna Verde Nuclear Power Plant, Science and

Technology of Nuclear Installations, vol. 2012, March.

[8] R. C. Camargo et al: Análisis de transitorios operacionales

con el Código RELAP/SCDAPSIM, Apoyo a las actividades

del proceso de certificación para el simulador de la CNLV a

condiciones de aumento de potencia, Comisión Nacional

de Seguridad Nuclear y Salvaguardias, México, June 2003.

[9] American Society of Mechanical Engineers: Section III,

Division 1-Appendices. Rules for Construction of Nuclear

Facility Components, in Boiler and Pressure Vessel Code,

USA, ASME, 2007, pp. 301-302.

[10] United States Nuclear Regulatory Commission: Technical

Training Center, BWR/4 Technology Manual (R-104B),

General Electric Systems, USA.

[11] United States Nuclear Regulatory Commission: Technical

Training Center, BWR/4 Technology Manual (R-304B),

General Electric Systems, USA.

[12] United States Nuclear Regulatory Commission: Technical

Training Center, BWR/4 Technology Manual (R-504B),

General Electric Systems, USA.

[13] U.S. Atomic Energy Commission: Regulatory Guide 1.60

Design Response Spectra for Seismic Design of Nuclear

Power Plants, U.S. Atomic Energy Commission, USA,

December 1973.

[14] American Society of Mechanical Engineers: Section XI.

Rules for Inservice Inspection of Nuclear Power Plant

Components, in Boiler and Pressure Vessel Code, USA,

American Society of Mechanical Engineers, 2007.

[15] A. Zahoor: Ductile Fracture Handbook, Vol. 2, Electric

Power Research Institute Report NP-6301, USA: EPRI,

October 1990, pp. 6.1-1, 6.3-1.

[16] A. Zahoor: Ductile Fracture Handbook, Vol. 1, Electric

Power Research Institute Report NP-6301, USA: EPRI,

October 1990, pp. 1-1, 1-4.

Authors

Pablo Ruiz-López, Ph.D.

Comisión Nacional de Seguridad

Nuclear y Salvaguardias

Head of the Licensing Area

México

Luis Héctor Hernández-Gómez, Ph.D.

Juan Cruz-Castro, M.Sc.

Gilberto Soto-Mendoza, M.Sc.

Juan Alfonso Beltrán-Fernánde, Ph.D.

Guillermo Manuel Urriolagoitia-

Calderón, Ph.D.

S.E.P.I. Zacatenco, I.P.N.

México

Operation and New Build

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


atw Vol. 64 (2019) | Issue 4 ı April

A World’s Dilemma ‘Upon Which

the Sun Never Sets’: The Nuclear Waste

Management Strategy: Russia, Asia

and the Southern Hemisphere

Part I

Mark Callis Sanders and Charlotta E. Sanders

Due to the length of the article, the article is published in three parts. The authors and editor hope you will enjoy and

look forward to reading the entire article, as each portion is published. Part I provides the background to the discussion.

Part II considers nuclear waste management from the perspective of Russia and Asia, while Part III considers those

States in the Southern Hemisphere.

This republication is a shortened

version of an article originally

published in the journal Progress in

Nuclear Energy. The full-length version

of the article may be found at: Sanders,

M, & Sanders, C 2019 “A world’s

dilemma ‘upon which the sun never

sets’ – The nuclear waste management

strategy (part II): Russia, Asia and the

Southern Hemisphere”, Progress in

Nuclear Energy 110, 148-169.

1 Introduction

This article contemplates the various

waste management schemes that are

being considered or undertaken to

include Russia, Japan, China, South

Korea, India, Argentina, Brazil and

South Africa. Except for Japan,

Argentina and South Korea, these

nation states are chosen for discussion

because these make up a charac teristic

collection of nation states able to shape

world policy and events as middle

powers commonly referred as ‘BRIC’ or

‘BRICS’ (Brazil, Russia, India, China

plus South Africa). These nation states

share certain positive and negative

similarities including: planned and/or

expanding nuclear power programs;

large or expanding populations with

emergent economies; “high GDP but

relatively low GDP per capita; large

domestic inequalities; and high absolute

poverty levels” [1]. Japan and

South Korea are chosen for discussion

due to their expansive nuclear power

programs, and their unique challenges

in finalizing a nuclear waste management

disposal facility because of internal

political struggles. Argentina is

unique in that while it developed and

maintained a small nuclear power program

for years, despite economic and

political difficulties, it is now expanding

its nuclear power program with the

help of Chinese financial support.

2 Future energy consumption

outlook – BRICS

Certainly, one of the parallel requirements

facing developed and new comer

nuclear nation states is the need to gain

access to stable, clean, and plentiful

sources of power production to drive a

burgeoning eco nomy in a cost effective

and environmentally friendly manner.

Techno logical advances starting in the

mid-2000’s have provided an abundance

of cheap natural gas through

fracking, with an 80 % growth in gas

demand led by mostly Asian nation

states, including China and India, over

the next 20 years [2]. Current predictions

for China estimate that it will

experience power growth at a rate of

3.8 to 4.6 % per annum through the

year 2020, with chronic pollution

estimated to cause China an economic

loss at almost 6 % of Gross Domestic

Product 1

[3]. In its fight to tackle

pollution, China is seeking to obtain

the environmental benefits of clean

energy technologies using wind, solar,

and nuclear power generation [4].

Brazil has a small but budding

nuclear power program generating

about 3 % of its electricity, with 84 %

generated through hydro. Brazil’s

overreliance on hydro generated

power is creating potential challenges

due to changing weather patterns and

climatic shifts [5]. From the early

1990’s, India has experienced rapid

growth in energy consumption as its

economic output has risen but is also

suffering extreme levels of pollution

in its major cities [6]. South Africa

currently has two nuclear reactors at

one site responsible for generating ~

5 to 6 % of its electricity with plans to

add 9.6 GW of nuclear generation

capability across the country over the

next 10 to 12 years, costing between

37 to 100 billion USD [7].

3 Legitimacy through

linkage

To ensure the long-term viability of a

nuclear waste management program,

the legal framework supporting the

program must be built upon trust and

fairness, with the flexibility of a State

to work within its own historical

processes establishing the rule of law.

The Joint Convention on the Safety of

Spent Nuclear Fuel Management and

on the Safety of Radioactive Waste

Management (Joint Convention) are

built upon the concept of adequacy,

allowing a nation state that is a party

to the convention to use its national

sovereignty to develop a nuclear waste

management strategy that is “comparable

to those of the other nation

states, which are [also] party to the

convention” [8]. The Joint Convention,

as the first international treaty

covering radioactive waste management,

does not provide explicit detail

for each intended action allowing for

Contracting Parties to enjoy certain

levels of flexibility in a nuclear waste

management strategy. Pronto adds

that this type of general working

structure is often the intended design

of the framers to guide the actions of

those parties at the international level

through non-formally binding rules of

engagement [9].

Additionally, there are four compartments

to consider when developing

a nuclear waste management

program and which potentially affects

its legitimacy. Shown in Figure 1,

these compartments comprise (1)

concerns surrounding the economic

viability towards the funding and

building of a nuclear waste disposal

facility; (2) that any environmental

concerns are duly considered to

ensure any negative effects on all

stakeholders have been thoroughly

221

DECOMMISSIONING AND WASTE MANAGEMENT

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders


atw Vol. 64 (2019) | Issue 4 ı April

DECOMMISSIONING AND WASTE MANAGEMENT 222

| | Fig. 1.

The Four Compartments of a Sustainable Radioactive Waste Management Program.

investigated and taken into consideration;

(3) the assurance that the

science and technology employed

are up to date and sound, being free

from political influences; (4) that

the waste management facility siting,

design, construction and operation

reflects the desires and will of the

society; and, (5) that all actions

provide for stability throughout any

legal action and/or policy making

decisions under taken by the nation

state to guarantee that such actions

are performed in accordance with the

rule of law found within that society

[8].

The values represented within

these four compartments are required

and important tools in developing a

stable and legitimate framework for

creating the necessary laws, statutes,

regulations, and rules in a nuclear

waste management program. As each

compartment harmoniously interacts

with the other, the process of effectively

meeting all the aspects of a

nuclear waste management program

from inception, to a time point far into

the future is achieved.

3.1 The concept

of legal stability

The primary objective for designing

and operating a nuclear reactor is “the

utilization of the energy or radiation

released by controlled chain reaction…

[h]owever the achievement of

a stable chain of fission reactions is

only a part of the responsibility of

the nuclear engineer. In addition, he

must learn how to extract and use the

energy liberated in these fission

reactions” [10]. Equally, only part of

the responsibility of the policymaker’s

primary objective is to provide the

written laws, statutes, regulations,

and rules, but more so, he must be

able to seize the ability to utilize the

energy or legal force created toward

a series of relevant actions, in a controlled

and sustained environment,

for achieving the desired end outcome.

The “issue of stability and

change in constitutional law” [11]

is continually hotly debated by academics,

having fervent partisans on

each side of the equation.

‘Stability’ is a word that is commonly

used to present something that

is stationary or unchangeable [12], or

when discussing legal stability, we

usually refer to the basic building

block structuring the personality of

the common law – stare decisis 2 [13].

Thus, the judicial or political system

has made some determination of a

particular path of progression so that

those engaged in an activity may

know with certainty that the decision/

determination is not an arbitrary one

and may therefore be relied upon

through a future time period. However,

a purpose of government, and a

duty of the courts, is to process change

as society and technology alters,

all while seeking to contain this

“ constant and restless motion [of

government]” [14] as it seeks a new

stable footing. The force called ‘stability’

creates an exceptional central

challenge for nuclear waste management

programs, as laws, statutes,

regulations, and rules written today,

as promulgated, are for an intended

extended outward period, projecting

forward today’s burden for tomorrow’s

generations to manage. Such laws,

statutes, regulations, and rules are not

promulgated in a vacuum of peace

and tranquility, but within complex

political systems, which at times

display outward chaotic change, even

though law should portray a sense of

stability [15]. In the 1930’s, Goodwin

declared:

“We are wont to look upon our

government as something permanent,

indestructible, and, in its fundamentals,

unchangeable. Anyone who

accepts this thought unqualifiedly disregards

world history. Governments

and civilizations arise, prosper, and

disintegrate.” 3 [16].

Human history is fraught with

political systems where seemingly

stable states become unstable and

falter. 4

The concern arises of what

happens to a nuclear waste management

program in a nation state should

that state cease to exist, because

that particular political or legal system

is unable to process change, in its

pursuit of a constant arrangement of

‘ stability’. 5 It is time consuming and

difficult to delve into the causes

leading to instability within any

nation state, and this would necessitate

contemplation of multiple and

varied factors, and thus will not be

intimately discussed within this

article. Suffice is to say, Posner explains

that political instability is an

inherent trait in all systems of government,

acknowledging that though

“[a]uthoritarian regimes may suppress

the symptoms of political

instability… [it would be incorrect to

assume that] only reliably stable

regimes are those in which the symptoms

of political unrest are absent

despite their not being forcibly suppressed”

[17].

Thus, as its most basic function,

government is designated with the

obligation to insure a stable political

and legal framework through mechanisms

“designed [with the preservation

of] certainty” [14]. Conflictingly,

given the reality that the human race

and their judicial and political systems

function in a world surrounded by

alteration, these societies must continue

in a forward progression where

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I

ı Mark Callis Sanders and Charlotta E. Sanders


atw Vol. 64 (2019) | Issue 4 ı April

“living law [flourishes and is not]

imprisoned by the past” [18].

It is the continual conflict between

the dynamics of ‘stability’ and ‘change’

which determines if a political or legal

system will collapse in on itself, or if it

will survive. Walker, et al., provides a

line of inquiry regarding a bridging

force for the ability of a stable system

to successfully process change:

“It is assumed that patterns of

behavior will be more stable and

enduring if they can be characterized

as legitimate; that actors who have

legitimacy attributed to them will

be more able to induce compliance

than those who do not share that

attribute…” [19].

3.2 The concept

of legal legitimacy

The search for legitimacy in any

political system may be considered

“the oldest problem of political

theory” [20]. Given that a nuclear

waste management program is expected

to last for hundreds of years from

inception to end of life, this search for

legitimacy when creating a nuclear

power and waste management program

is of great importance, as a

citizen living under any political

system must “have confidence in [the]

administrative processes [found

within that system], and [in the final

outcome, be able to] respect and

accept [those] decisions” [21].

Each political system, whether

democratic or authoritarian in nature,

shares certain legal traditions, which

provide it with legitimacy. These traditions

not only entail a similarity of

various institutions (e.g., parliament/

legislature, courts, and administrative

agencies) and processes, they encompass

common core values, such as

lawfulness, expertise, efficiency, and

effectiveness [22].

Because legitimacy is such an

essential quality of the law, it is a

subject that has, and continues to,

preoccupy legal scholars [23]. Barnett

argues law proceeds from two binding

sources: (1) laws created through the

people’s voice, though not all may

agree, and (2) laws created where the

State embarks on a course of action

believing it is the best arbiter of what

is appropriate without the full input

of such non-consenting persons [24].

Barnett’s model rests upon the precept

that any government is established,

and endowed, with powers of

competencies to do what is required

in fashioning the legal structure for

executing the desired undertaking

and is sufficiently broad in its scope to

encompass the similarities shared for

rule making by both democratic and

authoritarian regimes. This is that the

primary reason for any government,

as a function of its political system, is

to fashion a framework for what is

deemed by that system as necessary

and proper for initiating, building,

financing and operating a civilian

nuclear power and/or nuclear waste

management program.

A central notion that forms the

core of the concept of legitimacy is

the way a political system establishes

procedures “for law-making and

implementation [that appear to

the beholder] as acceptable, i.e., appropriate

and binding” [25]. The

highest ideal for any nation state

should

be

to promulgate laws, statutes, regulations,

and rules in a transparent, fair,

and equitable system. However, it is

respected that the world’s myriad of

intricate political systems each have

their own unique complexities, which

are acted upon by enormous pressure

from numerous interest groups,

leaving one to question one’s personal

consent granted to the governing

body within any system of government.

