atw - International Journal for Nuclear Power | 04.2019
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
nucmag.com<br />
2019<br />
4<br />
The Role of Resources<br />
and Reserves <strong>for</strong> the<br />
Global Energy Supply<br />
The New Radiation Protection<br />
Law (II): The Approval<br />
The <strong>Nuclear</strong> Fission Table<br />
in the Deutsches Museum<br />
ISSN · 1431-5254<br />
24.– €<br />
Register Now!<br />
50 Years KTG – 50 Years<br />
<strong>for</strong> Society and Technology
www.amnt2019.com<br />
#50AMNT<br />
7 – 8 May 2019<br />
Estrel Convention Center Berlin, Germany<br />
Who will you meet?<br />
AiNT • Alpiq • ASKETA • <strong>atw</strong> • August Alborn • Axpo <strong>Power</strong> • Baltic Scientific Instruments • Berthold Technologies • Beuth<br />
Hochschule für Technik Berlin • BGZ Gesellschaft für Zwischenlagerung • BKW Energie • Blastrac • Brenk Systemplanung<br />
• British Embassy • Bundesanstalt für Material<strong>for</strong>schung und -prüfung • Bundesgesellschaft für Endlagerung • Chalmers<br />
University of Technology • City of Biblis • Cyprus <strong>International</strong> University • DAHER • DAtF • Department <strong>for</strong> <strong>International</strong><br />
Trade • Deutsche Gesellschaft für Zerstörungsfreie Prüfung • Deutscher Arbeitgeber Verband • Deutscher Bundestag •<br />
Deutsches Museum Munich • Deutsches Zentrum für Luft- und Raumfahrt • EDF • Eidgenössische Kommission für nukleare<br />
Sicherheit • Eidgenössisches Nuklearsicherheitsinspektorat • Elektriciteits- Produktiemaatschappij Zuid-Nederland N.V.<br />
• Embassy of the Czech Republic • EnBW Kernkraft • Energieanlagen Greifswald • Energus • ENGIE • Enrichment<br />
Technology Company • ETH Zürich • European Commission • European <strong>Nuclear</strong> Society • EWN Entsorgungswerk für<br />
Nuklearanlagen • Federal Ministry <strong>for</strong> Economic Affairs and Energy • Federal Ministry <strong>for</strong> Environment • FH Aachen •<br />
Forschungsinstitut für Kerntechnik und Energiewandlung • Forschungszentrum Jülich • Framatome • Fraunhofer ISE •<br />
French Alternative Energies and Atomic Energy Commission • FRM II • Gesellschaft für Anlagen- und Reaktorsicherheit<br />
• GNS Gesellschaft für Nuklear-Service • Helmholtz-Zentrum Dresden-Rossendorf • Helmholtz-Zentrum Geesthacht •<br />
Hochschule für Politik München • Hochschule Zittau/ Görlitz • IAF- Radioökölogie • Imperial College London • INFORUM<br />
• Institut für Demoskopie Allensbach • Institut für Festkörper- Kernphysik • <strong>International</strong> Irradiation Association • Joint<br />
Research Center • Karlsruher Institute of Technology • Kernkraft Gösgen-Däniken • Kernkraftwerk Biblis • Kernkraftwerk<br />
Brunsbüttel • Kernkraftwerk Isar • Kernkraftwerk Leibstadt • Kernkraftwerk Stade • Kompetenzverbund Kerntechnik<br />
• Kompetenzzentrum Ost für Kerntechnik • Kraftanlagen Heidelberg • Krantz • KROHNE Messtechnik • KSB • KSG<br />
Kraftwerks-Simulator-Gesellschaft • KTG • LaGuardia & Associates • LTZ- Consulting • Mammoet • Marubeni Utility<br />
Services • Materialprüfungsanstalt Universität Stuttgart • Mauell • Ministerium für Energiewende • Mirion Technologies<br />
• National Citizens’ Oversight Committee • National Institute <strong>for</strong> Physics and <strong>Nuclear</strong> Engineering • Nawah Energy<br />
Company • NKM NOELL Special Cranes • <strong>Nuclear</strong> Energy Agency • <strong>Nuclear</strong> Engineering <strong>International</strong> • <strong>Nuclear</strong><br />
Regulatory Commission • <strong>Nuclear</strong> Veterans • <strong>Nuclear</strong> Waste Management Commission • NUKEM • Nuklear<strong>for</strong>um<br />
Schweiz • Orano • Pinsent Masons • PreussenElektra • pro-beam • Reactor Safety Commission • RIS Industrie- und<br />
Kraftwerksservice • Rosatom • Roschiwal + Partner Ingenieur • Ruhr-Universität Bochum • RWE • SAT Kerntechnik<br />
• Schule für ABC-Abwehr und Gesetzliche Schutzaufgaben • Siemens • Siempelkamp • ŠKODA JS • STEAG Energy<br />
Services • Straub Werke • Taipei Economic and Cultural Office in Austria • Technische Universität Dresden • Technische<br />
Universität Kaiserslautern • Technische Universität München • Tractebel Engineering • TÜV NORD • TÜV SÜD •<br />
ÚJV Řež • Uniper • United States <strong>Nuclear</strong> Regulatory Commission • Universitätsklinikum Hamburg-Eppendorf •<br />
University of Fukui • University of Stuttgart • University of Technology Slovakia • URENCO • Vattenfall • Verband der<br />
TÜV • VGB <strong>Power</strong>Tech • VKTA • VPC • Westinghouse • Wirtschaftsverband Kernbrennstoff-Kreislauf und Kerntechnik •<br />
Women in <strong>Nuclear</strong> • Wood • World <strong>Nuclear</strong> Association • WTI Wissenschaftlich Technische-Ingenieurberatung • Young<br />
Generation Network • Zukunftsinstitut • ZWILAG<br />
Register now at<br />
› www.amnt2019.com<br />
In alphabetical order. Subject to change.<br />
Celebrate with us our 50 th anniversary!
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
EPR – No Swan Song<br />
Dear reader, At the end of last year, the EPR was already the subject of this editorial. In the course of 2018, the first<br />
EPR to be commissioned worldwide was Taishan, China, one of five Generation III+ nuclear power plants commissioned.<br />
Another identical unit is about to be completed during 2019. Generation III+ reactors combine the technically wellengineered<br />
and successful concepts of power reactor developments of the 1970s to 1990s with additional safety features<br />
and economic improvements.<br />
The EPR, originally known as the “European Pressurized<br />
Reactor”, today known as the “Evolutionary <strong>Power</strong><br />
Reactor”, is the most powerful nuclear and power plant in<br />
the world. It is the consistent result of a successful<br />
collaboration of thousands of employees from all areas of<br />
science and technology and companies from several<br />
countries. The EPR has its origins in the successful<br />
construction lines <strong>for</strong> pressurized water reactors of the<br />
then French Framatome and German Siemens/KWU.<br />
Both nuclear power plant manufacturers, including<br />
predecessor companies, had built and commissioned<br />
around 100 light water reactors since the 1960s. On the<br />
part of Siemens/KWU, the Konvoi plants, Emsland, Isar 2<br />
and Neckar westheim II, which were build between 1982<br />
and 1988/89, in some cases even with a shorter construction<br />
period than planned, deserve particular mention.<br />
On the Framatome side, the N4 plants in Civaux and<br />
Chooz with a gross electrical output of 1561 MW <strong>for</strong>med a<br />
cornerstone of reactor development.<br />
In the mid-1990s, when the expansion programmes <strong>for</strong><br />
nuclear power plants in Western countries were virtually<br />
completed <strong>for</strong> the time being due to the saturation of the<br />
generation market and the deliberate influence of political<br />
interest groups on the public debate surrounding the<br />
energy industry, the idea of designing a reactor concept <strong>for</strong><br />
the 21 st century in a Franco-German cooperation took<br />
shape. Framatome and Siemens as manufacturer as well as<br />
EDF and the companies operating the German nuclear<br />
power plants agreed to develop the “Basic Design” <strong>for</strong><br />
the EPR.<br />
The EPR reached its first milestones in Finland and<br />
France in 2005 and 2007 with the launch of the Olkiluoto<br />
3 and Flamanville 3 projects. Germany had ceased to be a<br />
location with the signing of the 2001 nuclear consensus<br />
agreement. It should not be overlooked that project risks<br />
and cost increases <strong>for</strong> these two plants turned out to be<br />
much higher than expected during the approval phases.<br />
The extent to which individual, location-dependent<br />
reasons have to be taken into account cannot currently be<br />
estimated. It should also not be overlooked that the Taishan<br />
project in China was started four years later and is now in<br />
commercial operation after 9 years of construction, ahead<br />
of the plants in Olkiluoto and Flamanville. Considerable<br />
construction delays seem to be developing into a cultural<br />
problem in western industrial countries.<br />
consumption, this is about 17 % lower than with other<br />
nuclear fuel strategies to date.<br />
pp<br />
Space requirement: The space requirement <strong>for</strong> the<br />
entire power plant is around 1250 square meters per<br />
megawatt and thus 150 times lower than <strong>for</strong> freestanding<br />
photovoltaic plants.<br />
Technology<br />
pp<br />
Technically projected operating life: 60 years, today<br />
common <strong>for</strong> existing plants with originally planned<br />
operating lives of 30 to 40 years, i.e. with prospects <strong>for</strong><br />
operation beyond that.<br />
pp<br />
The reactor core has a volume of roughly 50 cubic<br />
metres, which is comparable to the volume of a 40-foot<br />
sea container; in other words, the reactor core<br />
continuously generates electricity <strong>for</strong> the supply of an<br />
EU budget in about 15 cubic centimetres.<br />
Safety and security<br />
pp<br />
Four independent systems ensure safe operation and<br />
also protection in exceptional situations such as earthquakes<br />
and floods, including beyond-design-basis<br />
events.<br />
pp<br />
The core damage frequency <strong>for</strong> the EPR is in the range<br />
of approx. 10 -7 and thus more than a power of ten, i.e. a<br />
factor of 10 lower than that recommended by the<br />
<strong>International</strong> Atomic Energy Agency (IAEA) <strong>for</strong> new<br />
plants.<br />
pp<br />
A core catcher provides additional protection <strong>for</strong><br />
the foundation of the reactor building and would<br />
stabilise it in the reactor building in the event of a core<br />
meltdown.<br />
pp<br />
An internal spraying system is an additional measure to<br />
ensure the long-term integrity of the reactor building in<br />
case of accidents.<br />
Honour to whom honour is due: The EPR, a joint European<br />
development project on the way to late, but not too<br />
late, international success – also beyond the year 2022:<br />
according to the current announcement of the French<br />
President Emmanuel Macron, a decision is to be made<br />
around the year 2022 as to whether further new nuclear<br />
power plants should be built in France on the basis of the<br />
EPR, the German-French cooperation.<br />
183<br />
EDITORIAL<br />
Some key figures<br />
on the concept of the EPR reactor:<br />
Resources<br />
pp<br />
Avoidance of around 10 million tonnes of carbon<br />
dioxide emissions per year (related to the electricity<br />
mix of countries using nuclear energy worldwide) and<br />
avoidance of further emissions via air and water.<br />
pp<br />
Electricity supply to around 3 million households (with<br />
average EU consumption).<br />
pp<br />
Uranium requirement of around 20 tonnes of enriched<br />
nuclear fuel per year. In terms of natural uranium<br />
Christopher Weßelmann<br />
– Editor in Chief –<br />
Editorial<br />
EPR – No Swan Song
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
EDITORIAL 184<br />
EPR – kein Abgesang<br />
Liebe Leserin, lieber Leser, zum Ende des vergangenen Jahres war der EPR schon einmal Thema dieses<br />
Editorials. Im Verlaufe des Jahres 2018 war der erste weltweit in Betrieb genommene EPR im chinesischen Taishan,<br />
ein weiterer baugleicher Block befindet sich vor seiner Fertigstellung, eines von fünf in Betrieb genommenen Kernkraftwerken<br />
der Generation III+. Generation III+ Reaktoren kombinieren die technisch ausgereiften erfolgreichen<br />
Konzepte der Leistungsreaktorentwicklungen der 1970er- bis 1990er-Jahre mit zusätzlichen Sicherheitsmerkmalen und<br />
wirtschaftlichen Verbesserungen.<br />
Der EPR, ursprünglich im Original als „European<br />
Pressurized Reactor“ bezeichnet, heute „Evolutionary<br />
<strong>Power</strong> Reactor“, ist das leistungsstärkste Kernkraftwerk<br />
und Kraftwerk überhaupt der Welt. Er ist das konsequente<br />
Ergebnis einer erfolgreichen Zusammenarbeit von<br />
tausenden Beschäftigten aus allen Bereichen der Naturwissenschaften<br />
und Technik und Unternehmen aus<br />
mehreren Ländern. Seine Ursprünge hat der EPR in den<br />
erfolgreichen Baulinien für Druckwasserreaktoren der –<br />
damaligen – französischen Framatome und deutschen<br />
Siemens/KWU. Beide Kernkraftwerkshersteller, inklusive<br />
Vorgängergesellschaften, hatten seit den 1960er-Jahren<br />
rund 100 Leichtwasserreaktoren errichtet und in Betrieb<br />
genommen. Aufseiten von Siemens/KWU sind dabei<br />
insbesondere die Konvoi-Anlagen, Emsland, Isar 2 und<br />
Neckarwestheim II, zu nennen, die von 1982 bis 1988/89<br />
errichtet wurden, teils sogar mit kürzerer Bauzeit<br />
als vorgesehen. Aufseiten von Framatome bildeten<br />
die N4- Anlagen in Civaux und Chooz mit 1561 MW<br />
elektrischer Bruttoleistung einen Eckpunkt der Reaktorentwicklung.<br />
Mitte der 1990er-Jahre, als aus Gründen der energiewirtschaftlichen<br />
Rahmenbedingungen mit einer Sättigung<br />
des Erzeugungsmarktes und der gezielt beeinflussten<br />
öffentlichen Diskussionen durch politische Interessengruppen<br />
die Zubauprogramme für Kernkraftwerke in<br />
westlichen Ländern quasi vorerst abgeschlossen waren,<br />
nahm die Idee Gestalt an, in einer deutsch-französischen<br />
Kooperation ein Reaktorkonzept für das 21. Jahrhundert<br />
zu konzipieren. Framatome und Siemens als Hersteller<br />
sowie EDF und die deutschen Kernkraftwerke betreibenden<br />
Unternehmen vereinbarten dazu die Entwicklung<br />
des „Basic Designs“ für den EPR.<br />
Den erste Meilenstein erreichte der EPR in Finnland<br />
und Frankreich in den Jahren 2005 und 2007 mit dem<br />
Start der Projekte Olkiluoto 3 und Flamanville 3.<br />
Deutschland war mit Unterzeichnen der Atomkonsensvereinbarung<br />
von 2001 als Standort weggefallen. Es<br />
soll nicht übersehen werden, dass sich Projektrisiken und<br />
Kostensteigerungen für diese beiden Anlagen in den<br />
Genehmigungsphasen viel höher als erwartet herausgestellt<br />
haben. Inwieweit individuelle, standortabhängige<br />
Gründe dafür herangezogen werden müssen, lässt sich<br />
aktuell nicht abschätzen. Es soll ebenso wenig übersehen<br />
werden, dass das Projekt Taishan in China vier Jahre später<br />
in Angriff genommen wurde und jetzt, nach 9 Jahren<br />
Bauzeit in kommerziellem Betrieb ist, also noch vor den<br />
Anlagen in Olkiluoto und Flamanville. Erhebliche Bauzeitverzögerungen<br />
scheinen sich zu einem kulturellen<br />
Problem in westlichen Industrieländern zu entwickeln.<br />
weltweit Kernenergie nutzenden Staaten) und Vermeidung<br />
weiterer Emissionen über die Luft und das Wasser<br />
pp<br />
Versorgung von rund 3 Millionen Haushalten (mit dem<br />
Durchschnittsverbrauch der EU) mit Strom.<br />
pp<br />
Uranbedarf von rund 20 t angereichertem Kernbrennstoff<br />
pro Jahr. Bezogen auf den Natururanverbrauch liegt dieser<br />
rund 17 % niedriger als bei bisherigen anderen Kernbrennstoffstrategien.<br />
pp<br />
Flächenbedarf: Der Flächenbedarf für die gesamte Kraftwerksanlage<br />
liegt bei rund 1250 Quadratmeter pro Megawatt<br />
und damit z.B. um den Faktor 150 niedriger als bei<br />
Freiflächen-Photovoltaikanlagen.<br />
Technik<br />
pp<br />
Technisch projektierte Laufzeit: 60 Jahre, heute für bestehende<br />
Anlagen mit ursprünglich geplanten Laufzeiten<br />
von 30 bis 40 Jahren üblich, also mit Perspektive für einen<br />
darüber hinaus gehenden Betrieb.<br />
pp<br />
Der Reaktorkern umfasst ein Volumen von grob gerade<br />
einmal 50 Kubikmetern, vergleichbar mit dem Volumen<br />
eines 40-Fuß Seecontainers; anders ausgedrückt wird in<br />
rund 15 Kubikzentimetern Reaktorkern kontinuierlich der<br />
Strom für die Versorgung eines EU-Haushalts erzeugt.<br />
Sicherheit<br />
pp<br />
Vier unabhängige Systeme gewährleisten einen sicheren<br />
Betrieb und auch Schutz in Ausnahmesituationen wie<br />
Erdbeben und Überflutungen einschließlich auslegungsüberschreitender<br />
Ereignisse.<br />
pp<br />
Die Kernschadenshäufigkeit für den EPR liegt im Bereich<br />
von ca. 10 -7 und damit um mehr als eine Zehnerpotenz,<br />
also dem Faktor 10 niedriger, als der von der <strong>International</strong>en<br />
Atomenergie-Agentur (IAEA) für Neuanlagen<br />
empfohlen.<br />
pp<br />
Ein Core-Catcher gewährleistet zusätzlichen Schutz für<br />
das Fundament des Reaktorgebäudes und würde im Falle<br />
einer Kernschmelze diese im Reaktorgebäude stabilisieren.<br />
pp<br />
Ein internes Sprühsystem ist eine zusätzliche Maßnahme,<br />
um die langfristige Integrität des Reaktorgebäudes bei<br />
Unfällen sicher zu stellen.<br />
Ehre, wem Ehre gebührt: Der EPR, ein gemeinsames<br />
europäisches Entwicklungsprojekt auf dem Weg zu<br />
spätem, aber nicht zu spätem internationalen Erfolg –<br />
auch über das Jahr 2022 hinaus: nach aktueller Ankündigung<br />
des französischen Präsidenten Emmanuel Macron<br />
soll um das Jahr 2022 entschieden werden, ob in<br />
Frankreich weitere neue Kernkraftwerke auf Basis des<br />
EPR, der deutsch-französischen Kooperation, gebaut<br />
werden sollen.<br />
Einige Kennzahlen<br />
zum Konzept des EPR-Reaktors:<br />
Ressourcen<br />
pp<br />
Vermeidung von rund 10 Millionen Tonnen Kohlendioxidemissionen<br />
pro Jahr (Bezug auf den Strommix der<br />
Christopher Weßelmann<br />
– Chefredakteur –<br />
Editorial<br />
EPR – No Swan Song
Kommunikation und<br />
Training für Kerntechnik<br />
Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />
Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />
3 Atom-, Vertrags- und Exportrecht<br />
Atomrecht – Ihr Weg durch Genehmigungs- und<br />
Aufsichtsverfahren<br />
RA Dr. Christian Raetzke 02.<strong>04.2019</strong><br />
22.10.2019<br />
Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.<strong>04.2019</strong> Berlin<br />
Export kerntechnischer Produkte und Dienstleistungen –<br />
Chancen und Regularien<br />
RA Kay Höft M. A.<br />
O. L. Kreuzer<br />
Dr.-Ing. Wolfgang Steinwarz<br />
Berlin<br />
12.06. - 13.06.2019 Berlin<br />
Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019 Berlin<br />
Atomrecht – Was Sie wissen müssen<br />
3 Kommunikation und Politik<br />
RA Dr. Christian Raetzke<br />
Akos Frank LL. M.<br />
07.11.2019 Berlin<br />
Public Hearing Workshop –<br />
Öffentliche Anhörungen erfolgreich meistern<br />
Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –<br />
Themen und Formate<br />
Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin<br />
November 2019<br />
3 Rückbau und Strahlenschutz<br />
In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />
3 <strong>Nuclear</strong> English<br />
Das neue Strahlenschutzgesetz –<br />
Folgen für Recht und Praxis<br />
Stilllegung und Rückbau in Recht und Praxis<br />
Dr. Maria Poetsch<br />
RA Dr. Christian Raetzke<br />
Dr. Matthias Bauerfeind<br />
RA Dr. Christian Raetzke<br />
25.06. - 26.06.2019<br />
10.09. - 11.09.2019<br />
15.10. - 16.10.2019<br />
13.11. - 14.11.2019<br />
Berlin<br />
24.09. - 25.09.2019 Berlin<br />
Enhancing Your <strong>Nuclear</strong> English Devika Kataja 22.05. - 23.05.2019 Berlin<br />
Advancing Your <strong>Nuclear</strong> English (Aufbaukurs) Devika Kataja 18.09. - 19.09.2019 Berlin<br />
3 Wissenstransfer und Veränderungsmanagement<br />
Veränderungsprozesse gestalten – Heraus <strong>for</strong>derungen<br />
meistern, Beteiligte gewinnen<br />
Dr. Tanja-Vera Herking<br />
Dr. Christien Zedler<br />
26.11. - 27.11.2019 Berlin<br />
Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />
Kontakt<br />
INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />
Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />
Die INFORUM-Seminare können je nach<br />
Inhalt ggf. als Beitrag zur Aktualisierung<br />
der Fachkunde geeignet sein.
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
186<br />
Issue 4 | 2019<br />
April<br />
CONTENTS<br />
Contents<br />
Editorial<br />
EPR – No Swan Song E/G 183<br />
Inside <strong>Nuclear</strong> with NucNet<br />
The Key Role of the IAEA’s Integrated Regulatory<br />
Review Service in Improving <strong>Nuclear</strong> Safety 188<br />
DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />
Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190<br />
Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />
The Role of Resources and Reserves<br />
<strong>for</strong> the Global Energy Supply 191<br />
Spotlight on <strong>Nuclear</strong> Law<br />
The New Radiation Protection Law (II): The Approval G 196<br />
Energy Policy, Economy and Law<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants<br />
with Their External Stakeholders 197<br />
The <strong>Nuclear</strong> Fission Table in the Deutsches Museum:<br />
A Fundamental Discovery on Display 203<br />
The 15 th Deutsche Atomrechtssymposium:<br />
An Determination of the Curent Situation G 208<br />
Operation and New Build<br />
Failure Analysis of the Jet Pumps Riser<br />
in a Boiling Water Reactor-5 213<br />
Decommissioning and Waste Management<br />
A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />
The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia<br />
and the Southern Hemisphere | Part I 221<br />
Special Topic | A Journey Through 50 Years AMNT<br />
Accountability to the Democratic Public G 225<br />
KTG Inside<br />
50 Years KTG – 50 Years <strong>for</strong> Society and Technology<br />
An Interview with Frank Apel and Dr. Florian Gremme G 227<br />
Cover:<br />
Uranium mine<br />
Mary Kathleen in Queensland/Australia.<br />
News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232<br />
<strong>Nuclear</strong> Today<br />
Events of the Past Need Not Dictate an Industry’s Future 238<br />
G<br />
E/G<br />
= German<br />
= English/German<br />
Imprint 192<br />
Contents
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Feature<br />
Major Trends in Energy Policy<br />
and <strong>Nuclear</strong> <strong>Power</strong><br />
187<br />
CONTENTS<br />
191 The Role of Resources and Reserves<br />
<strong>for</strong> the Global Energy Supply<br />
Hans-Wilhelm Schiffer<br />
Spotlight on <strong>Nuclear</strong> Law<br />
196 The New Radiation Protection Law (II): The Approval<br />
Das neue Strahlenschutzrecht (II): Die Freigabe<br />
Dr. Christian Raetzke<br />
Energy Policy, Economy and Law<br />
203 The <strong>Nuclear</strong> Fission Table in the Deutsches Museum:<br />
A Fundamental Discovery on Display<br />
Susanne Rehn-Taube<br />
Special Topic | A Journey Through 50 Years AMNT<br />
225 Accountability to the Democratic Public<br />
Rechenschaft gegenüber der demokratischen Öffentlichkeit<br />
Richard von Weizsäcker<br />
KTG Inside<br />
227 50 Years KTG – 50 Years <strong>for</strong> Society and Technology<br />
An Interview with Frank Apel and Dr. Florian Gremme<br />
50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie<br />
Ein Interview mit Frank Apel und Dr. Florian Gremme<br />
Contents
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
188<br />
INSIDE NUCLEAR WITH NUCNET<br />
The Key Role of the IAEA’s Integrated<br />
Regulatory Review Service in Improving<br />
<strong>Nuclear</strong> Safety<br />
The <strong>International</strong> Atomic Energy Agency (IAEA) is responding to member state needs and making the<br />
Integrated Regulatory Review Service (IRRS) more effective and efficient, David Senior, head of the agency’s<br />
regulatory activities section, and Hilaire Mansoux, head of the regulatory infrastructure and transport safety<br />
section, told NucNet in an interview.<br />
Feedback from member states over the past five years has<br />
been used in the development of updated IRRS guidelines<br />
on the preparation and conduct of missions, which will be<br />
published soon and see the implementation of further<br />
improvements to the service<br />
The IRRS helps IAEA member states strengthen and<br />
improve their national regulatory framework and infrastructure<br />
<strong>for</strong> nuclear, radiation, radioactive waste and<br />
transport safety. In line with other safety related peer<br />
review services offered by the IAEA, the IRRS supports<br />
member states in applying IAEA safety standards. The<br />
IRRS began in 2006, when the IAEA integrated several<br />
existing regulatory review services.<br />
IRRS teams evaluate a state’s regulatory infrastructure<br />
<strong>for</strong> safety against IAEA safety standards, which provide the<br />
fundamental principles, requirements and guidance to<br />
ensure nuclear safety. The standards serve as a global<br />
reference <strong>for</strong> protecting people and the environment and<br />
contribute to a harmonised high level of safety worldwide.<br />
The teams compile their findings in reports that provide<br />
recommendations and suggestions <strong>for</strong> improvement, and<br />
note good practices that can be adapted <strong>for</strong> use elsewhere<br />
internationally to strengthen safety. Mission reports<br />
describe the effectiveness of the regulatory oversight of<br />
nuclear, radiation, radioactive waste and transport safety<br />
and highlight how it can be further strengthened.<br />
States that have requested an IRRS mission prepare by<br />
conducting a “self-assessment” using an IAEA-developed<br />
methodology and software tool. During preparations, the<br />
IAEA and the host country meet to agree on the scope<br />
of the mission, including by defining which regulated<br />
facilities and activities will be reviewed.<br />
In October 2018 the IRRS held its 100 th mission, to<br />
Hungary, where experts carried out an eight-day follow-up<br />
mission to review the country’s implementation of recommendations<br />
and suggestions made during a 2015 visit.<br />
According to Mr Senior and Mr Mansoux, the service<br />
helps member states by identifying opportunities <strong>for</strong><br />
improvement, but also allows countries to learn from one<br />
another because the results of missions are shared through<br />
mission reports and “lessons learned” workshops.<br />
By judging the mission against IAEA safety standards,<br />
the service has brought about greater harmonisation of<br />
regulatory practices amongst member states. The agency<br />
sees the in<strong>for</strong>mal exchange of experience between expert<br />
reviewers and regulatory staff across the world as another<br />
valuable learning opportunity.<br />
The IRRS carries out from nine to 12 missions a year<br />
and is being used increasingly by countries that do not<br />
have a commercial nuclear power programme but are<br />
thinking about starting one.<br />
The service has established itself as the “preferred<br />
choice” <strong>for</strong> EU member states who must complete a peer<br />
review every 10 years to comply with the bloc’s nuclear<br />
safety directive, Mr Senior and Mr Mansoux told NucNet<br />
In response to requests from member states, the IAEA<br />
can also offer combined IRRS and Artemis missions. Artemis<br />
is the Agency’s integrated expert peer review service <strong>for</strong><br />
radioactive waste and spent fuel management, decommissioning<br />
and remediation programmes. It is intended <strong>for</strong><br />
facility operators and organisations responsible <strong>for</strong> radioactive<br />
waste management, and <strong>for</strong> regulators, national<br />
policy and other decision-makers.<br />
The first combined IRRS-Artemis mission was recently<br />
conducted in Spain. The combined mission approach option<br />
aims to exploit the synergies between the respective reviews.<br />
The IRRS is also available to countries that do not have<br />
commercial nuclear power and do not have plans to introduce<br />
it. The service helps them regulate the use of radiation<br />
sources in industry, medicine, agriculture and research.<br />
Mr Senior said: “High standards of nuclear safety can be<br />
achieved through a culture of continuous improvement, and<br />
all countries – including those with extensive experience –<br />
can use the IRRS to improve and demonstrate closer alignment<br />
of their national arrangements with IAEA safety<br />
standards.”<br />
“In short, all countries need to regulate nuclear and<br />
radiation safety, and the IRRS programme helps them do<br />
so in line with its safety standards,” he said.Some countries<br />
have a well-established regulatory infrastructure, based on<br />
decades of experience, to regulate all types of installations<br />
and activities. Other countries are just establishing a legal<br />
and regulatory framework <strong>for</strong> safety.<br />
“Regardless of the approach to nuclear regulation and<br />
the maturity of the arrangements in each country, there is<br />
always room <strong>for</strong> improvement,” Mr Mansoux said<br />
The IAEA safety standards are continuously evolving to<br />
reflect developments including feedback from the IRRS<br />
missions, and it is a continuous process to ensure that<br />
the national regulatory infrastructure is in line with the<br />
standards.<br />
Challenges remain, said Mr Senior and Mr Mansoux,<br />
particularly those associated with ensuring adequate<br />
financial and human resources, and the independence of<br />
the regulatory body.<br />
NucNet was speaking to David Senior, head of the IAEA’s<br />
regulatory activities section, and Hilaire Mansoux, head of<br />
the regulatory infrastructure and transport safety section.<br />
Author<br />
NucNet<br />
The Independent Global <strong>Nuclear</strong> News Agency<br />
Editor responsible <strong>for</strong> this story: Kamen Kraev<br />
Avenue des Arts 56<br />
1000 Brussels, Belgium<br />
www.nucnet.org<br />
Inside <strong>Nuclear</strong> with NucNet<br />
The Key Role of the IAEA’s Integrated Regulatory Review Service in Improving <strong>Nuclear</strong> Safety
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Notes<br />
Phase-Out:<br />
<strong>Nuclear</strong> Be<strong>for</strong>e Coal – Almost Half of Germans Think This Is a Mistake<br />
The customer portal Verivox released the results of their survey, in<br />
which they asked if it was a mistake by politics in Germany to<br />
phase-out nuclear be<strong>for</strong>e coal. The German coal phase-out is<br />
envisaged <strong>for</strong> 2038, while the nuclear phase-out is scheduled until<br />
2022. Almost half of Germans (44.1 %) considers this order to be a<br />
“To reach the climate goals, Germany has decided to phase-out coal.<br />
Do you think it was a mistake by politics to phase-out nuclear first?”<br />
climate policy mistake. On the other hand, 49 per cent of the<br />
respondents consider the preferred nuclear phase-out to be the right<br />
choice. Apparently, they assess the potential hazards of nuclear<br />
power higher than the climate load associated with coal-fired power<br />
generation.<br />
For further details<br />
please contact:<br />
Nicolas Wendler<br />
DAtF<br />
Robert-Koch-Platz 4<br />
10115 Berlin<br />
Germany<br />
E-mail: presse@<br />
kernenergie.de<br />
www.kernenergie.de<br />
DATF EDITORIAL NOTES<br />
189<br />
All respondents<br />
Yes, in Any Case<br />
Rather Yes<br />
Undecided<br />
Rather No<br />
No, in No Way<br />
29 %<br />
15 %<br />
6 %<br />
17 %<br />
33 %<br />
Responses by age group<br />
18-29<br />
24 %<br />
18 %<br />
9 %<br />
23 %<br />
26 %<br />
30-39<br />
31 %<br />
10 %<br />
5 %<br />
20 %<br />
34 %<br />
40-49<br />
29 %<br />
18 %<br />
6 %<br />
14 %<br />
34 %<br />
50-64<br />
28 %<br />
14 %<br />
8 %<br />
16 %<br />
35 %<br />
65+<br />
31 %<br />
16 %<br />
5 %<br />
15 %<br />
33 %<br />
Yes, in Any Case<br />
Rather Yes<br />
Undecided<br />
Rather No<br />
No, in No Way<br />
Source: Verivox<br />
DAtF Notes
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Calendar<br />
190<br />
2019<br />
CALENDAR<br />
01.04.-03.<strong>04.2019</strong><br />
CIENPI – 13 th China <strong>International</strong> Exhibition on<br />
<strong>Nuclear</strong> <strong>Power</strong> Industry. Beijing, China,<br />
Coastal <strong>International</strong>, www.coastal.com.hk<br />
02.04.-04.<strong>04.2019</strong><br />
Workshops on Autonomous and Remotely<br />
Operated Systems: Benefits and Challenges<br />
to <strong>Nuclear</strong> Security. Vienna, Austria,<br />
World Institue <strong>for</strong> <strong>Nuclear</strong> Security, www.wins.org<br />
09.04.-11.<strong>04.2019</strong><br />
World <strong>Nuclear</strong> Fuel Cycle 2019. Shanghai, China,<br />
World <strong>Nuclear</strong> Association (WNA), Miami, Florida,<br />
USA, www.wnfc.info<br />
ATOMEXPO 2019. Sochi, Russia,<br />
2019.atomexpo.ru/en/<br />
15.04.-16.<strong>04.2019</strong><br />
22.04.-28.<strong>04.2019</strong><br />
World <strong>Nuclear</strong> University Short Course:<br />
The World <strong>Nuclear</strong> Industry Today.<br />
Istanbul, Turkey, World <strong>Nuclear</strong> University,<br />
www.world-nuclear-university.org<br />
07.05.-08.05.2019<br />
50 th Annual Meeting on <strong>Nuclear</strong> Technology<br />
AMNT 2019 | 50. Jahrestagung Kerntechnik.<br />
Berlin, Germany, DAtF and KTG,<br />
www.amnt2019.com – Register Now!<br />
15.05.-17.05.2019<br />
1 st <strong>International</strong> Conference of Materials,<br />
Chemistry and Fitness-For-Service Solutions<br />
<strong>for</strong> <strong>Nuclear</strong> Systems. Toronto, Canada, Canadian<br />
<strong>Nuclear</strong> Society (CNS), www.cns-snc.ca<br />
16.05.-17.05.2019<br />
Emergency <strong>Power</strong> Systems at <strong>Nuclear</strong> <strong>Power</strong><br />
Plants. Munich, Germany, TÜV SÜD,<br />
www.tuev-sued.de/eps-symposium<br />
24.05.-26.05.2019<br />
<strong>International</strong> Topical Workshop on Fukushima<br />
Decommissioning Research – FDR2019. Fukushima,<br />
Japan, The University of Tokyo, fdr2019.org<br />
29.05.-31.05.2019<br />
Global <strong>Nuclear</strong> <strong>Power</strong> Tech. Seoul, South Korea, Korea<br />
Electric Engineers Association, electrickorea.org/eng<br />
03.06.-05.06.2019<br />
<strong>Nuclear</strong> Energy Assembly. Washington DC, USA,<br />
<strong>Nuclear</strong> Energy Institute (NEI), www.nei.org<br />
03.06.-07.06.2019<br />
World <strong>Nuclear</strong> University Short Course:<br />
The World <strong>Nuclear</strong> Industry Today.<br />
Rio de Janeiro, Brazil, World <strong>Nuclear</strong> University,<br />
www.world-nuclear-university.org<br />
04.06.-07.06.2019<br />
FISA 2019 and EURADWASTE ‘19. 9 th European<br />
Commission Conferences on Euratom Research<br />
and Training in Safety of Reactor Systems and<br />
Radioactive Waste Management. Pitesti, Romania,<br />
www.nucleu2020.eu<br />
17.06.-21.06.2019<br />
MIT <strong>Nuclear</strong> Plant Safety Course. Cambridge, MA,<br />
USA, Massachusetts Institute of Technology (MIT),<br />
professional.mit.edu/programs/short-programs/<br />
nuclear-plant-safety<br />
23.06.-27.06.2019<br />
World <strong>Nuclear</strong> University Summer Institute.<br />
Romania and Switzerland, World <strong>Nuclear</strong> University,<br />
www.world-nuclear-university.org<br />
24.06.-28.06.2019<br />
2019 <strong>International</strong> Conference on the Management<br />
of Spent Fuel from <strong>Nuclear</strong> <strong>Power</strong> Reactors.<br />
Vienna, Austria, <strong>International</strong> Atomic Energy Agency<br />
(IAEA), www.iaea.org<br />
25.06.-26.06.2019<br />
ICNDRWM 2019 – 21 st <strong>International</strong> Conference<br />
on <strong>Nuclear</strong> Decommissioning and Radioactive<br />
Waste Management. Venice, Italy, World Academy<br />
of Science, Engineering & Technology,<br />
www.waset.org<br />
21.07.-24.07.2019<br />
14 th <strong>International</strong> Conference on CANDU Fuel.<br />
Mississauga, Ontario, Canada, Canadian <strong>Nuclear</strong><br />
Society (CNS), www.cns-snc.ca<br />
28.07.-01.08.2019<br />
Radiation Protection Forum. Memphis TN, USA,<br />
<strong>Nuclear</strong> Energy Institute (NEI), www.nei.org<br />
29.07.-02.08.2019<br />
27 th <strong>International</strong> <strong>Nuclear</strong> Physics Conference<br />
(INPC). Glasgow, Scotland, inpc2019.iopconfs.org<br />
04.08.-09.08.2019<br />
PATRAM 2019 – Packaging and Transportation<br />
of Radioactive Materials Symposium.<br />
New Orleans, LA, USA. www.patram.org<br />
21.08.-30.08.2019<br />
Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />
FJOH-2019 – Innovative Reactors: Matching the<br />
Design to Future Deployment and Energy Needs.<br />
Karlsruhe, Germany, <strong>Nuclear</strong> Energy Division<br />
of Commissariat à l’énergie atomique et aux<br />
énergies alternatives (CEA) and Karlsruher Institut<br />
für Technologie (KIT), www.fjohss.eu<br />
04.09.-06.09.2019<br />
World <strong>Nuclear</strong> Association Symposium 2019.<br />
London, UK, World <strong>Nuclear</strong> Association (WNA),<br />
www.wna-symposium.org<br />
04.09.-05.09.2019<br />
VGB Congress 2019 – Innovation in <strong>Power</strong><br />
Generation. Salzburg, Austria, VGB <strong>Power</strong>Tech e.V.,<br />
www.vgb.org<br />
08.09.-11.09.2019<br />
4 th <strong>Nuclear</strong> Waste Management,<br />
Decommissioning and Environmental Restoration<br />
(NWMDER). Ottawa, Canada, Canadian <strong>Nuclear</strong><br />
Society (CNS), www.cns-snc.ca<br />
09.09.-12.09.2019<br />
24 th World Energy Congress. Abu Dhabi, UAE,<br />
www.wec24.org<br />
09.09.-12.09.2019<br />
Jahrestagung 2019 – Fachverband für<br />
Strahlenschutz | Strahlenschutz und Medizin.<br />
Würzburg, Germany,<br />
www.fs-ev.org/jahrestagung-2019<br />
16.09.-20.09.2019<br />
63 rd Annual Conference of the IAEA. Vienna,<br />
Austria, <strong>International</strong> Atomic Energy Agency (IAEA),<br />
www.iaea.org/about/governance/generalconference<br />
07.10. – 11.10.2019<br />
<strong>International</strong> Conference on Climate Change and<br />
the Role of <strong>Nuclear</strong> <strong>Power</strong>. Vienna, Austria,<br />
IAEA, www.iaea.org<br />
07.10. – 18.10.2019<br />
ICTP-IAEA <strong>Nuclear</strong> Energy Management School.<br />
Trieste, Italy, IAEA, www.iaea.org<br />
15.10. – 18.10.2019<br />
Technical Meeting on Siting <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong><br />
Plants. Vienna, Austria, IAEA, www.iaea.org<br />
22.10.-25.10.2019<br />
SWINTH-2019 Specialists Workshop on Advanced<br />
Instrumentation and Measurement Techniques<br />
<strong>for</strong> Experiments Related to <strong>Nuclear</strong> Reactor<br />
Thermal Hydraulics and Severe Accidents.<br />
Livorno, Italy, www.nineeng.org/swinth2019/<br />
23.10.- 24.10.2019<br />
Chemistry in <strong>Power</strong> Plants. Würzburg, Germany,<br />
VGB <strong>Power</strong>Tech e.V., www.vgb.org/en/<br />
chemie_im_kraftwerk_2019.html<br />
27.10.-30.10.2019<br />
FSEP CNS <strong>International</strong> Meeting on Fire Safety<br />
and Emergency Preparedness <strong>for</strong> the <strong>Nuclear</strong><br />
Industry. Ottawa, Canada, Canadian <strong>Nuclear</strong> Society<br />
(CNS), www.cns-snc.ca<br />
12.11.-14.11.2019<br />
<strong>International</strong> Conference on <strong>Nuclear</strong><br />
Decommissioning – ICOND 2019. Eurogress<br />
Aachen, Aachen Institute <strong>for</strong> <strong>Nuclear</strong> Training GmbH,<br />
www.icond.de<br />
25.11.-29-11.2019<br />
<strong>International</strong> Conference on Research Reactors:<br />
Addressing Challenges and Opportunities to<br />
Ensure Effectiveness and Sustainability.<br />
Buenos Aires, Argentina, <strong>International</strong> Atomic<br />
Energy Agency (IAEA), www.iaea.org/events/<br />
conference-on-research-reactors-2019<br />
This is not a full list and may be subject to change.<br />
Calendar
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />
The Role of Resources and Reserves<br />
<strong>for</strong> the Global Energy Supply<br />
Hans-Wilhelm Schiffer<br />
The assured availability and competitiveness of the various energy sources, as well as climate compatibility, determine<br />
their use. Conditions on the energy markets are also subject to continuous change. This article examines the extent to<br />
which the availability of energy resources and the orientation of energy policies influence the energy mix, particularly<br />
power generation. It also outlines strategies <strong>for</strong> achieving the energy policy goals – security of supply, value <strong>for</strong> money<br />
and environmental compatibility (including climate protection) – in the best possible way.<br />
Changes in the global energy mix since 1985<br />
Global energy consumption has almost doubled since the<br />
mid 1980s. Fossil fuels, i.e. oil, natural gas and coal, have<br />
covered 80 % of this growth. Thus, the share of fossil fuels<br />
in the coverage of total primary energy consumption has<br />
decreased only slightly, from 89 % in 1985 to 85 % in 2017.<br />
Although renewable energies have gained massively in<br />
importance, especially in the last ten years, the contribution<br />
of hydropower, wind and solar energy, biomass<br />
and geothermal energy was still limited to a total of<br />
11 % even in 2017. In 2017, nuclear power covered 4 %<br />
of primary energy consumption (Figure 1).<br />
The transport sector and the petrochemical industry<br />
are the main users of oil. Natural gas is used primarily in<br />
the heating market, by industry, private households and<br />
small consumers, and additionally in power generation.<br />
Coal is used predominantly and nuclear power exclusively<br />
<strong>for</strong> power generation. To date, the renewable energies<br />
have also been used preferably <strong>for</strong> power generation.<br />
This applies to hydropower but also to solar energy and<br />
wind power and, albeit to a lesser extent, to biomass and<br />
geothermal energy.<br />
Global power generation has almost tripled since 1985.<br />
Two thirds of the growth achieved since then has been covered<br />
by coal and natural gas. At 38 %, coal’s share of global<br />
power generation in 2017 was exactly the same as in 1985.<br />
It is true that oil’s contribution to power generation has<br />
dropped by eight percentage points, but this was more<br />
than offset by a nine percentage point increase in the share<br />
of natural gas. Accordingly, there was no significant<br />
change in fossil fuel’s share in power generation between<br />
1985 and 2017. It was 65 % in 2017 and also in 2000 compared<br />
to 64 % in 1985. From 1985 to 2017, the share of<br />
nuclear power decreased by five percentage points to 10 %,<br />
while the contribution of renewables increased by four<br />
percentage points to 25 %. The strongest growth was in<br />
solar and wind, particularly in the last ten years. Despite<br />
absolute growth, the share of hydropower has fallen by<br />
four percentage points since 1985. Nevertheless, hydropower<br />
continues to make the greatest contribution to<br />
power generation among the renewable energies in 2017<br />
(Figure 2).<br />
| | Fig. 1.<br />
Worldwide primary energy consumption 1985 to 2017 in million (10 6 ) tce.<br />
| | Fig. 2.<br />
Worldwide mix in electricity generation 1985 to 2017 in TWh (terawatt hours = 10 12 watt hours).<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 191<br />
Determining factors <strong>for</strong> the energy mix<br />
in power generation by country<br />
The energy mix of power generation in the various<br />
countries and regions of the world is very different from<br />
the global structures described above. There are two<br />
crucial factors <strong>for</strong> this: the resource situation in each case<br />
and the orientation of the energy policy. This becomes<br />
clear in an exemplary examination of the situation in<br />
selected countries (Figure 3).<br />
| | Fig. 3.<br />
Mix in electricity generation of selected countries in 2017 in %.<br />
Feature<br />
The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 192<br />
| | Editorial Advisory Board<br />
Frank Apel<br />
Erik Baumann<br />
Dr. Erwin Fischer<br />
Carsten George<br />
Eckehard Göring<br />
Florian Gremme<br />
Dr. Ralf Güldner<br />
