08.04.2019 Views

atw - International Journal for Nuclear Power | 04.2019

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

nucmag.com<br />

2019<br />

4<br />

The Role of Resources<br />

and Reserves <strong>for</strong> the<br />

Global Energy Supply<br />

The New Radiation Protection<br />

Law (II): The Approval<br />

The <strong>Nuclear</strong> Fission Table<br />

in the Deutsches Museum<br />

ISSN · 1431-5254<br />

24.– €<br />

Register Now!<br />

50 Years KTG – 50 Years<br />

<strong>for</strong> Society and Technology


www.amnt2019.com<br />

#50AMNT<br />

7 – 8 May 2019<br />

Estrel Convention Center Berlin, Germany<br />

Who will you meet?<br />

AiNT • Alpiq • ASKETA • <strong>atw</strong> • August Alborn • Axpo <strong>Power</strong> • Baltic Scientific Instruments • Berthold Technologies • Beuth<br />

Hochschule für Technik Berlin • BGZ Gesellschaft für Zwischenlagerung • BKW Energie • Blastrac • Brenk Systemplanung<br />

• British Embassy • Bundesanstalt für Material<strong>for</strong>schung und -prüfung • Bundesgesellschaft für Endlagerung • Chalmers<br />

University of Technology • City of Biblis • Cyprus <strong>International</strong> University • DAHER • DAtF • Department <strong>for</strong> <strong>International</strong><br />

Trade • Deutsche Gesellschaft für Zerstörungsfreie Prüfung • Deutscher Arbeitgeber Verband • Deutscher Bundestag •<br />

Deutsches Museum Munich • Deutsches Zentrum für Luft- und Raumfahrt • EDF • Eidgenössische Kommission für nukleare<br />

Sicherheit • Eidgenössisches Nuklearsicherheitsinspektorat • Elektriciteits- Produktiemaatschappij Zuid-Nederland N.V.<br />

• Embassy of the Czech Republic • EnBW Kernkraft • Energieanlagen Greifswald • Energus • ENGIE • Enrichment<br />

Technology Company • ETH Zürich • European Commission • European <strong>Nuclear</strong> Society • EWN Entsorgungswerk für<br />

Nuklearanlagen • Federal Ministry <strong>for</strong> Economic Affairs and Energy • Federal Ministry <strong>for</strong> Environment • FH Aachen •<br />

Forschungsinstitut für Kerntechnik und Energiewandlung • Forschungszentrum Jülich • Framatome • Fraunhofer ISE •<br />

French Alternative Energies and Atomic Energy Commission • FRM II • Gesellschaft für Anlagen- und Reaktorsicherheit<br />

• GNS Gesellschaft für Nuklear-Service • Helmholtz-Zentrum Dresden-Rossendorf • Helmholtz-Zentrum Geesthacht •<br />

Hochschule für Politik München • Hochschule Zittau/ Görlitz • IAF- Radioökölogie • Imperial College London • INFORUM<br />

• Institut für Demoskopie Allensbach • Institut für Festkörper- Kernphysik • <strong>International</strong> Irradiation Association • Joint<br />

Research Center • Karlsruher Institute of Technology • Kernkraft Gösgen-Däniken • Kernkraftwerk Biblis • Kernkraftwerk<br />

Brunsbüttel • Kernkraftwerk Isar • Kernkraftwerk Leibstadt • Kernkraftwerk Stade • Kompetenzverbund Kerntechnik<br />

• Kompetenzzentrum Ost für Kerntechnik • Kraftanlagen Heidelberg • Krantz • KROHNE Messtechnik • KSB • KSG<br />

Kraftwerks-Simulator-Gesellschaft • KTG • LaGuardia & Associates • LTZ- Consulting • Mammoet • Marubeni Utility<br />

Services • Materialprüfungsanstalt Universität Stuttgart • Mauell • Ministerium für Energiewende • Mirion Technologies<br />

• National Citizens’ Oversight Committee • National Institute <strong>for</strong> Physics and <strong>Nuclear</strong> Engineering • Nawah Energy<br />

Company • NKM NOELL Special Cranes • <strong>Nuclear</strong> Energy Agency • <strong>Nuclear</strong> Engineering <strong>International</strong> • <strong>Nuclear</strong><br />

Regulatory Commission • <strong>Nuclear</strong> Veterans • <strong>Nuclear</strong> Waste Management Commission • NUKEM • Nuklear<strong>for</strong>um<br />

Schweiz • Orano • Pinsent Masons • PreussenElektra • pro-beam • Reactor Safety Commission • RIS Industrie- und<br />

Kraftwerksservice • Rosatom • Roschiwal + Partner Ingenieur • Ruhr-Universität Bochum • RWE • SAT Kerntechnik<br />

• Schule für ABC-Abwehr und Gesetzliche Schutzaufgaben • Siemens • Siempelkamp • ŠKODA JS • STEAG Energy<br />

Services • Straub Werke • Taipei Economic and Cultural Office in Austria • Technische Universität Dresden • Technische<br />

Universität Kaiserslautern • Technische Universität München • Tractebel Engineering • TÜV NORD • TÜV SÜD •<br />

ÚJV Řež • Uniper • United States <strong>Nuclear</strong> Regulatory Commission • Universitätsklinikum Hamburg-Eppendorf •<br />

University of Fukui • University of Stuttgart • University of Technology Slovakia • URENCO • Vattenfall • Verband der<br />

TÜV • VGB <strong>Power</strong>Tech • VKTA • VPC • Westinghouse • Wirtschaftsverband Kernbrennstoff-Kreislauf und Kerntechnik •<br />

Women in <strong>Nuclear</strong> • Wood • World <strong>Nuclear</strong> Association • WTI Wissenschaftlich Technische-Ingenieurberatung • Young<br />

Generation Network • Zukunftsinstitut • ZWILAG<br />

Register now at<br />

› www.amnt2019.com<br />

In alphabetical order. Subject to change.<br />

Celebrate with us our 50 th anniversary!


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

EPR – No Swan Song<br />

Dear reader, At the end of last year, the EPR was already the subject of this editorial. In the course of 2018, the first<br />

EPR to be commissioned worldwide was Taishan, China, one of five Generation III+ nuclear power plants commissioned.<br />

Another identical unit is about to be completed during 2019. Generation III+ reactors combine the technically wellengineered<br />

and successful concepts of power reactor developments of the 1970s to 1990s with additional safety features<br />

and economic improvements.<br />

The EPR, originally known as the “European Pressurized<br />

Reactor”, today known as the “Evolutionary <strong>Power</strong><br />

Reactor”, is the most powerful nuclear and power plant in<br />

the world. It is the consistent result of a successful<br />

collaboration of thousands of employees from all areas of<br />

science and technology and companies from several<br />

countries. The EPR has its origins in the successful<br />

construction lines <strong>for</strong> pressurized water reactors of the<br />

then French Framatome and German Siemens/KWU.<br />

Both nuclear power plant manufacturers, including<br />

predecessor companies, had built and commissioned<br />

around 100 light water reactors since the 1960s. On the<br />

part of Siemens/KWU, the Konvoi plants, Emsland, Isar 2<br />

and Neckar westheim II, which were build between 1982<br />

and 1988/89, in some cases even with a shorter construction<br />

period than planned, deserve particular mention.<br />

On the Framatome side, the N4 plants in Civaux and<br />

Chooz with a gross electrical output of 1561 MW <strong>for</strong>med a<br />

cornerstone of reactor development.<br />

In the mid-1990s, when the expansion programmes <strong>for</strong><br />

nuclear power plants in Western countries were virtually<br />

completed <strong>for</strong> the time being due to the saturation of the<br />

generation market and the deliberate influence of political<br />

interest groups on the public debate surrounding the<br />

energy industry, the idea of designing a reactor concept <strong>for</strong><br />

the 21 st century in a Franco-German cooperation took<br />

shape. Framatome and Siemens as manufacturer as well as<br />

EDF and the companies operating the German nuclear<br />

power plants agreed to develop the “Basic Design” <strong>for</strong><br />

the EPR.<br />

The EPR reached its first milestones in Finland and<br />

France in 2005 and 2007 with the launch of the Olkiluoto<br />

3 and Flamanville 3 projects. Germany had ceased to be a<br />

location with the signing of the 2001 nuclear consensus<br />

agreement. It should not be overlooked that project risks<br />

and cost increases <strong>for</strong> these two plants turned out to be<br />

much higher than expected during the approval phases.<br />

The extent to which individual, location-dependent<br />

reasons have to be taken into account cannot currently be<br />

estimated. It should also not be overlooked that the Taishan<br />

project in China was started four years later and is now in<br />

commercial operation after 9 years of construction, ahead<br />

of the plants in Olkiluoto and Flamanville. Considerable<br />

construction delays seem to be developing into a cultural<br />

problem in western industrial countries.<br />

consumption, this is about 17 % lower than with other<br />

nuclear fuel strategies to date.<br />

pp<br />

Space requirement: The space requirement <strong>for</strong> the<br />

entire power plant is around 1250 square meters per<br />

megawatt and thus 150 times lower than <strong>for</strong> freestanding<br />

photovoltaic plants.<br />

Technology<br />

pp<br />

Technically projected operating life: 60 years, today<br />

common <strong>for</strong> existing plants with originally planned<br />

operating lives of 30 to 40 years, i.e. with prospects <strong>for</strong><br />

operation beyond that.<br />

pp<br />

The reactor core has a volume of roughly 50 cubic<br />

metres, which is comparable to the volume of a 40-foot<br />

sea container; in other words, the reactor core<br />

continuously generates electricity <strong>for</strong> the supply of an<br />

EU budget in about 15 cubic centimetres.<br />

Safety and security<br />

pp<br />

Four independent systems ensure safe operation and<br />

also protection in exceptional situations such as earthquakes<br />

and floods, including beyond-design-basis<br />

events.<br />

pp<br />

The core damage frequency <strong>for</strong> the EPR is in the range<br />

of approx. 10 -7 and thus more than a power of ten, i.e. a<br />

factor of 10 lower than that recommended by the<br />

<strong>International</strong> Atomic Energy Agency (IAEA) <strong>for</strong> new<br />

plants.<br />

pp<br />

A core catcher provides additional protection <strong>for</strong><br />

the foundation of the reactor building and would<br />

stabilise it in the reactor building in the event of a core<br />

meltdown.<br />

pp<br />

An internal spraying system is an additional measure to<br />

ensure the long-term integrity of the reactor building in<br />

case of accidents.<br />

Honour to whom honour is due: The EPR, a joint European<br />

development project on the way to late, but not too<br />

late, international success – also beyond the year 2022:<br />

according to the current announcement of the French<br />

President Emmanuel Macron, a decision is to be made<br />

around the year 2022 as to whether further new nuclear<br />

power plants should be built in France on the basis of the<br />

EPR, the German-French cooperation.<br />

183<br />

EDITORIAL<br />

Some key figures<br />

on the concept of the EPR reactor:<br />

Resources<br />

pp<br />

Avoidance of around 10 million tonnes of carbon<br />

dioxide emissions per year (related to the electricity<br />

mix of countries using nuclear energy worldwide) and<br />

avoidance of further emissions via air and water.<br />

pp<br />

Electricity supply to around 3 million households (with<br />

average EU consumption).<br />

pp<br />

Uranium requirement of around 20 tonnes of enriched<br />

nuclear fuel per year. In terms of natural uranium<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

Editorial<br />

EPR – No Swan Song


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

EDITORIAL 184<br />

EPR – kein Abgesang<br />

Liebe Leserin, lieber Leser, zum Ende des vergangenen Jahres war der EPR schon einmal Thema dieses<br />

Editorials. Im Verlaufe des Jahres 2018 war der erste weltweit in Betrieb genommene EPR im chinesischen Taishan,<br />

ein weiterer baugleicher Block befindet sich vor seiner Fertigstellung, eines von fünf in Betrieb genommenen Kernkraftwerken<br />

der Generation III+. Generation III+ Reaktoren kombinieren die technisch ausgereiften erfolgreichen<br />

Konzepte der Leistungsreaktorentwicklungen der 1970er- bis 1990er-Jahre mit zusätzlichen Sicherheitsmerkmalen und<br />

wirtschaftlichen Verbesserungen.<br />

Der EPR, ursprünglich im Original als „European<br />

Pressurized Reactor“ bezeichnet, heute „Evolutionary<br />

<strong>Power</strong> Reactor“, ist das leistungsstärkste Kernkraftwerk<br />

und Kraftwerk überhaupt der Welt. Er ist das konsequente<br />

Ergebnis einer erfolgreichen Zusammenarbeit von<br />

tausenden Beschäftigten aus allen Bereichen der Naturwissenschaften<br />

und Technik und Unternehmen aus<br />

mehreren Ländern. Seine Ursprünge hat der EPR in den<br />

erfolgreichen Baulinien für Druckwasserreaktoren der –<br />

damaligen – französischen Framatome und deutschen<br />

Siemens/KWU. Beide Kernkraftwerkshersteller, inklusive<br />

Vorgängergesellschaften, hatten seit den 1960er-Jahren<br />

rund 100 Leichtwasserreaktoren errichtet und in Betrieb<br />

genommen. Aufseiten von Siemens/KWU sind dabei<br />

insbesondere die Konvoi-Anlagen, Emsland, Isar 2 und<br />

Neckarwestheim II, zu nennen, die von 1982 bis 1988/89<br />

errichtet wurden, teils sogar mit kürzerer Bauzeit<br />

als vorgesehen. Aufseiten von Framatome bildeten<br />

die N4- Anlagen in Civaux und Chooz mit 1561 MW<br />

elektrischer Bruttoleistung einen Eckpunkt der Reaktorentwicklung.<br />

Mitte der 1990er-Jahre, als aus Gründen der energiewirtschaftlichen<br />

Rahmenbedingungen mit einer Sättigung<br />

des Erzeugungsmarktes und der gezielt beeinflussten<br />

öffentlichen Diskussionen durch politische Interessengruppen<br />

die Zubauprogramme für Kernkraftwerke in<br />

westlichen Ländern quasi vorerst abgeschlossen waren,<br />

nahm die Idee Gestalt an, in einer deutsch-französischen<br />

Kooperation ein Reaktorkonzept für das 21. Jahrhundert<br />

zu konzipieren. Framatome und Siemens als Hersteller<br />

sowie EDF und die deutschen Kernkraftwerke betreibenden<br />

Unternehmen vereinbarten dazu die Entwicklung<br />

des „Basic Designs“ für den EPR.<br />

Den erste Meilenstein erreichte der EPR in Finnland<br />

und Frankreich in den Jahren 2005 und 2007 mit dem<br />

Start der Projekte Olkiluoto 3 und Flamanville 3.<br />

Deutschland war mit Unterzeichnen der Atomkonsensvereinbarung<br />

von 2001 als Standort weggefallen. Es<br />

soll nicht übersehen werden, dass sich Projektrisiken und<br />

Kostensteigerungen für diese beiden Anlagen in den<br />

Genehmigungsphasen viel höher als erwartet herausgestellt<br />

haben. Inwieweit individuelle, standortabhängige<br />

Gründe dafür herangezogen werden müssen, lässt sich<br />

aktuell nicht abschätzen. Es soll ebenso wenig übersehen<br />

werden, dass das Projekt Taishan in China vier Jahre später<br />

in Angriff genommen wurde und jetzt, nach 9 Jahren<br />

Bauzeit in kommerziellem Betrieb ist, also noch vor den<br />

Anlagen in Olkiluoto und Flamanville. Erhebliche Bauzeitverzögerungen<br />

scheinen sich zu einem kulturellen<br />

Problem in westlichen Industrieländern zu entwickeln.<br />

weltweit Kernenergie nutzenden Staaten) und Vermeidung<br />

weiterer Emissionen über die Luft und das Wasser<br />

pp<br />

Versorgung von rund 3 Millionen Haushalten (mit dem<br />

Durchschnittsverbrauch der EU) mit Strom.<br />

pp<br />

Uranbedarf von rund 20 t angereichertem Kernbrennstoff<br />

pro Jahr. Bezogen auf den Natururanverbrauch liegt dieser<br />

rund 17 % niedriger als bei bisherigen anderen Kernbrennstoffstrategien.<br />

pp<br />

Flächenbedarf: Der Flächenbedarf für die gesamte Kraftwerksanlage<br />

liegt bei rund 1250 Quadratmeter pro Megawatt<br />

und damit z.B. um den Faktor 150 niedriger als bei<br />

Freiflächen-Photovoltaikanlagen.<br />

Technik<br />

pp<br />

Technisch projektierte Laufzeit: 60 Jahre, heute für bestehende<br />

Anlagen mit ursprünglich geplanten Laufzeiten<br />

von 30 bis 40 Jahren üblich, also mit Perspektive für einen<br />

darüber hinaus gehenden Betrieb.<br />

pp<br />

Der Reaktorkern umfasst ein Volumen von grob gerade<br />

einmal 50 Kubikmetern, vergleichbar mit dem Volumen<br />

eines 40-Fuß Seecontainers; anders ausgedrückt wird in<br />

rund 15 Kubikzentimetern Reaktorkern kontinuierlich der<br />

Strom für die Versorgung eines EU-Haushalts erzeugt.<br />

Sicherheit<br />

pp<br />

Vier unabhängige Systeme gewährleisten einen sicheren<br />

Betrieb und auch Schutz in Ausnahmesituationen wie<br />

Erdbeben und Überflutungen einschließlich auslegungsüberschreitender<br />

Ereignisse.<br />

pp<br />

Die Kernschadenshäufigkeit für den EPR liegt im Bereich<br />

von ca. 10 -7 und damit um mehr als eine Zehnerpotenz,<br />

also dem Faktor 10 niedriger, als der von der <strong>International</strong>en<br />

Atomenergie-Agentur (IAEA) für Neuanlagen<br />

empfohlen.<br />

pp<br />

Ein Core-Catcher gewährleistet zusätzlichen Schutz für<br />

das Fundament des Reaktorgebäudes und würde im Falle<br />

einer Kernschmelze diese im Reaktorgebäude stabilisieren.<br />

pp<br />

Ein internes Sprühsystem ist eine zusätzliche Maßnahme,<br />

um die langfristige Integrität des Reaktorgebäudes bei<br />

Unfällen sicher zu stellen.<br />

Ehre, wem Ehre gebührt: Der EPR, ein gemeinsames<br />

europäisches Entwicklungsprojekt auf dem Weg zu<br />

spätem, aber nicht zu spätem internationalen Erfolg –<br />

auch über das Jahr 2022 hinaus: nach aktueller Ankündigung<br />

des französischen Präsidenten Emmanuel Macron<br />

soll um das Jahr 2022 entschieden werden, ob in<br />

Frankreich weitere neue Kernkraftwerke auf Basis des<br />

EPR, der deutsch-französischen Kooperation, gebaut<br />

werden sollen.<br />

Einige Kennzahlen<br />

zum Konzept des EPR-Reaktors:<br />

Ressourcen<br />

pp<br />

Vermeidung von rund 10 Millionen Tonnen Kohlendioxidemissionen<br />

pro Jahr (Bezug auf den Strommix der<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

EPR – No Swan Song


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

RA Dr. Christian Raetzke 02.<strong>04.2019</strong><br />

22.10.2019<br />

Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.<strong>04.2019</strong> Berlin<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chancen und Regularien<br />

RA Kay Höft M. A.<br />

O. L. Kreuzer<br />

Dr.-Ing. Wolfgang Steinwarz<br />

Berlin<br />

12.06. - 13.06.2019 Berlin<br />

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019 Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

07.11.2019 Berlin<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –<br />

Themen und Formate<br />

Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin<br />

November 2019<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 <strong>Nuclear</strong> English<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Matthias Bauerfeind<br />

RA Dr. Christian Raetzke<br />

25.06. - 26.06.2019<br />

10.09. - 11.09.2019<br />

15.10. - 16.10.2019<br />

13.11. - 14.11.2019<br />

Berlin<br />

24.09. - 25.09.2019 Berlin<br />

Enhancing Your <strong>Nuclear</strong> English Devika Kataja 22.05. - 23.05.2019 Berlin<br />

Advancing Your <strong>Nuclear</strong> English (Aufbaukurs) Devika Kataja 18.09. - 19.09.2019 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Veränderungsprozesse gestalten – Heraus <strong>for</strong>derungen<br />

meistern, Beteiligte gewinnen<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

26.11. - 27.11.2019 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

186<br />

Issue 4 | 2019<br />

April<br />

CONTENTS<br />

Contents<br />

Editorial<br />

EPR – No Swan Song E/G 183<br />

Inside <strong>Nuclear</strong> with NucNet<br />

The Key Role of the IAEA’s Integrated Regulatory<br />

Review Service in Improving <strong>Nuclear</strong> Safety 188<br />

DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Role of Resources and Reserves<br />

<strong>for</strong> the Global Energy Supply 191<br />

Spotlight on <strong>Nuclear</strong> Law<br />

The New Radiation Protection Law (II): The Approval G 196<br />

Energy Policy, Economy and Law<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants<br />

with Their External Stakeholders 197<br />

The <strong>Nuclear</strong> Fission Table in the Deutsches Museum:<br />

A Fundamental Discovery on Display 203<br />

The 15 th Deutsche Atomrechtssymposium:<br />

An Determination of the Curent Situation G 208<br />

Operation and New Build<br />

Failure Analysis of the Jet Pumps Riser<br />

in a Boiling Water Reactor-5 213<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />

The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia<br />

and the Southern Hemisphere | Part I 221<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Accountability to the Democratic Public G 225<br />

KTG Inside<br />

50 Years KTG – 50 Years <strong>for</strong> Society and Technology<br />

An Interview with Frank Apel and Dr. Florian Gremme G 227<br />

Cover:<br />

Uranium mine<br />

Mary Kathleen in Queensland/Australia.<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232<br />

<strong>Nuclear</strong> Today<br />

Events of the Past Need Not Dictate an Industry’s Future 238<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Imprint 192<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Feature<br />

Major Trends in Energy Policy<br />

and <strong>Nuclear</strong> <strong>Power</strong><br />

187<br />

CONTENTS<br />

191 The Role of Resources and Reserves<br />

<strong>for</strong> the Global Energy Supply<br />

Hans-Wilhelm Schiffer<br />

Spotlight on <strong>Nuclear</strong> Law<br />

196 The New Radiation Protection Law (II): The Approval<br />

Das neue Strahlenschutzrecht (II): Die Freigabe<br />

Dr. Christian Raetzke<br />

Energy Policy, Economy and Law<br />

203 The <strong>Nuclear</strong> Fission Table in the Deutsches Museum:<br />

A Fundamental Discovery on Display<br />

Susanne Rehn-Taube<br />

Special Topic | A Journey Through 50 Years AMNT<br />

225 Accountability to the Democratic Public<br />

Rechenschaft gegenüber der demokratischen Öffentlichkeit<br />

Richard von Weizsäcker<br />

KTG Inside<br />

227 50 Years KTG – 50 Years <strong>for</strong> Society and Technology<br />

An Interview with Frank Apel and Dr. Florian Gremme<br />

50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie<br />

Ein Interview mit Frank Apel und Dr. Florian Gremme<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

188<br />

INSIDE NUCLEAR WITH NUCNET<br />

The Key Role of the IAEA’s Integrated<br />

Regulatory Review Service in Improving<br />

<strong>Nuclear</strong> Safety<br />

The <strong>International</strong> Atomic Energy Agency (IAEA) is responding to member state needs and making the<br />

Integrated Regulatory Review Service (IRRS) more effective and efficient, David Senior, head of the agency’s<br />

regulatory activities section, and Hilaire Mansoux, head of the regulatory infrastructure and transport safety<br />

section, told NucNet in an interview.<br />

Feedback from member states over the past five years has<br />

been used in the development of updated IRRS guidelines<br />

on the preparation and conduct of missions, which will be<br />

published soon and see the implementation of further<br />

improvements to the service<br />

The IRRS helps IAEA member states strengthen and<br />

improve their national regulatory framework and infrastructure<br />

<strong>for</strong> nuclear, radiation, radioactive waste and<br />

transport safety. In line with other safety related peer<br />

review services offered by the IAEA, the IRRS supports<br />

member states in applying IAEA safety standards. The<br />

IRRS began in 2006, when the IAEA integrated several<br />

existing regulatory review services.<br />

IRRS teams evaluate a state’s regulatory infrastructure<br />

<strong>for</strong> safety against IAEA safety standards, which provide the<br />

fundamental principles, requirements and guidance to<br />

ensure nuclear safety. The standards serve as a global<br />

reference <strong>for</strong> protecting people and the environment and<br />

contribute to a harmonised high level of safety worldwide.<br />

The teams compile their findings in reports that provide<br />

recommendations and suggestions <strong>for</strong> improvement, and<br />

note good practices that can be adapted <strong>for</strong> use elsewhere<br />

internationally to strengthen safety. Mission reports<br />

describe the effectiveness of the regulatory oversight of<br />

nuclear, radiation, radioactive waste and transport safety<br />

and highlight how it can be further strengthened.<br />

States that have requested an IRRS mission prepare by<br />

conducting a “self-assessment” using an IAEA-developed<br />

methodology and software tool. During preparations, the<br />

IAEA and the host country meet to agree on the scope<br />

of the mission, including by defining which regulated<br />

facilities and activities will be reviewed.<br />

In October 2018 the IRRS held its 100 th mission, to<br />

Hungary, where experts carried out an eight-day follow-up<br />

mission to review the country’s implementation of recommendations<br />

and suggestions made during a 2015 visit.<br />

According to Mr Senior and Mr Mansoux, the service<br />

helps member states by identifying opportunities <strong>for</strong><br />

improvement, but also allows countries to learn from one<br />

another because the results of missions are shared through<br />

mission reports and “lessons learned” workshops.<br />

By judging the mission against IAEA safety standards,<br />

the service has brought about greater harmonisation of<br />

regulatory practices amongst member states. The agency<br />

sees the in<strong>for</strong>mal exchange of experience between expert<br />

reviewers and regulatory staff across the world as another<br />

valuable learning opportunity.<br />

The IRRS carries out from nine to 12 missions a year<br />

and is being used increasingly by countries that do not<br />

have a commercial nuclear power programme but are<br />

thinking about starting one.<br />

The service has established itself as the “preferred<br />

choice” <strong>for</strong> EU member states who must complete a peer<br />

review every 10 years to comply with the bloc’s nuclear<br />

safety directive, Mr Senior and Mr Mansoux told NucNet<br />

In response to requests from member states, the IAEA<br />

can also offer combined IRRS and Artemis missions. Artemis<br />

is the Agency’s integrated expert peer review service <strong>for</strong><br />

radioactive waste and spent fuel management, decommissioning<br />

and remediation programmes. It is intended <strong>for</strong><br />

facility operators and organisations responsible <strong>for</strong> radioactive<br />

waste management, and <strong>for</strong> regulators, national<br />

policy and other decision-makers.<br />

The first combined IRRS-Artemis mission was recently<br />

conducted in Spain. The combined mission approach option<br />

aims to exploit the synergies between the respective reviews.<br />

The IRRS is also available to countries that do not have<br />

commercial nuclear power and do not have plans to introduce<br />

it. The service helps them regulate the use of radiation<br />

sources in industry, medicine, agriculture and research.<br />

Mr Senior said: “High standards of nuclear safety can be<br />

achieved through a culture of continuous improvement, and<br />

all countries – including those with extensive experience –<br />

can use the IRRS to improve and demonstrate closer alignment<br />

of their national arrangements with IAEA safety<br />

standards.”<br />

“In short, all countries need to regulate nuclear and<br />

radiation safety, and the IRRS programme helps them do<br />

so in line with its safety standards,” he said.Some countries<br />

have a well-established regulatory infrastructure, based on<br />

decades of experience, to regulate all types of installations<br />

and activities. Other countries are just establishing a legal<br />

and regulatory framework <strong>for</strong> safety.<br />

“Regardless of the approach to nuclear regulation and<br />

the maturity of the arrangements in each country, there is<br />

always room <strong>for</strong> improvement,” Mr Mansoux said<br />

The IAEA safety standards are continuously evolving to<br />

reflect developments including feedback from the IRRS<br />

missions, and it is a continuous process to ensure that<br />

the national regulatory infrastructure is in line with the<br />

standards.<br />

Challenges remain, said Mr Senior and Mr Mansoux,<br />

particularly those associated with ensuring adequate<br />

financial and human resources, and the independence of<br />

the regulatory body.<br />

NucNet was speaking to David Senior, head of the IAEA’s<br />

regulatory activities section, and Hilaire Mansoux, head of<br />

the regulatory infrastructure and transport safety section.<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency<br />

Editor responsible <strong>for</strong> this story: Kamen Kraev<br />

Avenue des Arts 56<br />

1000 Brussels, Belgium<br />

www.nucnet.org<br />

Inside <strong>Nuclear</strong> with NucNet<br />

The Key Role of the IAEA’s Integrated Regulatory Review Service in Improving <strong>Nuclear</strong> Safety


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Notes<br />

Phase-Out:<br />

<strong>Nuclear</strong> Be<strong>for</strong>e Coal – Almost Half of Germans Think This Is a Mistake<br />

The customer portal Verivox released the results of their survey, in<br />

which they asked if it was a mistake by politics in Germany to<br />

phase-out nuclear be<strong>for</strong>e coal. The German coal phase-out is<br />

envisaged <strong>for</strong> 2038, while the nuclear phase-out is scheduled until<br />

2022. Almost half of Germans (44.1 %) considers this order to be a<br />

“To reach the climate goals, Germany has decided to phase-out coal.<br />

Do you think it was a mistake by politics to phase-out nuclear first?”<br />

climate policy mistake. On the other hand, 49 per cent of the<br />

respondents consider the preferred nuclear phase-out to be the right<br />

choice. Apparently, they assess the potential hazards of nuclear<br />

power higher than the climate load associated with coal-fired power<br />

generation.<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

DAtF<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

kernenergie.de<br />

www.kernenergie.de<br />

DATF EDITORIAL NOTES<br />

189<br />

All respondents<br />

Yes, in Any Case<br />

Rather Yes<br />

Undecided<br />

Rather No<br />

No, in No Way<br />

29 %<br />

15 %<br />

6 %<br />

17 %<br />

33 %<br />

Responses by age group<br />

18-29<br />

24 %<br />

18 %<br />

9 %<br />

23 %<br />

26 %<br />

30-39<br />

31 %<br />

10 %<br />

5 %<br />

20 %<br />

34 %<br />

40-49<br />

29 %<br />

18 %<br />

6 %<br />

14 %<br />

34 %<br />

50-64<br />

28 %<br />

14 %<br />

8 %<br />

16 %<br />

35 %<br />

65+<br />

31 %<br />

16 %<br />

5 %<br />

15 %<br />

33 %<br />

Yes, in Any Case<br />

Rather Yes<br />

Undecided<br />

Rather No<br />

No, in No Way<br />

Source: Verivox<br />

DAtF Notes


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Calendar<br />

190<br />

2019<br />

CALENDAR<br />

01.04.-03.<strong>04.2019</strong><br />

CIENPI – 13 th China <strong>International</strong> Exhibition on<br />

<strong>Nuclear</strong> <strong>Power</strong> Industry. Beijing, China,<br />

Coastal <strong>International</strong>, www.coastal.com.hk<br />

02.04.-04.<strong>04.2019</strong><br />

Workshops on Autonomous and Remotely<br />

Operated Systems: Benefits and Challenges<br />

to <strong>Nuclear</strong> Security. Vienna, Austria,<br />

World Institue <strong>for</strong> <strong>Nuclear</strong> Security, www.wins.org<br />

09.04.-11.<strong>04.2019</strong><br />

World <strong>Nuclear</strong> Fuel Cycle 2019. Shanghai, China,<br />

World <strong>Nuclear</strong> Association (WNA), Miami, Florida,<br />

USA, www.wnfc.info<br />

ATOMEXPO 2019. Sochi, Russia,<br />

2019.atomexpo.ru/en/<br />

15.04.-16.<strong>04.2019</strong><br />

22.04.-28.<strong>04.2019</strong><br />

World <strong>Nuclear</strong> University Short Course:<br />

The World <strong>Nuclear</strong> Industry Today.<br />

Istanbul, Turkey, World <strong>Nuclear</strong> University,<br />

www.world-nuclear-university.org<br />

07.05.-08.05.2019<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology<br />

AMNT 2019 | 50. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.amnt2019.com – Register Now!<br />

15.05.-17.05.2019<br />

1 st <strong>International</strong> Conference of Materials,<br />

Chemistry and Fitness-For-Service Solutions<br />

<strong>for</strong> <strong>Nuclear</strong> Systems. Toronto, Canada, Canadian<br />

<strong>Nuclear</strong> Society (CNS), www.cns-snc.ca<br />

16.05.-17.05.2019<br />

Emergency <strong>Power</strong> Systems at <strong>Nuclear</strong> <strong>Power</strong><br />

Plants. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de/eps-symposium<br />

24.05.-26.05.2019<br />

<strong>International</strong> Topical Workshop on Fukushima<br />

Decommissioning Research – FDR2019. Fukushima,<br />

Japan, The University of Tokyo, fdr2019.org<br />

29.05.-31.05.2019<br />

Global <strong>Nuclear</strong> <strong>Power</strong> Tech. Seoul, South Korea, Korea<br />

Electric Engineers Association, electrickorea.org/eng<br />

03.06.-05.06.2019<br />

<strong>Nuclear</strong> Energy Assembly. Washington DC, USA,<br />

<strong>Nuclear</strong> Energy Institute (NEI), www.nei.org<br />

03.06.-07.06.2019<br />

World <strong>Nuclear</strong> University Short Course:<br />

The World <strong>Nuclear</strong> Industry Today.<br />

Rio de Janeiro, Brazil, World <strong>Nuclear</strong> University,<br />

www.world-nuclear-university.org<br />

04.06.-07.06.2019<br />

FISA 2019 and EURADWASTE ‘19. 9 th European<br />

Commission Conferences on Euratom Research<br />

and Training in Safety of Reactor Systems and<br />

Radioactive Waste Management. Pitesti, Romania,<br />

www.nucleu2020.eu<br />

17.06.-21.06.2019<br />

MIT <strong>Nuclear</strong> Plant Safety Course. Cambridge, MA,<br />

USA, Massachusetts Institute of Technology (MIT),<br />

professional.mit.edu/programs/short-programs/<br />

nuclear-plant-safety<br />

23.06.-27.06.2019<br />

World <strong>Nuclear</strong> University Summer Institute.<br />

Romania and Switzerland, World <strong>Nuclear</strong> University,<br />

www.world-nuclear-university.org<br />

24.06.-28.06.2019<br />

2019 <strong>International</strong> Conference on the Management<br />

of Spent Fuel from <strong>Nuclear</strong> <strong>Power</strong> Reactors.<br />

Vienna, Austria, <strong>International</strong> Atomic Energy Agency<br />

(IAEA), www.iaea.org<br />

25.06.-26.06.2019<br />

ICNDRWM 2019 – 21 st <strong>International</strong> Conference<br />

on <strong>Nuclear</strong> Decommissioning and Radioactive<br />

Waste Management. Venice, Italy, World Academy<br />

of Science, Engineering & Technology,<br />

www.waset.org<br />

21.07.-24.07.2019<br />

14 th <strong>International</strong> Conference on CANDU Fuel.<br />

Mississauga, Ontario, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

28.07.-01.08.2019<br />

Radiation Protection Forum. Memphis TN, USA,<br />

<strong>Nuclear</strong> Energy Institute (NEI), www.nei.org<br />

29.07.-02.08.2019<br />

27 th <strong>International</strong> <strong>Nuclear</strong> Physics Conference<br />

(INPC). Glasgow, Scotland, inpc2019.iopconfs.org<br />

04.08.-09.08.2019<br />

PATRAM 2019 – Packaging and Transportation<br />

of Radioactive Materials Symposium.<br />

New Orleans, LA, USA. www.patram.org<br />

21.08.-30.08.2019<br />

Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />

FJOH-2019 – Innovative Reactors: Matching the<br />

Design to Future Deployment and Energy Needs.<br />

Karlsruhe, Germany, <strong>Nuclear</strong> Energy Division<br />

of Commissariat à l’énergie atomique et aux<br />

énergies alternatives (CEA) and Karlsruher Institut<br />

für Technologie (KIT), www.fjohss.eu<br />

04.09.-06.09.2019<br />

World <strong>Nuclear</strong> Association Symposium 2019.<br />

London, UK, World <strong>Nuclear</strong> Association (WNA),<br />

www.wna-symposium.org<br />

04.09.-05.09.2019<br />

VGB Congress 2019 – Innovation in <strong>Power</strong><br />

Generation. Salzburg, Austria, VGB <strong>Power</strong>Tech e.V.,<br />

www.vgb.org<br />

08.09.-11.09.2019<br />

4 th <strong>Nuclear</strong> Waste Management,<br />

Decommissioning and Environmental Restoration<br />

(NWMDER). Ottawa, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

09.09.-12.09.2019<br />

24 th World Energy Congress. Abu Dhabi, UAE,<br />

www.wec24.org<br />

09.09.-12.09.2019<br />

Jahrestagung 2019 – Fachverband für<br />

Strahlenschutz | Strahlenschutz und Medizin.<br />

Würzburg, Germany,<br />

www.fs-ev.org/jahrestagung-2019<br />

16.09.-20.09.2019<br />

63 rd Annual Conference of the IAEA. Vienna,<br />

Austria, <strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/about/governance/generalconference<br />

07.10. – 11.10.2019<br />

<strong>International</strong> Conference on Climate Change and<br />

the Role of <strong>Nuclear</strong> <strong>Power</strong>. Vienna, Austria,<br />

IAEA, www.iaea.org<br />

07.10. – 18.10.2019<br />

ICTP-IAEA <strong>Nuclear</strong> Energy Management School.<br />

Trieste, Italy, IAEA, www.iaea.org<br />

15.10. – 18.10.2019<br />

Technical Meeting on Siting <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong><br />

Plants. Vienna, Austria, IAEA, www.iaea.org<br />

22.10.-25.10.2019<br />

SWINTH-2019 Specialists Workshop on Advanced<br />

Instrumentation and Measurement Techniques<br />

<strong>for</strong> Experiments Related to <strong>Nuclear</strong> Reactor<br />