This raises questions regarding the

ability of access by individuals to a

political/legal system, and its assurance

that individual rights and/or

concerns have been considered and

protected. For citizens living under an

authoritarian system of government,

the anxiety arises whether the governing

body has considered the inherent

needs of the citizenry throughout the

decision-making and administrative

process, more so than with matters of

consent, as consent is implied. Within

both systems, the administrative process

initiates similar concerns given

that all bureaucratic systems do not

provide for political accountability of

these unelected individuals with

expansive powers and “[with] the

public lack[ing the necessary] tools

| | Fig. 2.

Milestone Demarcation for “Change” in a Nuclear Power & Waste Management Program.

DECOMMISSIONING AND WASTE MANAGEMENT 223

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders


atw Vol. 64 (2019) | Issue 4 ı April

DECOMMISSIONING AND WASTE MANAGEMENT 224

to assess adequately the quality of

regulatory policies and outcomes”

[26].

In examining “how the sausage is

made,” Barnett also discourses on

these procedural processes that affect

both validity and legitimacy within a

political law-making system as laws

created within that system can

potentially be “valid and illegitimate”

or “legitimate and unjust” [24]. Such

a paradoxical outcome is unfortunate

but is a consequence that the procedures

in practice do not provide the

necessary guarantees allowing the

promulgation of evenhanded laws

or rules, or because there was a failure

to adequately follow the correct procedures

in place.

The potential extended timelime of

envisioned nuclear waste management

programs demands these

programs must therefore stand firmly

on the concept of legal ‘stability’. Once

a civilian nuclear power program is

initiated, and certain milestones are

achieved, the space for deviation or

‘change’ diminishes in any nuclear

power and waste management program,

especially given that a number

of nation state’s deep geologic repositories

are not planned with retrievability

in mind. This shrinking space

for ‘change’ in a nuclear power and

waste management program is shown

in Figure 2.

Footnotes

1 According to Robert Higgs, “Estimates of gross domestic product

(GDP)... Became an essential part of economic analysis…

in the late 1930s and early 1940s”. See: HIGGS, R 2015,

'Gross Domestic Product – an Index of Economic Welfare or a

Meaningless Metric?', Independent Review, 20, 1, pp. 153-157,

Academic Search Premier, EBSCOhost, viewed 13 June 2017.

2 to stand by things decided.

3 From the pen of Clarence N. Goodwin.

4 Human history provides a number of examples of failed and

fallen empires. Certainly, for the western world, the collapse of

the Roman Empire is a striking and often discussed example.

Other examples might include the Arab Empire, also known as

the Caliphate, the Mongol Empire and the British Empire.

Common features leading to the decline of these empires

include a decline in the values underpinning the empire,

political corruption, and military spending. See: The Decline and

Fall of Empires, https://www.forbes.com/sites/stratfor/2015/

04/20/the-decline-and-fall-of-empires/#1248dd3d383e,

viewed July 11, 2018.

5 An example could be provided during the breakup of the Union

of Soviet Socialist Republic in the early 1990’s. The international

community rallied to provide assistance to these nation states

to successfully retain and maintain control over their nuclear

power plants, enrichment capabilities, as well as other fundamental

aspects of both their civilian and/or military nuclear

programs. However, these states as such did not cease to exist

and this was more of a transition between political systems,

while the central government structure was maintained. See:

Hill, F and Jewett, P “BACK IN THE USSR” Russia's Intervention in

the Internal Affairs Of the Former Soviet Republics and the Implications

for United States Policy Toward Russia, January 1994,

https://www.brookings.edu/wp-content/uploads/2016/06/

Back-in-the-USSR-1994.pdf, viewed June 15, 2018. Also see:

Allison, Graham. 2012. What Happened to the Soviet Superpower’s

Nuclear Arsenal? Clues for the Nuclear Security Summit.

HKS Faculty Research Working Paper Series RWP12- 038, John

F. Kennedy School of Government, Harvard University, https://

dash.harvard.edu/handle/1/9403176, viewed July 11, 2018.

References

[1] Dauvergne, P, & BL Farias, D 2012, ‘The Rise of Brazil as a

Global Development Power’, Third World Quarterly, 33, 5,

pp. 903-917, Academic Search Premier, EBSCOhost, viewed

18 April 2018.

[2] World Energy Outlook 2017, International Energy Agency,

https://www.iea.org/weo2017/, viewed April 19, 2018.

[3] Nuclear Power in China, World Nuclear Association, http://

www.world-nuclear.org/info/Country-Profiles/Countries-A-F/

China--Nuclear-Power, viewed April 21, 2018.

[4] China’s Engagement in Global Energy Governance, International

Energy Agency, http://www.iea.org/publications/

freepublications/publication/PartnerCountrySeries_

ChinasEngagementinGlobalEnergyGovernance_

Englishversion.pdf, viewed April 20, 2018.

[5] Nuclear Power in Brazil, World Nuclear Association,

http://www.world-nuclear.org/info/Country-Profiles/

Countries-A-F/Brazil/, viewed April 21, 2018.

[6] Nuclear Power in India, World Nuclear Association, http://

www.world-nuclear.org/info/Country-Profiles/Countries-

G-N/India/, viewed April 21, 2018.

[7] Boosting the Power Sector in Sub-Saharan Africa, International

Energy Agency, http://www.iea.org/publications/

freepublications/publication/Partner_Country_SeriesChina-

Boosting_the_Power_Sector_in_SubSaharan_Africa_

Chinas_Involvement.pdf, viewed April 20, 2018.

[8] Sanders, M, & Sanders, C 2016, ‘A world’s dilemma ‘upon

which the sun never sets’ – The nuclear waste management

strategy (part I): Western European Nation States and the

United States of America’, Progress In Nuclear Energy, 90, pp.

69-97, Academic Search Premier, EBSCOhost, viewed 16 April

2018.

[9] Pronto, AN 2015, ‘Understanding the Hard/Soft Distinction in

International Law’, Vanderbilt Journal Of Transnational Law,

48, 4, pp. 941-956, Academic Search Premier, EBSCOhost,

viewed 13 June 2017.

[10] Duderstadt, J.J., and Hamilton, L.J., Nuclear Reactor Analysis,

John Wiley & Sons, ISBN 0-471-22363-8, 1976.

[11] Williams, Jerre S. “Stability and Change in Constitutional

Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):

p. 221-238.

[12] Cambridge Dictionary, https://dictionary.cambridge.org/

dictionary/english/stability, viewed April 15, 2018.

[13] BLACK’S LAW DICTIONARY (STANDARD EDITION),

Thomson West; 8 th edition (June 1, 2004), ISBN-10:

0314151990.

[14] McKay, Robert B. “Stability and Change in Constitutional

Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):

p. 203-220.

[15] POUND, INTERPRETATION OF LEGAL HISTORY 1 (1923).

[16] “Efficiency, Stability,” Bar Briefs 8 (1931-1932):

p. 166-166.

[17] Posner, Richard A. “Equality, Wealth, and Political Stability,”

Journal of Law, Economics, & Organization vol. 13,

no. 2 (October 1997): p. 344-365.

[18] Thacher, Thomas D. “Judicial Stability,” Connecticut Bar

Journal vol. 13, no. 4 (October 1939): p. 215-219.

[19] Walker, Henry A.; Thomas, George M.; Zelditch, Morris Jr.

“ Legitimation, Endorsement, and Stability,” Social Forces

vol. 64, no. 3 (March 1986): p. 620-643.

[20] Francis, Daniel. “Exit Legitimacy,” Vanderbilt Journal of

Transnational Law vol. 50, no. 2 (March 2017): p. 297-354.

[21] Le Sueur, Andrew, 2011. People as “users” and citizens”:

the quest for legitimacy in British public administration.

In: Ruffert, Matthias (Ed.), Legitimacy in European

Administrative Law 3. Europe Law Publishing, Groningen,

pp. 30.

[22] M.C. Sanders and C.E. Sanders, “The Path Towards a

Legitimate Radioactive Waste Management Program:

A Comparative Analysis of the Legislative and Regulatory

Approach to the Management of Radioactive Waste in the

U.S.A. and China”, Proceedings of the International Nuclear

Law Association Inter Jura 2016, New Delhi, India,

November 7-11, 2016.

[23] Wisotsky, Steven. “Beyond Legitimacy,” University of

Miami Law Review vol. 33, no. 1 (November 1978):

p. 173-206.

[24] Barnett, Randy E. “Constitutional Legitimacy,” Columbia Law

Review vol. 103, no. 1 (January 2003): p. 111-148.

[25] Langdal, Fredrik; von Sydow, Goran. “Democracy, Legitimacy

and Constitutionalism,” Scandinavian Studies in Law 52

(2007): p. 351-370.

[26] Arkush, David. “Democracy and Administrative Legitimacy,”

Wake Forest Law Review vol. 47, no. 3 (2012):

p. 611-630.

Authors

Mark Callis Sanders

Sanders Engineering

1350 E. Flamingo Road Ste.

13B #290

Las Vegas NV 89119

USA

Charlotta E. Sanders

Department of Mechanical

Engineering

University of Nevada

Las Vegas (UNLV)

4505 S. Maryland Pwky

Las Vegas, NV 89154

USA

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I

ı Mark Callis Sanders and Charlotta E. Sanders


atw Vol. 64 (2019) | Issue 4 ı April

Special Topic | A Journey Through 50 Years AMNT

225

Rechenschaft gegenüber

der demokratischen Öffentlichkeit

Richard von Weizsäcker

Aus dem Grußwort des Regierenden Bürgermeisters von Berlin auf der Eröffnungssitzung der JK ’83 am

14. Juni 1983.

Was das Zusammenwirken oder die Arbeitsteilung

zwischen Wissenschaft, Wirtschaft und Behörden

anbetrifft, so würde ich mir wünschen, daß auch für

andere Bereiche, in denen es zu einer solchen Zusammenarbeit

kommen muß, eine so interessante Tagung

anberaumt würde, wie Sie sie am heutigen Vormittag auf

Ihrer Tagesordnung haben. Es ist ja wahr, daß in den

Behörden immer mehr auch wissenschaftlicher Sachverstand

angesammelt werden muß, weil die Sachverhalte,

mit denen es Genehmigungsverfahren zu tun haben, dies

erfordern. Es ist umgekehrt aber auch wahr, daß Wissenschaftler

und Wirtschaftler sich nicht in den Bereich der

sogenannten rein sachlichen, rein naturwissenschaftlichen,

rein technischen oder rein ökonomischen Fragen

allein zurückziehen können, sondern darauf angewiesen

sind, daß das, was sie tun, verstanden und auch irgendwie

angenommen wird. Und ich denke, gerade diese

Konferenz, zu der Sie jetzt wieder zusammen sind, hat ja

bei früheren Zusammenkünften in dieser Richtung wohl

auch schon notwendige Diskussionen geführt und

vielleicht auch die eine oder andere Erfahrung von außen

her begleitend zu Ihren Tagungen vermittelt bekommen.

Nun haben wir inzwischen ja eine geringfügige

Verlagerung des Schwerpunktes der öffentlichen Auseinandersetzung

erlebt, und ich nehme an, Ihnen kommt das

zugute. Wir Politiker sind noch nicht in der nötigen Weise

entlastet und ich will ja auch gar nicht behaupten, daß wir

das verdienen. In Ihrem Bereich, wenn ich das richtig sehe,

ist doch eine gewisse Normalisierung eingetreten. Das

liegt auch daran, daß vielleicht die Öffentlichkeit ein

bißchen besser verstanden hat, worum es geht, aber gewiß

liegt es primär daran, daß Wissenschaft und Wirtschaft

vielleicht besser als in der Eingangsphase in der Lage

gewesen sind, die Anfragen in der Öffentlichkeit auch

wirklich ernsthaft aufzugreifen und Schritt für Schritt den

Nachweis dafür zu erbringen, daß man eben auch wirklich

in der Lage ist, etwas Verantwortbares vorzuzeigen.

Demokratie erfordert

Informationsbereitschaft

In dem Bereich, in dem nun heute der Schwerpunkt

der Auseinandersetzung zu finden ist, also dort wo es

nicht um die friedliche Nutzung der Kernenergie geht,

sondern um die Sicherheitspolitik und um Abschreckungsmechanismen

in bezug auf die Verhinderung von Kriegen,

dort haben wir ja in der Grundstruktur dessen, was

die Sachverständigen, die Politiker, die Öffentlichkeit

miteinander zu tun haben, einen vergleichbaren Vorgang.

Wir haben im Rahmen dieser Friedensdiskussion, das ist

meine feste Überzeugung, auch bei den schrillen Tönen

und großen Bewegungen durchaus voneinander zu lernen

– wenn man das mal so schematisch sagen darf – die

politisch Verantwortlichen und die Friedensbewegung.

Das, was wir Politiker hier vor allem zu lernen hatten

und nach wie vor haben, ist, daß wir in bezug auf eine

Verteidigungsbereitschaft unseres Landes genauso in einer

Demokratie leben, wie in bezug auf jede andere Seite

unseres Lebens. Das heißt, was seitens der Verantwortlichen

getan wird, das muß von der überwiegenden

Mehrheit in der demokratischen Öffentlichkeit verstanden

und irgendwo auch bejaht werden. Und ähnlich wie bei

der friedlichen Nutzung der Kernenergie, ist es auch

bei dem von mir jetzt berührten Bereich so. daß er allzu

lange als mehr oder weniger geheimes Vorbehaltsgut von

einigen Sachverständigen behandelt worden ist. Das

kann auf die Dauer bei unserer Art von öffentlicher,

demokratischer, freiheitlicher Gesellschaft nicht gutgehen.

Wenn man allzu lange meint, daß die Herstellung

und die Modernisierung und die Dislozierung von Waffen

etwas sei, was eben nur ein paar Wissenschaftler, der

Am 7. und 8. Mai

2019 begehen wir

das 50. Jubiläum

unserer Jahrestagung

Kerntechnik. Zu

diesem Anlass öffnen

wir unser atw-Archiv

für Sie und präsentieren

Ihnen in jeder

Ausgabe einen

historischen Artikel.