Carsten Haferkamp<br />
Christian Jurianz<br />
Dr. Guido Knott<br />
Prof. Dr. Marco K. Koch<br />
Ulf Kutscher<br />
Herbert Lenz<br />
Jan-Christan Lewitz<br />
Andreas Loeb<br />
Dr. Thomas Mull<br />
Dr. Ingo Neuhaus<br />
Dr. Joachim Ohnemus<br />
Prof. Dr. Winfried Petry<br />
Dr. Tatiana Salnikova<br />
Dr. Andreas Schaffrath<br />
Dr. Jens Schröder<br />
Norbert Schröder<br />
Prof. Dr. Jörg Starflinger<br />
Prof. Dr. Bruno Thomauske<br />
Dr. Brigitte Trolldenier<br />
Dr. Walter Tromm<br />
Dr. Hans-Georg Willschütz<br />
Dr. Hannes Wimmer<br />
Ernst Michael Züfle<br />
In countries with a high potential <strong>for</strong> using hydropower,<br />
in many cases this source of energy accounts <strong>for</strong> a<br />
high share of power generation. In Europe (data <strong>for</strong> 2017),<br />
this applies above all to Norway (96 %), Iceland (73 %),<br />
Austria (60 %), Switzerland (59 %) and Albania (100 %),<br />
in North America to Canada (57 %), in South America to<br />
Paraguay (100 %), Brazil (63 %), Colombia (76 %),<br />
Venezuela (65 %), Uruguay (59 %) and Peru (55 %), in<br />
Oceania to New Zealand (58 %) and in Asia to Laos, Nepal,<br />
Bhutan and North Korea. The world leader in the use of<br />
hydropower to generate electricity is China. In spite of this,<br />
the share of hydropower in the country’s total power<br />
generation was limited to 18 % in 2017. In Africa too,<br />
hydropower has a high share of power generation in some<br />
countries. This applies to Ethiopia (93 %) among others.<br />
The share of hydropower in Zambia and the Congo is more<br />
than 90 % and in Mozambique more than 80 %. Nevertheless,<br />
the total electricity generated by hydropower<br />
throughout the African continent in 2017 was 9 % lower<br />
than Norway’s hydropower-generated electricity.<br />
In some countries, geothermal energy also plays an<br />
important role in power generation. In absolute terms, the<br />
highest installed capacity based on geothermal energy<br />
(TOP 10) exists in the USA, Indonesia, the Philippines,<br />
Turkey, New Zealand, Mexico, Italy, Iceland, Kenya and<br />
Japan. As measured by the power generation of each<br />
country, the share of geothermal energy is above-average<br />
in Iceland at 27 % and in New Zealand at 17 %.<br />
In the case of bioenergies (solid, liquid and gaseous),<br />
Brazil tops the global rankings with an electricity generation<br />
capacity of 15 GW, followed by the USA (13 GW),<br />
China (11 GW), India (10 GW) and Germany (9 GW). The<br />
share of bioenergies in the electricity generation volume is<br />
above the global average of 2 % in countries such as Brazil<br />
(9 %) and Germany (7 %).<br />
Imprint<br />
| | Editorial Office<br />
Christopher Weßelmann (Editor in Chief)<br />
Im Tal 121, 45529 Hattingen, Germany<br />
Phone: +49 2324 4397723<br />
Fax: +49 2324 4397724<br />
E-mail: editorial@nucmag.com<br />
Martin Schneibel (Editor)<br />
INFORUM, Berlin, Germany<br />
Phone: +49 30 498555-43<br />
Fax: +49 30 498555-18<br />
E-Mail: martin.schneibel@nucmag.com<br />
| | Official <strong>Journal</strong> of<br />
Kerntechnische Gesellschaft e. V. (KTG)<br />
| | Publisher<br />
INFORUM Verlags- und<br />
Verwaltungsgesellschaft mbH<br />
Robert-Koch-Platz 4, 10115 Berlin, Germany<br />
Phone: +49 30 498555-30<br />
Fax: +49 30 498555-18<br />
www.nucmag.com<br />
| | General Manager<br />
Christian Wößner<br />
| | Advertising and Subscription<br />
Petra Dinter-Tumtzak<br />
Phone: +49 30 498555-30<br />
Fax: +49 30 498555-18<br />
E-mail: petra.dinter@nucmag.com<br />
| | Layout<br />
zi.zero Kommunikation<br />
Antje Zimmermann<br />
Berlin, Germany<br />
| | Printing<br />
inpuncto:asmuth<br />
druck + medien gmbh<br />
Baunscheidtstraße 11, 53113 Bonn, Germany<br />
Although the natural conditions play an important role<br />
in solar energy and wind power, the orientation of<br />
energy policy in the various countries, expressed by the<br />
intensity of government support, is even more decisive <strong>for</strong><br />
the utilization ratio of these renewables. The most<br />
important example in this context is Germany. At the end<br />
of 2017, Germany ranked third in terms of installed wind<br />
turbine capacity, third only behind China and the USA, and<br />
fourth in terms of solar energy, behind China, Japan and<br />
the USA. As measured by the power generation volume,<br />
the share of wind and solar in Germany was 23 % in 2017,<br />
compared to a global average of 6 % and despite the fact<br />
that Germany is not one of the most favored locations in<br />
the world in terms of natural conditions. With regard to<br />
wind power, this applies more to a country such as Denmark.<br />
In 2017, around half of the electricity generated<br />
there was provided on the basis of wind power. [1]<br />
Political decisions are key drivers <strong>for</strong> the intensity of<br />
nuclear power use <strong>for</strong> power generation. France, <strong>for</strong><br />
example, puts its faith in nuclear power after the first oil<br />
price crisis in 1973. In 2017, nuclear power accounted <strong>for</strong><br />
72 % of total power generation there. In absolute terms,<br />
the USA is currently the leader in the use of nuclear power.<br />
In 2017, twice as much electricity was generated from<br />
nuclear power there as in France. However, at 20 % the<br />
share of nuclear power in the USA is considerably lower<br />
than in France. <strong>Nuclear</strong> power accounts <strong>for</strong> double the<br />
share in Sweden compared to the USA. In the Ukraine this<br />
is 54 % and in Belgium 49 %. Countries such as Germany<br />
and Japan, backed by the government energy policy, also<br />
relied heavily on nuclear power in the past. In both<br />
countries, nuclear power accounted <strong>for</strong> just under one<br />
third of power generation at times. After the Fukushima<br />
nuclear disaster in 2011, Japan suspended the power<br />
generation of all nuclear reactors <strong>for</strong> mandatory safety<br />
| | Price List <strong>for</strong> Advertisement<br />
Valid as of 1 January 2019<br />
Published monthly, 9 issues per year<br />
Germany:<br />
Per issue/copy (incl. VAT, excl. postage) 24.- €<br />
Annual subscription (incl. VAT and postage) 187.- €<br />
All EU member states without VAT number:<br />
Per issue/copy (incl. VAT, excl. postage) 24.- €<br />
Annual subscription (incl. VAT, excl. postage) 187.- €<br />
EU member states with VAT number<br />
and all other countries:<br />
Per issues/copy (no VAT, excl. postage) 22.43 €<br />
Annual subscription (no VAT, excl. postage) 174.77 €<br />
| | Copyright<br />
The journal and all papers and photos contained in it are protected by<br />
copyright. Any use made thereof outside the Copyright Act without the<br />
consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />
mbH, is prohibited. This applies to reproductions, translations,<br />
micro filming and the input and incorporation into electronic systems.<br />
The individual author is held responsible <strong>for</strong> the contents of the<br />
respective paper. Please address letters and manuscripts only to the<br />
Editorial Staff and not to individual persons of the association´s staff.<br />
We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />
Signed articles do not necessarily represent the views of the editorial.<br />
ISSN 1431-5254<br />
Feature<br />
The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
inspections and retrofits with the result that no nuclearenergy-based<br />
electricity generation took place there<br />
between September 2013 and August 2015. In 2018,<br />
additional five nuclear power plants in Japan that had<br />
been shut down after the Fukushima reactor accident were<br />
restarted. This means that nine nuclear power plants with<br />
a capacity of 8.7 GW are now in operation again. [2] After<br />
the Fukushima reactor accident, the seven oldest nuclear<br />
power plant units and the Krümmel nuclear power plant in<br />
Germany were deprived of further operating permits.<br />
Accordingly, the commercial operation of these eight<br />
facilities came to an end at the beginning of August 2011.<br />
For the remaining nine German nuclear power plants, a<br />
staggered exit plan was envisaged, which had been<br />
implemented in a legally binding manner by the Thirteenth<br />
Law amending the Atomic Energy Act of 31 July 2011. Two<br />
of the nine plants mentioned are now decommissioned.<br />
The remaining seven nuclear power plant units will<br />
gradually be shut down <strong>for</strong> good by the end of 2022. [3]<br />
With a share of 38 %, coal is still the world’s most<br />
important source of energy <strong>for</strong> power generation. The<br />
share of coal in power generation in countries that have<br />
economically recoverable deposits is disproportionately<br />
high. This applies, among others, to South Africa (88 %),<br />
Poland (78 %), India (76 %), China (67 %) and Australia<br />
(62 %). But even in Germany (38 %) and in the USA<br />
(31 %), coal was significantly involved in power generation<br />
in 2017. For economic reasons, the share of coal in<br />
power generation has fallen in the USA in recent years.<br />
This is explained by the increased use of shale gas. In 2017,<br />
natural gas accounted <strong>for</strong> 31 % of power generation in the<br />
USA, the same share as coal. The situation in Germany is<br />
different. Despite the economic viability of coal (lignite<br />
and imported hard coal), a politically imposed complete<br />
phase-out of coal-fired power generation is envisaged by<br />
2038 at the latest in order to help meet the national greenhouse<br />
gas reduction targets. [4]<br />
With a share of 23 %, natural gas was the second-most<br />
important energy source <strong>for</strong> power generation in 2017.<br />
In this case as well, a disproportionately high share of this<br />
energy source is characteristic of power generation in<br />
countries that have large natural gas reserves. This applies<br />
especially to the Gulf States. The share of natural gas in<br />
power generation in Iran was 81 % in 2017, and even more<br />
in the United Arab Emirates, Qatar, Oman and Bahrain at<br />
95 %. In Saudi Arabia it was still 59 % in 2017. In the<br />
Caspian countries, such as Turkmenistan, Uzbekistan and<br />
Azerbaijan, natural gas accounts <strong>for</strong> a share of 75 % and<br />
more. Shares of more than 60 % and sometimes significantly<br />
higher are identified <strong>for</strong> Libya, Egypt, Algeria, Tunisia and<br />
Nigeria. In South America, Bolivia is the country with the<br />
largest share of natural gas in power generation (around<br />
75 %). Around half of power generation in Argentina is<br />
based on the use of natural gas. But even in some European<br />
countries with larger natural gas reserves, such as Russia,<br />
the United Kingdom and the Netherlands, in 2017 the share<br />
of natural gas in power generation was disproportionately<br />
high at 49 % (Russia), 48 % (Netherlands) and 40 %<br />
( United Kingdom). In Japan, a country that has practically<br />
no fossil fuel resources of its own, the share of natural gas<br />
(imported LNG) in power generation increased to 39 % in<br />
2017 due to the nuclear power situation. In the USA, due to<br />
the shale gas boom, natural gas is on a par with coal,<br />
accounting <strong>for</strong> 31 % of power generation.<br />
On average, oil now accounts <strong>for</strong> only 4 % of power<br />
generation worldwide. However, in the Gulf States oil is<br />
one of the most important generation sources. This applies<br />
to Saudi Arabia (41 %) and even more so to Kuwait and<br />
Iraq with oil shares of around two thirds. In Libya, around<br />
a third of power generation is still oil based.<br />
Prospects <strong>for</strong> power generation<br />
by energy sources<br />
Unlike in previous decades, the renewable energies will<br />
cover much of the expected further growth in electricity<br />
demand. This cannot be explained by any limitations in<br />
reserves and resources of fossil fuels. Reserves and especially<br />
resources are abundant. This applies above all to coal, but<br />
also to natural gas and oil (Figures 4 to 9). Improved<br />
extraction technologies and higher prices on global markets<br />
have even increased the static range of reserves, defined as<br />
reserves in relation to the current global annual production<br />
| | Fig. 4.<br />
Reserves and resources of non-renewable energy sources.<br />
| | Fig. 5.<br />
Worldwide supply of non-renewable energy sources in billion (10 9 ) tce.<br />
| | Fig. 6.<br />
Reserves and resources of non-renewable energy sources in billion (10 9 ) tce.<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 193<br />
Feature<br />
The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 194<br />
| | Fig. 7.<br />
Worldwide distribution of coal reserves in billion (10 9 ) tce.<br />
| | Fig. 8.<br />
Worldwide distribution of oil and natural gas reserves* in billion (10 9 ) tce.<br />
| | Fig. 9.<br />
Worldwide distribution of uranium reserves and resources in billion (10 9 ) tce.<br />
(Figure 10). Reserves are to be understood as “proven<br />
quantities of energy resources that are economically<br />
recoverable at today’s prices and with today’s technology”.<br />
The resources existing beyond these, defined as “proven<br />
quantities of energy resources but which are currently<br />
technically and/or econo mically unre cover able, as well as<br />
not proven quantities of energy resources which are geologically<br />
possible and recoverable in the future”, are more<br />
than ten times as large as the reserves according to in<strong>for</strong>mation<br />
provided by the Federal Institute <strong>for</strong> Geosciences<br />
and Natural Resources. [5]<br />
Restrictions on the use of fossil energy resources exist<br />
due to emissions of greenhouse gases associated with their<br />
use. To meet the goals of climate protection and the<br />
requirements of the Paris Agreement, the countries party<br />
to the United Nations Framework Convention on Climate<br />
Change committed themselves to specific limitations on<br />
the emission of greenhouse gases. The European Union,<br />
<strong>for</strong> example, has made a legally binding commitment to<br />
reduce greenhouse gas emissions by 40 % by 2030<br />
compared to 1990 levels. [6]<br />
There are basically four strategies available <strong>for</strong> the<br />
reduction of greenhouse gas emissions required <strong>for</strong> climate<br />
protection:<br />
pp<br />
Expansion of the renewable energies<br />
pp<br />
Improvement of energy efficiency<br />
pp<br />
Extended use of nuclear power<br />
pp<br />
Capture and utilization or storage of CO 2<br />
The governments which, through their respective policies,<br />
determine the priorities in the orientation of the necessary<br />
investments <strong>for</strong> the trans<strong>for</strong>mation of the global energy<br />
supply, are decisive <strong>for</strong> progress in implementing these<br />
possible paths.<br />
In its World Energy Outlook published in November<br />
2018, the <strong>International</strong> Energy Agency (IEA) identified<br />
cumulative investment requirements of 2 trillion dollars<br />
per year in the global energy supply. [7] According to IEA’s<br />
data, more than 70 % of these investments are made by<br />
state-run companies or are triggered by state regulation,<br />
<strong>for</strong> example in the <strong>for</strong>m of a guaranteed return. Only just<br />
less than 30 % of global investment is private and marketdriven,<br />
according to the IEA’s assessment in the main<br />
scenario of the World Energy Outlook, i.e. the New Policies<br />
Scenario. In the power supply, even more than 90 % of<br />
the investment deemed necessary worldwide by 2040 is<br />
government and regulation-driven (Figure 11).<br />
In the New Policies Scenario, the IEA makes the<br />
following statements about the level and structure of<br />
global energy consumption and power generation by<br />
2040: The future growth expected in primary energy<br />
consumption, and especially in power generation, will be<br />
met to a much greater extent than in the past by renewable<br />
energies. Thus, the share of renewables in global<br />
primary energy consumption will rise to 20 % in 2040. The<br />
contribution of renewable energies to power generation is<br />
set to grow from 25 % in 2017 to 42 % in 2040 (Figure 12).<br />
Renewables are there<strong>for</strong>e replacing coal as the most<br />
important source of energy <strong>for</strong> the power supply. The<br />
largest increases are expected <strong>for</strong> solar energy and wind<br />
power. This development is favored by the economies of<br />
scale achieved in recent years, above all in solar plants, but<br />
also in wind power.<br />
Significant progress will also be made in improving<br />
energy efficiency, supported by public policies. This is<br />
reflected in increasing decoupling of the development of<br />
energy consumption from economic growth. In Germany,<br />
this has already been observed in recent decades. Thus,<br />
the specific energy consumption, i.e. the primary energy<br />
consumption per unit gross domestic product, in Germany<br />
has declined by 42 % in the period from 1990 to 2018. [8]<br />
Similar developments are also likely to take place in other<br />
countries in the future.<br />
The expansion of nuclear power is restricted to<br />
countries where the governments support this technology<br />
with appropriate political backing. This applies particularly<br />
to China, India, Russia and some countries of the<br />
Middle East and Europe. In the World Energy Outlook<br />
2018, the IEA points out that at 270 GW nuclear power will<br />
account <strong>for</strong> only 3.5 % of the new power generation<br />
capacity amounting to a total of 7,730 GW that is expected<br />
Feature<br />
The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
to be built worldwide by 2040. Up to two thirds of the new<br />
construction will be plants based on renewable energies,<br />
with 20 % being gas and 10 % coal capacities (Figure 13).<br />
By 2040, it is expected that around half of the world’s<br />
electricity demand will still be provided by fossil-fired<br />
power plants. According to the New Policies Scenario of<br />
the IEA, in 2040, coal, oil and natural gas will still contribute<br />
75 % to the coverage of primary energy consumption.<br />
In addition, primary energy consumption will increase by<br />
about 25 % by 2040, and the demand <strong>for</strong> electricity is<br />
expected to grow by even more than 50 % compared to<br />
2017. If this development is realized, then in absolute<br />
terms at least the same amount of fossil fuels will be used<br />
in 2040 as in 2017, both to cover the total primary energy<br />
consumption and also <strong>for</strong> power generation.<br />
There<strong>for</strong>e, to comply with the ambitious climate goals<br />
of the Paris Agreement, broad implementation of the<br />
technology <strong>for</strong> capturing and utilizing or storing CO 2 is<br />
indispensable, in both industrial processes and also in<br />
power generation. At the Global Summit on Carbon<br />
Capture, Utilization and Storage (CCUS) in Edinburgh on<br />
28 November 2018, the General Secretary of the IEA, Fatih<br />
Birol, said: “Without CCUS as part of the solution, reaching<br />
our international climate goals is practically impossible.”<br />
[9]<br />
The World Energy Council (London) will present new<br />
energy scenarios on the global energy supply prospects at<br />
the World Energy Congress, which will be held in Abu<br />
Dhabi from 9 to 12 September 2019. The central theme of<br />
the congress, which is expected to attract several thousand<br />
participants, is Energy <strong>for</strong> Prosperity.<br />
Strategy of the Federal Government –<br />
Conclusion<br />
The climate protection policy promises the greatest success<br />
if the instruments are selected in such a way that priority is<br />
given to the most cost-effective approaches of reducing<br />
greenhouse gas emissions. The European Greenhouse Gas<br />
Emissions Trading Scheme is a market-based instrument<br />
which, in principle, ensures this EU-wide <strong>for</strong> the sectors it<br />
covers, energy and industry. However, technology bans,<br />
such as the legal provision existing in Germany preventing<br />
the capture and storage of CO 2 , are restrictions that<br />
contradict this alignment. This makes climate protection<br />
more expensive, which worsens the prospects of other<br />
countries joining Germany in its ambitious approach to<br />
reducing greenhouse gases.<br />
Author<br />
Dr. Hans-Wilhelm Schiffer<br />
Executive Chair World Energy Resources,<br />
World Energy Council<br />
London, United Kingdom<br />
| | Fig. 10.<br />
Static range of non-renewable energy reserves in years.<br />
| | Fig. 11.<br />
Drivers <strong>for</strong> investment in worldwide energy supply in trillion (10 12 ) USD (2017).<br />
| | Fig. 12.<br />
Global electricity generation up to 2040 in terawat thours (10 12 watt hours).<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 195<br />
| | Fig. 13.<br />
Global new build electricity generation capacities according to IEA's New Policies Scenario, 2018 to 2040.<br />
Feature<br />
The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Das neue Strahlenschutzrecht (II): Die Freigabe<br />
196<br />
SPOTLIGHT ON NUCLEAR LAW<br />
Christian Raetzke<br />
Die Freigabe – also grob gesagt die Entlassung von Reststoffen, die aus dem Kontrollbereich kerntechnischer Anlagen<br />
stammen, aus dem Regelungsbereich des Atom- und Strahlenschutzrechts und damit aus der atomrechtlichen Aufsicht,<br />
woran sich in der Regel die konventionelle Entsorgung anschließt – ist gerade im Zusammenhang mit dem umfangreichen<br />
Rückbau der deutschen Kernkraftwerke von großer praktischer Bedeutung. Insofern ist es zu begrüßen, dass<br />
das Instrument der Freigabe in seinen wesentlichen Zügen ins neue, seit dem 31.12.2018 geltende Strahlenschutzrecht<br />
übernommen wurde. Dennoch gibt es durchaus Änderungen, deren wichtigste hier kurz dargestellt werden sollen.<br />
Zuerst etwas Formales: während die Freigabe in der alten<br />
Strahlenschutzverordnung (StrlSchV) in § 29 geregelt war,<br />
findet sie sich jetzt in der neuen Verordnung in den<br />
§§ 31-42. Der erste Eindruck, die Regelung sei um ein<br />
Mehrfaches aufgebläht worden, täuscht, denn der alte § 29<br />
war ja sehr umfangreich. Er wurde nunmehr in seine<br />
Bestandteile zerlegt, diese wurden teils neu geordnet, in<br />
Einzelheiten auch durchaus geändert, um neue Passagen<br />
ergänzt und dann als gesonderte Paragraphen in die neue<br />
Verordnung übernommen. Das ist insgesamt freilich etwas<br />
länger, aber jedenfalls besser lesbar und zitierbar als früher.<br />
Der Dualismus der uneingeschränkten und der zweckgerichteten<br />
Freigabe ist im Grundsatz beibehalten. Die<br />
früher “zweckgerichtete” Freigabe heisst jetzt aber “spezifische”<br />
Freigabe und ist systematisch etwas breiter angelegt.<br />
Sie umfasst nämlich nicht mehr nur Stoffe, die einem<br />
bestimmten Entsorgungsweg (Deponierung, Verbrennung,<br />
Abriss, Einschmelzen) zugeführt werden (siehe früher § 29<br />
Abs. 2 S. 2 Nr. 2 StrlSchV a.F.), sondern auch Stoffe, deren<br />
Weiterverwendung oder Entsorgung aufgrund ihrer materiellen<br />
Eigenschaften eingeschränkt ist (siehe jetzt § 32<br />
Abs. 3 Nr. 1 StrlSchV n.F.). Konkret heisst dies, dass etwa<br />
Bauschutt (ab 1000 t), Bodenflächen und Gebäude zur<br />
Wieder- und Weiterverwendung in diese Kategorie “hinübergewandert”<br />
sind. Da die nuklidspezifischen Freigabewerte<br />
gleichgeblieben sind, bleibt abzuwarten, ob dies in<br />
der Praxis zu wesentlichen Änderungen führen wird.<br />
Das bringt uns zu den Grenzwerten für die Freigabe.<br />
Hier gibt es eine wichtige Änderung, die auf der Umsetzung<br />
der Euratom-Grundnorm 2013/59 beruht: die<br />
Werte für die uneingeschränkte Freigabe und die (massenspezifischen)<br />
Freigrenzen in Bq/g sind nunmehr identisch<br />
und sind deshalb in der Tabelle 1 der Anlage 4 zur neuen<br />
StrlSchV (der Nachfolgerin der Anlage III zur alten<br />
StrlSchV) in einer einzigen gemeinsamen Spalte, der<br />
Spalte 3, enthalten. Für die meisten Werte gab es Vorgaben<br />
durch die Euratom-Grundnorm. Dadurch haben sich die<br />
Freigabewerte für einzelne Nuklide zum Teil geändert;<br />
sie wurden teils angehoben, teils abgesenkt. Wie bereits<br />
im ersten Teil dieses Aufsatzes im Februarheft der <strong>atw</strong><br />
erläutert, gelten die neuen Werte ab 01.01.2021, sofern sie<br />
nicht schon früher durch eine Änderung der jeweiligen<br />
Freigabebescheide eingeführt werden. Die Werte für die<br />
spezifische Freigabe sind dagegen gleichgeblieben.<br />
Auch für das Verfahren der Freigabe sind interessante<br />
Änderungen zu vermerken. An der Grundstruktur des Verfahrens<br />
hat sich freilich nichts geändert: Die Freigabe ist,<br />
juristisch gesehen, ein Verwaltungsakt, der sog. “Freigabebescheid”<br />
(jetzt in § 33 Abs. 2 StrlSchV n.F. ausdrücklich so<br />
bezeichnet), der in allgemeiner, nicht auf eine konkrete<br />
Reststoffcharge bezogener Form die Bedingungen für die<br />
Entlassung von Stoffen aus dem Atom- und Strahlenschutzrecht<br />
festschreibt. Die tatsächliche Entlassung,<br />
bezogen auf konkrete Reststoffchargen, tritt dann ein,<br />
wenn der Strahlenschutzverantwortliche oder, nach entsprechender<br />
Delegierung, der Strahlenschutzbeauftragte<br />
nach dem Freimessungsvorgang die Übereinstimmung mit<br />
den im Freigabebescheid festgelegten An<strong>for</strong>derungen<br />
feststellt. In diesem Moment verlieren die Reststoffe den<br />
Charakter als radioaktive Stoffe und unterfallen, sofern –<br />
was in der Regel der Fall ist – ihre Entsorgung beschlossen<br />
ist, dem Kreislaufwirtschaftsgesetz.<br />
Bereits in der Vergangenheit haben sich einige Behörden<br />
über die ohnehin immer gegebene atomrecht liche Aufsicht<br />
hinaus in unterschiedlichem Ausmaß eine Mitwirkung an<br />
dem eigentlichen Entlassungsakt vor behalten. Diese –<br />
rechtmäßige – Praxis ist jetzt in § 33 Abs. 3 StrlSchV n.F.<br />
ausdrücklich aufgegriffen worden. Hiernach kann die<br />
Behörde die Freigabe unter der aufschiebenden Bedingung<br />
erteilen, dass sie die Feststellung des Strahlenschutzverantwortlichen<br />
bestätigt. Das bedeutet, dass eine Reststoffcharge<br />
tatsächlich erst dann aus dem Atom- und<br />
Strahlenschutzrecht entlassen wird, wenn die Behörde die<br />
Bestätigung, bezogen auf diese konkrete Charge, erteilt.<br />
Eine solche Bedingung steht jedoch im Ermessen der<br />
Behörde und es ist auch weiterhin möglich, dass die Entlassung<br />
ohne weiteres mit der Feststellung durch den<br />
Strahlenschutzverantwortlichen erfolgt. Das bleibt der<br />
“Normalfall” oder “Grundfall”, solange die Behörde nicht<br />
ausdrücklich etwas anderes bestimmt hat.<br />
Interessant ist auch § 33 Abs. 4 S. 2 StrlSchV n.F., der<br />
der Behörde u.a. die Möglichkeit einräumt, den Freigabebescheid<br />
mit einem Widerrufsvorbehalt zu versehen.<br />
Diese Regelung ist auf Initiative der Länder getroffen<br />
worden. Gedacht ist sie vor allem für denkbare Fälle der<br />
spezifischen Freigabe, in denen der eigentlich vorgesehene<br />
Entsorgungsweg (z. B. Verbringen auf eine bestimmte<br />
Deponie) vereitelt wird; in solchen Fällen kann die<br />
Behörde, sofern sie sich dies vorbehalten hat, die Freigabe<br />
widerrufen und die entsprechenden Reststoffe damit<br />
wieder in den Status radioaktiver Stoffe “zurück versetzen”.<br />
Damit unterfallen sie wieder der atomrechtlichen Aufsicht.<br />
Juristisch ist diese “Zurückverwandlung” höchst<br />
spannend; ob sie in der Praxis große Bedeutung erlangen<br />
wird, bleibt abzuwarten. Nach der amtlichen Begründung<br />
erlischt die Widerrufsmöglichkeit jedenfalls dann, wenn<br />
der “notwendige Endpunkt der Entsorgung”, also etwa der<br />
Einbau in eine Deponie, erreicht ist.<br />
Autor<br />
Rechtsanwalt Dr. Christian Raetzke<br />
CONLAR Consulting on <strong>Nuclear</strong> Law and Regulation<br />
Beethovenstr. 19<br />
04107 Leipzig, Deutschland<br />
Spotlight on <strong>Nuclear</strong> Law<br />
The New Radiation Protection Law (II): The Approval ı Christian Raetzke
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong><br />
Plants with Their External Stakeholders<br />
Milan Simončič and Gordana Žurga<br />
The article deals with the expectations expressed by the external stakeholders of the Krško <strong>Nuclear</strong> <strong>Power</strong> Plant (NPP)<br />
in Slovenia and conditions necessary <strong>for</strong> their successful coexistence with the nuclear facility. In the survey, several<br />
types of external stakeholders of the NPP participated. Besides them, 45 NPPs joined the research, basically in regard to<br />
their awareness to act in a socially responsible way. The research proved that respecting the interests of stakeholders is<br />
a prerequisite <strong>for</strong> the acceptability of NPPs in society, and that this strengthens quality of life of all involved parties.<br />
For analysis of essential relationships, the method of structural equation modelling (SEM) was used, in combination<br />
with some relevant statistical tests. NPPs have expressed awareness of their responsibility <strong>for</strong> possible effects on wider<br />
society, and <strong>for</strong> respecting interests of their external stakeholders as well. An optimal model of involvement of external<br />
stakeholders that was developed in the research, includes strong partnership relation. Important components of the<br />
model are effective communication, vision, objectives and orientation, strategy, socially responsible actions, the<br />
introduction of continuous improvements and tools <strong>for</strong> achieving the sustainable excellence of the NPPs as a neverending<br />
process. The research conducted contributes to the scientific fields of organizational theory and management<br />
with special emphasis on social responsibility of NPPs.<br />
1 Introduction<br />
<strong>Nuclear</strong> energy remains a reality in<br />
many countries even after the events<br />
in Fukushima [Afgan, 2013; Campbell,<br />
2013; Goodfellow, Dewick, Wortley, &<br />
Azapagic, 2015; Horvath & Rachlew,<br />
2016; Kato, Takahara, Nishikawa, &<br />
Homma, 2013; Shadrina, 2012;<br />
Truelove & Greenberg, 2013]. Program<br />
Harmony [2018], managed by the<br />
World <strong>Nuclear</strong> Association, supports<br />
climate change mitigation ef<strong>for</strong>ts to<br />
limit warming below 2 ˚C. <strong>Nuclear</strong><br />
energy is proven, available and can be<br />
expanded quickly – making it an<br />
important part of the solution to<br />
problems of air pollution and climate<br />
change. This requires a large increase<br />
of all low-carbon energy sources, of<br />
which nuclear is an important part.<br />
Achieving this means nuclear energy<br />
generation must triple globally by<br />
2050.<br />
Coexistence of the nuclear power<br />
plants (NPPs) and various stakeholders<br />
in society is a current and<br />
future challenge. In a socially responsible<br />
environment, a key commitment<br />
<strong>for</strong> NPPs and their external stakeholders<br />
is ensuring a partnership and<br />
mutual respect. Due to physical placement<br />
of NPPs in the environment,<br />
their external stakeholders expect<br />
certain benefits and respect of their<br />
interests. They also expect responsibility<br />
of NPPs <strong>for</strong> possible consequences,<br />
which may arise in society<br />
and affect their quality of life. The<br />
challenges <strong>for</strong> the NPPs are how to<br />
establish the necessary confidence of<br />
their external stakeholders, how to<br />
present specific activities and promote<br />
benefits of nuclear energy. Challenges<br />
<strong>for</strong> the external stakeholders of NPPs<br />
are how to express and realize own<br />
interests, understand the activities of<br />
NPPs, how to cope with demanding<br />
technology, understand it, and how to<br />
communicate with the NPPs. Trufanov<br />
[2013] says that the number of stakeholders<br />
involved in the development<br />
of the electric power industry has increased<br />
and their priorities and the<br />
ability to influence decision making<br />
processes have changed.<br />
Matuleviciene and Stravinskiene<br />
[2015] found two basic factors of<br />
stakeholder trust: corporate reputation<br />
and organizational trustworthiness.<br />
Other factors as emotions,<br />
propensity to trust, experience with<br />
the organization and sociocultural<br />
factors, same as inborn factors or<br />
acquired during growth, factors<br />
related with the environment where<br />
the person lives or other factors are of<br />
secondary importance. Avetisyan and<br />
Ferrary [2012] analyzed the process<br />
of introducing social responsibility in<br />
France and the USA and described<br />
the role of stakeholders in this field.<br />
They prove the assumption that the<br />
development of social responsibility in<br />
different environments depends on<br />
the nature of the participating local<br />
and global stakeholders and their<br />
interactions. A steady <strong>for</strong>m of social<br />
responsibility in the USA is more<br />
market- oriented (influenced by companies<br />
and investors), while in France<br />
it reflects a significant influence of the<br />
government that promotes corporate<br />
social responsibility and the implementation<br />
of good practices. They<br />
also argue that convergence of stakeholders’<br />
interests strengthens social<br />
responsibility.<br />
The involvement of different groups<br />
of external stakeholders that critically<br />
evaluate activities of NPPs, enables the<br />
NPPs adoption of practical, administrative,<br />
technical and socially responsible<br />
practices. The social responsibility of<br />
the NPPs is an integral part of the<br />
safety culture, which is shown by the<br />
actors involved at all levels. Owners<br />
and operators of the NPPs have to meet<br />
the expected obligations towards<br />
society and the environment. ISO<br />
26000 [2010] argue, that identification<br />
and engagement of stakeholders<br />
are fundamental to social responsibility.<br />
An organization should determine<br />
who has an interest in its decisions and<br />
activities, so that it can understand its<br />
impacts and how to address them.<br />
Banerjee and Bonnefous [2011] claim<br />
that the external stakeholders play a<br />
significant role in shaping the future of<br />
the nuclear power industry. They<br />
identified three different stakeholder<br />
management strategies of NPPs:<br />
rein<strong>for</strong>cement strategies <strong>for</strong> supportive<br />
stakeholders, containment strategies<br />
<strong>for</strong> obstructive stakeholders and<br />
stabilization strategies <strong>for</strong> passive<br />
stakeholders. The groups differ in their<br />
power to influence policies of NPP. He,<br />
Mol, Zhang and Lu [2013] studied the<br />
attitude of stakeholders to nuclear<br />
energy in China. The case study was<br />
conducted three months after the<br />
Fukushima event. Their results show<br />
that development and decision- making<br />
on NPPs are dominated by ‘iron nuclear<br />
triangle’ of national governmental<br />
agencies, nuclear industries, and<br />
research organizations. The Fukushima<br />
crisis has shown that a lack of transparency,<br />
public participation and<br />
public scrutiny can have severe consequences<br />
<strong>for</strong> the NPPs.<br />
The optimal strategy <strong>for</strong> integrating<br />
external stake holders into the<br />
focus sets an effective communication<br />
197<br />
ENERGY POLICY, ECONOMY AND LAW<br />
Energy Policy, Economy and Law<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 198<br />
model. The 2014 survey in Slovenia<br />
confirmed that the external stakeholders<br />
of NPP had high expectations<br />
of accessible, comprehensive, real and<br />
timely in<strong>for</strong>mation on the operation<br />
and impacts of the NPPs and their<br />
short-term and long-term activities<br />
[Simončič & Žurga, 2016].<br />
Stakeholder involvement in nuclear<br />
safety issues requires established communication<br />
mechanisms and channels<br />
<strong>for</strong> discussions between the interested<br />
parties and those responsible <strong>for</strong><br />
decision- making. It should be an<br />
integral part of the management of<br />
nuclear facilities from their conception<br />
through final closure and decommissioning.<br />
Thus, implementation of<br />
managerial plan will need to include<br />
mechanisms to continually monitor<br />
the effectiveness of the program and<br />
make changes and improvements<br />
based upon the results of this evaluation.<br />
[IAEA, 2011]<br />
Purpose and hypothesis<br />
of the research<br />
In the research we examined the hypothesis<br />
that respecting the interests<br />
of stakeholders is a prere quisite <strong>for</strong><br />
the acceptability of the NPPs in society<br />
and the environment and strengthens<br />
quality of their coexistence. We<br />
demonstrated and proved that NPPs<br />
are aware of their impact and that<br />
they want to satisfy the interests of<br />
their stakeholders. Considering importance<br />
of effective stakeholder<br />
strategy <strong>for</strong> respect of their interests,<br />
we developed and presented the<br />
optimal model <strong>for</strong> involving external<br />
stakeholders in the NPPs.<br />
2 Research methodology<br />
Questionnaires<br />
For the purpose of the research, two<br />
questionnaires with closed type<br />
questions (statements) were developed,<br />
one <strong>for</strong> external stakeholders<br />
and another <strong>for</strong> NPPs. Respondents<br />
expressed level of their agreement<br />
with statements by: 1 – Completely<br />
disagree, 2 – Disagree, 3 – Undecided,<br />
4 – Agree, 5 – Fully agree. For basic<br />
analysis, descriptive statistics methods<br />
were used. For analyzing the completed<br />
questionnaires, we used frequency<br />
statistics, Cronbach Alpha<br />
Test, Exploratory Factorial Analysis<br />
of Ordinal Variables, Structured Equation<br />
Modelling (SEM) with Lisrel,<br />
Mann-Whitney and Kruskal- Wallis<br />
test.<br />
Sample and timeframe,<br />
data collecting<br />
External stakeholders of the only<br />
Slovenian NPP included in the<br />
research were:<br />
pp<br />
Representatives of local com munities,<br />
namely 432 randomly<br />
selected citizens from the Posavje<br />
region in which the NPP is located<br />
and, in the sample of “other<br />
Slovenian regions”, four randomly<br />
selected statistical units were<br />
included, i.e. the Jugovzhodna<br />
Slovenija region, the Obalno-kraška<br />
region, the Savinjska region<br />
and the Zasavska region (488 persons);<br />
pp<br />
Suppliers of goods and service<br />
providers of the NPP that are<br />
registered in the Republic of<br />
Slovenia. This stakeholders group<br />
comprised of companies that<br />
supplied goods or services in the<br />
years 2012–2017. We randomly<br />
selected 110 suppliers;<br />
pp<br />
<strong>Journal</strong>ists: invitations <strong>for</strong> journalists<br />
were sent to 177 addresses;<br />
pp<br />
Non-governmental organizatios. In<br />
June 2017, thirty non-government<br />
organizations (NGOs) were registered<br />
in Slovenia with the status of<br />
acting in the public interest in the<br />
field of environmental protection<br />
and 36 associations operating in<br />
public interest in nature conservation.<br />
They were all included in<br />
the research;<br />
pp<br />
Political public. Slovenian political<br />
public represented by the President<br />
of the Republic of Slovenia, the<br />
Prime Minister, ministers, members<br />
of the National Council, members<br />
of the National Assembly, constitutional<br />
judges and mayors of<br />
Slovenian municipalities elected in<br />
the 2014–2018 term was included<br />
in the research. We sent invitations<br />
to co-operate in the survey to e-mail<br />
addresses of all official representatives<br />
(offices, cabinets), that are<br />
listed on their official websites,<br />
except municipalities. Concerning<br />
mayors, 22 municipalities (approximately<br />
10 % of all) were randomly<br />
selected.<br />
As representatives of NPPs, we invited<br />
members of World Association of<br />
<strong>Nuclear</strong> Operators (WANO), Paris<br />
centre to co-operate in the research.<br />
At the time of the research, the<br />
regional Paris centre represented 147<br />
nuclear reactors from 13 countries.<br />
The WANO organization allowed us to<br />
invite the power plants to participate<br />
in the research through their internal<br />
in<strong>for</strong>mation system. In this way, we<br />
have ensured good responsiveness.<br />
Representatives of NPPs were invited<br />
to indicate whether they were operators<br />
or owners of their respective NPP.<br />
Web based surveys were con ducted<br />
in October 2017. The research was<br />
carried out at a time when the next<br />
European concept of electricity supply<br />
was primarily oriented towards lowcarbon<br />
sources what included nuclear<br />
power, as an important part of the<br />
solution in the long-term supply of<br />
electricity in many countries.<br />
3 Results and hypothesis<br />
testing<br />
Responsiveness and<br />
characteristics of the sample<br />
Almost 36 % of respondents live up to<br />
30 km from the NPP, app. 12 % of<br />
them are up to 10 km from the NPP.<br />
Invited<br />
Group of<br />
stakeholders<br />
Number of<br />
participant (N)<br />
Response<br />
(%)<br />
432 Local communities – Posavje 95 22.0<br />
488<br />
110<br />
Local communities –<br />
other Slovenian regions<br />
Suppliers of goods and service<br />
providers of NPP<br />
91 18.6<br />
21 19.1<br />
66 NGOs 17 25.8<br />
124 Slovenian political public 21 16.9<br />
177 <strong>Journal</strong>ists 23 13.0<br />
Others 24<br />
1397 292 20.9<br />
| | Tab. 1.<br />
Response and number of participating stakeholders of NPP.<br />
Function in the organization: operators of NPPs (N)<br />
Top management 23<br />
Representative in organization WANO 17<br />
Public relations of NPPs 5<br />
NPPs together 45<br />
Function in the organization: owners of NPPs (N)<br />
Top management 1<br />
Representative in the WANO 1<br />
Public relations of owner 1<br />
Owners together 3<br />
| | Tab. 2.<br />
Number of participating NPPs, and organizational function of respondents.<br />
Energy Policy, Economy and Law<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Statement N Mdn Min Max SD<br />
(1) NPP is obliged to recognize and respect the interests and legitimate rights of various stakeholders<br />
and respond to their initiatives.<br />
| | Tab. 3.<br />
Statements from the questionnaire, basic statistics.<br />
Note. N= total number of responses; Mdn = median; Min = minimum value; Max = maximal value; SD = standard deviation.<br />
App. 35 % of the participants in the<br />
survey have a residence of more than<br />
100 km from the NPP (Table 1).<br />
Response rate of the NPPs was<br />
about 30 %. All together, 45 respondents<br />
were operators and three<br />
respondents were among owners of<br />
NPPs. Table 2 shows involvement of<br />
NPPs’ representatives, namely members<br />
of top management, representatives<br />
in the WANO organization and<br />
public relation officers.<br />
Due to low response rate of the<br />
owners, we consider in continuation<br />
of this article only responses from the<br />
operators.<br />
Data analysis<br />