Thermal Hydraulics and Severe Accidents.<br />

Livorno, Italy, www.nineeng.org/swinth2019/<br />

23.10.- 24.10.2019<br />

Chemistry in <strong>Power</strong> Plants. Würzburg, Germany,<br />

VGB <strong>Power</strong>Tech e.V., www.vgb.org/en/<br />

chemie_im_kraftwerk_2019.html<br />

27.10.-30.10.2019<br />

FSEP CNS <strong>International</strong> Meeting on Fire Safety<br />

and Emergency Preparedness <strong>for</strong> the <strong>Nuclear</strong><br />

Industry. Ottawa, Canada, Canadian <strong>Nuclear</strong> Society<br />

(CNS), www.cns-snc.ca<br />

12.11.-14.11.2019<br />

<strong>International</strong> Conference on <strong>Nuclear</strong><br />

Decommissioning – ICOND 2019. Eurogress<br />

Aachen, Aachen Institute <strong>for</strong> <strong>Nuclear</strong> Training GmbH,<br />

www.icond.de<br />

25.11.-29-11.2019<br />

<strong>International</strong> Conference on Research Reactors:<br />

Addressing Challenges and Opportunities to<br />

Ensure Effectiveness and Sustainability.<br />

Buenos Aires, Argentina, <strong>International</strong> Atomic<br />

Energy Agency (IAEA), www.iaea.org/events/<br />

conference-on-research-reactors-2019<br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Role of Resources and Reserves<br />

<strong>for</strong> the Global Energy Supply<br />

Hans-Wilhelm Schiffer<br />

The assured availability and competitiveness of the various energy sources, as well as climate compatibility, determine<br />

their use. Conditions on the energy markets are also subject to continuous change. This article examines the extent to<br />

which the availability of energy resources and the orientation of energy policies influence the energy mix, particularly<br />

power generation. It also outlines strategies <strong>for</strong> achieving the energy policy goals – security of supply, value <strong>for</strong> money<br />

and environmental compatibility (including climate protection) – in the best possible way.<br />

Changes in the global energy mix since 1985<br />

Global energy consumption has almost doubled since the<br />

mid 1980s. Fossil fuels, i.e. oil, natural gas and coal, have<br />

covered 80 % of this growth. Thus, the share of fossil fuels<br />

in the coverage of total primary energy consumption has<br />

decreased only slightly, from 89 % in 1985 to 85 % in 2017.<br />

Although renewable energies have gained massively in<br />

importance, especially in the last ten years, the contribution<br />

of hydropower, wind and solar energy, biomass<br />

and geothermal energy was still limited to a total of<br />

11 % even in 2017. In 2017, nuclear power covered 4 %<br />

of primary energy consumption (Figure 1).<br />

The transport sector and the petrochemical industry<br />

are the main users of oil. Natural gas is used primarily in<br />

the heating market, by industry, private households and<br />

small consumers, and additionally in power generation.<br />

Coal is used predominantly and nuclear power exclusively<br />

<strong>for</strong> power generation. To date, the renewable energies<br />

have also been used preferably <strong>for</strong> power generation.<br />

This applies to hydropower but also to solar energy and<br />

wind power and, albeit to a lesser extent, to biomass and<br />

geothermal energy.<br />

Global power generation has almost tripled since 1985.<br />

Two thirds of the growth achieved since then has been covered<br />

by coal and natural gas. At 38 %, coal’s share of global<br />

power generation in 2017 was exactly the same as in 1985.<br />

It is true that oil’s contribution to power generation has<br />

dropped by eight percentage points, but this was more<br />

than offset by a nine percentage point increase in the share<br />

of natural gas. Accordingly, there was no significant<br />

change in fossil fuel’s share in power generation between<br />

1985 and 2017. It was 65 % in 2017 and also in 2000 compared<br />

to 64 % in 1985. From 1985 to 2017, the share of<br />

nuclear power decreased by five percentage points to 10 %,<br />

while the contribution of renewables increased by four<br />

percentage points to 25 %. The strongest growth was in<br />

solar and wind, particularly in the last ten years. Despite<br />

absolute growth, the share of hydropower has fallen by<br />

four percentage points since 1985. Nevertheless, hydropower<br />

continues to make the greatest contribution to<br />

power generation among the renewable energies in 2017<br />

(Figure 2).<br />

| | Fig. 1.<br />

Worldwide primary energy consumption 1985 to 2017 in million (10 6 ) tce.<br />

| | Fig. 2.<br />

Worldwide mix in electricity generation 1985 to 2017 in TWh (terawatt hours = 10 12 watt hours).<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 191<br />

Determining factors <strong>for</strong> the energy mix<br />

in power generation by country<br />

The energy mix of power generation in the various<br />

countries and regions of the world is very different from<br />

the global structures described above. There are two<br />

crucial factors <strong>for</strong> this: the resource situation in each case<br />

and the orientation of the energy policy. This becomes<br />

clear in an exemplary examination of the situation in<br />

selected countries (Figure 3).<br />

| | Fig. 3.<br />

Mix in electricity generation of selected countries in 2017 in %.<br />

Feature<br />

The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 192<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Guido Knott<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Ingo Neuhaus<br />

Dr. Joachim Ohnemus<br />

Prof. Dr. Winfried Petry<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Prof. Dr. Bruno Thomauske<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

In countries with a high potential <strong>for</strong> using hydropower,<br />

in many cases this source of energy accounts <strong>for</strong> a<br />

high share of power generation. In Europe (data <strong>for</strong> 2017),<br />

this applies above all to Norway (96 %), Iceland (73 %),<br />

Austria (60 %), Switzerland (59 %) and Albania (100 %),<br />

in North America to Canada (57 %), in South America to<br />

Paraguay (100 %), Brazil (63 %), Colombia (76 %),<br />

Venezuela (65 %), Uruguay (59 %) and Peru (55 %), in<br />

Oceania to New Zealand (58 %) and in Asia to Laos, Nepal,<br />

Bhutan and North Korea. The world leader in the use of<br />

hydropower to generate electricity is China. In spite of this,<br />

the share of hydropower in the country’s total power<br />

generation was limited to 18 % in 2017. In Africa too,<br />

hydropower has a high share of power generation in some<br />

countries. This applies to Ethiopia (93 %) among others.<br />

The share of hydropower in Zambia and the Congo is more<br />

than 90 % and in Mozambique more than 80 %. Nevertheless,<br />

the total electricity generated by hydropower<br />

throughout the African continent in 2017 was 9 % lower<br />

than Norway’s hydropower-generated electricity.<br />

In some countries, geothermal energy also plays an<br />

important role in power generation. In absolute terms, the<br />

highest installed capacity based on geothermal energy<br />

(TOP 10) exists in the USA, Indonesia, the Philippines,<br />

Turkey, New Zealand, Mexico, Italy, Iceland, Kenya and<br />

Japan. As measured by the power generation of each<br />

country, the share of geothermal energy is above-average<br />

in Iceland at 27 % and in New Zealand at 17 %.<br />

In the case of bioenergies (solid, liquid and gaseous),<br />

Brazil tops the global rankings with an electricity generation<br />

capacity of 15 GW, followed by the USA (13 GW),<br />

China (11 GW), India (10 GW) and Germany (9 GW). The<br />

share of bioenergies in the electricity generation volume is<br />

above the global average of 2 % in countries such as Brazil<br />

(9 %) and Germany (7 %).<br />

Imprint<br />

| | Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Martin Schneibel (Editor)<br />

INFORUM, Berlin, Germany<br />

Phone: +49 30 498555-43<br />

Fax: +49 30 498555-18<br />

E-Mail: martin.schneibel@nucmag.com<br />

| | Official <strong>Journal</strong> of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| | Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

Although the natural conditions play an important role<br />

in solar energy and wind power, the orientation of<br />

energy policy in the various countries, expressed by the<br />

intensity of government support, is even more decisive <strong>for</strong><br />

the utilization ratio of these renewables. The most<br />

important example in this context is Germany. At the end<br />

of 2017, Germany ranked third in terms of installed wind<br />

turbine capacity, third only behind China and the USA, and<br />

fourth in terms of solar energy, behind China, Japan and<br />

the USA. As measured by the power generation volume,<br />

the share of wind and solar in Germany was 23 % in 2017,<br />

compared to a global average of 6 % and despite the fact<br />

that Germany is not one of the most favored locations in<br />

the world in terms of natural conditions. With regard to<br />

wind power, this applies more to a country such as Denmark.<br />

In 2017, around half of the electricity generated<br />

there was provided on the basis of wind power. [1]<br />

Political decisions are key drivers <strong>for</strong> the intensity of<br />

nuclear power use <strong>for</strong> power generation. France, <strong>for</strong><br />

example, puts its faith in nuclear power after the first oil<br />

price crisis in 1973. In 2017, nuclear power accounted <strong>for</strong><br />

72 % of total power generation there. In absolute terms,<br />

the USA is currently the leader in the use of nuclear power.<br />

In 2017, twice as much electricity was generated from<br />

nuclear power there as in France. However, at 20 % the<br />

share of nuclear power in the USA is considerably lower<br />

than in France. <strong>Nuclear</strong> power accounts <strong>for</strong> double the<br />

share in Sweden compared to the USA. In the Ukraine this<br />

is 54 % and in Belgium 49 %. Countries such as Germany<br />

and Japan, backed by the government energy policy, also<br />

relied heavily on nuclear power in the past. In both<br />

countries, nuclear power accounted <strong>for</strong> just under one<br />

third of power generation at times. After the Fukushima<br />

nuclear disaster in 2011, Japan suspended the power<br />

generation of all nuclear reactors <strong>for</strong> mandatory safety<br />

| | Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2019<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

Feature<br />

The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

inspections and retrofits with the result that no nuclearenergy-based<br />

electricity generation took place there<br />

between September 2013 and August 2015. In 2018,<br />

additional five nuclear power plants in Japan that had<br />

been shut down after the Fukushima reactor accident were<br />

restarted. This means that nine nuclear power plants with<br />

a capacity of 8.7 GW are now in operation again. [2] After<br />

the Fukushima reactor accident, the seven oldest nuclear<br />

power plant units and the Krümmel nuclear power plant in<br />

Germany were deprived of further operating permits.<br />

Accordingly, the commercial operation of these eight<br />

facilities came to an end at the beginning of August 2011.<br />

For the remaining nine German nuclear power plants, a<br />

staggered exit plan was envisaged, which had been<br />

implemented in a legally binding manner by the Thirteenth<br />

Law amending the Atomic Energy Act of 31 July 2011. Two<br />

of the nine plants mentioned are now decommissioned.<br />

The remaining seven nuclear power plant units will<br />

gradually be shut down <strong>for</strong> good by the end of 2022. [3]<br />

With a share of 38 %, coal is still the world’s most<br />

important source of energy <strong>for</strong> power generation. The<br />

share of coal in power generation in countries that have<br />

economically recoverable deposits is disproportionately<br />

high. This applies, among others, to South Africa (88 %),<br />

Poland (78 %), India (76 %), China (67 %) and Australia<br />

(62 %). But even in Germany (38 %) and in the USA<br />

(31 %), coal was significantly involved in power generation<br />

in 2017. For economic reasons, the share of coal in<br />

power generation has fallen in the USA in recent years.<br />

This is explained by the increased use of shale gas. In 2017,<br />

natural gas accounted <strong>for</strong> 31 % of power generation in the<br />

USA, the same share as coal. The situation in Germany is<br />

different. Despite the economic viability of coal (lignite<br />

and imported hard coal), a politically imposed complete<br />

phase-out of coal-fired power generation is envisaged by<br />

2038 at the latest in order to help meet the national greenhouse<br />

gas reduction targets. [4]<br />

With a share of 23 %, natural gas was the second-most<br />

important energy source <strong>for</strong> power generation in 2017.<br />

In this case as well, a disproportionately high share of this<br />

energy source is characteristic of power generation in<br />

countries that have large natural gas reserves. This applies<br />

especially to the Gulf States. The share of natural gas in<br />

power generation in Iran was 81 % in 2017, and even more<br />

in the United Arab Emirates, Qatar, Oman and Bahrain at<br />

95 %. In Saudi Arabia it was still 59 % in 2017. In the<br />

Caspian countries, such as Turkmenistan, Uzbekistan and<br />

Azerbaijan, natural gas accounts <strong>for</strong> a share of 75 % and<br />

more. Shares of more than 60 % and sometimes significantly<br />

higher are identified <strong>for</strong> Libya, Egypt, Algeria, Tunisia and<br />

Nigeria. In South America, Bolivia is the country with the<br />

largest share of natural gas in power generation (around<br />

75 %). Around half of power generation in Argentina is<br />

based on the use of natural gas. But even in some European<br />

countries with larger natural gas reserves, such as Russia,<br />

the United Kingdom and the Netherlands, in 2017 the share<br />

of natural gas in power generation was disproportionately<br />

high at 49 % (Russia), 48 % (Netherlands) and 40 %<br />

( United Kingdom). In Japan, a country that has practically<br />

no fossil fuel resources of its own, the share of natural gas<br />

(imported LNG) in power generation increased to 39 % in<br />

2017 due to the nuclear power situation. In the USA, due to<br />

the shale gas boom, natural gas is on a par with coal,<br />

accounting <strong>for</strong> 31 % of power generation.<br />

On average, oil now accounts <strong>for</strong> only 4 % of power<br />

generation worldwide. However, in the Gulf States oil is<br />

one of the most important generation sources. This applies<br />

to Saudi Arabia (41 %) and even more so to Kuwait and<br />

Iraq with oil shares of around two thirds. In Libya, around<br />

a third of power generation is still oil based.<br />

Prospects <strong>for</strong> power generation<br />

by energy sources<br />

Unlike in previous decades, the renewable energies will<br />

cover much of the expected further growth in electricity<br />

demand. This cannot be explained by any limitations in<br />

reserves and resources of fossil fuels. Reserves and especially<br />

resources are abundant. This applies above all to coal, but<br />

also to natural gas and oil (Figures 4 to 9). Improved<br />

extraction technologies and higher prices on global markets<br />

have even increased the static range of reserves, defined as<br />

reserves in relation to the current global annual production<br />

| | Fig. 4.<br />

Reserves and resources of non-renewable energy sources.<br />

| | Fig. 5.<br />

Worldwide supply of non-renewable energy sources in billion (10 9 ) tce.<br />

| | Fig. 6.<br />

Reserves and resources of non-renewable energy sources in billion (10 9 ) tce.<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 193<br />

Feature<br />

The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 194<br />

| | Fig. 7.<br />

Worldwide distribution of coal reserves in billion (10 9 ) tce.<br />

| | Fig. 8.<br />

Worldwide distribution of oil and natural gas reserves* in billion (10 9 ) tce.<br />

| | Fig. 9.<br />

Worldwide distribution of uranium reserves and resources in billion (10 9 ) tce.<br />

(Figure 10). Reserves are to be understood as “proven<br />

quantities of energy resources that are economically<br />

recoverable at today’s prices and with today’s technology”.<br />

The resources existing beyond these, defined as “proven<br />

quantities of energy resources but which are currently<br />

technically and/or econo mically unre cover able, as well as<br />

not proven quantities of energy resources which are geologically<br />

possible and recoverable in the future”, are more<br />

than ten times as large as the reserves according to in<strong>for</strong>mation<br />

provided by the Federal Institute <strong>for</strong> Geosciences<br />

and Natural Resources. [5]<br />

Restrictions on the use of fossil energy resources exist<br />

due to emissions of greenhouse gases associated with their<br />

use. To meet the goals of climate protection and the<br />

requirements of the Paris Agreement, the countries party<br />

to the United Nations Framework Convention on Climate<br />

Change committed themselves to specific limitations on<br />

the emission of greenhouse gases. The European Union,<br />

<strong>for</strong> example, has made a legally binding commitment to<br />

reduce greenhouse gas emissions by 40 % by 2030<br />

compared to 1990 levels. [6]<br />

There are basically four strategies available <strong>for</strong> the<br />

reduction of greenhouse gas emissions required <strong>for</strong> climate<br />

protection:<br />

pp<br />

Expansion of the renewable energies<br />

pp<br />

Improvement of energy efficiency<br />

pp<br />

Extended use of nuclear power<br />

pp<br />

Capture and utilization or storage of CO 2<br />

The governments which, through their respective policies,<br />

determine the priorities in the orientation of the necessary<br />

investments <strong>for</strong> the trans<strong>for</strong>mation of the global energy<br />

supply, are decisive <strong>for</strong> progress in implementing these<br />

possible paths.<br />

In its World Energy Outlook published in November<br />

2018, the <strong>International</strong> Energy Agency (IEA) identified<br />

cumulative investment requirements of 2 trillion dollars<br />

per year in the global energy supply. [7] According to IEA’s<br />

data, more than 70 % of these investments are made by<br />

state-run companies or are triggered by state regulation,<br />

<strong>for</strong> example in the <strong>for</strong>m of a guaranteed return. Only just<br />

less than 30 % of global investment is private and marketdriven,<br />

according to the IEA’s assessment in the main<br />

scenario of the World Energy Outlook, i.e. the New Policies<br />

Scenario. In the power supply, even more than 90 % of<br />

the investment deemed necessary worldwide by 2040 is<br />

government and regulation-driven (Figure 11).<br />

In the New Policies Scenario, the IEA makes the<br />

following statements about the level and structure of<br />

global energy consumption and power generation by<br />

2040: The future growth expected in primary energy<br />

consumption, and especially in power generation, will be<br />

met to a much greater extent than in the past by renewable<br />

energies. Thus, the share of renewables in global<br />

primary energy consumption will rise to 20 % in 2040. The<br />

contribution of renewable energies to power generation is<br />

set to grow from 25 % in 2017 to 42 % in 2040 (Figure 12).<br />

Renewables are there<strong>for</strong>e replacing coal as the most<br />

important source of energy <strong>for</strong> the power supply. The<br />

largest increases are expected <strong>for</strong> solar energy and wind<br />

power. This development is favored by the economies of<br />

scale achieved in recent years, above all in solar plants, but<br />

also in wind power.<br />

Significant progress will also be made in improving<br />

­energy efficiency, supported by public policies. This is<br />

reflected in increasing decoupling of the development of<br />

energy consumption from economic growth. In Germany,<br />

this has already been observed in recent decades. Thus,<br />

the specific energy consumption, i.e. the primary energy<br />

consumption per unit gross domestic product, in Germany<br />

has declined by 42 % in the period from 1990 to 2018. [8]<br />

Similar developments are also likely to take place in other<br />

countries in the future.<br />

The expansion of nuclear power is restricted to<br />

countries where the governments support this technology<br />

with appropriate political backing. This applies particularly<br />

to China, India, Russia and some countries of the<br />

Middle East and Europe. In the World Energy Outlook<br />

2018, the IEA points out that at 270 GW nuclear power will<br />

account <strong>for</strong> only 3.5 % of the new power generation<br />

capacity amounting to a total of 7,730 GW that is expected<br />

Feature<br />

The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

to be built worldwide by 2040. Up to two thirds of the new<br />

construction will be plants based on renewable energies,<br />

with 20 % being gas and 10 % coal capacities (Figure 13).<br />

By 2040, it is expected that around half of the world’s<br />

electricity demand will still be provided by fossil-fired<br />

power plants. According to the New Policies Scenario of<br />

the IEA, in 2040, coal, oil and natural gas will still contribute<br />

75 % to the coverage of primary energy consumption.<br />

In addition, primary energy consumption will increase by<br />

about 25 % by 2040, and the demand <strong>for</strong> electricity is<br />

expected to grow by even more than 50 % compared to<br />

2017. If this development is realized, then in absolute<br />

terms at least the same amount of fossil fuels will be used<br />

in 2040 as in 2017, both to cover the total primary energy<br />

consumption and also <strong>for</strong> power generation.<br />

There<strong>for</strong>e, to comply with the ambitious climate goals<br />

of the Paris Agreement, broad implementation of the<br />

technology <strong>for</strong> capturing and utilizing or storing CO 2 is<br />

indispensable, in both industrial processes and also in<br />

power generation. At the Global Summit on Carbon<br />

Capture, Utilization and Storage (CCUS) in Edinburgh on<br />

28 November 2018, the General Secretary of the IEA, Fatih<br />

Birol, said: “Without CCUS as part of the solution, reaching<br />

our international climate goals is practically impossible.”<br />

[9]<br />

The World Energy Council (London) will present new<br />

energy scenarios on the global energy supply prospects at<br />

the World Energy Congress, which will be held in Abu<br />

Dhabi from 9 to 12 September 2019. The central theme of<br />

the congress, which is expected to attract several thousand<br />

participants, is Energy <strong>for</strong> Prosperity.<br />

Strategy of the Federal Government –<br />

Conclusion<br />

The climate protection policy promises the greatest success<br />

if the instruments are selected in such a way that priority is<br />

given to the most cost-effective approaches of reducing<br />

greenhouse gas emissions. The European Greenhouse Gas<br />

Emissions Trading Scheme is a market-based instrument<br />

which, in principle, ensures this EU-wide <strong>for</strong> the sectors it<br />

covers, energy and industry. However, technology bans,<br />

such as the legal provision existing in Germany preventing<br />

the capture and storage of CO 2 , are restrictions that<br />

contradict this alignment. This makes climate protection<br />

more expensive, which worsens the prospects of other<br />

countries joining Germany in its ambitious approach to<br />

reducing greenhouse gases.<br />

Author<br />

Dr. Hans-Wilhelm Schiffer<br />

Executive Chair World Energy Resources,<br />

World Energy Council<br />

London, United Kingdom<br />

| | Fig. 10.<br />

Static range of non-renewable energy reserves in years.<br />

| | Fig. 11.<br />

Drivers <strong>for</strong> investment in worldwide energy supply in trillion (10 12 ) USD (2017).<br />

| | Fig. 12.<br />

Global electricity generation up to 2040 in terawat thours (10 12 watt hours).<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 195<br />

| | Fig. 13.<br />

Global new build electricity generation capacities according to IEA's New Policies Scenario, 2018 to 2040.<br />

Feature<br />

The Role of Resources and Reserves <strong>for</strong> the Global Energy Supply ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Das neue Strahlenschutzrecht (II): Die Freigabe<br />

196<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Christian Raetzke<br />

Die Freigabe – also grob gesagt die Entlassung von Reststoffen, die aus dem Kontrollbereich kerntechnischer Anlagen<br />

stammen, aus dem Regelungsbereich des Atom- und Strahlenschutzrechts und damit aus der atomrechtlichen Aufsicht,<br />

woran sich in der Regel die konventionelle Entsorgung anschließt – ist gerade im Zusammenhang mit dem umfangreichen<br />

Rückbau der deutschen Kernkraftwerke von großer praktischer Bedeutung. Insofern ist es zu begrüßen, dass<br />

das Instrument der Freigabe in seinen wesentlichen Zügen ins neue, seit dem 31.12.2018 geltende Strahlenschutzrecht<br />

übernommen wurde. Dennoch gibt es durchaus Änderungen, deren wichtigste hier kurz dargestellt werden sollen.<br />

Zuerst etwas Formales: während die Freigabe in der alten<br />

Strahlenschutzverordnung (StrlSchV) in § 29 geregelt war,<br />

findet sie sich jetzt in der neuen Verordnung in den<br />

§§ 31-42. Der erste Eindruck, die Regelung sei um ein<br />

Mehrfaches aufgebläht worden, täuscht, denn der alte § 29<br />

war ja sehr umfangreich. Er wurde nunmehr in seine<br />

Bestandteile zerlegt, diese wurden teils neu geordnet, in<br />

Einzelheiten auch durchaus geändert, um neue Passagen<br />

ergänzt und dann als gesonderte Paragraphen in die neue<br />

Verordnung übernommen. Das ist insgesamt freilich etwas<br />

länger, aber jedenfalls besser lesbar und zitierbar als früher.<br />

Der Dualismus der uneingeschränkten und der zweckgerichteten<br />

Freigabe ist im Grundsatz beibehalten. Die<br />

früher “zweckgerichtete” Freigabe heisst jetzt aber “spezifische”<br />

Freigabe und ist systematisch etwas breiter angelegt.<br />

Sie umfasst nämlich nicht mehr nur Stoffe, die einem<br />

bestimmten Entsorgungsweg (Deponierung, Verbrennung,<br />

Abriss, Einschmelzen) zugeführt werden (siehe früher § 29<br />

Abs. 2 S. 2 Nr. 2 StrlSchV a.F.), sondern auch Stoffe, deren<br />

Weiterverwendung oder Entsorgung aufgrund ihrer materiellen<br />

Eigenschaften eingeschränkt ist (siehe jetzt § 32<br />

Abs. 3 Nr. 1 StrlSchV n.F.). Konkret heisst dies, dass etwa<br />

Bauschutt (ab 1000 t), Bodenflächen und Gebäude zur<br />

Wieder- und Weiterverwendung in diese Kategorie “hinübergewandert”<br />

sind. Da die nuklidspezifischen Freigabewerte<br />

gleichgeblieben sind, bleibt abzuwarten, ob dies in<br />

der Praxis zu wesentlichen Änderungen führen wird.<br />

Das bringt uns zu den Grenzwerten für die Freigabe.<br />

Hier gibt es eine wichtige Änderung, die auf der Umsetzung<br />

der Euratom-Grundnorm 2013/59 beruht: die<br />

Werte für die uneingeschränkte Freigabe und die (massenspezifischen)<br />

Freigrenzen in Bq/g sind nunmehr identisch<br />

und sind deshalb in der Tabelle 1 der Anlage 4 zur neuen<br />

StrlSchV (der Nachfolgerin der Anlage III zur alten<br />

StrlSchV) in einer einzigen gemeinsamen Spalte, der<br />

Spalte 3, enthalten. Für die meisten Werte gab es Vorgaben<br />

durch die Euratom-Grundnorm. Dadurch haben sich die<br />

Freigabewerte für einzelne Nuklide zum Teil geändert;<br />

sie wurden teils angehoben, teils abgesenkt. Wie bereits<br />

im ersten Teil dieses Aufsatzes im Februarheft der <strong>atw</strong><br />

erläutert, gelten die neuen Werte ab 01.01.2021, sofern sie<br />

nicht schon früher durch eine Änderung der jeweiligen<br />

Freigabebescheide eingeführt werden. Die Werte für die<br />

spezifische Freigabe sind dagegen gleichgeblieben.<br />

Auch für das Verfahren der Freigabe sind interessante<br />

Änderungen zu vermerken. An der Grundstruktur des Verfahrens<br />

hat sich freilich nichts geändert: Die Freigabe ist,<br />

juristisch gesehen, ein Verwaltungsakt, der sog. “Freigabebescheid”<br />

(jetzt in § 33 Abs. 2 StrlSchV n.F. ausdrücklich so<br />

bezeichnet), der in allgemeiner, nicht auf eine konkrete<br />

Reststoffcharge bezogener Form die Bedingungen für die<br />

Entlassung von Stoffen aus dem Atom- und Strahlenschutzrecht<br />

festschreibt. Die tatsächliche Entlassung,<br />

bezogen auf konkrete Reststoffchargen, tritt dann ein,<br />

wenn der Strahlenschutzverantwortliche oder, nach entsprechender<br />

Delegierung, der Strahlenschutzbeauftragte<br />

nach dem Freimessungsvorgang die Übereinstimmung mit<br />

den im Freigabebescheid festgelegten An<strong>for</strong>derungen<br />

feststellt. In diesem Moment verlieren die Reststoffe den<br />

Charakter als radioaktive Stoffe und unterfallen, sofern –<br />

was in der Regel der Fall ist – ihre Entsorgung beschlossen<br />

ist, dem Kreislaufwirtschaftsgesetz.<br />

Bereits in der Vergangenheit haben sich einige Behörden<br />

über die ohnehin immer gegebene atomrecht liche Aufsicht<br />

hinaus in unterschiedlichem Ausmaß eine Mitwirkung an<br />

dem eigentlichen Entlassungsakt vor behalten. Diese –<br />

rechtmäßige – Praxis ist jetzt in § 33 Abs. 3 StrlSchV n.F.<br />

ausdrücklich aufgegriffen worden. Hiernach kann die<br />

Behörde die Freigabe unter der aufschiebenden Bedingung<br />

erteilen, dass sie die Feststellung des Strahlenschutzverantwortlichen<br />

bestätigt. Das bedeutet, dass eine Reststoffcharge<br />

tatsächlich erst dann aus dem Atom- und<br />

Strahlenschutzrecht entlassen wird, wenn die Behörde die<br />

Bestätigung, bezogen auf diese konkrete Charge, erteilt.<br />

Eine solche Bedingung steht jedoch im Ermessen der<br />

Behörde und es ist auch weiterhin möglich, dass die Entlassung<br />

ohne weiteres mit der Feststellung durch den<br />

Strahlenschutzverantwortlichen erfolgt. Das bleibt der<br />

“Normalfall” oder “Grundfall”, solange die Behörde nicht<br />

ausdrücklich etwas anderes bestimmt hat.<br />

Interessant ist auch § 33 Abs. 4 S. 2 StrlSchV n.F., der<br />

der Behörde u.a. die Möglichkeit einräumt, den Freigabebescheid<br />

mit einem Widerrufsvorbehalt zu versehen.<br />

Diese Regelung ist auf Initiative der Länder getroffen<br />

worden. Gedacht ist sie vor allem für denkbare Fälle der<br />

spezifischen Freigabe, in denen der eigentlich vorgesehene<br />

Entsorgungsweg (z. B. Verbringen auf eine bestimmte<br />

Deponie) vereitelt wird; in solchen Fällen kann die<br />

Behörde, sofern sie sich dies vorbehalten hat, die Freigabe<br />

widerrufen und die entsprechenden Reststoffe damit<br />

wieder in den Status radioaktiver Stoffe “zurück versetzen”.<br />

Damit unterfallen sie wieder der atomrechtlichen Aufsicht.<br />

Juristisch ist diese “Zurückverwandlung” höchst<br />

spannend; ob sie in der Praxis große Bedeutung erlangen<br />

wird, bleibt abzuwarten. Nach der amtlichen Begründung<br />

erlischt die Widerrufsmöglichkeit jedenfalls dann, wenn<br />

der “notwendige Endpunkt der Entsorgung”, also etwa der<br />

Einbau in eine Deponie, erreicht ist.<br />

Autor<br />

Rechtsanwalt Dr. Christian Raetzke<br />

CONLAR Consulting on <strong>Nuclear</strong> Law and Regulation<br />

Beethovenstr. 19<br />

04107 Leipzig, Deutschland<br />

Spotlight on <strong>Nuclear</strong> Law<br />

The New Radiation Protection Law (II): The Approval ı Christian Raetzke


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong><br />

Plants with Their External Stakeholders<br />

Milan Simončič and Gordana Žurga<br />

The article deals with the expectations expressed by the external stakeholders of the Krško <strong>Nuclear</strong> <strong>Power</strong> Plant (NPP)<br />

in Slovenia and conditions necessary <strong>for</strong> their successful coexistence with the nuclear facility. In the survey, several<br />

types of external stakeholders of the NPP participated. Besides them, 45 NPPs joined the research, basically in regard to<br />

their awareness to act in a socially responsible way. The research proved that respecting the interests of stakeholders is<br />

a prerequisite <strong>for</strong> the acceptability of NPPs in society, and that this strengthens quality of life of all involved parties.<br />

For analysis of essential relationships, the method of structural equation modelling (SEM) was used, in combination<br />

with some relevant statistical tests. NPPs have expressed awareness of their responsibility <strong>for</strong> possible effects on wider<br />

society, and <strong>for</strong> respecting interests of their external stakeholders as well. An optimal model of involvement of external<br />

stakeholders that was developed in the research, includes strong partnership relation. Important components of the<br />

model are effective communication, vision, objectives and orientation, strategy, socially responsible actions, the<br />

introduction of continuous improvements and tools <strong>for</strong> achieving the sustainable excellence of the NPPs as a neverending<br />

process. The research conducted contributes to the scientific fields of organizational theory and management<br />

with special emphasis on social responsibility of NPPs.<br />

1 Introduction<br />

<strong>Nuclear</strong> energy remains a reality in<br />

many countries even after the events<br />

in Fukushima [Afgan, 2013; Campbell,<br />

2013; Goodfellow, Dewick, Wortley, &<br />

Azapagic, 2015; Horvath & Rachlew,<br />

2016; Kato, Takahara, Nishikawa, &<br />

Homma, 2013; Shadrina, 2012;<br />

Truelove & Greenberg, 2013]. Program<br />

Harmony [2018], managed by the<br />

World <strong>Nuclear</strong> Association, supports<br />

climate change mitigation ef<strong>for</strong>ts to<br />

limit warming below 2 ˚C. <strong>Nuclear</strong><br />

energy is proven, available and can be<br />

expanded quickly – making it an<br />

important part of the solution to<br />

problems of air pollution and climate<br />

change. This requires a large increase<br />

of all low-carbon energy sources, of<br />

which nuclear is an important part.<br />

Achieving this means nuclear energy<br />

generation must triple globally by<br />

2050.<br />

Coexistence of the nuclear power<br />

plants (NPPs) and various stakeholders<br />

in society is a current and<br />

future challenge. In a socially responsible<br />

environment, a key commitment<br />

<strong>for</strong> NPPs and their external stakeholders<br />

is ensuring a partnership and<br />

mutual respect. Due to physical placement<br />

of NPPs in the environment,<br />

their external stakeholders expect<br />

certain benefits and respect of their<br />

interests. They also expect responsibility<br />

of NPPs <strong>for</strong> possible consequences,<br />

which may arise in society<br />

and affect their quality of life. The<br />

challenges <strong>for</strong> the NPPs are how to<br />

establish the necessary confidence of<br />

their external stakeholders, how to<br />

present specific activities and promote<br />

benefits of nuclear energy. Challenges<br />

<strong>for</strong> the external stakeholders of NPPs<br />

are how to express and realize own<br />

interests, understand the activities of<br />

NPPs, how to cope with demanding<br />

technology, understand it, and how to<br />

communicate with the NPPs. Trufanov<br />

[2013] says that the number of stakeholders<br />

involved in the development<br />

of the electric power industry has increased<br />

and their priorities and the<br />

ability to influence decision making<br />

processes have changed.<br />

Matuleviciene and Stravinskiene<br />

[2015] found two basic factors of<br />

stakeholder trust: corporate reputation<br />

and organizational trustworthiness.<br />

Other factors as emotions,<br />

propensity to trust, experience with<br />

the organization and sociocultural<br />

factors, same as inborn factors or<br />

acquired during growth, factors<br />

related with the environment where<br />

the person lives or other factors are of<br />

secondary importance. Avetisyan and<br />

Ferrary [2012] analyzed the process<br />

of introducing social responsibility in<br />

France and the USA and described<br />

the role of stakeholders in this field.<br />

They prove the assumption that the<br />

development of social responsibility in<br />

different environments depends on<br />

the nature of the participating local<br />

and global stakeholders and their<br />

interactions. A steady <strong>for</strong>m of social<br />

responsibility in the USA is more<br />

market- oriented (influenced by companies<br />

and investors), while in France<br />

it reflects a significant influence of the<br />

government that promotes corporate<br />

social responsibility and the implementation<br />

of good practices. They<br />

also argue that convergence of stakeholders’<br />

interests strengthens social<br />

responsibility.<br />

The involvement of different groups<br />

of external stakeholders that critically<br />

evaluate activities of NPPs, enables the<br />

NPPs adoption of practical, administrative,<br />

technical and socially responsible<br />

practices. The social responsibility of<br />

the NPPs is an integral part of the<br />

safety culture, which is shown by the<br />

actors involved at all levels. Owners<br />

and operators of the NPPs have to meet<br />

the expected obligations towards<br />

society and the environment. ISO<br />

26000 [2010] argue, that identification<br />

and engagement of stakeholders<br />

are fundamental to social responsibility.<br />

An organization should determine<br />

who has an interest in its decisions and<br />

activities, so that it can understand its<br />

impacts and how to address them.<br />

Banerjee and Bonnefous [2011] claim<br />

that the external stakeholders play a<br />

significant role in shaping the future of<br />

the nuclear power industry. They<br />

identified three different stakeholder<br />

management strategies of NPPs:<br />

rein<strong>for</strong>cement strategies <strong>for</strong> supportive<br />

stakeholders, containment strategies<br />

<strong>for</strong> obstructive stakeholders and<br />

stabilization strategies <strong>for</strong> passive<br />

stakeholders. The groups differ in their<br />

power to influence policies of NPP. He,<br />

Mol, Zhang and Lu [2013] studied the<br />

attitude of stakeholders to nuclear<br />

energy in China. The case study was<br />

conducted three months after the<br />

Fukushima event. Their results show<br />

that development and decision- making<br />

on NPPs are dominated by ‘iron nuclear<br />

triangle’ of national governmental<br />

agencies, nuclear industries, and<br />

research organizations. The Fukushima<br />

crisis has shown that a lack of transparency,<br />

public participation and<br />

public scrutiny can have severe consequences<br />

<strong>for</strong> the NPPs.<br />

The optimal strategy <strong>for</strong> integrating<br />

external stake holders into the<br />

focus sets an effective communication<br />

197<br />

ENERGY POLICY, ECONOMY AND LAW<br />

Energy Policy, Economy and Law<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 198<br />

model. The 2014 survey in Slovenia<br />

confirmed that the external stakeholders<br />

of NPP had high expectations<br />

of accessible, comprehensive, real and<br />

timely in<strong>for</strong>mation on the operation<br />

and impacts of the NPPs and their<br />

short-term and long-term activities<br />

[Simončič & Žurga, 2016].<br />

Stakeholder involvement in nuclear<br />

safety issues requires established communication<br />

mechanisms and channels<br />

<strong>for</strong> discussions between the interested<br />

parties and those responsible <strong>for</strong><br />

decision- making. It should be an<br />

integral part of the management of<br />

nuclear facilities from their conception<br />

through final closure and decommissioning.<br />

Thus, implementation of<br />

managerial plan will need to include<br />

mechanisms to continually monitor<br />

the effectiveness of the program and<br />

make changes and improvements<br />

based upon the results of this evaluation.<br />

[IAEA, 2011]<br />

Purpose and hypothesis<br />

of the research<br />

In the research we examined the hypothesis<br />

that respecting the interests<br />

of stakeholders is a prere quisite <strong>for</strong><br />

the acceptability of the NPPs in society<br />

and the environment and strengthens<br />

quality of their coexistence. We<br />

demonstrated and proved that NPPs<br />

are aware of their impact and that<br />

they want to satisfy the interests of<br />

their stakeholders. Considering importance<br />

of effective stakeholder<br />

strategy <strong>for</strong> respect of their interests,<br />

we developed and presented the<br />

optimal model <strong>for</strong> involving external<br />

stakeholders in the NPPs.<br />

2 Research methodology<br />

Questionnaires<br />

For the purpose of the research, two<br />

questionnaires with closed type<br />

questions (statements) were developed,<br />

one <strong>for</strong> external stakeholders<br />

and another <strong>for</strong> NPPs. Respondents<br />

expressed level of their agreement<br />

with statements by: 1 – Completely<br />

disagree, 2 – Disagree, 3 – Undecided,<br />

4 – Agree, 5 – Fully agree. For basic<br />

analysis, descriptive statistics methods<br />

were used. For analyzing the completed<br />

questionnaires, we used frequency<br />

statistics, Cronbach Alpha<br />

Test, Exploratory Factorial Analysis<br />

of Ordinal Variables, Structured Equation<br />

Modelling (SEM) with Lisrel,<br />

Mann-Whitney and Kruskal- Wallis<br />

test.<br />

Sample and timeframe,<br />

data collecting<br />

External stakeholders of the only<br />

Slovenian NPP included in the<br />

research were:<br />

pp<br />

Representatives of local com munities,<br />

namely 432 randomly<br />

selected citizens from the Posavje<br />

region in which the NPP is located<br />

and, in the sample of “other<br />

Slovenian regions”, four randomly<br />

selected statistical units were<br />

included, i.e. the Jugovzhodna<br />

Slovenija region, the Obalno-kraška<br />

region, the Savinjska region<br />

and the Zasavska region (488 persons);<br />

pp<br />

Suppliers of goods and service<br />

providers of the NPP that are<br />

registered in the Republic of<br />

Slovenia. This stakeholders group<br />

comprised of companies that<br />

supplied goods or services in the<br />

years 2012–2017. We randomly<br />

selected 110 suppliers;<br />

pp<br />

<strong>Journal</strong>ists: invitations <strong>for</strong> journalists<br />

were sent to 177 addresses;<br />

pp<br />

Non-governmental organizatios. In<br />

June 2017, thirty non-government<br />

organizations (NGOs) were registered<br />

in Slovenia with the status of<br />

acting in the public interest in the<br />

field of environmental protection<br />

and 36 associations operating in<br />

public interest in nature conservation.<br />

They were all included in<br />

the research;<br />

pp<br />

Political public. Slovenian political<br />

public represented by the President<br />

of the Republic of Slovenia, the<br />

Prime Minister, ministers, members<br />

of the National Council, members<br />

of the National Assembly, constitutional<br />

judges and mayors of<br />

Slovenian municipalities elected in<br />

the 2014–2018 term was included<br />

in the research. We sent invitations<br />

to co-operate in the survey to e-mail<br />

addresses of all official representatives<br />

(offices, cabinets), that are<br />

listed on their official websites,<br />

except municipalities. Concerning<br />

mayors, 22 municipalities (approximately<br />

10 % of all) were randomly<br />

selected.<br />

As representatives of NPPs, we invited<br />

members of World Association of<br />

<strong>Nuclear</strong> Operators (WANO), Paris<br />

centre to co-operate in the research.<br />

At the time of the research, the<br />

regional Paris centre represented 147<br />

nuclear reactors from 13 countries.<br />

The WANO organization allowed us to<br />

invite the power plants to participate<br />

in the research through their internal<br />

in<strong>for</strong>mation system. In this way, we<br />

have ensured good responsiveness.<br />

Representatives of NPPs were invited<br />

to indicate whether they were operators<br />

or owners of their respective NPP.<br />

Web based surveys were con ducted<br />

in October 2017. The research was<br />

carried out at a time when the next<br />

European concept of electricity supply<br />

was primarily oriented towards lowcarbon<br />

sources what included nuclear<br />

power, as an important part of the<br />

solution in the long-term supply of<br />

electricity in many countries.<br />

3 Results and hypothesis<br />

testing<br />

Responsiveness and<br />

characteristics of the sample<br />

Almost 36 % of respondents live up to<br />

30 km from the NPP, app. 12 % of<br />

them are up to 10 km from the NPP.<br />

Invited<br />

Group of<br />

stakeholders<br />

Number of<br />

participant (N)<br />

Response<br />

(%)<br />

432 Local communities – Posavje 95 22.0<br />

488<br />

110<br />

Local communities –<br />

other Slovenian regions<br />

Suppliers of goods and service<br />

providers of NPP<br />

91 18.6<br />

21 19.1<br />

66 NGOs 17 25.8<br />

124 Slovenian political public 21 16.9<br />

177 <strong>Journal</strong>ists 23 13.0<br />

Others 24<br />

1397 292 20.9<br />

| | Tab. 1.<br />

Response and number of participating stakeholders of NPP.<br />

Function in the organization: operators of NPPs (N)<br />

Top management 23<br />

Representative in organization WANO 17<br />

Public relations of NPPs 5<br />

NPPs together 45<br />

Function in the organization: owners of NPPs (N)<br />

Top management 1<br />

Representative in the WANO 1<br />

Public relations of owner 1<br />

Owners together 3<br />

| | Tab. 2.<br />

Number of participating NPPs, and organizational function of respondents.<br />

Energy Policy, Economy and Law<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Statement N Mdn Min Max SD<br />