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT

| | 1983: Jahrestagung Kerntechnik – JK ´83 in Berlin.

Special Topic | A Journey Through 50 Years AMNT

Rechenschaft gegenüber der demokratischen Öffentlichkeit ı Richard von Weizsäcker


atw Vol. 64 (2019) | Issue 4 ı April

226

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT

| | 1983: Inbetriebnahme mit ersten Experimenten an der Fusionstestanlage JET in Culham,

Großbritannien, Schematische Zeichnung.

Verteidigungsminister und Generäle verstehen und zu

behandeln haben und dies möglichst in kosmisch geheim

gehaltenen Räumen, dann ist die notwendige Folge

davon, daß sich jene Gefühle der Angst und Unsicherheit,

jene Sorge hinsichtlich der Undurchschaubarkeit dieses

Mechanismus in einer Weise Gehör verschaffen, wie wir

dies alle erleben.

Erklärungen ersetzen,

aber nicht Entscheidungen

Nur, auf der anderen Seite heißt verständlich machen und

erklären natürlich auch nicht nun einfach nachlaufen

gegenüber Gefühlen, die sich in der Öffentlichkeit zeigen.

Ein Land hat eine Verfassung, und nach der Verfassung

hat es eine Regierung, und die Regierung ist dazu da, das

eigene Land in seiner Freiheit zu schützen. Das Land kann

nicht den Wehrdienst verweigern, wie der einzelne dies

aus Gewissensgründen kann. Also muß auch erklärt

werden, was notwendig ist für diese Landesverteidigung

und warum. Und wir haben es allzu oft erlebt im Umgang

– ich sage jetzt mal, weniger der Wissenschaftler und

Wirtschaftler – sondern der Politiker mit der Öffentlichkeit,

daß sie diese Fragen zunächst so geheim behandelt

haben, dann sind sie gegenüber öffentlich sich Geltung

verschaffenden Regungen vielleicht zu schnell zu ängstlich

geworden und dann sind sie mehr hinterhergelaufen,

anstatt das Mandat wahrzunehmen, wozu sie doch

gewählt sind. Wir sind als Politiker nicht gewählt, um

hinzuhören und zu machen, was andere wollen, sondern

wir sind gewählt, um zu prüfen, was notwendig ist,

Entscheidungen zu treffen und die Entscheidungen

durchzusetzen und zu vertreten – kurzum wir sind

gewählt, voranzugehen und nicht hinterherzulaufen. Und

wenn der Weg, auf dem wir vorangehen, von der

Öffentlichkeit nicht akzeptiert wird, dann kann man

ja abgewählt werden. Aber wir sind – ich betone es

nochmals – in der Zeit, für die wir gewählt sind, dazu

gewählt worden, voranzugehen und nicht hinterherzulaufen.

Und das ist eben mitunter vernachlässigt

worden.

Wir haben nun in Berlin im engeren Sinn mit der

friedlichen Nutzung der Kernenergie nicht dieselben

Probleme wie manche anderen Bundesländer, und wenn

es um die Dislozierung von Mittelstreckenraketen geht,

dann erst recht nicht. Trotzdem aber haben wir hier

in Berlin wahrlich etwas, nämlich eine kritische Öffentlichkeit.

Und im Rahmen dieser kritischen Öffentlichkeit,

uns vor diesen Prozessen der Erörterung, der Auffindung

der Probleme, der Entscheidungen, der Vertretung

der Entscheidung, des Gewinnens eines öffentlichen

Verständnisses und einer Zustimmung, haben wir es

in der Tat in Berlin nicht leichter als es irgendein anderer

Platz hat. an dem Kernkraftwerke gebaut werden oder an

dem Waffen stationiert werden, die dem Ziel der eigenen

Landesverteidigung dienen sollen. Von daher gesehen und

mit diesen wenigen Gedanken wollte ich begründen,

warum wir dankbar sind, nicht nur daß Sie überhaupt

nach Berlin gekommen sind, sondern auch dafür, welche

Themen Sie auf Ihrer Tagesordnung haben und wie

Sie sie zu behandeln gedenken. Denn ich meine, sie sind

exemplarisch für den nötigen Umgang miteinander

zwischen Wissenschaft, Wirtschaft und Politik immer in

Beziehung zur Öffentlichkeit, in der wir alle leben, die wir

alle ernst nehmen müssen und vor der wir Rechenschaft

ablegen müssen, über das was wir als notwendig erkennen

und das wir demgemäß auch machen wollen.

Advertisement

Fotoausstellung „Der Nukleare Traum“ beim AMNT

Für den „Nuklearen Traum“ fotografierte Bernhard Ludewig über sieben Jahre zentrale

Orte der deutschen Atomlandschaft und -geschichte, um den noch vorhandenen Teil

visuell zu erhalten. Zu sehen sind Bau, Betrieb und Rückbau der deutschen Kraft werkstypen,

ihre Warten, Kühltürme und Arbeitsschritte, von der Reaktoröffnung bis zur

Castor-Beladung. Der Weg des Urans wird von den Zentrifugen über La Hague bis in

Endlagerbaustellen verfolgt, die Reaktorforschung von Haigerloch bis SNR und THTR.

Zu den über 50 besuchten Orten zählen auch Forschungsreaktoren, Trainingsanlagen

und auch der Sarkophag von Tschernobyl.

„Der Nukleare Traum“ erscheint voraussichtlich im Herbst als Bildband. Auf der

Jahrestagung ist eine Auswahl daraus vorab als Fotoausstellung zu sehen.

Special Topic | A Journey Through 50 Years AMNT

Accountability to the Democratic Public ı Richard von Weizsäcker


atw Vol. 64 (2019) | Issue 4 ı April

Inside

227

50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie

Die Kerntechnische Gesellschaft e. V. (KTG) wurde am

14. April 1969 zunächst als Kerntechnische Gesellschaft

im Deutschen Atomforum e. V. (DAtF) in Frankfurt am

Main gegründet. Bei der Gründungsversammlung in der

Aula der Universität Frankfurt traten 163 Mitglieder bei.

Zum Vorsitzenden wurde Prof. Wolf Häfele gewählt.

Die Mitgliederversammlung des DAtF stimmte am

28. November 1978 in Bonn einer Satzungsänderung zu,

der zufolge die bisher in das DAtF eingegliederte KTG ein

eigener eingetragener Verein wurde. Eine weiterhin enge

Zusammenarbeit zwischen beiden Organisationen sollte

unverändert bestehen bleiben.

Zum 50. Geburtstag kommen der Vorsitzende der KTG,

Frank Apel, sowie der Sprecher der Jungen Generation

(JG) der KTG, Dr. Florian Gremme, zu einem gemeinsamen

Gespräch mit der atw in Berlin zusammen.

atw: 50 Jahre – Ein Geburtstag, an dem man sowohl zurück

als auch nach vorne schaut. Herr Apel, wenn Sie Ihren Blick

einmal zurück schweifen lassen: In welchem Umfeld hat sich

die KTG damals gegründet?

Apel: Herr Schneibel, Sie erwähnten im Eröffnungsgespräch

zwei Jahreszahlen aus der Geschichte der KTG:

1969 als Gründungsjahr der Kerntechnischen Gesellschaft

im Deutschen Atomforum und 1978, als die KTG ein

eigener eingetragener Verein wurde.

Wie sah es um die deutsche Kerntechnik in diesen

Jahren aus?

Nach einer erfolgreichen Inbetriebnahme wurde 1969

das Kernkraftwerk Obrigheim an den Kunden übergeben.

Innerhalb von zehn Jahren wurde die Leistung der DWR-

Kraftwerke vervierfacht: beginnend mit Obrigheim

(300 MWe) über Stade (600 MWe) zu Biblis A (1200 MWe).

In der Zeit zwischen 1969 und 1978 wurden Aufträge für

10 DWR- und 7 SWR- Anlagen vergeben, Kraftwerke, die

in Deutschland und im Ausland errichtet wurden. Zunehmender

Wettbe werbsdruck aus dem Ausland, notwendige

signifikante Investitionen in Fertigungskapazitäten und ein

hoher Finanzbedarf für Entwicklungs programme führten

zu einer Bündelung der Kernkraftwerksaktivitäten der AEG

und SIEMENS: 1969 wurde die Kraftwerk Union

Aktiengesellschaft (KWU) gegründet. Bewegte Zeiten.

Zum Ende der genannten Periode war in Deutschland auch

die Verlängerung von Errichtungszeiträumen durch eine

Vielzahl von zusätzlichen Auflagen in den zahlreichen Teilerrichtungsgenehmigungen

und aufgrund unklarer politischer

Rahmenbedingungen zu verzeichnen. Es wuchs

die Verunsicherung gegenüber der Kernenergie in der

deutschen Öffentlichkeit. Kernenergie-Gegner monierten

den Atomstaat, unsichere Kernkraftwerke, ungelöste Entsorgungsfragen

und stellten die Wirtschaftlichkeit in Frage.

Auf diese politischen und teilweise polemischen Fragestellungen

wurde mit technischer Kompetenz geantwortet.

Die Tatsache, dass wir in Deutschland die sichersten

Kernkraftwerke der Welt betreiben ist auch das Ergebnis

eines kritischen Diskurses und einem Genehmigungsverfahren,

das von fachlich äußerst versierten sowie

unabhängigen Behörden und Gutachtern in der Erteilung

und von kompetenten Antragstellern der Genehmigung

vollzogen wurde.

atw: Der erste Vorsitzende der KTG, Professor Häfele, sagte

bei ihrer feierlichen Gründung 1969: „Die Kern technische

Gesellschaft wird ihr Ziel, nämlich allen in der Kern technik

Tätigen wissenschaftlicher Heimathafen und Mittel der

Förderung der Kerntechnik zu sein, mit Ernst und Zielbewusstheit

verfolgen.“

Herr Gremme, Sie sind Sprecher der JG, also all jenen

Studierenden und Young Professionals, die ein gemein sames

Interesse an der Kerntechnik haben. Wird die KTG im Jahr

2019 diesem Grundgedanken immer noch gerecht?

Gremme: Ja, ich denke schon dass die KTG diesem

Grundgedanken gerecht wird und jedem Interessierten

Möglichkeiten bietet, sich zu informieren, auszutauschen

und einzubringen. Zentral sehe ich hier das jährliche

AMNT als Plattform an. Vertreter aus Lehre, Forschung

und Industrie präsentieren hier ihre Arbeiten und sind

daran interessiert, durch neue Kontakte und Vorträge

ihren Horizont und ihr Wissen zu erweitern. Besonders für

Studierende und Young Professionals bietet sich hier die

Gelegenheit, mit Personen aus anderen Bereichen der

Kerntechnik in Kontakt zu kommen. Dies gilt sowohl für

den fachlichen Austausch in Form von Vorträgen oder

Diskussionen als auch für junge Leute, die sich auf der

Jobsuche befinden – bei der Orientierung zu Joboptionen,

sei es in der Industrie oder Forschung, hilft es sehr, wenn

man ein Gesicht vor Augen hat, dem man Themen oder

einem Arbeitgeber zuordnen kann. Dies bringt meiner

Ansicht nach einen Sympathiegewinn mit sich und das

wirkt hinsichtlich der Motivation von Menschen für die

Faszination Kerntechnik.

| | Frank Apel (r.) und Dr. Florian Gremme (l.) im Gespräch mit Martin Schneibel

Apel: Da stimme ich Herrn Gremme zu. Professor Häfeles

Beschreibung der KTG als gemeinsamer kerntechnischer

„Heimathafen von Wissenschaft und Technik“ ist ein

schönes Bild und hat bis heute so Bestand.

Werner von Siemens beschrieb den Zusammenhang

von Wissenschaft und Technik übrigens wie folgt: „Die

naturwissenschaftliche Forschung bildet immer den

sicheren Boden des technischen Fortschritts, und die

Industrie eines Landes wird niemals eine internationale,

leitende Stellung erwerben und sich selbst erhalten

können, wenn das Land nicht gleichzeitig an der Spitze des

naturwissenschaftlichen Fortschritts steht.“

Das Interview führte

Martin Schneibel am

13.02.2019 in Berlin.

KTG INSIDE

KTG Inside


atw Vol. 64 (2019) | Issue 4 ı April

228

KTG INSIDE

Das Netzwerk ist

also ein ganz zentrales

Element, das wir

als JG der KTG knüpfen

möchten.

atw: Wie erwähnt ist das AMNT sicherlich die zentrale

Veranstaltung der Branche in Deutschland. Was bietet

insbesondere die JG darüber hinaus noch an, um ihr Netzwerk

weiter auszubauen und neue Kontakte her zustellen?

Immerhin bündelt sich in ihr der kern technische Nachwuchs.

Gremme: Einen Gewinn von Kontakten und damit Nahbarkeit

zu schaffen versuchen wir zudem auch mit unseren

regelmäßigen Kamingesprächen mit Führungskräften aus

der kerntechnischen Branche und unserer jährlichen

Nachwuchstagung. Das Netzwerk ist also ein ganz zentrales

Element, das wir als JG der KTG knüpfen möchten.

Dies zum einen zu potentiellen Arbeitgebern z.B. in den

Kamingesprächen, zum anderen unter

uns jungen Leuten selbst bei der Nachwuchstagung.

Dabei steht der fachliche

Austausch keines wegs hinten an. Wir

adressieren hier thematisch die aktuellen

und zukünftigen Themen in der Kerntechnik

aber auch weitere Anwendungsgebiete

wie die Medizintechnik. Bei

unseren letzten beiden Nachwuchstagungen haben wir

Rückbaustandorte besucht, den Mehrzweckforschungsreaktor

in Karlsruhe im Jahr 2017 und das Atomei in

Garching bei München im letzten Jahr. Zudem haben wir

hier einen Fokus auf Forschungsaktivitäten und strahlentherapeutische

Anwendungen gelegt. Das Wiedersehen

und Kennenlernen unterein ander bleibt dabei natürlich

nicht aus.

atw: Und wie groß ist hierbei das Interesse? Wie erreichen

Sie die Interessierten?