<strong>for</strong> hypothesis testing<br />
For testing the hypothesis set, 11<br />
statements from the questionnaire <strong>for</strong><br />
stakeholders were used, <strong>for</strong> which the<br />
respondents expressed their degree of<br />
agreement (Table 3).<br />
Ordinal variables were not normally<br />
distributed. We used factor<br />
analysis <strong>for</strong> the ordinal variables, the<br />
Maximum Likelihood (ML) method,<br />
which is more robust in terms of<br />
abnormal distribution. Using the<br />
histograms, we also verified that there<br />
were no outliers. Using the Lisrel tool,<br />
we per<strong>for</strong>med exploratory factor<br />
analysis <strong>for</strong> the Varimax rotation<br />
ordinal variables. We found that three<br />
factors offered a suitable solution<br />
( Table 4).<br />
With the Cronbach alpha test, we<br />
found that variables 5 and 8 differed<br />
significantly, so we excluded them.<br />
Variables 1 to 4 were combined in<br />
Factor 1, “Respect” ( respecting stakeholder<br />
interests). In Factor 2 “Acceptability”<br />
(acceptability of NPP) we<br />
combined variables 6 and 7. In Factor<br />
3 “Coexistence” (quality of coexistence)<br />
we combined variables 9 to 11.<br />
The correlations between the factors<br />
are given in Table 5. It is evident that<br />
the correlation between factors 1 and<br />
3 is weak (0.057).<br />
In all three data constructs, the<br />
Cronbach Alpha was greater than<br />
0.7, what ensures good reliability<br />
( Table 6).<br />
Calculation was per<strong>for</strong>med using<br />
the SEM method (structural equation<br />
modelling). Namely, according to<br />
Civelek [2018] SEM tests the relationships<br />
between observed and latent<br />
variables. Observed variables are the<br />
measured variables in the data collection<br />
process and latent variables are<br />
the variables measured by connecting<br />
to the observed variables because they<br />
cannot be directly measured. SEM<br />
consists of two basic components as<br />
structural model and measurement<br />
model. Another reason <strong>for</strong> the widespread<br />
adoption of this method is the<br />
ability of taking into the account<br />
measurement errors and the relationships<br />
between errors in the observed<br />
variables.<br />
In the basic model, we used all three<br />
defined latent variables: respec ting<br />
| | Tab. 5.<br />
Correlations between factors.<br />
289 4 3 5 0.566<br />
(2) NPP should be aware that some stakeholders might have a significant influence on its operation. 289 4 3 5 0.565<br />
(3) NPP must take into account the relationships between the interests of its stakeholders, the broader<br />
expectations of society and nuclear power plants.<br />
287 4 2 5 0.601<br />
(4) NPP must know how its stakeholders are satisfied with the activities it is carrying out. 288 4 3 5 0.549<br />
(5) NPP can also be located in the vicinity of residential areas. 288 2 1 5 1.065<br />
(6) The acceptability of a NPP in the environment is possible only if NPP respect and take into account<br />
the interests of their stakeholders.<br />
288 4 1 5 0.968<br />
(7) The trust between local communities and the NPP is a prerequisite <strong>for</strong> the acceptance of NPP. 288 4 1 5 0.870<br />
(8) Donations and other material incentives <strong>for</strong> local communities increase the acceptability of the NPP. 287 4 1 5 1.145<br />
(9) NPP can be placed in the environment where I live, but only if they are socially responsible. 286 4 1 5 1.323<br />
(10) NPP creates new jobs, expands economic activity and technological development. 288 4 1 5 1.001<br />
(11) NPP influences the higher quality of life in the local community. 286 3 1 5 1.171<br />
Statement Factor 1 Factor 2 Factor 3 Unique variance<br />
(1) 0.844 0.021 0.026 0.287<br />
(2) 0.973 0.010 0.025 0.052<br />
(3) 0.790 0.319 0.033 0.272<br />
(4) 0.688 0.367 0.146 0.370<br />
(5) -0.058 0.116 0.656 0.553<br />
(6) 0.333 0.640 0.460 0.268<br />
(7) 0.305 0.646 0.529 0.210<br />
(8) 0.037 0.271 0.604 0.561<br />
(9) 0.073 0.206 0.764 0.368<br />
(10) 0.108 0.167 0.808 0.307<br />
(11) 0.076 0.042 0.882 0.214<br />
Factor 1<br />
(“Respect”)<br />
Factor 2<br />
(“Acceptability”)<br />
Factor 3<br />
(“Coexistence”)<br />
Factor 1<br />
(“Respect”)<br />
1.000<br />
Factor 2<br />
(“Acceptability”)<br />
0.479 1.000<br />
Factor 3<br />
(“Coexistence”)<br />
0.057 0.534 1.000<br />
Factor Statement Number of<br />
statements<br />
Factor 1<br />
(“Respect”)<br />
Factor 2<br />
(“Acceptability”)<br />
Factor 3<br />
(“Coexistence”)<br />
Cronbach<br />
Alfa<br />
(1) 4 0.839<br />
(2)<br />
(3)<br />
(4)<br />
(6) 2 0.812<br />
(7)<br />
(9) 3 0.835<br />
(10)<br />
(11)<br />
ENERGY POLICY, ECONOMY AND LAW 199<br />
| | Tab. 4.<br />
Exploratory factor analysis.<br />
| | Tab. 6.<br />
Test Cronbach Alfa.<br />
Energy Policy, Economy and Law<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 200<br />
| | Fig. 1.<br />
Standardized adapted structural model.<br />
stakeholder interests, accept ability of<br />
NPPs and quality of coexistence.<br />
Values between latent variables<br />
can be explained by regression equations:<br />
p p “Acceptability” = 0.641 x “Coexistence”<br />
+ 0.361 x “ Respect”<br />
p p “Coexistence” = 0.167 x “Respect”<br />
p p “Respect” relatively poorly explains<br />
“Coexistence”. By adapting<br />
the model, we wanted to improve<br />
the basic model. We removed<br />
the variable 11 and added the<br />
covariance errors between 1, 2, 3,<br />
and 4. In the modified model, we<br />
included two covariance (1-2 and<br />
3-4). In the improved model,<br />
“ Respect” better explains “Coexistence”<br />
(p 0.90–0.95<br />
SRMR 0.075 0.033 < 0.08<br />
NNFI 0.866 0.994 > 0.90–0.95<br />
| | Fig. 2.<br />
Level of agreement with the statement, that “NPP influences the higher quality of life in the local community.”<br />
| | Tab. 8.<br />
Statistics of the basic and adapted structural model.<br />
Note. χ 2 : HI = square statistics; df = degrees of freedom; RMSEA = Root<br />
mean square error of approximation; CFI = Comparative fit index; SRMR =<br />
Standardized root mean square residual; NNFI=Non-normed fit index.<br />
Energy Policy, Economy and Law<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
account belonging to the group of<br />
stakeholders or other features. We<br />
illustrate differences in the per ception<br />
of nuclear energy and nuclear facility<br />
on the case of the statement 11: “NPP<br />
influences the higher quality of life in<br />
the local community.”. In Figure 2<br />
we see higher agreement among the<br />
respondents living closer to the<br />
nuclear facility, among the political<br />
public, journalists and suppliers.<br />
There is also important share of those<br />
who do not have an opinion on presented<br />
issue (undecided).<br />
Respecting interests of NPPs’<br />
stakeholders<br />
Representatives of NPPs have expressed<br />
high level of agreement with<br />
the four statements that describe the<br />
principle of respecting the interests of<br />
their stakeholders (Figure 3). With<br />
the Mann-Whitney test, we confirmed<br />
that there were no statistically significant<br />
differences in responses of<br />
owners nor operators. The same was<br />
confirmed taking into account the<br />
function in the organization – the<br />
Kruskal- Wallis test proved no statistical<br />
significance in any case.<br />
4 Discussion<br />
The NPPs shape the environment in<br />
which they are located and affect lives<br />
of their external stakeholders. They<br />
all want to promote their interests,<br />
expectations and live a quality life.<br />
Respecting the interests of external<br />
stake holders of the NPPs is an important<br />
principle of social responsibility,<br />
and it was proved within the research<br />
| | Fig. 3.<br />
Level of agreement of NPPs’ representatives with statements related to stakeholders.<br />
that NPPs are aware of it. We have<br />
demonstrated that it affects the<br />
acceptability of the NPPs in the society<br />
and the quality of coexistence.<br />
Successful organizations, and<br />
NPPs strive to be among them, differ<br />
from others by their exceptional<br />
ability to quickly detect and effectively<br />
adapt to changes in an unpredictable<br />
environment. The appropriate strategy<br />
<strong>for</strong> involvement of stakeholders<br />
in strategic decisions of the NPPs<br />
should be set up and implemented.<br />
This is a pre requisite <strong>for</strong> the placement<br />
of the NPPs in the environment,<br />
its operation and coexistence. The<br />
target groups with which trust is<br />
particularly needed are local communities<br />
(surrounding and more distant),<br />
NGOs, political public, NPPs’<br />
suppliers and journalists. These external<br />
stakeholders groups differ according<br />
to the understanding of nuclear<br />
technology, interests and impacts on<br />
the NPPs, what effective strategy of<br />
NPPs must take into account. Our<br />
research demonstrated that a certain<br />
proportion of external stakeholders of<br />
NPP in Slovenia still not have clear<br />
understanding of the functions, influences<br />
and many other issues related to<br />
nuclear energy. This is an important<br />
challenge <strong>for</strong> owners and operators of<br />
NPPs that want to achieve confidence<br />
and acceptance.<br />
Coexistence with NPPs depends on<br />
trust of stake holders into the NPP, the<br />
perception of their quality of life, the<br />
awareness of the impacts on coexistence,<br />
and the willingness to respect<br />
the interests of stakeholders of NPPs,<br />
which the power plant should implement<br />
with socially responsible practices.<br />
The optimal model of involving<br />
external stakeholders in the operation<br />
of the NPPs is the one that establishes<br />
the quality coexistence of the nuclear<br />
facility and its external stakeholders.<br />
We have proven that coexistence with<br />
the NPPs positively affects quality of<br />
ENERGY POLICY, ECONOMY AND LAW 201<br />
| | Fig. 4.<br />
Optimal model <strong>for</strong> the involvement of external stakeholders.<br />
Energy Policy, Economy and Law<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 202<br />
life. The optimal model <strong>for</strong> the<br />
involvement of external stakeholders<br />
into NPPs that we have established is<br />
shown in Figure 4.<br />
The effective model of involvement<br />
of external stakeholders integrates<br />
internal resources (employees) and<br />
external stakeholders in a meaningful<br />
and responsible manner. It is necessary<br />
to take into account social, legal,<br />
political, cultural and all other diversity,<br />
interests and expectations. The<br />
key position in the model is given<br />
to effective communication model<br />
between the NPP and its external<br />
stakeholders. Social responsibility of<br />
the NPPs begins with top management<br />
and is deployed to whole<br />
organizational structure. The optimal<br />
model establishes self-assessment<br />
mechanisms and continuous implemen<br />
tation of improvements, which<br />
consequently allows redefinition of<br />
the vision and mission of the NPPs.<br />
The self-assessment logic and the<br />
establishment of conditions <strong>for</strong><br />
continuous improvements (EFQM<br />
RADAR, Deming’s PDCA circle or<br />
some other managers tool) is included<br />
in the process loop to achieve the<br />
strategic goals. Socially responsible<br />
activities of the NPPs are not inferior<br />
to achieving the maximum possible<br />
profit. Potential conflicts between<br />
social responsibility and economic<br />
concern can be solved by rising awareness<br />
of long-term (positive) effects<br />
and benefits of socially responsible<br />
organizations. Namely, overcoming<br />
conflicts between NPPs and their<br />
stakeholders has positive implications<br />
on higher social and economic efficiency,<br />
on safety and acceptability of<br />
the NPPs. A critical analysis of efficiency<br />
and the introduction of improvements<br />
represent the way to<br />
greater acceptability of the NPPs in<br />
the environment, sustainability of<br />
nuclear energy and excellence in<br />
relations to external stakeholders.<br />
Acceptability of the NPPs in the environment<br />
enhances the quality of life.<br />
In addition to responsible owners and<br />
operators, the important condition <strong>for</strong><br />
successful coexistence with the NPPs<br />
are responsible, critical and objective<br />
external stakeholders as well.<br />
Additional research areas<br />
The article presents the optimal model<br />
of participation of external stakeholders<br />
in important decisions related<br />
to nuclear energy. We are aware that<br />
the integration of stakeholders in<br />
the NPPs is not always and everywhere<br />
optimal, and is influenced<br />
by many factors. There<strong>for</strong>e, there is a<br />
possibility <strong>for</strong> gaps between practice<br />
and the model. NPPs should evaluate<br />
causes of such inconsistencies, find<br />
ways to overcome them, and include<br />
owners and operators of the NPPs in<br />
the analysis, to express their view of<br />
this area.<br />
Further research could focus on<br />
studying interactions with influential<br />
other groups of external stakeholders,<br />
e.g. it would make sense to include<br />
stakeholders who live in neighbouring<br />
countries that do not have NPPs on<br />
their territory. It would be practical to<br />
better define the specific interests and<br />
impacts of individual groups of external<br />
stakeholders.<br />
5 Conclusion<br />
NPPs are aware of their impact on the<br />
wider society. As expressed in the<br />
survey by NPPs’ operators and owners,<br />
they are ready to satisfy interests of<br />
their external stakeholders and with<br />
full responsibility. Using the SEM<br />
method, we have proven that the<br />
acceptance of NPPs and quality of<br />
coexistence depend on respect of<br />
interests of the NPPs’ external stakeholders.<br />
Involvement of external stakeholders<br />
into the whole life cycle of the<br />
NPPs enables rational and systematic<br />
solutions to challenges of coexistence<br />
and quality of life. Strengthening<br />
social responsibility in the field of<br />
nuclear energy offers some starting<br />
points and answers to environmental<br />
issues and sustainability also in the<br />
light of global economy. It affects the<br />
acceptability of the NPPs and the<br />
quality of life of individuals and<br />
different groups in a modern society<br />
and in the environment in which<br />
nuclear facilities are located. The<br />
research contributes to the society,<br />
owners and operators of the NPPs.<br />
The con tribution is in the field of<br />
relations between the NPPs and its<br />
stakeholders. The impact of the NPPs<br />
addresses many areas and can represent<br />
important social, economic and<br />
cultural indicators in all structures<br />
of society. Any additional research,<br />
especially from specific and unexplored<br />
areas of coexistence with the<br />
NPPs, and the implementation of<br />
socially responsible principles, there<strong>for</strong>e<br />
represents an important contribution.<br />
Acknowledgement<br />
We would like to thank the WANO<br />
organization <strong>for</strong> enabling us to spread<br />
invitation to NPPs to participate in the<br />
survey through their in<strong>for</strong>mation<br />
system. By supporting our research,<br />
WANO demonstrates own social<br />
responsibility and the importance of<br />
common concern <strong>for</strong> prosperity of a<br />
wider society.<br />
We would also like to thank all<br />
respondents that participated in the<br />
research <strong>for</strong> their interest and cooperation<br />
as our thanks to them was<br />
not possible earlier due to anonymity<br />
of the survey.<br />
References<br />
| | Afgan, N. H. (2013). Sustainable nuclear energy dilemma.<br />
Thermal Science, 17(2), 305–321. doi: 10.2298/TSCI121022214A.<br />
| | Avetisyan, E., & Ferrary, M. (2012). Dynamics of stakeholders’<br />
implications in the institutionalization of the CSR field in France<br />
and in the United States. <strong>Journal</strong> of Business Ethics, 115(1),<br />
115–133. doi: 10.1007/s10551-012-1386-3.<br />
| | Banerjee, S. B., & Bonnefous, A. M. (2011). Stakeholder<br />
management and sustainability strategies in the French nuclear<br />
industry. Business Strategy and the Environment, 20(2), 124–140.<br />
doi: 10.1002/bse.681.<br />
| | Campbell, M. D. (2013). Uranium, thorium, and associated rare<br />
earth elements of industrial interest. Houston: EMD Uranium<br />
( <strong>Nuclear</strong> Minerals and REE) Committee.<br />
| | Civelek, M. E. (2018). Essentials of Structural Equation Modeling.<br />
Lincoln, Nebraska: Zea Books. doi: 10.13014/K2SJ1HR5.<br />
| | Goodfellow, M. J., Dewick, P., Wortley, J., & Azapagic, A. (2015).<br />
Public perceptions of design options <strong>for</strong> new nuclear plants in<br />
the UK. Process Safety and Environmental Protection, 94, 72–88.<br />
doi: 10.1016/j.psep.2014.12.008.<br />
| | Guidance on social responsibility ISO 26000:2010, 1st edition.<br />
(2010). Geneve: <strong>International</strong> Organization <strong>for</strong> Standardization.<br />
| | He, G., Mol, A. P., Zhang, L., & Lu, Y. (2013). Public participation<br />
and trust in nuclear power development in China. Renewable<br />
and Sustainable Energy Reviews, 23, 1–11. doi:<br />
10.1016/j.rser.2013.02.028.<br />
| | Horvath, A., & Rachlew, E. (2016). <strong>Nuclear</strong> power in the 21st<br />
century: Challenges and possibilities. Ambio, 45(1), 38–49. doi:<br />
10.1007/s13280-015-0732-y.<br />
| | IAEA. (2011). Stakeholder involvement throughout the life cycle of<br />
nuclear facilities. Vienna: <strong>International</strong> Atomic Energy Agency.<br />
| | Kato, T., Takahara, S., Nishikawa, M., & Homma, T. (2013). A<br />
case study of economic incentives and local citizens’ attitudes<br />
toward hosting a nuclear power plant in Japan: Impacts of the<br />
Fukushima accident. Energy Policy, 59, 808–818. doi: 10.1016/j.<br />
enpol.2013.04.043.<br />
| | Matuleviciene, M., & Stravinskiene, J. (2015). Identifying the<br />
factors of stakeholder trust: a theoretical study. Procedia -<br />
Social and Behavioral Sciences, 213, 599–604. doi:<br />
10.1016/j.sbspro.2015.11.456.<br />
| | Shadrina, E. (2012). Fukushima fallout: gauging the change in<br />
Japanese nuclear energy policy. <strong>International</strong> <strong>Journal</strong> of Disaster<br />
Risk Science, 3(2), 69–83. doi: 10.1007/s13753-012-0008-0.<br />
| | Simončič, M., & Žurga, G. (2016). Social responsible communication<br />
of nuclear power plant with external stakeholders. Atw –<br />
<strong>International</strong> <strong>Journal</strong> <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong>, 61(11), 653–659.<br />
| | Truelove, H. B., & Greenberg, M. (2013). Who has become more<br />
open to nuclear power because of climate change? Climatic<br />
Change, 116, 389–409. doi: 10.1007/s10584-012-0497-2.<br />
| | Trufanov, V. V. (2013). Modeling development options of electric<br />
power systems in conditions of multiple stakeholders. Thermal<br />
Engineering, 60(13), 931–937.<br />
| | World <strong>Nuclear</strong> Association. (2018). Harmony 2018 Edition.<br />
London.<br />
Authors<br />
Dr. M. Simončič<br />
(corresponding author)<br />
Lead engineer of analytical<br />
chemistry and radiochemistry<br />
<strong>Nuclear</strong> <strong>Power</strong> Plant Krško<br />
Vrbina 12<br />
8270 Krško, Slovenia.<br />
Dr. G. Žurga<br />
Professor and independent<br />
researcher in the area<br />
of management<br />
Slovenia<br />
Energy Policy, Economy and Law<br />
Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
The <strong>Nuclear</strong> Fission Table in the<br />
Deutsches Museum: A Fundamental<br />
Discovery on Display<br />
Susanne Rehn-Taube<br />
The Deutsches Museum in Munich is one of the largest science and technology museums in the world.<br />
At 50,000 square meters, it shows masterpieces from such diverse disciplines such as chemistry, physics, aircraft,<br />
marine, biotechnology, or glass technology.<br />
| | The table carrying the original instruments with which nuclear fission was discovered in 1938<br />
is one of the most famous objects of the Deutsches Museum.<br />
Since the beginning of the museum,<br />
there has been an exhibition about<br />
chemistry. The chemistry collection<br />
contains dye samples, laboratory<br />
equipment, and many other objects –<br />
about 10,000 in total.<br />
One of the most famous objects is<br />
the table displaying the original<br />
equipment used by the researchers<br />
who discovered nuclear fission of<br />
uranium atoms in 1938: Otto Hahn,<br />
Lise Meitner and Fritz Straßmann. [1]<br />
The discovery<br />
of nuclear fission<br />
Since the 1890s, the scientific community<br />
had <strong>for</strong>med an increasingly accurate<br />
idea of the atom. After the first investigations<br />
of radioactive substances<br />
by Becquerel and the Curies, Ernest<br />
Ruther<strong>for</strong>d and his coworker Frederick<br />
Soddy noticed in 1902 that by radioactive<br />
decay chemical elements change<br />
into each other. In 1913, Niels Bohr<br />
established his atomic model, postulating<br />
a positive nucleus with negative<br />
electron shells. In 1919, the first manmade<br />
change of elements took place,<br />
again by Ruther<strong>for</strong>d: by bombarding<br />
nitrogen atoms with helium nuclei, he<br />
obtained oxygen atoms and a posi tively<br />
charged particle which, a short time<br />
later, he identified as the proton. [2]<br />
As a result, several research groups<br />
attempted to obtain element changes<br />
by bombarding atomic nuclei with<br />
protons. In this case, however, the<br />
repulsion of the positive particles and<br />
the positive nucleus had always been<br />
an obstacle.<br />
It was not until the discovery of the<br />
neutron by James Ch<strong>atw</strong>ick in 1932<br />
that a new possibility was opened:<br />
this nucleon should be able to penetrate<br />
the nucleus without electrostatic<br />
repulsion. [3] Bohr spoke of a possible<br />
“explosion” [4] or “breaking” [5] of<br />
atomic nuclei. He <strong>for</strong>mulated the<br />
theory that the nucleus behaves<br />
similar to a large water drop.<br />
Enrico Fermi then irradiated a<br />
variety of elements with neutrons.<br />
By neutron capture and subsequent<br />
β-decay, he was hoping to obtain<br />
elements with an atomic number<br />
increased by one compared to the<br />
starting materials. In the case of<br />
uranium, at the time believed to be<br />
the heaviest chemical element, this<br />
trans<strong>for</strong>mation would lead to an artificial<br />
element. A transuranic element<br />
should be <strong>for</strong>med. [6]<br />
Lise Meitner thought these results<br />
so fascinating that in 1934 she<br />
persuaded Otto Hahn to join <strong>for</strong>ces<br />
again. She wanted to bombard heavy<br />
nuclei, including uranium and thorium,<br />
with neutrons, in order to obtain<br />
transuranic elements. [7] The two scientists<br />
had known each other since<br />
1907. [8] In the late 1930ies, Hahn led<br />
the department of radiochemistry and<br />
was director of the Kaiser Wilhelm<br />
Institute <strong>for</strong> Chemistry in Berlin. Lise<br />
Meitner directed the radio-physical<br />
department.<br />
The collaboration of the physicist<br />
and the chemist must have been<br />
extremely fruitful and affected by<br />
great friendship. Hahn described it<br />
in 1963 as “stroke of luck” to have<br />
met Lise Meitner. [9] Together with<br />
the chemist Fritz Straßmann, they<br />
conducted the following experiments:<br />
A sample of purified uranium was<br />
brought into a paraffin block and put<br />
next to a neutron source of beryllium<br />
and radium. After different exposure<br />
times, the uranium sample was<br />
removed and chemically analyzed.<br />
After dissolving it in hydrochloric<br />
acid, a compound similar to the suspected<br />
product was added. By doing<br />
so, the team expected that this added<br />
compound and the reaction product<br />
should precipitate together from the<br />
solution. Excessive uranium remained<br />
in the solution. Subsequently, the<br />
filtrates were dried and the filter<br />
papers were put into the cylindrical<br />
hollow of a lead block. Home-made<br />
Geiger-Muller counters were set onto<br />
the filter papers. The counter tube<br />
consisted of an aluminum cylinder<br />
filled with a special argon gas mixture<br />
with a wire in the center. Strong batteries<br />
put the wire under voltage. The<br />
negative β-particles emitted from the<br />
radioactive sample were accele rated<br />
toward the wire and caused a cascade<br />
of ionizations and an elec trical pulse.<br />
This pulse was amplified and displayed<br />
by a mechanical counter. Plotting<br />
the counts against time yielded<br />
the radioactive decay rates of the reaction<br />
products.<br />
ENERGY POLICY, ECONOMY AND LAW 203<br />
Energy Policy, Economy and Law<br />
The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 204<br />
| | Fritz Straßmann and Otto Hahn explain the objects to Heinz Haber <strong>for</strong> a<br />
television documentary in 1963. Hahn does NOT arrange the instruments<br />
<strong>for</strong> the museum and never has.<br />
The team indeed found reaction<br />
products emitting β-particles and<br />
concluded that transuranic elements<br />
were <strong>for</strong>med. They assumed the<br />
finding of nuclei with atomic numbers<br />
93 to 96 which chemical properties<br />
met the expectations. Despite a long<br />
series of β-decay, which was never<br />
observed be<strong>for</strong>e, the finding of new<br />
chemical elements was published and<br />
not doubted by anyone. [10]<br />
It was the summer of 1938. At this<br />
exciting point of their work, Lise<br />
Meitner had to flee Germany. After<br />
the “Anschluss” of Austria by Germany,<br />
she was threatened with persecution<br />
by the Nazis as an Austrian Jew. With<br />
the help of Otto Hahn and other<br />
colleagues, she left Germany on July<br />
13, 1938 <strong>for</strong> the Netherlands and<br />
eventually Sweden. Her scientific<br />
celebrity status did not protect her in<br />
any way: she could only cross the<br />
German border because she was <strong>for</strong>tunate<br />
enough not to be controlled by<br />
the SS guards on the train. The flight<br />
must have left a great break in the<br />
Berlin team. Otto Hahn wrote later:<br />
“I’ll never <strong>for</strong>get the 13 th of July 1938”.<br />
[11] “Hähnchen” and “Lieschen”, as<br />
they called themselves according to<br />
legend, remained in frequent contact<br />
by correspondence nonetheless.<br />
In Berlin, the team focused on the<br />
chemical analysis of the irradiation<br />
product. The results seemed to indicate<br />
radium as product. [12] This could be<br />
the result of two consecutive αdecays<br />
of uranium. This had never been<br />
observed be<strong>for</strong>e, and many experts<br />
were skeptical. To identify radium<br />
chemically, Hahn and Straß mann first<br />
added barium chloride to the uranium<br />
solution and hoped to precipitate a<br />
radium barium mixture. The precipitate<br />
was filtered and dissolved again.<br />
From this solution, the team tried to<br />
separate barium and radium by fractional<br />
crystallization. The solution was<br />
heated and first treated with acid, until<br />
a small portion crystallized. This precipitate<br />
was filtered off. The solution<br />
<strong>for</strong>med a second precipitate, which<br />
was also filtered off. Subsequently, a<br />
third fraction was crystallized. Since<br />
radium salts are usually less soluble<br />
than barium salts, the <strong>for</strong>mer should<br />
be enriched in the first fraction and the<br />
latter in the last fraction. The radioactive<br />
decay of all fractions was analyzed.<br />
Since different nuclei were<br />
assumed present, each fraction should<br />
emit their specific radioactive activity.<br />
However, Hahn and Straßmann discovered<br />
that there were no differences<br />
in the activities of the fractions.<br />
Apparently, a chemical separation had<br />
not taken place.<br />
To verify this, the team also conducted<br />
the fractional crystallization<br />
with radium salts. It seemed possible<br />
that radium in such small quantities<br />
behaved in a peculiar and unexpected<br />
way. Finally, the now famous indicator<br />
experiment should bring clarity:<br />
Hahn and Straßmann irradiated the<br />
uranium sample, mixed it with a<br />
radium sample of known radioactive<br />
activity and conducted the fractional<br />
crystallization with this mixture. [13]<br />
All these series of experiments showed<br />
that all the differences in the activity<br />
of the separate fractions were only<br />
due to the “honest” (Quote: O. Hahn<br />
[14]), i.e. the added radium. The<br />
supposed artificial radium showed<br />
constant activity through all fractions.<br />
Thus, it was a nucleus inseparable<br />
from barium. The product of the<br />
irradiation experiments had to be<br />
barium. These results left Hahn and<br />
Straßmann clueless. They had no<br />
| | Otto Hahn and Lise Meitner (picture: 1950ies) always communicated in a friendly<br />
and professional tone and spoke with great respect <strong>for</strong> each other and each<br />
other’s scientific achievements.<br />
explanation how irradiation of<br />
uranium could lead to barium, a much<br />
lighter element.<br />
In a letter written on December<br />
19 th , 1938 Otto Hahn asked Lise<br />
Meitner <strong>for</strong> an explanation, because<br />
he knew that “[uranium] cannot burst<br />
into barium”. “The more we think<br />
about it, the more we come to this<br />
terrible conclusion: Our radium<br />
isotopes do not behave like radium,<br />
but like barium. [...] If you could<br />
suggest anything, it would still be like<br />
a result of the three of us!” [15]<br />
His point of view that Lise Meitner<br />
was still part of the team led to this<br />
wish that the results would still be a<br />
work of the whole team. Meitner was<br />
skeptical and asked very critically<br />
whether all other possibilities had<br />
been “ruled out”. [15 a), p. 171] She<br />
spent Christmas of 1938 with her<br />
nephew, physicist Otto Robert Frisch,<br />
in Kungälv, Sweden. According to<br />
legend, the both spent hours of<br />
walking in the snow and then<br />
developed a revolutionary interpretation<br />
of the experiments. According<br />
to Bohr’s liquid drop model, the<br />
uranium nucleus started to move after<br />
penetration by a neutron. [16] This<br />
movement led to constriction and<br />
finally separation into two roughly<br />
equal-sized fragments, which were<br />
each much smaller than the uranium<br />
nucleus itself. Thus, an explanation<br />
<strong>for</strong> the light nucleus barium was<br />
found. The fragments flew apart with<br />
high kinetic energy. Otto Robert Frisch<br />
had the honor of giving the new<br />
process its name: nuclear disintegration<br />
and later nuclear fission. On<br />
New Year’s Day, 1939, Lise Meitner<br />
told Otto Hahn in a letter “perhaps it is<br />
energetically possible that such a<br />
heavy nucleus bursts into pieces.” [17]<br />
Energy Policy, Economy and Law<br />
The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Today, one can only try to sympathize<br />
with Meitner’s feelings, which<br />
probably oscillated between frustration<br />
and excitement. Her entire life<br />
had been turned upside down and<br />
apparently, she had missed the most<br />
important discovery of her <strong>for</strong>mer<br />
team. Additionally, this discovery<br />
would question her own work about<br />
the transuranic elements too. Hahn<br />
and Meitner did correspond about<br />
their feelings in their letters. Hahn<br />
wrote, “How beautiful and exciting it<br />
would be if we could have done this<br />
work together like be<strong>for</strong>e.” From<br />
Meitner’s reply, he could read the fear<br />
that her participation in the discovery<br />
could not be adequately approved.<br />
And Hahn replied immediately: “It<br />
shocked me to see you so depressed.”<br />
[15 a), pp 171, 177]<br />
On January 6 th , 1939, the results of<br />
Hahn and Straßmann were published.<br />
The interpretation culminated in the<br />
famous phrase: “As chemists, we<br />
should actually call the new nuclei not<br />
radium but barium.” [18] And the<br />
next major publication by Hahn and<br />
Straßmann followed February 10 th ,<br />
1939. [19] The authors reported with<br />
absolute certainty that all the previously<br />
suspected radium isotopes<br />
were in truth barium isotopes. Hahn<br />
and Straßmann apparently tried to<br />
show that there was indeed a group of<br />
three that had obtained the results.<br />
The previous publications of the<br />
trio and Lise Meitner’s name were<br />
mentioned several times. Hahn and<br />
Straßmann mentioned the transuranic<br />
elements as well: “We are still<br />
certain, that the transuranic elements<br />
remain.” The second fission product<br />
was stated to be a noble gas, either<br />
krypton or xenon. The publication<br />
concluded with the statement that<br />
the finding of the new irradiation<br />
products was “only possible by the<br />
experience we have gained in the<br />
earlier, systematic experiments on the<br />
trans uranic elements, carried out in<br />
asso ciation with L. Meitner.”<br />
Meitner and Frisch published their<br />
conclusions in Nature in February<br />
1939. [20] They predicted the other<br />
fission product correctly as krypton.<br />
This work also explicitly stressed the<br />
existence of transuranic elements. In<br />
subsequent publications, Frisch and<br />
Meitner already provided calculations<br />
of the enormous amount of energy<br />
released during the reaction. [21, 22]<br />
After those publications, various<br />
groups all over the world instantly<br />
began to repeat, confirm and continue<br />
the experiments. Frédéric Joliot-Curie<br />
realized that the fission reaction led to<br />
the emersion of free neutrons. These<br />
could lead to the subsequent fission of<br />
further uranium atoms and a selfmaintaining<br />
chain reaction was thinkable.<br />
[23] Soon the whole world was<br />
interested in nuclear fission. Frisch<br />
and Bohr explained the energy<br />
released during the reaction with Einstein’s<br />
equation E = mc 2 . [24] The<br />
fragments of the nuclear fission<br />
reaction combined had a smaller mass<br />
than the uranium core. The equivalent<br />
of this mass difference was<br />
released as free energy.<br />
The different isotopes of uranium<br />
have been extensively studied. As<br />
early as 1939, Niels Bohr recognized<br />
that the fission process only occurs<br />
in the rare uranium isotope 235 U. [25]<br />
In the following year, the American<br />
group led by McMillan and Abelson<br />
published confirmation that, by<br />
irradiation of uranium-238, a transuranic<br />
element could be produced.<br />
Investigations of these elements led<br />
to nothing less than a reorganization<br />
of the periodic table. [26] Below<br />
the lanthanides follows a series of<br />
elements later called actinides. Hahn<br />
and Straßmann confirmed and<br />
supple mented the results. They provisionally<br />
named the new element<br />
block “uranides”. [27] Otto Hahn<br />
was later kind of annoyed about the<br />
fact that he did not recognize one<br />
uranium isotope with the half-life<br />
of 23 minutes as a precursor of the<br />
transuranic element 93.<br />
Later [28], Seaborg and McMillan<br />
also found the heaviest natural<br />
element with an atomic number of 94.<br />
It emerged from the bombardment<br />
of uranium atoms with deuterium<br />
nuclei. [29]<br />
The transuranic elements 93 and<br />
94 were later called neptunium and<br />
plutonium in the order of the planets<br />
Uranus, Neptune, and Pluto. [30] Plutonium<br />
is considered the heaviest naturally<br />
occurring element. It was found<br />
in trace amounts in natural uranium<br />
ore. The naturally occurring transuranic<br />
elements are just like the ones<br />
in the laboratory created via neutron<br />
capture by uranium-238 atoms.<br />
During World War II, Otto Hahn<br />
was a member of the “Uranium<br />
Association,” a group of scientists<br />
who were supposed to work on the<br />
technical use of nuclear fission in<br />
Germany. Due to this fact, the British<br />
held him captive after the war. During<br />
his captivity, he learned of the nuclear<br />
explosions in Japan by the Americans<br />
and of the fact that he had been<br />
awarded the Nobel Prize <strong>for</strong><br />
| | In 1972 the chemistry exhibition in the Deutsches Museum was reopened presenting the “Arbeitstisch von Otto Hahn”<br />
in a niche next to a large model of an uranium atom. After more than 20 years on display, Lise Meitner’s contribution to the discovery<br />
was still not mentioned.<br />
ENERGY POLICY, ECONOMY AND LAW 205<br />
Energy Policy, Economy and Law<br />
The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 206<br />
Chemistry in 1944. Later, Otto Hahn<br />
referred to the use of nuclear fission<br />
<strong>for</strong> military purposes as a “mess” that<br />
he wanted no part of. [31] He initiated<br />
action against the military use of<br />
nuclear power, such as the Mainau<br />
Declaration in 1955 or the Göttingen<br />
Declaration in 1957.<br />
To receive his Nobel Prize, Hahn<br />
had to wait until the ceremony of 1946.<br />
Awarding the prize to Otto Hahn alone<br />
probably remains one of the most<br />
debated decisions of the Nobel committee<br />
until today. In his Nobel Lecture<br />
on December 13 th , 1946, Hahn<br />
explained the work of the team Hahn,<br />
Meitner, and Straßmann in great<br />
detail. [11, p. 247 and following pages]<br />
Being a Nobel Laureate, Otto Hahn<br />
later led the Kaiser- Wilhelm- Gesellschaft<br />
and its successor, the Max-<br />
Planck- Gesellschaft, whose presidency<br />
he held until 1960.<br />
Nevertheless, the developments<br />
that occurred in other fields after the<br />
discovery of nuclear fission have<br />
certainly had a tremendous impact on<br />
humanity. The enormous energy<br />
release of the fission process soon led<br />
the scientific community to think<br />
about the possibilities of a power<br />
reactor or an explosive bomb, in the<br />
beginning cautiously called machine.<br />
Enrico Fermi built the first nuclear<br />
reactor in the world in Chicago in<br />
1942. The first atomic bomb was<br />
developed in the Manhattan Project.<br />
With an incredible amount of money<br />
and work<strong>for</strong>ce, the Americans pushed<br />
their nuclear program. Today, we see<br />
it as the beginning of a new era when<br />
the first atomic bomb was detonated<br />
on July 16, 1945 in the New Mexico<br />
desert. The nuclear arms race was just<br />
about to begin. To this day, the earth<br />
has been shaken by 2053 nuclear<br />
explosions. [32]<br />
The artifact:<br />
The “Otto-Hahn-table”<br />
Since the 1920s, the Deutsches<br />
Museum has had contact with Lise<br />
Meitner, Otto Hahn and colleagues in<br />
Berlin. They exchanged letters with<br />
regard to donations of books or<br />
samples of the element protactinium<br />
discovered by Meitner and Hahn. [33]<br />
Especially the director Jonathan<br />
Zenneck corresponded with Otto<br />
Hahn at length and in a friendly tone.<br />
In 1952, the director of the Max<br />
Planck Institute <strong>for</strong> Chemistry in<br />
Mainz got in touch with the Deutsches<br />
Museum to discuss the existing equipment<br />
by Otto Hahn. Parts of the<br />
original equipment that had been<br />
moved after the war from Berlin via<br />
the small city of Tailfingen to Mainz<br />
had been arranged there on a table<br />
and presented to the public. Once the<br />
table and the apparatus were erected<br />
in the museum, they waited <strong>for</strong> a text<br />
to explain their meaning. It was<br />
planned that a marble tablet should<br />
bear the following text:<br />
OTTO HAHN<br />
Discovered in 1938, together with<br />
Fritz Straßmann, the fission of<br />
uranium by neutrons, thus creating<br />
the basis <strong>for</strong> the technical realization<br />
of atomic energy. [34]<br />
Otto Hahn was specifically asked<br />
by Jonathan Zenneck about his opinion<br />
of this synopsis. In his reply dated<br />
April 8, 1953, Hahn was unenthusiastic<br />
about the plans of the Museum:<br />
“As much as I am delighted about<br />
the attention [...] I’m a little depressed<br />
about the presentation that is<br />
apparently intended. It seems to me<br />
somewhat exaggerated to construct a<br />
special niche with a marble table,<br />
because if the fission of uranium has<br />
been found in aftermath to be very<br />
important, neither Mr. Straßmann nor<br />
I had any share in this development.”<br />
In his letter, he goes on to mention<br />
Lise Meitner and again asks <strong>for</strong> his<br />
name not to be “mentioned with a<br />
special appearance”. [35]<br />
This letter clearly contradicts the<br />
image that has sometimes been drawn<br />
of Otto Hahn that he had spoken<br />
too rarely about the share of his<br />
colleagues in the discovery, particularly<br />
Lise Meitner’s share. The mere<br />
mentioning of the two colleagues in<br />
this letter should have demonstrated<br />
to Zenneck that the display as “Otto<br />
Hahn table” was wrong. Zenneck and<br />
his successors, however, did not<br />
change anything and <strong>for</strong> several<br />
decades the name “Otto-Hahn table”<br />
stuck.<br />
This is how the visitors found<br />
the artifact: It was called workbench,<br />
but displayed devices, which were<br />
never used together on one table.<br />
The paraffin block and the neutron<br />
sources (which were displayed as<br />
reproductions) were used in an irradiation<br />
room, while the chemical<br />
analysis was undertaken in the<br />
chemical laboratory of Straßmann.<br />
The measurement of the radioactive<br />
activities was conducted in the<br />
measuring room. The pairwise<br />
arrangement of the counters on the<br />
table had no scientific grounding, but<br />
gave the whole thing a wonderful<br />
symmetry. That the measurements<br />
would have been impossible if set<br />
so closely to the neutron source<br />
was never mentioned in one of the<br />
museum texts. [36]<br />
Otto Hahn was in the museum in<br />
1963 <strong>for</strong> the 25th anniversary of<br />
the discovery. He gave a television<br />
interview to Heinz Haber, a pioneer in<br />
scientific journalism at the time, in<br />
which Hahn told the entire story in<br />
great detail. [9] Hahn emphasized<br />
the contributions and the great teamwork<br />
between himself, Meitner and<br />
Straßmann. A still image from the<br />
movie is now regarded as the moment<br />
Hahn arranges the devices <strong>for</strong> the<br />
museum himself, a legend that is just<br />
as persistent as it is wrong. [37]<br />
In 1972, the chemistry exhibition<br />
was reopened with a new architecture.<br />
In a niche next to a large<br />
model of a uranium atom, the table<br />
stood in a new showcase. The marble<br />
plaque had been removed, but the<br />
sign “ Arbeitstisch von Otto Hahn”<br />
(workbench of Otto Hahn) had<br />
been taken from the old display. Lise<br />
Meitner’s contribution to the discovery<br />
still did not occur in the<br />
Deutsches Museum.<br />
Only in 1989, on the occasion of<br />
a major exhibition, a balanced and<br />