(1) NPP is obliged to recognize and respect the interests and legitimate rights of various stakeholders<br />

and respond to their initiatives.<br />

| | Tab. 3.<br />

Statements from the questionnaire, basic statistics.<br />

Note. N= total number of responses; Mdn = median; Min = minimum value; Max = maximal value; SD = standard deviation.<br />

App. 35 % of the participants in the<br />

survey have a residence of more than<br />

100 km from the NPP (Table 1).<br />

Response rate of the NPPs was<br />

about 30 %. All together, 45 respondents<br />

were operators and three<br />

respondents were among owners of<br />

NPPs. Table 2 shows involvement of<br />

NPPs’ representatives, namely members<br />

of top management, representatives<br />

in the WANO organization and<br />

public relation officers.<br />

Due to low response rate of the<br />

owners, we consider in continuation<br />

of this article only responses from the<br />

operators.<br />

Data analysis<br />

<strong>for</strong> hypothesis testing<br />

For testing the hypothesis set, 11<br />

statements from the questionnaire <strong>for</strong><br />

stakeholders were used, <strong>for</strong> which the<br />

respondents expressed their degree of<br />

agreement (­Table 3).<br />

Ordinal variables were not normally<br />

distributed. We used factor<br />

analysis <strong>for</strong> the ordinal variables, the<br />

Maximum Likelihood (ML) method,<br />

which is more robust in terms of<br />

abnormal distribution. Using the<br />

histograms, we also verified that there<br />

were no outliers. Using the Lisrel tool,<br />

we per<strong>for</strong>med exploratory factor<br />

analysis <strong>for</strong> the Varimax rotation<br />

ordinal variables. We found that three<br />

factors offered a suitable solution<br />

( Table 4).<br />

With the Cronbach alpha test, we<br />

found that variables 5 and 8 differed<br />

significantly, so we excluded them.<br />

Variables 1 to 4 were combined in<br />

Factor 1, “Respect” ( respecting stakeholder<br />

interests). In Factor 2 “Acceptability”<br />

(acceptability of NPP) we<br />

combined variables 6 and 7. In Factor<br />

3 “Coexistence” (quality of coexistence)<br />

we combined variables 9 to 11.<br />

The correlations between the factors<br />

are given in Table 5. It is evident that<br />

the correlation between factors 1 and<br />

3 is weak (0.057).<br />

In all three data constructs, the<br />

Cronbach Alpha was greater than<br />

0.7, what ensures good reliability<br />

( Table 6).<br />

Calculation was per<strong>for</strong>med using<br />

the SEM method (structural equation<br />

modelling). Namely, according to<br />

Civelek [2018] SEM tests the relationships<br />

between observed and latent<br />

variables. Observed variables are the<br />

measured variables in the data collection<br />

process and latent variables are<br />

the variables measured by connecting<br />

to the observed variables because they<br />

cannot be directly measured. SEM<br />

consists of two basic components as<br />

structural model and measurement<br />

model. Another reason <strong>for</strong> the widespread<br />

adoption of this method is the<br />

ability of taking into the account<br />

measurement errors and the relationships<br />

between errors in the observed<br />

variables.<br />

In the basic model, we used all three<br />

defined latent variables: respec ting<br />

| | Tab. 5.<br />

Correlations between factors.<br />

289 4 3 5 0.566<br />

(2) NPP should be aware that some stakeholders might have a significant influence on its operation. 289 4 3 5 0.565<br />

(3) NPP must take into account the relationships between the interests of its stakeholders, the broader<br />

expectations of society and nuclear power plants.<br />

287 4 2 5 0.601<br />

(4) NPP must know how its stakeholders are satisfied with the activities it is carrying out. 288 4 3 5 0.549<br />

(5) NPP can also be located in the vicinity of residential areas. 288 2 1 5 1.065<br />

(6) The acceptability of a NPP in the environment is possible only if NPP respect and take into account<br />

the interests of their stakeholders.<br />

288 4 1 5 0.968<br />

(7) The trust between local communities and the NPP is a prerequisite <strong>for</strong> the acceptance of NPP. 288 4 1 5 0.870<br />

(8) Donations and other material incentives <strong>for</strong> local communities increase the acceptability of the NPP. 287 4 1 5 1.145<br />

(9) NPP can be placed in the environment where I live, but only if they are socially responsible. 286 4 1 5 1.323<br />

(10) NPP creates new jobs, expands economic activity and technological development. 288 4 1 5 1.001<br />

(11) NPP influences the higher quality of life in the local community. 286 3 1 5 1.171<br />

Statement Factor 1 Factor 2 Factor 3 Unique variance<br />

(1) 0.844 0.021 0.026 0.287<br />

(2) 0.973 0.010 0.025 0.052<br />

(3) 0.790 0.319 0.033 0.272<br />

(4) 0.688 0.367 0.146 0.370<br />

(5) -0.058 0.116 0.656 0.553<br />

(6) 0.333 0.640 0.460 0.268<br />

(7) 0.305 0.646 0.529 0.210<br />

(8) 0.037 0.271 0.604 0.561<br />

(9) 0.073 0.206 0.764 0.368<br />

(10) 0.108 0.167 0.808 0.307<br />

(11) 0.076 0.042 0.882 0.214<br />

Factor 1<br />

(“Respect”)<br />

Factor 2<br />

(“Acceptability”)<br />

Factor 3<br />

(“Coexistence”)<br />

Factor 1<br />

(“Respect”)<br />

1.000<br />

Factor 2<br />

(“Acceptability”)<br />

0.479 1.000<br />

Factor 3<br />

(“Coexistence”)<br />

0.057 0.534 1.000<br />

Factor Statement Number of<br />

statements<br />

Factor 1<br />

(“Respect”)<br />

Factor 2<br />

(“Acceptability”)<br />

Factor 3<br />

(“Coexistence”)<br />

Cronbach<br />

Alfa<br />

(1) 4 0.839<br />

(2)<br />

(3)<br />

(4)<br />

(6) 2 0.812<br />

(7)<br />

(9) 3 0.835<br />

(10)<br />

(11)<br />

ENERGY POLICY, ECONOMY AND LAW 199<br />

| | Tab. 4.<br />

Exploratory factor analysis.<br />

| | Tab. 6.<br />

Test Cronbach Alfa.<br />

Energy Policy, Economy and Law<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 200<br />

| | Fig. 1.<br />

Standardized adapted structural model.<br />

stakeholder interests, accept ability of<br />

NPPs and quality of coexistence.<br />

Values between latent variables<br />

can be explained by regression equations:<br />

p p “Acceptability” = 0.641 x “Coexistence”<br />

+ 0.361 x “ Respect”<br />

p p “Coexistence” = 0.167 x “Respect”<br />

p p “Respect” relatively poorly explains<br />

“Coexistence”. By adapting<br />

the model, we wanted to improve<br />

the basic model. We removed<br />

the variable 11 and added the<br />

covariance errors between 1, 2, 3,<br />

and 4. In the modified model, we<br />

included two covariance (1-2 and<br />

3-4). In the improved model,<br />

“ Respect” better explains “Coexistence”<br />

(p 0.90–0.95<br />

SRMR 0.075 0.033 < 0.08<br />

NNFI 0.866 0.994 > 0.90–0.95<br />

| | Fig. 2.<br />

Level of agreement with the statement, that “NPP influences the higher quality of life in the local community.”<br />

| | Tab. 8.<br />

Statistics of the basic and adapted structural model.<br />

Note. χ 2 : HI = square statistics; df = degrees of freedom; RMSEA = Root<br />

mean square error of approximation; CFI = Comparative fit index; SRMR =<br />

Standardized root mean square residual; NNFI=Non-normed fit index.<br />

Energy Policy, Economy and Law<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

account belonging to the group of<br />

stakeholders or other features. We<br />

illustrate differences in the per ception<br />

of nuclear energy and nuclear facility<br />

on the case of the statement 11: “NPP<br />

influences the higher quality of life in<br />

the local community.”. In Figure 2<br />

we see higher agreement among the<br />

respondents living closer to the<br />

nuclear facility, among the political<br />

public, journalists and suppliers.<br />

There is also important share of those<br />

who do not have an opinion on presented<br />

issue (undecided).<br />

Respecting interests of NPPs’<br />

stakeholders<br />

Representatives of NPPs have expressed<br />

high level of agreement with<br />

the four statements that describe the<br />

principle of respecting the interests of<br />

their stakeholders (Figure 3). With<br />

the Mann-Whitney test, we confirmed<br />

that there were no statistically significant<br />

differences in responses of<br />

owners nor operators. The same was<br />

confirmed taking into account the<br />

function in the organization – the<br />

Kruskal- Wallis test proved no statistical<br />

significance in any case.<br />

4 Discussion<br />

The NPPs shape the environment in<br />

which they are located and affect lives<br />

of their external stakeholders. They<br />

all want to promote their interests,<br />

expectations and live a quality life.<br />

Respecting the interests of external<br />

stake holders of the NPPs is an important<br />

principle of social responsibility,<br />

and it was proved within the research<br />

| | Fig. 3.<br />

Level of agreement of NPPs’ representatives with statements related to stakeholders.<br />

that NPPs are aware of it. We have<br />

demonstrated that it affects the<br />

acceptability of the NPPs in the society<br />

and the quality of coexistence.<br />

Successful organizations, and<br />

NPPs strive to be among them, differ<br />

from others by their exceptional<br />

ability to quickly detect and effectively<br />

adapt to changes in an unpredictable<br />

environment. The appropriate strategy<br />

<strong>for</strong> involvement of stakeholders<br />

in strategic decisions of the NPPs<br />

should be set up and implemented.<br />

This is a pre requisite <strong>for</strong> the placement<br />

of the NPPs in the environment,<br />

its operation and coexistence. The<br />

target groups with which trust is<br />

particularly needed are local communities<br />

(surrounding and more distant),<br />

NGOs, political public, NPPs’<br />

suppliers and journalists. These external<br />

stakeholders groups differ according<br />

to the understanding of nuclear<br />

technology, interests and impacts on<br />

the NPPs, what effective strategy of<br />

NPPs must take into account. Our<br />

research demonstrated that a certain<br />

proportion of external stakeholders of<br />

NPP in Slovenia still not have clear<br />

understanding of the functions, influences<br />

and many other issues related to<br />

nuclear energy. This is an important<br />

challenge <strong>for</strong> owners and operators of<br />

NPPs that want to achieve confidence<br />

and acceptance.<br />

Coexistence with NPPs depends on<br />

trust of stake holders into the NPP, the<br />

perception of their quality of life, the<br />

awareness of the impacts on coexistence,<br />

and the willingness to respect<br />

the interests of stakeholders of NPPs,<br />

which the power plant should implement<br />

with socially responsible practices.<br />

The optimal model of involving<br />

external stakeholders in the operation<br />

of the NPPs is the one that establishes<br />

the quality coexistence of the nuclear<br />

facility and its external stakeholders.<br />

We have proven that coexistence with<br />

the NPPs positively affects quality of<br />

ENERGY POLICY, ECONOMY AND LAW 201<br />

| | Fig. 4.<br />

Optimal model <strong>for</strong> the involvement of external stakeholders.<br />

Energy Policy, Economy and Law<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 202<br />

life. The optimal model <strong>for</strong> the<br />

involvement of external stakeholders<br />

into NPPs that we have established is<br />

shown in Figure 4.<br />

The effective model of involvement<br />

of external stakeholders integrates<br />

internal resources (employees) and<br />

external stakeholders in a meaningful<br />

and responsible manner. It is necessary<br />

to take into account social, legal,<br />

political, cultural and all other diversity,<br />

interests and expectations. The<br />

key position in the model is given<br />

to effective communication model<br />

between the NPP and its external<br />

stakeholders. Social responsibility of<br />

the NPPs begins with top management<br />

and is deployed to whole<br />

organizational structure. The optimal<br />

model establishes self-assessment<br />

mechanisms and continuous implemen<br />

tation of improvements, which<br />

consequently allows redefinition of<br />

the vision and mission of the NPPs.<br />

The self-assessment logic and the<br />

establishment of conditions <strong>for</strong><br />

continuous improvements (EFQM<br />

RADAR, Deming’s PDCA circle or<br />

some other managers tool) is included<br />

in the process loop to achieve the<br />

strategic goals. Socially responsible<br />

activities of the NPPs are not inferior<br />

to achieving the maximum possible<br />

profit. Potential conflicts between<br />

social responsibility and economic<br />

concern can be solved by rising awareness<br />

of long-term (positive) effects<br />

and benefits of socially responsible<br />

organizations. Namely, overcoming<br />

conflicts between NPPs and their<br />

stakeholders has positive implications<br />

on higher social and economic efficiency,<br />

on safety and acceptability of<br />

the NPPs. A critical analysis of efficiency<br />

and the introduction of improvements<br />

represent the way to<br />

greater acceptability of the NPPs in<br />

the environment, sustainability of<br />

nuclear energy and excellence in<br />

relations to external stakeholders.<br />

Acceptability of the NPPs in the environment<br />

enhances the quality of life.<br />

In addition to responsible owners and<br />

operators, the important condition <strong>for</strong><br />

successful coexistence with the NPPs<br />

are responsible, critical and objective<br />

external stakeholders as well.<br />

Additional research areas<br />

The article presents the optimal model<br />

of participation of external stakeholders<br />

in important decisions related<br />

to nuclear energy. We are aware that<br />

the integration of stakeholders in<br />

the NPPs is not always and everywhere<br />

optimal, and is influenced<br />

by many factors. There<strong>for</strong>e, there is a<br />

possibility <strong>for</strong> gaps between practice<br />

and the model. NPPs should evaluate<br />

causes of such inconsistencies, find<br />

ways to overcome them, and include<br />

owners and operators of the NPPs in<br />

the analysis, to express their view of<br />

this area.<br />

Further research could focus on<br />

studying interactions with influential<br />

other groups of external stakeholders,<br />

e.g. it would make sense to include<br />

stakeholders who live in neighbouring<br />

countries that do not have NPPs on<br />

their territory. It would be practical to<br />

better define the specific interests and<br />

impacts of individual groups of external<br />

stakeholders.<br />

5 Conclusion<br />

NPPs are aware of their impact on the<br />

wider society. As expressed in the<br />

survey by NPPs’ operators and owners,<br />

they are ready to satisfy interests of<br />

their external stakeholders and with<br />

full responsibility. Using the SEM<br />

method, we have proven that the<br />

acceptance of NPPs and quality of<br />

coexistence depend on respect of<br />

interests of the NPPs’ external stakeholders.<br />

Involvement of external stakeholders<br />

into the whole life cycle of the<br />

NPPs enables rational and systematic<br />

solutions to challenges of coexistence<br />

and quality of life. Strengthening<br />

social responsibility in the field of<br />

nuclear energy offers some starting<br />

points and answers to environmental<br />

issues and sustainability also in the<br />

light of global economy. It affects the<br />

acceptability of the NPPs and the<br />

quality of life of individuals and<br />

different groups in a modern society<br />

and in the environment in which<br />

nuclear facilities are located. The<br />

research contributes to the society,<br />

owners and operators of the NPPs.<br />

The con tribution is in the field of<br />

relations between the NPPs and its<br />

stakeholders. The impact of the NPPs<br />

addresses many areas and can represent<br />

important social, economic and<br />

cultural indicators in all structures<br />

of society. Any additional research,<br />

especially from specific and unexplored<br />

areas of coexistence with the<br />

NPPs, and the implementation of<br />

socially responsible principles, there<strong>for</strong>e<br />

represents an important contribution.<br />

Acknowledgement<br />

We would like to thank the WANO<br />

organization <strong>for</strong> enabling us to spread<br />

invitation to NPPs to participate in the<br />

survey through their in<strong>for</strong>mation<br />

system. By supporting our research,<br />

WANO demonstrates own social<br />

responsibility and the importance of<br />

common concern <strong>for</strong> prosperity of a<br />

wider society.<br />

We would also like to thank all<br />

respondents that participated in the<br />

research <strong>for</strong> their interest and cooperation<br />

as our thanks to them was<br />

not possible earlier due to anonymity<br />

of the survey.<br />

References<br />

| | Afgan, N. H. (2013). Sustainable nuclear energy dilemma.<br />

Thermal Science, 17(2), 305–321. doi: 10.2298/TSCI121022214A.<br />

| | Avetisyan, E., & Ferrary, M. (2012). Dynamics of stakeholders’<br />

implications in the institutionalization of the CSR field in France<br />

and in the United States. <strong>Journal</strong> of Business Ethics, 115(1),<br />

115–133. doi: 10.1007/s10551-012-1386-3.<br />

| | Banerjee, S. B., & Bonnefous, A. M. (2011). Stakeholder<br />

management and sustainability strategies in the French nuclear<br />

industry. Business Strategy and the Environment, 20(2), 124–140.<br />

doi: 10.1002/bse.681.<br />

| | Campbell, M. D. (2013). Uranium, thorium, and associated rare<br />

earth elements of industrial interest. Houston: EMD Uranium<br />

( <strong>Nuclear</strong> Minerals and REE) Committee.<br />

| | Civelek, M. E. (2018). Essentials of Structural Equation Modeling.<br />

Lincoln, Nebraska: Zea Books. doi: 10.13014/K2SJ1HR5.<br />

| | Goodfellow, M. J., Dewick, P., Wortley, J., & Azapagic, A. (2015).<br />

Public perceptions of design options <strong>for</strong> new nuclear plants in<br />

the UK. Process Safety and Environmental Protection, 94, 72–88.<br />

doi: 10.1016/j.psep.2014.12.008.<br />

| | Guidance on social responsibility ISO 26000:2010, 1st edition.<br />

(2010). Geneve: <strong>International</strong> Organization <strong>for</strong> Standardization.<br />

| | He, G., Mol, A. P., Zhang, L., & Lu, Y. (2013). Public participation<br />

and trust in nuclear power development in China. Renewable<br />

and Sustainable Energy Reviews, 23, 1–11. doi:<br />

10.1016/j.rser.2013.02.028.<br />

| | Horvath, A., & Rachlew, E. (2016). <strong>Nuclear</strong> power in the 21st<br />

century: Challenges and possibilities. Ambio, 45(1), 38–49. doi:<br />

10.1007/s13280-015-0732-y.<br />

| | IAEA. (2011). Stakeholder involvement throughout the life cycle of<br />

nuclear facilities. Vienna: <strong>International</strong> Atomic Energy Agency.<br />

| | Kato, T., Takahara, S., Nishikawa, M., & Homma, T. (2013). A<br />

case study of economic incentives and local citizens’ attitudes<br />

toward hosting a nuclear power plant in Japan: Impacts of the<br />

Fukushima accident. Energy Policy, 59, 808–818. doi: 10.1016/j.<br />

enpol.2013.04.043.<br />

| | Matuleviciene, M., & Stravinskiene, J. (2015). Identifying the<br />

factors of stakeholder trust: a theoretical study. Procedia -<br />

Social and Behavioral Sciences, 213, 599–604. doi:<br />

10.1016/j.sbspro.2015.11.456.<br />

| | Shadrina, E. (2012). Fukushima fallout: gauging the change in<br />

Japanese nuclear energy policy. <strong>International</strong> <strong>Journal</strong> of Disaster<br />

Risk Science, 3(2), 69–83. doi: 10.1007/s13753-012-0008-0.<br />

| | Simončič, M., & Žurga, G. (2016). Social responsible communication<br />

of nuclear power plant with external stakeholders. Atw –<br />

<strong>International</strong> <strong>Journal</strong> <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong>, 61(11), 653–659.<br />

| | Truelove, H. B., & Greenberg, M. (2013). Who has become more<br />

open to nuclear power because of climate change? Climatic<br />

Change, 116, 389–409. doi: 10.1007/s10584-012-0497-2.<br />

| | Trufanov, V. V. (2013). Modeling development options of electric<br />

power systems in conditions of multiple stakeholders. Thermal<br />

Engineering, 60(13), 931–937.<br />

| | World <strong>Nuclear</strong> Association. (2018). Harmony 2018 Edition.<br />

London.<br />

Authors<br />

Dr. M. Simončič<br />

(corresponding author)<br />

Lead engineer of analytical<br />

chemistry and radiochemistry<br />

<strong>Nuclear</strong> <strong>Power</strong> Plant Krško<br />

Vrbina 12<br />

8270 Krško, Slovenia.<br />

Dr. G. Žurga<br />

Professor and independent<br />

researcher in the area<br />

of management<br />

Slovenia<br />

Energy Policy, Economy and Law<br />

Successful Co-Existance of <strong>Nuclear</strong> <strong>Power</strong> Plants with Their External Stakeholders ı Milan Simončič and Gordana Žurga


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

The <strong>Nuclear</strong> Fission Table in the<br />

Deutsches Museum: A Fundamental<br />

Discovery on Display<br />

Susanne Rehn-Taube<br />

The Deutsches Museum in Munich is one of the largest science and technology museums in the world.<br />

At 50,000 square meters, it shows masterpieces from such diverse disciplines such as chemistry, physics, aircraft,<br />

marine, biotechnology, or glass technology.<br />

| | The table carrying the original instruments with which nuclear fission was discovered in 1938<br />

is one of the most famous objects of the Deutsches Museum.<br />

Since the beginning of the museum,<br />

there has been an exhibition about<br />

chemistry. The chemistry collection<br />

contains dye samples, laboratory<br />

equipment, and many other objects –<br />

about 10,000 in total.<br />

One of the most famous objects is<br />

the table displaying the original<br />

equipment used by the researchers<br />

who discovered nuclear fission of<br />

uranium atoms in 1938: Otto Hahn,<br />

Lise Meitner and Fritz Straßmann. [1]<br />

The discovery<br />

of nuclear fission<br />

Since the 1890s, the scientific community<br />

had <strong>for</strong>med an increasingly accurate<br />

idea of the atom. After the first investigations<br />

of radioactive substances<br />

by Becquerel and the Curies, Ernest<br />

Ruther<strong>for</strong>d and his coworker Frederick<br />

Soddy noticed in 1902 that by radioactive<br />

decay chemical elements change<br />

into each other. In 1913, Niels Bohr<br />

established his atomic model, postulating<br />

a positive nucleus with negative<br />

electron shells. In 1919, the first manmade<br />

change of elements took place,<br />

again by Ruther<strong>for</strong>d: by bombarding<br />

nitrogen atoms with helium nuclei, he<br />

obtained oxygen atoms and a posi tively<br />

charged particle which, a short time<br />

later, he identified as the proton. [2]<br />

As a result, several research groups<br />

attempted to obtain element changes<br />

by bombarding atomic nuclei with<br />

protons. In this case, however, the<br />

repulsion of the positive particles and<br />

the positive nucleus had always been<br />

an obstacle.<br />

It was not until the discovery of the<br />

neutron by James Ch<strong>atw</strong>ick in 1932<br />

that a new possibility was opened:<br />

this nucleon should be able to penetrate<br />

the nucleus without electrostatic<br />

repulsion. [3] Bohr spoke of a possible<br />

“explosion” [4] or “breaking” [5] of<br />

atomic nuclei. He <strong>for</strong>mulated the<br />

theory that the nucleus behaves<br />

similar to a large water drop.<br />

Enrico Fermi then irradiated a<br />

variety of elements with neutrons.<br />

By neutron capture and subsequent<br />

β-decay, he was hoping to obtain<br />

elements with an atomic number<br />

increased by one compared to the<br />

starting materials. In the case of<br />

uranium, at the time believed to be<br />

the heaviest chemical element, this<br />

trans<strong>for</strong>mation would lead to an artificial<br />

element. A transuranic element<br />

should be <strong>for</strong>med. [6]<br />

Lise Meitner thought these results<br />

so fascinating that in 1934 she<br />

persuaded Otto Hahn to join <strong>for</strong>ces<br />

again. She wanted to bombard heavy<br />

nuclei, including uranium and thorium,<br />

with neutrons, in order to obtain<br />

transuranic elements. [7] The two scientists<br />

had known each other since<br />

1907. [8] In the late 1930ies, Hahn led<br />

the department of radiochemistry and<br />

was director of the Kaiser Wilhelm<br />

Institute <strong>for</strong> Chemistry in Berlin. Lise<br />

Meitner directed the radio-physical<br />

department.<br />

The collaboration of the physicist<br />

and the chemist must have been<br />

extremely fruitful and affected by<br />

great friendship. Hahn described it<br />

in 1963 as “stroke of luck” to have<br />

met Lise Meitner. [9] Together with<br />

the chemist Fritz Straßmann, they<br />

conducted the following experiments:<br />

A sample of purified uranium was<br />

brought into a paraffin block and put<br />

next to a neutron source of beryllium<br />

and radium. After different exposure<br />

times, the uranium sample was<br />

removed and chemically analyzed.<br />

After dissolving it in hydrochloric<br />

acid, a compound similar to the suspected<br />

product was added. By doing<br />

so, the team expected that this added<br />

compound and the reaction product<br />

should precipitate together from the<br />

solution. Excessive uranium remained<br />

in the solution. Subsequently, the<br />

filtrates were dried and the filter<br />

papers were put into the cylindrical<br />

hollow of a lead block. Home-made<br />

Geiger-Muller counters were set onto<br />

the filter papers. The counter tube<br />

consisted of an aluminum cylinder<br />

filled with a special argon gas mixture<br />

with a wire in the center. Strong batteries<br />

put the wire under voltage. The<br />

negative β-particles emitted from the<br />

radioactive sample were accele rated<br />

toward the wire and caused a cascade<br />

of ionizations and an elec trical pulse.<br />

This pulse was amplified and displayed<br />

by a mechanical counter. Plotting<br />

the counts against time yielded<br />

the radioactive decay rates of the reaction<br />

products.<br />

ENERGY POLICY, ECONOMY AND LAW 203<br />

Energy Policy, Economy and Law<br />

The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 204<br />

| | Fritz Straßmann and Otto Hahn explain the objects to Heinz Haber <strong>for</strong> a<br />

television documentary in 1963. Hahn does NOT arrange the instruments<br />

<strong>for</strong> the museum and never has.<br />

The team indeed found reaction<br />

products emitting β-particles and<br />

concluded that transuranic elements<br />

were <strong>for</strong>med. They assumed the<br />

finding of nuclei with atomic numbers<br />

93 to 96 which chemical properties<br />

met the expectations. Despite a long<br />

series of β-decay, which was never<br />

observed be<strong>for</strong>e, the finding of new<br />

chemical elements was published and<br />

not doubted by anyone. [10]<br />

It was the summer of 1938. At this<br />

exciting point of their work, Lise<br />

Meitner had to flee Germany. After<br />

the “Anschluss” of Austria by Germany,<br />

she was threatened with persecution<br />

by the Nazis as an Austrian Jew. With<br />

the help of Otto Hahn and other<br />

colleagues, she left Germany on July<br />

13, 1938 <strong>for</strong> the Netherlands and<br />

eventually Sweden. Her scientific<br />

celebrity status did not protect her in<br />

any way: she could only cross the<br />

German border because she was <strong>for</strong>tunate<br />

enough not to be controlled by<br />

the SS guards on the train. The flight<br />

must have left a great break in the<br />

Berlin team. Otto Hahn wrote later:<br />

“I’ll never <strong>for</strong>get the 13 th of July 1938”.<br />

[11] “Hähnchen” and “Lieschen”, as<br />

they called themselves according to<br />

legend, remained in frequent contact<br />

by correspondence nonetheless.<br />

In Berlin, the team focused on the<br />

chemical analysis of the irradiation<br />

product. The results seemed to indicate<br />

radium as product. [12] This could be<br />

the result of two consecutive αdecays<br />

of uranium. This had never been<br />

observed be<strong>for</strong>e, and many experts<br />

were skeptical. To identify radium<br />

chemically, Hahn and Straß mann first<br />

added barium chloride to the uranium<br />

solution and hoped to precipitate a<br />

radium barium mixture. The precipitate<br />

was filtered and dissolved again.<br />

From this solution, the team tried to<br />

separate barium and radium by fractional<br />

crystallization. The solution was<br />

heated and first treated with acid, until<br />

a small portion crystallized. This precipitate<br />

was filtered off. The solution<br />

<strong>for</strong>med a second precipitate, which<br />

was also filtered off. Subsequently, a<br />

third fraction was crystallized. Since<br />

radium salts are usually less soluble<br />

than barium salts, the <strong>for</strong>mer should<br />

be enriched in the first fraction and the<br />

latter in the last fraction. The radioactive<br />

decay of all fractions was analyzed.<br />

Since different nuclei were<br />

assumed present, each fraction should<br />

emit their specific radioactive activity.<br />

However, Hahn and Straßmann discovered<br />

that there were no differences<br />

in the activities of the fractions.<br />

Apparently, a chemical separation had<br />

not taken place.<br />

To verify this, the team also conducted<br />

the fractional crystallization<br />

with radium salts. It seemed possible<br />

that radium in such small quantities<br />

behaved in a peculiar and unexpected<br />

way. Finally, the now famous indicator<br />

experiment should bring clarity:<br />

Hahn and Straßmann irradiated the<br />

uranium sample, mixed it with a<br />

radium sample of known radioactive<br />

activity and conducted the fractional<br />

crystallization with this mixture. [13]<br />

All these series of experiments showed<br />

that all the differences in the activity<br />

of the separate fractions were only<br />

due to the “honest” (Quote: O. Hahn<br />

[14]), i.e. the added radium. The<br />

supposed artificial radium showed<br />

constant activity through all fractions.<br />

Thus, it was a nucleus inseparable<br />

from barium. The product of the<br />

irradiation experiments had to be<br />

barium. These results left Hahn and<br />

Straßmann clueless. They had no<br />

| | Otto Hahn and Lise Meitner (picture: 1950ies) always communicated in a friendly<br />

and professional tone and spoke with great respect <strong>for</strong> each other and each<br />

other’s scientific achievements.<br />

explanation how irradiation of<br />

uranium could lead to barium, a much<br />

lighter element.<br />

In a letter written on December<br />

19 th , 1938 Otto Hahn asked Lise<br />

Meitner <strong>for</strong> an explanation, because<br />

he knew that “[uranium] cannot burst<br />

into barium”. “The more we think<br />

about it, the more we come to this<br />

terrible conclusion: Our radium<br />

isotopes do not behave like radium,<br />

but like barium. [...] If you could<br />

suggest anything, it would still be like<br />

a result of the three of us!” [15]<br />

His point of view that Lise Meitner<br />

was still part of the team led to this<br />

wish that the results would still be a<br />

work of the whole team. Meitner was<br />

skeptical and asked very critically<br />

whether all other possibilities had<br />

been “ruled out”. [15 a), p. 171] She<br />

spent Christmas of 1938 with her<br />

nephew, physicist Otto Robert Frisch,<br />

in Kungälv, Sweden. According to<br />

legend, the both spent hours of<br />

walking in the snow and then<br />

developed a revolutionary interpretation<br />

of the experiments. According<br />

to Bohr’s liquid drop model, the<br />

uranium nucleus started to move after<br />

penetration by a neutron. [16] This<br />

movement led to constriction and<br />

finally separation into two roughly<br />

equal-sized fragments, which were<br />

each much smaller than the uranium<br />

nucleus itself. Thus, an explanation<br />

<strong>for</strong> the light nucleus barium was<br />

found. The fragments flew apart with<br />

high kinetic energy. Otto Robert Frisch<br />

had the honor of giving the new<br />

process its name: nuclear disintegration<br />

and later nuclear fission. On<br />

New Year’s Day, 1939, Lise Meitner<br />

told Otto Hahn in a letter “perhaps it is<br />

energetically possible that such a<br />

heavy nucleus bursts into pieces.” [17]<br />

Energy Policy, Economy and Law<br />

The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Today, one can only try to sympathize<br />