Gremme: Diese Möglichkeiten bieten sich, wie anfangs

erwähnt, allen Interessierten. Eine größer gewordene

Hürde ist es, diese Interessierten zu finden bzw. Interesse

und Motivation zu wecken. Da müssten sich die KTG und

das AMNT besonders für junge Leute attraktiver präsentieren.

Ich denke, dass die KTG alle notwendigen Themen

und Möglichkeiten hat und bietet, diese müssen die jungen

Leute nur sichtbar und nahbar erreichen. Wir versuchen

dies u.a. mit den Kamingesprächen, der Nachwuchs tagung

und für einen ersten Kontakt für Schüler mit dem Campus

Kerntechnik im Rahmen des AMNT. Auf dem Campus

möchten wir die Faszination Kerntechnik

vermitteln und die ein oder

andere Schülerin bzw. Schüler für

ein nachhaltiges Interesse an der

Kerntechnik gewinnen. Für unsere

Ich denke, dass die KTG alle

notwendigen Themen und

Möglichkeiten hat und

bietet, diese müssen die

jungen Leute nur sichtbar

und nahbar erreichen.

ge samte Informationsvermittlung

nutzen wir zudem auch Facebook

und Instagram. Eine Tatsache der

man sich stellen muss, um heutzutage

Informationen an junge

Menschen zu vermitteln ist, dass junge Leute sich hauptsächlich

über die sozialen Medien informieren. Hier kann

die KTG denke ich noch etwas tun, um so Interesse und

Motivation zu wecken. Dabei geht es nicht um möglichst

hohe Klick zahlen, sondern um zielgruppenorientierte

Nutzung von Kanälen zur nachhaltigen Informationsvermittlung,

mit denen man Interessenten auf die Angebote

der KTG lenken kann.

All unsere Aktivitäten zielen auf den fachlichen kerntechnischen

Austausch und auf die Bildung von Netzwerken

ab. Dies sind aus meiner Sicht wesentliche Benefits

einer Mitgliedschaft in der KTG.

atw: Wie bewerten Sie die Vorteile einer KTG- Mitgliedschaft,

Herr Apel? Gerade die Generation der 1980er- und 90er-Jahre

wird oftmals als die „Generation Y“ („Generation Why?“)

bezeichnet, also jene Generation, die vieles kritisch

| | Frank Apel, Vorsitzender der KTG

hinterfragt. Wie schaffen Sie es, diese Gruppe für eine

Mitgliedschaft in der KTG zu überzeugen? Welchen Mehrwert

bringt die Teilnahme am Vereinsleben?

Apel: Vieles in unserer Verbandsarbeit läuft richtig toll.

Wir haben viele engagierte Ortssektionen, die spannende

Vorträge und Exkursionen organisieren. Unsere Fachsektionen

mobilisieren eine breite Teilnehmerschaft an

hochinteressanten Fachtagungen und die JG trifft sich,

wie von Herrn Gremme eben gehört, regelmäßig zu

Exkursionen, Vorträgen und zum Netzwerken.

In vielen Gesprächen mit Mitarbeitern der Kerntechnik

(KTG-Mitglieder und Nicht-Mitglieder) wurde eine Frage

bezüglich der Mitgliedschaft in unserem Verband am

häufigsten gestellt: „Was ist drin für MICH?“. Die Frage

nach unserem „Mehrwert“ müssen wir zukünftig noch

besser und mit mehr „Inhalt“ beantworten. Mitglieder und

potentielle Mitglieder – viele auch aus der mir persönlich

gut bekannten „Generation Y“, auf die wir übrigens stolz

sein können – suchen Überschriften, wofür die KTG steht.

Die „friedliche Nutzung der Kernenergie“ ist als Rahmen

sicherlich korrekt.

Aber können wir KTG-Mitglieder in unserem Land –

auch wenn der Ausstieg aus der Kernenergie beschlossen

ist – nicht eine persön liche, technisch

fundierte Meinung haben und vertreten,

die weiter geht? Ich denke schon. Dazu

müssen wir uns weiter ver netzen und

austauschen: traditionell über „unsere

Seiten“ in der atw, unsere Homepage aber

auch über Social Media.

atw: Wie ist die Situation in der JG, Herr

Gremme? Sie haben eben ja bereits die

Benefits einer Mitgliedschaft angesprochen.

Möchten sich junge Leute in Ihrer Freizeit überhaupt noch

berufsnah einbringen?

Gremme: In dieser Generation, zu der ich laut Geburtsjahr

auch zähle, wird viel Wert auf einen Ausgleich

zwischen beruflicher Tätigkeit und Freizeit gelegt. Der Job

ist hauptsächlich dazu da, die freie Zeit gestalten zu

können und ist vielleicht weniger Berufung oder Teil

dessen, womit man sich identifizieren möchte – letzteres

aber nur als Vermutung. Ich denke viele haben daher einen

Vor behalt gegenüber einer Aktivität in einem Verein wie

der KTG, da es der

beruflichen Tätigkeit

sehr nah ist.

Dies hängt vielleicht

auch damit zusammen,

dass man in

Die Frage nach unserem

„ Mehrwert“ müssen wir

zukünftig noch besser und mit

mehr „ Inhalt“ beantworten.

KTG Inside


atw Vol. 64 (2019) | Issue 4 ı April

unserer multimedialen Welt mit Informationen und

Benachrichtigungen überschwemmt wird. Viele Prozesse

laufen zudem beschleunigt ab, wodurch im Vergleich zu

früher mehr in gleicher Zeit erledigt werden kann und

muss. Vielleicht ist das ein Faktor, weshalb sich jemand aus

der „Generation Y“ vor einer weiteren berufsnahen

Aktivität scheut.

Dabei lernt man im Vereinsleben und bei der Vereinsarbeit

eine Menge, was einem sowohl beruflich als auch

privat helfen kann. Wesentliche Benefits einer Mitgliedschaft

in der KTG sind zum einen das Netzwerk, ganz

einfach durch das Kennenlernen

anderer Menschen, der fachliche Austausch

und auch die Methoden und

Abläufe, die man z. B. bei der Organisation

von Aktivitäten lernt.

Wir versuchen jungen Leuten

genau diese Vorteile aufzuzeigen und

sie durch die nahbare Darstellung

unserer Aktivitäten davon zu über zeugen. Hier spielt sich

viel auf zwischenmenschlicher Ebene ab und dadurch

kann man auch neue Inte ressenten gewinnen.

atw: Die kerntechnische Branche hat in den vergangenen

Jahrzehnten Höhen und Tiefen erlebt. Die Nutzung der Kernenergie

zur Stromerzeugung wird in Deutschland mit Ablauf

des Jahres 2022 Geschichte sein. Auf der anderen Seite zeigt

die Kerntechnik ihre viel fältigen wei teren Anwendungsmöglichkeiten.

Sei es die Grundlagen forschung zur Kernfusion,

wie sie beispielsweise in Greifswald stattfindet, oder

auch Anwendungen in Medizin, Industrie und Forschung.

Spüren Sie, Herr Gremme, dass sich bei der JG das Interessengebiet

der Mitglieder diesbezüglich ändert?

Gremme: Einen wirklichen Ruck einer Änderung des

Interessengebiets der JG habe ich bisher nicht gespürt.

Viele JG-Mitglieder kommen beruflich bedingt aus dem

Gebiet der energetischen Nutzung der Kerntechnik. Das

heißt allerdings nicht, dass kein Interesse für Themen

wie die Nutzung der Kerntechnik in der Medizin oder

forschungsorientierte Themen wie Fusionstechnologie

besteht. Von den Teilnehmern unserer Nachwuchstagung

kam hier positives Feedback bzgl. der Themenauswahl.

Allerdings müssen wir feststellen, dass insgesamt die

Resonanz für Aktivitäten nachlässt. Hierfür kann es verschiedene

Gründe geben und wir ver suchen herauszufinden

welche dies sind. Zum einen werden wir älter,

wodurch interessierte und aktive JG-Mitglieder die JG

altersbedingt verlassen und die Gewinnung neuer

Mitglieder zuletzt leider schwer ist. Hier müssen die

Benefits einer Mitgliedschaft deutlicher gemacht und zielgruppenorientierter

platziert werden, um die Faszination

Kerntechnik zu vermitteln.

| | Dr. Florian Gremme, Sprecher der Jungen Generation

Wir Mitglieder der KTG

wollen gemeinsame Werte

schaffen, uns verbindet die

gemeinsame Identität: der

„Faszination Kerntechnik“.

atw: Und wie sieht es bei der KTG im Allgemeinen aus,

Herr Apel? Einige Mitglieder sind ja quasi seit der ersten

Stunde mit dabei. Wie werden sich die Mitglieder zukünftig

identifizieren?

Apel: Die KTG ist eine wissenschaftlich-technische Vereinigung,

unser Verein ist die „Heimat“ der in der Kerntechnik

in Deutschland Beschäftigten. Wir legen unseren

Fokus nicht auf Presse- und Öffentlichkeitsarbeit, dieses

Feld wird durch das DAtF abgedeckt. Wir Mitglieder der

KTG wollen gemeinsame Werte schaffen, uns verbindet

die gemeinsame Identität: der „Faszination Kerntechnik“.

Die Anwendungsfälle der Kerntechnik

sind mannigfaltig. Oft denken wir nur an

Kernkraftwerke, deren Betrieb oder den

Rückbau sowie die damit verbun denen

Entsorgungsfragen. Aber da gibt es noch

viele weitere Anwendungs fälle außerhalb

der Energiewirtschaft z. B. in der Medizin

oder der Werkstofftechnik. Schauen Sie

sich den Film „Viel könner Kerntechnik“ an und lassen Sie

sich von unserer Faszination anstecken.

atw: Sie haben es gerade angesprochen. Die Hauptaufgabe

eines wissen schaftlich-tech nischen Vereins besteht zweifelsohne

darin, kritischer Förderer der von ihm vertretenen

Wissenschaft und Technik zu sein. Die Diskussionen um

die Verantwortbarkeit der Kernenergie haben im Laufe

der Zeit Dimensionen erreicht, die es den KTG-Mitgliedern

immer schwerer machen, sich aus entsprechenden poli tischen

Diskus sionen herauszuhalten. Wie geht die KTG damit um?

Gremme: Aus meiner Sicht sollten wir als KTG vorsichtig

mit politischen Statements sein, da unsere Hauptaufgabe

als Verein, wie Sie in der Frage bereits formuliert haben,

nicht Politik ist. Nichtsdestotrotz kann und sollte die KTG

mit großem Know-How in den eigenen Reihen und als

großer kerntechnischer Verein einzelner Personen in

Deutschland Gebrauch seiner Stimme machen und faktenorientierte

Statements zu energietechnischen Entwicklungen

geben. Man muss allerdings deutlich darauf

achten, nicht in politische Orientierungen oder Parteiprogramme

gerückt zu werden.

Apel: Die KTG beabsichtigt auch weiterhin keine politische

Positionierung. Eine zielorientierte Kommunikation,

mit „Mehrwert“ für unsere Mitglieder, muss

die Attrak tivität unseres Verbandes verbessern. Wir

werden in der Zukunft unseren technisch fundierten

Standpunkt zu aktuellen Themen deutlich und ohne politische

Polemik in unseren KTG-Foren, wie dem Internet

oder der atw kundtun. Auch wenn „WIR“ in der KTG sehr

verschieden sind, haben „WIR“ gemeinsame Interessen

und Ziele. Und dazu müssen „WIR“ unseren Dialog

untereinander aber auch mit unseren „Brüdern im Geiste“

verbessern.

Auch wenn ein großer Teil unserer Mitglieder noch

im Arbeitsleben steht, müssen wir – mit unserer privaten

Mitgliedschaft in der KTG – nicht zwangsläufig nur

die Interessen unserer Arbeitgeber-Firmen vertreten,

sondern wir können über den Tellerrand herausschauen.

So habe ich auf der vorletzten Mitgliederversammlung

der KTG meine persönlichen Ansichten zur Kerntechnik

vorgestellt:

pp

Ich bin für eine Laufzeitverlängerung der europäischen

Atomkraftwerke im Sinne einer „Unterstützung der

Energiewende“ – wenn eben z. B. die Stromtrassen

doch nicht so schnell fertig werden – und einem „Mittel

zur CO 2 -Reduzierung“.

pp

Ich bin für einen Neubau von Kernkraftwerken z. B. der

nächsten Generation in Deutschland und Europa. Dies

229

KTG INSIDE

KTG Inside


atw Vol. 64 (2019) | Issue 4 ı April

230

KTG INSIDE

müssen aber unsere Kinder und Enkel – also die

nächste(n) Generation(en) – auch so wollen.

pp

Ich bin für einen effizienten und zügigen Rückbau der

abgeschalteten Anlagen in Deutschland.

pp

Ich bin für eine freie, breite und ausreichend ausgestattete

Grundlagen- und Anwendungsforschung zu

allen kerntechnischen Fragestellungen.

pp

Ich bin für eine fortgesetzt aktive konstruktive Beteiligung

Deutschlands an internationalen Entwicklungen

in der Kerntechnik und der Einbringung des deutschen

Know-hows und der deutschen Standards in die internationale

Sicherheitsentwicklung.

atw: Gerade ihr letzter Punkt scheint bei den KTG- Mitgliedern

ebenfalls von großem Interesse zu sein. Der im vergangenen

Jahr neu gegründeten Fachgruppe „Inter nationale Entwicklung

innovativer Reaktorsysteme“ haben sich direkt weit über

200 Mitglieder angeschlossen. Wie wird die KTG ihren Blick

künftig international ausrichten?

Apel: Es gibt gute Gründe, die internationale Entwicklung

innovativer Reaktorsysteme, der Fusionstechnologie oder

aber innovativer Entsorgungstechnologien – auch außerhalb

Deutschlands – zu verfolgen:

Ein vollständiger Ausstieg aus der Kernenergie ist international

die große Ausnahme und nicht die Regel. Der

deutsche Verzicht auf Stromerzeugung

aus Kernenergie ist

nicht mit einem völligen Ausstieg

aus der Technologie gleichzusetzen,

noch haben wir einen

fortlaufenden Betrieb und den

sicheren Nachbetrieb der Anlagen vor uns. Es gibt kommende

Aufgaben beim Rückbau der Kernkraftwerke und

der Entsorgung der Abfälle.