correct presentation of Meitner’s and<br />
Straßmann’s contributions was finally<br />
shown in the museum. [15 a)] Subsequently,<br />
the museum worked together<br />
with Meitner’s biographer Ruth Lewin<br />
Sime to present a balanced account of<br />
events.<br />
In December 2012, the object<br />
moved to the exhibition about<br />
museum history. The caption today<br />
tries – with all brevity – to satisfy all<br />
those involved in the decisive experiments,<br />
and the table was officially<br />
renamed Hahn-Meitner-Straßmann<br />
table or simply nuclear fission table. It<br />
will be presented in the new permanent<br />
exhibition on chemistry from<br />
2020 onwards.<br />
Conclusion: The responsibility<br />
of the museum curators<br />
For the majority of visitors, it can be<br />
assumed that they see the development<br />
of nuclear power, with all its<br />
consequences <strong>for</strong> the world, as more<br />
important than the exact story of its<br />
discovery. The table is presented as an<br />
icon of the history of science and is at<br />
the same time an arranged art object<br />
whose aura is nourished by its almost<br />
altar-like <strong>for</strong>m. The global technical<br />
and political significance of nuclear<br />
fission certainly served as an amplifier<br />
<strong>for</strong> the object’s glory, but was never<br />
described in the exhibition. How did<br />
the reputation of the acting persons<br />
change over time?<br />
Energy Policy, Economy and Law<br />
The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Immediately after the war, Hahn<br />
and Strassmann were put on a<br />
pe destal: Look, here are two German<br />
scientists who have discovered<br />
something significant! The Deutsches<br />
Museum proudly presented an object<br />
that was saved under certainly difficult<br />
circumstances and moved three<br />
times through post-war Germany.<br />
Whether the instruments were original<br />
ones or the arrangement made<br />
sense was not examined. One did not<br />
bother to describe the components<br />
and the experiments exactly. The<br />
presentation aroused the feeling that<br />
one stood at the desk of a Nobel Prize<br />
winner and could almost look over his<br />
shoulder.<br />
That the contribution of Lise<br />
Meitner was not mentioned is beyond<br />
understanding: one glance into the<br />
original literature would have been<br />
enough to get a more complete picture.<br />
Everyone involved was alive and<br />
well, detailed first-hand documentation<br />
would have been achievable.<br />
However, the fact that nothing was<br />
changed after Hahn’s rather unsatisfied<br />
comment on the first text panel<br />
suggests that it was already hanging<br />
in the exhibition and the text was<br />
literally carved into stone. There<strong>for</strong>e,<br />
the label of the exhibit was created:<br />
“workbench of Otto Hahn”. Possibly, it<br />
was also the glory of the Nobel Prize,<br />
which put Meitner in the shade after<br />
the war. In any case, there was no<br />
ef<strong>for</strong>t to tell the whole story. General<br />
Director Zenneck would have had to<br />
question the exhibition more critically.<br />
Judging from the friendlysubmissive<br />
tone of his letters to Hahn,<br />
however, this is completely unthinkable.<br />
Hahn was the sole contact <strong>for</strong><br />
nuclear fission <strong>for</strong> Zenneck.<br />
It must be stressed at this point<br />
that Hahn and Meitner, both during<br />
their direct cooperation and after the<br />
war, communicated in an extremely<br />
friendly and professional tone and<br />
spoke with great appreciation of each<br />
other and the scientific achievements<br />
of each other. Surely they saw in the<br />
other an equal scientific partner.<br />
The post-war generation of exhibition<br />
curators saw no need to change<br />
anything in the presentation, and so<br />
Meitner really fell into oblivion. She<br />
lived abroad, was certainly not as<br />
present at events in the Deutsches<br />
Museum and on the German science<br />
stage as Hahn. And it is precisely this<br />
constellation that leads to the allegation<br />
that Hahn had made his mark as a<br />
leading figure in German science,<br />
as a “good German” at the expense<br />
of his colleagues and especially his<br />
colleague with Jewish roots after<br />
the war. [38] The ignorance of the<br />
Museum concerning Meitner implied<br />
that Hahn had built a memorial <strong>for</strong><br />
himself in the museum with “his”<br />
object. Parts of today’s history of<br />
science draw a strong picture, according<br />
to which Hahn later “refused<br />
to let Meitner participate in the<br />
discovery.” [39] The fact that Hahn<br />
collected the Nobel Prize alone is<br />
often mentioned in this context, too.<br />
The impression remains Hahn would<br />
be personally responsible <strong>for</strong> that as<br />
well.<br />
Since the 1990s, the museum has<br />
sought a differentiated and more<br />
detailed presentation. If this had<br />
happened 40 years earlier, Hahn’s<br />
reputation would probably be dif ferent<br />
today. We can assume that Hahn<br />
certainly would not have objected to<br />
such a representation.<br />
The curator’s dream may serve as<br />
a last prospect, who would like to cut<br />
the object – purely virtually, of course,<br />
not in reality – in order to present the<br />
individual parts of the experimental<br />
set-up finally in a scientifically correct<br />
way.<br />
Footnotes<br />
1. This is a revised copy of: Rehn, The <strong>Nuclear</strong> Fission Table in the<br />
Deutsches Museum: A Special Piece of Science History on the<br />
Eve of World War II. In: M. Kaji, Y. Furukawa (Hg.): Proceedings<br />
of the <strong>International</strong> Workshop on the History of Chemistry:<br />
Trans<strong>for</strong>mation of Chemistry from the 1920s to the 1960s<br />
(IWHC 2015, Tokyo). Tokio 2016, p. 20-27<br />
See also: a) S. Rehn: Der Kernspaltungstisch im Deutschen<br />
Museum. In: Keiser, V. (Hg.): Radiochemie, Fleiß und Intuition.<br />
Neue Forschungen zu Otto Hahn. GNT-Verlag, Berlin, 2018,<br />
p. 63 – 82 b) S. Rehn, Kultur und Technik 3/2013, p. 18-25<br />
2. For milestones in Ruther<strong>for</strong>d’s scientific life, see (last viewed<br />
3.3.2019): http://www.nobelprize.org/nobel_prizes/<br />
chemistry/laureates/1908/ruther<strong>for</strong>d-bio.html<br />
3. J. Chadwick, Nature 129, 1932, S. 312; J. Chadwick, Proc. Roy.<br />
Soc. 136, 1932, p. 692-708<br />
4. N. Bohr, Nature 137, 1936, p. 344-348<br />
5. N. Bohr, Science, 80, 1937, p. 161-165<br />
6. E. Fermi, Nature 133, 1934, p. 757; E. Fermi, ibid., p. 898-899<br />
7. Lise Meitner: Wege und Irrwege zur Kernenergie (1963).<br />
In: L. Meitner, D. Hahn (Ed.), Erinnerungen an Otto Hahn.<br />
Hirzel Verlag Stuttgart, 2005, p. 69 – 73<br />
8. F. Krafft, Otto Hahn und die Kernchemie, Museumsverein für<br />
Technik und Arbeit, Mannheim, 1991, p. 14 - 15<br />
9. Otto Hahn – 25 Jahre Atomzeitalter. Television movie<br />
produced by the German television network NDR, 1963.<br />
In German, Hahn uses the term “Glückszufall”, which is a<br />
mixture of the words “luck” and “chance”. Deutsches Museum<br />
archive, AV-F 0026 & 1743. (All translations of original<br />
German quotes by S. Rehn-Taube.)<br />
10. a) L. Meitner, O. Hahn, F. Straßmann, Z. f. Physik 106, 1937,<br />
p. 249 - 270; b) O. Hahn, L. Meitner, F. Straßmann, Chem.<br />
Ber. 70, 1937, p. 1374-1392<br />
11. O. Hahn, Mein Leben. Bruckmann, München,1968, p. 150<br />
12. O. Hahn, F. Straßmann, Naturwissenschaften 46, 1938,<br />
p. 755 - 756<br />
13. A very detailed description of the experiments is given in:<br />
F. Krafft, Im Schatten der Sensation. Leben und Wirken von<br />
Fritz Straßmann. Verl. Chemie, Weinheim 1981, p. 212 and<br />
following pages<br />
14. Quote by O. Hahn, note 9<br />
15. Letter quoted in: a) J. Lemmerich, Die Geschichte der Entdeckung<br />
der Kernspaltung. Catalogue of the exhibition by the<br />
Deutsches Museum and the Hahn-Meitner-Institute of the<br />
Technical University, Berlin, 1989, p. 166 - 170; b) W. Gerlach:<br />
Otto Hahn, Ein Forscherleben in unserer Zeit. Deutsches<br />
Museum Abhandlungen & Berichte, 37, 1969, p. 52 - 53<br />
16. A modern essay about the finding of nuclear fission and the<br />
liquid-drop model is found in: H. J. Krappe, K. Pomorski,<br />
„ Theory of <strong>Nuclear</strong> Fission“. Springer Verlag Heidelberg, 2012<br />
17. J. Lemmerich (Ed.), Gedächtnisausstellung zum 100.<br />
Geburts tag von Albert Einstein, Otto Hahn, Max von Laue,<br />
Lise Meitner 1.3. – 12.4. 1979. Catalogue oft he exhibition<br />
held in the Staatsbibliothek Preußischer Kulturbesitz, Berlin.<br />
Berlin, 1979, p. 122<br />
18. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 11 - 15<br />
19. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 89 - 95<br />
20. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 239<br />
21. O. R. Frisch, Nature 143, 1939, p. 276<br />
22. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 471 - 472<br />
23. H. v. Halban, F. Joliot, L. Kowarski, Nature 143, 1939,<br />
p. 470 - 471<br />
24. N. Bohr, J. A. Wheeler, Phys. Rev. 56, 1939, p. 426 - 450<br />
25. N. Bohr, Phys. Rev. 55, 1939, p. 418-419<br />
26. E. McMillan, P. H. Abelson, Phys. Rev. 57, 1940, p. 1185-1186<br />
27. F. Straßmann, O. Hahn, Naturwissenschaften 30, 1942,<br />
p. 256-260<br />
28. The results were not published until 1946. In the publications<br />
it was mentioned that the corresponding experiments took<br />
place in 1941.<br />
29. a) G. T. Seaborg, E. M. McMillan, J. W. Kennedy, A. C. Wahl,<br />
Phys. Rev. 69, 1946, p. 366 - 367; b) G. T. Seaborg, A. C. Wahl,<br />
J. W. Kennedy, Phys. Rev. 69, 1946, p. 367; c) J. W. Kennedy,<br />
A. C. Wahl, Phys. Rev. 69, 1946, p. 367 - 368; d) J. W. Kennedy,<br />
G. T. Seaborg, E. Segrè, A. C. Wahl, Phys. Rev. 70, 1946,<br />
p. 555 - 556<br />
30. Uranium was discovered in 1789 and named after the recently<br />
discovered planet Uranus.<br />
31. Radio interview with Otto Hahn (1967), Deutsches Museum<br />
archive, AV-T 0457<br />
32. http://www.ctbto.org<br />
33. DMVA (Deutsches Museum administration archives) 1286/1;<br />
DMVA 1290/2, DMVA 1291/1<br />
34. „Otto Hahn entdeckte 1938 zusammen mit Fritz Straßmann<br />
die Spaltung des Urans durch Neutronen und schuf damit<br />
die Grundlage für die technische Verwertung der Atomkern-<br />
Energie.“<br />
35. Hahn to Zenneck, 8.4.1953, Archive of the Max-Planck-<br />
Gesellschaft, Abt. III, Rep. 14, Nr. 5287, Bl. 14<br />
36. The author thanks Jost Lemmerich <strong>for</strong> this special note.<br />
Personal message (16.4.2013)<br />
37. This can be found in various publications, e.g. (both published<br />
by employees of the museum): T. Brandlmeir, Arbeitstisch zur<br />
Uranspaltung. In: Meisterwerke aus dem Deutschen Museum<br />
Band 1, Deutsches Museum, München (2004). In this paper,<br />
Heinz Haber was even cut off the picture. The caption: Fritz<br />
Straßmann and Otto Hahn during the installation of the<br />
workbench <strong>for</strong> uranium fission; J. Teichmann, Das Deutsche<br />
Museum. Ein Plädoyer für den Mythos von Objekt und<br />
Experiment. In: G. Bayerl, W. Weber (Hrsg.), Sozialgeschichte<br />
der Technik, Waxmann, Münster (1998), p. 199 – 208<br />
38. R. L. Sime, Phys. Perspect, 12 (2010), p. 190 - 218<br />
39. R. L. Sime, Angew. Chem. 103, 1991, p. 956 – 967<br />
Author<br />
Dr. Susanne Rehn-Taube<br />
Deutsches Museum<br />
Museumsinsel 1<br />
80538 München, Germany<br />
ENERGY POLICY, ECONOMY AND LAW 207<br />
Energy Policy, Economy and Law<br />
The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 208<br />
Das 15. Deutsche Atomrechtssymposium:<br />
Eine Standortbestimmung<br />
Ulrike Feldmann<br />
Vom 12. bis 13. November 2018 fand in Berlin auf Einladung des Bundesumweltministeriums das 15. Deutsche<br />
Atomrechtssymposium (DARS) statt. Die wissenschaftliche Leitung der mit ca. 170 Teilnehmern gut besuchten<br />
Veranstaltung oblag wie bereits beim 14. DARS erneut Prof. Dr. Martin Burgi, LMU München.<br />
Das Symposium war 4 Themenblöcken<br />
gewidmet, u.z.:<br />
1) den juristischen Perspektiven nach<br />
dem Ausstiegsurteil des Bundesverfassungsgerichts<br />
(BVerfG),<br />
2) den aktuellen Rechtsfragen der<br />
nuklearen Sicherheit,<br />
3) dem Strahlenschutzrecht sowie<br />
4) Fragen des Standortauswahlverfahrens.<br />
Den Einführungsvortrag zum aktuellen<br />
Atom- und Strahlenschutzrecht<br />
hielt Jochen Flasbarth, Staatssekretär<br />
im Bundesumweltministerium (BMU).<br />
Einen großen Schwerpunkt seines<br />
Vortrages betraf die Frage einer rechtssicheren<br />
Stilllegung der Anreicherungsanlage<br />
in Gronau sowie der<br />
Brennelementfabrik in Lingen und<br />
eines Exportverbots für Brennelemente.<br />
Flasbarth machte keinen Hehl<br />
aus seiner Überzeugung, dass er<br />
sowohl die Stilllegung der beiden<br />
Anlagen als auch das Exportverbot für<br />
notwendig hält, und bedauerte, dass<br />
nicht alle Bundesressorts diese Auffassung<br />
teilen. Allerdings müsse man<br />
der Bevölkerung ehrlich sagen, dass<br />
auch bei Stilllegung der kerntechnischen<br />
Anlagen in Gronau und Lingen<br />
die ausländischen Kernkraftwerke<br />
(KKW) weiter laufen würden. Einer<br />
Laufzeitverlängerung für ausländische<br />
KKW stehe das BMU im Übrigen<br />
kritisch gegenüber. Flasbarth <strong>for</strong>derte<br />
für diese Fälle eine grenzüberschreitende<br />
UVP. Ferner kritisierte<br />
Flasbarth, dass die EVU über ihre<br />
gemeinsame Tochtergesellschaft, die<br />
Gesellschaft für Nuklear-Service mbH<br />
(GNS), mit der Abfallentsorgung<br />
„auch noch Geld verdient haben“. Im<br />
Auditorium konnte sich mancher Teilnehmer<br />
des Eindrucks nicht erwehren,<br />
dass hier der regulatorische und<br />
moralisierende Staat wieder einmal<br />
grüßen ließ.<br />
Nach dieser unmissverständlichen<br />
Standortbestimmung des Gastgebers<br />
eröffnete Burgi die 1. Fachsitzung<br />
und fragte in seinem Vortrag nach<br />
„Ver änderte(n) Maßstäbe(n) für<br />
Gesetzgebung und Verwaltungsvollzug<br />
im Atomrecht“ und danach,<br />
ob das Atomrecht als Referenzrecht<br />
für andere Rechtsgebiete dienen<br />
könne. Den Grund für veränderte<br />
Maß stäbe sah Burgi in einer Änderung<br />
der Sicherheitsphilosophie. In<br />
Bezug auf den atomrechtlichen Verwaltungsvollzug,<br />
bei dem, wie vielen<br />
Lesern noch in Erinnerung sein wird,<br />
der ehemalige Präsident des Bundesver<br />
waltungs gerichts Prof. Dr. Horst<br />
Sendler in einem Vortrag 1991 bereits<br />
den „ausstiegsorientierten Gesetzesvollzug“<br />
ausgemacht hatte, stellte<br />
Burgi nun diesem Begriff noch einen<br />
„Zwillingsbruder“ zur Seite, den<br />
„ausstiegs beschleunigenden Gesetzesvollzug“,<br />
den er mit den Worten<br />
beschrieb: „Piesacken, bis der Betreiber<br />
aufgibt“. Einer Umsetzung der geänderten<br />
Sicherheitsphilosophie mit<br />
Hilfe reiner Verwaltungsmaßnahmen<br />
erteilte Burgi – weil verfassungswidrig<br />
– eine klare Absage. Für gesetzgeberische<br />
Maßnahmen wiederum, z.B.<br />
zur Beschleunigung des „Kohleausstiegs“,<br />
gebe das Urteil des BVerfVG<br />
vom 6.12.2016 „keinen Rückenwind“.<br />
Ein gesetzlich fixierter fester Abschalttermin<br />
wirke wie eine Übergangsregelung<br />
mit Bestandsschutz. Ein ausstiegsbeschleunigender<br />
Gesetzesvollzug<br />
kurze Zeit nach Festsetzung des<br />
Abschalttermins sei unverhältnismäßig,<br />
also verfassungswidrig, und<br />
könne nicht durch Ausgleichsmaßnahmen<br />
geregelt werden.<br />
Im letzten Teil seines Vortrags<br />
wandte Burgi sich der verfassungsrechtlichen<br />
Beurteilung einer Beendigung<br />
der Brennelementfertigung und<br />
der Urananreicherung in Deutschland<br />
zu. Er wies darauf hin, dass es hier<br />
nicht wie bei Kernkraft- und Kohlekraftwerken<br />
eine vorfindliche Rechtslage<br />
gibt, sondern diese Anlagen über<br />
unbefristete Genehmigungen verfügen.<br />
Das Ziel, die Beendigung des<br />
Betriebs dieser Anlagen, hielt Burgi<br />
dagegen für legitim. Es handele sich<br />
um Hochrisikotechnologieanlagen,<br />
auch wenn Eintrittswahrscheinlichkeit<br />
und Schadenshöhe als geringer<br />
einzustufen seien als bei Kernkraftwerken<br />
(KKW).<br />
Als Ergebnis der verfassungsrechtlichen<br />
Prüfung stellte Burgi fest, dass<br />
bei einer Beendigung von Urananreicherung<br />
und Brennelementfertigung<br />
auf jeden Fall höhere Laufzeiten und<br />
ein deutlich höherer Ausgleich als bei<br />
der 13. AtG-Novelle er<strong>for</strong>derlich<br />
seien. Insgesamt sei festzuhalten, dass<br />
die Relevanz des Urteils des BVerfG<br />
vom 6.12.2016 für jeden Fall gesondert<br />
zu betrachten sei.<br />
Prof. Dr. Thomas Schomerus,<br />
Universität Lüneburg und Dr. Ulrich<br />
Karpenstein, Redeker Sellner Dahs<br />
Rechtsanwälte PartG mbB, befassten<br />
sich in ihren nachfolgenden Beiträgen<br />
ebenfalls mit der Frage der „Konsequenzen<br />
für den Umgang mit<br />
anderen Technologien“.<br />
Schomerus untersuchte die Frage<br />
„Kohleausstieg nach dem Muster<br />
des Atomgesetzes?“. Er nannte als<br />
Parallelen bei der Umsetzung des<br />
Kohleausstiegs die grundsätzliche<br />
Vereinbarkeit mit EU-Recht sowie die<br />
Qualifizierung von Stilllegungsregelungen<br />
nicht als Enteignung,<br />
sondern als Inhalts- und Schrankenbestimmung<br />
gemäß Art. 14 Abs. 1 S. 1<br />
GG und empfahl zur rechtlichen<br />
Umsetzung ein Ausstiegsgesetz, das<br />
insbesondere Laufzeitbefristungen<br />
und zur Vermeidung einer Ausgleichspflicht<br />
Übergangs- und Härtefallregelungen<br />
enthalten solle. Für<br />
empfehlenswert hielt Schomerus<br />
ebenfalls einen „Kohlekonsens“ ähnlich<br />
dem „Atomkonsens“.<br />
Karpenstein stellte eingangs seines<br />
Referates fest, dass auch Hochrisikotechnologien<br />
grundrechtlichen<br />
Schutz beanspruchen können. Dies<br />
gelte erst recht für Unternehmen<br />
ohne Hochrisikotechnologie bzw. für<br />
Betriebe mit geringerem Risiko. Zwar<br />
sei es richtig, dass der Gesetzgeber<br />
frühzeitig Gefahren Rechnung tragen<br />
solle, Grundrechtseingriffe bedürften<br />
aber gleichwohl der Legitimierung.<br />
Karpenstein betonte, der Rekurs auf<br />
die Akzeptanz der Bevölkerung müsse<br />
die absolute Ausnahme bleiben. So<br />
habe es auch das Bundesverfassungsgericht<br />
gesehen: Wo es nicht um<br />
Hochrisikotechnologie gehe, dürfe die<br />
Akzeptanz keine Rolle spielen. Das<br />
Urteil vom 6.12.2016 zeige außerdem,<br />
Energy Policy, Economy and Law<br />
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
dass das BVerfG von einer Ausnahmestellung<br />
des Atomrechts ausgehe und<br />
dieses Urteil keine „Blaupause“ für<br />
andere Technologien sei. Bei Technologien<br />
wie der Kohleverstromung<br />
oder der nuklearen Brennstoffversorgung<br />
müsse sich das Verfassungsgericht<br />
fragen, ob die Ausstiegsregelung<br />
nicht eigentlich nur als<br />
Symbolpolitik gemeint sei. Die<br />
vom Bundesumweltministerium angestrebte<br />
Schließung der Brennelementfabrikation<br />
und der Urananreicherung<br />
ziele auf eine Schließung<br />
bzw. zumindest eine Nichtbelieferung<br />
von ausländischen KKW. Karpenstein<br />
konstatierte dazu: „Dies ist europarechtlich<br />
kein legitimes Ziel“. Die Angemessenheit<br />
einer Stilllegung müsse,<br />
darin sei er sich mit Schomerus einig,<br />
genau geprüft werden. Zum Beispiel<br />
habe das BVerfG im Falle eines Tagebaubetriebs<br />
eine Beschränkung der<br />
Nutzungsberechtigung auf 4 Jahre als<br />
schwerwiegenden Eingriff betrachtet.<br />
Letzter Redner des 1. Themenblocks<br />
war Prof. Dr. Markus Krajewski,<br />
Universität Erlangen-Nürnberg, mit<br />
dem Thema „Investitionsschutzabkommen<br />
als Grenze zukünftigen<br />
Ordnungsrechts“. Nach Darstellung<br />
der Grundzüge des internationalen<br />
Investitionsschutzrechts und des uneinheitlichen<br />
materiellen Rechts (z.B.<br />
Art. 10 Abs. 1 Energiecharta-Vertrag<br />
im Vergleich zu Art. 8.10 CETA-Abkommen)<br />
sowie der aktuell bestehenden<br />
Unklarheiten bzgl. der Fortentwicklung<br />
des Investitionsschutzrechts<br />
durch die und in der EU merkte<br />
Krajewski zu dem Achmea-Urteil des<br />
EuGH (Rs C-284/16) an, dass nach<br />
diesem Urteil nicht klar sei, ob es nur<br />
für Intra-EU-Investitionsabkommen<br />
gelte oder auch auf andere Abkommen<br />
wie dem Energiecharta-Vertrag<br />
übertragbar sei. Konkret zum anhängigen<br />
Schiedsverfahren von<br />
Vattenfall in Washington über die<br />
Verletzung des Energiecharta-Vertrags<br />
durch die 13. AtG-Novelle wies<br />
Krajewski darauf hin, dass einseitige<br />
Abweichungen der Regierung von<br />
konsensual mit der Industrie vereinbarten<br />
Lösungen investitionsschutzrechtlich<br />
die Frage aufwerfe, ob in<br />
der Vereinbarung eine spezifische<br />
Zusicherung zu sehen sei, deren<br />
Änderung legitime Erwartungen der<br />
Investoren enttäuscht habe. Unter<br />
Hinweis auf Art. 10 Abs. 1 Energiecharta-Vertrag<br />
erinnerte Krajewski<br />
daran, dass eine Abwägung im<br />
Investitionsschutzrecht letztlich über<br />
das „Equity“-Gebot (Gebot der fairen<br />
und gerechten Behandlung) zu treffen<br />
sei.<br />
In der anschließenden lebhaften<br />
Diskussion unterstrich Prof. Dr.<br />
Michael Eichberger, Richter am<br />
BVerfG a.D., der Berichterstatter im<br />
Streitverfahren über die 13. AtG-<br />
Novelle war, die Auffassung von<br />
Burgi, durch das „Ausstiegsgesetz“<br />
von 2002 habe es eine Vorfindlichkeit<br />
der Rechtslage gegeben; ebenso sei<br />
richtig, dass der Inhalt der Eigentumsund<br />
Schrankenbestimmung in Art.<br />
14 GG durch die Vorfindlichkeit<br />
bestimmt werde. Zu der Frage, ob die<br />
geänderte Risikowahrnehmung der<br />
Bevölkerung ein hinreichender tragfähiger<br />
Grund für einen Grundrechtseingriff<br />
sei, stellte Eichberger unter<br />
Zitierung von Satz 3 in Rdn. 308 des<br />
Urteils vom 6.12.2016 fest, das BVerfG<br />
habe hier sehr vorsichtig <strong>for</strong>muliert.<br />
Das Urteil solle kein „Freibrief“ sein<br />
für andere Fälle.<br />
Karsten Möring, MdB und Berichterstatter<br />
der CDU/CSU zur 16. AtG-<br />
Novelle, zeigte sich irritiert über den<br />
Begriff der Hochrisikotechnologie.<br />
Seine Frage, wieweit dieser Begriff,<br />
der auch bei der Brennelementfabrikation<br />
und der Anreicherung eine<br />
Rolle spiele, konkretisiert worden sei,<br />
ließ Eichberger bewusst unbeantwortet.<br />
Er wolle einzelne Teile des<br />
Urteils, also auch den Begriff der<br />
Hochrisikotechnologie nicht rechtfertigen.<br />
Prof. Dr. Ferdinand Kirchhof,<br />
Vizepräsident des Bundesverfassungsgerichts<br />
a.D. (ab 30.11.2018), hielt es<br />
dagegen für angezeigt, zu dem Begriff<br />
anzumerken, dieser solle den Vertrauensschutz<br />
in seiner geschichtlichen<br />
Entwicklung beschreiben. Burgi ließ<br />
es in seiner Entgegnung dahin gestellt<br />
sein, ob dieser Begriff ein zentraler<br />
Punkt des Urteils sei, jedenfalls brauche<br />
man ihn nicht, um den Kohleausstieg<br />
zu rechtfertigen. In Bezug<br />
auf den Diskussionsbeitrag von Dr.<br />
Manfred Rebentisch, Clif<strong>for</strong>d Chance<br />
LLP, bei der Kohle gehe es nicht um<br />
Gefahrenabwehr, sondern um Vorsorgean<strong>for</strong>derungen,<br />
die unter dem<br />
Verhältnismäßigkeitsgebot stünden,<br />
merkte Prof. Dr. Sabine Schlacke, Universität<br />
Münster, an, dass der Wandel<br />
des Klimas, das durch Art. 20a GG<br />
geschützt sei, ein legitimer Zweck des<br />
Kohleausstiegsgesetzes sei, und wies<br />
auf das vor dem OLG Hamm anhängige<br />
Verfahren des peruanischen<br />
Bauern gegen RWE hin, in dem das<br />
Gericht davon ausgehe, dass der<br />
Mitverursachungsanteil von RWE am<br />
Abschmelzen des Palcaraju- Gletschers<br />
in Peru und an der Gefahr einer Überflutung<br />
des am Gletscher liegenden<br />
Hausgrundstücks des Klägers 0,47 %<br />
betrage.<br />
Den Einwand von Dr. Christian<br />
Müller-Dehn, PreussenElektra GmbH,<br />
bzgl. der Einschätzung von KKW<br />
als Hochrisikotechnologie, es seien<br />
extrem hohe An<strong>for</strong>derungen an die<br />
Betreiber von KKW zwecks Risikominimierung<br />
gestellt worden, so<br />
dass das verbleibende probabilistische<br />
Risiko mit anderen Technologien vergleichbar<br />
sei, ließ Burgi nicht gelten.<br />
Es gebe kein Indiz im Urteil vom<br />
6.12.2016 dafür, dass der Grundrechtsschutz<br />
des Betreibers eines<br />
KKW höher oder zumindest gleichwertig<br />
dem eines Betreibers anderer<br />
Technologien sei.<br />
Kirchhof kommentierte die Diskussion<br />
mit der Feststellung, es handele<br />
sich um eine typisch deutsche Diskussion,<br />
und riet, „unser Ei nicht immer<br />
im Verfassungsrecht zu suchen“.<br />
Der zweite Tag der Veranstaltung<br />
startete mit dem 2. Themenblock<br />
„ Aktuelle Rechtsfragen der nuklearen<br />
Sicherheit“.<br />
Prof. Dr. Martin Beckmann, Baumeister<br />
Rechtsanwälte Partnerschaft<br />
mbH, untersuchte die Kriterien für<br />
eine „Grenzüberschreitende Umweltverträglichkeitsprüfung<br />
(UVP)<br />
bei Laufzeitverlängerung“ von nuklearen<br />
Zwischenlagern in Deutschland<br />
und von ausländischen KKW. Er wies<br />
darauf hin, dass Aufbewahrungs genehmigungen<br />
in deutschen Zwischenlagern<br />
auf 40 Jahre befristet seien, so<br />
dass angesichts fehlender Endlagermöglichkeiten<br />
eine Still legung der<br />
Zwischenlager keine Option sei und<br />
daher sehr zeitgerecht über eine Laufzeitverlängerung<br />
(als Verlängerung<br />
der Genehmigungsfrist oder ggf. auch<br />
als Änderung einer Genehmigungsauflage)<br />
entschieden werden müsse.<br />
Bezüglich der Frage der Notwendigkeit,<br />
eine grenzüberschreitende UVP<br />
durchführen zu müssen, erläuterte<br />
Beckmann, dass die für eine grenzüberschreitende<br />
UVP beachtliche<br />
Schwelle der erheblichen Umweltauswirkungen<br />
dem Maßstab der Vorprüfung<br />
bei Neuvorhaben nach § 7<br />
Abs. 1 S. 2 UVPG („erhebliche nachteilige<br />
Umweltauswirkungen“) entspreche.<br />
Eine grenzüberschreitende<br />
UVP bei Laufzeitverlängerung sei nicht<br />
er<strong>for</strong>derlich, wenn das Vorhaben<br />
nach Einschätzung der Behörde keine<br />
erheblichen nachteiligen Umweltauswirkungen<br />
haben könne oder wenn<br />
erhebliche Umweltauswirkungen nicht<br />
grenzüberschreitend seien. Bei ausländischen<br />
KKW, wovon es ca. 120<br />
KKW in den 14 deutschen Nachbarstaaten<br />
gebe, hänge die Er<strong>for</strong>derlichkeit<br />
einer grenzüberschreitenden UVP<br />
u.a. davon ab, ob der Projektbegriff der<br />
ENERGY POLICY, ECONOMY AND LAW 209<br />
Energy Policy, Economy and Law<br />
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 210<br />
UVP-Richtlinie erfüllt sei (wird von<br />
Beckmann verneint) oder ob jedenfalls<br />
der Maßnahmebegriff der Espoo-<br />
Konvention angenommen werden<br />
könne. Fazit bei ausländischen KKW:<br />
Man müsse im Einzelfall prüfen, wie<br />
die Genehmigung des betreffenden<br />
KKW geregelt sei.<br />
Gregor Franßen, Heinemann &<br />
Partner Rechtsanwälte – PartnerschaftsG<br />
mbB, beschäftigte sich<br />
anschließend mit „Rechtsschutz und<br />
Beweislast in multipolaren Rechtsverhältnissen“.<br />
Den Hintergrund<br />
dieses Beitrags bilden Verwaltungsgerichtsverfahren,<br />
in denen über den<br />
Zugang zu entscheidungserheblichen<br />
In<strong>for</strong>mationen sowie über die prozessualen<br />
Folgen für das Hauptsacheverfahren<br />
im Falle des zu Recht<br />
verweigerten Zugangs gestritten wird.<br />
Franßen erläuterte die Defizite der<br />
aktuellen Rechtslage (§§ 99, 100<br />
VwGO) anhand atomrechtlicher<br />
Streitverfahren, bei denen es um die<br />
Verweigerung von in der Regel<br />
geheimhaltungsbedürftigen In<strong>for</strong>mationen<br />
gehe, die den gesetzlich als<br />
Zulassungsvoraussetzung ge<strong>for</strong>derten<br />
Schutz gegen Störmaßnahmen und<br />
sonstige Einwirkungen Dritter<br />
(SEWD) sicherstellen sollen. Zur<br />
Klärung der behördlichen Verweigerung<br />
des In<strong>for</strong>mationszugangs sehe<br />
§ 99 Abs. 2 VwGO ein „In- camera“-<br />
Zwischenverfahren vor. Werde die<br />
Verweigerung des Zugangs bestätigt,<br />
werde der Kläger, der den Zugang<br />
begehre, in seinem Grundrecht auf<br />
effektiven Rechtsschutz beschränkt.<br />
Im umgekehrten Falle werde die<br />
geheimhaltungsbedürftige In<strong>for</strong>mation<br />
dem Gericht bekannt und gelange<br />
über § 100 VwGO zur Kenntnis des<br />
Klägers. Damit werde das öffentliche<br />
Geheimhaltungsinteresse, das Geheimhaltungsinteresse<br />
des Genehmigungsinhabers<br />
wie auch der verfassungsrechtlich<br />
gebotene Schutz von<br />
Grundrechten Dritter im potentiellen<br />
Einwirkungsbereich der betroffenen<br />
kerntechnischen Anlage konterkariert.<br />
Ein Bekanntwerden sicherheitsrelevanter<br />
SEWD-In<strong>for</strong>mationen<br />
gefährde die Sicherstellung des er<strong>for</strong>derlichen<br />
Schutzes. Unter Hinweis auf<br />
den Beitrag von Dr. Dieter Sellner zum<br />
„In-camera“-Verfahren in Bezug auf<br />
geheimhaltungsbedürftige In<strong>for</strong>mationen<br />
mit hohem Risikopotential<br />
(EuRUP 2018, S. 100 ff) schlug<br />
Franßen als Lösung ein „In- camera“-<br />
Hauptsacheverfahren vor. Komme das<br />
Hauptsachegericht dabei zu dem<br />
Ergebnis, die In<strong>for</strong>mationen seien zu<br />
Recht verweigert worden, erhalte es<br />
zwar die In<strong>for</strong>mationen für seine<br />
Entscheidungsfindung im Hauptsacheverfahren,<br />
dem Kläger sei der<br />
Zugang zu diesen In<strong>for</strong>mationen<br />
jedoch zu verweigern. Im umgekehrten<br />
Fall sei dem Kläger der In<strong>for</strong>mationszugang<br />
zu gewährleisten.<br />
Als letzter Redner des 2. Themenblocks<br />
wandte sich Prof. Dr. Martin<br />
Kment, Universität Augsburg, den<br />
„Heraus<strong>for</strong>derungen an die Rechtsetzung<br />
durch untergesetzliches<br />
Regelwerk (v.a. Legitimation und<br />
Zugänglichkeit)“ zu. Kment skizzierte<br />
das vorhandene untergesetzliche<br />
Regelwerk im Atomrecht und die<br />
Rechtsprechung des Bundesverwaltungsgerichts<br />
zur Qualifizierung<br />
normkonkretisierender Verwaltungsvorschriften<br />
im Technik- und Umweltrecht<br />
sowie zur eingegrenzten<br />
Überprüfbarkeit der behördlichen<br />
Risikoermittlung und Risikobewertung<br />
durch die Gerichte.<br />
In der Diskussion bezweifelte<br />
Annette Pütz, BMU, ob es heute<br />
tatsächlich noch so sei, dass nur<br />
Standards im Technik- und Umweltrecht<br />
festgelegt würden. Eher sei es<br />
heutzutage so, dass Gesundheitsstandards<br />
festgelegt würden, und<br />
zwar von der Industrie. Der Zugang zu<br />
den technischen Normen sei im<br />
Übrigen teilweise schwierig. Die<br />
Etablierung von Normen durch den<br />
DIN sei fraglos sinnvoll. Jedoch<br />
bestünden im BMU extreme Schwierigkeiten,<br />
mit diesem Regelwerk zu<br />
arbeiten.<br />
Dr. Dörte Fouquet, Becker Büttner<br />
Held PartGmbB, wies in Bezug auf<br />
den Vortrag von Beckmann auf die<br />
Fülle von Klageverfahren in Belgien<br />
gegen die Laufzeitverlängerungen für<br />
die belgischen KKW hin. Fouquet<br />
bemängelte, dass diese Verfahren<br />
ohne UVP in Belgien und ohne grenzüberschreitende<br />
UVP stattgefunden<br />
hätten. Beckmann merkte dazu an,<br />
dass die belgischen KKW über unbefristete<br />
bestandskräftige Genehmigungen<br />
verfügten. Dies sei Fakt und<br />
müsse man akzeptieren.<br />
Prof. Dr. Tobias Leidinger, Luther<br />
Rechtsanwaltsgesellschaft mbH, fragte,<br />
was mit der Einschätzungsprärogative<br />
der Exekutive sei und wer im<br />
demokratischen Rechtsstaat die Verantwortung<br />
für das Risiko trage. Nach<br />
der Rechtsprechung des Bundesverfassungsgerichts<br />
(„Kalkar“-Entscheidung)<br />
trage eindeutig die Exekutive<br />
die Verantwortung, die auch abschließend<br />
die bei SEWD-Ereignissen<br />
unterstellten Tatmittel definieren<br />
müsse, die von der Judikative zu<br />
beachten seien. Leidinger mahnte<br />
an, dass die Gerichte einen klaren<br />
Maßstab benötigten, ansonsten<br />
komme man „in der Praxis nie zu einer<br />
bestandskräftigen Genehmigung“.<br />
Franßen stellte dazu fest, nach<br />
Auffassung des Bundesverwaltungsgerichts,<br />
für die er allerdings kein<br />
Verständnis habe, unterlägen die geheimhaltungsbedürftigen<br />
Tatmittel<br />
der vollen gerichtlichen Überprüfung,<br />
und fragte, wie Geheimhaltung einerseits<br />
und Überprüfung andrerseits in<br />
der Praxis funktionieren sollen.<br />
Kment bemängelte die Störung der<br />
Normsetzung durch politische Prozesse,<br />
da sich Exekutive, Legislative<br />
und Judikative zurückzögen. Er <strong>for</strong>derte<br />
die Verwaltung auf, wieder ihrer<br />
Aufgabe gerecht zu werden. Private<br />
füllten nur die Lücken aus, die die Verwaltung<br />
ihnen lasse.<br />
Der 3. Themenblock widmete sich<br />
dem „Strahlenschutzrecht“ und<br />
wurde mit dem Übersichtsvortrag von<br />
Dr. Goli-Schabnam Akbarian, BMU,<br />
eröffnet. Da die Rednerin im diesjährigen<br />
Januar-Heft der <strong>atw</strong> bereits<br />
selbst zum neuen Strahlenschutzrecht<br />
zu Wort gekommen ist, wird an dieser<br />
Stelle deshalb auf weitere Ausführungen<br />
zum Vortrag verzichtet.<br />
Prof. Dr. Thomas Mann, Universität<br />
Göttingen, befasste sich mit<br />
„ Einwirkungen des Strahlenschutzrechts<br />
auf andere Bereiche des<br />
Ordnungsrechts“. Mann begann<br />
seinen Vortrag mit einem kleinen<br />
Paukenschlag, indem er den Umfang<br />
des neuen Strahlenschutzrechts mit<br />
dem Umfang des Werkes „Felix Krull“<br />
seines Namensvetters verglich,<br />
jedoch das neue Strahlenschutzrecht<br />
nicht für nobelpreiswürdig hielt. Er<br />
konstatierte, regulatorische Konflikte<br />
zwischen StrlSchG und anderen<br />
Bereichen des Ordnungsrechts seien<br />
unausweichlich, da im StrlSchG auch<br />
Parallelregelungen zum allgemeinen<br />
Umweltrecht getroffen würden, z.B.<br />
in § 95 StrlSchG, der eine Ermächtigung<br />
für ergänzende Regelungen zum<br />
Kreislaufwirtschaftsgesetz vorsehe.<br />
Das StrlSchG schaffe außerdem einen<br />
anderen Abfallbegriff und diene<br />
damit nicht der rechtstechnischen<br />
Vereinfachung. Der Altlastenbegriff<br />
sei im StrlSchG ebenfalls anders als<br />
im Bodenschutzgesetz und im Bundes-<br />
Immissionsschutzgesetz geregelt. Da<br />
der Altlastenbegriff jedoch eine<br />
Prognoseentscheidung enthalte, sei es<br />
insoweit richtig, von einem Referenzwert<br />
auszugehen und nicht von einem<br />
Grenzwert. Die bundesrechtlichen<br />
Umweltfachgesetze könnten allerdings<br />
modifiziert und die strahlenschutzrelevanten<br />
Regelungen im<br />
StrlSchG konzentriert werden, so dass<br />
Energy Policy, Economy and Law<br />
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
dieses insoweit lex specialis werde. In<br />
den Fachbereichen mit Gesetzgebungszuständigkeit<br />
der Länder werde<br />
dagegen der Verwaltungsvollzug<br />
weiterhin grundsätzlich durch Landesrecht<br />
geregelt. Hier greife das „Verzahnungsmodell.<br />
Der Bund erhalte<br />
über das StrlSchG Verordnungsermächtigungen<br />
und Ermächtigungen<br />
für Notfallvorsorge/Notfallpläne,<br />
um durch materielle Vorgaben eine<br />
einheitliche Verwaltungspraxis zu<br />
erreichen. Notfallschutzregelungen<br />
im Bereich des Strahlenschutzes fielen<br />
als ungeschriebene Annex- Kompetenz<br />
regeln in die Kompetenz des<br />
Bundes und sollten daher, so Mann,<br />
nach der Rechtsprechung des BVerfG<br />
keinen verfassungsrechtlichen Bedenken<br />
begegnen.<br />
Gerrit Niehaus, Umweltministerium<br />
Baden-Württemberg, erläuterte<br />
in seinem Beitrag „Entlassung von<br />
Gegenständen aus der atomrechtlichen<br />
Überwachung beim Abbau<br />
von Kernkraftwerken“, dass im<br />
neuen Strahlenschutzrecht mit der<br />
Freimessung nicht mehr zeitgleich<br />
eine Entlassung als radioaktiver Stoff<br />
aus dem Strahlenschutzregime vorgesehen<br />
sei. Ferner wies Niehaus auf<br />
§ 33 Abs. 4 StrlSchG hin, der in Erweiterung<br />
des bisherigen Rechts<br />
zulässt, die Beendigung der staatlichen<br />
Aufsicht mit einer Bedingung,<br />
einem Vorbehalt des Widerrufs oder<br />
einem Vorbehalt der nachträglichen<br />
Aufnahme, Änderung oder Ergänzung<br />
einer Auflage zu verknüpfen. Zum<br />
Abbau von KKW stellte Niehaus fest,<br />
das Abbaugenehmigungsregime könne<br />
festlegen, dass und wie neben der<br />
Freigabe Stoffe aus der Anlagenüberwachung<br />
herausgegeben werden<br />
könnten, soweit eine Aktivierung und<br />
Kontamination ausgeschlossen sei.<br />
Nach Beantragung des Abbaus sei<br />
für Veränderungsgenehmigungen zur<br />
Einschränkung des Anlagebegriffs<br />
kein Raum mehr. Der Abbau ende,<br />
wenn die nukleare Last beseitigt sei<br />
und die notwendigen Freigaben und<br />
Herausgaben im Rahmen des Abbauregimes<br />
erfolgt seien. Zu der Frage,<br />
welcher Anlagenbegriff – der (inzwischen<br />
stark gewandelte) materielle<br />
oder der <strong>for</strong>melle Anlagenbegriff –<br />
zugrunde zulegen sei, bemerkte<br />
Niehaus, dass nach seiner Auffassung<br />
beim Abbau beide Begriffe zugrunde<br />
gelegt werden müssten.<br />
Im Anschluss an den Vortrag von<br />
Niehaus kamen zum Thema „Freigabe<br />
radioaktiver Stoffe – Rechtsund<br />
Vollzugsfragen aus Betreibersicht“<br />
Dr. Andreas Schirra und Dr.<br />
Alexander Nüsser, PreussenElektra<br />
GmbH, zu Wort. Sie begrüßten, dass<br />
auch das neue Strahlenschutzrecht<br />
am 10-Mikrosievert-Konzept festhalte<br />
und die Freigabe nach Tabellenwerten<br />
erfolge. Die neue Begründung zeige<br />
allerdings, dass der Gesetzgeber verhindern<br />
wolle, dass eine Beweislastumkehr<br />
zugunsten des Antragstellers<br />
angenommen werde. Jedoch bliebe<br />
es bei der Vermutungswirkung der<br />
Tabellenwerte und bei der Freigabe<br />
als einer gebundenen Entscheidung:<br />
Bei Einhaltung dieser Werte sei<br />
weiter hin die Freigabe zu erteilen,<br />
wenn nicht triftige Gründe dagegen<br />
sprächen. Weiterhin sei auch die<br />
Möglichkeit des Einzelfallnachweises<br />
gegeben. Klarstellend betonte<br />
Schirrer, dass das Dosiskriterium kein<br />
Grenzwert sondern ein „Trivialwert“<br />
sei, so dass auch andere Maßstäbe als<br />
bei einem Grenzwert herangezogen<br />
werden dürften. Zu § 33 Abs. 3<br />
StrlSchV stellte Schirrer fest, dass der<br />
Gesetzgeber mit dieser Vorschrift eine<br />
teilweise in den letzten Jahren geübte<br />
Praxis gesetzlich fixiere. Zu der Regelung<br />
in § 33 Abs. 4 StrlSchV merkte<br />
Schirrer an, dass zwar die Rücknehmbarkeit<br />
einer rechtswidrigen Freigabe<br />
nach allgemeinen Rechtsgrundsätzen<br />
immer möglich sei, dass aber die Freigabe<br />
einen statusändernden Verwaltungsakt<br />
darstelle, zu dessen<br />
Natur ein Widerruf im Grunde im<br />
Widerspruch stehe. Trotz des Wortlauts<br />
des § 33 Abs. 4 StrlSchV komme<br />
ein Widerruf daher nur in besonderen<br />
Fällen in Betracht.<br />
In der Diskussion betonte Dr.<br />
Renate Sefzig, BMU, dass mit der Ausweitung<br />
der Paragraphen zur Freigaberegelung<br />
keine Änderung bei der<br />
Freigabe intendiert gewesen sei. Eine<br />
Freigabe zur Untertagedeponierung<br />
z.B. sei weiterhin im Einzelfall<br />
möglich. Die Erweiterung der<br />
Paragraphen zur Freigabe sei eine<br />
Folge der <strong>for</strong>malen An<strong>for</strong>derungen<br />
des Bundesjustizministeriums.<br />
Den nachfolgenden Vortrag „Aufsicht<br />
und Öffentlichkeitsbeteiligung<br />
im Rahmen der Standortauswahl<br />
als integrative Aufgabe des<br />
BfE“ hielt die Vizepräsidentin des BfE<br />
Dr. Silke Albin anstelle des im Programm<br />
angekündigten Präsidenten<br />
des BfE Wolfram König und eröffnete<br />
damit den Reigen der Vorträge<br />
des 4. Themenblocks „Fragen des<br />
Standortauswahlverfahrens“.<br />
Albin skizzierte die Neuorganisation<br />
der Verantwortung in der kerntechnischen<br />
Entsorgung, wies auf die<br />
nunmehr klare Trennung von Aufsichts-<br />
und Vorhabenträgerfunktion<br />
hin, erläuterte die Aufsichtsfunktion<br />
des BfE (Überwachung des Vollzugs<br />
des StandAG) über die BGE GmbH<br />
während des gesamten Standortauswahlverfahrens<br />
sowie die neuen<br />
ENERGY POLICY, ECONOMY AND LAW 211<br />
Advertisement<br />
Your Ad Here...<br />
Format: 1/4 Landscape<br />
For more in<strong>for</strong>mation please contact:<br />
Petra Dinter-Tumtzak<br />
Phone +49 30 498555-30<br />
E-mail petra.dinter@nucmag.com<br />
Your Ad Here 179x60v1.indd 1 27.03.19 09:55<br />
Energy Policy, Economy and Law<br />
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
ENERGY POLICY, ECONOMY AND LAW 212<br />
Standards, die das StandAG bei der<br />
Öffentlichkeitsbeteiligung setze (z.B.<br />
mobile Endlagerausstellung, Statuskon<br />
ferenzen und insbesondere die In<strong>for</strong>mationsplatt<strong>for</strong>m<br />
nach § 6 StandAG<br />
mit allen wesentlichen Unterlagen des<br />
BfE und der Vorhabenträgerin zum<br />
Stand ortauswahlver fahren). Albin betonte,<br />
dass das BfE mit der Vorlage des<br />
Konzepts der Öffentlichkeitsbeteiligung<br />
in der Startphase noch über die An<strong>for</strong>de<br />
rungen des Stand AG hinausgehe.<br />
Mit dem Öffentlichkeits beteiligungs<br />
verfahren befasste sich ebenfalls<br />
Prof. Dr. Wolfgang Durner,<br />
Universität Bonn. Sein Vortragstitel<br />
lautete „Das Beteiligungsverfahren<br />
nach dem Standortauswahlgesetz<br />
im Vergleich mit anderen Großvorhaben“.<br />
In der gebotenen Kürze<br />
zeichnete Durner die Entwicklung<br />
der Öffentlichkeitsbeteiligungsvorschriften<br />
in verschiedenen Vorschriften<br />
wie dem VwVfG, der<br />
9. BImSchV, dem BauGB und vor<br />
allem dem NABEG (Netzausbaubeschleunigungsgesetz)<br />
nach und zog<br />
die erhellende Quintessenz aus den<br />
Erfahrungen mit der Anwendung<br />
dieser Vorschriften – keine nennenswerte<br />
Minderung der Widerstände<br />
gegen die untersuchten Großvorhaben<br />
durch zusätzliche Beteiligungsschritte<br />
– , die er an den allgemeinen<br />
Erkenntnissen der Partizipations<strong>for</strong>schung<br />
spiegelte. Das NABEG habe<br />
weder eine Beschleunigungswirkung<br />
noch eine Befriedungswirkung in<br />
der Öffentlichkeit erzielt. Die Politik<br />
habe außerdem über die zuständige<br />
Behörde hinweg eigenmächtig Entscheidungen<br />
getroffen, die den Aufgaben/Zielen<br />
des NABEG diametral<br />
entgegengesetzt gewesen seien. Auch<br />
sei der Umfang der vorgesehenen<br />
Beteiligungselemente zu groß gewesen,<br />
und zu viele Gremien seien<br />
beteiligt gewesen, die untereinander<br />
auch noch konkurriert hätten. Zudem<br />
seien die Erkenntnisse der Partizipations<strong>for</strong>schung<br />
außer Acht gelassen<br />
worden. Dazu gehöre, dass der Staat<br />
nichts versprechen solle, was er nicht<br />
halten könne. Suggeriert werde aber<br />
durch die Mitgestaltung des Verfahrens<br />
auch eine Mitentscheidung<br />
der Bürger. Jedoch könne der Rechtsstaat<br />
solche Erwartungen nicht<br />
erfüllen. Ziel müsse sein, ein Ergebnis<br />
zu finden, mit dem die Betroffenen<br />
„leben“ könnten. Ein Verfahren, das<br />
vermutlich Jahrzehnte dauern werde,<br />
führe schwerlich zu Akzeptanz.<br />
„ NIMBY“ könne dabei leicht zu „not<br />
in my lifetime“ mutieren. Auch müsse<br />
die Akzeptanz ständig neu mit<br />
den Beteiligten „erarbeitet“ werden.<br />
Durner unterstrich, dass eine aktive<br />
und mutige politische Entscheidung<br />
vonnöten sei. „Wo ein Kompromiss<br />
unter Verantwortlichen nicht zu<br />
finden ist, wird er auch in einem<br />
Beteiligungsverfahren nicht erreicht<br />
werden“, schloss Durner.<br />
Der 3. Beitrag zur Öffentlichkeitsbeteiligung<br />
kam von Dr. Peter Hocke,<br />
Institut für Technikfolgenabschätzung<br />
und Systemanalyse am KIT, der<br />
zusammen mit seiner Kollegin Dr.<br />
Sophie Kuppler den Vortrag „Die<br />
Beteiligung der Öffentlichkeit bei<br />