with Meitner’s feelings, which<br />

probably oscillated between frustration<br />

and excitement. Her entire life<br />

had been turned upside down and<br />

apparently, she had missed the most<br />

important discovery of her <strong>for</strong>mer<br />

team. Additionally, this discovery<br />

would question her own work about<br />

the transuranic elements too. Hahn<br />

and Meitner did correspond about<br />

their feelings in their letters. Hahn<br />

wrote, “How beautiful and exciting it<br />

would be if we could have done this<br />

work together like be<strong>for</strong>e.” From<br />

Meitner’s reply, he could read the fear<br />

that her participation in the discovery<br />

could not be adequately approved.<br />

And Hahn replied immediately: “It<br />

shocked me to see you so depressed.”<br />

[15 a), pp 171, 177]<br />

On January 6 th , 1939, the results of<br />

Hahn and Straßmann were published.<br />

The interpretation culminated in the<br />

famous phrase: “As chemists, we<br />

should actually call the new nuclei not<br />

radium but barium.” [18] And the<br />

next major publication by Hahn and<br />

Straßmann followed February 10 th ,<br />

1939. [19] The authors reported with<br />

absolute certainty that all the previously<br />

suspected radium isotopes<br />

were in truth barium isotopes. Hahn<br />

and Straßmann apparently tried to<br />

show that there was indeed a group of<br />

three that had obtained the results.<br />

The previous publications of the<br />

trio and Lise Meitner’s name were<br />

mentioned several times. Hahn and<br />

Straßmann mentioned the transuranic<br />

elements as well: “We are still<br />

certain, that the transuranic elements<br />

remain.” The second fission product<br />

was stated to be a noble gas, either<br />

krypton or xenon. The publication<br />

concluded with the statement that<br />

the finding of the new irradiation<br />

products was “only possible by the<br />

experience we have gained in the<br />

earlier, systematic experiments on the<br />

trans uranic elements, carried out in<br />

asso ciation with L. Meitner.”<br />

Meitner and Frisch published their<br />

conclusions in Nature in February<br />

1939. [20] They predicted the other<br />

fission product correctly as krypton.<br />

This work also explicitly stressed the<br />

existence of transuranic elements. In<br />

subsequent publications, Frisch and<br />

Meitner already provided calculations<br />

of the enormous amount of energy<br />

released during the reaction. [21, 22]<br />

After those publications, various<br />

groups all over the world instantly<br />

began to repeat, confirm and continue<br />

the experiments. Frédéric Joliot-Curie<br />

realized that the fission reaction led to<br />

the emersion of free neutrons. These<br />

could lead to the subsequent fission of<br />

further uranium atoms and a selfmaintaining<br />

chain reaction was thinkable.<br />

[23] Soon the whole world was<br />

interested in nuclear fission. Frisch<br />

and Bohr explained the energy<br />

released during the reaction with Einstein’s<br />

equation E = mc 2 . [24] The<br />

fragments of the nuclear fission<br />

reaction combined had a smaller mass<br />

than the uranium core. The equivalent<br />

of this mass difference was<br />

released as free energy.<br />

The different isotopes of uranium<br />

have been extensively studied. As<br />

early as 1939, Niels Bohr recognized<br />

that the fission process only occurs<br />

in the rare uranium isotope 235 U. [25]<br />

In the following year, the American<br />

group led by McMillan and Abelson<br />

published confirmation that, by<br />

irradiation of uranium-238, a transuranic<br />

element could be produced.<br />

Investigations of these elements led<br />

to nothing less than a reorganization<br />

of the periodic table. [26] Below<br />

the lanthanides follows a series of<br />

elements later called actinides. Hahn<br />

and Straßmann confirmed and<br />

supple mented the results. They provisionally<br />

named the new element<br />

block “uranides”. [27] Otto Hahn<br />

was later kind of annoyed about the<br />

fact that he did not recognize one<br />

uranium isotope with the half-life<br />

of 23 minutes as a precursor of the<br />

transuranic element 93.<br />

Later [28], Seaborg and McMillan<br />

also found the heaviest natural<br />

element with an atomic number of 94.<br />

It emerged from the bombardment<br />

of uranium atoms with deuterium<br />

nuclei. [29]<br />

The transuranic elements 93 and<br />

94 were later called neptunium and<br />

plutonium in the order of the planets<br />

Uranus, Neptune, and Pluto. [30] Plutonium<br />

is considered the heaviest naturally<br />

occurring element. It was found<br />

in trace amounts in natural uranium<br />

ore. The naturally occurring transuranic<br />

elements are just like the ones<br />

in the laboratory created via neutron<br />

capture by uranium-238 atoms.<br />

During World War II, Otto Hahn<br />

was a member of the “Uranium<br />

Association,” a group of scientists<br />

who were supposed to work on the<br />

technical use of nuclear fission in<br />

Germany. Due to this fact, the British<br />

held him captive after the war. During<br />

his captivity, he learned of the nuclear<br />

explosions in Japan by the Americans<br />

and of the fact that he had been<br />

awarded the Nobel Prize <strong>for</strong><br />

| | In 1972 the chemistry exhibition in the Deutsches Museum was reopened presenting the “Arbeitstisch von Otto Hahn”<br />

in a niche next to a large model of an uranium atom. After more than 20 years on display, Lise Meitner’s contribution to the discovery<br />

was still not mentioned.<br />

ENERGY POLICY, ECONOMY AND LAW 205<br />

Energy Policy, Economy and Law<br />

The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 206<br />

Chemistry in 1944. Later, Otto Hahn<br />

referred to the use of nuclear fission<br />

<strong>for</strong> military purposes as a “mess” that<br />

he wanted no part of. [31] He initiated<br />

action against the military use of<br />

nuclear power, such as the Mainau<br />

Declaration in 1955 or the Göttingen<br />

Declaration in 1957.<br />

To receive his Nobel Prize, Hahn<br />

had to wait until the ceremony of 1946.<br />

Awarding the prize to Otto Hahn alone<br />

probably remains one of the most<br />

debated decisions of the Nobel committee<br />

until today. In his Nobel Lecture<br />

on December 13 th , 1946, Hahn<br />

explained the work of the team Hahn,<br />

Meitner, and Straßmann in great<br />

detail. [11, p. 247 and following pages]<br />

Being a Nobel Laureate, Otto Hahn<br />

later led the Kaiser- Wilhelm- Gesellschaft<br />

and its successor, the Max-<br />

Planck- Gesellschaft, whose presidency<br />

he held until 1960.<br />

Nevertheless, the developments<br />

that occurred in other fields after the<br />

discovery of nuclear fission have<br />

certainly had a tremendous impact on<br />

humanity. The enormous energy<br />

release of the fission process soon led<br />

the scientific community to think<br />

about the possibilities of a power<br />

reactor or an explosive bomb, in the<br />

beginning cautiously called machine.<br />

Enrico Fermi built the first nuclear<br />

reactor in the world in Chicago in<br />

1942. The first atomic bomb was<br />

developed in the Manhattan Project.<br />

With an incredible amount of money<br />

and work<strong>for</strong>ce, the Americans pushed<br />

their nuclear program. Today, we see<br />

it as the beginning of a new era when<br />

the first atomic bomb was detonated<br />

on July 16, 1945 in the New Mexico<br />

desert. The nuclear arms race was just<br />

about to begin. To this day, the earth<br />

has been shaken by 2053 nuclear<br />

explosions. [32]<br />

The artifact:<br />

The “Otto-Hahn-table”<br />

Since the 1920s, the Deutsches<br />

Museum has had contact with Lise<br />

Meitner, Otto Hahn and colleagues in<br />

Berlin. They exchanged letters with<br />

regard to donations of books or<br />

samples of the element protactinium<br />

discovered by Meitner and Hahn. [33]<br />

Especially the director Jonathan<br />

Zenneck corresponded with Otto<br />

Hahn at length and in a friendly tone.<br />

In 1952, the director of the Max<br />

Planck Institute <strong>for</strong> Chemistry in<br />

Mainz got in touch with the Deutsches<br />

Museum to discuss the existing equipment<br />

by Otto Hahn. Parts of the<br />

original equipment that had been<br />

moved after the war from Berlin via<br />

the small city of Tailfingen to Mainz<br />

had been arranged there on a table<br />

and presented to the public. Once the<br />

table and the apparatus were erected<br />

in the museum, they waited <strong>for</strong> a text<br />

to explain their meaning. It was<br />

planned that a marble tablet should<br />

bear the following text:<br />

OTTO HAHN<br />

Discovered in 1938, together with<br />

Fritz Straßmann, the fission of<br />

uranium by neutrons, thus creating<br />

the basis <strong>for</strong> the technical realization<br />

of atomic energy. [34]<br />

Otto Hahn was specifically asked<br />

by Jonathan Zenneck about his opinion<br />

of this synopsis. In his reply dated<br />

April 8, 1953, Hahn was unenthusiastic<br />

about the plans of the Museum:<br />

“As much as I am delighted about<br />

the attention [...] I’m a little depressed<br />

about the presentation that is<br />

apparently intended. It seems to me<br />

somewhat exaggerated to construct a<br />

special niche with a marble table,<br />

because if the fission of uranium has<br />

been found in aftermath to be very<br />

important, neither Mr. Straßmann nor<br />

I had any share in this development.”<br />

In his letter, he goes on to mention<br />

Lise Meitner and again asks <strong>for</strong> his<br />

name not to be “mentioned with a<br />

special appearance”. [35]<br />

This letter clearly contradicts the<br />

image that has sometimes been drawn<br />

of Otto Hahn that he had spoken<br />

too rarely about the share of his<br />

colleagues in the discovery, particularly<br />

Lise Meitner’s share. The mere<br />

mentioning of the two colleagues in<br />

this letter should have demonstrated<br />

to Zenneck that the display as “Otto<br />

Hahn table” was wrong. Zenneck and<br />

his successors, however, did not<br />

change anything and <strong>for</strong> several<br />

decades the name “Otto-Hahn table”<br />

stuck.<br />

This is how the visitors found<br />

the artifact: It was called workbench,<br />

but displayed devices, which were<br />

never used together on one table.<br />

The paraffin block and the neutron<br />

sources (which were displayed as<br />

reproductions) were used in an irradiation<br />

room, while the chemical<br />

analysis was undertaken in the<br />

chemical laboratory of Straßmann.<br />

The measurement of the radioactive<br />

activities was conducted in the<br />

measuring room. The pairwise<br />

arrangement of the counters on the<br />

table had no scientific grounding, but<br />

gave the whole thing a wonderful<br />

symmetry. That the measurements<br />

would have been impossible if set<br />

so closely to the neutron source<br />

was never mentioned in one of the<br />

museum texts. [36]<br />

Otto Hahn was in the museum in<br />

1963 <strong>for</strong> the 25th anniversary of<br />

the discovery. He gave a television<br />

interview to Heinz Haber, a pioneer in<br />

scientific journalism at the time, in<br />

which Hahn told the entire story in<br />

great detail. [9] Hahn emphasized<br />

the contributions and the great teamwork<br />

between himself, Meitner and<br />

Straßmann. A still image from the<br />

movie is now regarded as the moment<br />

Hahn arranges the devices <strong>for</strong> the<br />

museum himself, a legend that is just<br />

as persistent as it is wrong. [37]<br />

In 1972, the chemistry exhibition<br />

was reopened with a new architecture.<br />

In a niche next to a large<br />

model of a uranium atom, the table<br />

stood in a new showcase. The marble<br />

plaque had been removed, but the<br />

sign “ Arbeitstisch von Otto Hahn”<br />

(workbench of Otto Hahn) had<br />

been taken from the old display. Lise<br />

Meitner’s contribution to the discovery<br />

still did not occur in the<br />

Deutsches Museum.<br />

Only in 1989, on the occasion of<br />

a major exhibition, a balanced and<br />

correct presentation of Meitner’s and<br />

Straßmann’s contributions was finally<br />

shown in the museum. [15 a)] Subsequently,<br />

the museum worked together<br />

with Meitner’s biographer Ruth Lewin<br />

Sime to present a balanced account of<br />

events.<br />

In December 2012, the object<br />

moved to the exhibition about<br />

museum history. The caption today<br />

tries – with all brevity – to satisfy all<br />

those involved in the decisive experiments,<br />

and the table was officially<br />

renamed Hahn-Meitner-Straßmann<br />

table or simply nuclear fission table. It<br />

will be presented in the new permanent<br />

exhibition on chemistry from<br />

2020 onwards.<br />

Conclusion: The responsibility<br />

of the museum curators<br />

For the majority of visitors, it can be<br />

assumed that they see the development<br />

of nuclear power, with all its<br />

consequences <strong>for</strong> the world, as more<br />

important than the exact story of its<br />

discovery. The table is presented as an<br />

icon of the history of science and is at<br />

the same time an arranged art object<br />

whose aura is nourished by its almost<br />

altar-like <strong>for</strong>m. The global technical<br />

and political significance of nuclear<br />

fission certainly served as an amplifier<br />

<strong>for</strong> the object’s glory, but was never<br />

described in the exhibition. How did<br />

the reputation of the acting persons<br />

change over time?<br />

Energy Policy, Economy and Law<br />

The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Immediately after the war, Hahn<br />

and Strassmann were put on a<br />

pe destal: Look, here are two German<br />

scientists who have discovered<br />

something significant! The Deutsches<br />

Museum proudly presented an object<br />

that was saved under certainly difficult<br />

circumstances and moved three<br />

times through post-war Germany.<br />

Whether the instruments were original<br />

ones or the arrangement made<br />

sense was not examined. One did not<br />

bother to describe the components<br />

and the experiments exactly. The<br />

presentation aroused the feeling that<br />

one stood at the desk of a Nobel Prize<br />

winner and could almost look over his<br />

shoulder.<br />

That the contribution of Lise<br />

Meitner was not mentioned is beyond<br />

understanding: one glance into the<br />

original literature would have been<br />

enough to get a more complete picture.<br />

Everyone involved was alive and<br />

well, detailed first-hand documentation<br />

would have been achievable.<br />

However, the fact that nothing was<br />

changed after Hahn’s rather unsatisfied<br />

comment on the first text panel<br />

suggests that it was already hanging<br />

in the exhibition and the text was<br />

literally carved into stone. There<strong>for</strong>e,<br />

the label of the exhibit was created:<br />

“workbench of Otto Hahn”. Possibly, it<br />

was also the glory of the Nobel Prize,<br />

which put Meitner in the shade after<br />

the war. In any case, there was no<br />

ef<strong>for</strong>t to tell the whole story. General<br />

Director Zenneck would have had to<br />

question the exhibition more critically.<br />

Judging from the friendlysubmissive<br />

tone of his letters to Hahn,<br />

however, this is completely unthinkable.<br />

Hahn was the sole contact <strong>for</strong><br />

nuclear fission <strong>for</strong> Zenneck.<br />

It must be stressed at this point<br />

that Hahn and Meitner, both during<br />

their direct cooperation and after the<br />

war, communicated in an extremely<br />

friendly and professional tone and<br />

spoke with great appreciation of each<br />

other and the scientific achievements<br />

of each other. Surely they saw in the<br />

other an equal scientific partner.<br />

The post-war generation of exhibition<br />

curators saw no need to change<br />

anything in the presentation, and so<br />

Meitner really fell into oblivion. She<br />

lived abroad, was certainly not as<br />

present at events in the Deutsches<br />

Museum and on the German science<br />

stage as Hahn. And it is precisely this<br />

constellation that leads to the allegation<br />

that Hahn had made his mark as a<br />

leading figure in German science,<br />

as a “good German” at the expense<br />

of his colleagues and especially his<br />

colleague with Jewish roots after<br />

the war. [38] The ignorance of the<br />

Museum concerning Meitner implied<br />

that Hahn had built a memorial <strong>for</strong><br />

himself in the museum with “his”<br />

object. Parts of today’s history of<br />

science draw a strong picture, according<br />

to which Hahn later “refused<br />

to let Meitner participate in the<br />

discovery.” [39] The fact that Hahn<br />

collected the Nobel Prize alone is<br />

often mentioned in this context, too.<br />

The impression remains Hahn would<br />

be personally responsible <strong>for</strong> that as<br />

well.<br />

Since the 1990s, the museum has<br />

sought a differentiated and more<br />

detailed presentation. If this had<br />

happened 40 years earlier, Hahn’s<br />

reputation would probably be dif ferent<br />

today. We can assume that Hahn<br />

certainly would not have objected to<br />

such a representation.<br />

The curator’s dream may serve as<br />

a last prospect, who would like to cut<br />

the object – purely virtually, of course,<br />

not in reality – in order to present the<br />

individual parts of the experimental<br />

set-up finally in a scientifically correct<br />

way.<br />

Footnotes<br />

1. This is a revised copy of: Rehn, The <strong>Nuclear</strong> Fission Table in the<br />

Deutsches Museum: A Special Piece of Science History on the<br />

Eve of World War II. In: M. Kaji, Y. Furukawa (Hg.): Proceedings<br />

of the <strong>International</strong> Workshop on the History of Chemistry:<br />

Trans<strong>for</strong>mation of Chemistry from the 1920s to the 1960s<br />

(IWHC 2015, Tokyo). Tokio 2016, p. 20-27<br />

See also: a) S. Rehn: Der Kernspaltungstisch im Deutschen<br />

Museum. In: Keiser, V. (Hg.): Radiochemie, Fleiß und Intuition.<br />

Neue Forschungen zu Otto Hahn. GNT-Verlag, Berlin, 2018,<br />

p. 63 – 82 b) S. Rehn, Kultur und Technik 3/2013, p. 18-25<br />

2. For milestones in Ruther<strong>for</strong>d’s scientific life, see (last viewed<br />

3.3.2019): http://www.nobelprize.org/nobel_prizes/<br />

chemistry/laureates/1908/ruther<strong>for</strong>d-bio.html<br />

3. J. Chadwick, Nature 129, 1932, S. 312; J. Chadwick, Proc. Roy.<br />

Soc. 136, 1932, p. 692-708<br />

4. N. Bohr, Nature 137, 1936, p. 344-348<br />

5. N. Bohr, Science, 80, 1937, p. 161-165<br />

6. E. Fermi, Nature 133, 1934, p. 757; E. Fermi, ibid., p. 898-899<br />

7. Lise Meitner: Wege und Irrwege zur Kernenergie (1963).<br />

In: L. Meitner, D. Hahn (Ed.), Erinnerungen an Otto Hahn.<br />

Hirzel Verlag Stuttgart, 2005, p. 69 – 73<br />

8. F. Krafft, Otto Hahn und die Kernchemie, Museumsverein für<br />

Technik und Arbeit, Mannheim, 1991, p. 14 - 15<br />

9. Otto Hahn – 25 Jahre Atomzeitalter. Television movie<br />

produced by the German television network NDR, 1963.<br />

In German, Hahn uses the term “Glückszufall”, which is a<br />

mixture of the words “luck” and “chance”. Deutsches Museum<br />

archive, AV-F 0026 & 1743. (All translations of original<br />

German quotes by S. Rehn-Taube.)<br />

10. a) L. Meitner, O. Hahn, F. Straßmann, Z. f. Physik 106, 1937,<br />

p. 249 - 270; b) O. Hahn, L. Meitner, F. Straßmann, Chem.<br />

Ber. 70, 1937, p. 1374-1392<br />

11. O. Hahn, Mein Leben. Bruckmann, München,1968, p. 150<br />

12. O. Hahn, F. Straßmann, Naturwissenschaften 46, 1938,<br />

p. 755 - 756<br />

13. A very detailed description of the experiments is given in:<br />

F. Krafft, Im Schatten der Sensation. Leben und Wirken von<br />

Fritz Straßmann. Verl. Chemie, Weinheim 1981, p. 212 and<br />

following pages<br />

14. Quote by O. Hahn, note 9<br />

15. Letter quoted in: a) J. Lemmerich, Die Geschichte der Entdeckung<br />

der Kernspaltung. Catalogue of the exhibition by the<br />

Deutsches Museum and the Hahn-Meitner-Institute of the<br />

Technical University, Berlin, 1989, p. 166 - 170; b) W. Gerlach:<br />

Otto Hahn, Ein Forscherleben in unserer Zeit. Deutsches<br />

Museum Abhandlungen & Berichte, 37, 1969, p. 52 - 53<br />

16. A modern essay about the finding of nuclear fission and the<br />

liquid-drop model is found in: H. J. Krappe, K. Pomorski,<br />

„ Theory of <strong>Nuclear</strong> Fission“. Springer Verlag Heidelberg, 2012<br />

17. J. Lemmerich (Ed.), Gedächtnisausstellung zum 100.<br />

Geburts tag von Albert Einstein, Otto Hahn, Max von Laue,<br />

Lise Meitner 1.3. – 12.4. 1979. Catalogue oft he exhibition<br />

held in the Staatsbibliothek Preußischer Kulturbesitz, Berlin.<br />

Berlin, 1979, p. 122<br />

18. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 11 - 15<br />

19. O. Hahn, F. Straßmann, Naturwiss. 27, 1939, p. 89 - 95<br />

20. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 239<br />

21. O. R. Frisch, Nature 143, 1939, p. 276<br />

22. L. Meitner, O. R. Frisch, Nature 143, 1939, p. 471 - 472<br />

23. H. v. Halban, F. Joliot, L. Kowarski, Nature 143, 1939,<br />

p. 470 - 471<br />

24. N. Bohr, J. A. Wheeler, Phys. Rev. 56, 1939, p. 426 - 450<br />

25. N. Bohr, Phys. Rev. 55, 1939, p. 418-419<br />

26. E. McMillan, P. H. Abelson, Phys. Rev. 57, 1940, p. 1185-1186<br />

27. F. Straßmann, O. Hahn, Naturwissenschaften 30, 1942,<br />

p. 256-260<br />

28. The results were not published until 1946. In the publications<br />

it was mentioned that the corresponding experiments took<br />

place in 1941.<br />

29. a) G. T. Seaborg, E. M. McMillan, J. W. Kennedy, A. C. Wahl,<br />

Phys. Rev. 69, 1946, p. 366 - 367; b) G. T. Seaborg, A. C. Wahl,<br />

J. W. Kennedy, Phys. Rev. 69, 1946, p. 367; c) J. W. Kennedy,<br />

A. C. Wahl, Phys. Rev. 69, 1946, p. 367 - 368; d) J. W. Kennedy,<br />

G. T. Seaborg, E. Segrè, A. C. Wahl, Phys. Rev. 70, 1946,<br />

p. 555 - 556<br />

30. Uranium was discovered in 1789 and named after the recently<br />

discovered planet Uranus.<br />

31. Radio interview with Otto Hahn (1967), Deutsches Museum<br />

archive, AV-T 0457<br />

32. http://www.ctbto.org<br />

33. DMVA (Deutsches Museum administration archives) 1286/1;<br />

DMVA 1290/2, DMVA 1291/1<br />

34. „Otto Hahn entdeckte 1938 zusammen mit Fritz Straßmann<br />

die Spaltung des Urans durch Neutronen und schuf damit<br />

die Grundlage für die technische Verwertung der Atomkern-<br />

Energie.“<br />

35. Hahn to Zenneck, 8.4.1953, Archive of the Max-Planck-<br />

Gesellschaft, Abt. III, Rep. 14, Nr. 5287, Bl. 14<br />

36. The author thanks Jost Lemmerich <strong>for</strong> this special note.<br />

Personal message (16.4.2013)<br />

37. This can be found in various publications, e.g. (both published<br />

by employees of the museum): T. Brandlmeir, Arbeitstisch zur<br />

Uranspaltung. In: Meisterwerke aus dem Deutschen Museum<br />

Band 1, Deutsches Museum, München (2004). In this paper,<br />

Heinz Haber was even cut off the picture. The caption: Fritz<br />

Straßmann and Otto Hahn during the installation of the<br />

workbench <strong>for</strong> uranium fission; J. Teichmann, Das Deutsche<br />

Museum. Ein Plädoyer für den Mythos von Objekt und<br />

Experiment. In: G. Bayerl, W. Weber (Hrsg.), Sozialgeschichte<br />

der Technik, Waxmann, Münster (1998), p. 199 – 208<br />

38. R. L. Sime, Phys. Perspect, 12 (2010), p. 190 - 218<br />

39. R. L. Sime, Angew. Chem. 103, 1991, p. 956 – 967<br />

Author<br />

Dr. Susanne Rehn-Taube<br />

Deutsches Museum<br />

Museumsinsel 1<br />

80538 München, Germany<br />

ENERGY POLICY, ECONOMY AND LAW 207<br />

Energy Policy, Economy and Law<br />

The <strong>Nuclear</strong> Fission Table in the Deutsches Museum: A Fundamental Discovery on Display ı Susanne Rehn-Taube


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 208<br />

Das 15. Deutsche Atomrechtssymposium:<br />

Eine Standortbestimmung<br />

Ulrike Feldmann<br />

Vom 12. bis 13. November 2018 fand in Berlin auf Einladung des Bundesumweltministeriums das 15. Deutsche<br />

Atomrechtssymposium (DARS) statt. Die wissenschaftliche Leitung der mit ca. 170 Teilnehmern gut besuchten<br />

Veranstaltung oblag wie bereits beim 14. DARS erneut Prof. Dr. Martin Burgi, LMU München.<br />