Deutschland ist ein Land der Spitzenforschung, das

Forschungsreaktoren betreibt und in internationalen

Nuklearforschungsprogrammen mitarbeitet. Deutschland

hat einzigartige wissenschaftliche und industrielle Fähigkeiten

in der Kerntechnik zu deren langfristigen Erhalt

eine ausreichend große kritische Masse von deutschen

Herstellern, ihren Zulieferern und Dienstleistern notwendig

ist. In unserem Land wurden und werden die verlässlichsten

Kernkraftwerke und kerntechnischen Anlagen

betrieben, nicht zuletzt, weil eine jahrzehntelange

kritische Diskussion über die Kernenergie zu sehr hohen

Sicherheitsstandards und zu einer hoch entwickelten

Sicherheitskultur geführt hat. Auf dieser Grundlage setzt

sich die Bundesregierung in der EU und weltweit für ein

hohes nukleares Sicherheitsniveau ein. Dieses Interesse

wird langfristig bestehen, da die Mehrzahl der anderen

Staaten, die Kernenergie nutzen, keinen Ausstieg anstreben.

Ohne eine eigene kerntechnische Industrie, die in

eine entsprechende Forschungslandschaft eingebettet ist,

wird es aber nicht möglich sein, weiter eine treibende Kraft

kerntechnischer Sicherheit weltweit zu sein.

Gremme: Ich unterschreibe die Ausführungen von Herrn

Apel und denke, dass die Entwicklung dieser Fachgruppe

unterstreicht, dass die KTG-Mitglieder an der Faszination

Kerntechnik und an zukünftigen Perspektiven interessiert

sind. Als JG sind wir im Wesentlichen durch zwei Netz werke

international verknüpft. Dies ist zum einen das Young

Generation Network (YGN) der European Nuclear Society

(ENS) und zum anderen der International Youth Nuclear

Congress (IYNC), eine Konferenz, die mit weltweiter

Beteiligung organisiert wird und auch weltweite Teil nehmer

hat. Der nächste IYNC findet im Jahr 2020 in Australien

statt. Sowohl hier als auch auf der Europäischen Konferenz

des YGN, dem European Nuclear Young Generation Forum

Ein vollständiger Aus stieg aus der

Kernenergie ist international die

große Ausnahme und nicht die Regel.

(ENYGF), planen wir, als KTG JG vertreten zu sein und

ermutigen die JG-Mitglieder daran teilzunehmen. Das

ENYGF findet dieses Jahr vom 23. bis 27. Juni in Gent statt.

Das sogenannte Core Committee des ENS YGN trifft

sich dreimal im Jahr, um sich über die nationalen

Aktivitäten zu informieren und gemeinsame Aktionen zu

organisieren. Hier vertreten wir unsere Interessen und

wirken an der Planung von Aktivitäten mit. Zudem

nehmen wir hierdurch an Aktionen wie dem Nuclear Pride

Fest oder den Weltklimakonferenzen teil. Hier unterstützen

wir z. B. die Initiative „Nuclear for Climate“.

atw: Herr Gremme, Sie haben mehrjährige Erfahrung in der

Forschung im kerntechnischen Bereich, genauer gesagt

in der Reaktorsicherheitsforschung, an der Ruhr- Universität

Bochum vorzuweisen. Damit gehören Sie zu jenem Personenkreis,

dessen Arbeit die Bundes regierung jüngst in ihrem

Energie forschungsprogramm als wichtig erachtet. Was

würden Sie einem jungen Menschen, der sich für eine Karriere

in der Kerntechnik interessiert, mit auf den Weg geben?

Gremme: Ich denke, dass man in der Kerntechnik viele

faszinierende Bereiche eines Maschinenbaustudiums

vertieft bearbeitet und diese in vielen Bereichen sowohl der

Forschung als auch der Industrie direkt anwenden kann.

Die Kerntechnik stellt immer noch Hightech der thermischen

Energieumwandlung dar.

Wenn man sich also für Thermodynamik,

Wärme- und Stoffübertragung

und/oder Strömungsmechanik

interessiert, findet man

diese Thematiken an vielen Stellen

in der Kerntechnik wieder, z. B. bei der Modellierung von

Wärmeüberträgern oder atmosphärischer Strömungen. In

der Reaktorsicherheitsforschung geht es im Speziellen zum

einen um die Modellierung von Phänomenen die während

eines Störfalls in Kernkraftwerken auftreten können. Die

auf tretenden Phänomene, wie Oxidationen, also chemische

Reaktionen, Wärmeüber tragungs- und Strö mungs prozesse

als auch Verlagerung von Materialien treten dabei z. T. stark

in Wechselwirkung. Dadurch lernt man viel über die Einzelphänomene,

bekommt aber vor allem auch einen integralen

Blick für die Einflüsse der Pro zesse untereinander. Ich

denke, durch diese umfäng lichen vertieften Betrachtungen

wird man auch bestens ausgebildet, das Gelernte auf andere

Bereiche der Energietechnik zu übertragen.

Zum anderen werden in der Reaktorsicherheits -

forschung aber auch neue Systeme entwickelt, die zur

Wärmeabfuhr aus dem Brenn elementlagerbecken eingesetzt

werden können. Weiterhin werden Sicher heitsanalysen

und Wirksamkeitsbetrachtungen von Maßnahmen

zur Prävention und Mitigation von Störfällen

durchgeführt, indem gesamte kerntechnische Anlagen

simuliert werden. Dabei lernt man viel über Regelwerke

Heruntergebrochen

ist eine Karriere in den

Themenfeldern der

Kerntechnik mit der

Verknüpfung zur

„ Industrie 4.0“ ein

zukunftsorientierter Weg.

und Störfallmanagement.

Viele dieser Betätigungsfelder

beinhalten dazu wie

bereits erwähnt Programmierung

und Modellierung.

Hierbei erlernt man das Handwerkszeug

der Digita lisierung

für viele Fragestellungen der

„Industrie 4.0“. Heruntergebrochen

ist eine Karriere in

den Themen feldern der Kerntechnik

mit der Verknüpfung zur „Indus trie 4.0“ ein

zukunftsorientierter Weg. Diese Benefits müssen allerdings

gemeinsam von Industrie, Forschung und Politik positiv

beleuchtet und an Schüler und Studierende herangetragen

KTG Inside


atw Vol. 64 (2019) | Issue 4 ı April

werden, damit der politisch gewollte Kompetenzerhalt auch

erreicht werden kann.

atw: Die KTG ist seit 50 Jahren Anlaufstelle für die Mitarbeiter

der kerntechnischen Branche in Deutschland. Von

163 Gründungsmitgliedern ist deren Zahl auf etwa 2000

Mitglieder gestiegen. Das Jubiläum möchten wir natürlich

auch als Gelegenheit nutzen, nach vorne zu blicken. Wie

sehen Sie beide die Zukunft der KTG?

Gremme: Zunächst möchte ich der KTG alles Gute zu

Ihrem 50. Geburtstag wünschen und hoffe, dass noch viele

runde Geburtstage gefeiert werden können. Zuletzt sind

die Mitgliederzahlen leider rückläufig, da wünsche ich

mir für die Zukunft der KTG, dass diese Entwicklung

aufge halten werden kann und sich stabile Mitgliederzahlen

einstellen. Generell sehe ich der Zukunft der KTG

positiv entgegen, da ich denke, dass dieser wissenschaftlich-

technische Verein in Deutschland eine zentrale Rolle

beim Kompetenzerhalt, auch für die politischen Ziele, einnehmen

kann. Dafür ist eine stärkere Zusammenarbeit

und Verknüpfung zwischen Industrie, Forschung und

Politik notwendig – ein gemeinsames Konzept muss

her, um den kerntechnischen Aufgaben in Deutschland

begegnen zu können. Hierfür bieten wir, die JG der KTG,

gerne unsere Unterstützung an.

Apel: Diesen Glückwünschen schließe ich mich natürlich

an. Kerntechnik „Made in Germany“ war in der Vergangenheit

ein Aushängeschild unserer Branche und wird es

bleiben, die Anwendungsfälle werden sich weiter verändern,

Schwerpunkte werden sich verschieben. Kerntechnik

als Einheit von Wissenschaft (der Lehre und der

Forschung) und Technik (Betreiber, Zulieferer) aber auch

unsere Gutachter und Behörden haben als wichtigstes Gut

(neudeutsch Asset) den Mitarbeiter, den Fachmann, den

Experten. Und dies wird für die nächsten Jahre so bleiben.

Wenn wir beim Erhalt und der Neugewinnung unserer

Mitglieder gute Antworten auf die Frage „Was ist drin

für mich“ finden, schaue ich in eine erfolgreiche Zukunft

der KTG.

231

KTG INSIDE

KTG

Wichtige Terminhinweise in eigener Sache

Ankündigungen zum Vortag unserer diesjährigen Jahrestagung, dem 50 th Annual Meeting on Nuclear Technology

(AMNT 2019) vom 7. bis 8. Mai 2018 im Estrel-Hotel, Berlin:

33

KTG-Mitgliederversammlung

• Wann? Montag, 6. Mai 2019, 17:00 Uhr

• Wo? Estrel Convention Center, Paris,

Sonnenallee 225, 12057 Berlin

33

Get-together der KTG (auch für Nicht-Mitglieder)

• Wann? Montag, 6. Mai 2019, 19:00 Uhr

• Wo? Estrel Convention Center, Große Galerie,

Sonnenallee 225, 12057 Berlin

Herzlichen Glückwunsch!

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag

und wünscht ihnen weiterhin alles Gute!

Mai 2019

50 Jahre | 1969

14. Jens-Michael Hövelmann, Jülich

55 Jahre | 1964

18. Martin Franz, Erlangen

60 Jahre | 1959

18. Peter Klopfer, Neckarwestheim

75 Jahre | 1944

12. Peter Faber, Rödermark

76 Jahre | 1943

3. Dipl.-Ing. Hans Lettau, Effeltrich

76 Jahre | 1943

22. Wolfgang Schütz, Bruchsal

24. Dipl.-Ing. Rudolf Weh, Stephanskirchen

77 Jahre | 1942

5. Hans-Bernd Maier, Aschaffenburg

9. Dr. Egbert Brandau, Alzenau

11. Dr. Erwin Lindauer, Köln

17. Dr. Heinz-Peter Holley, Forchheim

28. Dr. Wolf-Dieter Krebs, Bubenreuth

78 Jahre | 1941

8. Prof. Dr.-Ing. Helmut Alt, Aachen

79 Jahre | 1940

15. Dipl.-Phys. Ludwig Aumüller, Freigericht

24. Dipl.-Ing. Herbert Krinninger,

Bergisch Gladbach

80 Jahre | 1939

4. Dipl.-Ing. Norbert Albert, Ettlingen

81 Jahre | 1938

13. Dipl.-Ing. Otto A. Besch, Geesthacht

13. Dr. Heinrich Werle, Karlsdorf-Neuthard

16. Dr. Hans-Dieter Harig, Hannover

21. Dr. Hans Spenke, Bergisch Gladbach

82 Jahre | 1937

6. Dr. Peter Strohbach, Mainaschaff

26. Dipl.-Ing. Rüdiger Müller, Heidelberg

27. Dr. Johannes Wolters, Düren

28. Dipl.-Ing. Heinz E. Häfner, Bruchsal

84 Jahre | 1935

8. Dipl.-Ing. Klaus Wegner, Hanau

22. Dr. Heinz Vollmer, Lampertheim

29. Dipl.-Ing. Karlheinz Orth, Marloffstein

85 Jahre | 1934

11. Dr. Eckhart Leischner, Rodenbach

14. Dr. Alexander Warrikoff, Frankfurt/Main

26. Dr. Günter Kußmaul, Manosque/FR

86 Jahre | 1933

4. Dr. Klaus Wiendieck, Baden-Baden

25. Dr. Reinhold Mäule, Walheim

89 Jahre | 1930

9. Dr. Hans-Jürgen Hantke, Kempten

91 Jahre | 1928

10. Dr. Heinz Büchler, Sankt Augustin

95 Jahre | 1924

22. Prof. Dr. Fritz Thümmler, Karlsruhe

Wenn Sie künftig eine

Erwähnung Ihres

Geburtstages in der

atw wünschen, teilen

Sie dies bitte der KTG-

Geschäftsstelle mit.

KTG Inside

Verantwortlich

für den Inhalt:

Die Autoren.

Lektorat:

Natalija Cobanov,

Kerntechnische

Gesellschaft e. V.

(KTG)

Robert-Koch-Platz 4

10115 Berlin

T: +49 30 498555-50

F: +49 30 498555-51

E-Mail:

natalija.cobanov@

ktg.org

www.ktg.org

KTG Inside


atw Vol. 64 (2019) | Issue 4 ı April

232

NEWS

Top

IAEA: Member states discuss

modelling human resource

development for nuclear

power

(iaea) Modelling human resource

development can be an effective tool

to assist nuclear newcomer countries

in understanding the required competencies

and workforce needed to

establish and maintain a safe, secure

and sustainable nuclear power programme.

The IAEA is providing a

modelling tool that can help countries

in planning and educating the

required human resources.

“Human resource development for

nuclear power requires a national

effort and will involve a Member

State’s government, education system,

existing nuclear organizations and

national utilities and industries,” said

Dohee Hahn, Director of the IAEA

Division of Nuclear Power. Planning

for this endeavor therefore requires

a comprehensive national analysis.

“Modelling is uniquely suited to

support this effort. The IAEA will continue

to assist Member States as they

examine their workforce.”

The IAEA provides helpful guidance

for Member States to survey their

workforce and educational systems to

identify and close gaps in their workforce

for nuclear power. One example

for its guidance and assistance is the

Nuclear Power Human Resource

(NPHR) Model, provided to Member

States for use in analyzing their

human resource development.