der Suche nach einem Endlager:<br />
Ein problemorientierter Blick in die<br />
Schweiz“ vorbereitet hatte. Die<br />
Endlagerung radioaktiver Abfälle sei<br />
ein technisch und sozial komplexes<br />
Thema, bei dem die Entscheidungsträger<br />
schwerlich Anerkennung für ihr<br />
Handeln und ihre Entscheidungen<br />
finden könnten. Mit einer Standortentscheidung<br />
werde eine „Last“ übernommen,<br />
die keine „Win-win“-Situation“<br />
erlaube. Hocke schilderte die<br />
Öffentlichkeitsbeteiligung in der<br />
Schweiz, wie sie seit Mitte des letzten<br />
Jahrzehnts erfolgreich in der Schweiz<br />
durchgeführt werde. Dazu gehöre u.a.<br />
: Abstimmung des „Sachplans“ auf<br />
Bundesebene unter umfänglicher<br />
Beteiligung der Öffentlichkeit; Einrichtung<br />
von Regionalkonferenzen,<br />
Ausschuss der Kantone, Forum Tiefenlager<br />
zum Austausch von Argumenten<br />
und unterschiedlichen Problemwahrnehmungen<br />
und Positionen; Eingrenzung<br />
von Standortgebieten, die ohne<br />
großen öffentlichen Protest erfolgt<br />
sei, nachdem einige wenige zentrale<br />
Forderungen der nuklearkritischen<br />
Öffentlichkeit erfüllt worden seien;<br />
mehr deliberative, d.h. vermehrt<br />
auf konsultative Öffentlichkeitsbeteiligung<br />
und diskursiv angelegte<br />
politische Kultur zielende Endlager-<br />
Governance statt Endlager-Management.<br />
Verschiedene Spannungsfelder<br />
seien gleichwohl bestehen geblieben<br />
(unterschiedliche Erwartungen an die<br />
eingesetzten Beteiligungs<strong>for</strong>mate,<br />
keine inhaltliche Beratung von Erwartungen<br />
an Entscheidungskriterien<br />
z.B.). Aus sozialwissenschaftlicher<br />
Sicht nannte Hocke als Fazit das<br />
„selbst-lernende Verfahren“, wie es<br />
auch das StandAG vorsehe: End lager-<br />
Governance werde auf neue wissenschaftliche<br />
Entwicklungen, Änderungen<br />
gesellschaftlicher Erwartungen<br />
und auch neues Behördenhandeln<br />
reagieren müssen. Diese ge<strong>for</strong>derte<br />
Flexibilität betreffe auch die Rechtsentwicklung.<br />
Im letzten Beitrag des Atomrechtssymposiums<br />
wandte sich Prof.<br />
Dr. Sabine Schlacke den „Rechtsfragen<br />
bei der Umsetzung der Öffentlichkeitsbeteiligung<br />
einschließlich<br />
Rechtsschutz“ zu. Schlacke monierte,<br />
dass im Rahmen der in den §§ 17 Abs.<br />
3 S. 3, 19 Abs. 2 S. 6 StandAG geregelten<br />
und über das Umweltrechtsbehelfsgesetz<br />
hinausgehenden Klagebefugnis<br />
der Regionalkonferenz kein<br />
eigenes Klagerecht zugewiesen werde.<br />
Damit werde ihrer Wächterfunktion<br />
nicht ausreichend Rechnung getragen.<br />
Schlacke wies ferner auf den unterschiedlichen<br />
Umfang der Rügebefugnis<br />
bzgl. des UVP-pflichtigen Bescheids<br />
nach § 19 Abs. 2 S. 6 StandAG<br />
(alle <strong>for</strong>mellen und materiellen<br />
Mängel des Bescheids können gerügt<br />
werden) und dem die Standorte für<br />
die untertägige Untersuchung feststellenden<br />
Bescheid nach § 17 Abs. 3<br />
S. 3 StandAG hin, bei dem lediglich die<br />
Verletzung umweltbezogener Rechtsvorschriften<br />
nach § 2 Abs. 1 S. 2<br />
UmwRG gerügt werden könne. In<br />
Bezug auf den gerichtlichen Kontrollumfang<br />
erwartete Schlacke, dass das<br />
Bundesverwaltungsgericht dem BfE<br />
angesichts der Beurteilung technischwissenschaftlicher<br />
und mit Unsicherheiten<br />
behafteter Fragestellungen eine<br />
Einschätzungsprärogative zugestehen<br />
werde und sich die gerichtliche Kontrolle<br />
insoweit nur auf ein Überschreiten<br />
der Grenzen des dem BfE<br />
eingeräumten Planungsermessens beschränken<br />
werde. Insgesamt stellte<br />
Schlacke dem StandAG mit seinem<br />
erstmalig im deutschen Recht verankerten<br />
phasenspezifischen Rechtsschutz<br />
mit erweiterter Klagebefugnis<br />
ein „gutes „Zeugnis“ aus. Das Gesetz<br />
kombiniere „geschickt“ Interessenrechtsschutz<br />
mit überindividuellem<br />
Rechtsschutz.<br />
Ob die von Schlacke erwartete Akzeptanzsteigerung<br />
durch diese Rechtsschutzregelungen<br />
und die Funktion<br />
des Standortauswahlver fahrens, die<br />
Richtigkeit der Standortentscheidung<br />
zu indizieren, tatsächlich bewirken<br />
wird, bleibt zu hoffen, erscheint insbesondere<br />
vor dem Hintergrund des<br />
Vortrags von Durner allerdings noch<br />
längst nicht aus gemacht.<br />
Das nächste Deutsche Atomrechtssymposium<br />
soll, wie Flasbarth ankündigte,<br />
bereits in 2020 stattfinden.<br />
Author<br />
Ulrike Feldmann<br />
Berlin, Deutschland<br />
Energy Policy, Economy and Law<br />
The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Failure Analysis of the Jet Pumps Riser<br />
in a Boiling Water Reactor-5<br />
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza,<br />
Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón<br />
The arrangement of a riser coupled with two jet pumps is an important element in the Reactor Recirculation Core<br />
system of a Boiling Water Reactor. Its operational objective is to <strong>for</strong>ce the flow of water through the core <strong>for</strong> load variation<br />
and <strong>for</strong> safety is to keep the core flooded. In order to avoid thermal stresses, they are supported in a flexible way. In<br />
this case, the material expansion does not introduce stresses. The riser is only fixed at the upper zone welded at the<br />
riser brace. An important concern happens when the assembly vibrates under a torsional mode around its longitudinal<br />
axis. Under these conditions, helical cracks can be initiated at the riser brace weld. In this paper, a methodology <strong>for</strong> the<br />
evaluation of the structural integrity of the cracked riser is presented. It is considered that failure can take place in a<br />
brittle or in a ductile manner. For its evaluation, such cracks are projected along the axial and circumferential axis and<br />
evaluated in both conditions. In the first case, Fracture Mechanics are used. The ductile failure is evaluated applying the<br />
Collapse Limit Load analysis. The allowable crack length was determined when the flow through the core varied between<br />
95% and 107%. These analyses were carried out when one or two recirculation circuits were in operation. In<br />
order to demonstrate the application of these results, three cases were analyzed. The results were evaluated with the<br />
Failure Assessment Diagram R6.<br />
213<br />
OPERATION AND NEW BUILD<br />
1 Introduction<br />
The Reactor Recirculation Core System<br />
in a Boiling Water Reactor (BWR) plays<br />
an important role. It induces a <strong>for</strong>ced<br />
flow of water through the core to<br />
increase the power density and the<br />
safety function is to provide coolability<br />
<strong>for</strong> the core to maintain the water level<br />
at two thirds of the height of the core.<br />
There are twenty jet pumps in a<br />
BWR-5. They are arranged in ten pairs<br />
in the annular region between the<br />
inner wall and the core shroud.<br />
Each pair is joined with a riser pipe<br />
(Figure 1).<br />
In order to avoid thermal expansion<br />
stresses, this arrangement is<br />
supported in a flexible way. In other<br />
words, the upper part of the riser is<br />
stiff welded to a flexible brace, which<br />
is clamped on the inner surface of the<br />
reactor vessel. The bottom of the riser<br />
is joined with an elbow, which connects<br />
this arrangement to a circular<br />
manifold. Besides, the bottom of each<br />
jet pump has a slip joint. Thus, axial<br />
displacement can take place without<br />
any restriction. It has to be kept in<br />
mind, that the two pumps and the<br />
riser are joined by a joke. The stiffness<br />
is increased while the three elements<br />
are maintained together by such joke.<br />
However, this stiffness is reduced<br />
when wear of the wedge of the joke<br />
has taken place. The worst condition<br />
is when such wedge is completely<br />
loosen.<br />
The jet pumps are subjected to an<br />
internal flow and an external cross<br />
flow of water. There<strong>for</strong>e, structural<br />
vibrations are exacerbated when the<br />
jet pumps are not completely tight. If<br />
this situation arises, the weld at the<br />
| | Fig. 1.<br />
BWR-5 3-D view and detailed view of the jet pump section.<br />
riser brace has to support the fatigue<br />
loads which are developed. In the<br />
open literature [1], it has been reported<br />
that a 6.6 inch crack was developed<br />
at the riser, close to the weld of the<br />
riser of a brace of the unit 1 of the<br />
Kousheng <strong>Nuclear</strong> <strong>Power</strong> Plant. It was<br />
during the 16 nd outage in March of<br />
2003.<br />
In a 2014 work [2], the first five<br />
modes of vibration were calculated. It<br />
was observed that the fourth mode is<br />
torsional around the axial axis of the<br />
riser. Its resonance frequency is<br />
43.4 Hz, which can induce helicoidal<br />
cracks at the zone of the welds mentioned<br />
above. These calculations were<br />
done with SAP 2000 code [3]. In this<br />
analysis, the mass of the riser and<br />
the two jet pumps was considered.<br />
Besides, the mass of water inside and<br />
outside of this arrangement was also<br />
taken into account. The considerations<br />
<strong>for</strong> this purpose were based on<br />
the works of Blevins [4]. The flexibility<br />
of the bends, which took place<br />
during its ovalization, was introduced.<br />
The stiffness matrix was modified.<br />
The boundary conditions at the riser<br />
brace, riser bracket and slip joint were<br />
introduced in the numerical model.<br />
For the purpose of this work, a helical<br />
crack was analyzed.<br />
This analysis was also carried out<br />
with ANSYS 14.5 code. The same<br />
mode was obtained at 39.5 Hz,<br />
following the same considerations.<br />
These results are in agreement with<br />
those reported by Stevens and<br />
coworkers [5].<br />
The analysis of potential cracks in<br />
jet pumps has attracted attention [6].<br />
In<strong>for</strong>mation on potential failure<br />
locations in BWR/3-6 jet pumps is<br />
provided in this document. Fatigue<br />
and Intergranular Stress Corrosion<br />
Cracking plays an important role.<br />
Such document also mentions that<br />
Operation and New Build<br />
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5<br />
ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
OPERATION AND NEW BUILD 214<br />
significant cracking can be tolerated<br />
without loss of essential jet pump<br />
safety functions. There<strong>for</strong>e, it is<br />
important to evaluate the remaining<br />
structural integrity when a riser is<br />
cracked.<br />
2 Statement<br />
of the problem<br />
The development of helical cracks at<br />
the weld between the riser and the<br />
riser brace compromise the structural<br />
integrity of the jet pumps. There<strong>for</strong>e,<br />
it is very important to evaluate the<br />
critical size of a crack that could<br />
be tolerated, be<strong>for</strong>e a complicated<br />
reparation has to be introduced. It can<br />
be considered that the failure can be<br />
in the range of brittle and ductile<br />
conditions. So, a methodology which<br />
considers both conditions of failure is<br />
required.<br />
3 Materials and methods<br />
In order to obtain the critical size of<br />
the crack, the loads applied on the jet<br />
pump arrangement were evaluated.<br />
The hydrodynamic loads are included.<br />
It has to keep in mind that aging could<br />
take place as hours of operation are<br />
accumulated. For this purpose, brittle<br />
and ductile failures were evaluated<br />
with fracture mechanics and net<br />
section collapse analysis approaches,<br />
respectively. Then, these results were<br />
compared against those obtained with<br />
Failure Assessment Diagrams.<br />
The hydraulic loads considered,<br />
were the following: by cross flow, the<br />
impulse loading of the pump of the<br />
Reactor Recirculation Core (RRC)<br />
system and the vibration induced by<br />
fluid flow (fatigue). In the last case,<br />
the dynamic loads are generated by<br />
the bend located at the lower end of<br />
the riser, the ram head at the top of<br />
the riser and the mixer of the jet<br />
pump. The thermohydraulic analysis<br />
was carried out with the RELAP/<br />
SCDAPSIM code [7, 8].<br />
Another source of vibration are the<br />
dynamic loads from strong earthquakes.<br />
However, strong earth quakes<br />
are not a source of fatigue because of<br />
these events do not happen everyday<br />
at the same place. Summarizing, it is<br />
important to evaluate the impact of<br />
the dynamic loads which will take<br />
place on the structural integrity of the<br />
jet pumps.<br />
3.1 Cross flow<br />
The simplified method, described in<br />
the Part N1324.1 “Avoiding Lock-In<br />
Synchronization” of Section III of the<br />
ASME Code [9], was followed. Initially,<br />
the Vortex Shedding frequency is<br />
calculated with the following relationship.<br />
(1)<br />
Where: S is the Strouhal number<br />
and it is a function of the Reynolds<br />
number, U is the velocity of the cross<br />
flow and D is the lower diameter of the<br />
assembly of the jet pumps. The calculations<br />
show that the Vortex Shedding<br />
frequency was 10.7 Hz. In accordance<br />
with the criterion of the ASME code<br />
mentioned above, 1.3f s must be lower<br />
than the first natural frequency<br />
(26.3 Hz), in order to avoid “Lock-In<br />
Synchronization” with the first mode.<br />
So, as a conclusion, cross flow vibration<br />
resonance did not take place.<br />
3.2 Impulse loading of the<br />
pump of the external<br />
Reactor Recirculation Core<br />
(RRC) system<br />
In accordance with the open literature<br />
[10, 11, 12], the centrifugal pump<br />
of each circuit of RRC operates at<br />
1,800 RPM. As a result, its frequency<br />
is 30 Hz. The impeller of the centrifugal<br />
pump has five blades. There<strong>for</strong>e,<br />
the impulse frequency is 5 (30 Hz) =<br />
150 Hz. If this parameter is compared<br />
with the range of the first 5 natural<br />
frequencies (26.3 Hz – 67 Hz), it can<br />
be concluded that resonance in operation<br />
is not induced.<br />
3.3 Flow-Induced Vibration<br />
(fatigue)<br />
The sources of fatigue on the jet pump<br />
arrangement are the dynamic <strong>for</strong>ces<br />
and moments generated by the internal<br />
flow of water.<br />
Forces at the lower elbow of the riser:<br />
These <strong>for</strong>ces are generated by the inlet<br />
flow of water at the elbow of the riser.<br />
They were calculated by the following<br />
relationships (Figure 2):<br />
(2)<br />
(3)<br />
ρ is the water density. p 1 and p 2 are the<br />
pressures at the inlet and outlet of the<br />
bend, respectively. A 1 and A 2 are the<br />
cross sections at the inlet and outlet of<br />
the bend and θ is the angle of the<br />
bend. For a 90° elbow, the <strong>for</strong>ces<br />
are resulting. F x = 15,500 lb and<br />
F y = 15,500 lb horizontal and vertical<br />
respectively.<br />
Forces over the mixer nozzles of the<br />
jet pumps (Figure 3): This <strong>for</strong>ce is<br />
| | Fig. 2.<br />
Forces on the bend.<br />
| | Fig. 3.<br />
Forces on the bend.<br />
| | Fig. 4.<br />
Forces generated by the ram head over the riser.<br />
developed by the flow discharge,<br />
which comes from the Reactor Recirculation<br />
Core System, and is mixed<br />
with the suctioned flow of the condensed<br />
steam. The vertical <strong>for</strong>ce is:<br />
(4)<br />
ΔP is the differential pressure and A i is<br />
the cross section of the nozzle. For the<br />
jet pump assembly under study are<br />
186.7 pound/inch 2 and 26.1 inch 2 ,<br />
respectively. So, the resultant <strong>for</strong>ce is<br />
4881 pounds upwards.<br />
Forces generated by the ram head<br />
over the riser (Figure 4): The vertical<br />
loads over the riser, which are generated<br />
by both elbows of the ram head,<br />
were calculated with the following<br />
equation:<br />
(5)<br />
F y is the vertical <strong>for</strong>ce, ρ is the water<br />
density, p 1 and p 2 are inlet and outlet<br />
Operation and New Build<br />
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı<br />
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
pressure at the elbow, A 1 and A 2 are<br />
cross sections of the inlet and outlet of<br />
elbow, v 1 and v 2 are the flow velocities<br />
at inlet and outlet of the elbow and Q<br />
is water flow.<br />
| | Fig. 5.<br />
Resulting <strong>for</strong>ces.<br />
The upper load generated by the<br />
change of direction of the flow of water<br />
through one of the elbows is 12217.<br />
2 pounds. The total <strong>for</strong>ce, which is<br />
generated by the couple of elbows of<br />
the “ram head,” is 24434.4 pounds.<br />
The resultant moment was calculated<br />
with SAP 2000 resulting 19496<br />
pound-inch. The resultant <strong>for</strong>ces are<br />
illustrated in the Figure 5.<br />
3.4 Vibration induced<br />
by earthquake<br />
Regarding the dynamic loads that<br />
take place during an earthquake, the<br />
response spectrum <strong>for</strong> a Safe Shutdown<br />
Earthquake (SSE) and the<br />
Operational Basis Earthquake (OBE)<br />
were obtained. The criterion of 1.60<br />
USNRC was followed [13]. In both<br />
cases, the first natural frequencies of<br />
the jet pump arrangement are above<br />
20 Hz. Besides, the peaks of such<br />
response spectrum are in the range<br />
between 2 Hz and 8 Hz. The first five<br />
natural frequencies are close to 33 Hz,<br />
which is the zone of Zero Period<br />
Acceleration (ZPA). There<strong>for</strong>e, the<br />
seismic loads should not affect the<br />
structural integrity of the jet pumps<br />
and these events are not related with<br />
fatigue.<br />
4 Failure analysis<br />
4.1 Determination of the<br />
allowable crack length<br />
on the riser<br />
For this purpose, an initial helical<br />
crack length is postulated as an<br />
envelope to cover horizontal and<br />
vertical cracks (Figure 6). Then, it is<br />
| | Fig. 6.<br />
Determination of the allowable crack length<br />
on the riser.<br />
increased by steps until the maximum<br />
permissible length is reached. The<br />
following considerations apply.<br />
pp<br />
The evaluation of the loads showed<br />
that the hydraulic <strong>for</strong>ces are<br />
relevant to determine the structural<br />
integrity.<br />
pp<br />
As a critical case that helical cracks<br />
are generated at the weld of the<br />
riser brace, arising when the jet<br />
pumps vibrate under a torsional<br />
mode. In order to analyze this sort<br />
of cracks, the Section XI of the<br />
ASME code [14] is applied to evaluate<br />
the crack along the axial and<br />
circumferential projection, as it is<br />
illustrated in the following Figure.<br />
pp<br />
The recirculation system varies the<br />
flow through the core. In this way,<br />
the power density of the reactor<br />
changes. There<strong>for</strong>e, the range of<br />
the variation of the flow of water is<br />
considered to be between 95 % and<br />
107 %.<br />
pp<br />
Fragile and ductile failures should<br />
be evaluated to cover all the aging<br />
steps from ductile <strong>for</strong> the initial<br />
condition <strong>for</strong> stainless steel to<br />
fragile when neutron fluence<br />
produces embrittlement of the<br />
material.<br />
4.1.1 Axial crack<br />
Fracture mechanics analysis (brittle<br />
failure): Initially, the permissible axial<br />
crack length was evaluated. In this<br />
case, equation 1.1, Vol. 2, Pag. 6.1-1<br />
(through wall crack) [15] was considered.<br />
This equation is valid when<br />
is in the range 0 < λ ≤ 5 and<br />
(6)<br />
(7)<br />
(8)<br />
(9)<br />
is the stress intensity factor in mode I.<br />
σ is the circumferential stress and<br />
depends on the mean radius. P and t<br />
are the internal pressure and the<br />
thickness, respectively. The half crack<br />
length is c and the geometrical factor<br />
is F. (Figure 7)<br />
Limit load analysis (ductile failure):<br />
An axial crack through thickness was<br />
considered. Equation 3.1, vol 2, pag<br />
6.3-1 [15] was taken into account.<br />
(10)<br />
This equation is valid when equation<br />
(7) is in the range 0 < λ ≤ 5 and<br />
(11)<br />
P l is the internal pressure plastic collapse<br />
limit. σ f is the flow stress. R and<br />
t are the mean radius and thickness,<br />
respectively. The half crack length is c<br />
and M is a parameter which is in<br />
function of λ.<br />
The maximum length of an axial<br />
crack was evaluated by the equations<br />
mentioned above. The results are<br />
summarized in the following graph.<br />
The range of operation of the reactor<br />
was considered. Two analyses were<br />
carried out. One of them is when only<br />
one header of the Reactor Recirculation<br />
Core System is operating and the<br />
other was when both of them were<br />
operating.<br />
In the same way like the last case:<br />
All the equations mentioned in this<br />
paper were introduced in Matlab<br />
coupled with Excel to per<strong>for</strong>m the<br />
iterations. In this way, the maximum<br />
allowable crack length was determined<br />
in the range of operation<br />
mentioned above. The results are<br />
summarized in the following graph.<br />
These analyses were carried on when<br />
one single loop operation or the two<br />
circuits (normal operation) of the<br />
Reactor Recirculation System in<br />
operation.<br />
The allowable crack length is<br />
constant no matter the core flow of<br />
water, this happens because only the<br />
internal pressure is considered <strong>for</strong> the<br />
calculations. This internal pressure is<br />
the difference of pressure between the<br />
“Annulus” of the reactor and the interior<br />
of the riser (Figure 8).<br />
OPERATION AND NEW BUILD 215<br />
Operation and New Build<br />
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5<br />
ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
Elektrische Energie stellt für die Funktionsfähigkeit jeder entwickelten Gesellschaft die Schlüsselenergie dar.<br />
Sie wird heute in der Schweiz zu 60 % durch Wasserkraft und zu 40 % durch Kernenergie erzeugt.<br />
Das KKG beschäftigt über 550 Mitarbeitende und strebt einen sicheren, zuverlässigen Betrieb bis 2039 an.<br />
Zur Umsetzung dieser Vision suchen wir<br />
in der Abteilung Sicherheit zur Ergänzung<br />
unseres Teams Erdbebeningenieurwesen und<br />
Strukturmechanik einen<br />
Fachingenieur (m/w)<br />
Ihr Aufgabengebiet umfasst:<br />
P Durchführung sicherheitstechnischer Berechnungen mit Bezug<br />
zur Beurteilung der Erdbebengefährdung<br />
P Unterstützung der Fachabteilungen bei der Festlegung<br />
der Erdbebenan<strong>for</strong>derungen<br />
P Durchführen von Sicherheitsnachweisen<br />
P Vorgabe und Beurteilung der Erdbebenauslegung für die steigende<br />
Anzahl von Anlagenänderungen und Projekten im KKG<br />
P Sicherstellung der Compliance mit dem Regelwerk in Fragen<br />
der Erdbebenauslegung zur Vermeidung von Anlagenstillständen<br />
P Eigenständige Erstellung von Beurteilungen und Berichten<br />
P Strukturdynamische Untersuchungen<br />
für andere extreme Sonderlasten<br />
Ihr Profil:<br />
P Abgeschlossenes Studium im Maschinenbau oder als Bauingenieur<br />
P Erfahrung in dynamischen Analysen von Baustrukturen, maschinenund<br />
elektrotechnischen Komponenten<br />
P Vertrautheit mit den bautechnischen und kerntechnischen<br />
Regelwerken, optional mit dem nuklearen Schweizer Regelwerk<br />
P Bereitschaft zur Einarbeitung in Softwaretools, neue Themengebiete<br />
und Problematiken<br />
P Kommunikativ und verhandlungssicher<br />
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />
P Deutsch und Englisch in Wort und Schrift<br />
in der Abteilung Sicherheit zur Ergänzung<br />
unseres Teams PSA und Erfahrungsauswertungen<br />
einen<br />
Fachingenieur (m/w)<br />
Ihr Aufgabengebiet umfasst:<br />
P Modellierung von Systemen und Funktionen<br />
eines Druckwasserreaktors mit probabilistischer Software<br />
P Erstellung von PSA Dokumentationen nach den betriebsinternen<br />
Vorgaben<br />
P Massgebliche Mitwirkung bei dem Neuaufbau des PSA-Modells<br />
(Softwarewechsel von Riskman auf CAFTA oder RiskSpectrum)<br />
Ihr Profil:<br />
P Abgeschlossenes Studium der Ingenieurwissenschaften,<br />
der Mathematik oder Physik<br />
P Vertiefte Kenntnisse im Aufbau und der Anwendung probabilistischer<br />
Werkzeuge (vorzugsweise CAFTA oder RiskSpectrum)<br />
P Vorzugsweise Kenntnisse in der Entwicklung eines der Softwareprodukte<br />
und /oder der Erstellung komplexer Modelle<br />
P Wenn möglich Erfahrung innerhalb der kerntechnischen Branchen,<br />
bevorzugt Sicherheitsanalysen<br />
P Verhandlungssicher und kommunikativ<br />
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />
P Deutsch und Englisch in Wort und Schrift<br />
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />
Herr Stefan Heussen, Leiter Ressort PSA und Erfahrungsauswertungen,<br />
gerne.<br />
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />
Herr Andri Nyky<strong>for</strong>chyn, Leiter Ressort Erdbebeningenieurwesen<br />
und Strukturmechanik, gerne.
Wir bieten Ihnen:<br />
P Eine abwechslungsreiche Tätigkeit<br />
in einem interessanten Umfeld<br />
P Eine sorgfältige Einarbeitung in Ihr vielfältiges<br />
und abwechslungsreiches Arbeitsgebiet<br />
P Sehr gute Anstellungsbedingungen und Sozialleistungen<br />
sowie ein den An<strong>for</strong>derungen entsprechendes Gehalt<br />
P Unterstützung in Ihrer persönlichen Weiterbildung<br />
Wenn Sie sich für eine dieser Stellen interessieren, freuen<br />
wir uns auf Ihre vollständigen Bewerbungsunterlagen.<br />
KERNKRAFTWERK GÖSGEN-DÄNIKEN AG<br />
Personalabteilung<br />
4658 Däniken<br />
Telefon 062 288 20 00<br />
personal@kkg.ch<br />
in der Abteilung Sicherheit zur Ergänzung<br />
unseres Teams Sicherheitsanalysen und Systemtechnik<br />
einen<br />
Systemingenieur (m/w)<br />
Ihr Aufgabengebiet umfasst:<br />
P Periodische Bewertung von Systemen und Systemkomponenten mit<br />
Fokus auf verfügbarkeitsrelevante und sicherheitstechnische Aspekte<br />
P Pflege/Neuerstellung von Systemhandbüchern<br />
P Beurteilung der Betriebsweise von Systemen und Komponenten unter<br />
Berücksichtigung der Interaktionen mit angrenzenden Systemen und<br />
unter Berücksichtigung aller Betriebsweisen der Gesamtanlage<br />
P Sicherheitstechnische Beurteilung von Anlagenänderungen<br />
P Enge Zusammenarbeit mit Komponenten- und Systemverantwortlichen<br />
sowie Unterstützung von Projekten<br />
P Verfolgung des Stands von Wissenschaft und Technik und Einbringen<br />
dieses Wissens in den technischen Änderungsprozess<br />
Ihr Profil:<br />
P Abgeschlossenes Studium der Elektrotechnik und mehrjährige<br />
Erfahrung im Kraftwerksbereich<br />
P Fundiertes Wissen über elektrische, leittechnische Systeme und<br />
Komponenten in Kraftwerksanlagen<br />
P Idealerweise vorhandene Grundkenntnisse über Kernkraftwerke<br />
P Idealerweise Erfahrung aus Instandhaltung und<br />
Änderung technischer Systeme<br />
P Verhandlungssicher und kommunikativ<br />
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />
P Deutsch und Englisch in Wort und Schrift<br />
für die Überwachung der Herstellung unserer<br />
Brenn elemente in der Abteilung Kernbrennstoff<br />
zur Ergänzung unseres Teams einen<br />
Ingenieur (m/w)<br />
Ihr Aufgabengebiet umfasst:<br />
P Mitwirkung bei der Verhandlung und Abwicklung der Lieferverträge<br />
für Kernbauteile (Brennelemente, Steuerelemente, Drosselkörper,<br />
Materialteststäbe)<br />
P Fertigungsbegleitende Prüfungen sowie Qualitäts- und<br />
Umwelt management bei der Herstel-lung der Kernbauteile<br />
P Qualifikation von und Audits bei Kernbauteillieferanten<br />
P Koordination der Transporte unbestrahlter Brennelemente<br />
Ihr Profil:<br />
P Abgeschlossenes Hochschulstudium der Materialwissenschaften,<br />
Maschinen- oder Nuklearingenieurwesen<br />
P Interner und externer Auditor<br />
P Deutsch und Englisch in Wort und Schrift, Französisch von Vorteil<br />
P Einige Jahre Erfahrung in der Brennelementkonstruktion, -auslegung<br />
oder -herstellung<br />
P Ausgeprägtes Sicherheitsbewusstsein<br />
P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />
P Bereitschaft für häufige Dienstreisen ins Ausland<br />
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />
Herr René Sarrafian, Stv. Leiter Res-sort Out of Core, gerne.<br />
3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />
Herr Dr. Rainer Kaulbarsch, Leiter Ressort Sicherheitsanalysen<br />
und Systemtechnik, gerne.<br />
www.kkg.ch
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
OPERATION AND NEW BUILD 218<br />
| | Fig. 7.<br />
Allowable size <strong>for</strong> axial crack.<br />
4.1.2 Circumferential cracks<br />
Fracture mechanics analysis (brittle<br />
failure): The circumferential cracks in<br />
all the risers of the jet pumps are under<br />
tension and bending. Both loading<br />
conditions have to be evaluated.<br />
Tension: The allowable length of a<br />
through thickness circumferential<br />
crack was evaluated with equation 1.1,<br />
vol. 1, pag 1-1 [16]. All the evaluation<br />
was carried on with Matlab code. The<br />
stress intensity factor was evaluated<br />
with the following equation.<br />
(12)<br />
This relation is valid when 0 <<br />
≤ 0.55, 10 ≤ ≤ 20 and .<br />
The geo metrical factor is<br />
(13)<br />
(14)<br />
K I is the stress intensity factor. σ is the<br />
axial stress and depends on the mean<br />
radius R. P is the axial load, t is the<br />
thickness and θ is the mean angle of<br />
the crack.<br />
For the case of bending,<br />
(15)<br />
This relation is valid when 0 <<br />
≤ 0.55, 10 ≤<br />
≤ 20 and<br />
(16)<br />
(17)<br />
K I is the mode I stress intensity factor,<br />
σ b is the bending stress and it depends<br />
on the mean radius, M is the bending<br />
moment and t is the thickness. θ is the<br />
mean angle of the crack and F b is a<br />
geometric factor.<br />
| | Fig. 8.<br />
Allowable size <strong>for</strong> axial crack, limit load of collapse.<br />
The maximum length of a circumferential<br />
crack was evaluated with<br />
loading conditions <strong>for</strong> the range of<br />
operation considered. Two analyses<br />
were carried out. In the first one, the<br />
two circuits (normal operation) of the<br />
Reactor Recirculation Core System<br />
were operating. In the second, only<br />
one of them was in operation (single<br />
loop operation). The results are<br />
summarized in the Figure 9. Again,<br />
Matlab coupled with Excel are applied<br />
to make the iterations.<br />
The results showed that the allowable<br />
crack length is reduced as the<br />
core flow core is augmented. This<br />
happens because of the hydraulic<br />
<strong>for</strong>ces exacerbate the vibration of the<br />
riser and the jet pumps. As a result,<br />
fatigue should be considered.<br />
Limit load analysis (ductile failure):<br />
In this case, the cross section of the<br />
riser is under plastic collapse, the allowable<br />
length of a through wall crack<br />
is evaluated with the equation 1.2, Vol.<br />
1, pag. 1-4 [16]. All the iterations were<br />
done with Matlab coupled with Excel.<br />
(18)<br />
(19)<br />
This equation is valid when ≤ 0.1<br />
(20)<br />
M is the limit moment <strong>for</strong> plastic<br />
collapse, σ f is the flow stress, R is the<br />
mean radius, t is the thickness and θ<br />
is the mean angle of the crack. α is a<br />
geometrical factor.<br />
The results are summarized in<br />
Figure 10. In this case, the maximum<br />
allowable length of a circumferential<br />
crack was evaluated with an analysis<br />
of limit load under collapse conditions.<br />
These evaluations were carried<br />
out <strong>for</strong> a range of operations, which is<br />
between 95 % and 107 % of the output<br />
power. These evaluations considered<br />
the operation of either, one or two<br />
circuits of the Reactor Recirculation<br />
Core system.<br />
| | Fig. 9.<br />
Allowable size <strong>for</strong> circumferential crack, LEFM.<br />
| | Fig. 10.<br />
Allowable size <strong>for</strong> circumferential crack,<br />
limit load of collapse.<br />
It can be observed that the allowable<br />
circumferential crack length decreases<br />
as the flow of water increases.<br />
Under these conditions, the hydraulic<br />
loads generate more vibrations and<br />
fatigue.<br />
5 Failure Assessment<br />
Diagram R6<br />
This is a methodology that is widely<br />
used to evaluate the elasto-plastic<br />
failures in structural components. In<br />
general terms, the failure is determined<br />
by the interaction between<br />
ductile and brittle behavior of a<br />
material. The first versions were based<br />
on the “Strip-Yield” model. The Stress<br />
Intensity Factor <strong>for</strong> an infinite plate<br />
with a central crack through thickness<br />
is a methodology that is widely used<br />
to evaluate the elasto-plastic failures<br />
in structural components. In general<br />
terms, the failure is determined by<br />
the interaction between ductile and<br />
brittle behavior of a material. The<br />
first versions were based on the<br />
“ Strip-Yield” model. The Stress<br />
Intensity Factor <strong>for</strong> an infinite<br />
plate with a central crack through<br />
thickness is<br />
(21)<br />
This equation is asymptotic with<br />
respect to the yield strength of the<br />
material; thus, it has to be modified. It<br />
should be considered the flow stress,<br />
instead the yield stress, and the effective<br />
stress intensity factor has to be<br />
obtained. An adimensional relation is<br />
proposed <strong>for</strong> this purpose. The new<br />
relation is divided by the Stress Intensity<br />
Factor in mode I.<br />
Operation and New Build<br />
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı<br />
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
(22)<br />
In this equation, the square root of<br />
the semi-length is eliminated. In this<br />
way, it is independent of the geometry,<br />
as the strip model. In order to<br />
use an adimesional <strong>for</strong>m, the following<br />
parameters have to be established.<br />
and<br />
The new equation is<br />
(23)<br />
This curve is the boundary between<br />
the safe and unsafe zones (Fig. 9).<br />
Fracture would take place when the<br />
Effective Stress Intensity Factor is<br />
bigger than the Fracture Toughness,<br />
K r > 1 On the other hand, ductile<br />
failure is expected if S r > 1. Also, it is<br />
important to observe that in the<br />
elastoplastic analysis, fracture and<br />
collapse are in interaction. The points<br />
defined by K r and S r have to be<br />
localized in the failure diagram so as<br />
to determine if they are in the safe or<br />
unsafe zones.<br />
The material hardening has not<br />
been considered in the “Strip-Yield”<br />
model. There<strong>for</strong>e, this situation<br />
can be included in an elastoplastic<br />
analysis with the J-integral. The<br />
equation proposed by the British<br />
Standard BS 7910 is<br />
(24)<br />
The Failure Diagram shown in Figure<br />
11 compares different failure<br />
curves. This was used in the evaluations,<br />
which were carried out in this<br />
paper.<br />
6 Cases of analyses<br />
The allowable horizontal and vertical<br />
projections of a helicoidal crack in the<br />
riser were determined in the previous<br />
section. In this section, some cases<br />
have been postulated, as an example,<br />
in order to show the application of the<br />
evaluation of the structural integrity<br />
of the riser.<br />
6.1 Circumferential cracks<br />
As an example, a circumferential<br />
crack at the weld of the riser was<br />
postulated. Its length was 4 inches.<br />
The reactor is in operation with the<br />
two loops of recirculation and 107 %<br />
| | Fig. 11.<br />
Diagram of evaluation of failure by plastic<br />
de<strong>for</strong>mation.<br />
| | Fig. 12.<br />
Postulated case circumferential length<br />
of crack.<br />
| | Fig. 13.<br />
Failure Diagram R6.<br />
of the flow of the water flowing<br />
through the core.<br />
Initially, the evaluation was done<br />
in accordance with linear elastic<br />
fracture mechanics. The allowable<br />
crack length is 4.9 inches (Figure 9).<br />
The length of the actual crack is<br />
lower than this limit. So, this crack is<br />
acceptable.<br />
After this, the evaluation was done<br />
under the scope of the Collapse Limit<br />
Load analysis (Figure 10). The allowable<br />
crack length is 16.36 inches. The<br />
length of the actual crack is lower.<br />
There<strong>for</strong>e, it can be accepted.<br />
This evaluation was complemented<br />
with the Failure Assessment Diagram.<br />
The following parameters were<br />
calculated:<br />
and<br />
. As this point is located<br />
within the safe zone. It is considered<br />
safe. However, this point is located<br />
close to the vertical axis in the zone in<br />
which a brittle failure can take place.<br />
So, this is the dominant failure mechanism,<br />
it is recommended to increase<br />
the inspection and to determine the<br />
remaining life because a brittle failure<br />
is undesirable (Figure 11 and 12).<br />
| | Fig. 14.<br />
Failure diagram, postulated case<br />
circumferential projection of crack.<br />
| | Fig. 15.<br />
Failure Assessment Diagram, Postulated case<br />
axial projection of crack.<br />
| | Fig. 16.<br />
Failure Assessment Diagram, Postulated case<br />
circumferential projection of crack.<br />
6.2 Safe helical crack<br />
In this case, a helical crack close to the<br />
weld of the riser brace is postulated. Its<br />
length is 4 inches. Its projections along<br />
the circumferential and the axial axis<br />
are 3.5 inches and 1.94 inches, respectively.<br />
The output power of the reactor<br />
is 100 % and the two circuits of the<br />
RRC system have been in operation.<br />
Initially, the axial projection of the<br />
crack was evaluated. In accordance<br />
with Linear Elastic Fracture Mechanics,<br />
brittle fracture is developed, when<br />
the allowable crack length is greater<br />
than 11.689 inches (Figure 7). Regarding<br />
the ductile failure, the evaluation<br />
was done with the Collapse Limit Load<br />
analysis. The allowable crack length is<br />
11.11 inches (Figure 8). It is greater<br />
than the axial pro jection of the crack.<br />
These results were evaluated with the<br />
Failure Diagram R6. The following<br />
parameters were calculated too.<br />
and ,<br />
then they are localized in the diagram,<br />
Figure 13.<br />
In the case of the circumferential<br />
projection of the helical crack, it was<br />
evaluated against the brittle fracture<br />
with linear elastic fracture mechanics<br />
OPERATION AND NEW BUILD 219<br />
Operation and New Build<br />
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5<br />
ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
OPERATION AND NEW BUILD 220<br />
(Figure 9). As the allowable crack<br />
length is 4.9 inches and it is greater<br />
than 4 inches. Thus, brittle failure is<br />
not expected to occur.<br />
The evaluation against ductile failure<br />
showed that the allowable circumferential<br />
projection of the crack length<br />
is 16.36 inches (Figure 10). As this<br />
value is greater than 4 inches. It is not<br />
expected ductile failure to occur.<br />
These conditions were also<br />
evaluated with the R6 Failure<br />
Diagram, Figure 14. For this purpose,<br />
the following parameters were<br />
calcu lated:<br />
and<br />
.<br />
The results showed that this<br />
arrangement has structural integrity<br />
and can continue its operation. A<br />
critical condition is expected along<br />
the circumferential projection. There<br />
is a tendency to a fragile fracture. It is<br />
advisable to inspect this crack periodically.<br />
6.3 Unsafe helical crack<br />
A helical crack, which has a length<br />
of 18”, was postulated. Its components<br />
in the axial and circumferential directions<br />
are 7.19 inches and 16.5 inches,<br />
respectively. The reactor operates with<br />
100 % of the output power and the flow<br />
through the core is 107 %. The two<br />
headers of the RRC are in operation<br />
and 100 % of the flow of water has<br />
been passing through the core.<br />
The projection of the crack in the<br />
axial direction is evaluated with Figure<br />
7. The allowable crack length, in<br />
accordance with Fracture Mechanics,<br />
is 11.6 inches. It is bigger than<br />
7.19 inches. So, it is acceptable.<br />
Regarding the limit load collapse<br />
analysis, it was carried out with Figure<br />
8. The allowable crack length is<br />
11.11 inches. As, it is bigger than<br />
7.19 inches. It is accepted. These evaluations<br />
were completed with the Failure<br />
Assessment Diagram, Figure 15.<br />
In a second phase, the projection in<br />
the circumferential direction is evaluated,<br />
considering the principles of<br />
fracture mechanics. In accordance<br />
with Figure 9, the allowable crack<br />
length is 4.9 inches. This should not<br />
be accepted, because the crack projection<br />
(16.5 inches) is bigger than the<br />
allowable crack length.<br />
The same analysis was done with<br />
the Collapse Limit Load analysis. The<br />
allowable circumferential crack is<br />
16.36 inches. However, the crack<br />
projection is 16.5 inches. Under this<br />
condition, it can be accepted. In order<br />
to confirm these results, this situation<br />
was analyzed with the Failure Assessment<br />
Diagram. For this purpose,<br />
the following parameters were<br />
calcu lated:<br />
and<br />
.<br />
These values are located outside of<br />
the safe zone. It is illustrated in Figure<br />
16 and it is confirmed that the structural<br />
integrity of the riser has been<br />
compromised. It can be expected a<br />
failure in which brittle behavior will<br />
be predominant.<br />
7 Conclusions<br />
The helical or diagonal cracks that<br />
may take place on the riser close to the<br />
weld of the riser brace weld. It was<br />
considered that a torsional mode of<br />
vibration around the axial axis of the<br />
riser generated the loading conditions<br />
<strong>for</strong> the crack propagation. The operational<br />
loads that could take place were<br />
considered in the methodology, which<br />
was applied.<br />
It is considered that the system has<br />
enough structural integrity when the<br />
conditions that avoid ductile and<br />
brittle failures along the circumferential<br />
and axial directions are fulfilled.<br />
Otherwise, the component has to<br />
be repaired. One alternative is to<br />
substitute the damaged part. However,<br />
it should to be cut and a new replacement<br />
component should be<br />
welded. These operations should have<br />
to be done below the water level and<br />
during the outage of the nuclear<br />
power plant. Under these conditions,<br />
it is difficult to get a good quality in<br />
this job. It would be advisable to<br />
install a rein<strong>for</strong>cement structure, in<br />
such way that a compression load<br />
must be applied to avoid fracture<br />
mode I on the crack. Besides, torsion<br />
and bending have to <strong>for</strong> limited.<br />
Regarding the inspections, they<br />
have to be done periodically. Crack<br />
propagation has to be monitored and<br />
the structural integrity of the rein<strong>for</strong>cement<br />
frame has to be evaluated.<br />
Misalignments, deterioration and<br />
corrosion have to be avoided.<br />
Acknowledgements<br />
The authors kindly acknowledge the<br />
grant <strong>for</strong> the development of the<br />
Project 211704. It was awarded by the<br />
National Council of Science and<br />
Technology (CONACyT).<br />
Statement<br />
The conclusions and opinions stated<br />
in this paper do not represent the<br />
position of the National Commission<br />
on <strong>Nuclear</strong> Safety and Safeguards,<br />