Das Symposium war 4 Themenblöcken<br />

gewidmet, u.z.:<br />

1) den juristischen Perspektiven nach<br />

dem Ausstiegsurteil des Bundesverfassungsgerichts<br />

(BVerfG),<br />

2) den aktuellen Rechtsfragen der<br />

nuklearen Sicherheit,<br />

3) dem Strahlenschutzrecht sowie<br />

4) Fragen des Standortauswahlverfahrens.<br />

Den Einführungsvortrag zum aktuellen<br />

Atom- und Strahlenschutzrecht<br />

hielt Jochen Flasbarth, Staatssekretär<br />

im Bundesumweltministerium (BMU).<br />

Einen großen Schwerpunkt seines<br />

Vortrages betraf die Frage einer rechtssicheren<br />

Stilllegung der Anreicherungsanlage<br />

in Gronau sowie der<br />

Brennelementfabrik in Lingen und<br />

eines Exportverbots für Brennelemente.<br />

Flasbarth machte keinen Hehl<br />

aus seiner Überzeugung, dass er<br />

sowohl die Stilllegung der beiden<br />

Anlagen als auch das Exportverbot für<br />

notwendig hält, und bedauerte, dass<br />

nicht alle Bundesressorts diese Auffassung<br />

teilen. Allerdings müsse man<br />

der Bevölkerung ehrlich sagen, dass<br />

auch bei Stilllegung der kerntechnischen<br />

Anlagen in Gronau und Lingen<br />

die ausländischen Kernkraftwerke<br />

(KKW) weiter laufen würden. Einer<br />

Laufzeitverlängerung für ausländische<br />

KKW stehe das BMU im Übrigen<br />

kritisch gegenüber. Flasbarth <strong>for</strong>derte<br />

für diese Fälle eine grenzüberschreitende<br />

UVP. Ferner kritisierte<br />

Flasbarth, dass die EVU über ihre<br />

gemeinsame Tochtergesellschaft, die<br />

Gesellschaft für Nuklear-Service mbH<br />

(GNS), mit der Abfallentsorgung<br />

„auch noch Geld verdient haben“. Im<br />

Auditorium konnte sich mancher Teilnehmer<br />

des Eindrucks nicht erwehren,<br />

dass hier der regulatorische und<br />

moralisierende Staat wieder einmal<br />

grüßen ließ.<br />

Nach dieser unmissverständlichen<br />

Standortbestimmung des Gastgebers<br />

eröffnete Burgi die 1. Fachsitzung<br />

und fragte in seinem Vortrag nach<br />

„Ver änderte(n) Maßstäbe(n) für<br />

Gesetzgebung und Verwaltungsvollzug<br />

im Atomrecht“ und danach,<br />

ob das Atomrecht als Referenzrecht<br />

für andere Rechtsgebiete dienen<br />

könne. Den Grund für veränderte<br />

Maß stäbe sah Burgi in einer Änderung<br />

der Sicherheitsphilosophie. In<br />

Bezug auf den atomrechtlichen Verwaltungsvollzug,<br />

bei dem, wie vielen<br />

Lesern noch in Erinnerung sein wird,<br />

der ehemalige Präsident des Bundesver<br />

waltungs gerichts Prof. Dr. Horst<br />

Sendler in einem Vortrag 1991 bereits<br />

den „ausstiegsorientierten Gesetzesvollzug“<br />

ausgemacht hatte, stellte<br />

Burgi nun diesem Begriff noch einen<br />

„Zwillingsbruder“ zur Seite, den<br />

„ausstiegs beschleunigenden Gesetzesvollzug“,<br />

den er mit den Worten<br />

beschrieb: „Piesacken, bis der Betreiber<br />

aufgibt“. Einer Umsetzung der geänderten<br />

Sicherheitsphilosophie mit<br />

Hilfe reiner Verwaltungsmaßnahmen<br />

erteilte Burgi – weil verfassungswidrig<br />

– eine klare Absage. Für gesetzgeberische<br />

Maßnahmen wiederum, z.B.<br />

zur Beschleunigung des „Kohleausstiegs“,<br />

gebe das Urteil des BVerfVG<br />

vom 6.12.2016 „keinen Rückenwind“.<br />

Ein gesetzlich fixierter fester Abschalttermin<br />

wirke wie eine Übergangsregelung<br />

mit Bestandsschutz. Ein ausstiegsbeschleunigender<br />

Gesetzesvollzug<br />

kurze Zeit nach Festsetzung des<br />

Abschalttermins sei unverhältnismäßig,<br />

also verfassungswidrig, und<br />

könne nicht durch Ausgleichsmaßnahmen<br />

geregelt werden.<br />

Im letzten Teil seines Vortrags<br />

wandte Burgi sich der verfassungsrechtlichen<br />

Beurteilung einer Beendigung<br />

der Brennelementfertigung und<br />

der Urananreicherung in Deutschland<br />

zu. Er wies darauf hin, dass es hier<br />

nicht wie bei Kernkraft- und Kohlekraftwerken<br />

eine vorfindliche Rechtslage<br />

gibt, sondern diese Anlagen über<br />

unbefristete Genehmigungen verfügen.<br />

Das Ziel, die Beendigung des<br />

Betriebs dieser Anlagen, hielt Burgi<br />

dagegen für legitim. Es handele sich<br />

um Hochrisikotechnologieanlagen,<br />

auch wenn Eintrittswahrscheinlichkeit<br />

und Schadenshöhe als geringer<br />

einzustufen seien als bei Kernkraftwerken<br />

(KKW).<br />

Als Ergebnis der verfassungsrechtlichen<br />

Prüfung stellte Burgi fest, dass<br />

bei einer Beendigung von Urananreicherung<br />

und Brennelementfertigung<br />

auf jeden Fall höhere Laufzeiten und<br />

ein deutlich höherer Ausgleich als bei<br />

der 13. AtG-Novelle er<strong>for</strong>derlich<br />

seien. Insgesamt sei festzuhalten, dass<br />

die Relevanz des Urteils des BVerfG<br />

vom 6.12.2016 für jeden Fall gesondert<br />

zu betrachten sei.<br />

Prof. Dr. Thomas Schomerus,<br />

Universität Lüneburg und Dr. Ulrich<br />

Karpenstein, Redeker Sellner Dahs<br />

Rechtsanwälte PartG mbB, befassten<br />

sich in ihren nachfolgenden Beiträgen<br />

ebenfalls mit der Frage der „Konsequenzen<br />

für den Umgang mit<br />

anderen Technologien“.<br />

Schomerus untersuchte die Frage<br />

„Kohleausstieg nach dem Muster<br />

des Atomgesetzes?“. Er nannte als<br />

Parallelen bei der Umsetzung des<br />

Kohleausstiegs die grundsätzliche<br />

Vereinbarkeit mit EU-Recht sowie die<br />

Qualifizierung von Stilllegungsregelungen<br />

nicht als Enteignung,<br />

sondern als Inhalts- und Schrankenbestimmung<br />

gemäß Art. 14 Abs. 1 S. 1<br />

GG und empfahl zur rechtlichen<br />

Umsetzung ein Ausstiegsgesetz, das<br />

insbesondere Laufzeitbefristungen<br />

und zur Vermeidung einer Ausgleichspflicht<br />

Übergangs- und Härtefallregelungen<br />

enthalten solle. Für<br />

empfehlenswert hielt Schomerus<br />

ebenfalls einen „Kohlekonsens“ ähnlich<br />

dem „Atomkonsens“.<br />

Karpenstein stellte eingangs seines<br />

Referates fest, dass auch Hochrisikotechnologien<br />

grundrechtlichen<br />

Schutz beanspruchen können. Dies<br />

gelte erst recht für Unternehmen<br />

ohne Hochrisikotechnologie bzw. für<br />

Betriebe mit geringerem Risiko. Zwar<br />

sei es richtig, dass der Gesetzgeber<br />

frühzeitig Gefahren Rechnung tragen<br />

solle, Grundrechtseingriffe bedürften<br />

aber gleichwohl der Legitimierung.<br />

Karpenstein betonte, der Rekurs auf<br />

die Akzeptanz der Bevölkerung müsse<br />

die absolute Ausnahme bleiben. So<br />

habe es auch das Bundesverfassungsgericht<br />

gesehen: Wo es nicht um<br />

Hochrisikotechnologie gehe, dürfe die<br />

Akzeptanz keine Rolle spielen. Das<br />

Urteil vom 6.12.2016 zeige außerdem,<br />

Energy Policy, Economy and Law<br />

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

dass das BVerfG von einer Ausnahmestellung<br />

des Atomrechts ausgehe und<br />

dieses Urteil keine „Blaupause“ für<br />

andere Technologien sei. Bei Technologien<br />

wie der Kohleverstromung<br />

oder der nuklearen Brennstoffversorgung<br />

müsse sich das Verfassungsgericht<br />

fragen, ob die Ausstiegsregelung<br />

nicht eigentlich nur als<br />

Symbolpolitik gemeint sei. Die<br />

vom Bundesumweltministerium angestrebte<br />

Schließung der Brennelementfabrikation<br />

und der Urananreicherung<br />

ziele auf eine Schließung<br />

bzw. zumindest eine Nichtbelieferung<br />

von ausländischen KKW. Karpenstein<br />

konstatierte dazu: „Dies ist europarechtlich<br />

kein legitimes Ziel“. Die Angemessenheit<br />

einer Stilllegung müsse,<br />

darin sei er sich mit Schomerus einig,<br />

genau geprüft werden. Zum Beispiel<br />

habe das BVerfG im Falle eines Tagebaubetriebs<br />

eine Beschränkung der<br />

Nutzungsberechtigung auf 4 Jahre als<br />

schwerwiegenden Eingriff betrachtet.<br />

Letzter Redner des 1. Themenblocks<br />

war Prof. Dr. Markus Krajewski,<br />

Universität Erlangen-Nürnberg, mit<br />

dem Thema „Investitionsschutzabkommen<br />

als Grenze zukünftigen<br />

Ordnungsrechts“. Nach Darstellung<br />

der Grundzüge des internationalen<br />

Investitionsschutzrechts und des uneinheitlichen<br />

materiellen Rechts (z.B.<br />

Art. 10 Abs. 1 Energiecharta-Vertrag<br />

im Vergleich zu Art. 8.10 CETA-Abkommen)<br />

sowie der aktuell bestehenden<br />

Unklarheiten bzgl. der Fortentwicklung<br />

des Investitionsschutzrechts<br />

durch die und in der EU merkte<br />

Krajewski zu dem Achmea-Urteil des<br />

EuGH (Rs C-284/16) an, dass nach<br />

diesem Urteil nicht klar sei, ob es nur<br />

für Intra-EU-Investitionsabkommen<br />

gelte oder auch auf andere Abkommen<br />

wie dem Energiecharta-Vertrag<br />

übertragbar sei. Konkret zum anhängigen<br />

Schiedsverfahren von<br />

Vattenfall in Washington über die<br />

Verletzung des Energiecharta-Vertrags<br />

durch die 13. AtG-Novelle wies<br />

Krajewski darauf hin, dass einseitige<br />

Abweichungen der Regierung von<br />

konsensual mit der Industrie vereinbarten<br />

Lösungen investitionsschutzrechtlich<br />

die Frage aufwerfe, ob in<br />

der Vereinbarung eine spezifische<br />

Zusicherung zu sehen sei, deren<br />

Änderung legitime Erwartungen der<br />

Investoren enttäuscht habe. Unter<br />

Hinweis auf Art. 10 Abs. 1 Energiecharta-Vertrag<br />

erinnerte Krajewski<br />

daran, dass eine Abwägung im<br />

Investitionsschutzrecht letztlich über<br />

das „Equity“-Gebot (Gebot der fairen<br />

und gerechten Behandlung) zu treffen<br />

sei.<br />

In der anschließenden lebhaften<br />

Diskussion unterstrich Prof. Dr.<br />

Michael Eichberger, Richter am<br />

BVerfG a.D., der Berichterstatter im<br />

Streitverfahren über die 13. AtG-<br />

Novelle war, die Auffassung von<br />

Burgi, durch das „Ausstiegsgesetz“<br />

von 2002 habe es eine Vorfindlichkeit<br />

der Rechtslage gegeben; ebenso sei<br />

richtig, dass der Inhalt der Eigentumsund<br />

Schrankenbestimmung in Art.<br />

14 GG durch die Vorfindlichkeit<br />

bestimmt werde. Zu der Frage, ob die<br />

geänderte Risikowahrnehmung der<br />

Bevölkerung ein hinreichender tragfähiger<br />

Grund für einen Grundrechtseingriff<br />

sei, stellte Eichberger unter<br />

Zitierung von Satz 3 in Rdn. 308 des<br />

Urteils vom 6.12.2016 fest, das BVerfG<br />

habe hier sehr vorsichtig <strong>for</strong>muliert.<br />

Das Urteil solle kein „Freibrief“ sein<br />

für andere Fälle.<br />

Karsten Möring, MdB und Berichterstatter<br />

der CDU/CSU zur 16. AtG-<br />

Novelle, zeigte sich irritiert über den<br />

Begriff der Hochrisikotechnologie.<br />

Seine Frage, wieweit dieser Begriff,<br />

der auch bei der Brennelementfabrikation<br />

und der Anreicherung eine<br />

Rolle spiele, konkretisiert worden sei,<br />

ließ Eichberger bewusst unbeantwortet.<br />

Er wolle einzelne Teile des<br />

Urteils, also auch den Begriff der<br />

Hochrisikotechnologie nicht rechtfertigen.<br />

Prof. Dr. Ferdinand Kirchhof,<br />

Vizepräsident des Bundesverfassungsgerichts<br />

a.D. (ab 30.11.2018), hielt es<br />

dagegen für angezeigt, zu dem Begriff<br />

anzumerken, dieser solle den Vertrauensschutz<br />

in seiner geschichtlichen<br />

Entwicklung beschreiben. Burgi ließ<br />

es in seiner Entgegnung dahin gestellt<br />

sein, ob dieser Begriff ein zentraler<br />

Punkt des Urteils sei, jedenfalls brauche<br />

man ihn nicht, um den Kohleausstieg<br />

zu rechtfertigen. In Bezug<br />

auf den Diskussionsbeitrag von Dr.<br />

Manfred Rebentisch, Clif<strong>for</strong>d Chance<br />

LLP, bei der Kohle gehe es nicht um<br />

Gefahrenabwehr, sondern um Vorsorgean<strong>for</strong>derungen,<br />

die unter dem<br />

Verhältnismäßigkeitsgebot stünden,<br />

merkte Prof. Dr. Sabine Schlacke, Universität<br />

Münster, an, dass der Wandel<br />

des Klimas, das durch Art. 20a GG<br />

geschützt sei, ein legitimer Zweck des<br />

Kohleausstiegsgesetzes sei, und wies<br />

auf das vor dem OLG Hamm anhängige<br />

Verfahren des peruanischen<br />

Bauern gegen RWE hin, in dem das<br />

Gericht davon ausgehe, dass der<br />

Mitverursachungsanteil von RWE am<br />

Abschmelzen des Palcaraju- Gletschers<br />

in Peru und an der Gefahr einer Überflutung<br />

des am Gletscher liegenden<br />

Hausgrundstücks des Klägers 0,47 %<br />

betrage.<br />

Den Einwand von Dr. Christian<br />

Müller-Dehn, PreussenElektra GmbH,<br />

bzgl. der Einschätzung von KKW<br />

als Hochrisikotechnologie, es seien<br />

extrem hohe An<strong>for</strong>derungen an die<br />

Betreiber von KKW zwecks Risikominimierung<br />

gestellt worden, so<br />

dass das verbleibende probabilistische<br />

Risiko mit anderen Technologien vergleichbar<br />

sei, ließ Burgi nicht gelten.<br />

Es gebe kein Indiz im Urteil vom<br />

6.12.2016 dafür, dass der Grundrechtsschutz<br />

des Betreibers eines<br />

KKW höher oder zumindest gleichwertig<br />

dem eines Betreibers anderer<br />

Technologien sei.<br />

Kirchhof kommentierte die Diskussion<br />

mit der Feststellung, es handele<br />

sich um eine typisch deutsche Diskussion,<br />

und riet, „unser Ei nicht immer<br />

im Verfassungsrecht zu suchen“.<br />

Der zweite Tag der Veranstaltung<br />

startete mit dem 2. Themenblock<br />

„ Aktuelle Rechtsfragen der nuklearen<br />

Sicherheit“.<br />

Prof. Dr. Martin Beckmann, Baumeister<br />

Rechtsanwälte Partnerschaft<br />

mbH, untersuchte die Kriterien für<br />

eine „Grenzüberschreitende Umweltverträglichkeitsprüfung<br />

(UVP)<br />

bei Laufzeitverlängerung“ von nuklearen<br />

Zwischenlagern in Deutschland<br />

und von ausländischen KKW. Er wies<br />

darauf hin, dass Aufbewahrungs genehmigungen<br />

in deutschen Zwischenlagern<br />

auf 40 Jahre befristet seien, so<br />

dass angesichts fehlender Endlagermöglichkeiten<br />

eine Still legung der<br />

Zwischenlager keine Option sei und<br />

daher sehr zeitgerecht über eine Laufzeitverlängerung<br />

(als Verlängerung<br />

der Genehmigungsfrist oder ggf. auch<br />

als Änderung einer Genehmigungsauflage)<br />

entschieden werden müsse.<br />

Bezüglich der Frage der Notwendigkeit,<br />

eine grenzüberschreitende UVP<br />

durchführen zu müssen, erläuterte<br />

Beckmann, dass die für eine grenzüberschreitende<br />

UVP beachtliche<br />

Schwelle der erheblichen Umweltauswirkungen<br />

dem Maßstab der Vorprüfung<br />

bei Neuvorhaben nach § 7<br />

Abs. 1 S. 2 UVPG („erhebliche nachteilige<br />

Umweltauswirkungen“) entspreche.<br />

Eine grenzüberschreitende<br />

UVP bei Laufzeitverlängerung sei nicht<br />

er<strong>for</strong>derlich, wenn das Vorhaben<br />

nach Einschätzung der Behörde keine<br />

erheblichen nachteiligen Umweltauswirkungen<br />

haben könne oder wenn<br />

erhebliche Umweltauswirkungen nicht<br />

grenzüberschreitend seien. Bei ausländischen<br />

KKW, wovon es ca. 120<br />

KKW in den 14 deutschen Nachbarstaaten<br />

gebe, hänge die Er<strong>for</strong>derlichkeit<br />

einer grenzüberschreitenden UVP<br />

u.a. davon ab, ob der Projektbegriff der<br />

ENERGY POLICY, ECONOMY AND LAW 209<br />

Energy Policy, Economy and Law<br />

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 210<br />

UVP-Richtlinie erfüllt sei (wird von<br />

Beckmann verneint) oder ob jedenfalls<br />

der Maßnahmebegriff der Espoo-<br />

Konvention angenommen werden<br />

könne. Fazit bei ausländischen KKW:<br />

Man müsse im Einzelfall prüfen, wie<br />

die Genehmigung des betreffenden<br />

KKW geregelt sei.<br />

Gregor Franßen, Heinemann &<br />

Partner Rechtsanwälte – PartnerschaftsG<br />

mbB, beschäftigte sich<br />

anschließend mit „Rechtsschutz und<br />

Beweislast in multipolaren Rechtsverhältnissen“.<br />

Den Hintergrund<br />

dieses Beitrags bilden Verwaltungsgerichtsverfahren,<br />

in denen über den<br />

Zugang zu entscheidungserheblichen<br />

In<strong>for</strong>mationen sowie über die prozessualen<br />

Folgen für das Hauptsacheverfahren<br />

im Falle des zu Recht<br />

verweigerten Zugangs gestritten wird.<br />

Franßen erläuterte die Defizite der<br />

aktuellen Rechtslage (§§ 99, 100<br />

VwGO) anhand atomrechtlicher<br />

Streitverfahren, bei denen es um die<br />

Verweigerung von in der Regel<br />

geheimhaltungsbedürftigen In<strong>for</strong>mationen<br />

gehe, die den gesetzlich als<br />

Zulassungsvoraussetzung ge<strong>for</strong>derten<br />

Schutz gegen Störmaßnahmen und<br />

sonstige Einwirkungen Dritter<br />

(SEWD) sicherstellen sollen. Zur<br />

Klärung der behördlichen Verweigerung<br />

des In<strong>for</strong>mationszugangs sehe<br />

§ 99 Abs. 2 VwGO ein „In- camera“-<br />

Zwischenverfahren vor. Werde die<br />

Verweigerung des Zugangs bestätigt,<br />

werde der Kläger, der den Zugang<br />

begehre, in seinem Grundrecht auf<br />

effektiven Rechtsschutz beschränkt.<br />

Im umgekehrten Falle werde die<br />

geheimhaltungsbedürftige In<strong>for</strong>mation<br />

dem Gericht bekannt und gelange<br />

über § 100 VwGO zur Kenntnis des<br />

Klägers. Damit werde das öffentliche<br />

Geheimhaltungsinteresse, das Geheimhaltungsinteresse<br />

des Genehmigungsinhabers<br />

wie auch der verfassungsrechtlich<br />

gebotene Schutz von<br />

Grundrechten Dritter im potentiellen<br />

Einwirkungsbereich der betroffenen<br />

kerntechnischen Anlage konterkariert.<br />

Ein Bekanntwerden sicherheitsrelevanter<br />

SEWD-In<strong>for</strong>mationen<br />

gefährde die Sicherstellung des er<strong>for</strong>derlichen<br />

Schutzes. Unter Hinweis auf<br />

den Beitrag von Dr. Dieter Sellner zum<br />

„In-camera“-Verfahren in Bezug auf<br />

geheimhaltungsbedürftige In<strong>for</strong>mationen<br />

mit hohem Risikopotential<br />

(EuRUP 2018, S. 100 ff) schlug<br />

Franßen als Lösung ein „In- camera“-<br />

Hauptsacheverfahren vor. Komme das<br />

Hauptsachegericht dabei zu dem<br />

Ergebnis, die In<strong>for</strong>mationen seien zu<br />

Recht verweigert worden, erhalte es<br />

zwar die In<strong>for</strong>mationen für seine<br />

Entscheidungsfindung im Hauptsacheverfahren,<br />

dem Kläger sei der<br />

Zugang zu diesen In<strong>for</strong>mationen<br />

jedoch zu verweigern. Im umgekehrten<br />

Fall sei dem Kläger der In<strong>for</strong>mationszugang<br />

zu gewährleisten.<br />

Als letzter Redner des 2. Themenblocks<br />

wandte sich Prof. Dr. Martin<br />

Kment, Universität Augsburg, den<br />

„Heraus<strong>for</strong>derungen an die Rechtsetzung<br />

durch untergesetzliches<br />

Regelwerk (v.a. Legitimation und<br />

Zugänglichkeit)“ zu. Kment skizzierte<br />

das vorhandene untergesetzliche<br />

Regelwerk im Atomrecht und die<br />

Rechtsprechung des Bundesverwaltungsgerichts<br />

zur Qualifizierung<br />

normkonkretisierender Verwaltungsvorschriften<br />

im Technik- und Umweltrecht<br />

sowie zur eingegrenzten<br />

Überprüfbarkeit der behördlichen<br />

Risikoermittlung und Risikobewertung<br />

durch die Gerichte.<br />

In der Diskussion bezweifelte<br />

Annette Pütz, BMU, ob es heute<br />

tatsächlich noch so sei, dass nur<br />

Standards im Technik- und Umweltrecht<br />

festgelegt würden. Eher sei es<br />

heutzutage so, dass Gesundheitsstandards<br />

festgelegt würden, und<br />

zwar von der Industrie. Der Zugang zu<br />

den technischen Normen sei im<br />

Übrigen teilweise schwierig. Die<br />

Etablierung von Normen durch den<br />

DIN sei fraglos sinnvoll. Jedoch<br />

bestünden im BMU extreme Schwierigkeiten,<br />

mit diesem Regelwerk zu<br />

arbeiten.<br />

Dr. Dörte Fouquet, Becker Büttner<br />

Held PartGmbB, wies in Bezug auf<br />

den Vortrag von Beckmann auf die<br />

Fülle von Klageverfahren in Belgien<br />

gegen die Laufzeitverlängerungen für<br />

die belgischen KKW hin. Fouquet<br />

bemängelte, dass diese Verfahren<br />

ohne UVP in Belgien und ohne grenzüberschreitende<br />

UVP stattgefunden<br />

hätten. Beckmann merkte dazu an,<br />

dass die belgischen KKW über unbefristete<br />

bestandskräftige Genehmigungen<br />

verfügten. Dies sei Fakt und<br />

müsse man akzeptieren.<br />

Prof. Dr. Tobias Leidinger, Luther<br />

Rechtsanwaltsgesellschaft mbH, fragte,<br />

was mit der Einschätzungsprärogative<br />

der Exekutive sei und wer im<br />

demokratischen Rechtsstaat die Verantwortung<br />

für das Risiko trage. Nach<br />

der Rechtsprechung des Bundesverfassungsgerichts<br />

(„Kalkar“-Entscheidung)<br />

trage eindeutig die Exekutive<br />

die Verantwortung, die auch abschließend<br />

die bei SEWD-Ereignissen<br />

unterstellten Tatmittel definieren<br />

müsse, die von der Judikative zu<br />

beachten seien. Leidinger mahnte<br />

an, dass die Gerichte einen klaren<br />

Maßstab benötigten, ansonsten<br />

komme man „in der Praxis nie zu einer<br />

bestandskräftigen Genehmigung“.<br />

Franßen stellte dazu fest, nach<br />

Auffassung des Bundesverwaltungsgerichts,<br />

für die er allerdings kein<br />

Verständnis habe, unterlägen die geheimhaltungsbedürftigen<br />

Tatmittel<br />

der vollen gerichtlichen Überprüfung,<br />

und fragte, wie Geheimhaltung einerseits<br />

und Überprüfung andrerseits in<br />

der Praxis funktionieren sollen.<br />

Kment bemängelte die Störung der<br />

Normsetzung durch politische Prozesse,<br />

da sich Exekutive, Legislative<br />

und Judikative zurückzögen. Er <strong>for</strong>derte<br />

die Verwaltung auf, wieder ihrer<br />

Aufgabe gerecht zu werden. Private<br />

füllten nur die Lücken aus, die die Verwaltung<br />

ihnen lasse.<br />

Der 3. Themenblock widmete sich<br />

dem „Strahlenschutzrecht“ und<br />

wurde mit dem Übersichtsvortrag von<br />

Dr. Goli-Schabnam Akbarian, BMU,<br />

eröffnet. Da die Rednerin im diesjährigen<br />

Januar-Heft der <strong>atw</strong> bereits<br />

selbst zum neuen Strahlenschutzrecht<br />

zu Wort gekommen ist, wird an dieser<br />

Stelle deshalb auf weitere Ausführungen<br />

zum Vortrag verzichtet.<br />

Prof. Dr. Thomas Mann, Universität<br />

Göttingen, befasste sich mit<br />

„ Einwirkungen des Strahlenschutzrechts<br />

auf andere Bereiche des<br />

Ordnungsrechts“. Mann begann<br />

seinen Vortrag mit einem kleinen<br />

Paukenschlag, indem er den Umfang<br />

des neuen Strahlenschutzrechts mit<br />

dem Umfang des Werkes „Felix Krull“<br />

seines Namensvetters verglich,<br />

jedoch das neue Strahlenschutzrecht<br />

nicht für nobelpreiswürdig hielt. Er<br />

konstatierte, regulatorische Konflikte<br />

zwischen StrlSchG und anderen<br />

Bereichen des Ordnungsrechts seien<br />

unausweichlich, da im StrlSchG auch<br />

Parallelregelungen zum allgemeinen<br />

Umweltrecht getroffen würden, z.B.<br />

in § 95 StrlSchG, der eine Ermächtigung<br />

für ergänzende Regelungen zum<br />

Kreislaufwirtschaftsgesetz vorsehe.<br />

Das StrlSchG schaffe außerdem einen<br />

anderen Abfallbegriff und diene<br />

damit nicht der rechtstechnischen<br />

Vereinfachung. Der Altlastenbegriff<br />

sei im StrlSchG ebenfalls anders als<br />

im Bodenschutzgesetz und im Bundes-<br />

Immissionsschutzgesetz geregelt. Da<br />

der Altlastenbegriff jedoch eine<br />

Prognoseentscheidung enthalte, sei es<br />

insoweit richtig, von einem Referenzwert<br />

auszugehen und nicht von einem<br />

Grenzwert. Die bundesrechtlichen<br />

Umweltfachgesetze könnten allerdings<br />

modifiziert und die strahlenschutzrelevanten<br />

Regelungen im<br />

StrlSchG konzentriert werden, so dass<br />

Energy Policy, Economy and Law<br />

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

dieses insoweit lex specialis werde. In<br />

den Fachbereichen mit Gesetzgebungszuständigkeit<br />

der Länder werde<br />

dagegen der Verwaltungsvollzug<br />

weiterhin grundsätzlich durch Landesrecht<br />

geregelt. Hier greife das „Verzahnungsmodell.<br />

Der Bund erhalte<br />

über das StrlSchG Verordnungsermächtigungen<br />

und Ermächtigungen<br />

für Notfallvorsorge/Notfallpläne,<br />

um durch materielle Vorgaben eine<br />

einheitliche Verwaltungspraxis zu<br />

erreichen. Notfallschutzregelungen<br />

im Bereich des Strahlenschutzes fielen<br />

als ungeschriebene Annex- Kompetenz<br />

regeln in die Kompetenz des<br />

Bundes und sollten daher, so Mann,<br />

nach der Rechtsprechung des BVerfG<br />

keinen verfassungsrechtlichen Bedenken<br />

begegnen.<br />

Gerrit Niehaus, Umweltministerium<br />

Baden-Württemberg, erläuterte<br />

in seinem Beitrag „Entlassung von<br />

Gegenständen aus der atomrechtlichen<br />

Überwachung beim Abbau<br />

von Kernkraftwerken“, dass im<br />

neuen Strahlenschutzrecht mit der<br />

Freimessung nicht mehr zeitgleich<br />

eine Entlassung als radioaktiver Stoff<br />

aus dem Strahlenschutzregime vorgesehen<br />

sei. Ferner wies Niehaus auf<br />

§ 33 Abs. 4 StrlSchG hin, der in Erweiterung<br />

des bisherigen Rechts<br />

zulässt, die Beendigung der staatlichen<br />

Aufsicht mit einer Bedingung,<br />

einem Vorbehalt des Widerrufs oder<br />

einem Vorbehalt der nachträglichen<br />

Aufnahme, Änderung oder Ergänzung<br />

einer Auflage zu verknüpfen. Zum<br />

Abbau von KKW stellte Niehaus fest,<br />

das Abbaugenehmigungsregime könne<br />

festlegen, dass und wie neben der<br />

Freigabe Stoffe aus der Anlagenüberwachung<br />

herausgegeben werden<br />

könnten, soweit eine Aktivierung und<br />

Kontamination ausgeschlossen sei.<br />

Nach Beantragung des Abbaus sei<br />

für Veränderungsgenehmigungen zur<br />

Einschränkung des Anlagebegriffs<br />

kein Raum mehr. Der Abbau ende,<br />

wenn die nukleare Last beseitigt sei<br />

und die notwendigen Freigaben und<br />

Herausgaben im Rahmen des Abbauregimes<br />

erfolgt seien. Zu der Frage,<br />

welcher Anlagenbegriff – der (inzwischen<br />

stark gewandelte) materielle<br />

oder der <strong>for</strong>melle Anlagenbegriff –<br />

zugrunde zulegen sei, bemerkte<br />

Niehaus, dass nach seiner Auffassung<br />

beim Abbau beide Begriffe zugrunde<br />

gelegt werden müssten.<br />

Im Anschluss an den Vortrag von<br />

Niehaus kamen zum Thema „Freigabe<br />

radioaktiver Stoffe – Rechtsund<br />

Vollzugsfragen aus Betreibersicht“<br />

Dr. Andreas Schirra und Dr.<br />

Alexander Nüsser, PreussenElektra<br />

GmbH, zu Wort. Sie begrüßten, dass<br />

auch das neue Strahlenschutzrecht<br />

am 10-Mikrosievert-Konzept festhalte<br />

und die Freigabe nach Tabellenwerten<br />

erfolge. Die neue Begründung zeige<br />

allerdings, dass der Gesetzgeber verhindern<br />

wolle, dass eine Beweislastumkehr<br />

zugunsten des Antragstellers<br />

angenommen werde. Jedoch bliebe<br />

es bei der Vermutungswirkung der<br />

Tabellenwerte und bei der Freigabe<br />

als einer gebundenen Entscheidung:<br />

Bei Einhaltung dieser Werte sei<br />

weiter hin die Freigabe zu erteilen,<br />

wenn nicht triftige Gründe dagegen<br />

sprächen. Weiterhin sei auch die<br />

Möglichkeit des Einzelfallnachweises<br />

gegeben. Klarstellend betonte<br />

Schirrer, dass das Dosiskriterium kein<br />

Grenzwert sondern ein „Trivialwert“<br />

sei, so dass auch andere Maßstäbe als<br />

bei einem Grenzwert herangezogen<br />

werden dürften. Zu § 33 Abs. 3<br />

StrlSchV stellte Schirrer fest, dass der<br />

Gesetzgeber mit dieser Vorschrift eine<br />

teilweise in den letzten Jahren geübte<br />

Praxis gesetzlich fixiere. Zu der Regelung<br />

in § 33 Abs. 4 StrlSchV merkte<br />

Schirrer an, dass zwar die Rücknehmbarkeit<br />

einer rechtswidrigen Freigabe<br />

nach allgemeinen Rechtsgrundsätzen<br />

immer möglich sei, dass aber die Freigabe<br />

einen statusändernden Verwaltungsakt<br />

darstelle, zu dessen<br />

Natur ein Widerruf im Grunde im<br />

Widerspruch stehe. Trotz des Wortlauts<br />

des § 33 Abs. 4 StrlSchV komme<br />

ein Widerruf daher nur in besonderen<br />

Fällen in Betracht.<br />

In der Diskussion betonte Dr.<br />

Renate Sefzig, BMU, dass mit der Ausweitung<br />

der Paragraphen zur Freigaberegelung<br />

keine Änderung bei der<br />

Freigabe intendiert gewesen sei. Eine<br />

Freigabe zur Untertagedeponierung<br />

z.B. sei weiterhin im Einzelfall<br />

möglich. Die Erweiterung der<br />

Paragraphen zur Freigabe sei eine<br />

Folge der <strong>for</strong>malen An<strong>for</strong>derungen<br />

des Bundesjustizministeriums.<br />

Den nachfolgenden Vortrag „Aufsicht<br />

und Öffentlichkeitsbeteiligung<br />

im Rahmen der Standortauswahl<br />

als integrative Aufgabe des<br />

BfE“ hielt die Vizepräsidentin des BfE<br />

Dr. Silke Albin anstelle des im Programm<br />

angekündigten Präsidenten<br />

des BfE Wolfram König und eröffnete<br />

damit den Reigen der Vorträge<br />

des 4. Themenblocks „Fragen des<br />

Standortauswahlverfahrens“.<br />

Albin skizzierte die Neuorganisation<br />

der Verantwortung in der kerntechnischen<br />

Entsorgung, wies auf die<br />

nunmehr klare Trennung von Aufsichts-<br />

und Vorhabenträgerfunktion<br />

hin, erläuterte die Aufsichtsfunktion<br />

des BfE (Überwachung des Vollzugs<br />

des StandAG) über die BGE GmbH<br />

während des gesamten Standortauswahlverfahrens<br />

sowie die neuen<br />

ENERGY POLICY, ECONOMY AND LAW 211<br />

Advertisement<br />

Your Ad Here...<br />

Format: 1/4 Landscape<br />

For more in<strong>for</strong>mation please contact:<br />

Petra Dinter-Tumtzak<br />

Phone +49 30 498555-30<br />

E-mail petra.dinter@nucmag.com<br />

Your Ad Here 179x60v1.indd 1 27.03.19 09:55<br />

Energy Policy, Economy and Law<br />

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 212<br />

Standards, die das StandAG bei der<br />

Öffentlichkeitsbeteiligung setze (z.B.<br />

mobile Endlagerausstellung, Statuskon<br />

ferenzen und insbesondere die In<strong>for</strong>mationsplatt<strong>for</strong>m<br />

nach § 6 StandAG<br />

mit allen wesentlichen Unterlagen des<br />

BfE und der Vorhabenträgerin zum<br />

Stand ortauswahlver fahren). Albin betonte,<br />

dass das BfE mit der Vorlage des<br />

Konzepts der Öffentlichkeitsbeteiligung<br />

in der Startphase noch über die An<strong>for</strong>de<br />

rungen des Stand AG hinausgehe.<br />

Mit dem Öffentlichkeits beteiligungs<br />

verfahren befasste sich ebenfalls<br />

Prof. Dr. Wolfgang Durner,<br />

Universität Bonn. Sein Vortragstitel<br />

lautete „Das Beteiligungsverfahren<br />

nach dem Standortauswahlgesetz<br />

im Vergleich mit anderen Großvorhaben“.<br />

In der gebotenen Kürze<br />

zeichnete Durner die Entwicklung<br />

der Öffentlichkeitsbeteiligungsvorschriften<br />

in verschiedenen Vorschriften<br />

wie dem VwVfG, der<br />

9. BImSchV, dem BauGB und vor<br />

allem dem NABEG (Netzausbaubeschleunigungsgesetz)<br />

nach und zog<br />

die erhellende Quintessenz aus den<br />

Erfahrungen mit der Anwendung<br />

dieser Vorschriften – keine nennenswerte<br />

Minderung der Widerstände<br />

gegen die untersuchten Großvorhaben<br />

durch zusätzliche Beteiligungsschritte<br />

– , die er an den allgemeinen<br />

Erkenntnissen der Partizipations<strong>for</strong>schung<br />

spiegelte. Das NABEG habe<br />

weder eine Beschleunigungswirkung<br />

noch eine Befriedungswirkung in<br />

der Öffentlichkeit erzielt. Die Politik<br />

habe außerdem über die zuständige<br />

Behörde hinweg eigenmächtig Entscheidungen<br />

getroffen, die den Aufgaben/Zielen<br />

des NABEG diametral<br />

entgegengesetzt gewesen seien. Auch<br />

sei der Umfang der vorgesehenen<br />

Beteiligungselemente zu groß gewesen,<br />

und zu viele Gremien seien<br />

beteiligt gewesen, die untereinander<br />

auch noch konkurriert hätten. Zudem<br />

seien die Erkenntnisse der Partizipations<strong>for</strong>schung<br />

außer Acht gelassen<br />

worden. Dazu gehöre, dass der Staat<br />

nichts versprechen solle, was er nicht<br />

halten könne. Suggeriert werde aber<br />

durch die Mitgestaltung des Verfahrens<br />

auch eine Mitentscheidung<br />

der Bürger. Jedoch könne der Rechtsstaat<br />

solche Erwartungen nicht<br />

erfüllen. Ziel müsse sein, ein Ergebnis<br />

zu finden, mit dem die Betroffenen<br />

„leben“ könnten. Ein Verfahren, das<br />

vermutlich Jahrzehnte dauern werde,<br />

führe schwerlich zu Akzeptanz.<br />

„ NIMBY“ könne dabei leicht zu „not<br />

in my lifetime“ mutieren. Auch müsse<br />

die Akzeptanz ständig neu mit<br />

den Beteiligten „erarbeitet“ werden.<br />

Durner unterstrich, dass eine aktive<br />

und mutige politische Entscheidung<br />

vonnöten sei. „Wo ein Kompromiss<br />

unter Verantwortlichen nicht zu<br />

finden ist, wird er auch in einem<br />

Beteiligungsverfahren nicht erreicht<br />

werden“, schloss Durner.<br />

Der 3. Beitrag zur Öffentlichkeitsbeteiligung<br />

kam von Dr. Peter Hocke,<br />

Institut für Technikfolgenabschätzung<br />

und Systemanalyse am KIT, der<br />

zusammen mit seiner Kollegin Dr.<br />

Sophie Kuppler den Vortrag „Die<br />

Beteiligung der Öffentlichkeit bei<br />

der Suche nach einem Endlager:<br />

Ein problemorientierter Blick in die<br />

Schweiz“ vorbereitet hatte. Die<br />

Endlagerung radioaktiver Abfälle sei<br />

ein technisch und sozial komplexes<br />

Thema, bei dem die Entscheidungsträger<br />

schwerlich Anerkennung für ihr<br />

Handeln und ihre Entscheidungen<br />

finden könnten. Mit einer Standortentscheidung<br />

werde eine „Last“ übernommen,<br />

die keine „Win-win“-Situation“<br />

erlaube. Hocke schilderte die<br />

Öffentlichkeitsbeteiligung in der<br />

Schweiz, wie sie seit Mitte des letzten<br />

Jahrzehnts erfolgreich in der Schweiz<br />

durchgeführt werde. Dazu gehöre u.a.<br />

: Abstimmung des „Sachplans“ auf<br />

Bundesebene unter umfänglicher<br />

Beteiligung der Öffentlichkeit; Einrichtung<br />

von Regionalkonferenzen,<br />

Ausschuss der Kantone, Forum Tiefenlager<br />

zum Austausch von Argumenten<br />

und unterschiedlichen Problemwahrnehmungen<br />

und Positionen; Eingrenzung<br />

von Standortgebieten, die ohne<br />

großen öffentlichen Protest erfolgt<br />

sei, nachdem einige wenige zentrale<br />

Forderungen der nuklearkritischen<br />

Öffentlichkeit erfüllt worden seien;<br />

mehr deliberative, d.h. vermehrt<br />

auf konsultative Öffentlichkeitsbeteiligung<br />

und diskursiv angelegte<br />

politische Kultur zielende Endlager-<br />

Governance statt Endlager-Management.<br />

Verschiedene Spannungsfelder<br />

seien gleichwohl bestehen geblieben<br />

(unterschiedliche Erwartungen an die<br />

eingesetzten Beteiligungs<strong>for</strong>mate,<br />

keine inhaltliche Beratung von Erwartungen<br />

an Entscheidungskriterien<br />

z.B.). Aus sozialwissenschaftlicher<br />

Sicht nannte Hocke als Fazit das<br />

„selbst-lernende Verfahren“, wie es<br />

auch das StandAG vorsehe: End lager-<br />

Governance werde auf neue wissenschaftliche<br />

Entwicklungen, Änderungen<br />

gesellschaftlicher Erwartungen<br />

und auch neues Behördenhandeln<br />

reagieren müssen. Diese ge<strong>for</strong>derte<br />

Flexibilität betreffe auch die Rechtsentwicklung.<br />

Im letzten Beitrag des Atomrechtssymposiums<br />

wandte sich Prof.<br />

Dr. Sabine Schlacke den „Rechtsfragen<br />

bei der Umsetzung der Öffentlichkeitsbeteiligung<br />

einschließlich<br />

Rechtsschutz“ zu. Schlacke monierte,<br />

dass im Rahmen der in den §§ 17 Abs.<br />

3 S. 3, 19 Abs. 2 S. 6 StandAG geregelten<br />

und über das Umweltrechtsbehelfsgesetz<br />

hinausgehenden Klagebefugnis<br />

der Regionalkonferenz kein<br />

eigenes Klagerecht zugewiesen werde.<br />

Damit werde ihrer Wächterfunktion<br />

nicht ausreichend Rechnung getragen.<br />

Schlacke wies ferner auf den unterschiedlichen<br />

Umfang der Rügebefugnis<br />

bzgl. des UVP-pflichtigen Bescheids<br />

nach § 19 Abs. 2 S. 6 StandAG<br />

(alle <strong>for</strong>mellen und materiellen<br />

Mängel des Bescheids können gerügt<br />

werden) und dem die Standorte für<br />

die untertägige Untersuchung feststellenden<br />

Bescheid nach § 17 Abs. 3<br />

S. 3 StandAG hin, bei dem lediglich die<br />

Verletzung umweltbezogener Rechtsvorschriften<br />

nach § 2 Abs. 1 S. 2<br />

UmwRG gerügt werden könne. In<br />

Bezug auf den gerichtlichen Kontrollumfang<br />

erwartete Schlacke, dass das<br />

Bundesverwaltungsgericht dem BfE<br />

angesichts der Beurteilung technischwissenschaftlicher<br />

und mit Unsicherheiten<br />

behafteter Fragestellungen eine<br />

Einschätzungsprärogative zugestehen<br />

werde und sich die gerichtliche Kontrolle<br />

insoweit nur auf ein Überschreiten<br />

der Grenzen des dem BfE<br />

eingeräumten Planungsermessens beschränken<br />

werde. Insgesamt stellte<br />

Schlacke dem StandAG mit seinem<br />

erstmalig im deutschen Recht verankerten<br />

phasenspezifischen Rechtsschutz<br />

mit erweiterter Klagebefugnis<br />

ein „gutes „Zeugnis“ aus. Das Gesetz<br />

kombiniere „geschickt“ Interessenrechtsschutz<br />

mit überindividuellem<br />

Rechtsschutz.<br />

Ob die von Schlacke erwartete Akzeptanzsteigerung<br />

durch diese Rechtsschutzregelungen<br />

und die Funktion<br />

des Standortauswahlver fahrens, die<br />

Richtigkeit der Standortentscheidung<br />

zu indizieren, tatsächlich bewirken<br />

wird, bleibt zu hoffen, erscheint insbesondere<br />

vor dem Hintergrund des<br />

Vortrags von Durner allerdings noch<br />

längst nicht aus gemacht.<br />

Das nächste Deutsche Atomrechtssymposium<br />

soll, wie Flasbarth ankündigte,<br />

bereits in 2020 stattfinden.<br />

Author<br />

Ulrike Feldmann<br />

Berlin, Deutschland<br />

Energy Policy, Economy and Law<br />

The 15 th Deutsche Atomrechtssymposium: An Determination of the Curent Situation ı Ulrike Feldmann


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Failure Analysis of the Jet Pumps Riser<br />

in a Boiling Water Reactor-5<br />

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza,<br />

Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón<br />

The arrangement of a riser coupled with two jet pumps is an important element in the Reactor Recirculation Core<br />

system of a Boiling Water Reactor. Its operational objective is to <strong>for</strong>ce the flow of water through the core <strong>for</strong> load variation<br />

and <strong>for</strong> safety is to keep the core flooded. In order to avoid thermal stresses, they are supported in a flexible way. In<br />

this case, the material expansion does not introduce stresses. The riser is only fixed at the upper zone welded at the<br />

riser brace. An important concern happens when the assembly vibrates under a torsional mode around its longitudinal<br />

axis. Under these conditions, helical cracks can be initiated at the riser brace weld. In this paper, a methodology <strong>for</strong> the<br />

evaluation of the structural integrity of the cracked riser is presented. It is considered that failure can take place in a<br />

brittle or in a ductile manner. For its evaluation, such cracks are projected along the axial and circumferential axis and<br />

evaluated in both conditions. In the first case, Fracture Mechanics are used. The ductile failure is evaluated applying the<br />

Collapse Limit Load analysis. The allowable crack length was determined when the flow through the core varied between<br />

95% and 107%. These analyses were carried out when one or two recirculation circuits were in operation. In<br />

order to demonstrate the application of these results, three cases were analyzed. The results were evaluated with the<br />