The NPHR modelling tool is a

system dynamics simulation of a

nuclear power programme and the

national nuclear workforce. The model

includes the educational tracks, training,

and career cycles for the workforce

supporting the owner/operator

organizations, the regulatory body,

and the construction workforce. The

tool is useful for providing a long perspective

look at the workforce to determine

any skill gaps that might present

risk to the programme. More than 14

Member States have so far been

trained in using the model.

Users of the modelling tool from

ten nuclear newcomer countries

(Egypt, Ghana, Kazakhstan, Kenya,

Morocco, Niger, Nigeria, Poland,

Saudi Arabia, Sudan, Turkey and

Uganda) gathered for the Technical

Meeting on Human Resource Development

Analysis and the Use of the

NPHR Modelling Tool for New Nuclear

Power Progammes, held from 12 to

15 February 2019 at the IAEA. In

addition, experts from operating

countries (France, Russia, the UK and

the USA) highlighted the status of

their nuclear workforce and the challenges

that every country may face.

Each of the embarking countries

presented results of their human

resource development studies and

explained how they used the model.

Most Member States indicated that

their national workforce studies were

directed by the nuclear energy programme

implementing organization

(NEPIO) and conducted with participants

from other relevant organizations.

The studies relied on data from

the national education system and the

national workforce.

Several Member States indicated

that modifications to the model were

needed to properly reflect their education

system. Participants reported on

additional modelling they did in their

countries to validate modelling results

and on national gaps that they had

identified as well as decisions made to

close them.

Main take-away points were the

identification of key events during

programme development with which

the human resource development

plan must be coordinated: the delivery

of a full scale simulator of a reactor

control room and the delivery of fuel

prior to commissioning. Participants

also discussed the other factors that

can affect the workforce requirements,

and the resources available to

embarking countries.

The model users highlighted that

working groups composed of representatives

from different national

organizations should support the

analysis and reiterated the need for a

national effort.

Human resource development

and the NPHR Model

Human resource development is one

of the 19 infrastructure issues identified

in the three-phased, comprehensive

IAEA Milestones Approach which

enables a sound programme development

process. It is an important component

for developing the nuclear

power infrastructure and must be

started at the earliest phases of a

nuclear power programme. Suitably

qualified and experienced workers are

required in every phase of the programme.

It can take more than a

decade to grow the required skills in

sufficient numbers for the organizations

that need them, and the resulting

workforce must be sustained

for the life time of the plant.

| | www.iaea.org

NEI: Why we should listen to

Bill Gates on nuclear energy

(nei) As the founder of one of the

world’s most recognized and successful

companies, Bill Gates receives a lot

of attention for what he says and does.

When Bill Gates talks, people listen.

And today, Bill Gates is talking about

nuclear energy.

In his 2018 year-in-review blog

post, Gates said: “Nuclear is ideal for

dealing with climate change, because

it is the only carbon-free, scalable

energy source that’s available 24 hours

a day.” But to Bill Gates, nuclear energy

is not just a technology that can

help us meet climate change goals; it

also can be used to reduce global poverty.

Gates believes that if we are able

to expand access to affordable and

clean electricity, it would drastically

improve living conditions for millions

and would ultimately be a huge step in

lifting those people out of poverty.

Gates has done more than just

write about the benefits of nuclear

energy. In 2006, he helped launch

TerraPower LLC, a nuclear reactor

design company that aims “to improve

the world through nuclear energy and

science.” In Gates’s view, investing in

advanced nuclear technology can help

America regain its position as the

global leader on nuclear energy while

fighting poverty and driving worldwide

decarbonization.

Nuclear is ideal for dealing with

climate change, because it is the only

carbon-free, scalable energy source

that´s available 24 hours a day.” – Bill

Gates on why he believes in the potential

of nuclear. https://bit.ly/2DSSXUS

As important as Bill Gates’ voice is to

the cause of promoting nuclear energy

as a critical solution to solving complex

global problems, he is hardly alone

among technology entrepreneurs. The

late Paul Allen, who was co-founder of

Microsoft Corp. with Bill Gates, also

championed the benefits of nuclear energy.

And Peter Thiel, the co-founder of

PayPal, Palantir Technologies and

Founders Fund, wrote a New York Times

op-ed arguing for adapting U.S. energy

policy to support a new atomic age.

Thiel wrote: “If we are serious

about replacing fossil fuels, we are

going to need nuclear power, so the

choice is stark: We can keep on merely

talking about a carbon-free world, or

we can go ahead and create one.”

Gates, Allen and Thiel are just a few

names of our nation’s most technologically

savvy business leaders who have

invested in promoting the value of

nuclear energy. And as more and more

organizations and environmental

News


atw Vol. 64 (2019) | Issue 4 ı April

Operating Results December 2018

Plant name Country Nominal

capacity

Type

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Month Year Since

commissioning

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Month Year Month Year

OL1 Olkiluoto BWR FI 910 880 744 680 983 7 001 022 261 655 208 100.00 88.25 99.05 87.24 100.58 87.82

OL2 Olkiluoto BWR FI 910 880 744 686 482 7 597 361 251 896 543 100.00 95.31 100.00 94.58 100.29 94.27

KCB Borssele PWR NL 512 484 744 379 826 3 514 770 161 721 689 99.47 79.32 99.46 79.00 100.03 78.49

KKB 1 Beznau 7) PWR CH 380 365 744 286 584 2 588 023 127 334 110 100.00 78.73 100.00 78.26 101.43 77.68

KKB 2 Beznau 7) PWR CH 380 365 744 285 074 3 185 534 134 350 407 100.00 96.40 100.00 96.28 100.84 95.62

KKG Gösgen 7) PWR CH 1060 1010 744 794 572 8 680 941 313 875 528 100.00 94.10 99.99 93.77 100.75 93.49

KKM Mühleberg BWR CH 390 373 744 283 870 3 066 170 127 404 315 100.00 92.84 98.80 92.01 97.83 89.75

CNT-I Trillo PWR ES 1066 1003 744 789 917 8 267 245 247 291 669 100.00 89.51 100.00 89.26 99.16 88.00

Dukovany B1 PWR CZ 500 473 729 362 664 3 599 011 112 229 493 97.98 83.36 97.06 82.84 97.49 82.17

Dukovany B2 2) PWR CZ 500 473 744 370 524 3 611 634 108 234 171 100.00 84.01 99.98 83.55 99.60 82.46

Dukovany B3 PWR CZ 500 473 161 70 038 3 875 614 106 498 041 21.64 90.72 21.25 90.37 18.83 88.48

Dukovany B4 PWR CZ 500 473 744 376 529 3 171 527 106 443 269 100.00 74.18 99.99 72.99 101.22 72.41

Temelin B1 PWR CZ 1080 1030 744 809 838 7 879 748 114 361 042 100.00 83.58 99.94 83.33 100.60 83.18

Temelin B2 PWR CZ 1080 1030 744 816 260 7 782 571 109 272 517 100.00 82.29 99.99 82.14 101.40 82.21

Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 30.83 0 30.81 0 30.91

Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 38.82 0 38.70 0 38.89

Doel 3 PWR BE 1056 1006 744 804 825 3 963 264 255 132 485 100.00 42.82 100.00 42.19 101.82 42.62

Doel 4 2) PWR BE 1084 1033 292 188 760 5 827 569 260 373 410 39.24 62.54 22.26 60.98 22.26 60.65

Tihange 1 PWR BE 1009 962 744 760 609 7 991 982 298 830 858 100.00 91.59 100.00 91.05 101.61 90.59

Tihange 2 3) PWR BE 1055 1008 0 0 5 702 393 254 651 930 0 62.33 0 61.67 0 62.04

Tihange 3 3) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 24.40 0 24.37 0 24.43

233

NEWS

Plant name

Type

Nominal

capacity

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Since Month Year Month Year Month Year

commissioning

KBR Brokdorf DWR 1480 1410 744 952 106 10 375 751 350 567 810 100.00 90.60 94.33 84.72 86.08 79.65

KKE Emsland 4) DWR 1406 1335 744 1 007 298 11 495 686 346 818 969 100.00 94.78 100.00 94.67 96.21 93.33

KWG Grohnde DWR 1430 1360 744 1 013 399 10 946 635 377 574 214 100.00 92.82 99.98 91.61 94.60 86.79

KRB C Gundremmingen SWR 1344 1288 744 1 005 494 10 361 862 330 941 755 100.00 90.41 100.00 89.85 99.93 87.51

KKI-2 Isar DWR 1485 1410 744 1 084 754 12 127 490 353 725 813 100.00 95.46 100.00 95.24 97.90 92.92

KKP-2 Philippsburg DWR 1468 1402 744 1 068 384 10 993 639 366 161 155 100.00 90.63 100.00 90.47 96.33 84.05

GKN-II Neckarwestheim 2) DWR 1400 1310 744 1 025 400 9 703 700 329 826 834 100.00 81.35 100.00 81.00 98.80 79.29

groups stand behind carbon-free

nuclear energy, the support for nuclear

has never been so vast and varied.

Some of the smartest thinkers of

our time are calling on us to see

nuclear energy for its potential to

change the world.

It’s time we listen.

| | www.nei.org

EU needs all low-carbon

sources to achieve its 2050

decarbonisation goals

(foratom) Reflecting on how low-carbon

technologies can help the European

Union achieve its 2050 decarbonisation

objectives and what the needs of the

industrial sector are when it comes to

increased electrification were the main

topics discussed during an event hosted

in Brussels by the Permanent Representation

of Romania to the EU and

organised in the context of the country’s

Presidency of the Council.

The event “Solutions for a 2050

Carbon- free Europe”, organised by the

Romanian Ministry of Energy in cooperation

with FORATOM and the Romanian

Atomic Forum (ROMATOM),

gathered together more than 100 representatives

of EU Member States, EU

institutions and power industries. The

conference provided participants with a

platform to exchange views on how

low-carbon technologies can together

contribute to reaching EU climate goals.

During his keynote speech, EU Commissioner

for Climate Action & Energy

Miguel Arias Cañete stated that by 2050

the deployment of renewables and a

stable share of nuclear energy is the solution

to make the European power sector

carbon- free. He also underlined that the

role of low-carbon technologies is essential

in reaching carbon-neutrality.

This approach was echoed by the

Ro manian Minister of Energy Anton

Anton, who – in his introductory speech

– reiterated that all low-carbon energy

sources need to be explored in the

future in order to ensure a sustainable

development of economy. He also stated

that Europe has already managed to

achieve a lot in this field, also thanks to

the contribution of nuclear energy.

Fabien Roques, Executive Vice President

of FTI Compass Lexecon Energy

presented in detail a recent study

entitled “Pathways to 2050: role of

nuclear in a low-carbon Europe”, commissioned

by FORATOM pro viding the

vision for the nuclear sector by midcentury.

According to the study,

nuclear energy provides an important

contribution to an efficient transition

towards a decarbonised European

power system as it can help ensure

compliance with EU emissions targets,

avoid temporary increase of emissions

and locking in fossil fuels investments.

The complementarity role of nuclear

for renewables was also emphasised.

*)

Net-based values

(Czech and Swiss

nuclear power

plants gross-based)

1)

Refueling

2)

Inspection

3)

Repair

4)

Stretch-out-operation

5)

Stretch-in-operation

6)

Hereof traction supply

7)

Incl. steam supply

8)

New nominal

capacity since

January 2016

9)

Data for the Leibstadt

(CH) NPP will

be published in a

further issue of atw

BWR: Boiling

Water Reactor

PWR: Pressurised

Water Reactor

Source: VGB

News


atw Vol. 64 (2019) | Issue 4 ı April

234

NEWS

This last notion was addressed by

Giles Dickson, CEO of WindEurope,

who referred to the recent analysis

published by the International Energy

Agency. According to the IEA, the

share of electricity generated by wind

power will reach more than 30%

globally by 2039. However, as pointed

out by Mr Dickson, the power sector is

not the only sector which needs to be

significantly decarbonised in the

coming years. The same challenges

will need to be addressed by the transport

and heating sectors.

One of the possible solutions to

achieve this goal is increased electrification

which will play a key role

in achieving a low-carbon future.

Eurelectric Secretary General Kristian

Ruby presented a recent study carried

out by the organisation, which focuses

on decarbonising the European Union

through strong electrification, energy

efficiency, and support from other

non-emitting fuels. Each of the scenarios

developed by the association

will allow the EU power sector to be

fully decarbonised by 2045 and in

each of them the bulk of electricity

will be provided by renewables and

nuclear energy. Mr Ruby mentioned

also the importance of system reliability

and flexibility, which need to

be provided by multiple sources in the

power sector, including hydro, nuclear

and gas, but also emerging sources

such as hydrogen or battery storage.

The issue of storage was discussed

by Peter Claes, Vice President of the

International Federation of Industrial

Energy Consumers. During his speech,

Mr Claes pointed to the importance of

security of supply for efficient, reliable

and safe operation. In this context, the

current capability of battery storage as

a backup to renewables does not

guarantee the continuous supply of the

electricity needed by the industry.

Other potential pathways to decarbonise

the power sector, listed by Mr

Claes, were renewables with gas,

nuclear energy and geothermal energy.

The potential nuclear pathway and

the role nuclear energy has to play in

decarbonising Europe was underlined

during a speech given by Nuclearelectrica

CEO and ROMATOM President

Cosmin Ghita. Mr Ghita stressed that

there is no decarbonisation without

nuclear energy, and all low-carbon

energy sources should be treated

equally as they are all needed to reach

the decarbonisation goal and help the

EU achieve its climate objectives.

During his closing remarks,

FORATOM Director General Yves

Desbazeille briefly presented the key

takeaways of the FTI study commissioned

by FORATOM, noting that keeping

a share of nuclear provides clear

environmental, social and economic

benefits. The long-term operation of

existing reactors is a must and more

needs to be done to trigger investment

in new nuclear reactors. He also identified

some actions which must be undertaken

by both the EU and industry

in order to ensure nuclear remains part

of the mix and can help Europe achieve

its decar bonisation targets.