where the co-author P. Ruiz-López is<br />
working as an employee. Although<br />
special care has been taken to maintain<br />
the accuracy of the in<strong>for</strong>mation<br />
and results, all the authors do not<br />
assume any responsibility on the<br />
consequences of its use. The use of<br />
particular mentions of countries,<br />
territories, companies, associations,<br />
products or methodologies do not<br />
imply any judgment or promotion by<br />
all the authors.<br />
References<br />
[1] K. B., Department of <strong>Nuclear</strong> Regulation, Atomic Energy<br />
Council, Taiwan, Recent Material Ageing Degradation<br />
Related Issues, Washington D.C.: The Fifth USNRC/TAEC<br />
Bilateral Technical Meeting, June 2007.<br />
[2] N. M. Cuahquentzi et al.: Evaluation of the Structural<br />
Integrity of the Jet Pumps of a Boiling Water Reactor<br />
under Hydrodynamic Loading, Defect and Diffusion Forum,<br />
vol. 348, pp. 261-270, 2014.<br />
[3] Inc. Computers and Structures: CSI Analysis Reference<br />
Manual <strong>for</strong> SAP2000, in ETABS, SAFE and CSiBridge, March<br />
2013.<br />
[4] R. D. Blevins: Flow Induced Vibrations, New Orleans, USA:<br />
Course ASME PD-146, 2012.<br />
[5] G. L. Stevens et al.: Jet pump flaw evaluation procedures,<br />
in 8 th <strong>International</strong> Conference on <strong>Nuclear</strong> Engineering,<br />
Baltimore, USA, April 2000.<br />
[6] EPRI: BWRVIP-41: BWR Vessel and Internals Project, in<br />
BWR Jet Pump Assembly Inspection and Flaw Evaluation<br />
Guidelines, USA, 1997.<br />
[7] G. E. Paredes et al: Severe Accident Simulation of the<br />
Laguna Verde <strong>Nuclear</strong> <strong>Power</strong> Plant, Science and<br />
Technology of <strong>Nuclear</strong> Installations, vol. 2012, March.<br />
[8] R. C. Camargo et al: Análisis de transitorios operacionales<br />
con el Código RELAP/SCDAPSIM, Apoyo a las actividades<br />
del proceso de certificación para el simulador de la CNLV a<br />
condiciones de aumento de potencia, Comisión Nacional<br />
de Seguridad <strong>Nuclear</strong> y Salvaguardias, México, June 2003.<br />
[9] American Society of Mechanical Engineers: Section III,<br />
Division 1-Appendices. Rules <strong>for</strong> Construction of <strong>Nuclear</strong><br />
Facility Components, in Boiler and Pressure Vessel Code,<br />
USA, ASME, 2007, pp. 301-302.<br />
[10] United States <strong>Nuclear</strong> Regulatory Commission: Technical<br />
Training Center, BWR/4 Technology Manual (R-104B),<br />
General Electric Systems, USA.<br />
[11] United States <strong>Nuclear</strong> Regulatory Commission: Technical<br />
Training Center, BWR/4 Technology Manual (R-304B),<br />
General Electric Systems, USA.<br />
[12] United States <strong>Nuclear</strong> Regulatory Commission: Technical<br />
Training Center, BWR/4 Technology Manual (R-504B),<br />
General Electric Systems, USA.<br />
[13] U.S. Atomic Energy Commission: Regulatory Guide 1.60<br />
Design Response Spectra <strong>for</strong> Seismic Design of <strong>Nuclear</strong><br />
<strong>Power</strong> Plants, U.S. Atomic Energy Commission, USA,<br />
December 1973.<br />
[14] American Society of Mechanical Engineers: Section XI.<br />
Rules <strong>for</strong> Inservice Inspection of <strong>Nuclear</strong> <strong>Power</strong> Plant<br />
Components, in Boiler and Pressure Vessel Code, USA,<br />
American Society of Mechanical Engineers, 2007.<br />
[15] A. Zahoor: Ductile Fracture Handbook, Vol. 2, Electric<br />
<strong>Power</strong> Research Institute Report NP-6301, USA: EPRI,<br />
October 1990, pp. 6.1-1, 6.3-1.<br />
[16] A. Zahoor: Ductile Fracture Handbook, Vol. 1, Electric<br />
<strong>Power</strong> Research Institute Report NP-6301, USA: EPRI,<br />
October 1990, pp. 1-1, 1-4.<br />
Authors<br />
Pablo Ruiz-López, Ph.D.<br />
Comisión Nacional de Seguridad<br />
<strong>Nuclear</strong> y Salvaguardias<br />
Head of the Licensing Area<br />
México<br />
Luis Héctor Hernández-Gómez, Ph.D.<br />
Juan Cruz-Castro, M.Sc.<br />
Gilberto Soto-Mendoza, M.Sc.<br />
Juan Alfonso Beltrán-Fernánde, Ph.D.<br />
Guillermo Manuel Urriolagoitia-<br />
Calderón, Ph.D.<br />
S.E.P.I. Zacatenco, I.P.N.<br />
México<br />
Operation and New Build<br />
Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı<br />
Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
A World’s Dilemma ‘Upon Which<br />
the Sun Never Sets’: The <strong>Nuclear</strong> Waste<br />
Management Strategy: Russia, Asia<br />
and the Southern Hemisphere<br />
Part I<br />
Mark Callis Sanders and Charlotta E. Sanders<br />
Due to the length of the article, the article is published in three parts. The authors and editor hope you will enjoy and<br />
look <strong>for</strong>ward to reading the entire article, as each portion is published. Part I provides the background to the discussion.<br />
Part II considers nuclear waste management from the perspective of Russia and Asia, while Part III considers those<br />
States in the Southern Hemisphere.<br />
This republication is a shortened<br />
version of an article originally<br />
published in the journal Progress in<br />
<strong>Nuclear</strong> Energy. The full-length version<br />
of the article may be found at: Sanders,<br />
M, & Sanders, C 2019 “A world’s<br />
dilemma ‘upon which the sun never<br />
sets’ – The nuclear waste management<br />
strategy (part II): Russia, Asia and the<br />
Southern Hemisphere”, Progress in<br />
<strong>Nuclear</strong> Energy 110, 148-169.<br />
1 Introduction<br />
This article contemplates the various<br />
waste management schemes that are<br />
being considered or undertaken to<br />
include Russia, Japan, China, South<br />
Korea, India, Argentina, Brazil and<br />
South Africa. Except <strong>for</strong> Japan,<br />
Argentina and South Korea, these<br />
nation states are chosen <strong>for</strong> discussion<br />
because these make up a charac teristic<br />
collection of nation states able to shape<br />
world policy and events as middle<br />
powers commonly referred as ‘BRIC’ or<br />
‘BRICS’ (Brazil, Russia, India, China<br />
plus South Africa). These nation states<br />
share certain positive and negative<br />
similarities including: planned and/or<br />
expanding nuclear power programs;<br />
large or expanding populations with<br />
emergent economies; “high GDP but<br />
relatively low GDP per capita; large<br />
domestic inequalities; and high absolute<br />
poverty levels” [1]. Japan and<br />
South Korea are chosen <strong>for</strong> discussion<br />
due to their expansive nuclear power<br />
programs, and their unique challenges<br />
in finalizing a nuclear waste management<br />
disposal facility because of internal<br />
political struggles. Argentina is<br />
unique in that while it developed and<br />
maintained a small nuclear power program<br />
<strong>for</strong> years, despite economic and<br />
political difficulties, it is now expanding<br />
its nuclear power program with the<br />
help of Chinese financial support.<br />
2 Future energy consumption<br />
outlook – BRICS<br />
Certainly, one of the parallel requirements<br />
facing developed and new comer<br />
nuclear nation states is the need to gain<br />
access to stable, clean, and plentiful<br />
sources of power production to drive a<br />
burgeoning eco nomy in a cost effective<br />
and environmentally friendly manner.<br />
Techno logical advances starting in the<br />
mid-2000’s have provided an abundance<br />
of cheap natural gas through<br />
fracking, with an 80 % growth in gas<br />
demand led by mostly Asian nation<br />
states, including China and India, over<br />
the next 20 years [2]. Current predictions<br />
<strong>for</strong> China estimate that it will<br />
experience power growth at a rate of<br />
3.8 to 4.6 % per annum through the<br />
year 2020, with chronic pollution<br />
estimated to cause China an economic<br />
loss at almost 6 % of Gross Domestic<br />
Product 1<br />
[3]. In its fight to tackle<br />
pollution, China is seeking to obtain<br />
the environmental benefits of clean<br />
energy technologies using wind, solar,<br />
and nuclear power generation [4].<br />
Brazil has a small but budding<br />
nuclear power program generating<br />
about 3 % of its electricity, with 84 %<br />
generated through hydro. Brazil’s<br />
overreliance on hydro generated<br />
power is creating potential challenges<br />
due to changing weather patterns and<br />
climatic shifts [5]. From the early<br />
1990’s, India has experienced rapid<br />
growth in energy consumption as its<br />
economic output has risen but is also<br />
suffering extreme levels of pollution<br />
in its major cities [6]. South Africa<br />
currently has two nuclear reactors at<br />
one site responsible <strong>for</strong> generating ~<br />
5 to 6 % of its electricity with plans to<br />
add 9.6 GW of nuclear generation<br />
capability across the country over the<br />
next 10 to 12 years, costing between<br />
37 to 100 billion USD [7].<br />
3 Legitimacy through<br />
linkage<br />
To ensure the long-term viability of a<br />
nuclear waste management program,<br />
the legal framework supporting the<br />
program must be built upon trust and<br />
fairness, with the flexibility of a State<br />
to work within its own historical<br />
processes establishing the rule of law.<br />
The Joint Convention on the Safety of<br />
Spent <strong>Nuclear</strong> Fuel Management and<br />
on the Safety of Radioactive Waste<br />
Management (Joint Convention) are<br />
built upon the concept of adequacy,<br />
allowing a nation state that is a party<br />
to the convention to use its national<br />
sovereignty to develop a nuclear waste<br />
management strategy that is “comparable<br />
to those of the other nation<br />
states, which are [also] party to the<br />
convention” [8]. The Joint Convention,<br />
as the first international treaty<br />
covering radioactive waste management,<br />
does not provide explicit detail<br />
<strong>for</strong> each intended action allowing <strong>for</strong><br />
Contracting Parties to enjoy certain<br />
levels of flexibility in a nuclear waste<br />
management strategy. Pronto adds<br />
that this type of general working<br />
structure is often the intended design<br />
of the framers to guide the actions of<br />
those parties at the international level<br />
through non-<strong>for</strong>mally binding rules of<br />
engagement [9].<br />
Additionally, there are four compartments<br />
to consider when developing<br />
a nuclear waste management<br />
program and which potentially affects<br />
its legitimacy. Shown in Figure 1,<br />
these compartments comprise (1)<br />
concerns surrounding the economic<br />
viability towards the funding and<br />
building of a nuclear waste disposal<br />
facility; (2) that any environmental<br />
concerns are duly considered to<br />
ensure any negative effects on all<br />
stakeholders have been thoroughly<br />
221<br />
DECOMMISSIONING AND WASTE MANAGEMENT<br />
Decommissioning and Waste Management<br />
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
DECOMMISSIONING AND WASTE MANAGEMENT 222<br />
| | Fig. 1.<br />
The Four Compartments of a Sustainable Radioactive Waste Management Program.<br />
investigated and taken into consideration;<br />
(3) the assurance that the<br />
science and technology employed<br />
are up to date and sound, being free<br />
from political influences; (4) that<br />
the waste management facility siting,<br />
design, construction and operation<br />
reflects the desires and will of the<br />
society; and, (5) that all actions<br />
provide <strong>for</strong> stability throughout any<br />
legal action and/or policy making<br />
decisions under taken by the nation<br />
state to guarantee that such actions<br />
are per<strong>for</strong>med in accordance with the<br />
rule of law found within that society<br />
[8].<br />
The values represented within<br />
these four compartments are required<br />
and important tools in developing a<br />
stable and legitimate framework <strong>for</strong><br />
creating the necessary laws, statutes,<br />
regulations, and rules in a nuclear<br />
waste management program. As each<br />
compartment harmoniously interacts<br />
with the other, the process of effectively<br />
meeting all the aspects of a<br />
nuclear waste management program<br />
from inception, to a time point far into<br />
the future is achieved.<br />
3.1 The concept<br />
of legal stability<br />
The primary objective <strong>for</strong> designing<br />
and operating a nuclear reactor is “the<br />
utilization of the energy or radiation<br />
released by controlled chain reaction…<br />
[h]owever the achievement of<br />
a stable chain of fission reactions is<br />
only a part of the responsibility of<br />
the nuclear engineer. In addition, he<br />
must learn how to extract and use the<br />
energy liberated in these fission<br />
reactions” [10]. Equally, only part of<br />
the responsibility of the policymaker’s<br />
primary objective is to provide the<br />
written laws, statutes, regulations,<br />
and rules, but more so, he must be<br />
able to seize the ability to utilize the<br />
energy or legal <strong>for</strong>ce created toward<br />
a series of relevant actions, in a controlled<br />
and sustained environment,<br />
<strong>for</strong> achieving the desired end outcome.<br />
The “issue of stability and<br />
change in constitutional law” [11]<br />
is continually hotly debated by academics,<br />
having fervent partisans on<br />
each side of the equation.<br />
‘Stability’ is a word that is commonly<br />
used to present something that<br />
is stationary or unchangeable [12], or<br />
when discussing legal stability, we<br />
usually refer to the basic building<br />
block structuring the personality of<br />
the common law – stare decisis 2 [13].<br />
Thus, the judicial or political system<br />
has made some determination of a<br />
particular path of progression so that<br />
those engaged in an activity may<br />
know with certainty that the decision/<br />
determination is not an arbitrary one<br />
and may there<strong>for</strong>e be relied upon<br />
through a future time period. However,<br />
a purpose of government, and a<br />
duty of the courts, is to process change<br />
as society and technology alters,<br />
all while seeking to contain this<br />
“ constant and restless motion [of<br />
government]” [14] as it seeks a new<br />
stable footing. The <strong>for</strong>ce called ‘stability’<br />
creates an exceptional central<br />
challenge <strong>for</strong> nuclear waste management<br />
programs, as laws, statutes,<br />
regulations, and rules written today,<br />
as promulgated, are <strong>for</strong> an intended<br />
extended outward period, projecting<br />
<strong>for</strong>ward today’s burden <strong>for</strong> tomorrow’s<br />
generations to manage. Such laws,<br />
statutes, regulations, and rules are not<br />
promulgated in a vacuum of peace<br />
and tranquility, but within complex<br />
political systems, which at times<br />
display outward chaotic change, even<br />
though law should portray a sense of<br />
stability [15]. In the 1930’s, Goodwin<br />
declared:<br />
“We are wont to look upon our<br />
government as something permanent,<br />
indestructible, and, in its fundamentals,<br />
unchangeable. Anyone who<br />
accepts this thought unqualifiedly disregards<br />
world history. Governments<br />
and civilizations arise, prosper, and<br />
disintegrate.” 3 [16].<br />
Human history is fraught with<br />
political systems where seemingly<br />
stable states become unstable and<br />
falter. 4<br />
The concern arises of what<br />
happens to a nuclear waste management<br />
program in a nation state should<br />
that state cease to exist, because<br />
that particular political or legal system<br />
is unable to process change, in its<br />
pursuit of a constant arrangement of<br />
‘ stability’. 5 It is time consuming and<br />
difficult to delve into the causes<br />
leading to instability within any<br />
nation state, and this would necessitate<br />
contemplation of multiple and<br />
varied factors, and thus will not be<br />
intimately discussed within this<br />
article. Suffice is to say, Posner explains<br />
that political instability is an<br />
inherent trait in all systems of government,<br />
acknowledging that though<br />
“[a]uthoritarian regimes may suppress<br />
the symptoms of political<br />
instability… [it would be incorrect to<br />
assume that] only reliably stable<br />
regimes are those in which the symptoms<br />
of political unrest are absent<br />
despite their not being <strong>for</strong>cibly suppressed”<br />
[17].<br />
Thus, as its most basic function,<br />
government is designated with the<br />
obligation to insure a stable political<br />
and legal framework through mechanisms<br />
“designed [with the preservation<br />
of] certainty” [14]. Conflictingly,<br />
given the reality that the human race<br />
and their judicial and political systems<br />
function in a world surrounded by<br />
alteration, these societies must continue<br />
in a <strong>for</strong>ward progression where<br />
Decommissioning and Waste Management<br />
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I<br />
ı Mark Callis Sanders and Charlotta E. Sanders
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
“living law [flourishes and is not]<br />
imprisoned by the past” [18].<br />
It is the continual conflict between<br />
the dynamics of ‘stability’ and ‘change’<br />
which determines if a political or legal<br />
system will collapse in on itself, or if it<br />
will survive. Walker, et al., provides a<br />
line of inquiry regarding a bridging<br />
<strong>for</strong>ce <strong>for</strong> the ability of a stable system<br />
to successfully process change:<br />
“It is assumed that patterns of<br />
behavior will be more stable and<br />
enduring if they can be characterized<br />
as legitimate; that actors who have<br />
legitimacy attributed to them will<br />
be more able to induce compliance<br />
than those who do not share that<br />
attribute…” [19].<br />
3.2 The concept<br />
of legal legitimacy<br />
The search <strong>for</strong> legitimacy in any<br />
political system may be considered<br />
“the oldest problem of political<br />
theory” [20]. Given that a nuclear<br />
waste management program is expected<br />
to last <strong>for</strong> hundreds of years from<br />
inception to end of life, this search <strong>for</strong><br />
legitimacy when creating a nuclear<br />
power and waste management program<br />
is of great importance, as a<br />
citizen living under any political<br />
system must “have confidence in [the]<br />
administrative processes [found<br />
within that system], and [in the final<br />
outcome, be able to] respect and<br />
accept [those] decisions” [21].<br />
Each political system, whether<br />
democratic or authoritarian in nature,<br />
shares certain legal traditions, which<br />
provide it with legitimacy. These traditions<br />
not only entail a similarity of<br />
various institutions (e.g., parliament/<br />
legislature, courts, and administrative<br />
agencies) and processes, they encompass<br />
common core values, such as<br />
lawfulness, expertise, efficiency, and<br />
effectiveness [22].<br />
Because legitimacy is such an<br />
essential quality of the law, it is a<br />
subject that has, and continues to,<br />
preoccupy legal scholars [23]. Barnett<br />
argues law proceeds from two binding<br />
sources: (1) laws created through the<br />
people’s voice, though not all may<br />
agree, and (2) laws created where the<br />
State embarks on a course of action<br />
believing it is the best arbiter of what<br />
is appropriate without the full input<br />
of such non-consenting persons [24].<br />
Barnett’s model rests upon the precept<br />
that any government is established,<br />
and endowed, with powers of<br />
competencies to do what is required<br />
in fashioning the legal structure <strong>for</strong><br />
executing the desired undertaking<br />
and is sufficiently broad in its scope to<br />
encompass the similarities shared <strong>for</strong><br />
rule making by both democratic and<br />
authoritarian regimes. This is that the<br />
primary reason <strong>for</strong> any government,<br />
as a function of its political system, is<br />
to fashion a framework <strong>for</strong> what is<br />
deemed by that system as necessary<br />
and proper <strong>for</strong> initiating, building,<br />
financing and operating a civilian<br />
nuclear power and/or nuclear waste<br />
management program.<br />
A central notion that <strong>for</strong>ms the<br />
core of the concept of legitimacy is<br />
the way a political system establishes<br />
procedures “<strong>for</strong> law-making and<br />
implementation [that appear to<br />
the beholder] as acceptable, i.e., appropriate<br />
and binding” [25]. The<br />
highest ideal <strong>for</strong> any nation state<br />
should<br />
be<br />
to promulgate laws, statutes, regulations,<br />
and rules in a transparent, fair,<br />
and equitable system. However, it is<br />
respected that the world’s myriad of<br />
intricate political systems each have<br />
their own unique complexities, which<br />
are acted upon by enormous pressure<br />
from numerous interest groups,<br />
leaving one to question one’s personal<br />
consent granted to the governing<br />
body within any system of government.<br />
This raises questions regarding the<br />
ability of access by individuals to a<br />
political/legal system, and its assurance<br />
that individual rights and/or<br />
concerns have been considered and<br />
protected. For citizens living under an<br />
authoritarian system of government,<br />
the anxiety arises whether the governing<br />
body has considered the inherent<br />
needs of the citizenry throughout the<br />
decision-making and administrative<br />
process, more so than with matters of<br />
consent, as consent is implied. Within<br />
both systems, the administrative process<br />
initiates similar concerns given<br />
that all bureaucratic systems do not<br />
provide <strong>for</strong> political accountability of<br />
these unelected individuals with<br />
expansive powers and “[with] the<br />
public lack[ing the necessary] tools<br />
| | Fig. 2.<br />
Milestone Demarcation <strong>for</strong> “Change” in a <strong>Nuclear</strong> <strong>Power</strong> & Waste Management Program.<br />
DECOMMISSIONING AND WASTE MANAGEMENT 223<br />
Decommissioning and Waste Management<br />
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
DECOMMISSIONING AND WASTE MANAGEMENT 224<br />
to assess adequately the quality of<br />
regulatory policies and outcomes”<br />
[26].<br />
In examining “how the sausage is<br />
made,” Barnett also discourses on<br />
these procedural processes that affect<br />
both validity and legitimacy within a<br />
political law-making system as laws<br />
created within that system can<br />
potentially be “valid and illegitimate”<br />
or “legitimate and unjust” [24]. Such<br />
a paradoxical outcome is un<strong>for</strong>tunate<br />
but is a consequence that the procedures<br />
in practice do not provide the<br />
necessary guarantees allowing the<br />
promulgation of evenhanded laws<br />
or rules, or because there was a failure<br />
to adequately follow the correct procedures<br />
in place.<br />
The potential extended timelime of<br />
envisioned nuclear waste management<br />
programs demands these<br />
programs must there<strong>for</strong>e stand firmly<br />
on the concept of legal ‘stability’. Once<br />
a civilian nuclear power program is<br />
initiated, and certain milestones are<br />
achieved, the space <strong>for</strong> deviation or<br />
‘change’ diminishes in any nuclear<br />
power and waste management program,<br />
especially given that a number<br />
of nation state’s deep geologic repositories<br />
are not planned with retrievability<br />
in mind. This shrinking space<br />
<strong>for</strong> ‘change’ in a nuclear power and<br />
waste management program is shown<br />
in Figure 2.<br />
Footnotes<br />
1 According to Robert Higgs, “Estimates of gross domestic product<br />
(GDP)... Became an essential part of economic analysis…<br />
in the late 1930s and early 1940s”. See: HIGGS, R 2015,<br />
'Gross Domestic Product – an Index of Economic Welfare or a<br />
Meaningless Metric?', Independent Review, 20, 1, pp. 153-157,<br />
Academic Search Premier, EBSCOhost, viewed 13 June 2017.<br />
2 to stand by things decided.<br />
3 From the pen of Clarence N. Goodwin.<br />
4 Human history provides a number of examples of failed and<br />
fallen empires. Certainly, <strong>for</strong> the western world, the collapse of<br />
the Roman Empire is a striking and often discussed example.<br />
Other examples might include the Arab Empire, also known as<br />
the Caliphate, the Mongol Empire and the British Empire.<br />
Common features leading to the decline of these empires<br />
include a decline in the values underpinning the empire,<br />
political corruption, and military spending. See: The Decline and<br />
Fall of Empires, https://www.<strong>for</strong>bes.com/sites/strat<strong>for</strong>/2015/<br />
04/20/the-decline-and-fall-of-empires/#1248dd3d383e,<br />
viewed July 11, 2018.<br />
5 An example could be provided during the breakup of the Union<br />
of Soviet Socialist Republic in the early 1990’s. The international<br />
community rallied to provide assistance to these nation states<br />
to successfully retain and maintain control over their nuclear<br />
power plants, enrichment capabilities, as well as other fundamental<br />
aspects of both their civilian and/or military nuclear<br />
programs. However, these states as such did not cease to exist<br />
and this was more of a transition between political systems,<br />
while the central government structure was maintained. See:<br />
Hill, F and Jewett, P “BACK IN THE USSR” Russia's Intervention in<br />
the Internal Affairs Of the Former Soviet Republics and the Implications<br />
<strong>for</strong> United States Policy Toward Russia, January 1994,<br />
https://www.brookings.edu/wp-content/uploads/2016/06/<br />
Back-in-the-USSR-1994.pdf, viewed June 15, 2018. Also see:<br />
Allison, Graham. 2012. What Happened to the Soviet Superpower’s<br />
<strong>Nuclear</strong> Arsenal? Clues <strong>for</strong> the <strong>Nuclear</strong> Security Summit.<br />
HKS Faculty Research Working Paper Series RWP12- 038, John<br />
F. Kennedy School of Government, Harvard University, https://<br />
dash.harvard.edu/handle/1/9403176, viewed July 11, 2018.<br />
References<br />
[1] Dauvergne, P, & BL Farias, D 2012, ‘The Rise of Brazil as a<br />
Global Development <strong>Power</strong>’, Third World Quarterly, 33, 5,<br />
pp. 903-917, Academic Search Premier, EBSCOhost, viewed<br />
18 April 2018.<br />
[2] World Energy Outlook 2017, <strong>International</strong> Energy Agency,<br />
https://www.iea.org/weo2017/, viewed April 19, 2018.<br />
[3] <strong>Nuclear</strong> <strong>Power</strong> in China, World <strong>Nuclear</strong> Association, http://<br />
www.world-nuclear.org/info/Country-Profiles/Countries-A-F/<br />
China--<strong>Nuclear</strong>-<strong>Power</strong>, viewed April 21, 2018.<br />
[4] China’s Engagement in Global Energy Governance, <strong>International</strong><br />
Energy Agency, http://www.iea.org/publications/<br />
freepublications/publication/PartnerCountrySeries_<br />
ChinasEngagementinGlobalEnergyGovernance_<br />
Englishversion.pdf, viewed April 20, 2018.<br />
[5] <strong>Nuclear</strong> <strong>Power</strong> in Brazil, World <strong>Nuclear</strong> Association,<br />
http://www.world-nuclear.org/info/Country-Profiles/<br />
Countries-A-F/Brazil/, viewed April 21, 2018.<br />
[6] <strong>Nuclear</strong> <strong>Power</strong> in India, World <strong>Nuclear</strong> Association, http://<br />
www.world-nuclear.org/info/Country-Profiles/Countries-<br />
G-N/India/, viewed April 21, 2018.<br />
[7] Boosting the <strong>Power</strong> Sector in Sub-Saharan Africa, <strong>International</strong><br />
Energy Agency, http://www.iea.org/publications/<br />
freepublications/publication/Partner_Country_SeriesChina-<br />
Boosting_the_<strong>Power</strong>_Sector_in_SubSaharan_Africa_<br />
Chinas_Involvement.pdf, viewed April 20, 2018.<br />
[8] Sanders, M, & Sanders, C 2016, ‘A world’s dilemma ‘upon<br />
which the sun never sets’ – The nuclear waste management<br />
strategy (part I): Western European Nation States and the<br />
United States of America’, Progress In <strong>Nuclear</strong> Energy, 90, pp.<br />
69-97, Academic Search Premier, EBSCOhost, viewed 16 April<br />
2018.<br />
[9] Pronto, AN 2015, ‘Understanding the Hard/Soft Distinction in<br />
<strong>International</strong> Law’, Vanderbilt <strong>Journal</strong> Of Transnational Law,<br />
48, 4, pp. 941-956, Academic Search Premier, EBSCOhost,<br />
viewed 13 June 2017.<br />
[10] Duderstadt, J.J., and Hamilton, L.J., <strong>Nuclear</strong> Reactor Analysis,<br />
John Wiley & Sons, ISBN 0-471-22363-8, 1976.<br />
[11] Williams, Jerre S. “Stability and Change in Constitutional<br />
Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):<br />
p. 221-238.<br />
[12] Cambridge Dictionary, https://dictionary.cambridge.org/<br />
dictionary/english/stability, viewed April 15, 2018.<br />
[13] BLACK’S LAW DICTIONARY (STANDARD EDITION),<br />
Thomson West; 8 th edition (June 1, 2004), ISBN-10:<br />
0314151990.<br />
[14] McKay, Robert B. “Stability and Change in Constitutional<br />
Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):<br />
p. 203-220.<br />
[15] POUND, INTERPRETATION OF LEGAL HISTORY 1 (1923).<br />
[16] “Efficiency, Stability,” Bar Briefs 8 (1931-1932):<br />
p. 166-166.<br />
[17] Posner, Richard A. “Equality, Wealth, and Political Stability,”<br />
<strong>Journal</strong> of Law, Economics, & Organization vol. 13,<br />
no. 2 (October 1997): p. 344-365.<br />
[18] Thacher, Thomas D. “Judicial Stability,” Connecticut Bar<br />
<strong>Journal</strong> vol. 13, no. 4 (October 1939): p. 215-219.<br />
[19] Walker, Henry A.; Thomas, George M.; Zelditch, Morris Jr.<br />
“ Legitimation, Endorsement, and Stability,” Social Forces<br />
vol. 64, no. 3 (March 1986): p. 620-643.<br />
[20] Francis, Daniel. “Exit Legitimacy,” Vanderbilt <strong>Journal</strong> of<br />
Transnational Law vol. 50, no. 2 (March 2017): p. 297-354.<br />
[21] Le Sueur, Andrew, 2011. People as “users” and citizens”:<br />
the quest <strong>for</strong> legitimacy in British public administration.<br />
In: Ruffert, Matthias (Ed.), Legitimacy in European<br />
Administrative Law 3. Europe Law Publishing, Groningen,<br />
pp. 30.<br />
[22] M.C. Sanders and C.E. Sanders, “The Path Towards a<br />
Legitimate Radioactive Waste Management Program:<br />
A Comparative Analysis of the Legislative and Regulatory<br />
Approach to the Management of Radioactive Waste in the<br />
U.S.A. and China”, Proceedings of the <strong>International</strong> <strong>Nuclear</strong><br />
Law Association Inter Jura 2016, New Delhi, India,<br />
November 7-11, 2016.<br />
[23] Wisotsky, Steven. “Beyond Legitimacy,” University of<br />
Miami Law Review vol. 33, no. 1 (November 1978):<br />
p. 173-206.<br />
[24] Barnett, Randy E. “Constitutional Legitimacy,” Columbia Law<br />
Review vol. 103, no. 1 (January 2003): p. 111-148.<br />
[25] Langdal, Fredrik; von Sydow, Goran. “Democracy, Legitimacy<br />
and Constitutionalism,” Scandinavian Studies in Law 52<br />
(2007): p. 351-370.<br />
[26] Arkush, David. “Democracy and Administrative Legitimacy,”<br />
Wake Forest Law Review vol. 47, no. 3 (2012):<br />
p. 611-630.<br />
Authors<br />
Mark Callis Sanders<br />
Sanders Engineering<br />
1350 E. Flamingo Road Ste.<br />
13B #290<br />
Las Vegas NV 89119<br />
USA<br />
Charlotta E. Sanders<br />
Department of Mechanical<br />
Engineering<br />
University of Nevada<br />
Las Vegas (UNLV)<br />
4505 S. Maryland Pwky<br />
Las Vegas, NV 89154<br />
USA<br />
Decommissioning and Waste Management<br />
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I<br />
ı Mark Callis Sanders and Charlotta E. Sanders
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Special Topic | A Journey Through 50 Years AMNT<br />
225<br />
Rechenschaft gegenüber<br />
der demokratischen Öffentlichkeit<br />
Richard von Weizsäcker<br />
Aus dem Grußwort des Regierenden Bürgermeisters von Berlin auf der Eröffnungssitzung der JK ’83 am<br />
14. Juni 1983.<br />
Was das Zusammenwirken oder die Arbeitsteilung<br />
zwischen Wissenschaft, Wirtschaft und Behörden<br />
anbetrifft, so würde ich mir wünschen, daß auch für<br />
andere Bereiche, in denen es zu einer solchen Zusammenarbeit<br />
kommen muß, eine so interessante Tagung<br />
anberaumt würde, wie Sie sie am heutigen Vormittag auf<br />
Ihrer Tagesordnung haben. Es ist ja wahr, daß in den<br />
Behörden immer mehr auch wissenschaftlicher Sachverstand<br />
angesammelt werden muß, weil die Sachverhalte,<br />
mit denen es Genehmigungsverfahren zu tun haben, dies<br />
er<strong>for</strong>dern. Es ist umgekehrt aber auch wahr, daß Wissenschaftler<br />
und Wirtschaftler sich nicht in den Bereich der<br />
sogenannten rein sachlichen, rein naturwissenschaftlichen,<br />
rein technischen oder rein ökonomischen Fragen<br />
allein zurückziehen können, sondern darauf angewiesen<br />
sind, daß das, was sie tun, verstanden und auch irgendwie<br />
angenommen wird. Und ich denke, gerade diese<br />
Konferenz, zu der Sie jetzt wieder zusammen sind, hat ja<br />
bei früheren Zusammenkünften in dieser Richtung wohl<br />
auch schon notwendige Diskussionen geführt und<br />
vielleicht auch die eine oder andere Erfahrung von außen<br />
her begleitend zu Ihren Tagungen vermittelt bekommen.<br />
Nun haben wir inzwischen ja eine geringfügige<br />
Verlagerung des Schwerpunktes der öffentlichen Auseinandersetzung<br />
erlebt, und ich nehme an, Ihnen kommt das<br />
zugute. Wir Politiker sind noch nicht in der nötigen Weise<br />
entlastet und ich will ja auch gar nicht behaupten, daß wir<br />
das verdienen. In Ihrem Bereich, wenn ich das richtig sehe,<br />
ist doch eine gewisse Normalisierung eingetreten. Das<br />
liegt auch daran, daß vielleicht die Öffentlichkeit ein<br />
bißchen besser verstanden hat, worum es geht, aber gewiß<br />
liegt es primär daran, daß Wissenschaft und Wirtschaft<br />
vielleicht besser als in der Eingangsphase in der Lage<br />
gewesen sind, die Anfragen in der Öffentlichkeit auch<br />
wirklich ernsthaft aufzugreifen und Schritt für Schritt den<br />
Nachweis dafür zu erbringen, daß man eben auch wirklich<br />
in der Lage ist, etwas Verantwortbares vorzuzeigen.<br />
Demokratie er<strong>for</strong>dert<br />
In<strong>for</strong>mationsbereitschaft<br />
In dem Bereich, in dem nun heute der Schwerpunkt<br />
der Auseinandersetzung zu finden ist, also dort wo es<br />
nicht um die friedliche Nutzung der Kernenergie geht,<br />
sondern um die Sicherheitspolitik und um Abschreckungsmechanismen<br />
in bezug auf die Verhinderung von Kriegen,<br />
dort haben wir ja in der Grundstruktur dessen, was<br />
die Sachverständigen, die Politiker, die Öffentlichkeit<br />
miteinander zu tun haben, einen vergleichbaren Vorgang.<br />
Wir haben im Rahmen dieser Friedensdiskussion, das ist<br />
meine feste Überzeugung, auch bei den schrillen Tönen<br />
und großen Bewegungen durchaus voneinander zu lernen<br />
– wenn man das mal so schematisch sagen darf – die<br />
politisch Verantwortlichen und die Friedensbewegung.<br />
Das, was wir Politiker hier vor allem zu lernen hatten<br />
und nach wie vor haben, ist, daß wir in bezug auf eine<br />
Verteidigungsbereitschaft unseres Landes genauso in einer<br />
Demokratie leben, wie in bezug auf jede andere Seite<br />
unseres Lebens. Das heißt, was seitens der Verantwortlichen<br />
getan wird, das muß von der überwiegenden<br />
Mehrheit in der demokratischen Öffentlichkeit verstanden<br />
und irgendwo auch bejaht werden. Und ähnlich wie bei<br />
der friedlichen Nutzung der Kernenergie, ist es auch<br />
bei dem von mir jetzt berührten Bereich so. daß er allzu<br />
lange als mehr oder weniger geheimes Vorbehaltsgut von<br />
einigen Sachverständigen behandelt worden ist. Das<br />
kann auf die Dauer bei unserer Art von öffentlicher,<br />
demokratischer, freiheitlicher Gesellschaft nicht gutgehen.<br />
Wenn man allzu lange meint, daß die Herstellung<br />
und die Modernisierung und die Dislozierung von Waffen<br />
etwas sei, was eben nur ein paar Wissenschaftler, der<br />
Am 7. und 8. Mai<br />
2019 begehen wir<br />
das 50. Jubiläum<br />
unserer Jahrestagung<br />
Kerntechnik. Zu<br />
diesem Anlass öffnen<br />
wir unser <strong>atw</strong>-Archiv<br />
für Sie und präsentieren<br />
Ihnen in jeder<br />
Ausgabe einen<br />
historischen Artikel.<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
| | 1983: Jahrestagung Kerntechnik – JK ´83 in Berlin.<br />
Special Topic | A Journey Through 50 Years AMNT<br />
Rechenschaft gegenüber der demokratischen Öffentlichkeit ı Richard von Weizsäcker
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
226<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
| | 1983: Inbetriebnahme mit ersten Experimenten an der Fusionstestanlage JET in Culham,<br />
Großbritannien, Schematische Zeichnung.<br />
Verteidigungsminister und Generäle verstehen und zu<br />
behandeln haben und dies möglichst in kosmisch geheim<br />
gehaltenen Räumen, dann ist die notwendige Folge<br />
davon, daß sich jene Gefühle der Angst und Unsicherheit,<br />
jene Sorge hinsichtlich der Undurchschaubarkeit dieses<br />
Mechanismus in einer Weise Gehör verschaffen, wie wir<br />
dies alle erleben.<br />
Erklärungen ersetzen,<br />
aber nicht Entscheidungen<br />
Nur, auf der anderen Seite heißt verständlich machen und<br />
erklären natürlich auch nicht nun einfach nachlaufen<br />
gegenüber Gefühlen, die sich in der Öffentlichkeit zeigen.<br />
Ein Land hat eine Verfassung, und nach der Verfassung<br />
hat es eine Regierung, und die Regierung ist dazu da, das<br />
eigene Land in seiner Freiheit zu schützen. Das Land kann<br />
nicht den Wehrdienst verweigern, wie der einzelne dies<br />
aus Gewissensgründen kann. Also muß auch erklärt<br />
werden, was notwendig ist für diese Landesverteidigung<br />
und warum. Und wir haben es allzu oft erlebt im Umgang<br />
– ich sage jetzt mal, weniger der Wissenschaftler und<br />
Wirtschaftler – sondern der Politiker mit der Öffentlichkeit,<br />
daß sie diese Fragen zunächst so geheim behandelt<br />
haben, dann sind sie gegenüber öffentlich sich Geltung<br />
verschaffenden Regungen vielleicht zu schnell zu ängstlich<br />
geworden und dann sind sie mehr hinterhergelaufen,<br />
anstatt das Mandat wahrzunehmen, wozu sie doch<br />
gewählt sind. Wir sind als Politiker nicht gewählt, um<br />
hinzuhören und zu machen, was andere wollen, sondern<br />
wir sind gewählt, um zu prüfen, was notwendig ist,<br />
Entscheidungen zu treffen und die Entscheidungen<br />
durchzusetzen und zu vertreten – kurzum wir sind<br />
gewählt, voranzugehen und nicht hinterherzulaufen. Und<br />
wenn der Weg, auf dem wir vorangehen, von der<br />
Öffentlichkeit nicht akzeptiert wird, dann kann man<br />
ja abgewählt werden. Aber wir sind – ich betone es<br />
nochmals – in der Zeit, für die wir gewählt sind, dazu<br />
gewählt worden, voranzugehen und nicht hinterherzulaufen.<br />
Und das ist eben mitunter vernachlässigt<br />
worden.<br />
Wir haben nun in Berlin im engeren Sinn mit der<br />
friedlichen Nutzung der Kernenergie nicht dieselben<br />
Probleme wie manche anderen Bundesländer, und wenn<br />
es um die Dislozierung von Mittelstreckenraketen geht,<br />
dann erst recht nicht. Trotzdem aber haben wir hier<br />
in Berlin wahrlich etwas, nämlich eine kritische Öffentlichkeit.<br />
Und im Rahmen dieser kritischen Öffentlichkeit,<br />
uns vor diesen Prozessen der Erörterung, der Auffindung<br />
der Probleme, der Entscheidungen, der Vertretung<br />
der Entscheidung, des Gewinnens eines öffentlichen<br />
Verständnisses und einer Zustimmung, haben wir es<br />
in der Tat in Berlin nicht leichter als es irgendein anderer<br />
Platz hat. an dem Kernkraftwerke gebaut werden oder an<br />
dem Waffen stationiert werden, die dem Ziel der eigenen<br />
Landesverteidigung dienen sollen. Von daher gesehen und<br />
mit diesen wenigen Gedanken wollte ich begründen,<br />
warum wir dankbar sind, nicht nur daß Sie überhaupt<br />
nach Berlin gekommen sind, sondern auch dafür, welche<br />
Themen Sie auf Ihrer Tagesordnung haben und wie<br />
Sie sie zu behandeln gedenken. Denn ich meine, sie sind<br />
exemplarisch für den nötigen Umgang miteinander<br />
zwischen Wissenschaft, Wirtschaft und Politik immer in<br />
Beziehung zur Öffentlichkeit, in der wir alle leben, die wir<br />
alle ernst nehmen müssen und vor der wir Rechenschaft<br />
ablegen müssen, über das was wir als notwendig erkennen<br />
und das wir demgemäß auch machen wollen.<br />
Advertisement<br />
Fotoausstellung „Der Nukleare Traum“ beim AMNT<br />
Für den „Nuklearen Traum“ fotografierte Bernhard Ludewig über sieben Jahre zentrale<br />
Orte der deutschen Atomlandschaft und -geschichte, um den noch vorhandenen Teil<br />
visuell zu erhalten. Zu sehen sind Bau, Betrieb und Rückbau der deutschen Kraft werkstypen,<br />
ihre Warten, Kühltürme und Arbeitsschritte, von der Reaktoröffnung bis zur<br />
Castor-Beladung. Der Weg des Urans wird von den Zentrifugen über La Hague bis in<br />
Endlagerbaustellen verfolgt, die Reaktor<strong>for</strong>schung von Haigerloch bis SNR und THTR.<br />
Zu den über 50 besuchten Orten zählen auch Forschungsreaktoren, Trainingsanlagen<br />
und auch der Sarkophag von Tschernobyl.<br />
„Der Nukleare Traum“ erscheint voraussichtlich im Herbst als Bildband. Auf der<br />
Jahrestagung ist eine Auswahl daraus vorab als Fotoausstellung zu sehen.<br />
Special Topic | A Journey Through 50 Years AMNT<br />
Accountability to the Democratic Public ı Richard von Weizsäcker
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Inside<br />
227<br />
50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie<br />
Die Kerntechnische Gesellschaft e. V. (KTG) wurde am<br />
14. April 1969 zunächst als Kerntechnische Gesellschaft<br />
im Deutschen Atom<strong>for</strong>um e. V. (DAtF) in Frankfurt am<br />
Main gegründet. Bei der Gründungsversammlung in der<br />
Aula der Universität Frankfurt traten 163 Mitglieder bei.<br />
Zum Vorsitzenden wurde Prof. Wolf Häfele gewählt.<br />
Die Mitgliederversammlung des DAtF stimmte am<br />
28. November 1978 in Bonn einer Satzungsänderung zu,<br />
der zufolge die bisher in das DAtF eingegliederte KTG ein<br />
eigener eingetragener Verein wurde. Eine weiterhin enge<br />
Zusammenarbeit zwischen beiden Organisationen sollte<br />
unverändert bestehen bleiben.<br />
Zum 50. Geburtstag kommen der Vorsitzende der KTG,<br />
Frank Apel, sowie der Sprecher der Jungen Generation<br />
(JG) der KTG, Dr. Florian Gremme, zu einem gemeinsamen<br />
Gespräch mit der <strong>atw</strong> in Berlin zusammen.<br />
<strong>atw</strong>: 50 Jahre – Ein Geburtstag, an dem man sowohl zurück<br />
als auch nach vorne schaut. Herr Apel, wenn Sie Ihren Blick<br />
einmal zurück schweifen lassen: In welchem Umfeld hat sich<br />
die KTG damals gegründet?<br />
Apel: Herr Schneibel, Sie erwähnten im Eröffnungsgespräch<br />
zwei Jahreszahlen aus der Geschichte der KTG:<br />
1969 als Gründungsjahr der Kerntechnischen Gesellschaft<br />
im Deutschen Atom<strong>for</strong>um und 1978, als die KTG ein<br />
eigener eingetragener Verein wurde.<br />
Wie sah es um die deutsche Kerntechnik in diesen<br />
Jahren aus?<br />
Nach einer erfolgreichen Inbetriebnahme wurde 1969<br />
das Kernkraftwerk Obrigheim an den Kunden übergeben.<br />
Innerhalb von zehn Jahren wurde die Leistung der DWR-<br />
Kraftwerke vervierfacht: beginnend mit Obrigheim<br />
(300 MWe) über Stade (600 MWe) zu Biblis A (1200 MWe).<br />
In der Zeit zwischen 1969 und 1978 wurden Aufträge für<br />
10 DWR- und 7 SWR- Anlagen vergeben, Kraftwerke, die<br />
in Deutschland und im Ausland errichtet wurden. Zunehmender<br />