Failure Assessment Diagram R6.<br />

213<br />

OPERATION AND NEW BUILD<br />

1 Introduction<br />

The Reactor Recirculation Core System<br />

in a Boiling Water Reactor (BWR) plays<br />

an important role. It induces a <strong>for</strong>ced<br />

flow of water through the core to<br />

increase the power density and the<br />

safety function is to provide coolability<br />

<strong>for</strong> the core to maintain the water level<br />

at two thirds of the height of the core.<br />

There are twenty jet pumps in a<br />

BWR-5. They are arranged in ten pairs<br />

in the annular region between the<br />

inner wall and the core shroud.<br />

Each pair is joined with a riser pipe<br />

(Figure 1).<br />

In order to avoid thermal expansion<br />

stresses, this arrangement is<br />

supported in a flexible way. In other<br />

words, the upper part of the riser is<br />

stiff welded to a flexible brace, which<br />

is clamped on the inner surface of the<br />

reactor vessel. The bottom of the riser<br />

is joined with an elbow, which connects<br />

this arrangement to a circular<br />

manifold. Besides, the bottom of each<br />

jet pump has a slip joint. Thus, axial<br />

displacement can take place without<br />

any restriction. It has to be kept in<br />

mind, that the two pumps and the<br />

riser are joined by a joke. The stiffness<br />

is increased while the three elements<br />

are maintained together by such joke.<br />

However, this stiffness is reduced<br />

when wear of the wedge of the joke<br />

has taken place. The worst condition<br />

is when such wedge is completely<br />

loosen.<br />

The jet pumps are subjected to an<br />

internal flow and an external cross<br />

flow of water. There<strong>for</strong>e, structural<br />

vibrations are exacerbated when the<br />

jet pumps are not completely tight. If<br />

this situation arises, the weld at the<br />

| | Fig. 1.<br />

BWR-5 3-D view and detailed view of the jet pump section.<br />

riser brace has to support the fatigue<br />

loads which are developed. In the<br />

open literature [1], it has been reported<br />

that a 6.6 inch crack was developed<br />

at the riser, close to the weld of the<br />

riser of a brace of the unit 1 of the<br />

Kousheng <strong>Nuclear</strong> <strong>Power</strong> Plant. It was<br />

during the 16 nd outage in March of<br />

2003.<br />

In a 2014 work [2], the first five<br />

modes of vibration were calculated. It<br />

was observed that the fourth mode is<br />

torsional around the axial axis of the<br />

riser. Its resonance frequency is<br />

43.4 Hz, which can induce helicoidal<br />

cracks at the zone of the welds mentioned<br />

above. These calculations were<br />

done with SAP 2000 code [3]. In this<br />

analysis, the mass of the riser and<br />

the two jet pumps was considered.<br />

Besides, the mass of water inside and<br />

outside of this arrangement was also<br />

taken into account. The considerations<br />

<strong>for</strong> this purpose were based on<br />

the works of Blevins [4]. The flexibility<br />

of the bends, which took place<br />

during its ovalization, was introduced.<br />

The stiffness matrix was modified.<br />

The boundary conditions at the riser<br />

brace, riser bracket and slip joint were<br />

introduced in the numerical model.<br />

For the purpose of this work, a helical<br />

crack was analyzed.<br />

This analysis was also carried out<br />

with ANSYS 14.5 code. The same<br />

mode was obtained at 39.5 Hz,<br />

following the same considerations.<br />

These results are in agreement with<br />

those reported by Stevens and<br />

coworkers [5].<br />

The analysis of potential cracks in<br />

jet pumps has attracted attention [6].<br />

In<strong>for</strong>mation on potential failure<br />

locations in BWR/3-6 jet pumps is<br />

provided in this document. Fatigue<br />

and Intergranular Stress Corrosion<br />

Cracking plays an important role.<br />

Such document also mentions that<br />

Operation and New Build<br />

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5<br />

ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

OPERATION AND NEW BUILD 214<br />

significant cracking can be tolerated<br />

without loss of essential jet pump<br />

safety functions. There<strong>for</strong>e, it is<br />

important to evaluate the remaining<br />

structural integrity when a riser is<br />

cracked.<br />

2 Statement<br />

of the problem<br />

The development of helical cracks at<br />

the weld between the riser and the<br />

riser brace compromise the structural<br />

integrity of the jet pumps. There<strong>for</strong>e,<br />

it is very important to evaluate the<br />

critical size of a crack that could<br />

be tolerated, be<strong>for</strong>e a complicated<br />

reparation has to be introduced. It can<br />

be considered that the failure can be<br />

in the range of brittle and ductile<br />

conditions. So, a methodology which<br />

considers both conditions of failure is<br />

required.<br />

3 Materials and methods<br />

In order to obtain the critical size of<br />

the crack, the loads applied on the jet<br />

pump arrangement were evaluated.<br />

The hydrodynamic loads are included.<br />

It has to keep in mind that aging could<br />

take place as hours of operation are<br />

accumulated. For this purpose, brittle<br />

and ductile failures were evaluated<br />

with fracture mechanics and net<br />

section collapse analysis approaches,<br />

respectively. Then, these results were<br />

compared against those obtained with<br />

Failure Assessment Diagrams.<br />

The hydraulic loads considered,<br />

were the following: by cross flow, the<br />

impulse loading of the pump of the<br />

Reactor Recirculation Core (RRC)<br />

system and the vibration induced by<br />

fluid flow (fatigue). In the last case,<br />

the dynamic loads are generated by<br />

the bend located at the lower end of<br />

the riser, the ram head at the top of<br />

the riser and the mixer of the jet<br />

pump. The thermohydraulic analysis<br />

was carried out with the RELAP/<br />

SCDAPSIM code [7, 8].<br />

Another source of vibration are the<br />

dynamic loads from strong earthquakes.<br />

However, strong earth quakes<br />

are not a source of fatigue because of<br />

these events do not happen everyday<br />

at the same place. Summarizing, it is<br />

important to evaluate the impact of<br />

the dynamic loads which will take<br />

place on the structural integrity of the<br />

jet pumps.<br />

3.1 Cross flow<br />

The simplified method, described in<br />

the Part N1324.1 “Avoiding Lock-In<br />

Synchronization” of Section III of the<br />

ASME Code [9], was followed. Initially,<br />

the Vortex Shedding frequency is<br />

calculated with the following relationship.<br />

(1)<br />

Where: S is the Strouhal number<br />

and it is a function of the Reynolds<br />

number, U is the velocity of the cross<br />

flow and D is the lower diameter of the<br />

assembly of the jet pumps. The calculations<br />

show that the Vortex Shedding<br />

frequency was 10.7 Hz. In accordance<br />

with the criterion of the ASME code<br />

mentioned above, 1.3f s must be lower<br />

than the first natural frequency<br />

(26.3 Hz), in order to avoid “Lock-In<br />

Synchronization” with the first mode.<br />

So, as a conclusion, cross flow vibration<br />

resonance did not take place.<br />

3.2 Impulse loading of the<br />

pump of the external<br />

Reactor Recirculation Core<br />

(RRC) system<br />

In accordance with the open literature<br />

[10, 11, 12], the centrifugal pump<br />

of each circuit of RRC operates at<br />

1,800 RPM. As a result, its frequency<br />

is 30 Hz. The impeller of the centrifugal<br />

pump has five blades. There<strong>for</strong>e,<br />

the impulse frequency is 5 (30 Hz) =<br />

150 Hz. If this parameter is compared<br />

with the range of the first 5 natural<br />

frequencies (26.3 Hz – 67 Hz), it can<br />

be concluded that resonance in operation<br />

is not induced.<br />

3.3 Flow-Induced Vibration<br />

(fatigue)<br />

The sources of fatigue on the jet pump<br />

arrangement are the dynamic <strong>for</strong>ces<br />

and moments generated by the internal<br />

flow of water.<br />

Forces at the lower elbow of the riser:<br />

These <strong>for</strong>ces are generated by the inlet<br />

flow of water at the elbow of the riser.<br />

They were calculated by the following<br />

relationships (Figure 2):<br />

(2)<br />

(3)<br />

ρ is the water density. p 1 and p 2 are the<br />

pressures at the inlet and outlet of the<br />

bend, respectively. A 1 and A 2 are the<br />

cross sections at the inlet and outlet of<br />

the bend and θ is the angle of the<br />

bend. For a 90° elbow, the <strong>for</strong>ces<br />

are resulting. F x = 15,500 lb and<br />

F y = 15,500 lb horizontal and vertical<br />

respectively.<br />

Forces over the mixer nozzles of the<br />

jet pumps (Figure 3): This <strong>for</strong>ce is<br />

| | Fig. 2.<br />

Forces on the bend.<br />

| | Fig. 3.<br />

Forces on the bend.<br />

| | Fig. 4.<br />

Forces generated by the ram head over the riser.<br />

developed by the flow discharge,<br />

which comes from the Reactor Recirculation<br />

Core System, and is mixed<br />

with the suctioned flow of the condensed<br />

steam. The vertical <strong>for</strong>ce is:<br />

(4)<br />

ΔP is the differential pressure and A i is<br />

the cross section of the nozzle. For the<br />

jet pump assembly under study are<br />

186.7 pound/inch 2 and 26.1 inch 2 ,<br />

respectively. So, the resultant <strong>for</strong>ce is<br />

4881 pounds upwards.<br />

Forces generated by the ram head<br />

over the riser (Figure 4): The vertical<br />

loads over the riser, which are generated<br />

by both elbows of the ram head,<br />

were calculated with the following<br />

equation:<br />

(5)<br />

F y is the vertical <strong>for</strong>ce, ρ is the water<br />

density, p 1 and p 2 are inlet and outlet<br />

Operation and New Build<br />

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı<br />

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

pressure at the elbow, A 1 and A 2 are<br />

cross sections of the inlet and outlet of<br />

elbow, v 1 and v 2 are the flow velocities<br />

at inlet and outlet of the elbow and Q<br />

is water flow.<br />

| | Fig. 5.<br />

Resulting <strong>for</strong>ces.<br />

The upper load generated by the<br />

change of direction of the flow of water<br />

through one of the elbows is 12217.<br />

2 pounds. The total <strong>for</strong>ce, which is<br />

generated by the couple of elbows of<br />

the “ram head,” is 24434.4 pounds.<br />

The resultant moment was calculated<br />

with SAP 2000 resulting 19496<br />

pound-inch. The resultant <strong>for</strong>ces are<br />

illustrated in the Figure 5.<br />

3.4 Vibration induced<br />

by earthquake<br />

Regarding the dynamic loads that<br />

take place during an earthquake, the<br />

response spectrum <strong>for</strong> a Safe Shutdown<br />

Earthquake (SSE) and the<br />

Operational Basis Earthquake (OBE)<br />

were obtained. The criterion of 1.60<br />

USNRC was followed [13]. In both<br />

cases, the first natural frequencies of<br />

the jet pump arrangement are above<br />

20 Hz. Besides, the peaks of such<br />

response spectrum are in the range<br />

between 2 Hz and 8 Hz. The first five<br />

natural frequencies are close to 33 Hz,<br />

which is the zone of Zero Period<br />

Acceleration (ZPA). There<strong>for</strong>e, the<br />

seismic loads should not affect the<br />

structural integrity of the jet pumps<br />

and these events are not related with<br />

fatigue.<br />

4 Failure analysis<br />

4.1 Determination of the<br />

allowable crack length<br />

on the riser<br />

For this purpose, an initial helical<br />

crack length is postulated as an<br />

envelope to cover horizontal and<br />

vertical cracks (Figure 6). Then, it is<br />

| | Fig. 6.<br />

Determination of the allowable crack length<br />

on the riser.<br />

increased by steps until the maximum<br />

permissible length is reached. The<br />

following considerations apply.<br />

pp<br />

The evaluation of the loads showed<br />

that the hydraulic <strong>for</strong>ces are<br />

relevant to determine the structural<br />

integrity.<br />

pp<br />

As a critical case that helical cracks<br />

are generated at the weld of the<br />

riser brace, arising when the jet<br />

pumps vibrate under a torsional<br />

mode. In order to analyze this sort<br />

of cracks, the Section XI of the<br />

ASME code [14] is applied to evaluate<br />

the crack along the axial and<br />

circumferential projection, as it is<br />

illustrated in the following Figure.<br />

pp<br />

The recirculation system varies the<br />

flow through the core. In this way,<br />

the power density of the reactor<br />

changes. There<strong>for</strong>e, the range of<br />

the variation of the flow of water is<br />

considered to be between 95 % and<br />

107 %.<br />

pp<br />

Fragile and ductile failures should<br />

be evaluated to cover all the aging<br />

steps from ductile <strong>for</strong> the initial<br />

condition <strong>for</strong> stainless steel to<br />

fragile when neutron fluence<br />

produces embrittlement of the<br />

material.<br />

4.1.1 Axial crack<br />

Fracture mechanics analysis (brittle<br />

failure): Initially, the permissible axial<br />

crack length was evaluated. In this<br />

case, equation 1.1, Vol. 2, Pag. 6.1-1<br />

(through wall crack) [15] was considered.<br />

This equation is valid when<br />

is in the range 0 < λ ≤ 5 and<br />

(6)<br />

(7)<br />

(8)<br />

(9)<br />

is the stress intensity factor in mode I.<br />

σ is the circumferential stress and<br />

depends on the mean radius. P and t<br />

are the internal pressure and the<br />

thickness, respectively. The half crack<br />

length is c and the geometrical factor<br />

is F. (Figure 7)<br />

Limit load analysis (ductile failure):<br />

An axial crack through thickness was<br />

considered. Equation 3.1, vol 2, pag<br />

6.3-1 [15] was taken into account.<br />

(10)<br />

This equation is valid when equation<br />

(7) is in the range 0 < λ ≤ 5 and<br />

(11)<br />

P l is the internal pressure plastic collapse<br />

limit. σ f is the flow stress. R and<br />

t are the mean radius and thickness,<br />

respectively. The half crack length is c<br />

and M is a parameter which is in<br />

function of λ.<br />

The maximum length of an axial<br />

crack was evaluated by the equations<br />

mentioned above. The results are<br />

summarized in the following graph.<br />

The range of operation of the reactor<br />

was considered. Two analyses were<br />

carried out. One of them is when only<br />

one header of the Reactor Recirculation<br />

Core System is operating and the<br />

other was when both of them were<br />

operating.<br />

In the same way like the last case:<br />

All the equations mentioned in this<br />

paper were introduced in Matlab<br />

coupled with Excel to per<strong>for</strong>m the<br />

iterations. In this way, the maximum<br />

allowable crack length was determined<br />

in the range of operation<br />

mentioned above. The results are<br />

summarized in the following graph.<br />

These analyses were carried on when<br />

one single loop operation or the two<br />

circuits (normal operation) of the<br />

Reactor Recirculation System in<br />

operation.<br />

The allowable crack length is<br />

constant no matter the core flow of<br />

water, this happens because only the<br />

internal pressure is considered <strong>for</strong> the<br />

calculations. This internal pressure is<br />

the difference of pressure between the<br />

“Annulus” of the reactor and the interior<br />

of the riser (Figure 8).<br />

OPERATION AND NEW BUILD 215<br />

Operation and New Build<br />

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5<br />

ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


Elektrische Energie stellt für die Funktionsfähigkeit jeder entwickelten Gesellschaft die Schlüsselenergie dar.<br />

Sie wird heute in der Schweiz zu 60 % durch Wasserkraft und zu 40 % durch Kernenergie erzeugt.<br />

Das KKG beschäftigt über 550 Mitarbeitende und strebt einen sicheren, zuverlässigen Betrieb bis 2039 an.<br />

Zur Umsetzung dieser Vision suchen wir<br />

in der Abteilung Sicherheit zur Ergänzung<br />

unseres Teams Erdbebeningenieurwesen und<br />

Strukturmechanik einen<br />

Fachingenieur (m/w)<br />

Ihr Aufgabengebiet umfasst:<br />

P Durchführung sicherheitstechnischer Berechnungen mit Bezug<br />

zur Beurteilung der Erdbebengefährdung<br />

P Unterstützung der Fachabteilungen bei der Festlegung<br />

der Erdbebenan<strong>for</strong>derungen<br />

P Durchführen von Sicherheitsnachweisen<br />

P Vorgabe und Beurteilung der Erdbebenauslegung für die steigende<br />

Anzahl von Anlagenänderungen und Projekten im KKG<br />

P Sicherstellung der Compliance mit dem Regelwerk in Fragen<br />

der Erdbebenauslegung zur Vermeidung von Anlagenstillständen<br />

P Eigenständige Erstellung von Beurteilungen und Berichten<br />

P Strukturdynamische Untersuchungen<br />

für andere extreme Sonderlasten<br />

Ihr Profil:<br />

P Abgeschlossenes Studium im Maschinenbau oder als Bauingenieur<br />

P Erfahrung in dynamischen Analysen von Baustrukturen, maschinenund<br />

elektrotechnischen Komponenten<br />

P Vertrautheit mit den bautechnischen und kerntechnischen<br />

Regelwerken, optional mit dem nuklearen Schweizer Regelwerk<br />

P Bereitschaft zur Einarbeitung in Softwaretools, neue Themengebiete<br />

und Problematiken<br />

P Kommunikativ und verhandlungssicher<br />

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />

P Deutsch und Englisch in Wort und Schrift<br />

in der Abteilung Sicherheit zur Ergänzung<br />

unseres Teams PSA und Erfahrungsauswertungen<br />

einen<br />

Fachingenieur (m/w)<br />

Ihr Aufgabengebiet umfasst:<br />

P Modellierung von Systemen und Funktionen<br />

eines Druckwasserreaktors mit probabilistischer Software<br />

P Erstellung von PSA Dokumentationen nach den betriebsinternen<br />

Vorgaben<br />

P Massgebliche Mitwirkung bei dem Neuaufbau des PSA-Modells<br />

(Softwarewechsel von Riskman auf CAFTA oder RiskSpectrum)<br />

Ihr Profil:<br />

P Abgeschlossenes Studium der Ingenieurwissenschaften,<br />

der Mathematik oder Physik<br />

P Vertiefte Kenntnisse im Aufbau und der Anwendung probabilistischer<br />

Werkzeuge (vorzugsweise CAFTA oder RiskSpectrum)<br />

P Vorzugsweise Kenntnisse in der Entwicklung eines der Softwareprodukte<br />

und /oder der Erstellung komplexer Modelle<br />

P Wenn möglich Erfahrung innerhalb der kerntechnischen Branchen,<br />

bevorzugt Sicherheitsanalysen<br />

P Verhandlungssicher und kommunikativ<br />

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />

P Deutsch und Englisch in Wort und Schrift<br />

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />

Herr Stefan Heussen, Leiter Ressort PSA und Erfahrungsauswertungen,<br />

gerne.<br />

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />

Herr Andri Nyky<strong>for</strong>chyn, Leiter Ressort Erdbebeningenieurwesen<br />

und Strukturmechanik, gerne.


Wir bieten Ihnen:<br />

P Eine abwechslungsreiche Tätigkeit<br />

in einem interessanten Umfeld<br />

P Eine sorgfältige Einarbeitung in Ihr vielfältiges<br />

und abwechslungsreiches Arbeitsgebiet<br />

P Sehr gute Anstellungsbedingungen und Sozialleistungen<br />

sowie ein den An<strong>for</strong>derungen entsprechendes Gehalt<br />

P Unterstützung in Ihrer persönlichen Weiterbildung<br />

Wenn Sie sich für eine dieser Stellen interessieren, freuen<br />

wir uns auf Ihre vollständigen Bewerbungsunterlagen.<br />

KERNKRAFTWERK GÖSGEN-DÄNIKEN AG<br />

Personalabteilung<br />

4658 Däniken<br />

Telefon 062 288 20 00<br />

personal@kkg.ch<br />

in der Abteilung Sicherheit zur Ergänzung<br />

unseres Teams Sicherheitsanalysen und Systemtechnik<br />

einen<br />

Systemingenieur (m/w)<br />

Ihr Aufgabengebiet umfasst:<br />

P Periodische Bewertung von Systemen und Systemkomponenten mit<br />

Fokus auf verfügbarkeitsrelevante und sicherheitstechnische Aspekte<br />

P Pflege/Neuerstellung von Systemhandbüchern<br />

P Beurteilung der Betriebsweise von Systemen und Komponenten unter<br />

Berücksichtigung der Interaktionen mit angrenzenden Systemen und<br />

unter Berücksichtigung aller Betriebsweisen der Gesamtanlage<br />

P Sicherheitstechnische Beurteilung von Anlagenänderungen<br />

P Enge Zusammenarbeit mit Komponenten- und Systemverantwortlichen<br />

sowie Unterstützung von Projekten<br />

P Verfolgung des Stands von Wissenschaft und Technik und Einbringen<br />

dieses Wissens in den technischen Änderungsprozess<br />

Ihr Profil:<br />

P Abgeschlossenes Studium der Elektrotechnik und mehrjährige<br />

Erfahrung im Kraftwerksbereich<br />

P Fundiertes Wissen über elektrische, leittechnische Systeme und<br />

Komponenten in Kraftwerksanlagen<br />

P Idealerweise vorhandene Grundkenntnisse über Kernkraftwerke<br />

P Idealerweise Erfahrung aus Instandhaltung und<br />

Änderung technischer Systeme<br />

P Verhandlungssicher und kommunikativ<br />

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />

P Deutsch und Englisch in Wort und Schrift<br />

für die Überwachung der Herstellung unserer<br />

Brenn elemente in der Abteilung Kernbrennstoff<br />

zur Ergänzung unseres Teams einen<br />

Ingenieur (m/w)<br />

Ihr Aufgabengebiet umfasst:<br />

P Mitwirkung bei der Verhandlung und Abwicklung der Lieferverträge<br />

für Kernbauteile (Brennelemente, Steuerelemente, Drosselkörper,<br />

Materialteststäbe)<br />

P Fertigungsbegleitende Prüfungen sowie Qualitäts- und<br />

Umwelt management bei der Herstel-lung der Kernbauteile<br />

P Qualifikation von und Audits bei Kernbauteillieferanten<br />

P Koordination der Transporte unbestrahlter Brennelemente<br />

Ihr Profil:<br />

P Abgeschlossenes Hochschulstudium der Materialwissenschaften,<br />

Maschinen- oder Nuklearingenieurwesen<br />

P Interner und externer Auditor<br />

P Deutsch und Englisch in Wort und Schrift, Französisch von Vorteil<br />

P Einige Jahre Erfahrung in der Brennelementkonstruktion, -auslegung<br />

oder -herstellung<br />

P Ausgeprägtes Sicherheitsbewusstsein<br />

P Teamfähig, belastbar, gewissenhaft, exakt und verbindlich<br />

P Bereitschaft für häufige Dienstreisen ins Ausland<br />

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />

Herr René Sarrafian, Stv. Leiter Res-sort Out of Core, gerne.<br />

3 Über die Einzelheiten Ihrer künftigen Tätigkeit orientiert Sie<br />

Herr Dr. Rainer Kaulbarsch, Leiter Ressort Sicherheitsanalysen<br />

und Systemtechnik, gerne.<br />

www.kkg.ch


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

OPERATION AND NEW BUILD 218<br />

| | Fig. 7.<br />

Allowable size <strong>for</strong> axial crack.<br />

4.1.2 Circumferential cracks<br />

Fracture mechanics analysis (brittle<br />

failure): The circumferential cracks in<br />

all the risers of the jet pumps are under<br />

tension and bending. Both loading<br />

conditions have to be evaluated.<br />

Tension: The allowable length of a<br />

through thickness circumferential<br />

crack was evaluated with equation 1.1,<br />

vol. 1, pag 1-1 [16]. All the evaluation<br />

was carried on with Matlab code. The<br />

stress intensity factor was evaluated<br />

with the following equation.<br />

(12)<br />

This relation is valid when 0 <<br />

≤ 0.55, 10 ≤ ≤ 20 and .<br />

The geo metrical factor is<br />

(13)<br />

(14)<br />

K I is the stress intensity factor. σ is the<br />

axial stress and depends on the mean<br />

radius R. P is the axial load, t is the<br />

thickness and θ is the mean angle of<br />

the crack.<br />

For the case of bending,<br />

(15)<br />

This relation is valid when 0 <<br />

≤ 0.55, 10 ≤<br />

≤ 20 and<br />

(16)<br />

(17)<br />

K I is the mode I stress intensity factor,<br />

σ b is the bending stress and it depends<br />

on the mean radius, M is the bending<br />

moment and t is the thickness. θ is the<br />

mean angle of the crack and F b is a<br />

geometric factor.<br />

| | Fig. 8.<br />

Allowable size <strong>for</strong> axial crack, limit load of collapse.<br />

The maximum length of a circumferential<br />

crack was evaluated with<br />

loading conditions <strong>for</strong> the range of<br />

operation considered. Two analyses<br />

were carried out. In the first one, the<br />

two circuits (normal operation) of the<br />

Reactor Recirculation Core System<br />

were operating. In the second, only<br />

one of them was in operation (single<br />

loop operation). The results are<br />

summarized in the Figure 9. Again,<br />

Matlab coupled with Excel are applied<br />

to make the iterations.<br />

The results showed that the allowable<br />

crack length is reduced as the<br />

core flow core is augmented. This<br />

happens because of the hydraulic<br />

<strong>for</strong>ces exacerbate the vibration of the<br />

riser and the jet pumps. As a result,<br />

fatigue should be considered.<br />

Limit load analysis (ductile failure):<br />

In this case, the cross section of the<br />

riser is under plastic collapse, the allowable<br />

length of a through wall crack<br />

is evaluated with the equation 1.2, Vol.<br />

1, pag. 1-4 [16]. All the iterations were<br />

done with Matlab coupled with Excel.<br />

(18)<br />

(19)<br />

This equation is valid when ≤ 0.1<br />

(20)<br />

M is the limit moment <strong>for</strong> plastic<br />

collapse, σ f is the flow stress, R is the<br />

mean radius, t is the thickness and θ<br />

is the mean angle of the crack. α is a<br />

geometrical factor.<br />

The results are summarized in<br />

Figure 10. In this case, the maximum<br />

allowable length of a circumferential<br />

crack was evaluated with an analysis<br />

of limit load under collapse conditions.<br />

These evaluations were carried<br />

out <strong>for</strong> a range of operations, which is<br />

between 95 % and 107 % of the output<br />

power. These evaluations considered<br />

the operation of either, one or two<br />

circuits of the Reactor Recirculation<br />

Core system.<br />

| | Fig. 9.<br />

Allowable size <strong>for</strong> circumferential crack, LEFM.<br />

| | Fig. 10.<br />

Allowable size <strong>for</strong> circumferential crack,<br />

limit load of collapse.<br />

It can be observed that the allowable<br />

circumferential crack length decreases<br />

as the flow of water increases.<br />

Under these conditions, the hydraulic<br />

loads generate more vibrations and<br />

fatigue.<br />

5 Failure Assessment<br />

Diagram R6<br />

This is a methodology that is widely<br />

used to evaluate the elasto-plastic<br />

failures in structural components. In<br />

general terms, the failure is determined<br />

by the interaction between<br />

ductile and brittle behavior of a<br />

material. The first versions were based<br />

on the “Strip-Yield” model. The Stress<br />

Intensity Factor <strong>for</strong> an infinite plate<br />

with a central crack through thickness<br />

is a methodology that is widely used<br />

to evaluate the elasto-plastic failures<br />

in structural components. In general<br />

terms, the failure is determined by<br />

the interaction between ductile and<br />

brittle behavior of a material. The<br />

first versions were based on the<br />

“ Strip-Yield” model. The Stress<br />

Intensity Factor <strong>for</strong> an infinite<br />

plate with a central crack through<br />

thickness is<br />

(21)<br />

This equation is asymptotic with<br />

respect to the yield strength of the<br />

material; thus, it has to be modified. It<br />

should be considered the flow stress,<br />

instead the yield stress, and the effective<br />

stress intensity factor has to be<br />

obtained. An adimensional relation is<br />

proposed <strong>for</strong> this purpose. The new<br />

relation is divided by the Stress Intensity<br />

Factor in mode I.<br />

Operation and New Build<br />

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı<br />

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

(22)<br />

In this equation, the square root of<br />

the semi-length is eliminated. In this<br />

way, it is independent of the geometry,<br />

as the strip model. In order to<br />

use an adimesional <strong>for</strong>m, the following<br />

parameters have to be established.<br />

and<br />

The new equation is<br />

(23)<br />

This curve is the boundary between<br />

the safe and unsafe zones (Fig. 9).<br />

Fracture would take place when the<br />

Effective Stress Intensity Factor is<br />

bigger than the Fracture Toughness,<br />

K r > 1 On the other hand, ductile<br />

failure is expected if S r > 1. Also, it is<br />

important to observe that in the<br />

elastoplastic analysis, fracture and<br />

collapse are in interaction. The points<br />

defined by K r and S r have to be<br />

localized in the failure diagram so as<br />

to determine if they are in the safe or<br />

unsafe zones.<br />

The material hardening has not<br />

been considered in the “Strip-Yield”<br />

model. There<strong>for</strong>e, this situation<br />

can be included in an elastoplastic<br />

analysis with the J-integral. The<br />

equation proposed by the British<br />

Standard BS 7910 is<br />

(24)<br />

The Failure Diagram shown in Figure<br />

11 compares different failure<br />

curves. This was used in the evaluations,<br />

which were carried out in this<br />

paper.<br />

6 Cases of analyses<br />

The allowable horizontal and vertical<br />

projections of a helicoidal crack in the<br />

riser were determined in the previous<br />

section. In this section, some cases<br />

have been postulated, as an example,<br />

in order to show the application of the<br />

evaluation of the structural integrity<br />

of the riser.<br />

6.1 Circumferential cracks<br />

As an example, a circumferential<br />

crack at the weld of the riser was<br />

postulated. Its length was 4 inches.<br />

The reactor is in operation with the<br />

two loops of recirculation and 107 %<br />

| | Fig. 11.<br />

Diagram of evaluation of failure by plastic<br />

de<strong>for</strong>mation.<br />

| | Fig. 12.<br />

Postulated case circumferential length<br />

of crack.<br />

| | Fig. 13.<br />

Failure Diagram R6.<br />

of the flow of the water flowing<br />

through the core.<br />

Initially, the evaluation was done<br />

in accordance with linear elastic<br />

fracture mechanics. The allowable<br />

crack length is 4.9 inches (Figure 9).<br />

The length of the actual crack is<br />

lower than this limit. So, this crack is<br />

acceptable.<br />

After this, the evaluation was done<br />

under the scope of the Collapse Limit<br />

Load analysis (Figure 10). The allowable<br />

crack length is 16.36 inches. The<br />

length of the actual crack is lower.<br />

There<strong>for</strong>e, it can be accepted.<br />

This evaluation was complemented<br />

with the Failure Assessment Diagram.<br />

The following parameters were<br />

calculated:<br />

and<br />

. As this point is located<br />

within the safe zone. It is considered<br />

safe. However, this point is located<br />

close to the vertical axis in the zone in<br />

which a brittle failure can take place.<br />

So, this is the dominant failure mechanism,<br />

it is recommended to increase<br />

the inspection and to determine the<br />

remaining life because a brittle failure<br />

is undesirable (Figure 11 and 12).<br />

| | Fig. 14.<br />

Failure diagram, postulated case<br />

circumferential projection of crack.<br />

| | Fig. 15.<br />

Failure Assessment Diagram, Postulated case<br />

axial projection of crack.<br />

| | Fig. 16.<br />

Failure Assessment Diagram, Postulated case<br />

circumferential projection of crack.<br />

6.2 Safe helical crack<br />

In this case, a helical crack close to the<br />

weld of the riser brace is postulated. Its<br />

length is 4 inches. Its projections along<br />

the circumferential and the axial axis<br />

are 3.5 inches and 1.94 inches, respectively.<br />

The output power of the reactor<br />

is 100 % and the two circuits of the<br />

RRC system have been in operation.<br />

Initially, the axial projection of the<br />

crack was evaluated. In accordance<br />

with Linear Elastic Fracture Mechanics,<br />

brittle fracture is developed, when<br />

the allowable crack length is greater<br />

than 11.689 inches (Figure 7). Regarding<br />

the ductile failure, the evaluation<br />

was done with the Collapse Limit Load<br />

analysis. The allowable crack length is<br />

11.11 inches (Figure 8). It is greater<br />

than the axial pro jection of the crack.<br />

These results were evaluated with the<br />

Failure Diagram R6. The following<br />

parameters were calculated too.<br />

and ,<br />

then they are localized in the diagram,<br />

Figure 13.<br />

In the case of the circumferential<br />

projection of the helical crack, it was<br />

evaluated against the brittle fracture<br />

with linear elastic fracture mechanics<br />

OPERATION AND NEW BUILD 219<br />

Operation and New Build<br />

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5<br />

ı Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

OPERATION AND NEW BUILD 220<br />

(Figure 9). As the allowable crack<br />

length is 4.9 inches and it is greater<br />

than 4 inches. Thus, brittle failure is<br />

not expected to occur.<br />

The evaluation against ductile failure<br />

showed that the allowable circumferential<br />

projection of the crack length<br />

is 16.36 inches (Figure 10). As this<br />

value is greater than 4 inches. It is not<br />

expected ductile failure to occur.<br />

These conditions were also<br />

evaluated with the R6 Failure<br />

Diagram, Figure 14. For this purpose,<br />

the following parameters were<br />

calcu lated:<br />

and<br />

.<br />

The results showed that this<br />

arrangement has structural integrity<br />

and can continue its operation. A<br />

critical condition is expected along<br />

the circumferential projection. There<br />

is a tendency to a fragile fracture. It is<br />

advisable to inspect this crack periodically.<br />

6.3 Unsafe helical crack<br />

A helical crack, which has a length<br />

of 18”, was postulated. Its components<br />

in the axial and circumferential directions<br />

are 7.19 inches and 16.5 inches,<br />

respectively. The reactor operates with<br />

100 % of the output power and the flow<br />

through the core is 107 %. The two<br />

headers of the RRC are in operation<br />

and 100 % of the flow of water has<br />

been passing through the core.<br />

The projection of the crack in the<br />

axial direction is evaluated with Figure<br />

7. The allowable crack length, in<br />

accordance with Fracture Mechanics,<br />

is 11.6 inches. It is bigger than<br />

7.19 inches. So, it is acceptable.<br />

Regarding the limit load collapse<br />

analysis, it was carried out with Figure<br />

8. The allowable crack length is<br />

11.11 inches. As, it is bigger than<br />

7.19 inches. It is accepted. These evaluations<br />

were completed with the Failure<br />

Assessment Diagram, Figure 15.<br />

In a second phase, the projection in<br />

the circumferential direction is evaluated,<br />

considering the principles of<br />

fracture mechanics. In accordance<br />

with Figure 9, the allowable crack<br />

length is 4.9 inches. This should not<br />

be accepted, because the crack projection<br />

(16.5 inches) is bigger than the<br />

allowable crack length.<br />

The same analysis was done with<br />

the Collapse Limit Load analysis. The<br />

allowable circumferential crack is<br />

16.36 inches. However, the crack<br />

projection is 16.5 inches. Under this<br />

condition, it can be accepted. In order<br />

to confirm these results, this situation<br />

was analyzed with the Failure Assessment<br />

Diagram. For this purpose,<br />

the following parameters were<br />

calcu lated:<br />

and<br />

.<br />

These values are located outside of<br />

the safe zone. It is illustrated in Figure<br />

16 and it is confirmed that the structural<br />

integrity of the riser has been<br />

compromised. It can be expected a<br />

failure in which brittle behavior will<br />

be predominant.<br />

7 Conclusions<br />

The helical or diagonal cracks that<br />

may take place on the riser close to the<br />

weld of the riser brace weld. It was<br />

considered that a torsional mode of<br />

vibration around the axial axis of the<br />

riser generated the loading conditions<br />

<strong>for</strong> the crack propagation. The operational<br />

loads that could take place were<br />

considered in the methodology, which<br />

was applied.<br />

It is considered that the system has<br />

enough structural integrity when the<br />

conditions that avoid ductile and<br />

brittle failures along the circumferential<br />

and axial directions are fulfilled.<br />

Otherwise, the component has to<br />

be repaired. One alternative is to<br />

substitute the damaged part. However,<br />

it should to be cut and a new replacement<br />

component should be<br />

welded. These operations should have<br />

to be done below the water level and<br />

during the outage of the nuclear<br />

power plant. Under these conditions,<br />

it is difficult to get a good quality in<br />

this job. It would be advisable to<br />

install a rein<strong>for</strong>cement structure, in<br />

such way that a compression load<br />

must be applied to avoid fracture<br />

mode I on the crack. Besides, torsion<br />

and bending have to <strong>for</strong> limited.<br />

Regarding the inspections, they<br />

have to be done periodically. Crack<br />

propagation has to be monitored and<br />

the structural integrity of the rein<strong>for</strong>cement<br />

frame has to be evaluated.<br />

Misalignments, deterioration and<br />

corrosion have to be avoided.<br />

Acknowledgements<br />

The authors kindly acknowledge the<br />

grant <strong>for</strong> the development of the<br />

Project 211704. It was awarded by the<br />

National Council of Science and<br />

Technology (CONACyT).<br />

Statement<br />

The conclusions and opinions stated<br />

in this paper do not represent the<br />

position of the National Commission<br />

on <strong>Nuclear</strong> Safety and Safeguards,<br />

where the co-author P. Ruiz-López is<br />

working as an employee. Although<br />

special care has been taken to maintain<br />

the accuracy of the in<strong>for</strong>mation<br />

and results, all the authors do not<br />

assume any responsibility on the<br />

consequences of its use. The use of<br />

particular mentions of countries,<br />

territories, companies, associations,<br />

products or methodologies do not<br />

imply any judgment or promotion by<br />

all the authors.<br />

References<br />

[1] K. B., Department of <strong>Nuclear</strong> Regulation, Atomic Energy<br />

Council, Taiwan, Recent Material Ageing Degradation<br />

Related Issues, Washington D.C.: The Fifth USNRC/TAEC<br />

Bilateral Technical Meeting, June 2007.<br />

[2] N. M. Cuahquentzi et al.: Evaluation of the Structural<br />

Integrity of the Jet Pumps of a Boiling Water Reactor<br />

under Hydrodynamic Loading, Defect and Diffusion Forum,<br />

vol. 348, pp. 261-270, 2014.<br />

[3] Inc. Computers and Structures: CSI Analysis Reference<br />

Manual <strong>for</strong> SAP2000, in ETABS, SAFE and CSiBridge, March<br />

2013.<br />

[4] R. D. Blevins: Flow Induced Vibrations, New Orleans, USA:<br />

Course ASME PD-146, 2012.<br />

[5] G. L. Stevens et al.: Jet pump flaw evaluation procedures,<br />

in 8 th <strong>International</strong> Conference on <strong>Nuclear</strong> Engineering,<br />

Baltimore, USA, April 2000.<br />

[6] EPRI: BWRVIP-41: BWR Vessel and Internals Project, in<br />

BWR Jet Pump Assembly Inspection and Flaw Evaluation<br />

Guidelines, USA, 1997.<br />

[7] G. E. Paredes et al: Severe Accident Simulation of the<br />

Laguna Verde <strong>Nuclear</strong> <strong>Power</strong> Plant, Science and<br />

Technology of <strong>Nuclear</strong> Installations, vol. 2012, March.<br />

[8] R. C. Camargo et al: Análisis de transitorios operacionales<br />

con el Código RELAP/SCDAPSIM, Apoyo a las actividades<br />

del proceso de certificación para el simulador de la CNLV a<br />

condiciones de aumento de potencia, Comisión Nacional<br />

de Seguridad <strong>Nuclear</strong> y Salvaguardias, México, June 2003.<br />

[9] American Society of Mechanical Engineers: Section III,<br />

Division 1-Appendices. Rules <strong>for</strong> Construction of <strong>Nuclear</strong><br />

Facility Components, in Boiler and Pressure Vessel Code,<br />

USA, ASME, 2007, pp. 301-302.<br />

[10] United States <strong>Nuclear</strong> Regulatory Commission: Technical<br />

Training Center, BWR/4 Technology Manual (R-104B),<br />

General Electric Systems, USA.<br />

[11] United States <strong>Nuclear</strong> Regulatory Commission: Technical<br />

Training Center, BWR/4 Technology Manual (R-304B),<br />

General Electric Systems, USA.<br />

[12] United States <strong>Nuclear</strong> Regulatory Commission: Technical<br />

Training Center, BWR/4 Technology Manual (R-504B),<br />

General Electric Systems, USA.<br />

[13] U.S. Atomic Energy Commission: Regulatory Guide 1.60<br />

Design Response Spectra <strong>for</strong> Seismic Design of <strong>Nuclear</strong><br />

<strong>Power</strong> Plants, U.S. Atomic Energy Commission, USA,<br />

December 1973.<br />

[14] American Society of Mechanical Engineers: Section XI.<br />

Rules <strong>for</strong> Inservice Inspection of <strong>Nuclear</strong> <strong>Power</strong> Plant<br />

Components, in Boiler and Pressure Vessel Code, USA,<br />

American Society of Mechanical Engineers, 2007.<br />

[15] A. Zahoor: Ductile Fracture Handbook, Vol. 2, Electric<br />

<strong>Power</strong> Research Institute Report NP-6301, USA: EPRI,<br />

October 1990, pp. 6.1-1, 6.3-1.<br />

[16] A. Zahoor: Ductile Fracture Handbook, Vol. 1, Electric<br />

<strong>Power</strong> Research Institute Report NP-6301, USA: EPRI,<br />

October 1990, pp. 1-1, 1-4.<br />

Authors<br />

Pablo Ruiz-López, Ph.D.<br />

Comisión Nacional de Seguridad<br />

<strong>Nuclear</strong> y Salvaguardias<br />

Head of the Licensing Area<br />

México<br />

Luis Héctor Hernández-Gómez, Ph.D.<br />

Juan Cruz-Castro, M.Sc.<br />

Gilberto Soto-Mendoza, M.Sc.<br />

Juan Alfonso Beltrán-Fernánde, Ph.D.<br />

Guillermo Manuel Urriolagoitia-<br />

Calderón, Ph.D.<br />

S.E.P.I. Zacatenco, I.P.N.<br />

México<br />

Operation and New Build<br />

Failure Analysis of the Jet Pumps Riser in a Boiling Water Reactor-5 ı<br />

Pablo Ruiz-López, Luis Héctor Hernández-Gómez, Juan Cruz-Castro, Gilberto Soto-Mendoza, Juan Alfonso Beltrán-Fernánde and Guillermo Manuel Urriolagoitia-Calderón


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

A World’s Dilemma ‘Upon Which<br />

the Sun Never Sets’: The <strong>Nuclear</strong> Waste<br />

Management Strategy: Russia, Asia<br />

and the Southern Hemisphere<br />

Part I<br />

Mark Callis Sanders and Charlotta E. Sanders<br />

Due to the length of the article, the article is published in three parts. The authors and editor hope you will enjoy and<br />

look <strong>for</strong>ward to reading the entire article, as each portion is published. Part I provides the background to the discussion.<br />

Part II considers nuclear waste management from the perspective of Russia and Asia, while Part III considers those<br />