He was followed by Gerassimos

Thomas, Deputy Director-General of

DG Energy, who stressed the fact that

energy mix included in the long-term

greenhouse gas emissions reductions

strategy is based on the feedback

received from the Member States.

According to the information received,

two low-carbon sources will make up

the EU electricity mix: renewables

(80%) and nuclear (15-20%). These

two energy sources should work together

and not against each other as all

low-carbon energy sources are needed

in order to achieve the EU’s climate

objectives. Other innovative technologies

should be developed and therefore

increased attention to the R&D sector

should be paid. Competitiveness

should be improved, as this has an

impact on all technologies. Waste,

decommissioning and encouraging

young people to join the nuclear industry

were also points highlighted by

Mr Thomas.

At the end of the event, Elena

Popescu, Director General, DG Energy

and Climate Change, Romanian Ministry

of Energy, drew attention to the specificities

of each country in terms of

availability of energy sources and the

need to adapt to specific conditions.

Electrification will play an important

role in achieving the mid-century decarbonisation

targets, as long as it is

based on low-carbon electricity sources.

| | www.foratom.org

World

EU and IAEA review progress

and agree on priorities in

nuclear cooperation at annual

meeting

(iaea) The International Atomic Energy

Agency (IAEA) and the European

Union (EU) reviewed progress achieved

in working together on a range of

nuclear activities and agreed to further

enhance cooperation during their

seventh annual Senior Officials Meeting,

in Luxembourg, this week.

The talks provided a forum for

exchanging views on strengthening

collaboration on nuclear safety, security,

safeguards and nuclear research,

innovation and training. In particular,

the two organizations took note of

progress they have made in cooperation

on nuclear safety and security, as

well as nuclear safeguards. The role of

nuclear energy in addressing climate

change, for those countries choosing

to use it, was among the topics raised

in the discussions.

“We took stock of important developments

in areas of common interest

and steered the direction of our

cooperation for the year ahead. The

EU is one of our most relevant partners

and its support for the IAEA’s

mandate and work is valued,” said

Cornel Feruta, Assistant Director General,

Chief Coordinator for the IAEA.

Nuclear safety and security remain

a major priority in the EU”, said

Gerassimos Thomas, Deputy Director

General in the Directorate-General for

Energy of the European Commission.

“In 2018, the EU completed its first

ever topical peer review on ageing

management of nuclear power plants

and research reactors under the

amended Nuclear Safety Directive.”

To support continuous safety improvements,

the EU would continue

to support the IAEA’s peer review services

IRRS and ARTEMIS, which were

being widely used by EU Member

States to fulfil their legal obligations

on nuclear safety and waste management.

Developments related to Small

Modular Reactors (SMRs), in particular

regulatory aspects, were also

discussed.

EU support for a variety of IAEA

activities has delivered consistent and

concrete results over the past year.

Officials commended the long-standing

and fruitful cooperation under the

Instrument for Nuclear Safety Cooperation

and in the Regulatory Cooperation

Forum. Joint efforts to address

environmental remediation in Central

Asia will continue following the successful

donors’ conference in 2018.

The EU reiterated its support for

the IAEA’s role in verifying and monitoring

the implementation of Iran’s

nuclear-related commitments under

the Joint Comprehensive Plan of

Action (JCPOA).

During the talks, the EU and the

IAEA agreed to further strengthen

cooperation in training as well as

research and development. In this

context, they welcomed progress

in advancing activities on nuclear

applications under the Practical

News


All results are from a survey of 2,061 people, conducted on behalf of the Nuclear Industry Association by YouGov, 29 November to 6 December2018

atw Vol. 64 (2019) | Issue 4 ı April

Arrangements over the second year of

their implementation.

The EU reaffirmed its support for

the IAEA’s 2018-2021 Nuclear Security

Plan, highlighting the importance of

the universalisation and implementation

of the Amendment to the Convention

on the Physical Protection of

Nuclear Material (A/CPPNM). Implementation

of the EU Council Decisions

in support of IAEA’s activities on

nuclear security was also discussed.

The two sides also reviewed cooperation

on technical matters in the field of

nuclear security.

Officials reviewed progress on the

implementation of nuclear safeguards

in EU Member States and on the European

Commission Safeguards Support

Programme to the IAEA.

The next Senior Officials Meeting

is expected to take place in Vienna in

early 2020

| | www.iaea.org

Did you miss the NEA webinar

on the true costs of decarbonisation?

(nea) The NEA hosted a webinar on

17 January to preview the findings

from the report The Costs of Decarbonisation:

System Costs with High

Shares of Nuclear and Renewables.

The webinar featured introductory

remarks by the OECD Secretary-

General Ángel Gurría and NEA

Director- General Magwood, who led a

discussion on the importance of

system costs in assessing the overall

costs of the energy transitions under

way. If you missed the live webcast,

the video recording is available at

oe.cd/nea‐system‐costs‐webinar‐2019

| | www.oecd-nea.org

Nuclear Industry Association

publishes 2018 public polling

(niauk) New research, carried out for

the Nuclear Industry Association by

YouGov has revealed what the public

thinks about nuclear energy.

The 2018 polling data has found

that 72% of people support nuclear as

part of a low carbon energy mix. In

addition, nuclear is seen as the most

secure for keeping the lights on, with

35% agreeing it is the most secure, followed

by 16% for solar, and 13% for

gas and offshore wind respectively.

The 2008 Climate Change Act established

a legally binding climate

change target aiming to reduce the

UK’s emissions by at least 80% by

2050. However, the research showed

that 73% of people agreed the government

should be doing more to combat

carbon emissions.

When asked about small reactors,

two in five of those asked agreed that

they could play a role in tackling climate

change, and 45% agreed they

could increase energy security.

The research also showed nuclear

is considered the best for job creation

and investment, when compared to

other energy sources.

| | www.niauk.org

Reactors

NIA Polling:

What the public think

YouGov, on behalf of the Nuclear Industry Association, has carried out polling to find

out what the public think about nuclear. Here are the findings of the 2018 research.

More people support nuclear as

part of a low carbon energy mix

Nuclear energy is ranked highest

for job creation and investment

Nuclear Industry Association is a company limited by guarantee registered in England No. 2804518.

Registered Office: 5 th Floor, Tower House, 10 Southampton Street, London WC2E 7HA

Nuclear energy is seen

as most secure for

keeping the lights on

Most agree government

should be doing more to

combat CO 2 emissions

45% agree, SMRs

could increase

energy security

Two in five agree

SMRs could tackle

climate change

Men favour new build

more than women

NIAUK.ORG

| | Nuclear Industry Association publishes 2018

public polling

40 years after Three Mile Island,

nuclear plants are among the

safest U.S. Facilities

(nei) March 28 marks 40 years since

the accident that damaged the core of

the Three Mile Island (TMI) 2 nuclear

reactor. The event was caused by a

combination of equipment failure and

the inability of plant operators to

understand the reactor’s condition at

certain times during the event.

The TMI accident was a cultural

touchstone for the nation and a turning

point for the industry. And while there

were no reported injuries or adverse

health effects from the accident, our

industry learned crucial lessons from

that day and has continued to enhance

the safety of our plants year after year.

As a result, safety is in the DNA of

every U.S. nuclear plant. By a variety

of metrics – rate of human error, worker

injury or equipment failure, number

of unplanned shutdowns and level

of occupational exposure – plant operations

are smooth, stable and smart.

Nuclear plants pursue excellence

All companies operating power reactors

have adopted a shared safety model

and formed an independent safety

organization, the Institute of Nuclear

Power Operations, to perform frequent

in-depth audits of all the reactors including

peer audits, in which operators

of similar plants travel from site to site

to critically examine each other’s practices,

successes and challenges.

Additionally, plant executives brief

each other on their malfunctions, personnel

errors and other events and

critique each other’s approach to operations.

The plants still adhere to a strict

code of regulations from the U.S.

Nuclear Regulatory Commission, but

the peer-to-peer interactions are more

comprehensive and promote a level of

safety and excellence in operations far

beyond what the government requires.

In fact, the Electric Power Research

Institute (EPRI) found that the risks

posed to public health and safety from

nuclear plants are much lower than

previously understood. While studies

in the 1980s and 1990s showed plants

had operated at a relatively modest

margin of safety, a recent EPRI study

shows that U.S. plants are nearly 100

times more safe than the NRC’s own

safety goals.

Nuclear plants are well-run

Highly trained experts run America’s

98 nuclear plants. With the NRC’s oversight

and layers of safety precautions, a

nuclear plant is one of the safest industrial

environments in the United States.

Plant workers are well- qualified: Reactor

operators must hold federal licenses

that require extensive training to

obtain and they typically spend one

week out of every five in training.

Following the accident at Three

Mile Island 2, the industry formed the

National Academy for Nuclear Training

to promote the highest levels of training

program excellence and consistency

across the industry. Every four

years nuclear power plants are required

to demonstrate high standards in their

training programs to maintain program

accreditation by the academy.

Plants also have training simulators,

which are exact duplicates of control

rooms, but connected to a computer,

not a reactor. That allows the operators

to practice responses to postulated accidents

that cannot be run on a real reactor,

similar to jet pilots who practice

engine failures or instrument malfunctions

on a simulated airliner.

Nuclear plants have evolved

since 1979

Innovation drives the nuclear industry.

These plants may look the same

on the outside, but throughout their

operation, they are continuously

235

NEWS

News


atw Vol. 64 (2019) | Issue 4 ı April

236

NEWS

* The Loviisa nuclear

power plant consists

of two pressurized

water reactors with

an installed net

capacity of 507 megawatt

each. It is situated

on the south

coast of Finland.

Loviisa 1 started

commercial operation

in 1977, Loviisa 2

followed in 1980.

upgraded with the latest technology

and monitored for optimal

performance.

By the time a facility seeks to

extend its operating license with

the NRC beyond 40 years –

because of improvements to

turbines, pumps, instrumentation

and other components – the

plants are extensively updated.

Through equipment upgrades,

many plants have been

able to raise the amount of

power they produce. These

improvements, along with other efficiencies,

have helped plants spend

more time generating elec tricity. The

average capacity factor for all nuclear

plants in 2018 was 92.3 percent,

which means that the plants were

almost always up and making electricity.

In contrast, in the 1970s,

reactors on average operated less than

60 percent of the hours in a year.

The industry has not stopped

improving either, as it continues to

develop advanced technology like

accident-tolerant fuels, which could

further boost plant performance,

increase safety and reduce costs.

Nuclear plants are prepared for

the worst

The operators at every nuclear plant

prepare detailed plans with one goal

in mind: to protect their communities

and employees.

These plans meet requirements

set by the NRC and the Federal

Emergency Management Agency. Plant

workers conduct training and drills

every month, and every two years they

test their plans with state and local

government agencies and the NRC.

Emergency plans are also updated

based on emerging issues. After the

terrorist attacks of Sept. 11, the

industry re-evaluated its plans to cover

a broader array of unforeseen events.

Additionally, after the Fukushima accident

in 2011, the industry stationed

more backup safety equipment at

plants and regional depots. The FLEX

strategy made about 1,500 pieces of

additional equipment, from nozzles to

generators, available to every nuclear

plant in case of an emergency.

Nuclear plants don’t just provide

more than 55 percent of carbon-free

electricity in the United States. They

also are among the safest and most

secure industrial facilities in the

country. And 40 years after the

accident at Three Mile Island, nuclear

energy remains the safest and cleanest

form of baseload power generation.

| | www.nei.org

| | Framatome. Innovation: Robotics

Company News

Framatome.

Innovation: Robotics

(framatome) They go by names such as

Charli, Eloise, Pelican or Forerunner

and they’ve joined the ranks at

Framatome to lend their iron hands to

our teams and our customers’ teams.

These robotic collaborators significantly

improve safety in the field and

enhance the performance of operations.

They are the illustration of our

innovation approach, aiming to offer

safe and increasingly competitive

nuclear energy.

Driven by major technological

advances, these robots represent years

of productive, collective research and

development. Experience some of this

innovation in action: from the Saint-

Marcel plant, where operators use robotic

arms to facilitate strenuous work

and reduce occupational risk, through

to dismantling of the Superphénix reactor,

where the laser robot Eloise has

become quite simply… indispensable.

Available in a variety of models,

SUSI can examine most reactor coolant

system components as well as reactor

pressure vessel, reactor pressure vessel

head, pumps, pressurizers and piping

in nuclear power plants worldwide.

SUSI also performs visual ultrasonic

inspections of baffle bolts. Plus,

it can serve as a gripping device to

retrieve foreign objects. In addition,

the robot can be calibrated under water

at any time during the inspection.

A separate satellite camera system

can be deployed with SUSI or on its

own to further enhance inspection

results in hard-to-reach areas.

| | www.framatome.com

Finland: Framatome successfully

completes modification

of Loviisa nuclear power

plant’s Control rod instrumentation

& control system

Framatome has successfully modified

the Preventive Protection System (PPS)

at the Loviisa* nuclear power plant,

operated by the Finnish utility Fortum.

The Preventive Protection System uses

control rods to monitor the reactor

power and contributes to the safe operation

of the plant. Implemen tation of

the PPS is part of the modernization of

the plant’s I&C system.

The project started in 2016 when

Fortum awarded Framatome the

contract for the PPS and included the

modification of the TELEPERM XS

technology, originally delivered by

Framatome in 2008 (Unit 1) and 2009

(Unit 2).

Framatome’s I&C teams prepared

the required documentation, designed

and engineered the system modification

and performed the final testing,

installation and commissioning on site

during the 2018 outage. These tasks

are essential for the functionality of

the entire system and are also mandatory

for obtaining the licensing by

the Finnish safety authority STUK.

A joint team approach and close

cooperation between Framatome and

Fortum at all stages of the project

were key to ensuring successful completion

on time and to budget.