Wettbe werbsdruck aus dem Ausland, notwendige<br />
signifikante Investitionen in Fertigungskapazitäten und ein<br />
hoher Finanzbedarf für Entwicklungs programme führten<br />
zu einer Bündelung der Kernkraftwerksaktivitäten der AEG<br />
und SIEMENS: 1969 wurde die Kraftwerk Union<br />
Aktiengesellschaft (KWU) gegründet. Bewegte Zeiten.<br />
Zum Ende der genannten Periode war in Deutschland auch<br />
die Verlängerung von Errichtungszeiträumen durch eine<br />
Vielzahl von zusätzlichen Auflagen in den zahlreichen Teilerrichtungsgenehmigungen<br />
und aufgrund unklarer politischer<br />
Rahmenbedingungen zu verzeichnen. Es wuchs<br />
die Verunsicherung gegenüber der Kernenergie in der<br />
deutschen Öffentlichkeit. Kernenergie-Gegner monierten<br />
den Atomstaat, unsichere Kernkraftwerke, ungelöste Entsorgungsfragen<br />
und stellten die Wirtschaftlichkeit in Frage.<br />
Auf diese politischen und teilweise polemischen Fragestellungen<br />
wurde mit technischer Kompetenz geantwortet.<br />
Die Tatsache, dass wir in Deutschland die sichersten<br />
Kernkraftwerke der Welt betreiben ist auch das Ergebnis<br />
eines kritischen Diskurses und einem Genehmigungsverfahren,<br />
das von fachlich äußerst versierten sowie<br />
unabhängigen Behörden und Gutachtern in der Erteilung<br />
und von kompetenten Antragstellern der Genehmigung<br />
vollzogen wurde.<br />
<strong>atw</strong>: Der erste Vorsitzende der KTG, Professor Häfele, sagte<br />
bei ihrer feierlichen Gründung 1969: „Die Kern technische<br />
Gesellschaft wird ihr Ziel, nämlich allen in der Kern technik<br />
Tätigen wissenschaftlicher Heimathafen und Mittel der<br />
Förderung der Kerntechnik zu sein, mit Ernst und Zielbewusstheit<br />
verfolgen.“<br />
Herr Gremme, Sie sind Sprecher der JG, also all jenen<br />
Studierenden und Young Professionals, die ein gemein sames<br />
Interesse an der Kerntechnik haben. Wird die KTG im Jahr<br />
2019 diesem Grundgedanken immer noch gerecht?<br />
Gremme: Ja, ich denke schon dass die KTG diesem<br />
Grundgedanken gerecht wird und jedem Interessierten<br />
Möglichkeiten bietet, sich zu in<strong>for</strong>mieren, auszutauschen<br />
und einzubringen. Zentral sehe ich hier das jährliche<br />
AMNT als Platt<strong>for</strong>m an. Vertreter aus Lehre, Forschung<br />
und Industrie präsentieren hier ihre Arbeiten und sind<br />
daran interessiert, durch neue Kontakte und Vorträge<br />
ihren Horizont und ihr Wissen zu erweitern. Besonders für<br />
Studierende und Young Professionals bietet sich hier die<br />
Gelegenheit, mit Personen aus anderen Bereichen der<br />
Kerntechnik in Kontakt zu kommen. Dies gilt sowohl für<br />
den fachlichen Austausch in Form von Vorträgen oder<br />
Diskussionen als auch für junge Leute, die sich auf der<br />
Jobsuche befinden – bei der Orientierung zu Joboptionen,<br />
sei es in der Industrie oder Forschung, hilft es sehr, wenn<br />
man ein Gesicht vor Augen hat, dem man Themen oder<br />
einem Arbeitgeber zuordnen kann. Dies bringt meiner<br />
Ansicht nach einen Sympathiegewinn mit sich und das<br />
wirkt hinsichtlich der Motivation von Menschen für die<br />
Faszination Kerntechnik.<br />
| | Frank Apel (r.) und Dr. Florian Gremme (l.) im Gespräch mit Martin Schneibel<br />
Apel: Da stimme ich Herrn Gremme zu. Professor Häfeles<br />
Beschreibung der KTG als gemeinsamer kerntechnischer<br />
„Heimathafen von Wissenschaft und Technik“ ist ein<br />
schönes Bild und hat bis heute so Bestand.<br />
Werner von Siemens beschrieb den Zusammenhang<br />
von Wissenschaft und Technik übrigens wie folgt: „Die<br />
naturwissenschaftliche Forschung bildet immer den<br />
sicheren Boden des technischen Fortschritts, und die<br />
Industrie eines Landes wird niemals eine internationale,<br />
leitende Stellung erwerben und sich selbst erhalten<br />
können, wenn das Land nicht gleichzeitig an der Spitze des<br />
naturwissenschaftlichen Fortschritts steht.“<br />
Das Interview führte<br />
Martin Schneibel am<br />
13.02.2019 in Berlin.<br />
KTG INSIDE<br />
KTG Inside
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
228<br />
KTG INSIDE<br />
Das Netzwerk ist<br />
also ein ganz zentrales<br />
Element, das wir<br />
als JG der KTG knüpfen<br />
möchten.<br />
<strong>atw</strong>: Wie erwähnt ist das AMNT sicherlich die zentrale<br />
Veranstaltung der Branche in Deutschland. Was bietet<br />
insbesondere die JG darüber hinaus noch an, um ihr Netzwerk<br />
weiter auszubauen und neue Kontakte her zustellen?<br />
Immerhin bündelt sich in ihr der kern technische Nachwuchs.<br />
Gremme: Einen Gewinn von Kontakten und damit Nahbarkeit<br />
zu schaffen versuchen wir zudem auch mit unseren<br />
regelmäßigen Kamingesprächen mit Führungskräften aus<br />
der kerntechnischen Branche und unserer jährlichen<br />
Nachwuchstagung. Das Netzwerk ist also ein ganz zentrales<br />
Element, das wir als JG der KTG knüpfen möchten.<br />
Dies zum einen zu potentiellen Arbeitgebern z.B. in den<br />
Kamingesprächen, zum anderen unter<br />
uns jungen Leuten selbst bei der Nachwuchstagung.<br />
Dabei steht der fachliche<br />
Austausch keines wegs hinten an. Wir<br />
adressieren hier thematisch die aktuellen<br />
und zukünftigen Themen in der Kerntechnik<br />
aber auch weitere Anwendungsgebiete<br />
wie die Medizintechnik. Bei<br />
unseren letzten beiden Nachwuchstagungen haben wir<br />
Rückbaustandorte besucht, den Mehrzweck<strong>for</strong>schungsreaktor<br />
in Karlsruhe im Jahr 2017 und das Atomei in<br />
Garching bei München im letzten Jahr. Zudem haben wir<br />
hier einen Fokus auf Forschungsaktivitäten und strahlentherapeutische<br />
Anwendungen gelegt. Das Wiedersehen<br />
und Kennenlernen unterein ander bleibt dabei natürlich<br />
nicht aus.<br />
<strong>atw</strong>: Und wie groß ist hierbei das Interesse? Wie erreichen<br />
Sie die Interessierten?<br />
Gremme: Diese Möglichkeiten bieten sich, wie anfangs<br />
erwähnt, allen Interessierten. Eine größer gewordene<br />
Hürde ist es, diese Interessierten zu finden bzw. Interesse<br />
und Motivation zu wecken. Da müssten sich die KTG und<br />
das AMNT besonders für junge Leute attraktiver präsentieren.<br />
Ich denke, dass die KTG alle notwendigen Themen<br />
und Möglichkeiten hat und bietet, diese müssen die jungen<br />
Leute nur sichtbar und nahbar erreichen. Wir versuchen<br />
dies u.a. mit den Kamingesprächen, der Nachwuchs tagung<br />
und für einen ersten Kontakt für Schüler mit dem Campus<br />
Kerntechnik im Rahmen des AMNT. Auf dem Campus<br />
möchten wir die Faszination Kerntechnik<br />
vermitteln und die ein oder<br />
andere Schülerin bzw. Schüler für<br />
ein nachhaltiges Interesse an der<br />
Kerntechnik gewinnen. Für unsere<br />
Ich denke, dass die KTG alle<br />
notwendigen Themen und<br />
Möglichkeiten hat und<br />
bietet, diese müssen die<br />
jungen Leute nur sichtbar<br />
und nahbar erreichen.<br />
ge samte In<strong>for</strong>mationsvermittlung<br />
nutzen wir zudem auch Facebook<br />
und Instagram. Eine Tatsache der<br />
man sich stellen muss, um heutzutage<br />
In<strong>for</strong>mationen an junge<br />
Menschen zu vermitteln ist, dass junge Leute sich hauptsächlich<br />
über die sozialen Medien in<strong>for</strong>mieren. Hier kann<br />
die KTG denke ich noch etwas tun, um so Interesse und<br />
Motivation zu wecken. Dabei geht es nicht um möglichst<br />
hohe Klick zahlen, sondern um zielgruppenorientierte<br />
Nutzung von Kanälen zur nachhaltigen In<strong>for</strong>mationsvermittlung,<br />
mit denen man Interessenten auf die Angebote<br />
der KTG lenken kann.<br />
All unsere Aktivitäten zielen auf den fachlichen kerntechnischen<br />
Austausch und auf die Bildung von Netzwerken<br />
ab. Dies sind aus meiner Sicht wesentliche Benefits<br />
einer Mitgliedschaft in der KTG.<br />
<strong>atw</strong>: Wie bewerten Sie die Vorteile einer KTG- Mitgliedschaft,<br />
Herr Apel? Gerade die Generation der 1980er- und 90er-Jahre<br />
wird oftmals als die „Generation Y“ („Generation Why?“)<br />
bezeichnet, also jene Generation, die vieles kritisch<br />
| | Frank Apel, Vorsitzender der KTG<br />
hinterfragt. Wie schaffen Sie es, diese Gruppe für eine<br />
Mitgliedschaft in der KTG zu überzeugen? Welchen Mehrwert<br />
bringt die Teilnahme am Vereinsleben?<br />
Apel: Vieles in unserer Verbandsarbeit läuft richtig toll.<br />
Wir haben viele engagierte Ortssektionen, die spannende<br />
Vorträge und Exkursionen organisieren. Unsere Fachsektionen<br />
mobilisieren eine breite Teilnehmerschaft an<br />
hochinteressanten Fachtagungen und die JG trifft sich,<br />
wie von Herrn Gremme eben gehört, regelmäßig zu<br />
Exkursionen, Vorträgen und zum Netzwerken.<br />
In vielen Gesprächen mit Mitarbeitern der Kerntechnik<br />
(KTG-Mitglieder und Nicht-Mitglieder) wurde eine Frage<br />
bezüglich der Mitgliedschaft in unserem Verband am<br />
häufigsten gestellt: „Was ist drin für MICH?“. Die Frage<br />
nach unserem „Mehrwert“ müssen wir zukünftig noch<br />
besser und mit mehr „Inhalt“ beantworten. Mitglieder und<br />
potentielle Mitglieder – viele auch aus der mir persönlich<br />
gut bekannten „Generation Y“, auf die wir übrigens stolz<br />
sein können – suchen Überschriften, wofür die KTG steht.<br />
Die „friedliche Nutzung der Kernenergie“ ist als Rahmen<br />
sicherlich korrekt.<br />
Aber können wir KTG-Mitglieder in unserem Land –<br />
auch wenn der Ausstieg aus der Kernenergie beschlossen<br />
ist – nicht eine persön liche, technisch<br />
fundierte Meinung haben und vertreten,<br />
die weiter geht? Ich denke schon. Dazu<br />
müssen wir uns weiter ver netzen und<br />
austauschen: traditionell über „unsere<br />
Seiten“ in der <strong>atw</strong>, unsere Homepage aber<br />
auch über Social Media.<br />
<strong>atw</strong>: Wie ist die Situation in der JG, Herr<br />
Gremme? Sie haben eben ja bereits die<br />
Benefits einer Mitgliedschaft angesprochen.<br />
Möchten sich junge Leute in Ihrer Freizeit überhaupt noch<br />
berufsnah einbringen?<br />
Gremme: In dieser Generation, zu der ich laut Geburtsjahr<br />
auch zähle, wird viel Wert auf einen Ausgleich<br />
zwischen beruflicher Tätigkeit und Freizeit gelegt. Der Job<br />
ist hauptsächlich dazu da, die freie Zeit gestalten zu<br />
können und ist vielleicht weniger Berufung oder Teil<br />
dessen, womit man sich identifizieren möchte – letzteres<br />
aber nur als Vermutung. Ich denke viele haben daher einen<br />
Vor behalt gegenüber einer Aktivität in einem Verein wie<br />
der KTG, da es der<br />
beruflichen Tätigkeit<br />
sehr nah ist.<br />
Dies hängt vielleicht<br />
auch damit zusammen,<br />
dass man in<br />
Die Frage nach unserem<br />
„ Mehrwert“ müssen wir<br />
zukünftig noch besser und mit<br />
mehr „ Inhalt“ beantworten.<br />
KTG Inside
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
unserer multimedialen Welt mit In<strong>for</strong>mationen und<br />
Benachrichtigungen überschwemmt wird. Viele Prozesse<br />
laufen zudem beschleunigt ab, wodurch im Vergleich zu<br />
früher mehr in gleicher Zeit erledigt werden kann und<br />
muss. Vielleicht ist das ein Faktor, weshalb sich jemand aus<br />
der „Generation Y“ vor einer weiteren berufsnahen<br />
Aktivität scheut.<br />
Dabei lernt man im Vereinsleben und bei der Vereinsarbeit<br />
eine Menge, was einem sowohl beruflich als auch<br />
privat helfen kann. Wesentliche Benefits einer Mitgliedschaft<br />
in der KTG sind zum einen das Netzwerk, ganz<br />
einfach durch das Kennenlernen<br />
anderer Menschen, der fachliche Austausch<br />
und auch die Methoden und<br />
Abläufe, die man z. B. bei der Organisation<br />
von Aktivitäten lernt.<br />
Wir versuchen jungen Leuten<br />
genau diese Vorteile aufzuzeigen und<br />
sie durch die nahbare Darstellung<br />
unserer Aktivitäten davon zu über zeugen. Hier spielt sich<br />
viel auf zwischenmenschlicher Ebene ab und dadurch<br />
kann man auch neue Inte ressenten gewinnen.<br />
<strong>atw</strong>: Die kerntechnische Branche hat in den vergangenen<br />
Jahrzehnten Höhen und Tiefen erlebt. Die Nutzung der Kernenergie<br />
zur Stromerzeugung wird in Deutschland mit Ablauf<br />
des Jahres 2022 Geschichte sein. Auf der anderen Seite zeigt<br />
die Kerntechnik ihre viel fältigen wei teren Anwendungsmöglichkeiten.<br />
Sei es die Grundlagen <strong>for</strong>schung zur Kernfusion,<br />
wie sie beispielsweise in Greifswald stattfindet, oder<br />
auch Anwendungen in Medizin, Industrie und Forschung.<br />
Spüren Sie, Herr Gremme, dass sich bei der JG das Interessengebiet<br />
der Mitglieder diesbezüglich ändert?<br />
Gremme: Einen wirklichen Ruck einer Änderung des<br />
Interessengebiets der JG habe ich bisher nicht gespürt.<br />
Viele JG-Mitglieder kommen beruflich bedingt aus dem<br />
Gebiet der energetischen Nutzung der Kerntechnik. Das<br />
heißt allerdings nicht, dass kein Interesse für Themen<br />
wie die Nutzung der Kerntechnik in der Medizin oder<br />
<strong>for</strong>schungsorientierte Themen wie Fusionstechnologie<br />
besteht. Von den Teilnehmern unserer Nachwuchstagung<br />
kam hier positives Feedback bzgl. der Themenauswahl.<br />
Allerdings müssen wir feststellen, dass insgesamt die<br />
Resonanz für Aktivitäten nachlässt. Hierfür kann es verschiedene<br />
Gründe geben und wir ver suchen herauszufinden<br />
welche dies sind. Zum einen werden wir älter,<br />
wodurch interessierte und aktive JG-Mitglieder die JG<br />
altersbedingt verlassen und die Gewinnung neuer<br />
Mitglieder zuletzt leider schwer ist. Hier müssen die<br />
Benefits einer Mitgliedschaft deutlicher gemacht und zielgruppenorientierter<br />
platziert werden, um die Faszination<br />
Kerntechnik zu vermitteln.<br />
| | Dr. Florian Gremme, Sprecher der Jungen Generation<br />
Wir Mitglieder der KTG<br />
wollen gemeinsame Werte<br />
schaffen, uns verbindet die<br />
gemeinsame Identität: der<br />
„Faszination Kerntechnik“.<br />
<strong>atw</strong>: Und wie sieht es bei der KTG im Allgemeinen aus,<br />
Herr Apel? Einige Mitglieder sind ja quasi seit der ersten<br />
Stunde mit dabei. Wie werden sich die Mitglieder zukünftig<br />
identifizieren?<br />
Apel: Die KTG ist eine wissenschaftlich-technische Vereinigung,<br />
unser Verein ist die „Heimat“ der in der Kerntechnik<br />
in Deutschland Beschäftigten. Wir legen unseren<br />
Fokus nicht auf Presse- und Öffentlichkeitsarbeit, dieses<br />
Feld wird durch das DAtF abgedeckt. Wir Mitglieder der<br />
KTG wollen gemeinsame Werte schaffen, uns verbindet<br />
die gemeinsame Identität: der „Faszination Kerntechnik“.<br />
Die Anwendungsfälle der Kerntechnik<br />
sind mannigfaltig. Oft denken wir nur an<br />
Kernkraftwerke, deren Betrieb oder den<br />
Rückbau sowie die damit verbun denen<br />
Entsorgungsfragen. Aber da gibt es noch<br />
viele weitere Anwendungs fälle außerhalb<br />
der Energiewirtschaft z. B. in der Medizin<br />
oder der Werkstofftechnik. Schauen Sie<br />
sich den Film „Viel könner Kerntechnik“ an und lassen Sie<br />
sich von unserer Faszination anstecken.<br />
<strong>atw</strong>: Sie haben es gerade angesprochen. Die Hauptaufgabe<br />
eines wissen schaftlich-tech nischen Vereins besteht zweifelsohne<br />
darin, kritischer Förderer der von ihm vertretenen<br />
Wissenschaft und Technik zu sein. Die Diskussionen um<br />
die Verantwortbarkeit der Kernenergie haben im Laufe<br />
der Zeit Dimensionen erreicht, die es den KTG-Mitgliedern<br />
immer schwerer machen, sich aus entsprechenden poli tischen<br />
Diskus sionen herauszuhalten. Wie geht die KTG damit um?<br />
Gremme: Aus meiner Sicht sollten wir als KTG vorsichtig<br />
mit politischen Statements sein, da unsere Hauptaufgabe<br />
als Verein, wie Sie in der Frage bereits <strong>for</strong>muliert haben,<br />
nicht Politik ist. Nichtsdestotrotz kann und sollte die KTG<br />
mit großem Know-How in den eigenen Reihen und als<br />
großer kerntechnischer Verein einzelner Personen in<br />
Deutschland Gebrauch seiner Stimme machen und faktenorientierte<br />
Statements zu energietechnischen Entwicklungen<br />
geben. Man muss allerdings deutlich darauf<br />
achten, nicht in politische Orientierungen oder Parteiprogramme<br />
gerückt zu werden.<br />
Apel: Die KTG beabsichtigt auch weiterhin keine politische<br />
Positionierung. Eine zielorientierte Kommunikation,<br />
mit „Mehrwert“ für unsere Mitglieder, muss<br />
die Attrak tivität unseres Verbandes verbessern. Wir<br />
werden in der Zukunft unseren technisch fundierten<br />
Standpunkt zu aktuellen Themen deutlich und ohne politische<br />
Polemik in unseren KTG-Foren, wie dem Internet<br />
oder der <strong>atw</strong> kundtun. Auch wenn „WIR“ in der KTG sehr<br />
verschieden sind, haben „WIR“ gemeinsame Interessen<br />
und Ziele. Und dazu müssen „WIR“ unseren Dialog<br />
untereinander aber auch mit unseren „Brüdern im Geiste“<br />
verbessern.<br />
Auch wenn ein großer Teil unserer Mitglieder noch<br />
im Arbeitsleben steht, müssen wir – mit unserer privaten<br />
Mitgliedschaft in der KTG – nicht zwangsläufig nur<br />
die Interessen unserer Arbeitgeber-Firmen vertreten,<br />
sondern wir können über den Tellerrand herausschauen.<br />
So habe ich auf der vorletzten Mitgliederversammlung<br />
der KTG meine persönlichen Ansichten zur Kerntechnik<br />
vorgestellt:<br />
pp<br />
Ich bin für eine Laufzeitverlängerung der europäischen<br />
Atomkraftwerke im Sinne einer „Unterstützung der<br />
Energiewende“ – wenn eben z. B. die Stromtrassen<br />
doch nicht so schnell fertig werden – und einem „Mittel<br />
zur CO 2 -Reduzierung“.<br />
pp<br />
Ich bin für einen Neubau von Kernkraftwerken z. B. der<br />
nächsten Generation in Deutschland und Europa. Dies<br />
229<br />
KTG INSIDE<br />
KTG Inside
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
230<br />
KTG INSIDE<br />
müssen aber unsere Kinder und Enkel – also die<br />
nächste(n) Generation(en) – auch so wollen.<br />
pp<br />
Ich bin für einen effizienten und zügigen Rückbau der<br />
abgeschalteten Anlagen in Deutschland.<br />
pp<br />
Ich bin für eine freie, breite und ausreichend ausgestattete<br />
Grundlagen- und Anwendungs<strong>for</strong>schung zu<br />
allen kerntechnischen Fragestellungen.<br />
pp<br />
Ich bin für eine <strong>for</strong>tgesetzt aktive konstruktive Beteiligung<br />
Deutschlands an internationalen Entwicklungen<br />
in der Kerntechnik und der Einbringung des deutschen<br />
Know-hows und der deutschen Standards in die internationale<br />
Sicherheitsentwicklung.<br />
<strong>atw</strong>: Gerade ihr letzter Punkt scheint bei den KTG- Mitgliedern<br />
ebenfalls von großem Interesse zu sein. Der im vergangenen<br />
Jahr neu gegründeten Fachgruppe „Inter nationale Entwicklung<br />
innovativer Reaktorsysteme“ haben sich direkt weit über<br />
200 Mitglieder angeschlossen. Wie wird die KTG ihren Blick<br />
künftig international ausrichten?<br />
Apel: Es gibt gute Gründe, die internationale Entwicklung<br />
innovativer Reaktorsysteme, der Fusionstechnologie oder<br />
aber innovativer Entsorgungstechnologien – auch außerhalb<br />
Deutschlands – zu verfolgen:<br />
Ein vollständiger Ausstieg aus der Kernenergie ist international<br />
die große Ausnahme und nicht die Regel. Der<br />
deutsche Verzicht auf Stromerzeugung<br />
aus Kernenergie ist<br />
nicht mit einem völligen Ausstieg<br />
aus der Technologie gleichzusetzen,<br />
noch haben wir einen<br />
<strong>for</strong>tlaufenden Betrieb und den<br />
sicheren Nachbetrieb der Anlagen vor uns. Es gibt kommende<br />
Aufgaben beim Rückbau der Kernkraftwerke und<br />
der Entsorgung der Abfälle.<br />
Deutschland ist ein Land der Spitzen<strong>for</strong>schung, das<br />
Forschungsreaktoren betreibt und in internationalen<br />
Nuklear<strong>for</strong>schungsprogrammen mitarbeitet. Deutschland<br />
hat einzigartige wissenschaftliche und industrielle Fähigkeiten<br />
in der Kerntechnik zu deren langfristigen Erhalt<br />
eine ausreichend große kritische Masse von deutschen<br />
Herstellern, ihren Zulieferern und Dienstleistern notwendig<br />
ist. In unserem Land wurden und werden die verlässlichsten<br />
Kernkraftwerke und kerntechnischen Anlagen<br />
betrieben, nicht zuletzt, weil eine jahrzehntelange<br />
kritische Diskussion über die Kernenergie zu sehr hohen<br />
Sicherheitsstandards und zu einer hoch entwickelten<br />
Sicherheitskultur geführt hat. Auf dieser Grundlage setzt<br />
sich die Bundesregierung in der EU und weltweit für ein<br />
hohes nukleares Sicherheitsniveau ein. Dieses Interesse<br />
wird langfristig bestehen, da die Mehrzahl der anderen<br />
Staaten, die Kernenergie nutzen, keinen Ausstieg anstreben.<br />
Ohne eine eigene kerntechnische Industrie, die in<br />
eine entsprechende Forschungslandschaft eingebettet ist,<br />
wird es aber nicht möglich sein, weiter eine treibende Kraft<br />
kerntechnischer Sicherheit weltweit zu sein.<br />
Gremme: Ich unterschreibe die Ausführungen von Herrn<br />
Apel und denke, dass die Entwicklung dieser Fachgruppe<br />
unterstreicht, dass die KTG-Mitglieder an der Faszination<br />
Kerntechnik und an zukünftigen Perspektiven interessiert<br />
sind. Als JG sind wir im Wesentlichen durch zwei Netz werke<br />
international verknüpft. Dies ist zum einen das Young<br />
Generation Network (YGN) der European <strong>Nuclear</strong> Society<br />
(ENS) und zum anderen der <strong>International</strong> Youth <strong>Nuclear</strong><br />
Congress (IYNC), eine Konferenz, die mit weltweiter<br />
Beteiligung organisiert wird und auch weltweite Teil nehmer<br />
hat. Der nächste IYNC findet im Jahr 2020 in Australien<br />
statt. Sowohl hier als auch auf der Europäischen Konferenz<br />
des YGN, dem European <strong>Nuclear</strong> Young Generation Forum<br />
Ein vollständiger Aus stieg aus der<br />
Kernenergie ist international die<br />
große Ausnahme und nicht die Regel.<br />
(ENYGF), planen wir, als KTG JG vertreten zu sein und<br />
ermutigen die JG-Mitglieder daran teilzunehmen. Das<br />
ENYGF findet dieses Jahr vom 23. bis 27. Juni in Gent statt.<br />
Das sogenannte Core Committee des ENS YGN trifft<br />
sich dreimal im Jahr, um sich über die nationalen<br />
Aktivitäten zu in<strong>for</strong>mieren und gemeinsame Aktionen zu<br />
organisieren. Hier vertreten wir unsere Interessen und<br />
wirken an der Planung von Aktivitäten mit. Zudem<br />
nehmen wir hierdurch an Aktionen wie dem <strong>Nuclear</strong> Pride<br />
Fest oder den Weltklimakonferenzen teil. Hier unterstützen<br />
wir z. B. die Initiative „<strong>Nuclear</strong> <strong>for</strong> Climate“.<br />
<strong>atw</strong>: Herr Gremme, Sie haben mehrjährige Erfahrung in der<br />
Forschung im kerntechnischen Bereich, genauer gesagt<br />
in der Reaktorsicherheits<strong>for</strong>schung, an der Ruhr- Universität<br />
Bochum vorzuweisen. Damit gehören Sie zu jenem Personenkreis,<br />
dessen Arbeit die Bundes regierung jüngst in ihrem<br />
Energie <strong>for</strong>schungsprogramm als wichtig erachtet. Was<br />
würden Sie einem jungen Menschen, der sich für eine Karriere<br />
in der Kerntechnik interessiert, mit auf den Weg geben?<br />
Gremme: Ich denke, dass man in der Kerntechnik viele<br />
faszinierende Bereiche eines Maschinenbaustudiums<br />
vertieft bearbeitet und diese in vielen Bereichen sowohl der<br />
Forschung als auch der Industrie direkt anwenden kann.<br />
Die Kerntechnik stellt immer noch Hightech der thermischen<br />
Energieumwandlung dar.<br />
Wenn man sich also für Thermodynamik,<br />
Wärme- und Stoffübertragung<br />
und/oder Strömungsmechanik<br />
interessiert, findet man<br />
diese Thematiken an vielen Stellen<br />
in der Kerntechnik wieder, z. B. bei der Modellierung von<br />
Wärmeüberträgern oder atmosphärischer Strömungen. In<br />
der Reaktorsicherheits<strong>for</strong>schung geht es im Speziellen zum<br />
einen um die Modellierung von Phänomenen die während<br />
eines Störfalls in Kernkraftwerken auftreten können. Die<br />
auf tretenden Phänomene, wie Oxidationen, also chemische<br />
Reaktionen, Wärmeüber tragungs- und Strö mungs prozesse<br />
als auch Verlagerung von Materialien treten dabei z. T. stark<br />
in Wechselwirkung. Dadurch lernt man viel über die Einzelphänomene,<br />
bekommt aber vor allem auch einen integralen<br />
Blick für die Einflüsse der Pro zesse untereinander. Ich<br />
denke, durch diese umfäng lichen vertieften Betrachtungen<br />
wird man auch bestens ausgebildet, das Gelernte auf andere<br />
Bereiche der Energietechnik zu übertragen.<br />
Zum anderen werden in der Reaktorsicherheits -<br />
<strong>for</strong>schung aber auch neue Systeme entwickelt, die zur<br />
Wärmeabfuhr aus dem Brenn elementlagerbecken eingesetzt<br />
werden können. Weiterhin werden Sicher heitsanalysen<br />
und Wirksamkeitsbetrachtungen von Maßnahmen<br />
zur Prävention und Mitigation von Störfällen<br />
durchgeführt, indem gesamte kerntechnische Anlagen<br />
simuliert werden. Dabei lernt man viel über Regelwerke<br />
Heruntergebrochen<br />
ist eine Karriere in den<br />
Themenfeldern der<br />
Kerntechnik mit der<br />
Verknüpfung zur<br />
„ Industrie 4.0“ ein<br />
zukunftsorientierter Weg.<br />
und Störfallmanagement.<br />
Viele dieser Betätigungsfelder<br />
beinhalten dazu wie<br />
bereits erwähnt Programmierung<br />
und Modellierung.<br />
Hierbei erlernt man das Handwerkszeug<br />
der Digita lisierung<br />
für viele Fragestellungen der<br />
„Industrie 4.0“. Heruntergebrochen<br />
ist eine Karriere in<br />
den Themen feldern der Kerntechnik<br />
mit der Verknüpfung zur „Indus trie 4.0“ ein<br />
zukunftsorientierter Weg. Diese Benefits müssen allerdings<br />
gemeinsam von Industrie, Forschung und Politik positiv<br />
beleuchtet und an Schüler und Studierende herangetragen<br />
KTG Inside
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
werden, damit der politisch gewollte Kompetenzerhalt auch<br />
erreicht werden kann.<br />
<strong>atw</strong>: Die KTG ist seit 50 Jahren Anlaufstelle für die Mitarbeiter<br />
der kerntechnischen Branche in Deutschland. Von<br />
163 Gründungsmitgliedern ist deren Zahl auf etwa 2000<br />
Mitglieder gestiegen. Das Jubiläum möchten wir natürlich<br />
auch als Gelegenheit nutzen, nach vorne zu blicken. Wie<br />
sehen Sie beide die Zukunft der KTG?<br />
Gremme: Zunächst möchte ich der KTG alles Gute zu<br />
Ihrem 50. Geburtstag wünschen und hoffe, dass noch viele<br />
runde Geburtstage gefeiert werden können. Zuletzt sind<br />
die Mitgliederzahlen leider rückläufig, da wünsche ich<br />
mir für die Zukunft der KTG, dass diese Entwicklung<br />
aufge halten werden kann und sich stabile Mitgliederzahlen<br />
einstellen. Generell sehe ich der Zukunft der KTG<br />
positiv entgegen, da ich denke, dass dieser wissenschaftlich-<br />
technische Verein in Deutschland eine zentrale Rolle<br />
beim Kompetenzerhalt, auch für die politischen Ziele, einnehmen<br />
kann. Dafür ist eine stärkere Zusammenarbeit<br />
und Verknüpfung zwischen Industrie, Forschung und<br />
Politik notwendig – ein gemeinsames Konzept muss<br />
her, um den kerntechnischen Aufgaben in Deutschland<br />
begegnen zu können. Hierfür bieten wir, die JG der KTG,<br />
gerne unsere Unterstützung an.<br />
Apel: Diesen Glückwünschen schließe ich mich natürlich<br />
an. Kerntechnik „Made in Germany“ war in der Vergangenheit<br />
ein Aushängeschild unserer Branche und wird es<br />
bleiben, die Anwendungsfälle werden sich weiter verändern,<br />
Schwerpunkte werden sich verschieben. Kerntechnik<br />
als Einheit von Wissenschaft (der Lehre und der<br />
Forschung) und Technik (Betreiber, Zulieferer) aber auch<br />
unsere Gutachter und Behörden haben als wichtigstes Gut<br />
(neudeutsch Asset) den Mitarbeiter, den Fachmann, den<br />
Experten. Und dies wird für die nächsten Jahre so bleiben.<br />
Wenn wir beim Erhalt und der Neugewinnung unserer<br />
Mitglieder gute Antworten auf die Frage „Was ist drin<br />
für mich“ finden, schaue ich in eine erfolgreiche Zukunft<br />
der KTG.<br />
231<br />
KTG INSIDE<br />
KTG<br />
Wichtige Terminhinweise in eigener Sache<br />
Ankündigungen zum Vortag unserer diesjährigen Jahrestagung, dem 50 th Annual Meeting on <strong>Nuclear</strong> Technology<br />
(AMNT 2019) vom 7. bis 8. Mai 2018 im Estrel-Hotel, Berlin:<br />
33<br />
KTG-Mitgliederversammlung<br />
• Wann? Montag, 6. Mai 2019, 17:00 Uhr<br />
• Wo? Estrel Convention Center, Paris,<br />
Sonnenallee 225, 12057 Berlin<br />
33<br />
Get-together der KTG (auch für Nicht-Mitglieder)<br />
• Wann? Montag, 6. Mai 2019, 19:00 Uhr<br />
• Wo? Estrel Convention Center, Große Galerie,<br />
Sonnenallee 225, 12057 Berlin<br />
Herzlichen Glückwunsch!<br />
Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />
und wünscht ihnen weiterhin alles Gute!<br />
Mai 2019<br />
50 Jahre | 1969<br />
14. Jens-Michael Hövelmann, Jülich<br />
55 Jahre | 1964<br />
18. Martin Franz, Erlangen<br />
60 Jahre | 1959<br />
18. Peter Klopfer, Neckarwestheim<br />
75 Jahre | 1944<br />
12. Peter Faber, Rödermark<br />
76 Jahre | 1943<br />
3. Dipl.-Ing. Hans Lettau, Effeltrich<br />
76 Jahre | 1943<br />
22. Wolfgang Schütz, Bruchsal<br />
24. Dipl.-Ing. Rudolf Weh, Stephanskirchen<br />
77 Jahre | 1942<br />
5. Hans-Bernd Maier, Aschaffenburg<br />
9. Dr. Egbert Brandau, Alzenau<br />
11. Dr. Erwin Lindauer, Köln<br />
17. Dr. Heinz-Peter Holley, Forchheim<br />
28. Dr. Wolf-Dieter Krebs, Bubenreuth<br />
78 Jahre | 1941<br />
8. Prof. Dr.-Ing. Helmut Alt, Aachen<br />
79 Jahre | 1940<br />
15. Dipl.-Phys. Ludwig Aumüller, Freigericht<br />
24. Dipl.-Ing. Herbert Krinninger,<br />
Bergisch Gladbach<br />
80 Jahre | 1939<br />
4. Dipl.-Ing. Norbert Albert, Ettlingen<br />
81 Jahre | 1938<br />
13. Dipl.-Ing. Otto A. Besch, Geesthacht<br />
13. Dr. Heinrich Werle, Karlsdorf-Neuthard<br />
16. Dr. Hans-Dieter Harig, Hannover<br />
21. Dr. Hans Spenke, Bergisch Gladbach<br />
82 Jahre | 1937<br />
6. Dr. Peter Strohbach, Mainaschaff<br />
26. Dipl.-Ing. Rüdiger Müller, Heidelberg<br />
27. Dr. Johannes Wolters, Düren<br />
28. Dipl.-Ing. Heinz E. Häfner, Bruchsal<br />
84 Jahre | 1935<br />
8. Dipl.-Ing. Klaus Wegner, Hanau<br />
22. Dr. Heinz Vollmer, Lampertheim<br />
29. Dipl.-Ing. Karlheinz Orth, Marloffstein<br />
85 Jahre | 1934<br />
11. Dr. Eckhart Leischner, Rodenbach<br />
14. Dr. Alexander Warrikoff, Frankfurt/Main<br />
26. Dr. Günter Kußmaul, Manosque/FR<br />
86 Jahre | 1933<br />
4. Dr. Klaus Wiendieck, Baden-Baden<br />
25. Dr. Reinhold Mäule, Walheim<br />
89 Jahre | 1930<br />
9. Dr. Hans-Jürgen Hantke, Kempten<br />
91 Jahre | 1928<br />
10. Dr. Heinz Büchler, Sankt Augustin<br />
95 Jahre | 1924<br />
22. Prof. Dr. Fritz Thümmler, Karlsruhe<br />
Wenn Sie künftig eine<br />
Erwähnung Ihres<br />
Geburtstages in der<br />
<strong>atw</strong> wünschen, teilen<br />
Sie dies bitte der KTG-<br />
Geschäftsstelle mit.<br />
KTG Inside<br />
Verantwortlich<br />
für den Inhalt:<br />
Die Autoren.<br />
Lektorat:<br />
Natalija Cobanov,<br />
Kerntechnische<br />
Gesellschaft e. V.<br />
(KTG)<br />
Robert-Koch-Platz 4<br />
10115 Berlin<br />
T: +49 30 498555-50<br />
F: +49 30 498555-51<br />
E-Mail:<br />
natalija.cobanov@<br />
ktg.org<br />
www.ktg.org<br />
KTG Inside
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
232<br />
NEWS<br />
Top<br />
IAEA: Member states discuss<br />
modelling human resource<br />
development <strong>for</strong> nuclear<br />
power<br />
(iaea) Modelling human resource<br />
development can be an effective tool<br />
to assist nuclear newcomer countries<br />
in understanding the required competencies<br />
and work<strong>for</strong>ce needed to<br />
establish and maintain a safe, secure<br />
and sustainable nuclear power programme.<br />
The IAEA is providing a<br />
modelling tool that can help countries<br />
in planning and educating the<br />
required human resources.<br />
“Human resource development <strong>for</strong><br />
nuclear power requires a national<br />
ef<strong>for</strong>t and will involve a Member<br />
State’s government, education system,<br />
existing nuclear organizations and<br />
national utilities and industries,” said<br />
Dohee Hahn, Director of the IAEA<br />
Division of <strong>Nuclear</strong> <strong>Power</strong>. Planning<br />
<strong>for</strong> this endeavor there<strong>for</strong>e requires<br />
a comprehensive national analysis.<br />
“Modelling is uniquely suited to<br />
support this ef<strong>for</strong>t. The IAEA will continue<br />
to assist Member States as they<br />
examine their work<strong>for</strong>ce.”<br />
The IAEA provides helpful guidance<br />
<strong>for</strong> Member States to survey their<br />
work<strong>for</strong>ce and educational systems to<br />
identify and close gaps in their work<strong>for</strong>ce<br />
<strong>for</strong> nuclear power. One example<br />
<strong>for</strong> its guidance and assistance is the<br />
<strong>Nuclear</strong> <strong>Power</strong> Human Resource<br />
(NPHR) Model, provided to Member<br />
States <strong>for</strong> use in analyzing their<br />
human resource development.<br />
The NPHR modelling tool is a<br />
system dynamics simulation of a<br />
nuclear power programme and the<br />
national nuclear work<strong>for</strong>ce. The model<br />
includes the educational tracks, training,<br />
and career cycles <strong>for</strong> the work<strong>for</strong>ce<br />
supporting the owner/operator<br />
organizations, the regulatory body,<br />
and the construction work<strong>for</strong>ce. The<br />
tool is useful <strong>for</strong> providing a long perspective<br />
look at the work<strong>for</strong>ce to determine<br />
any skill gaps that might present<br />
risk to the programme. More than 14<br />
Member States have so far been<br />
trained in using the model.<br />
Users of the modelling tool from<br />
ten nuclear newcomer countries<br />
(Egypt, Ghana, Kazakhstan, Kenya,<br />
Morocco, Niger, Nigeria, Poland,<br />
Saudi Arabia, Sudan, Turkey and<br />
Uganda) gathered <strong>for</strong> the Technical<br />
Meeting on Human Resource Development<br />
Analysis and the Use of the<br />
NPHR Modelling Tool <strong>for</strong> New <strong>Nuclear</strong><br />
<strong>Power</strong> Progammes, held from 12 to<br />
15 February 2019 at the IAEA. In<br />
addition, experts from operating<br />
countries (France, Russia, the UK and<br />
the USA) highlighted the status of<br />
their nuclear work<strong>for</strong>ce and the challenges<br />
that every country may face.<br />
Each of the embarking countries<br />
presented results of their human<br />
resource development studies and<br />
explained how they used the model.<br />
Most Member States indicated that<br />
their national work<strong>for</strong>ce studies were<br />
directed by the nuclear energy programme<br />
implementing organization<br />
(NEPIO) and conducted with participants<br />
from other relevant organizations.<br />
The studies relied on data from<br />
the national education system and the<br />
national work<strong>for</strong>ce.<br />
Several Member States indicated<br />
that modifications to the model were<br />
needed to properly reflect their education<br />
system. Participants reported on<br />
additional modelling they did in their<br />
countries to validate modelling results<br />
and on national gaps that they had<br />
identified as well as decisions made to<br />
close them.<br />
Main take-away points were the<br />
identification of key events during<br />
programme development with which<br />
the human resource development<br />
plan must be coordinated: the delivery<br />
of a full scale simulator of a reactor<br />
control room and the delivery of fuel<br />
prior to commissioning. Participants<br />
also discussed the other factors that<br />
can affect the work<strong>for</strong>ce requirements,<br />
and the resources available to<br />
embarking countries.<br />
The model users highlighted that<br />
working groups composed of representatives<br />
from different national<br />
organizations should support the<br />
analysis and reiterated the need <strong>for</strong> a<br />
national ef<strong>for</strong>t.<br />
Human resource development<br />
and the NPHR Model<br />
Human resource development is one<br />
of the 19 infrastructure issues identified<br />
in the three-phased, comprehensive<br />
IAEA Milestones Approach which<br />
enables a sound programme development<br />
process. It is an important component<br />
<strong>for</strong> developing the nuclear<br />
power infrastructure and must be<br />
started at the earliest phases of a<br />
nuclear power programme. Suitably<br />
qualified and experienced workers are<br />
required in every phase of the programme.<br />
It can take more than a<br />
decade to grow the required skills in<br />
sufficient numbers <strong>for</strong> the organizations<br />
that need them, and the resulting<br />
work<strong>for</strong>ce must be sustained<br />
<strong>for</strong> the life time of the plant.<br />
| | www.iaea.org<br />
NEI: Why we should listen to<br />
Bill Gates on nuclear energy<br />
(nei) As the founder of one of the<br />
world’s most recognized and successful<br />
companies, Bill Gates receives a lot<br />
of attention <strong>for</strong> what he says and does.<br />
When Bill Gates talks, people listen.<br />
And today, Bill Gates is talking about<br />
nuclear energy.<br />
In his 2018 year-in-review blog<br />
post, Gates said: “<strong>Nuclear</strong> is ideal <strong>for</strong><br />
dealing with climate change, because<br />
it is the only carbon-free, scalable<br />
energy source that’s available 24 hours<br />
a day.” But to Bill Gates, nuclear energy<br />
is not just a technology that can<br />
help us meet climate change goals; it<br />
also can be used to reduce global poverty.<br />
Gates believes that if we are able<br />
to expand access to af<strong>for</strong>dable and<br />
clean electricity, it would drastically<br />
improve living conditions <strong>for</strong> millions<br />
and would ultimately be a huge step in<br />
lifting those people out of poverty.<br />
Gates has done more than just<br />
write about the benefits of nuclear<br />
energy. In 2006, he helped launch<br />
Terra<strong>Power</strong> LLC, a nuclear reactor<br />
design company that aims “to improve<br />
the world through nuclear energy and<br />
science.” In Gates’s view, investing in<br />
advanced nuclear technology can help<br />
America regain its position as the<br />
global leader on nuclear energy while<br />
fighting poverty and driving worldwide<br />
decarbonization.<br />
“<strong>Nuclear</strong> is ideal <strong>for</strong> dealing with<br />
climate change, because it is the only<br />
carbon-free, scalable energy source<br />
that´s available 24 hours a day.” – Bill<br />
Gates on why he believes in the potential<br />
of nuclear. https://bit.ly/2DSSXUS<br />
As important as Bill Gates’ voice is to<br />
the cause of promoting nuclear energy<br />
as a critical solution to solving complex<br />
global problems, he is hardly alone<br />
among technology entrepreneurs. The<br />
late Paul Allen, who was co-founder of<br />
Microsoft Corp. with Bill Gates, also<br />
championed the benefits of nuclear energy.<br />
And Peter Thiel, the co-founder of<br />
PayPal, Palantir Technologies and<br />
Founders Fund, wrote a New York Times<br />
op-ed arguing <strong>for</strong> adapting U.S. energy<br />
policy to support a new atomic age.<br />
Thiel wrote: “If we are serious<br />
about replacing fossil fuels, we are<br />
going to need nuclear power, so the<br />
choice is stark: We can keep on merely<br />
talking about a carbon-free world, or<br />
we can go ahead and create one.”<br />
Gates, Allen and Thiel are just a few<br />
names of our nation’s most technologically<br />
savvy business leaders who have<br />
invested in promoting the value of<br />
nuclear energy. And as more and more<br />
organizations and environmental<br />
News
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Operating Results December 2018<br />
Plant name Country Nominal<br />
capacity<br />
Type<br />
gross<br />
[MW]<br />
net<br />
[MW]<br />
Operating<br />
time<br />
generator<br />
[h]<br />
Energy generated, gross<br />
[MWh]<br />
Month Year Since<br />
commissioning<br />
Time availability<br />
[%]<br />
Energy availability<br />
[%] *) Energy utilisation<br />
[%] *)<br />
Month Year Month Year Month Year<br />
OL1 Olkiluoto BWR FI 910 880 744 680 983 7 001 022 261 655 208 100.00 88.25 99.05 87.24 100.58 87.82<br />
OL2 Olkiluoto BWR FI 910 880 744 686 482 7 597 361 251 896 543 100.00 95.31 100.00 94.58 100.29 94.27<br />
KCB Borssele PWR NL 512 484 744 379 826 3 514 770 161 721 689 99.47 79.32 99.46 79.00 100.03 78.49<br />
KKB 1 Beznau 7) PWR CH 380 365 744 286 584 2 588 023 127 334 110 100.00 78.73 100.00 78.26 101.43 77.68<br />
KKB 2 Beznau 7) PWR CH 380 365 744 285 074 3 185 534 134 350 407 100.00 96.40 100.00 96.28 100.84 95.62<br />
KKG Gösgen 7) PWR CH 1060 1010 744 794 572 8 680 941 313 875 528 100.00 94.10 99.99 93.77 100.75 93.49<br />
KKM Mühleberg BWR CH 390 373 744 283 870 3 066 170 127 404 315 100.00 92.84 98.80 92.01 97.83 89.75<br />
CNT-I Trillo PWR ES 1066 1003 744 789 917 8 267 245 247 291 669 100.00 89.51 100.00 89.26 99.16 88.00<br />
Dukovany B1 PWR CZ 500 473 729 362 664 3 599 011 112 229 493 97.98 83.36 97.06 82.84 97.49 82.17<br />
Dukovany B2 2) PWR CZ 500 473 744 370 524 3 611 634 108 234 171 100.00 84.01 99.98 83.55 99.60 82.46<br />
Dukovany B3 PWR CZ 500 473 161 70 038 3 875 614 106 498 041 21.64 90.72 21.25 90.37 18.83 88.48<br />
Dukovany B4 PWR CZ 500 473 744 376 529 3 171 527 106 443 269 100.00 74.18 99.99 72.99 101.22 72.41<br />
Temelin B1 PWR CZ 1080 1030 744 809 838 7 879 748 114 361 042 100.00 83.58 99.94 83.33 100.60 83.18<br />
Temelin B2 PWR CZ 1080 1030 744 816 260 7 782 571 109 272 517 100.00 82.29 99.99 82.14 101.40 82.21<br />
Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 30.83 0 30.81 0 30.91<br />
Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 38.82 0 38.70 0 38.89<br />
Doel 3 PWR BE 1056 1006 744 804 825 3 963 264 255 132 485 100.00 42.82 100.00 42.19 101.82 42.62<br />
Doel 4 2) PWR BE 1084 1033 292 188 760 5 827 569 260 373 410 39.24 62.54 22.26 60.98 22.26 60.65<br />
Tihange 1 PWR BE 1009 962 744 760 609 7 991 982 298 830 858 100.00 91.59 100.00 91.05 101.61 90.59<br />
Tihange 2 3) PWR BE 1055 1008 0 0 5 702 393 254 651 930 0 62.33 0 61.67 0 62.04<br />
Tihange 3 3) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 24.40 0 24.37 0 24.43<br />
233<br />
NEWS<br />
Plant name<br />
Type<br />
Nominal<br />
capacity<br />
gross<br />
[MW]<br />
net<br />
[MW]<br />
Operating<br />
time<br />
generator<br />
[h]<br />
Energy generated, gross<br />
[MWh]<br />
Time availability<br />
[%]<br />
Energy availability<br />
[%] *) Energy utilisation<br />
[%] *)<br />
Month Year Since Month Year Month Year Month Year<br />
commissioning<br />
KBR Brokdorf DWR 1480 1410 744 952 106 10 375 751 350 567 810 100.00 90.60 94.33 84.72 86.08 79.65<br />
KKE Emsland 4) DWR 1406 1335 744 1 007 298 11 495 686 346 818 969 100.00 94.78 100.00 94.67 96.21 93.33<br />
KWG Grohnde DWR 1430 1360 744 1 013 399 10 946 635 377 574 214 100.00 92.82 99.98 91.61 94.60 86.79<br />
KRB C Gundremmingen SWR 1344 1288 744 1 005 494 10 361 862 330 941 755 100.00 90.41 100.00 89.85 99.93 87.51<br />
KKI-2 Isar DWR 1485 1410 744 1 084 754 12 127 490 353 725 813 100.00 95.46 100.00 95.24 97.90 92.92<br />
KKP-2 Philippsburg DWR 1468 1402 744 1 068 384 10 993 639 366 161 155 100.00 90.63 100.00 90.47 96.33 84.05<br />
GKN-II Neckarwestheim 2) DWR 1400 1310 744 1 025 400 9 703 700 329 826 834 100.00 81.35 100.00 81.00 98.80 79.29<br />
groups stand behind carbon-free<br />
nuclear energy, the support <strong>for</strong> nuclear<br />
has never been so vast and varied.<br />
Some of the smartest thinkers of<br />
our time are calling on us to see<br />
nuclear energy <strong>for</strong> its potential to<br />
change the world.<br />
It’s time we listen.<br />
| | www.nei.org<br />
EU needs all low-carbon<br />
sources to achieve its 2050<br />
decarbonisation goals<br />
(<strong>for</strong>atom) Reflecting on how low-carbon<br />
technologies can help the European<br />
Union achieve its 2050 decarbonisation<br />
objectives and what the needs of the<br />
industrial sector are when it comes to<br />
increased electrification were the main<br />