States in the Southern Hemisphere.<br />

This republication is a shortened<br />

version of an article originally<br />

published in the journal Progress in<br />

<strong>Nuclear</strong> Energy. The full-length version<br />

of the article may be found at: Sanders,<br />

M, & Sanders, C 2019 “A world’s<br />

dilemma ‘upon which the sun never<br />

sets’ – The nuclear waste management<br />

strategy (part II): Russia, Asia and the<br />

Southern Hemisphere”, Progress in<br />

<strong>Nuclear</strong> Energy 110, 148-169.<br />

1 Introduction<br />

This article contemplates the various<br />

waste management schemes that are<br />

being considered or undertaken to<br />

include Russia, Japan, China, South<br />

Korea, India, Argentina, Brazil and<br />

South Africa. Except <strong>for</strong> Japan,<br />

Argentina and South Korea, these<br />

nation states are chosen <strong>for</strong> discussion<br />

because these make up a charac teristic<br />

collection of nation states able to shape<br />

world policy and events as middle<br />

powers commonly referred as ‘BRIC’ or<br />

‘BRICS’ (Brazil, Russia, India, China<br />

plus South Africa). These nation states<br />

share certain positive and negative<br />

similarities including: planned and/or<br />

expanding nuclear power programs;<br />

large or expanding populations with<br />

emergent economies; “high GDP but<br />

relatively low GDP per capita; large<br />

domestic inequalities; and high absolute<br />

poverty levels” [1]. Japan and<br />

South Korea are chosen <strong>for</strong> discussion<br />

due to their expansive nuclear power<br />

programs, and their unique challenges<br />

in finalizing a nuclear waste management<br />

disposal facility because of internal<br />

political struggles. Argentina is<br />

unique in that while it developed and<br />

maintained a small nuclear power program<br />

<strong>for</strong> years, despite economic and<br />

political difficulties, it is now expanding<br />

its nuclear power program with the<br />

help of Chinese financial support.<br />

2 Future energy consumption<br />

outlook – BRICS<br />

Certainly, one of the parallel requirements<br />

facing developed and new comer<br />

nuclear nation states is the need to gain<br />

access to stable, clean, and plentiful<br />

sources of power production to drive a<br />

burgeoning eco nomy in a cost effective<br />

and environmentally friendly manner.<br />

Techno logical advances starting in the<br />

mid-2000’s have provided an abundance<br />

of cheap natural gas through<br />

fracking, with an 80 % growth in gas<br />

demand led by mostly Asian nation<br />

states, including China and India, over<br />

the next 20 years [2]. Current predictions<br />

<strong>for</strong> China estimate that it will<br />

experience power growth at a rate of<br />

3.8 to 4.6 % per annum through the<br />

year 2020, with chronic pollution<br />

estimated to cause China an economic<br />

loss at almost 6 % of Gross Domestic<br />

Product 1<br />

[3]. In its fight to tackle<br />

pollution, China is seeking to obtain<br />

the environmental benefits of clean<br />

energy technologies using wind, solar,<br />

and nuclear power generation [4].<br />

Brazil has a small but budding<br />

nuclear power program generating<br />

about 3 % of its electricity, with 84 %<br />

generated through hydro. Brazil’s<br />

overreliance on hydro generated<br />

power is creating potential challenges<br />

due to changing weather patterns and<br />

climatic shifts [5]. From the early<br />

1990’s, India has experienced rapid<br />

growth in energy consumption as its<br />

economic output has risen but is also<br />

suffering extreme levels of pollution<br />

in its major cities [6]. South Africa<br />

currently has two nuclear reactors at<br />

one site responsible <strong>for</strong> generating ~<br />

5 to 6 % of its electricity with plans to<br />

add 9.6 GW of nuclear generation<br />

capability across the country over the<br />

next 10 to 12 years, costing between<br />

37 to 100 billion USD [7].<br />

3 Legitimacy through<br />

linkage<br />

To ensure the long-term viability of a<br />

nuclear waste management program,<br />

the legal framework supporting the<br />

program must be built upon trust and<br />

fairness, with the flexibility of a State<br />

to work within its own historical<br />

processes establishing the rule of law.<br />

The Joint Convention on the Safety of<br />

Spent <strong>Nuclear</strong> Fuel Management and<br />

on the Safety of Radioactive Waste<br />

Management (Joint Convention) are<br />

built upon the concept of adequacy,<br />

allowing a nation state that is a party<br />

to the convention to use its national<br />

sovereignty to develop a nuclear waste<br />

management strategy that is “comparable<br />

to those of the other nation<br />

states, which are [also] party to the<br />

convention” [8]. The Joint Convention,<br />

as the first international treaty<br />

covering radioactive waste management,<br />

does not provide explicit detail<br />

<strong>for</strong> each intended action allowing <strong>for</strong><br />

Contracting Parties to enjoy certain<br />

levels of flexibility in a nuclear waste<br />

management strategy. Pronto adds<br />

that this type of general working<br />

structure is often the intended design<br />

of the framers to guide the actions of<br />

those parties at the international level<br />

through non-<strong>for</strong>mally binding rules of<br />

engagement [9].<br />

Additionally, there are four compartments<br />

to consider when developing<br />

a nuclear waste management<br />

program and which potentially affects<br />

its legitimacy. Shown in Figure 1,<br />

these compartments comprise (1)<br />

concerns surrounding the economic<br />

viability towards the funding and<br />

building of a nuclear waste disposal<br />

facility; (2) that any environmental<br />

concerns are duly considered to<br />

ensure any negative effects on all<br />

stakeholders have been thoroughly<br />

221<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

DECOMMISSIONING AND WASTE MANAGEMENT 222<br />

| | Fig. 1.<br />

The Four Compartments of a Sustainable Radioactive Waste Management Program.<br />

investigated and taken into consideration;<br />

(3) the assurance that the<br />

science and technology employed<br />

are up to date and sound, being free<br />

from political influences; (4) that<br />

the waste management facility siting,<br />

design, construction and operation<br />

reflects the desires and will of the<br />

society; and, (5) that all actions<br />

provide <strong>for</strong> stability throughout any<br />

legal action and/or policy making<br />

decisions under taken by the nation<br />

state to guarantee that such actions<br />

are per<strong>for</strong>med in accordance with the<br />

rule of law found within that society<br />

[8].<br />

The values represented within<br />

these four compartments are required<br />

and important tools in developing a<br />

stable and legitimate framework <strong>for</strong><br />

creating the necessary laws, statutes,<br />

regulations, and rules in a nuclear<br />

waste management program. As each<br />

compartment harmoniously interacts<br />

with the other, the process of effectively<br />

meeting all the aspects of a<br />

nuclear waste management program<br />

from inception, to a time point far into<br />

the future is achieved.<br />

3.1 The concept<br />

of legal stability<br />

The primary objective <strong>for</strong> designing<br />

and operating a nuclear reactor is “the<br />

utilization of the energy or radiation<br />

released by controlled chain reaction…<br />

[h]owever the achievement of<br />

a stable chain of fission reactions is<br />

only a part of the responsibility of<br />

the nuclear engineer. In addition, he<br />

must learn how to extract and use the<br />

energy liberated in these fission<br />

reactions” [10]. Equally, only part of<br />

the responsibility of the policymaker’s<br />

primary objective is to provide the<br />

written laws, statutes, regulations,<br />

and rules, but more so, he must be<br />

able to seize the ability to utilize the<br />

energy or legal <strong>for</strong>ce created toward<br />

a series of relevant actions, in a controlled<br />

and sustained environment,<br />

<strong>for</strong> achieving the desired end outcome.<br />

The “issue of stability and<br />

change in constitutional law” [11]<br />

is continually hotly debated by academics,<br />

having fervent partisans on<br />

each side of the equation.<br />

‘Stability’ is a word that is commonly<br />

used to present something that<br />

is stationary or unchangeable [12], or<br />

when discussing legal stability, we<br />

usually refer to the basic building<br />

block structuring the personality of<br />

the common law – stare decisis 2 [13].<br />

Thus, the judicial or political system<br />

has made some determination of a<br />

particular path of progression so that<br />

those engaged in an activity may<br />

know with certainty that the decision/<br />

determination is not an arbitrary one<br />

and may there<strong>for</strong>e be relied upon<br />

through a future time period. However,<br />

a purpose of government, and a<br />

duty of the courts, is to process change<br />

as society and technology alters,<br />

all while seeking to contain this<br />

“ constant and restless motion [of<br />

government]” [14] as it seeks a new<br />

stable footing. The <strong>for</strong>ce called ‘stability’<br />

creates an exceptional central<br />

challenge <strong>for</strong> nuclear waste management<br />

programs, as laws, statutes,<br />

regulations, and rules written today,<br />

as promulgated, are <strong>for</strong> an intended<br />

extended outward period, projecting<br />

<strong>for</strong>ward today’s burden <strong>for</strong> tomorrow’s<br />

generations to manage. Such laws,<br />

statutes, regulations, and rules are not<br />

promulgated in a vacuum of peace<br />

and tranquility, but within complex<br />

political systems, which at times<br />

display outward chaotic change, even<br />

though law should portray a sense of<br />

stability [15]. In the 1930’s, Goodwin<br />

declared:<br />

“We are wont to look upon our<br />

government as something permanent,<br />

indestructible, and, in its fundamentals,<br />

unchangeable. Anyone who<br />

accepts this thought unqualifiedly disregards<br />

world history. Governments<br />

and civilizations arise, prosper, and<br />

disintegrate.” 3 [16].<br />

Human history is fraught with<br />

political systems where seemingly<br />

stable states become unstable and<br />

falter. 4<br />

The concern arises of what<br />

happens to a nuclear waste management<br />

program in a nation state should<br />

that state cease to exist, because<br />

that particular political or legal system<br />

is unable to process change, in its<br />

pursuit of a constant arrangement of<br />

‘ stability’. 5 It is time consuming and<br />

difficult to delve into the causes<br />

leading to instability within any<br />

nation state, and this would necessitate<br />

contemplation of multiple and<br />

varied factors, and thus will not be<br />

intimately discussed within this<br />

article. Suffice is to say, Posner explains<br />

that political instability is an<br />

inherent trait in all systems of government,<br />

acknowledging that though<br />

“[a]uthoritarian regimes may suppress<br />

the symptoms of political<br />

instability… [it would be incorrect to<br />

assume that] only reliably stable<br />

regimes are those in which the symptoms<br />

of political unrest are absent<br />

despite their not being <strong>for</strong>cibly suppressed”<br />

[17].<br />

Thus, as its most basic function,<br />

government is designated with the<br />

obligation to insure a stable political<br />

and legal framework through mechanisms<br />

“designed [with the preservation<br />

of] certainty” [14]. Conflictingly,<br />

given the reality that the human race<br />

and their judicial and political systems<br />

function in a world surrounded by<br />

alteration, these societies must continue<br />

in a <strong>for</strong>ward progression where<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I<br />

ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

“living law [flourishes and is not]<br />

imprisoned by the past” [18].<br />

It is the continual conflict between<br />

the dynamics of ‘stability’ and ‘change’<br />

which determines if a political or legal<br />

system will collapse in on itself, or if it<br />

will survive. Walker, et al., provides a<br />

line of inquiry regarding a bridging<br />

<strong>for</strong>ce <strong>for</strong> the ability of a stable system<br />

to successfully process change:<br />

“It is assumed that patterns of<br />

behavior will be more stable and<br />

enduring if they can be characterized<br />

as legitimate; that actors who have<br />

legitimacy attributed to them will<br />

be more able to induce compliance<br />

than those who do not share that<br />

attribute…” [19].<br />

3.2 The concept<br />

of legal legitimacy<br />

The search <strong>for</strong> legitimacy in any<br />

political system may be considered<br />

“the oldest problem of political<br />

theory” [20]. Given that a nuclear<br />

waste management program is expected<br />

to last <strong>for</strong> hundreds of years from<br />

inception to end of life, this search <strong>for</strong><br />

legitimacy when creating a nuclear<br />

power and waste management program<br />

is of great importance, as a<br />

citizen living under any political<br />

system must “have confidence in [the]<br />

administrative processes [found<br />

within that system], and [in the final<br />

outcome, be able to] respect and<br />

accept [those] decisions” [21].<br />

Each political system, whether<br />

democratic or authoritarian in nature,<br />

shares certain legal traditions, which<br />

provide it with legitimacy. These traditions<br />

not only entail a similarity of<br />

various institutions (e.g., parliament/<br />

legislature, courts, and administrative<br />

agencies) and processes, they encompass<br />

common core values, such as<br />

lawfulness, expertise, efficiency, and<br />

effectiveness [22].<br />

Because legitimacy is such an<br />

essential quality of the law, it is a<br />

subject that has, and continues to,<br />

preoccupy legal scholars [23]. Barnett<br />

argues law proceeds from two binding<br />

sources: (1) laws created through the<br />

people’s voice, though not all may<br />

agree, and (2) laws created where the<br />

State embarks on a course of action<br />

believing it is the best arbiter of what<br />

is appropriate without the full input<br />

of such non-consenting persons [24].<br />

Barnett’s model rests upon the precept<br />

that any government is established,<br />

and endowed, with powers of<br />

competencies to do what is required<br />

in fashioning the legal structure <strong>for</strong><br />

executing the desired undertaking<br />

and is sufficiently broad in its scope to<br />

encompass the similarities shared <strong>for</strong><br />

rule making by both democratic and<br />

authoritarian regimes. This is that the<br />

primary reason <strong>for</strong> any government,<br />

as a function of its political system, is<br />

to fashion a framework <strong>for</strong> what is<br />

deemed by that system as necessary<br />

and proper <strong>for</strong> initiating, building,<br />

financing and operating a civilian<br />

nuclear power and/or nuclear waste<br />

management program.<br />

A central notion that <strong>for</strong>ms the<br />

core of the concept of legitimacy is<br />

the way a political system establishes<br />

procedures “<strong>for</strong> law-making and<br />

implementation [that appear to<br />

the beholder] as acceptable, i.e., appropriate<br />

and binding” [25]. The<br />

highest ideal <strong>for</strong> any nation state<br />

should<br />

be<br />

to promulgate laws, statutes, regulations,<br />

and rules in a transparent, fair,<br />

and equitable system. However, it is<br />

respected that the world’s myriad of<br />

intricate political systems each have<br />

their own unique complexities, which<br />

are acted upon by enormous pressure<br />

from numerous interest groups,<br />

leaving one to question one’s personal<br />

consent granted to the governing<br />

body within any system of government.<br />

This raises questions regarding the<br />

ability of access by individuals to a<br />

political/legal system, and its assurance<br />

that individual rights and/or<br />

concerns have been considered and<br />

protected. For citizens living under an<br />

authoritarian system of government,<br />

the anxiety arises whether the governing<br />

body has considered the inherent<br />

needs of the citizenry throughout the<br />

decision-making and administrative<br />

process, more so than with matters of<br />

consent, as consent is implied. Within<br />

both systems, the administrative process<br />

initiates similar concerns given<br />

that all bureaucratic systems do not<br />

provide <strong>for</strong> political accountability of<br />

these unelected individuals with<br />

expansive powers and “[with] the<br />

public lack[ing the necessary] tools<br />

| | Fig. 2.<br />

Milestone Demarcation <strong>for</strong> “Change” in a <strong>Nuclear</strong> <strong>Power</strong> & Waste Management Program.<br />

DECOMMISSIONING AND WASTE MANAGEMENT 223<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

DECOMMISSIONING AND WASTE MANAGEMENT 224<br />

to assess adequately the quality of<br />

regulatory policies and outcomes”<br />

[26].<br />

In examining “how the sausage is<br />

made,” Barnett also discourses on<br />

these procedural processes that affect<br />

both validity and legitimacy within a<br />

political law-making system as laws<br />

created within that system can<br />

potentially be “valid and illegitimate”<br />

or “legitimate and unjust” [24]. Such<br />

a paradoxical outcome is un<strong>for</strong>tunate<br />

but is a consequence that the procedures<br />

in practice do not provide the<br />

necessary guarantees allowing the<br />

promulgation of evenhanded laws<br />

or rules, or because there was a failure<br />

to adequately follow the correct procedures<br />

in place.<br />

The potential extended timelime of<br />

envisioned nuclear waste management<br />

programs demands these<br />

programs must there<strong>for</strong>e stand firmly<br />

on the concept of legal ‘stability’. Once<br />

a civilian nuclear power program is<br />

initiated, and certain milestones are<br />

achieved, the space <strong>for</strong> deviation or<br />

‘change’ diminishes in any nuclear<br />

power and waste management program,<br />

especially given that a number<br />

of nation state’s deep geologic repositories<br />

are not planned with retrievability<br />

in mind. This shrinking space<br />

<strong>for</strong> ‘change’ in a nuclear power and<br />

waste management program is shown<br />

in Figure 2.<br />

Footnotes<br />

1 According to Robert Higgs, “Estimates of gross domestic product<br />

(GDP)... Became an essential part of economic analysis…<br />

in the late 1930s and early 1940s”. See: HIGGS, R 2015,<br />

'Gross Domestic Product – an Index of Economic Welfare or a<br />

Meaningless Metric?', Independent Review, 20, 1, pp. 153-157,<br />

Academic Search Premier, EBSCOhost, viewed 13 June 2017.<br />

2 to stand by things decided.<br />

3 From the pen of Clarence N. Goodwin.<br />

4 Human history provides a number of examples of failed and<br />

fallen empires. Certainly, <strong>for</strong> the western world, the collapse of<br />

the Roman Empire is a striking and often discussed example.<br />

Other examples might include the Arab Empire, also known as<br />

the Caliphate, the Mongol Empire and the British Empire.<br />

Common features leading to the decline of these empires<br />

include a decline in the values underpinning the empire,<br />

political corruption, and military spending. See: The Decline and<br />

Fall of Empires, https://www.<strong>for</strong>bes.com/sites/strat<strong>for</strong>/2015/<br />

04/20/the-decline-and-fall-of-empires/#1248dd3d383e,<br />

viewed July 11, 2018.<br />

5 An example could be provided during the breakup of the Union<br />

of Soviet Socialist Republic in the early 1990’s. The international<br />

community rallied to provide assistance to these nation states<br />

to successfully retain and maintain control over their nuclear<br />

power plants, enrichment capabilities, as well as other fundamental<br />

aspects of both their civilian and/or military nuclear<br />

programs. However, these states as such did not cease to exist<br />

and this was more of a transition between political systems,<br />

while the central government structure was maintained. See:<br />

Hill, F and Jewett, P “BACK IN THE USSR” Russia's Intervention in<br />

the Internal Affairs Of the Former Soviet Republics and the Implications<br />

<strong>for</strong> United States Policy Toward Russia, January 1994,<br />

https://www.brookings.edu/wp-content/uploads/2016/06/<br />

Back-in-the-USSR-1994.pdf, viewed June 15, 2018. Also see:<br />

Allison, Graham. 2012. What Happened to the Soviet Superpower’s<br />

<strong>Nuclear</strong> Arsenal? Clues <strong>for</strong> the <strong>Nuclear</strong> Security Summit.<br />

HKS Faculty Research Working Paper Series RWP12- 038, John<br />

F. Kennedy School of Government, Harvard University, https://<br />

dash.harvard.edu/handle/1/9403176, viewed July 11, 2018.<br />

References<br />

[1] Dauvergne, P, & BL Farias, D 2012, ‘The Rise of Brazil as a<br />

Global Development <strong>Power</strong>’, Third World Quarterly, 33, 5,<br />

pp. 903-917, Academic Search Premier, EBSCOhost, viewed<br />

18 April 2018.<br />

[2] World Energy Outlook 2017, <strong>International</strong> Energy Agency,<br />

https://www.iea.org/weo2017/, viewed April 19, 2018.<br />

[3] <strong>Nuclear</strong> <strong>Power</strong> in China, World <strong>Nuclear</strong> Association, http://<br />

www.world-nuclear.org/info/Country-Profiles/Countries-A-F/<br />

China--<strong>Nuclear</strong>-<strong>Power</strong>, viewed April 21, 2018.<br />

[4] China’s Engagement in Global Energy Governance, <strong>International</strong><br />

Energy Agency, http://www.iea.org/publications/<br />

freepublications/publication/PartnerCountrySeries_<br />

ChinasEngagementinGlobalEnergyGovernance_<br />

Englishversion.pdf, viewed April 20, 2018.<br />

[5] <strong>Nuclear</strong> <strong>Power</strong> in Brazil, World <strong>Nuclear</strong> Association,<br />

http://www.world-nuclear.org/info/Country-Profiles/<br />

Countries-A-F/Brazil/, viewed April 21, 2018.<br />

[6] <strong>Nuclear</strong> <strong>Power</strong> in India, World <strong>Nuclear</strong> Association, http://<br />

www.world-nuclear.org/info/Country-Profiles/Countries-<br />

G-N/India/, viewed April 21, 2018.<br />

[7] Boosting the <strong>Power</strong> Sector in Sub-Saharan Africa, <strong>International</strong><br />

Energy Agency, http://www.iea.org/publications/<br />

freepublications/publication/Partner_Country_SeriesChina-<br />

Boosting_the_<strong>Power</strong>_Sector_in_SubSaharan_Africa_<br />

Chinas_Involvement.pdf, viewed April 20, 2018.<br />

[8] Sanders, M, & Sanders, C 2016, ‘A world’s dilemma ‘upon<br />

which the sun never sets’ – The nuclear waste management<br />

strategy (part I): Western European Nation States and the<br />

United States of America’, Progress In <strong>Nuclear</strong> Energy, 90, pp.<br />

69-97, Academic Search Premier, EBSCOhost, viewed 16 April<br />

2018.<br />

[9] Pronto, AN 2015, ‘Understanding the Hard/Soft Distinction in<br />

<strong>International</strong> Law’, Vanderbilt <strong>Journal</strong> Of Transnational Law,<br />

48, 4, pp. 941-956, Academic Search Premier, EBSCOhost,<br />

viewed 13 June 2017.<br />

[10] Duderstadt, J.J., and Hamilton, L.J., <strong>Nuclear</strong> Reactor Analysis,<br />

John Wiley & Sons, ISBN 0-471-22363-8, 1976.<br />

[11] Williams, Jerre S. “Stability and Change in Constitutional<br />

Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):<br />

p. 221-238.<br />

[12] Cambridge Dictionary, https://dictionary.cambridge.org/<br />

dictionary/english/stability, viewed April 15, 2018.<br />

[13] BLACK’S LAW DICTIONARY (STANDARD EDITION),<br />

Thomson West; 8 th edition (June 1, 2004), ISBN-10:<br />

0314151990.<br />

[14] McKay, Robert B. “Stability and Change in Constitutional<br />

Law,” Vanderbilt Law Review vol. 17, no. 1 (December 1963):<br />

p. 203-220.<br />

[15] POUND, INTERPRETATION OF LEGAL HISTORY 1 (1923).<br />

[16] “Efficiency, Stability,” Bar Briefs 8 (1931-1932):<br />

p. 166-166.<br />

[17] Posner, Richard A. “Equality, Wealth, and Political Stability,”<br />

<strong>Journal</strong> of Law, Economics, & Organization vol. 13,<br />

no. 2 (October 1997): p. 344-365.<br />

[18] Thacher, Thomas D. “Judicial Stability,” Connecticut Bar<br />

<strong>Journal</strong> vol. 13, no. 4 (October 1939): p. 215-219.<br />

[19] Walker, Henry A.; Thomas, George M.; Zelditch, Morris Jr.<br />

“ Legitimation, Endorsement, and Stability,” Social Forces<br />

vol. 64, no. 3 (March 1986): p. 620-643.<br />

[20] Francis, Daniel. “Exit Legitimacy,” Vanderbilt <strong>Journal</strong> of<br />

Transnational Law vol. 50, no. 2 (March 2017): p. 297-354.<br />

[21] Le Sueur, Andrew, 2011. People as “users” and citizens”:<br />

the quest <strong>for</strong> legitimacy in British public administration.<br />

In: Ruffert, Matthias (Ed.), Legitimacy in European<br />

Administrative Law 3. Europe Law Publishing, Groningen,<br />

pp. 30.<br />

[22] M.C. Sanders and C.E. Sanders, “The Path Towards a<br />

Legitimate Radioactive Waste Management Program:<br />

A Comparative Analysis of the Legislative and Regulatory<br />

Approach to the Management of Radioactive Waste in the<br />

U.S.A. and China”, Proceedings of the <strong>International</strong> <strong>Nuclear</strong><br />

Law Association Inter Jura 2016, New Delhi, India,<br />

November 7-11, 2016.<br />

[23] Wisotsky, Steven. “Beyond Legitimacy,” University of<br />

Miami Law Review vol. 33, no. 1 (November 1978):<br />

p. 173-206.<br />

[24] Barnett, Randy E. “Constitutional Legitimacy,” Columbia Law<br />

Review vol. 103, no. 1 (January 2003): p. 111-148.<br />

[25] Langdal, Fredrik; von Sydow, Goran. “Democracy, Legitimacy<br />

and Constitutionalism,” Scandinavian Studies in Law 52<br />

(2007): p. 351-370.<br />

[26] Arkush, David. “Democracy and Administrative Legitimacy,”<br />

Wake Forest Law Review vol. 47, no. 3 (2012):<br />

p. 611-630.<br />

Authors<br />

Mark Callis Sanders<br />

Sanders Engineering<br />

1350 E. Flamingo Road Ste.<br />

13B #290<br />

Las Vegas NV 89119<br />

USA<br />

Charlotta E. Sanders<br />

Department of Mechanical<br />

Engineering<br />

University of Nevada<br />

Las Vegas (UNLV)<br />

4505 S. Maryland Pwky<br />

Las Vegas, NV 89154<br />

USA<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia, Asia and the Southern Hemisphere Part I<br />

ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Special Topic | A Journey Through 50 Years AMNT<br />

225<br />

Rechenschaft gegenüber<br />

der demokratischen Öffentlichkeit<br />

Richard von Weizsäcker<br />

Aus dem Grußwort des Regierenden Bürgermeisters von Berlin auf der Eröffnungssitzung der JK ’83 am<br />

14. Juni 1983.<br />

Was das Zusammenwirken oder die Arbeitsteilung<br />

zwischen Wissenschaft, Wirtschaft und Behörden<br />

anbetrifft, so würde ich mir wünschen, daß auch für<br />

andere Bereiche, in denen es zu einer solchen Zusammenarbeit<br />

kommen muß, eine so interessante Tagung<br />

anberaumt würde, wie Sie sie am heutigen Vormittag auf<br />

Ihrer Tagesordnung haben. Es ist ja wahr, daß in den<br />

Behörden immer mehr auch wissenschaftlicher Sachverstand<br />

angesammelt werden muß, weil die Sachverhalte,<br />

mit denen es Genehmigungsverfahren zu tun haben, dies<br />

er<strong>for</strong>dern. Es ist umgekehrt aber auch wahr, daß Wissenschaftler<br />

und Wirtschaftler sich nicht in den Bereich der<br />

sogenannten rein sachlichen, rein naturwissenschaftlichen,<br />

rein technischen oder rein ökonomischen Fragen<br />

allein zurückziehen können, sondern darauf angewiesen<br />

sind, daß das, was sie tun, verstanden und auch irgendwie<br />

angenommen wird. Und ich denke, gerade diese<br />

Konferenz, zu der Sie jetzt wieder zusammen sind, hat ja<br />

bei früheren Zusammenkünften in dieser Richtung wohl<br />

auch schon notwendige Diskussionen geführt und<br />

vielleicht auch die eine oder andere Erfahrung von außen<br />

her begleitend zu Ihren Tagungen vermittelt bekommen.<br />

Nun haben wir inzwischen ja eine geringfügige<br />

Verlagerung des Schwerpunktes der öffentlichen Auseinandersetzung<br />

erlebt, und ich nehme an, Ihnen kommt das<br />

zugute. Wir Politiker sind noch nicht in der nötigen Weise<br />

entlastet und ich will ja auch gar nicht behaupten, daß wir<br />

das verdienen. In Ihrem Bereich, wenn ich das richtig sehe,<br />

ist doch eine gewisse Normalisierung eingetreten. Das<br />

liegt auch daran, daß vielleicht die Öffentlichkeit ein<br />

bißchen besser verstanden hat, worum es geht, aber gewiß<br />

liegt es primär daran, daß Wissenschaft und Wirtschaft<br />

vielleicht besser als in der Eingangsphase in der Lage<br />

gewesen sind, die Anfragen in der Öffentlichkeit auch<br />

wirklich ernsthaft aufzugreifen und Schritt für Schritt den<br />

Nachweis dafür zu erbringen, daß man eben auch wirklich<br />

in der Lage ist, etwas Verantwortbares vorzuzeigen.<br />

Demokratie er<strong>for</strong>dert<br />

In<strong>for</strong>mationsbereitschaft<br />

In dem Bereich, in dem nun heute der Schwerpunkt<br />

der Auseinandersetzung zu finden ist, also dort wo es<br />

nicht um die friedliche Nutzung der Kernenergie geht,<br />

sondern um die Sicherheitspolitik und um Abschreckungsmechanismen<br />

in bezug auf die Verhinderung von Kriegen,<br />

dort haben wir ja in der Grundstruktur dessen, was<br />

die Sachverständigen, die Politiker, die Öffentlichkeit<br />

miteinander zu tun haben, einen vergleichbaren Vorgang.<br />

Wir haben im Rahmen dieser Friedensdiskussion, das ist<br />

meine feste Überzeugung, auch bei den schrillen Tönen<br />

und großen Bewegungen durchaus voneinander zu lernen<br />

– wenn man das mal so schematisch sagen darf – die<br />

politisch Verantwortlichen und die Friedensbewegung.<br />

Das, was wir Politiker hier vor allem zu lernen hatten<br />

und nach wie vor haben, ist, daß wir in bezug auf eine<br />

Verteidigungsbereitschaft unseres Landes genauso in einer<br />

Demokratie leben, wie in bezug auf jede andere Seite<br />

unseres Lebens. Das heißt, was seitens der Verantwortlichen<br />

getan wird, das muß von der überwiegenden<br />

Mehrheit in der demokratischen Öffentlichkeit verstanden<br />

und irgendwo auch bejaht werden. Und ähnlich wie bei<br />

der friedlichen Nutzung der Kernenergie, ist es auch<br />

bei dem von mir jetzt berührten Bereich so. daß er allzu<br />

lange als mehr oder weniger geheimes Vorbehaltsgut von<br />

einigen Sachverständigen behandelt worden ist. Das<br />

kann auf die Dauer bei unserer Art von öffentlicher,<br />

demokratischer, freiheitlicher Gesellschaft nicht gutgehen.<br />

Wenn man allzu lange meint, daß die Herstellung<br />

und die Modernisierung und die Dislozierung von Waffen<br />

etwas sei, was eben nur ein paar Wissenschaftler, der<br />

Am 7. und 8. Mai<br />

2019 begehen wir<br />

das 50. Jubiläum<br />

unserer Jahrestagung<br />

Kerntechnik. Zu<br />

diesem Anlass öffnen<br />

wir unser <strong>atw</strong>-Archiv<br />

für Sie und präsentieren<br />

Ihnen in jeder<br />

Ausgabe einen<br />

historischen Artikel.<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

| | 1983: Jahrestagung Kerntechnik – JK ´83 in Berlin.<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Rechenschaft gegenüber der demokratischen Öffentlichkeit ı Richard von Weizsäcker


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

226<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

| | 1983: Inbetriebnahme mit ersten Experimenten an der Fusionstestanlage JET in Culham,<br />

Großbritannien, Schematische Zeichnung.<br />

Verteidigungsminister und Generäle verstehen und zu<br />

behandeln haben und dies möglichst in kosmisch geheim<br />

gehaltenen Räumen, dann ist die notwendige Folge<br />

davon, daß sich jene Gefühle der Angst und Unsicherheit,<br />

jene Sorge hinsichtlich der Undurchschaubarkeit dieses<br />

Mechanismus in einer Weise Gehör verschaffen, wie wir<br />

dies alle erleben.<br />

Erklärungen ersetzen,<br />

aber nicht Entscheidungen<br />

Nur, auf der anderen Seite heißt verständlich machen und<br />

erklären natürlich auch nicht nun einfach nachlaufen<br />

gegenüber Gefühlen, die sich in der Öffentlichkeit zeigen.<br />

Ein Land hat eine Verfassung, und nach der Verfassung<br />

hat es eine Regierung, und die Regierung ist dazu da, das<br />

eigene Land in seiner Freiheit zu schützen. Das Land kann<br />

nicht den Wehrdienst verweigern, wie der einzelne dies<br />

aus Gewissensgründen kann. Also muß auch erklärt<br />

werden, was notwendig ist für diese Landesverteidigung<br />

und warum. Und wir haben es allzu oft erlebt im Umgang<br />

– ich sage jetzt mal, weniger der Wissenschaftler und<br />

Wirtschaftler – sondern der Politiker mit der Öffentlichkeit,<br />

daß sie diese Fragen zunächst so geheim behandelt<br />

haben, dann sind sie gegenüber öffentlich sich Geltung<br />

verschaffenden Regungen vielleicht zu schnell zu ängstlich<br />

geworden und dann sind sie mehr hinterhergelaufen,<br />

anstatt das Mandat wahrzunehmen, wozu sie doch<br />

gewählt sind. Wir sind als Politiker nicht gewählt, um<br />

hinzuhören und zu machen, was andere wollen, sondern<br />

wir sind gewählt, um zu prüfen, was notwendig ist,<br />

Entscheidungen zu treffen und die Entscheidungen<br />

durchzusetzen und zu vertreten – kurzum wir sind<br />

gewählt, voranzugehen und nicht hinterherzulaufen. Und<br />

wenn der Weg, auf dem wir vorangehen, von der<br />

Öffentlichkeit nicht akzeptiert wird, dann kann man<br />

ja abgewählt werden. Aber wir sind – ich betone es<br />

nochmals – in der Zeit, für die wir gewählt sind, dazu<br />

gewählt worden, voranzugehen und nicht hinterherzulaufen.<br />

Und das ist eben mitunter vernachlässigt<br />

worden.<br />

Wir haben nun in Berlin im engeren Sinn mit der<br />

friedlichen Nutzung der Kernenergie nicht dieselben<br />

Probleme wie manche anderen Bundesländer, und wenn<br />

es um die Dislozierung von Mittelstreckenraketen geht,<br />

dann erst recht nicht. Trotzdem aber haben wir hier<br />

in Berlin wahrlich etwas, nämlich eine kritische Öffentlichkeit.<br />

Und im Rahmen dieser kritischen Öffentlichkeit,<br />

uns vor diesen Prozessen der Erörterung, der Auffindung<br />

der Probleme, der Entscheidungen, der Vertretung<br />

der Entscheidung, des Gewinnens eines öffentlichen<br />

Verständnisses und einer Zustimmung, haben wir es<br />

in der Tat in Berlin nicht leichter als es irgendein anderer<br />

Platz hat. an dem Kernkraftwerke gebaut werden oder an<br />

dem Waffen stationiert werden, die dem Ziel der eigenen<br />

Landesverteidigung dienen sollen. Von daher gesehen und<br />

mit diesen wenigen Gedanken wollte ich begründen,<br />

warum wir dankbar sind, nicht nur daß Sie überhaupt<br />

nach Berlin gekommen sind, sondern auch dafür, welche<br />

Themen Sie auf Ihrer Tagesordnung haben und wie<br />

Sie sie zu behandeln gedenken. Denn ich meine, sie sind<br />

exemplarisch für den nötigen Umgang miteinander<br />

zwischen Wissenschaft, Wirtschaft und Politik immer in<br />

Beziehung zur Öffentlichkeit, in der wir alle leben, die wir<br />

alle ernst nehmen müssen und vor der wir Rechenschaft<br />

ablegen müssen, über das was wir als notwendig erkennen<br />

und das wir demgemäß auch machen wollen.<br />

Advertisement<br />

Fotoausstellung „Der Nukleare Traum“ beim AMNT<br />

Für den „Nuklearen Traum“ fotografierte Bernhard Ludewig über sieben Jahre zentrale<br />

Orte der deutschen Atomlandschaft und -geschichte, um den noch vorhandenen Teil<br />

visuell zu erhalten. Zu sehen sind Bau, Betrieb und Rückbau der deutschen Kraft werkstypen,<br />

ihre Warten, Kühltürme und Arbeitsschritte, von der Reaktoröffnung bis zur<br />

Castor-Beladung. Der Weg des Urans wird von den Zentrifugen über La Hague bis in<br />

Endlagerbaustellen verfolgt, die Reaktor<strong>for</strong>schung von Haigerloch bis SNR und THTR.<br />

Zu den über 50 besuchten Orten zählen auch Forschungsreaktoren, Trainingsanlagen<br />

und auch der Sarkophag von Tschernobyl.<br />

„Der Nukleare Traum“ erscheint voraussichtlich im Herbst als Bildband. Auf der<br />

Jahrestagung ist eine Auswahl daraus vorab als Fotoausstellung zu sehen.<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Accountability to the Democratic Public ı Richard von Weizsäcker