“This successful modification

project proves Framatome’s ability to

provide I&C upgrades to different

reactor types worldwide. Our

TELEPERM XS I&C system is well

known to Finnish operators and the

authority STUK which is a perfect

basis for further projects”, said

Frédéric Lelièvre, Senior Executive

Vice President in charge of Sales,

Regional Platforms and the Instrumentation

and Control Business Unit

at Framatome.

| | www.framatome.com

GNS: Package design approval

for CASTOR® MTR3

(gns) On 17 January 2019, the German

Federal Office for the Safety of Nuclear

Waste Management (Bundesamt

für kerntechnische Entsorgungssicherheit/BfE)

issued the package design

approval certificate for the transport

and storage cask CASTOR® MTR3 as

type B(U)F packaging. The cask was

developed by GNS Gesellschaft für

Nuklear-Service mbH especially for

spent fuel elements from research

reactors. The approval complies with

the internationally valid regulations

of the International Atomic Energy

Agency (IAEA) for the safe transport

of radioactive materials.

The CASTOR® MTR3 will initially

be used for the transport and storage

of spent fuel elements of the research

reactor FRM II of the TU Munich. In

addition, the cask will be able to

News


atw Vol. 64 (2019) | Issue 4 ı April

accommodate further fuel assembly

types from other research reactors

(e.g. TRIGA, MTR) with the use of

individually adapted fuel baskets.

The casks, which are about 160 cm

high and weigh 16 t, essentially consist

of a body made of ductile cast iron, a

basket for accommodating the fuel

elements and a double lid system

with metallic sealings. These design

features ensure safe containment the

radioactive materials both during

transport and subsequent storage.

The comparatively small CASTOR®

MTR3 casks are made of the same

materials and have the same design

features and safety functions as

the CASTOR® casks from GNS for

fuel assemblies from commercial

power plants, which are up to four

times larger and have already

proven their reliability well over 1000

times.

| | www.gns.de

Uranium Prize range: Spot market [USD*/lb(US) U 3 O 8 ]

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

Year

Yearly average prices in real USD,

base: US prices (1982 to1984) *

1980 1985 1990 1995 2000 2005 2010 2015 2019

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019

Separative work: Spot market price range [USD*/kg UTA]

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

| | Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.

0.00

Jan.

Year

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019

) 1

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

Jan.

Year

) 1

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019

Conversion: Spot conversion price range [USD*/kgU]

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Jan.

Year

) 1

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: atw 2019

237

NEWS

Market data

| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.

)1

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.

(All information is supplied without

guarantee.)

Nuclear Fuel Supply

Market Data

Information in current (nominal)

U.S.-$. No inflation adjustment of

prices on a base year. Separative work

data for the formerly “secondary

market”. Uranium prices [US-$/lb

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =

0.385 kg U]. Conversion prices [US-$/

kg U], Separative work [US-$/SWU

(Separative work unit)].

2014

pp

Uranium: 28.10–42.00

pp

Conversion: 7.25–11.00

pp

Separative work: 86.00–98.00

2015

pp

Uranium: 35.00–39.75

pp

Conversion: 6.25–9.50

pp

Separative work: 58.00–92.00

2016

pp

Uranium: 18.75–35.25

pp

Conversion: 5.50–6.75

pp

Separative work: 47.00–62.00

2017

pp

Uranium: 19.25–26.50

pp

Conversion: 4.50–6.75

pp

Separative work: 39.00–50.00

2018

January to June 2018

pp

Uranium: 21.75–24.00

pp

Conversion: 6.00–9.50

pp

Separative work: 35.00–42.00

February 2018

pp

Uranium: 21.25–22.50

pp

Conversion: 6.25–7.25

pp

Separative work: 37.00–40.00

March 2018

pp

Uranium: 20.50–22.25

pp

Conversion: 6.50–7.50

pp

Separative work: 36.00–39.00

April 2018

pp

Uranium: 20.00–21.75

pp

Conversion: 7.50–8.50

pp

Separative work: 36.00–39.00

May 2018

pp

Uranium: 21.75–22.80

pp

Conversion: 8.00–8.75

pp

Separative work: 36.00–39.00

June 2018

pp

Uranium: 22.50–23.75

pp

Conversion: 8.50–9.50

pp

Separative work: 35.00–38.00

July 2018

pp

Uranium: 23.00–25.90

pp

Conversion: 9.00–10.50

pp

Separative work: 34.00–38.00

August 2018

pp

Uranium: 25.50–26.50

pp

Conversion: 11.00–14.00

pp

Separative work: 34.00–38.00

September 2018

pp

Uranium: 26.50–27.50

pp

Conversion: 12.00–13.00

pp

Separative work: 38.00–40.00

October 2018

pp

Uranium: 27.30–29.00

pp

Conversion: 12.00–15.00

pp

Separative work: 37.00–40.00

November 2018

pp

Uranium: 28.00–29.25

pp

Conversion: 13.50–14.50

pp

Separative work: 39.00–40.00

December 2018

pp

Uranium: 28.50–29.20

pp

Conversion: 13.50–14.50

pp

Separative work: 40.00–41.00

2019

January 2019

pp

Uranium: 28.70–29.10

pp

Conversion: 13.50–14.50

pp

Separative work: 41.00–44.00

| | Source: Energy Intelligence

www.energyintel.com

Cross-border Price

for Hard Coal

Cross-border price for hard coal in

[€/t TCE] and orders in [t TCE] for

use in power plants (TCE: tonnes of

coal equivalent, German border):

2012: 93.02; 27,453,635

2013: 79.12, 31,637,166

2014: 72.94, 30,591,663

2015: 67.90; 28,919,230

2016: 67.07; 29,787,178

2017: 91.28, 25,739,010

2018

I. quarter: 89.88; 5,838,003

II. quarter: 88.25; 4,341,359

III. quarter: 100.79; 5,135,198

IV. quarter: 100.91; 6,814,244

| | Source: BAFA, some data provisional,

www.bafa.de

News


atw Vol. 64 (2019) | Issue 4 ı April

238

NUCLEAR TODAY

John Shepherd is a

journalist who has

covered the nuclear

industry for the past

20 years and is

currently editor-in-chief

of UK-based Energy

Storage Publishing.

Reference links:

Testimony from

Dr Fatih Birol

https://bit.ly/2EuwpsN

EPRI study

https://bit.ly/2VPA5MQ

Events of the Past Need Not Dictate

an Industry’s Future

The US will have reached an important milestone in March of this year, when it marks 40 years since the accident that

damaged the core of the Three Mile Island (TMI) 2 nuclear reactor.

As I write, there has been no public relations offensive of

note by nuclear energy opponents in the build up to the

memory of what happened in Pennsylvania on 28 March

1979 – which is perhaps testament to how the nuclear

debate has moved on since.

For the record, the event was caused by a combination

of equipment failure and the inability of plant operators to

understand the reactor’s condition at certain times during

the event.

And while there were no reported injuries or adverse

health effects from the accident, TMI was a turning point

for the industry in the US and arguably worldwide.

In the US, the event led to the establishment of the

Atlanta- based Institute of Nuclear Power Operations and

the formation of what is today the Nuclear Energy Institute.

Despite its setbacks, nuclear has powered ahead and is

increasingly recognised for its durability, reliability, safety

and sustainability in a world that sometimes seems to have

lost sight of the need for real energy security while

pursuing fads of the day. Indeed, a study published in 2018

by the Electric Power Research Institute (EPRI) indicated

that US plants are nearly 100 times more safe than the

safety goals set by the US Nuclear Regulatory Commission.

One welcome intervention came recently from the head

of the Paris-based International Energy Association (IEA),

Dr Fatih Birol, who gave testimony to the US Senate Energy

and Natural Resources Committee on prospects for global

energy markets, including the role of the US.

In his wide-ranging testimony, no one could be in

any doubt about the relevance – and the importance – of

nuclear energy now and into the future.

Birol said nuclear “should be seen as a key asset in the

US (which) has been a leader in nuclear power generation

technology for 60 years, alongside France, Japan and

Russia”.

Nuclear still generates “twice as much low-carbon

electricity in the US as wind and solar combined”, Birol

said, adding that nuclear’s baseload capacity in the country

also played a “major role in maintaining electricity

security”. He said this was especially true in the northern

regions, which “experience spikes in electricity and gas

demand during extreme cold spells like the recent polar

vortex – times when solar production can be challenged”.

But Birol pointed out that China is set to be the “new

leader” in terms of nuclear energy if US policies do not

change.

“China has rapidly developed nuclear power over the

past two decades, increasing from just three operating

reactors in 2000 to 46 at the end of last year,” Birol said.

Nuclear capacity in China is set to overtake that of the US

within 10 years.”

According to the IEA chief, “effective policy action” is

needed in the US if it is to avoid the loss of “a substantial

proportion of its (nuclear) capacity”. “From my vantage

point, this would be detrimental to both energy security

and clean energy objectives.”

Birol said American innovation could also play a leading

role in the development of small modular reactors (SMRs),

pointing out that there was “significant international

appetite for innovative approaches to nuclear power,

including SMRs”, which could offer significant benefits,

such as factory fabrication, flexibility in where they can be

deployed and lower upfront investment.

The US has to continue to “accelerate innovation in new

nuclear technologies” such as SMRs to safeguard the long

term contribution of nuclear, Birol said.

However, “a first priority should be to safeguard the

existing fleet”. Birol told legislators: “Nuclear plant lifetimes

should be extended as long as safety considerations

allow. In large parts of the US this presents a challenge, as

wholesale markets don’t value the energy security and

clean energy contribution of nuclear.”

This was the third consecutive time the IEA’s executive

director has given testimony to the Senate committee, so

his remarks should not be seen as a dramatic intervention,

particularly in terms of nuclear, because the agency’s brief

is to cover the full spectrum of energy issues in its 30

member countries and beyond.

What is notable, however, is that nuclear is rightly

recognised by the IEA as a valued and much-needed

contributor to the international energy mix.

From a strictly personal point of view, I found it

refreshing to hear the head of an esteemed international

body talk about nuclear in such terms. I’ve heard no such

endorsement for some time now in the UK (although I

stand to be corrected). By the same token, I don’t recall any

public airing of note of late on the benefits of nuclear in the

European Parliament, regardless of that body’s largely

consultative role in such matters.

Nuclear continues to enjoy strong political support in

other countries, such as China (as Birol mentioned),

Russia, and nuclear newcomer the United Arab Emirates.

Policies in those countries are driven of course by a more

‘top-down approach’, but that does nothing to dilute the

value of nuclear in terms of energy security and its

contribution to supporting a nation’s economic well being.

Meanwhile, the Japan Atomic Industrial Forum

reported that two ‘nuclear recruiting’ events were held in

the country recently, attended by students expecting to

graduate in 2020 and looking to start their careers.

Memories of the Fukushima-Daiichi accident have not

faded in Japan, but lessons have been learned and the

country is moving on – and preparing for a new nuclear

generation at the industry’s helm.

We would do well to reflect on some words from Sir

Winston Churchill if the nuclear industry is to forge ahead

in helping to resolve the energy challenges of the future:

“A pessimist sees the difficulty in every opportunity; an

optimist sees the opportunity in every difficulty.”

Nuclear Today

Events of the Past Need Not Dictate an Industry’s Future ı John Shepherd


Kommunikation und

Training für Kerntechnik

Export in der Praxis

Seminar:

Export kerntechnischer Produkte und Dienstleistungen

– Chancen und Regularien

In diesem Seminar lernen Sie die ausfuhrrechtlichen Grundlagen unter besonderer

Berücksichtigung der neuen Dual-Use-Verordnung sowie die organisatorischen und

operativen Rückwirkungen auf Unternehmen kennen.

Sie erhalten einen umfangreichen Überblick über die internationalen Märkte, ausgewählte

regionale Spezifika und die unterschiedlichen Zertifizierungsregime ISO und ASME.

Seminarinhalte

ı Ausfuhrrechtliche Grundlagen

ı zentralen Ausfuhrbestimmungen für Produkte und Dienstleistungen

ı Verfahrensschritte und Zeitabläufe im Antragsverfahren

ı Veränderungen in der neuen Dual-Use-Verordnung

ı Märkte und regionale Spezifika

ı Die Welten von ISO und ASME

ı Organisatorische Rückwirkungen des Exportgeschäfts

Zielgruppe

Das Seminar richtet sich an Fach- und Führungskräfte, Projektverantwortliche sowie Mitarbeiterinnen

und Mitarbeiter in den Bereichen Außenwirtschaft/Exportkontrolle, Organisation,

Qualitätsmanagement, Vertrieb, Marketing, Recht oder Personalwesen, welche künftig für den

Export von Produkten, Dienstleistungen und Projekten verantwortlich sind.

Maximale Teilnehmerzahl: 12 Personen

Referenten

Lily Kreuzer

RA Kay Höft M. A.

Dr. Ing. Wolfgang Steinwarz

Wir freuen uns auf Ihre Teilnahme!

ı ehem. Rechtsanwältin, Ausfuhrspezialistin

ı Syndikusrechtsanwalt und Compliance-Verantwortlicher

für Außenwirtschaftsrecht

ı ehem. Geschäftsführer Technik,

Siempelkamp Ingenieur und Service GmbH

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.

Termin

2 Tage

12. bis 13. Juni 2019

Tag 1: 10:00 bis 18:00 Uhr

Tag 2: 09:00 bis 12:45 Uhr

Veranstaltungsort

Geschäftsstelle der INFORUM

Robert-Koch-Platz 4

10115 Berlin

Teilnahmegebühr

998,– € ı zzgl. 19 % USt.

Im Preis inbegriffen sind:

ı Seminarunterlagen

ı Teilnahmebescheinigung

ı Pausenverpflegung,

inkl. Mittagessen

Kontakt

INFORUM

Verlags- und Verwaltungsgesellschaft

mbH

Robert-Koch-Platz 4

10115 Berlin

Petra Dinter-Tumtzak

Fon +49 30 498555-30

Fax +49 30 498555-18

seminare@kernenergie.de


www.unserejahrestagung.de

#50AMNT

7. – 8. Mai 2019

Estrel Convention Center Berlin, Deutschland

Unsere Partner, Aussteller und Sponsoren

› Partner

› Weitere Aussteller, Sponsoren und Medienpartner

Änderungen vorbehalten, weitere Unternehmen angekündigt.

Standanmeldung und Registrierung www.amnt2019.com

More magazines by this user
Similar magazines