topics discussed during an event hosted<br />
in Brussels by the Permanent Representation<br />
of Romania to the EU and<br />
organised in the context of the country’s<br />
Presidency of the Council.<br />
The event “Solutions <strong>for</strong> a 2050<br />
Carbon- free Europe”, organised by the<br />
Romanian Ministry of Energy in cooperation<br />
with FORATOM and the Romanian<br />
Atomic Forum (ROMATOM),<br />
gathered together more than 100 representatives<br />
of EU Member States, EU<br />
institutions and power industries. The<br />
conference provided participants with a<br />
plat<strong>for</strong>m to exchange views on how<br />
low-carbon technologies can together<br />
contribute to reaching EU climate goals.<br />
During his keynote speech, EU Commissioner<br />
<strong>for</strong> Climate Action & Energy<br />
Miguel Arias Cañete stated that by 2050<br />
the deployment of renewables and a<br />
stable share of nuclear energy is the solution<br />
to make the European power sector<br />
carbon- free. He also underlined that the<br />
role of low-carbon technologies is essential<br />
in reaching carbon-neutrality.<br />
This approach was echoed by the<br />
Ro manian Minister of Energy Anton<br />
Anton, who – in his introductory speech<br />
– reiterated that all low-carbon energy<br />
sources need to be explored in the<br />
future in order to ensure a sustainable<br />
development of economy. He also stated<br />
that Europe has already managed to<br />
achieve a lot in this field, also thanks to<br />
the contribution of nuclear energy.<br />
Fabien Roques, Executive Vice President<br />
of FTI Compass Lexecon Energy<br />
presented in detail a recent study<br />
entitled “Pathways to 2050: role of<br />
nuclear in a low-carbon Europe”, commissioned<br />
by FORATOM pro viding the<br />
vision <strong>for</strong> the nuclear sector by midcentury.<br />
According to the study,<br />
nuclear energy provides an important<br />
contribution to an efficient transition<br />
towards a decarbonised European<br />
power system as it can help ensure<br />
compliance with EU emissions targets,<br />
avoid temporary increase of emissions<br />
and locking in fossil fuels investments.<br />
The complementarity role of nuclear<br />
<strong>for</strong> renewables was also emphasised.<br />
*)<br />
Net-based values<br />
(Czech and Swiss<br />
nuclear power<br />
plants gross-based)<br />
1)<br />
Refueling<br />
2)<br />
Inspection<br />
3)<br />
Repair<br />
4)<br />
Stretch-out-operation<br />
5)<br />
Stretch-in-operation<br />
6)<br />
Hereof traction supply<br />
7)<br />
Incl. steam supply<br />
8)<br />
New nominal<br />
capacity since<br />
January 2016<br />
9)<br />
Data <strong>for</strong> the Leibstadt<br />
(CH) NPP will<br />
be published in a<br />
further issue of <strong>atw</strong><br />
BWR: Boiling<br />
Water Reactor<br />
PWR: Pressurised<br />
Water Reactor<br />
Source: VGB<br />
News
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
234<br />
NEWS<br />
This last notion was addressed by<br />
Giles Dickson, CEO of WindEurope,<br />
who referred to the recent analysis<br />
published by the <strong>International</strong> Energy<br />
Agency. According to the IEA, the<br />
share of electricity generated by wind<br />
power will reach more than 30%<br />
globally by 2039. However, as pointed<br />
out by Mr Dickson, the power sector is<br />
not the only sector which needs to be<br />
significantly decarbonised in the<br />
coming years. The same challenges<br />
will need to be addressed by the transport<br />
and heating sectors.<br />
One of the possible solutions to<br />
achieve this goal is increased electrification<br />
which will play a key role<br />
in achieving a low-carbon future.<br />
Eurelectric Secretary General Kristian<br />
Ruby presented a recent study carried<br />
out by the organisation, which focuses<br />
on decarbonising the European Union<br />
through strong electrification, energy<br />
efficiency, and support from other<br />
non-emitting fuels. Each of the scenarios<br />
developed by the association<br />
will allow the EU power sector to be<br />
fully decarbonised by 2045 and in<br />
each of them the bulk of electricity<br />
will be provided by renewables and<br />
nuclear energy. Mr Ruby mentioned<br />
also the importance of system reliability<br />
and flexibility, which need to<br />
be provided by multiple sources in the<br />
power sector, including hydro, nuclear<br />
and gas, but also emerging sources<br />
such as hydrogen or battery storage.<br />
The issue of storage was discussed<br />
by Peter Claes, Vice President of the<br />
<strong>International</strong> Federation of Industrial<br />
Energy Consumers. During his speech,<br />
Mr Claes pointed to the importance of<br />
security of supply <strong>for</strong> efficient, reliable<br />
and safe operation. In this context, the<br />
current capability of battery storage as<br />
a backup to renewables does not<br />
guarantee the continuous supply of the<br />
electricity needed by the industry.<br />
Other potential pathways to decarbonise<br />
the power sector, listed by Mr<br />
Claes, were renewables with gas,<br />
nuclear energy and geothermal energy.<br />
The potential nuclear pathway and<br />
the role nuclear energy has to play in<br />
decarbonising Europe was underlined<br />
during a speech given by <strong>Nuclear</strong>electrica<br />
CEO and ROMATOM President<br />
Cosmin Ghita. Mr Ghita stressed that<br />
there is no decarbonisation without<br />
nuclear energy, and all low-carbon<br />
energy sources should be treated<br />
equally as they are all needed to reach<br />
the decarbonisation goal and help the<br />
EU achieve its climate objectives.<br />
During his closing remarks,<br />
FORATOM Director General Yves<br />
Desbazeille briefly presented the key<br />
takeaways of the FTI study commissioned<br />
by FORATOM, noting that keeping<br />
a share of nuclear provides clear<br />
environmental, social and economic<br />
benefits. The long-term operation of<br />
existing reactors is a must and more<br />
needs to be done to trigger investment<br />
in new nuclear reactors. He also identified<br />
some actions which must be undertaken<br />
by both the EU and industry<br />
in order to ensure nuclear remains part<br />
of the mix and can help Europe achieve<br />
its decar bonisation targets.<br />
He was followed by Gerassimos<br />
Thomas, Deputy Director-General of<br />
DG Energy, who stressed the fact that<br />
energy mix included in the long-term<br />
greenhouse gas emissions reductions<br />
strategy is based on the feedback<br />
received from the Member States.<br />
According to the in<strong>for</strong>mation received,<br />
two low-carbon sources will make up<br />
the EU electricity mix: renewables<br />
(80%) and nuclear (15-20%). These<br />
two energy sources should work together<br />
and not against each other as all<br />
low-carbon energy sources are needed<br />
in order to achieve the EU’s climate<br />
objectives. Other innovative technologies<br />
should be developed and there<strong>for</strong>e<br />
increased attention to the R&D sector<br />
should be paid. Competitiveness<br />
should be improved, as this has an<br />
impact on all technologies. Waste,<br />
decommissioning and encouraging<br />
young people to join the nuclear industry<br />
were also points highlighted by<br />
Mr Thomas.<br />
At the end of the event, Elena<br />
Popescu, Director General, DG Energy<br />
and Climate Change, Romanian Ministry<br />
of Energy, drew attention to the specificities<br />
of each country in terms of<br />
availability of energy sources and the<br />
need to adapt to specific conditions.<br />
Electrification will play an important<br />
role in achieving the mid-century decarbonisation<br />
targets, as long as it is<br />
based on low-carbon electricity sources.<br />
| | www.<strong>for</strong>atom.org<br />
World<br />
EU and IAEA review progress<br />
and agree on priorities in<br />
nuclear cooperation at annual<br />
meeting<br />
(iaea) The <strong>International</strong> Atomic Energy<br />
Agency (IAEA) and the European<br />
Union (EU) reviewed progress achieved<br />
in working together on a range of<br />
nuclear activities and agreed to further<br />
enhance cooperation during their<br />
seventh annual Senior Officials Meeting,<br />
in Luxembourg, this week.<br />
The talks provided a <strong>for</strong>um <strong>for</strong><br />
exchanging views on strengthening<br />
collaboration on nuclear safety, security,<br />
safeguards and nuclear research,<br />
innovation and training. In particular,<br />
the two organizations took note of<br />
progress they have made in cooperation<br />
on nuclear safety and security, as<br />
well as nuclear safeguards. The role of<br />
nuclear energy in addressing climate<br />
change, <strong>for</strong> those countries choosing<br />
to use it, was among the topics raised<br />
in the discussions.<br />
“We took stock of important developments<br />
in areas of common interest<br />
and steered the direction of our<br />
cooperation <strong>for</strong> the year ahead. The<br />
EU is one of our most relevant partners<br />
and its support <strong>for</strong> the IAEA’s<br />
mandate and work is valued,” said<br />
Cornel Feruta, Assistant Director General,<br />
Chief Coordinator <strong>for</strong> the IAEA.<br />
“<strong>Nuclear</strong> safety and security remain<br />
a major priority in the EU”, said<br />
Gerassimos Thomas, Deputy Director<br />
General in the Directorate-General <strong>for</strong><br />
Energy of the European Commission.<br />
“In 2018, the EU completed its first<br />
ever topical peer review on ageing<br />
management of nuclear power plants<br />
and research reactors under the<br />
amended <strong>Nuclear</strong> Safety Directive.”<br />
To support continuous safety improvements,<br />
the EU would continue<br />
to support the IAEA’s peer review services<br />
IRRS and ARTEMIS, which were<br />
being widely used by EU Member<br />
States to fulfil their legal obligations<br />
on nuclear safety and waste management.<br />
Developments related to Small<br />
Modular Reactors (SMRs), in particular<br />
regulatory aspects, were also<br />
discussed.<br />
EU support <strong>for</strong> a variety of IAEA<br />
activities has delivered consistent and<br />
concrete results over the past year.<br />
Officials commended the long-standing<br />
and fruitful cooperation under the<br />
Instrument <strong>for</strong> <strong>Nuclear</strong> Safety Cooperation<br />
and in the Regulatory Cooperation<br />
Forum. Joint ef<strong>for</strong>ts to address<br />
environmental remediation in Central<br />
Asia will continue following the successful<br />
donors’ conference in 2018.<br />
The EU reiterated its support <strong>for</strong><br />
the IAEA’s role in verifying and monitoring<br />
the implementation of Iran’s<br />
nuclear-related commitments under<br />
the Joint Comprehensive Plan of<br />
Action (JCPOA).<br />
During the talks, the EU and the<br />
IAEA agreed to further strengthen<br />
cooperation in training as well as<br />
research and development. In this<br />
context, they welcomed progress<br />
in advancing activities on nuclear<br />
applications under the Practical<br />
News
All results are from a survey of 2,061 people, conducted on behalf of the <strong>Nuclear</strong> Industry Association by YouGov, 29 November to 6 December2018<br />
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
Arrangements over the second year of<br />
their implementation.<br />
The EU reaffirmed its support <strong>for</strong><br />
the IAEA’s 2018-2021 <strong>Nuclear</strong> Security<br />
Plan, highlighting the importance of<br />
the universalisation and implementation<br />
of the Amendment to the Convention<br />
on the Physical Protection of<br />
<strong>Nuclear</strong> Material (A/CPPNM). Implementation<br />
of the EU Council Decisions<br />
in support of IAEA’s activities on<br />
nuclear security was also discussed.<br />
The two sides also reviewed cooperation<br />
on technical matters in the field of<br />
nuclear security.<br />
Officials reviewed progress on the<br />
implementation of nuclear safeguards<br />
in EU Member States and on the European<br />
Commission Safeguards Support<br />
Programme to the IAEA.<br />
The next Senior Officials Meeting<br />
is expected to take place in Vienna in<br />
early 2020<br />
| | www.iaea.org<br />
Did you miss the NEA webinar<br />
on the true costs of decarbonisation?<br />
(nea) The NEA hosted a webinar on<br />
17 January to preview the findings<br />
from the report The Costs of Decarbonisation:<br />
System Costs with High<br />
Shares of <strong>Nuclear</strong> and Renewables.<br />
The webinar featured introductory<br />
remarks by the OECD Secretary-<br />
General Ángel Gurría and NEA<br />
Director- General Magwood, who led a<br />
discussion on the importance of<br />
system costs in assessing the overall<br />
costs of the energy transitions under<br />
way. If you missed the live webcast,<br />
the video recording is available at<br />
oe.cd/nea‐system‐costs‐webinar‐2019<br />
| | www.oecd-nea.org<br />
<strong>Nuclear</strong> Industry Association<br />
publishes 2018 public polling<br />
(niauk) New research, carried out <strong>for</strong><br />
the <strong>Nuclear</strong> Industry Association by<br />
YouGov has revealed what the public<br />
thinks about nuclear energy.<br />
The 2018 polling data has found<br />
that 72% of people support nuclear as<br />
part of a low carbon energy mix. In<br />
addition, nuclear is seen as the most<br />
secure <strong>for</strong> keeping the lights on, with<br />
35% agreeing it is the most secure, followed<br />
by 16% <strong>for</strong> solar, and 13% <strong>for</strong><br />
gas and offshore wind respectively.<br />
The 2008 Climate Change Act established<br />
a legally binding climate<br />
change target aiming to reduce the<br />
UK’s emissions by at least 80% by<br />
2050. However, the research showed<br />
that 73% of people agreed the government<br />
should be doing more to combat<br />
carbon emissions.<br />
When asked about small reactors,<br />
two in five of those asked agreed that<br />
they could play a role in tackling climate<br />
change, and 45% agreed they<br />
could increase energy security.<br />
The research also showed nuclear<br />
is considered the best <strong>for</strong> job creation<br />
and investment, when compared to<br />
other energy sources.<br />
| | www.niauk.org<br />
Reactors<br />
NIA Polling:<br />
What the public think<br />
YouGov, on behalf of the <strong>Nuclear</strong> Industry Association, has carried out polling to find<br />
out what the public think about nuclear. Here are the findings of the 2018 research.<br />
More people support nuclear as<br />
part of a low carbon energy mix<br />
<strong>Nuclear</strong> energy is ranked highest<br />
<strong>for</strong> job creation and investment<br />
<strong>Nuclear</strong> Industry Association is a company limited by guarantee registered in England No. 2804518.<br />
Registered Office: 5 th Floor, Tower House, 10 Southampton Street, London WC2E 7HA<br />
<strong>Nuclear</strong> energy is seen<br />
as most secure <strong>for</strong><br />
keeping the lights on<br />
Most agree government<br />
should be doing more to<br />
combat CO 2 emissions<br />
45% agree, SMRs<br />
could increase<br />
energy security<br />
Two in five agree<br />
SMRs could tackle<br />
climate change<br />
Men favour new build<br />
more than women<br />
NIAUK.ORG<br />
| | <strong>Nuclear</strong> Industry Association publishes 2018<br />
public polling<br />
40 years after Three Mile Island,<br />
nuclear plants are among the<br />
safest U.S. Facilities<br />
(nei) March 28 marks 40 years since<br />
the accident that damaged the core of<br />
the Three Mile Island (TMI) 2 nuclear<br />
reactor. The event was caused by a<br />
combination of equipment failure and<br />
the inability of plant operators to<br />
understand the reactor’s condition at<br />
certain times during the event.<br />
The TMI accident was a cultural<br />
touchstone <strong>for</strong> the nation and a turning<br />
point <strong>for</strong> the industry. And while there<br />
were no reported injuries or adverse<br />
health effects from the accident, our<br />
industry learned crucial lessons from<br />
that day and has continued to enhance<br />
the safety of our plants year after year.<br />
As a result, safety is in the DNA of<br />
every U.S. nuclear plant. By a variety<br />
of metrics – rate of human error, worker<br />
injury or equipment failure, number<br />
of unplanned shutdowns and level<br />
of occupational exposure – plant operations<br />
are smooth, stable and smart.<br />
<strong>Nuclear</strong> plants pursue excellence<br />
All companies operating power reactors<br />
have adopted a shared safety model<br />
and <strong>for</strong>med an independent safety<br />
organization, the Institute of <strong>Nuclear</strong><br />
<strong>Power</strong> Operations, to per<strong>for</strong>m frequent<br />
in-depth audits of all the reactors including<br />
peer audits, in which operators<br />
of similar plants travel from site to site<br />
to critically examine each other’s practices,<br />
successes and challenges.<br />
Additionally, plant executives brief<br />
each other on their malfunctions, personnel<br />
errors and other events and<br />
critique each other’s approach to operations.<br />
The plants still adhere to a strict<br />
code of regulations from the U.S.<br />
<strong>Nuclear</strong> Regulatory Commission, but<br />
the peer-to-peer interactions are more<br />
comprehensive and promote a level of<br />
safety and excellence in operations far<br />
beyond what the government requires.<br />
In fact, the Electric <strong>Power</strong> Research<br />
Institute (EPRI) found that the risks<br />
posed to public health and safety from<br />
nuclear plants are much lower than<br />
previously understood. While studies<br />
in the 1980s and 1990s showed plants<br />
had operated at a relatively modest<br />
margin of safety, a recent EPRI study<br />
shows that U.S. plants are nearly 100<br />
times more safe than the NRC’s own<br />
safety goals.<br />
<strong>Nuclear</strong> plants are well-run<br />
Highly trained experts run America’s<br />
98 nuclear plants. With the NRC’s oversight<br />
and layers of safety precautions, a<br />
nuclear plant is one of the safest industrial<br />
environments in the United States.<br />
Plant workers are well- qualified: Reactor<br />
operators must hold federal licenses<br />
that require extensive training to<br />
obtain and they typically spend one<br />
week out of every five in training.<br />
Following the accident at Three<br />
Mile Island 2, the industry <strong>for</strong>med the<br />
National Academy <strong>for</strong> <strong>Nuclear</strong> Training<br />
to promote the highest levels of training<br />
program excellence and consistency<br />
across the industry. Every four<br />
years nuclear power plants are required<br />
to demonstrate high standards in their<br />
training programs to maintain program<br />
accreditation by the academy.<br />
Plants also have training simulators,<br />
which are exact duplicates of control<br />
rooms, but connected to a computer,<br />
not a reactor. That allows the operators<br />
to practice responses to postulated accidents<br />
that cannot be run on a real reactor,<br />
similar to jet pilots who practice<br />
engine failures or instrument malfunctions<br />
on a simulated airliner.<br />
<strong>Nuclear</strong> plants have evolved<br />
since 1979<br />
Innovation drives the nuclear industry.<br />
These plants may look the same<br />
on the outside, but throughout their<br />
operation, they are continuously<br />
235<br />
NEWS<br />
News
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
236<br />
NEWS<br />
* The Loviisa nuclear<br />
power plant consists<br />
of two pressurized<br />
water reactors with<br />
an installed net<br />
capacity of 507 megawatt<br />
each. It is situated<br />
on the south<br />
coast of Finland.<br />
Loviisa 1 started<br />
commercial operation<br />
in 1977, Loviisa 2<br />
followed in 1980.<br />
upgraded with the latest technology<br />
and monitored <strong>for</strong> optimal<br />
per<strong>for</strong>mance.<br />
By the time a facility seeks to<br />
extend its operating license with<br />
the NRC beyond 40 years –<br />
because of improvements to<br />
turbines, pumps, instrumentation<br />
and other components – the<br />
plants are extensively updated.<br />
Through equipment upgrades,<br />
many plants have been<br />
able to raise the amount of<br />
power they produce. These<br />
improvements, along with other efficiencies,<br />
have helped plants spend<br />
more time generating elec tricity. The<br />
average capacity factor <strong>for</strong> all nuclear<br />
plants in 2018 was 92.3 percent,<br />
which means that the plants were<br />
almost always up and making electricity.<br />
In contrast, in the 1970s,<br />
reactors on average operated less than<br />
60 percent of the hours in a year.<br />
The industry has not stopped<br />
improving either, as it continues to<br />
develop advanced technology like<br />
accident-tolerant fuels, which could<br />
further boost plant per<strong>for</strong>mance,<br />
increase safety and reduce costs.<br />
<strong>Nuclear</strong> plants are prepared <strong>for</strong><br />
the worst<br />
The operators at every nuclear plant<br />
prepare detailed plans with one goal<br />
in mind: to protect their communities<br />
and employees.<br />
These plans meet requirements<br />
set by the NRC and the Federal<br />
Emergency Management Agency. Plant<br />
workers conduct training and drills<br />
every month, and every two years they<br />
test their plans with state and local<br />
government agencies and the NRC.<br />
Emergency plans are also updated<br />
based on emerging issues. After the<br />
terrorist attacks of Sept. 11, the<br />
industry re-evaluated its plans to cover<br />
a broader array of un<strong>for</strong>eseen events.<br />
Additionally, after the Fukushima accident<br />
in 2011, the industry stationed<br />
more backup safety equipment at<br />
plants and regional depots. The FLEX<br />
strategy made about 1,500 pieces of<br />
additional equipment, from nozzles to<br />
generators, available to every nuclear<br />
plant in case of an emergency.<br />
<strong>Nuclear</strong> plants don’t just provide<br />
more than 55 percent of carbon-free<br />
electricity in the United States. They<br />
also are among the safest and most<br />
secure industrial facilities in the<br />
country. And 40 years after the<br />
accident at Three Mile Island, nuclear<br />
energy remains the safest and cleanest<br />
<strong>for</strong>m of baseload power generation.<br />
| | www.nei.org<br />
| | Framatome. Innovation: Robotics<br />
Company News<br />
Framatome.<br />
Innovation: Robotics<br />
(framatome) They go by names such as<br />
Charli, Eloise, Pelican or Forerunner<br />
and they’ve joined the ranks at<br />
Framatome to lend their iron hands to<br />
our teams and our customers’ teams.<br />
These robotic collaborators significantly<br />
improve safety in the field and<br />
enhance the per<strong>for</strong>mance of operations.<br />
They are the illustration of our<br />
innovation approach, aiming to offer<br />
safe and increasingly competitive<br />
nuclear energy.<br />
Driven by major technological<br />
advances, these robots represent years<br />
of productive, collective research and<br />
development. Experience some of this<br />
innovation in action: from the Saint-<br />
Marcel plant, where operators use robotic<br />
arms to facilitate strenuous work<br />
and reduce occupational risk, through<br />
to dismantling of the Superphénix reactor,<br />
where the laser robot Eloise has<br />
become quite simply… indispensable.<br />
Available in a variety of models,<br />
SUSI can examine most reactor coolant<br />
system components as well as reactor<br />
pressure vessel, reactor pressure vessel<br />
head, pumps, pressurizers and piping<br />
in nuclear power plants worldwide.<br />
SUSI also per<strong>for</strong>ms visual ultrasonic<br />
inspections of baffle bolts. Plus,<br />
it can serve as a gripping device to<br />
retrieve <strong>for</strong>eign objects. In addition,<br />
the robot can be calibrated under water<br />
at any time during the inspection.<br />
A separate satellite camera system<br />
can be deployed with SUSI or on its<br />
own to further enhance inspection<br />
results in hard-to-reach areas.<br />
| | www.framatome.com<br />
Finland: Framatome successfully<br />
completes modification<br />
of Loviisa nuclear power<br />
plant’s Control rod instrumentation<br />
& control system<br />
Framatome has successfully modified<br />
the Preventive Protection System (PPS)<br />
at the Loviisa* nuclear power plant,<br />
operated by the Finnish utility Fortum.<br />
The Preventive Protection System uses<br />
control rods to monitor the reactor<br />
power and contributes to the safe operation<br />
of the plant. Implemen tation of<br />
the PPS is part of the modernization of<br />
the plant’s I&C system.<br />
The project started in 2016 when<br />
Fortum awarded Framatome the<br />
contract <strong>for</strong> the PPS and included the<br />
modification of the TELEPERM XS<br />
technology, originally delivered by<br />
Framatome in 2008 (Unit 1) and 2009<br />
(Unit 2).<br />
Framatome’s I&C teams prepared<br />
the required documentation, designed<br />
and engineered the system modification<br />
and per<strong>for</strong>med the final testing,<br />
installation and commissioning on site<br />
during the 2018 outage. These tasks<br />
are essential <strong>for</strong> the functionality of<br />
the entire system and are also mandatory<br />
<strong>for</strong> obtaining the licensing by<br />
the Finnish safety authority STUK.<br />
A joint team approach and close<br />
cooperation between Framatome and<br />
Fortum at all stages of the project<br />
were key to ensuring successful completion<br />
on time and to budget.<br />
“This successful modification<br />
project proves Framatome’s ability to<br />
provide I&C upgrades to different<br />
reactor types worldwide. Our<br />
TELEPERM XS I&C system is well<br />
known to Finnish operators and the<br />
authority STUK which is a perfect<br />
basis <strong>for</strong> further projects”, said<br />
Frédéric Lelièvre, Senior Executive<br />
Vice President in charge of Sales,<br />
Regional Plat<strong>for</strong>ms and the Instrumentation<br />
and Control Business Unit<br />
at Framatome.<br />
| | www.framatome.com<br />
GNS: Package design approval<br />
<strong>for</strong> CASTOR® MTR3<br />
(gns) On 17 January 2019, the German<br />
Federal Office <strong>for</strong> the Safety of <strong>Nuclear</strong><br />
Waste Management (Bundesamt<br />
für kerntechnische Entsorgungssicherheit/BfE)<br />
issued the package design<br />
approval certificate <strong>for</strong> the transport<br />
and storage cask CASTOR® MTR3 as<br />
type B(U)F packaging. The cask was<br />
developed by GNS Gesellschaft für<br />
Nuklear-Service mbH especially <strong>for</strong><br />
spent fuel elements from research<br />
reactors. The approval complies with<br />
the internationally valid regulations<br />
of the <strong>International</strong> Atomic Energy<br />
Agency (IAEA) <strong>for</strong> the safe transport<br />
of radioactive materials.<br />
The CASTOR® MTR3 will initially<br />
be used <strong>for</strong> the transport and storage<br />
of spent fuel elements of the research<br />
reactor FRM II of the TU Munich. In<br />
addition, the cask will be able to<br />
News
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
accommodate further fuel assembly<br />
types from other research reactors<br />
(e.g. TRIGA, MTR) with the use of<br />
individually adapted fuel baskets.<br />
The casks, which are about 160 cm<br />
high and weigh 16 t, essentially consist<br />
of a body made of ductile cast iron, a<br />
basket <strong>for</strong> accommodating the fuel<br />
elements and a double lid system<br />
with metallic sealings. These design<br />
features ensure safe containment the<br />
radioactive materials both during<br />
transport and subsequent storage.<br />
The comparatively small CASTOR®<br />
MTR3 casks are made of the same<br />
materials and have the same design<br />
features and safety functions as<br />
the CASTOR® casks from GNS <strong>for</strong><br />
fuel assemblies from commercial<br />
power plants, which are up to four<br />
times larger and have already<br />
proven their reliability well over 1000<br />
times.<br />
| | www.gns.de<br />
Uranium Prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />
140.00<br />
120.00<br />
100.00<br />
80.00<br />
60.00<br />
40.00<br />
20.00<br />
0.00<br />
Year<br />
Yearly average prices in real USD,<br />
base: US prices (1982 to1984) *<br />
1980 1985 1990 1995 2000 2005 2010 2015 2019<br />
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />
Separative work: Spot market price range [USD*/kg UTA]<br />
180.00<br />
160.00<br />
140.00<br />
120.00<br />
100.00<br />
80.00<br />
60.00<br />
40.00<br />
20.00<br />
| | Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.<br />
In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />
0.00<br />
Jan.<br />
Year<br />
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019<br />
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />
) 1<br />
Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />
140.00<br />
120.00<br />
100.00<br />
80.00<br />
60.00<br />
40.00<br />
20.00<br />
0.00<br />
Jan.<br />
Year<br />
) 1<br />
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019<br />
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />
Conversion: Spot conversion price range [USD*/kgU]<br />
16.00<br />
14.00<br />
12.00<br />
10.00<br />
8.00<br />
6.00<br />
4.00<br />
2.00<br />
0.00<br />
Jan.<br />
Year<br />
) 1<br />
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019<br />
* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />
237<br />
NEWS<br />
Market data<br />
| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.<br />
)1<br />
In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />
(All in<strong>for</strong>mation is supplied without<br />
guarantee.)<br />
<strong>Nuclear</strong> Fuel Supply<br />
Market Data<br />
In<strong>for</strong>mation in current (nominal)<br />
U.S.-$. No inflation adjustment of<br />
prices on a base year. Separative work<br />
data <strong>for</strong> the <strong>for</strong>merly “secondary<br />
market”. Uranium prices [US-$/lb<br />
U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />
0.385 kg U]. Conversion prices [US-$/<br />
kg U], Separative work [US-$/SWU<br />
(Separative work unit)].<br />
2014<br />
pp<br />
Uranium: 28.10–42.00<br />
pp<br />
Conversion: 7.25–11.00<br />
pp<br />
Separative work: 86.00–98.00<br />
2015<br />
pp<br />
Uranium: 35.00–39.75<br />
pp<br />
Conversion: 6.25–9.50<br />
pp<br />
Separative work: 58.00–92.00<br />
2016<br />
pp<br />
Uranium: 18.75–35.25<br />
pp<br />
Conversion: 5.50–6.75<br />
pp<br />
Separative work: 47.00–62.00<br />
2017<br />
pp<br />
Uranium: 19.25–26.50<br />
pp<br />
Conversion: 4.50–6.75<br />
pp<br />
Separative work: 39.00–50.00<br />
2018<br />
January to June 2018<br />
pp<br />
Uranium: 21.75–24.00<br />
pp<br />
Conversion: 6.00–9.50<br />
pp<br />
Separative work: 35.00–42.00<br />
February 2018<br />
pp<br />
Uranium: 21.25–22.50<br />
pp<br />
Conversion: 6.25–7.25<br />
pp<br />
Separative work: 37.00–40.00<br />
March 2018<br />
pp<br />
Uranium: 20.50–22.25<br />
pp<br />
Conversion: 6.50–7.50<br />
pp<br />
Separative work: 36.00–39.00<br />
April 2018<br />
pp<br />
Uranium: 20.00–21.75<br />
pp<br />
Conversion: 7.50–8.50<br />
pp<br />
Separative work: 36.00–39.00<br />
May 2018<br />
pp<br />
Uranium: 21.75–22.80<br />
pp<br />
Conversion: 8.00–8.75<br />
pp<br />
Separative work: 36.00–39.00<br />
June 2018<br />
pp<br />
Uranium: 22.50–23.75<br />
pp<br />
Conversion: 8.50–9.50<br />
pp<br />
Separative work: 35.00–38.00<br />
July 2018<br />
pp<br />
Uranium: 23.00–25.90<br />
pp<br />
Conversion: 9.00–10.50<br />
pp<br />
Separative work: 34.00–38.00<br />
August 2018<br />
pp<br />
Uranium: 25.50–26.50<br />
pp<br />
Conversion: 11.00–14.00<br />
pp<br />
Separative work: 34.00–38.00<br />
September 2018<br />
pp<br />
Uranium: 26.50–27.50<br />
pp<br />
Conversion: 12.00–13.00<br />
pp<br />
Separative work: 38.00–40.00<br />
October 2018<br />
pp<br />
Uranium: 27.30–29.00<br />
pp<br />
Conversion: 12.00–15.00<br />
pp<br />
Separative work: 37.00–40.00<br />
November 2018<br />
pp<br />
Uranium: 28.00–29.25<br />
pp<br />
Conversion: 13.50–14.50<br />
pp<br />
Separative work: 39.00–40.00<br />
December 2018<br />
pp<br />
Uranium: 28.50–29.20<br />
pp<br />
Conversion: 13.50–14.50<br />
pp<br />
Separative work: 40.00–41.00<br />
2019<br />
January 2019<br />
pp<br />
Uranium: 28.70–29.10<br />
pp<br />
Conversion: 13.50–14.50<br />
pp<br />
Separative work: 41.00–44.00<br />
| | Source: Energy Intelligence<br />
www.energyintel.com<br />
Cross-border Price<br />
<strong>for</strong> Hard Coal<br />
Cross-border price <strong>for</strong> hard coal in<br />
[€/t TCE] and orders in [t TCE] <strong>for</strong><br />
use in power plants (TCE: tonnes of<br />
coal equivalent, German border):<br />
2012: 93.02; 27,453,635<br />
2013: 79.12, 31,637,166<br />
2014: 72.94, 30,591,663<br />
2015: 67.90; 28,919,230<br />
2016: 67.07; 29,787,178<br />
2017: 91.28, 25,739,010<br />
2018<br />
I. quarter: 89.88; 5,838,003<br />
II. quarter: 88.25; 4,341,359<br />
III. quarter: 100.79; 5,135,198<br />
IV. quarter: 100.91; 6,814,244<br />
| | Source: BAFA, some data provisional,<br />
www.bafa.de<br />
News
<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />
238<br />
NUCLEAR TODAY<br />
John Shepherd is a<br />
journalist who has<br />
covered the nuclear<br />
industry <strong>for</strong> the past<br />
20 years and is<br />
currently editor-in-chief<br />
of UK-based Energy<br />
Storage Publishing.<br />
Reference links:<br />
Testimony from<br />
Dr Fatih Birol<br />
https://bit.ly/2EuwpsN<br />
EPRI study<br />
https://bit.ly/2VPA5MQ<br />
Events of the Past Need Not Dictate<br />
an Industry’s Future<br />
The US will have reached an important milestone in March of this year, when it marks 40 years since the accident that<br />
damaged the core of the Three Mile Island (TMI) 2 nuclear reactor.<br />
As I write, there has been no public relations offensive of<br />
note by nuclear energy opponents in the build up to the<br />
memory of what happened in Pennsylvania on 28 March<br />
1979 – which is perhaps testament to how the nuclear<br />
debate has moved on since.<br />
For the record, the event was caused by a combination<br />
of equipment failure and the inability of plant operators to<br />
understand the reactor’s condition at certain times during<br />
the event.<br />
And while there were no reported injuries or adverse<br />
health effects from the accident, TMI was a turning point<br />
<strong>for</strong> the industry in the US and arguably worldwide.<br />
In the US, the event led to the establishment of the<br />
Atlanta- based Institute of <strong>Nuclear</strong> <strong>Power</strong> Operations and<br />
the <strong>for</strong>mation of what is today the <strong>Nuclear</strong> Energy Institute.<br />
Despite its setbacks, nuclear has powered ahead and is<br />
increasingly recognised <strong>for</strong> its durability, reliability, safety<br />
and sustainability in a world that sometimes seems to have<br />
lost sight of the need <strong>for</strong> real energy security while<br />
pursuing fads of the day. Indeed, a study published in 2018<br />
by the Electric <strong>Power</strong> Research Institute (EPRI) indicated<br />
that US plants are nearly 100 times more safe than the<br />
safety goals set by the US <strong>Nuclear</strong> Regulatory Commission.<br />
One welcome intervention came recently from the head<br />
of the Paris-based <strong>International</strong> Energy Association (IEA),<br />
Dr Fatih Birol, who gave testimony to the US Senate Energy<br />
and Natural Resources Committee on prospects <strong>for</strong> global<br />
energy markets, including the role of the US.<br />
In his wide-ranging testimony, no one could be in<br />
any doubt about the relevance – and the importance – of<br />
nuclear energy now and into the future.<br />
Birol said nuclear “should be seen as a key asset in the<br />
US (which) has been a leader in nuclear power generation<br />
technology <strong>for</strong> 60 years, alongside France, Japan and<br />
Russia”.<br />
<strong>Nuclear</strong> still generates “twice as much low-carbon<br />
electricity in the US as wind and solar combined”, Birol<br />
said, adding that nuclear’s baseload capacity in the country<br />
also played a “major role in maintaining electricity<br />
security”. He said this was especially true in the northern<br />
regions, which “experience spikes in electricity and gas<br />
demand during extreme cold spells like the recent polar<br />
vortex – times when solar production can be challenged”.<br />
But Birol pointed out that China is set to be the “new<br />
leader” in terms of nuclear energy if US policies do not<br />
change.<br />
“China has rapidly developed nuclear power over the<br />
past two decades, increasing from just three operating<br />
reactors in 2000 to 46 at the end of last year,” Birol said.<br />
“<strong>Nuclear</strong> capacity in China is set to overtake that of the US<br />
within 10 years.”<br />
According to the IEA chief, “effective policy action” is<br />
needed in the US if it is to avoid the loss of “a substantial<br />
proportion of its (nuclear) capacity”. “From my vantage<br />
point, this would be detrimental to both energy security<br />
and clean energy objectives.”<br />
Birol said American innovation could also play a leading<br />
role in the development of small modular reactors (SMRs),<br />
pointing out that there was “significant international<br />
appetite <strong>for</strong> innovative approaches to nuclear power,<br />
including SMRs”, which could offer significant benefits,<br />
such as factory fabrication, flexibility in where they can be<br />
deployed and lower upfront investment.<br />
The US has to continue to “accelerate innovation in new<br />
nuclear technologies” such as SMRs to safeguard the long<br />
term contribution of nuclear, Birol said.<br />
However, “a first priority should be to safeguard the<br />
existing fleet”. Birol told legislators: “<strong>Nuclear</strong> plant lifetimes<br />
should be extended as long as safety considerations<br />
allow. In large parts of the US this presents a challenge, as<br />
wholesale markets don’t value the energy security and<br />
clean energy contribution of nuclear.”<br />
This was the third consecutive time the IEA’s executive<br />
director has given testimony to the Senate committee, so<br />
his remarks should not be seen as a dramatic intervention,<br />
particularly in terms of nuclear, because the agency’s brief<br />
is to cover the full spectrum of energy issues in its 30<br />
member countries and beyond.<br />
What is notable, however, is that nuclear is rightly<br />
recognised by the IEA as a valued and much-needed<br />
contributor to the international energy mix.<br />
From a strictly personal point of view, I found it<br />
refreshing to hear the head of an esteemed international<br />
body talk about nuclear in such terms. I’ve heard no such<br />
endorsement <strong>for</strong> some time now in the UK (although I<br />
stand to be corrected). By the same token, I don’t recall any<br />
public airing of note of late on the benefits of nuclear in the<br />
European Parliament, regardless of that body’s largely<br />
consultative role in such matters.<br />
<strong>Nuclear</strong> continues to enjoy strong political support in<br />
other countries, such as China (as Birol mentioned),<br />
Russia, and nuclear newcomer the United Arab Emirates.<br />
Policies in those countries are driven of course by a more<br />
‘top-down approach’, but that does nothing to dilute the<br />
value of nuclear in terms of energy security and its<br />
contribution to supporting a nation’s economic well being.<br />
Meanwhile, the Japan Atomic Industrial Forum<br />
reported that two ‘nuclear recruiting’ events were held in<br />
the country recently, attended by students expecting to<br />
graduate in 2020 and looking to start their careers.<br />
Memories of the Fukushima-Daiichi accident have not<br />
faded in Japan, but lessons have been learned and the<br />
country is moving on – and preparing <strong>for</strong> a new nuclear<br />
generation at the industry’s helm.<br />
We would do well to reflect on some words from Sir<br />
Winston Churchill if the nuclear industry is to <strong>for</strong>ge ahead<br />
in helping to resolve the energy challenges of the future:<br />
“A pessimist sees the difficulty in every opportunity; an<br />
optimist sees the opportunity in every difficulty.”<br />
<strong>Nuclear</strong> Today<br />
Events of the Past Need Not Dictate an Industry’s Future ı John Shepherd
Kommunikation und<br />
Training für Kerntechnik<br />
Export in der Praxis<br />
Seminar:<br />
Export kerntechnischer Produkte und Dienstleistungen<br />
– Chancen und Regularien<br />
In diesem Seminar lernen Sie die ausfuhrrechtlichen Grundlagen unter besonderer<br />
Berücksichtigung der neuen Dual-Use-Verordnung sowie die organisatorischen und<br />
operativen Rückwirkungen auf Unternehmen kennen.<br />
Sie erhalten einen umfangreichen Überblick über die internationalen Märkte, ausgewählte<br />
regionale Spezifika und die unterschiedlichen Zertifizierungsregime ISO und ASME.<br />
Seminarinhalte<br />
ı Ausfuhrrechtliche Grundlagen<br />
ı zentralen Ausfuhrbestimmungen für Produkte und Dienstleistungen<br />
ı Verfahrensschritte und Zeitabläufe im Antragsverfahren<br />
ı Veränderungen in der neuen Dual-Use-Verordnung<br />
ı Märkte und regionale Spezifika<br />
ı Die Welten von ISO und ASME<br />
ı Organisatorische Rückwirkungen des Exportgeschäfts<br />
Zielgruppe<br />
Das Seminar richtet sich an Fach- und Führungskräfte, Projektverantwortliche sowie Mitarbeiterinnen<br />
und Mitarbeiter in den Bereichen Außenwirtschaft/Exportkontrolle, Organisation,<br />
Qualitätsmanagement, Vertrieb, Marketing, Recht oder Personalwesen, welche künftig für den<br />
Export von Produkten, Dienstleistungen und Projekten verantwortlich sind.<br />
Maximale Teilnehmerzahl: 12 Personen<br />
Referenten<br />
Lily Kreuzer<br />
RA Kay Höft M. A.<br />
Dr. Ing. Wolfgang Steinwarz<br />
Wir freuen uns auf Ihre Teilnahme!<br />
ı ehem. Rechtsanwältin, Ausfuhrspezialistin<br />
ı Syndikusrechtsanwalt und Compliance-Verantwortlicher<br />
für Außenwirtschaftsrecht<br />
ı ehem. Geschäftsführer Technik,<br />
Siempelkamp Ingenieur und Service GmbH<br />
Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />
Termin<br />
2 Tage<br />
12. bis 13. Juni 2019<br />
Tag 1: 10:00 bis 18:00 Uhr<br />
Tag 2: 09:00 bis 12:45 Uhr<br />
Veranstaltungsort<br />
Geschäftsstelle der INFORUM<br />
Robert-Koch-Platz 4<br />
10115 Berlin<br />
Teilnahmegebühr<br />
998,– € ı zzgl. 19 % USt.<br />
Im Preis inbegriffen sind:<br />
ı Seminarunterlagen<br />
ı Teilnahmebescheinigung<br />
ı Pausenverpflegung,<br />
inkl. Mittagessen<br />
Kontakt<br />
INFORUM<br />
Verlags- und Verwaltungsgesellschaft<br />
mbH<br />
Robert-Koch-Platz 4<br />
10115 Berlin<br />
Petra Dinter-Tumtzak<br />
Fon +49 30 498555-30<br />
Fax +49 30 498555-18<br />
seminare@kernenergie.de
www.unserejahrestagung.de<br />
#50AMNT<br />
7. – 8. Mai 2019<br />
Estrel Convention Center Berlin, Deutschland<br />
Unsere Partner, Aussteller und Sponsoren<br />
› Partner<br />
› Weitere Aussteller, Sponsoren und Medienpartner<br />
Änderungen vorbehalten, weitere Unternehmen angekündigt.<br />
Standanmeldung und Registrierung www.amnt2019.com