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Inside<br />

227<br />

50 Jahre KTG – 50 Jahre für Gesellschaft und Technologie<br />

Die Kerntechnische Gesellschaft e. V. (KTG) wurde am<br />

14. April 1969 zunächst als Kerntechnische Gesellschaft<br />

im Deutschen Atom<strong>for</strong>um e. V. (DAtF) in Frankfurt am<br />

Main gegründet. Bei der Gründungsversammlung in der<br />

Aula der Universität Frankfurt traten 163 Mitglieder bei.<br />

Zum Vorsitzenden wurde Prof. Wolf Häfele gewählt.<br />

Die Mitgliederversammlung des DAtF stimmte am<br />

28. November 1978 in Bonn einer Satzungsänderung zu,<br />

der zufolge die bisher in das DAtF eingegliederte KTG ein<br />

eigener eingetragener Verein wurde. Eine weiterhin enge<br />

Zusammenarbeit zwischen beiden Organisationen sollte<br />

unverändert bestehen bleiben.<br />

Zum 50. Geburtstag kommen der Vorsitzende der KTG,<br />

Frank Apel, sowie der Sprecher der Jungen Generation<br />

(JG) der KTG, Dr. Florian Gremme, zu einem gemeinsamen<br />

Gespräch mit der <strong>atw</strong> in Berlin zusammen.<br />

<strong>atw</strong>: 50 Jahre – Ein Geburtstag, an dem man sowohl zurück<br />

als auch nach vorne schaut. Herr Apel, wenn Sie Ihren Blick<br />

einmal zurück schweifen lassen: In welchem Umfeld hat sich<br />

die KTG damals gegründet?<br />

Apel: Herr Schneibel, Sie erwähnten im Eröffnungsgespräch<br />

zwei Jahreszahlen aus der Geschichte der KTG:<br />

1969 als Gründungsjahr der Kerntechnischen Gesellschaft<br />

im Deutschen Atom<strong>for</strong>um und 1978, als die KTG ein<br />

eigener eingetragener Verein wurde.<br />

Wie sah es um die deutsche Kerntechnik in diesen<br />

Jahren aus?<br />

Nach einer erfolgreichen Inbetriebnahme wurde 1969<br />

das Kernkraftwerk Obrigheim an den Kunden übergeben.<br />

Innerhalb von zehn Jahren wurde die Leistung der DWR-<br />

Kraftwerke vervierfacht: beginnend mit Obrigheim<br />

(300 MWe) über Stade (600 MWe) zu Biblis A (1200 MWe).<br />

In der Zeit zwischen 1969 und 1978 wurden Aufträge für<br />

10 DWR- und 7 SWR- Anlagen vergeben, Kraftwerke, die<br />

in Deutschland und im Ausland errichtet wurden. Zunehmender<br />

Wettbe werbsdruck aus dem Ausland, notwendige<br />

signifikante Investitionen in Fertigungskapazitäten und ein<br />

hoher Finanzbedarf für Entwicklungs programme führten<br />

zu einer Bündelung der Kernkraftwerksaktivitäten der AEG<br />

und SIEMENS: 1969 wurde die Kraftwerk Union<br />

Aktiengesellschaft (KWU) gegründet. Bewegte Zeiten.<br />

Zum Ende der genannten Periode war in Deutschland auch<br />

die Verlängerung von Errichtungszeiträumen durch eine<br />

Vielzahl von zusätzlichen Auflagen in den zahlreichen Teilerrichtungsgenehmigungen<br />

und aufgrund unklarer politischer<br />

Rahmenbedingungen zu verzeichnen. Es wuchs<br />

die Verunsicherung gegenüber der Kernenergie in der<br />

deutschen Öffentlichkeit. Kernenergie-Gegner monierten<br />

den Atomstaat, unsichere Kernkraftwerke, ungelöste Entsorgungsfragen<br />

und stellten die Wirtschaftlichkeit in Frage.<br />

Auf diese politischen und teilweise polemischen Fragestellungen<br />

wurde mit technischer Kompetenz geantwortet.<br />

Die Tatsache, dass wir in Deutschland die sichersten<br />

Kernkraftwerke der Welt betreiben ist auch das Ergebnis<br />

eines kritischen Diskurses und einem Genehmigungsverfahren,<br />

das von fachlich äußerst versierten sowie<br />

unabhängigen Behörden und Gutachtern in der Erteilung<br />

und von kompetenten Antragstellern der Genehmigung<br />

vollzogen wurde.<br />

<strong>atw</strong>: Der erste Vorsitzende der KTG, Professor Häfele, sagte<br />

bei ihrer feierlichen Gründung 1969: „Die Kern technische<br />

Gesellschaft wird ihr Ziel, nämlich allen in der Kern technik<br />

Tätigen wissenschaftlicher Heimathafen und Mittel der<br />

Förderung der Kerntechnik zu sein, mit Ernst und Zielbewusstheit<br />

verfolgen.“<br />

Herr Gremme, Sie sind Sprecher der JG, also all jenen<br />

Studierenden und Young Professionals, die ein gemein sames<br />

Interesse an der Kerntechnik haben. Wird die KTG im Jahr<br />

2019 diesem Grundgedanken immer noch gerecht?<br />

Gremme: Ja, ich denke schon dass die KTG diesem<br />

Grundgedanken gerecht wird und jedem Interessierten<br />

Möglichkeiten bietet, sich zu in<strong>for</strong>mieren, auszutauschen<br />

und einzubringen. Zentral sehe ich hier das jährliche<br />

AMNT als Platt<strong>for</strong>m an. Vertreter aus Lehre, Forschung<br />

und Industrie präsentieren hier ihre Arbeiten und sind<br />

daran interessiert, durch neue Kontakte und Vorträge<br />

ihren Horizont und ihr Wissen zu erweitern. Besonders für<br />

Studierende und Young Professionals bietet sich hier die<br />

Gelegenheit, mit Personen aus anderen Bereichen der<br />

Kerntechnik in Kontakt zu kommen. Dies gilt sowohl für<br />

den fachlichen Austausch in Form von Vorträgen oder<br />

Diskussionen als auch für junge Leute, die sich auf der<br />

Jobsuche befinden – bei der Orientierung zu Joboptionen,<br />

sei es in der Industrie oder Forschung, hilft es sehr, wenn<br />

man ein Gesicht vor Augen hat, dem man Themen oder<br />

einem Arbeitgeber zuordnen kann. Dies bringt meiner<br />

Ansicht nach einen Sympathiegewinn mit sich und das<br />

wirkt hinsichtlich der Motivation von Menschen für die<br />

Faszination Kerntechnik.<br />

| | Frank Apel (r.) und Dr. Florian Gremme (l.) im Gespräch mit Martin Schneibel<br />

Apel: Da stimme ich Herrn Gremme zu. Professor Häfeles<br />

Beschreibung der KTG als gemeinsamer kerntechnischer<br />

„Heimathafen von Wissenschaft und Technik“ ist ein<br />

schönes Bild und hat bis heute so Bestand.<br />

Werner von Siemens beschrieb den Zusammenhang<br />

von Wissenschaft und Technik übrigens wie folgt: „Die<br />

naturwissenschaftliche Forschung bildet immer den<br />

sicheren Boden des technischen Fortschritts, und die<br />

Industrie eines Landes wird niemals eine internationale,<br />

leitende Stellung erwerben und sich selbst erhalten<br />

können, wenn das Land nicht gleichzeitig an der Spitze des<br />

naturwissenschaftlichen Fortschritts steht.“<br />

Das Interview führte<br />

Martin Schneibel am<br />

13.02.2019 in Berlin.<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

228<br />

KTG INSIDE<br />

Das Netzwerk ist<br />

also ein ganz zentrales<br />

Element, das wir<br />

als JG der KTG knüpfen<br />

möchten.<br />

<strong>atw</strong>: Wie erwähnt ist das AMNT sicherlich die zentrale<br />

Veranstaltung der Branche in Deutschland. Was bietet<br />

insbesondere die JG darüber hinaus noch an, um ihr Netzwerk<br />

weiter auszubauen und neue Kontakte her zustellen?<br />

Immerhin bündelt sich in ihr der kern technische Nachwuchs.<br />

Gremme: Einen Gewinn von Kontakten und damit Nahbarkeit<br />

zu schaffen versuchen wir zudem auch mit unseren<br />

regelmäßigen Kamingesprächen mit Führungskräften aus<br />

der kerntechnischen Branche und unserer jährlichen<br />

Nachwuchstagung. Das Netzwerk ist also ein ganz zentrales<br />

Element, das wir als JG der KTG knüpfen möchten.<br />

Dies zum einen zu potentiellen Arbeitgebern z.B. in den<br />

Kamingesprächen, zum anderen unter<br />

uns jungen Leuten selbst bei der Nachwuchstagung.<br />

Dabei steht der fachliche<br />

Austausch keines wegs hinten an. Wir<br />

adressieren hier thematisch die aktuellen<br />

und zukünftigen Themen in der Kerntechnik<br />

aber auch weitere Anwendungsgebiete<br />

wie die Medizintechnik. Bei<br />

unseren letzten beiden Nachwuchstagungen haben wir<br />

Rückbaustandorte besucht, den Mehrzweck<strong>for</strong>schungsreaktor<br />

in Karlsruhe im Jahr 2017 und das Atomei in<br />

Garching bei München im letzten Jahr. Zudem haben wir<br />

hier einen Fokus auf Forschungsaktivitäten und strahlentherapeutische<br />

Anwendungen gelegt. Das Wiedersehen<br />

und Kennenlernen unterein ander bleibt dabei natürlich<br />

nicht aus.<br />

<strong>atw</strong>: Und wie groß ist hierbei das Interesse? Wie erreichen<br />

Sie die Interessierten?<br />

Gremme: Diese Möglichkeiten bieten sich, wie anfangs<br />

erwähnt, allen Interessierten. Eine größer gewordene<br />

Hürde ist es, diese Interessierten zu finden bzw. Interesse<br />

und Motivation zu wecken. Da müssten sich die KTG und<br />

das AMNT besonders für junge Leute attraktiver präsentieren.<br />

Ich denke, dass die KTG alle notwendigen Themen<br />

und Möglichkeiten hat und bietet, diese müssen die jungen<br />

Leute nur sichtbar und nahbar erreichen. Wir versuchen<br />

dies u.a. mit den Kamingesprächen, der Nachwuchs tagung<br />

und für einen ersten Kontakt für Schüler mit dem Campus<br />

Kerntechnik im Rahmen des AMNT. Auf dem Campus<br />

möchten wir die Faszination Kerntechnik<br />

vermitteln und die ein oder<br />

andere Schülerin bzw. Schüler für<br />

ein nachhaltiges Interesse an der<br />

Kerntechnik gewinnen. Für unsere<br />

Ich denke, dass die KTG alle<br />

notwendigen Themen und<br />

Möglichkeiten hat und<br />

bietet, diese müssen die<br />

jungen Leute nur sichtbar<br />

und nahbar erreichen.<br />

ge samte In<strong>for</strong>mationsvermittlung<br />

nutzen wir zudem auch Facebook<br />

und Instagram. Eine Tatsache der<br />

man sich stellen muss, um heutzutage<br />

In<strong>for</strong>mationen an junge<br />

Menschen zu vermitteln ist, dass junge Leute sich hauptsächlich<br />

über die sozialen Medien in<strong>for</strong>mieren. Hier kann<br />

die KTG denke ich noch etwas tun, um so Interesse und<br />

Motivation zu wecken. Dabei geht es nicht um möglichst<br />

hohe Klick zahlen, sondern um zielgruppenorientierte<br />

Nutzung von Kanälen zur nachhaltigen In<strong>for</strong>mationsvermittlung,<br />

mit denen man Interessenten auf die Angebote<br />

der KTG lenken kann.<br />

All unsere Aktivitäten zielen auf den fachlichen kerntechnischen<br />

Austausch und auf die Bildung von Netzwerken<br />

ab. Dies sind aus meiner Sicht wesentliche Benefits<br />

einer Mitgliedschaft in der KTG.<br />

<strong>atw</strong>: Wie bewerten Sie die Vorteile einer KTG- Mitgliedschaft,<br />

Herr Apel? Gerade die Generation der 1980er- und 90er-Jahre<br />

wird oftmals als die „Generation Y“ („Generation Why?“)<br />

bezeichnet, also jene Generation, die vieles kritisch<br />

| | Frank Apel, Vorsitzender der KTG<br />

hinterfragt. Wie schaffen Sie es, diese Gruppe für eine<br />

Mitgliedschaft in der KTG zu überzeugen? Welchen Mehrwert<br />

bringt die Teilnahme am Vereinsleben?<br />

Apel: Vieles in unserer Verbandsarbeit läuft richtig toll.<br />

Wir haben viele engagierte Ortssektionen, die spannende<br />

Vorträge und Exkursionen organisieren. Unsere Fachsektionen<br />

mobilisieren eine breite Teilnehmerschaft an<br />

hochinteressanten Fachtagungen und die JG trifft sich,<br />

wie von Herrn Gremme eben gehört, regelmäßig zu<br />

Exkursionen, Vorträgen und zum Netzwerken.<br />

In vielen Gesprächen mit Mitarbeitern der Kerntechnik<br />

(KTG-Mitglieder und Nicht-Mitglieder) wurde eine Frage<br />

bezüglich der Mitgliedschaft in unserem Verband am<br />

häufigsten gestellt: „Was ist drin für MICH?“. Die Frage<br />

nach unserem „Mehrwert“ müssen wir zukünftig noch<br />

besser und mit mehr „Inhalt“ beantworten. Mitglieder und<br />

potentielle Mitglieder – viele auch aus der mir persönlich<br />

gut bekannten „Generation Y“, auf die wir übrigens stolz<br />

sein können – suchen Überschriften, wofür die KTG steht.<br />

Die „friedliche Nutzung der Kernenergie“ ist als Rahmen<br />

sicherlich korrekt.<br />

Aber können wir KTG-Mitglieder in unserem Land –<br />

auch wenn der Ausstieg aus der Kernenergie beschlossen<br />

ist – nicht eine persön liche, technisch<br />

fundierte Meinung haben und vertreten,<br />

die weiter geht? Ich denke schon. Dazu<br />

müssen wir uns weiter ver netzen und<br />

austauschen: traditionell über „unsere<br />

Seiten“ in der <strong>atw</strong>, unsere Homepage aber<br />

auch über Social Media.<br />

<strong>atw</strong>: Wie ist die Situation in der JG, Herr<br />

Gremme? Sie haben eben ja bereits die<br />

Benefits einer Mitgliedschaft angesprochen.<br />

Möchten sich junge Leute in Ihrer Freizeit überhaupt noch<br />

berufsnah einbringen?<br />

Gremme: In dieser Generation, zu der ich laut Geburtsjahr<br />

auch zähle, wird viel Wert auf einen Ausgleich<br />

zwischen beruflicher Tätigkeit und Freizeit gelegt. Der Job<br />

ist hauptsächlich dazu da, die freie Zeit gestalten zu<br />

können und ist vielleicht weniger Berufung oder Teil<br />

dessen, womit man sich identifizieren möchte – letzteres<br />

aber nur als Vermutung. Ich denke viele haben daher einen<br />

Vor behalt gegenüber einer Aktivität in einem Verein wie<br />

der KTG, da es der<br />

beruflichen Tätigkeit<br />

sehr nah ist.<br />

Dies hängt vielleicht<br />

auch damit zusammen,<br />

dass man in<br />

Die Frage nach unserem<br />

„ Mehrwert“ müssen wir<br />

zukünftig noch besser und mit<br />

mehr „ Inhalt“ beantworten.<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

unserer multimedialen Welt mit In<strong>for</strong>mationen und<br />

Benachrichtigungen überschwemmt wird. Viele Prozesse<br />

laufen zudem beschleunigt ab, wodurch im Vergleich zu<br />

früher mehr in gleicher Zeit erledigt werden kann und<br />

muss. Vielleicht ist das ein Faktor, weshalb sich jemand aus<br />

der „Generation Y“ vor einer weiteren berufsnahen<br />

Aktivität scheut.<br />

Dabei lernt man im Vereinsleben und bei der Vereinsarbeit<br />

eine Menge, was einem sowohl beruflich als auch<br />

privat helfen kann. Wesentliche Benefits einer Mitgliedschaft<br />

in der KTG sind zum einen das Netzwerk, ganz<br />

einfach durch das Kennenlernen<br />

anderer Menschen, der fachliche Austausch<br />

und auch die Methoden und<br />

Abläufe, die man z. B. bei der Organisation<br />

von Aktivitäten lernt.<br />

Wir versuchen jungen Leuten<br />

genau diese Vorteile aufzuzeigen und<br />

sie durch die nahbare Darstellung<br />

unserer Aktivitäten davon zu über zeugen. Hier spielt sich<br />

viel auf zwischenmenschlicher Ebene ab und dadurch<br />

kann man auch neue Inte ressenten gewinnen.<br />

<strong>atw</strong>: Die kerntechnische Branche hat in den vergangenen<br />

Jahrzehnten Höhen und Tiefen erlebt. Die Nutzung der Kernenergie<br />

zur Stromerzeugung wird in Deutschland mit Ablauf<br />

des Jahres 2022 Geschichte sein. Auf der anderen Seite zeigt<br />

die Kerntechnik ihre viel fältigen wei teren Anwendungsmöglichkeiten.<br />

Sei es die Grundlagen <strong>for</strong>schung zur Kernfusion,<br />

wie sie beispielsweise in Greifswald stattfindet, oder<br />

auch Anwendungen in Medizin, Industrie und Forschung.<br />

Spüren Sie, Herr Gremme, dass sich bei der JG das Interessengebiet<br />

der Mitglieder diesbezüglich ändert?<br />

Gremme: Einen wirklichen Ruck einer Änderung des<br />

Interessengebiets der JG habe ich bisher nicht gespürt.<br />

Viele JG-Mitglieder kommen beruflich bedingt aus dem<br />

Gebiet der energetischen Nutzung der Kerntechnik. Das<br />

heißt allerdings nicht, dass kein Interesse für Themen<br />

wie die Nutzung der Kerntechnik in der Medizin oder<br />

<strong>for</strong>schungsorientierte Themen wie Fusionstechnologie<br />

besteht. Von den Teilnehmern unserer Nachwuchstagung<br />

kam hier positives Feedback bzgl. der Themenauswahl.<br />

Allerdings müssen wir feststellen, dass insgesamt die<br />

Resonanz für Aktivitäten nachlässt. Hierfür kann es verschiedene<br />

Gründe geben und wir ver suchen herauszufinden<br />

welche dies sind. Zum einen werden wir älter,<br />

wodurch interessierte und aktive JG-Mitglieder die JG<br />

altersbedingt verlassen und die Gewinnung neuer<br />

Mitglieder zuletzt leider schwer ist. Hier müssen die<br />

Benefits einer Mitgliedschaft deutlicher gemacht und zielgruppenorientierter<br />

platziert werden, um die Faszination<br />

Kerntechnik zu vermitteln.<br />

| | Dr. Florian Gremme, Sprecher der Jungen Generation<br />

Wir Mitglieder der KTG<br />

wollen gemeinsame Werte<br />

schaffen, uns verbindet die<br />

gemeinsame Identität: der<br />

„Faszination Kerntechnik“.<br />

<strong>atw</strong>: Und wie sieht es bei der KTG im Allgemeinen aus,<br />

Herr Apel? Einige Mitglieder sind ja quasi seit der ersten<br />

Stunde mit dabei. Wie werden sich die Mitglieder zukünftig<br />

identifizieren?<br />

Apel: Die KTG ist eine wissenschaftlich-technische Vereinigung,<br />

unser Verein ist die „Heimat“ der in der Kerntechnik<br />

in Deutschland Beschäftigten. Wir legen unseren<br />

Fokus nicht auf Presse- und Öffentlichkeitsarbeit, dieses<br />

Feld wird durch das DAtF abgedeckt. Wir Mitglieder der<br />

KTG wollen gemeinsame Werte schaffen, uns verbindet<br />

die gemeinsame Identität: der „Faszination Kerntechnik“.<br />

Die Anwendungsfälle der Kerntechnik<br />

sind mannigfaltig. Oft denken wir nur an<br />

Kernkraftwerke, deren Betrieb oder den<br />

Rückbau sowie die damit verbun denen<br />

Entsorgungsfragen. Aber da gibt es noch<br />

viele weitere Anwendungs fälle außerhalb<br />

der Energiewirtschaft z. B. in der Medizin<br />

oder der Werkstofftechnik. Schauen Sie<br />

sich den Film „Viel könner Kerntechnik“ an und lassen Sie<br />

sich von unserer Faszination anstecken.<br />

<strong>atw</strong>: Sie haben es gerade angesprochen. Die Hauptaufgabe<br />

eines wissen schaftlich-tech nischen Vereins besteht zweifelsohne<br />

darin, kritischer Förderer der von ihm vertretenen<br />

Wissenschaft und Technik zu sein. Die Diskussionen um<br />

die Verantwortbarkeit der Kernenergie haben im Laufe<br />

der Zeit Dimensionen erreicht, die es den KTG-Mitgliedern<br />

immer schwerer machen, sich aus entsprechenden poli tischen<br />

Diskus sionen herauszuhalten. Wie geht die KTG damit um?<br />

Gremme: Aus meiner Sicht sollten wir als KTG vorsichtig<br />

mit politischen Statements sein, da unsere Hauptaufgabe<br />

als Verein, wie Sie in der Frage bereits <strong>for</strong>muliert haben,<br />

nicht Politik ist. Nichtsdestotrotz kann und sollte die KTG<br />

mit großem Know-How in den eigenen Reihen und als<br />

großer kerntechnischer Verein einzelner Personen in<br />

Deutschland Gebrauch seiner Stimme machen und faktenorientierte<br />

Statements zu energietechnischen Entwicklungen<br />

geben. Man muss allerdings deutlich darauf<br />

achten, nicht in politische Orientierungen oder Parteiprogramme<br />

gerückt zu werden.<br />

Apel: Die KTG beabsichtigt auch weiterhin keine politische<br />

Positionierung. Eine zielorientierte Kommunikation,<br />

mit „Mehrwert“ für unsere Mitglieder, muss<br />

die Attrak tivität unseres Verbandes verbessern. Wir<br />

werden in der Zukunft unseren technisch fundierten<br />

Standpunkt zu aktuellen Themen deutlich und ohne politische<br />

Polemik in unseren KTG-Foren, wie dem Internet<br />

oder der <strong>atw</strong> kundtun. Auch wenn „WIR“ in der KTG sehr<br />

verschieden sind, haben „WIR“ gemeinsame Interessen<br />

und Ziele. Und dazu müssen „WIR“ unseren Dialog<br />

untereinander aber auch mit unseren „Brüdern im Geiste“<br />

verbessern.<br />

Auch wenn ein großer Teil unserer Mitglieder noch<br />

im Arbeitsleben steht, müssen wir – mit unserer privaten<br />

Mitgliedschaft in der KTG – nicht zwangsläufig nur<br />

die Interessen unserer Arbeitgeber-Firmen vertreten,<br />

sondern wir können über den Tellerrand herausschauen.<br />

So habe ich auf der vorletzten Mitgliederversammlung<br />

der KTG meine persönlichen Ansichten zur Kerntechnik<br />

vorgestellt:<br />

pp<br />

Ich bin für eine Laufzeitverlängerung der europäischen<br />

Atomkraftwerke im Sinne einer „Unterstützung der<br />

Energiewende“ – wenn eben z. B. die Stromtrassen<br />

doch nicht so schnell fertig werden – und einem „Mittel<br />

zur CO 2 -Reduzierung“.<br />

pp<br />

Ich bin für einen Neubau von Kernkraftwerken z. B. der<br />

nächsten Generation in Deutschland und Europa. Dies<br />

229<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

230<br />

KTG INSIDE<br />

müssen aber unsere Kinder und Enkel – also die<br />

nächste(n) Generation(en) – auch so wollen.<br />

pp<br />

Ich bin für einen effizienten und zügigen Rückbau der<br />

abgeschalteten Anlagen in Deutschland.<br />

pp<br />

Ich bin für eine freie, breite und ausreichend ausgestattete<br />

Grundlagen- und Anwendungs<strong>for</strong>schung zu<br />

allen kerntechnischen Fragestellungen.<br />

pp<br />

Ich bin für eine <strong>for</strong>tgesetzt aktive konstruktive Beteiligung<br />

Deutschlands an internationalen Entwicklungen<br />

in der Kerntechnik und der Einbringung des deutschen<br />

Know-hows und der deutschen Standards in die internationale<br />

Sicherheitsentwicklung.<br />

<strong>atw</strong>: Gerade ihr letzter Punkt scheint bei den KTG- Mitgliedern<br />

ebenfalls von großem Interesse zu sein. Der im vergangenen<br />

Jahr neu gegründeten Fachgruppe „Inter nationale Entwicklung<br />

innovativer Reaktorsysteme“ haben sich direkt weit über<br />

200 Mitglieder angeschlossen. Wie wird die KTG ihren Blick<br />

künftig international ausrichten?<br />

Apel: Es gibt gute Gründe, die internationale Entwicklung<br />

innovativer Reaktorsysteme, der Fusionstechnologie oder<br />

aber innovativer Entsorgungstechnologien – auch außerhalb<br />

Deutschlands – zu verfolgen:<br />

Ein vollständiger Ausstieg aus der Kernenergie ist international<br />

die große Ausnahme und nicht die Regel. Der<br />

deutsche Verzicht auf Stromerzeugung<br />

aus Kernenergie ist<br />

nicht mit einem völligen Ausstieg<br />

aus der Technologie gleichzusetzen,<br />

noch haben wir einen<br />

<strong>for</strong>tlaufenden Betrieb und den<br />

sicheren Nachbetrieb der Anlagen vor uns. Es gibt kommende<br />

Aufgaben beim Rückbau der Kernkraftwerke und<br />

der Entsorgung der Abfälle.<br />

Deutschland ist ein Land der Spitzen<strong>for</strong>schung, das<br />

Forschungsreaktoren betreibt und in internationalen<br />

Nuklear<strong>for</strong>schungsprogrammen mitarbeitet. Deutschland<br />

hat einzigartige wissenschaftliche und industrielle Fähigkeiten<br />

in der Kerntechnik zu deren langfristigen Erhalt<br />

eine ausreichend große kritische Masse von deutschen<br />

Herstellern, ihren Zulieferern und Dienstleistern notwendig<br />

ist. In unserem Land wurden und werden die verlässlichsten<br />

Kernkraftwerke und kerntechnischen Anlagen<br />

betrieben, nicht zuletzt, weil eine jahrzehntelange<br />

kritische Diskussion über die Kernenergie zu sehr hohen<br />

Sicherheitsstandards und zu einer hoch entwickelten<br />

Sicherheitskultur geführt hat. Auf dieser Grundlage setzt<br />

sich die Bundesregierung in der EU und weltweit für ein<br />

hohes nukleares Sicherheitsniveau ein. Dieses Interesse<br />

wird langfristig bestehen, da die Mehrzahl der anderen<br />

Staaten, die Kernenergie nutzen, keinen Ausstieg anstreben.<br />

Ohne eine eigene kerntechnische Industrie, die in<br />

eine entsprechende Forschungslandschaft eingebettet ist,<br />

wird es aber nicht möglich sein, weiter eine treibende Kraft<br />

kerntechnischer Sicherheit weltweit zu sein.<br />

Gremme: Ich unterschreibe die Ausführungen von Herrn<br />

Apel und denke, dass die Entwicklung dieser Fachgruppe<br />

unterstreicht, dass die KTG-Mitglieder an der Faszination<br />

Kerntechnik und an zukünftigen Perspektiven interessiert<br />

sind. Als JG sind wir im Wesentlichen durch zwei Netz werke<br />

international verknüpft. Dies ist zum einen das Young<br />

Generation Network (YGN) der European <strong>Nuclear</strong> Society<br />

(ENS) und zum anderen der <strong>International</strong> Youth <strong>Nuclear</strong><br />

Congress (IYNC), eine Konferenz, die mit weltweiter<br />

Beteiligung organisiert wird und auch weltweite Teil nehmer<br />

hat. Der nächste IYNC findet im Jahr 2020 in Australien<br />

statt. Sowohl hier als auch auf der Europäischen Konferenz<br />

des YGN, dem European <strong>Nuclear</strong> Young Generation Forum<br />

Ein vollständiger Aus stieg aus der<br />

Kernenergie ist international die<br />

große Ausnahme und nicht die Regel.<br />

(ENYGF), planen wir, als KTG JG vertreten zu sein und<br />

ermutigen die JG-Mitglieder daran teilzunehmen. Das<br />

ENYGF findet dieses Jahr vom 23. bis 27. Juni in Gent statt.<br />

Das sogenannte Core Committee des ENS YGN trifft<br />

sich dreimal im Jahr, um sich über die nationalen<br />

Aktivitäten zu in<strong>for</strong>mieren und gemeinsame Aktionen zu<br />

organisieren. Hier vertreten wir unsere Interessen und<br />

wirken an der Planung von Aktivitäten mit. Zudem<br />

nehmen wir hierdurch an Aktionen wie dem <strong>Nuclear</strong> Pride<br />

Fest oder den Weltklimakonferenzen teil. Hier unterstützen<br />

wir z. B. die Initiative „<strong>Nuclear</strong> <strong>for</strong> Climate“.<br />

<strong>atw</strong>: Herr Gremme, Sie haben mehrjährige Erfahrung in der<br />

Forschung im kerntechnischen Bereich, genauer gesagt<br />

in der Reaktorsicherheits<strong>for</strong>schung, an der Ruhr- Universität<br />

Bochum vorzuweisen. Damit gehören Sie zu jenem Personenkreis,<br />

dessen Arbeit die Bundes regierung jüngst in ihrem<br />

Energie <strong>for</strong>schungsprogramm als wichtig erachtet. Was<br />

würden Sie einem jungen Menschen, der sich für eine Karriere<br />

in der Kerntechnik interessiert, mit auf den Weg geben?<br />

Gremme: Ich denke, dass man in der Kerntechnik viele<br />

faszinierende Bereiche eines Maschinenbaustudiums<br />

vertieft bearbeitet und diese in vielen Bereichen sowohl der<br />

Forschung als auch der Industrie direkt anwenden kann.<br />

Die Kerntechnik stellt immer noch Hightech der thermischen<br />

Energieumwandlung dar.<br />

Wenn man sich also für Thermodynamik,<br />

Wärme- und Stoffübertragung<br />

und/oder Strömungsmechanik<br />

interessiert, findet man<br />

diese Thematiken an vielen Stellen<br />

in der Kerntechnik wieder, z. B. bei der Modellierung von<br />

Wärmeüberträgern oder atmosphärischer Strömungen. In<br />

der Reaktorsicherheits<strong>for</strong>schung geht es im Speziellen zum<br />

einen um die Modellierung von Phänomenen die während<br />

eines Störfalls in Kernkraftwerken auftreten können. Die<br />

auf tretenden Phänomene, wie Oxidationen, also chemische<br />

Reaktionen, Wärmeüber tragungs- und Strö mungs prozesse<br />

als auch Verlagerung von Materialien treten dabei z. T. stark<br />

in Wechselwirkung. Dadurch lernt man viel über die Einzelphänomene,<br />

bekommt aber vor allem auch einen integralen<br />

Blick für die Einflüsse der Pro zesse untereinander. Ich<br />

denke, durch diese umfäng lichen vertieften Betrachtungen<br />

wird man auch bestens ausgebildet, das Gelernte auf andere<br />

Bereiche der Energietechnik zu übertragen.<br />

Zum anderen werden in der Reaktorsicherheits -<br />

<strong>for</strong>schung aber auch neue Systeme entwickelt, die zur<br />

Wärmeabfuhr aus dem Brenn elementlagerbecken eingesetzt<br />

werden können. Weiterhin werden Sicher heitsanalysen<br />

und Wirksamkeitsbetrachtungen von Maßnahmen<br />

zur Prävention und Mitigation von Störfällen<br />

durchgeführt, indem gesamte kerntechnische Anlagen<br />

simuliert werden. Dabei lernt man viel über Regelwerke<br />

Heruntergebrochen<br />

ist eine Karriere in den<br />

Themenfeldern der<br />

Kerntechnik mit der<br />

Verknüpfung zur<br />

„ Industrie 4.0“ ein<br />

zukunftsorientierter Weg.<br />

und Störfallmanagement.<br />

Viele dieser Betätigungsfelder<br />

beinhalten dazu wie<br />

bereits erwähnt Programmierung<br />

und Modellierung.<br />

Hierbei erlernt man das Handwerkszeug<br />

der Digita lisierung<br />

für viele Fragestellungen der<br />

„Industrie 4.0“. Heruntergebrochen<br />

ist eine Karriere in<br />

den Themen feldern der Kerntechnik<br />

mit der Verknüpfung zur „Indus trie 4.0“ ein<br />

zukunftsorientierter Weg. Diese Benefits müssen allerdings<br />

gemeinsam von Industrie, Forschung und Politik positiv<br />

beleuchtet und an Schüler und Studierende herangetragen<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

werden, damit der politisch gewollte Kompetenzerhalt auch<br />

erreicht werden kann.<br />

<strong>atw</strong>: Die KTG ist seit 50 Jahren Anlaufstelle für die Mitarbeiter<br />

der kerntechnischen Branche in Deutschland. Von<br />

163 Gründungsmitgliedern ist deren Zahl auf etwa 2000<br />

Mitglieder gestiegen. Das Jubiläum möchten wir natürlich<br />

auch als Gelegenheit nutzen, nach vorne zu blicken. Wie<br />

sehen Sie beide die Zukunft der KTG?<br />

Gremme: Zunächst möchte ich der KTG alles Gute zu<br />

Ihrem 50. Geburtstag wünschen und hoffe, dass noch viele<br />

runde Geburtstage gefeiert werden können. Zuletzt sind<br />

die Mitgliederzahlen leider rückläufig, da wünsche ich<br />

mir für die Zukunft der KTG, dass diese Entwicklung<br />

aufge halten werden kann und sich stabile Mitgliederzahlen<br />

einstellen. Generell sehe ich der Zukunft der KTG<br />

positiv entgegen, da ich denke, dass dieser wissenschaftlich-<br />

technische Verein in Deutschland eine zentrale Rolle<br />

beim Kompetenzerhalt, auch für die politischen Ziele, einnehmen<br />

kann. Dafür ist eine stärkere Zusammenarbeit<br />

und Verknüpfung zwischen Industrie, Forschung und<br />

Politik notwendig – ein gemeinsames Konzept muss<br />

her, um den kerntechnischen Aufgaben in Deutschland<br />

begegnen zu können. Hierfür bieten wir, die JG der KTG,<br />

gerne unsere Unterstützung an.<br />

Apel: Diesen Glückwünschen schließe ich mich natürlich<br />

an. Kerntechnik „Made in Germany“ war in der Vergangenheit<br />

ein Aushängeschild unserer Branche und wird es<br />

bleiben, die Anwendungsfälle werden sich weiter verändern,<br />

Schwerpunkte werden sich verschieben. Kerntechnik<br />

als Einheit von Wissenschaft (der Lehre und der<br />

Forschung) und Technik (Betreiber, Zulieferer) aber auch<br />

unsere Gutachter und Behörden haben als wichtigstes Gut<br />

(neudeutsch Asset) den Mitarbeiter, den Fachmann, den<br />

Experten. Und dies wird für die nächsten Jahre so bleiben.<br />

Wenn wir beim Erhalt und der Neugewinnung unserer<br />

Mitglieder gute Antworten auf die Frage „Was ist drin<br />

für mich“ finden, schaue ich in eine erfolgreiche Zukunft<br />

der KTG.<br />

231<br />

KTG INSIDE<br />

KTG<br />

Wichtige Terminhinweise in eigener Sache<br />

Ankündigungen zum Vortag unserer diesjährigen Jahrestagung, dem 50 th Annual Meeting on <strong>Nuclear</strong> Technology<br />

(AMNT 2019) vom 7. bis 8. Mai 2018 im Estrel-Hotel, Berlin:<br />

33<br />

KTG-Mitgliederversammlung<br />

• Wann? Montag, 6. Mai 2019, 17:00 Uhr<br />

• Wo? Estrel Convention Center, Paris,<br />

Sonnenallee 225, 12057 Berlin<br />

33<br />

Get-together der KTG (auch für Nicht-Mitglieder)<br />

• Wann? Montag, 6. Mai 2019, 19:00 Uhr<br />

• Wo? Estrel Convention Center, Große Galerie,<br />

Sonnenallee 225, 12057 Berlin<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

Mai 2019<br />

50 Jahre | 1969<br />

14. Jens-Michael Hövelmann, Jülich<br />

55 Jahre | 1964<br />

18. Martin Franz, Erlangen<br />

60 Jahre | 1959<br />

18. Peter Klopfer, Neckarwestheim<br />

75 Jahre | 1944<br />

12. Peter Faber, Rödermark<br />

76 Jahre | 1943<br />

3. Dipl.-Ing. Hans Lettau, Effeltrich<br />

76 Jahre | 1943<br />

22. Wolfgang Schütz, Bruchsal<br />

24. Dipl.-Ing. Rudolf Weh, Stephanskirchen<br />

77 Jahre | 1942<br />

5. Hans-Bernd Maier, Aschaffenburg<br />

9. Dr. Egbert Brandau, Alzenau<br />

11. Dr. Erwin Lindauer, Köln<br />

17. Dr. Heinz-Peter Holley, Forchheim<br />

28. Dr. Wolf-Dieter Krebs, Bubenreuth<br />

78 Jahre | 1941<br />

8. Prof. Dr.-Ing. Helmut Alt, Aachen<br />

79 Jahre | 1940<br />

15. Dipl.-Phys. Ludwig Aumüller, Freigericht<br />

24. Dipl.-Ing. Herbert Krinninger,<br />

Bergisch Gladbach<br />

80 Jahre | 1939<br />

4. Dipl.-Ing. Norbert Albert, Ettlingen<br />

81 Jahre | 1938<br />

13. Dipl.-Ing. Otto A. Besch, Geesthacht<br />

13. Dr. Heinrich Werle, Karlsdorf-Neuthard<br />

16. Dr. Hans-Dieter Harig, Hannover<br />

21. Dr. Hans Spenke, Bergisch Gladbach<br />

82 Jahre | 1937<br />

6. Dr. Peter Strohbach, Mainaschaff<br />

26. Dipl.-Ing. Rüdiger Müller, Heidelberg<br />

27. Dr. Johannes Wolters, Düren<br />

28. Dipl.-Ing. Heinz E. Häfner, Bruchsal<br />

84 Jahre | 1935<br />

8. Dipl.-Ing. Klaus Wegner, Hanau<br />

22. Dr. Heinz Vollmer, Lampertheim<br />

29. Dipl.-Ing. Karlheinz Orth, Marloffstein<br />

85 Jahre | 1934<br />

11. Dr. Eckhart Leischner, Rodenbach<br />

14. Dr. Alexander Warrikoff, Frankfurt/Main<br />

26. Dr. Günter Kußmaul, Manosque/FR<br />

86 Jahre | 1933<br />

4. Dr. Klaus Wiendieck, Baden-Baden<br />

25. Dr. Reinhold Mäule, Walheim<br />

89 Jahre | 1930<br />

9. Dr. Hans-Jürgen Hantke, Kempten<br />

91 Jahre | 1928<br />

10. Dr. Heinz Büchler, Sankt Augustin<br />

95 Jahre | 1924<br />

22. Prof. Dr. Fritz Thümmler, Karlsruhe<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

232<br />

NEWS<br />

Top<br />

IAEA: Member states discuss<br />

modelling human resource<br />

development <strong>for</strong> nuclear<br />

power<br />

(iaea) Modelling human resource<br />

development can be an effective tool<br />

to assist nuclear newcomer countries<br />

in understanding the required competencies<br />

and work<strong>for</strong>ce needed to<br />

establish and maintain a safe, secure<br />

and sustainable nuclear power programme.<br />

The IAEA is providing a<br />

modelling tool that can help countries<br />

in planning and educating the<br />

required human resources.<br />

“Human resource development <strong>for</strong><br />

nuclear power requires a national<br />

ef<strong>for</strong>t and will involve a Member<br />

State’s government, education system,<br />

existing nuclear organizations and<br />

national utilities and industries,” said<br />

Dohee Hahn, Director of the IAEA<br />

Division of <strong>Nuclear</strong> <strong>Power</strong>. Planning<br />

<strong>for</strong> this endeavor there<strong>for</strong>e requires<br />

a comprehensive national analysis.<br />

“Modelling is uniquely suited to<br />

support this ef<strong>for</strong>t. The IAEA will continue<br />

to assist Member States as they<br />

examine their work<strong>for</strong>ce.”<br />

The IAEA provides helpful guidance<br />

<strong>for</strong> Member States to survey their<br />

work<strong>for</strong>ce and educational systems to<br />

identify and close gaps in their work<strong>for</strong>ce<br />

<strong>for</strong> nuclear power. One example<br />

<strong>for</strong> its guidance and assistance is the<br />

<strong>Nuclear</strong> <strong>Power</strong> Human Resource<br />

(NPHR) Model, provided to Member<br />

States <strong>for</strong> use in analyzing their<br />

human resource development.<br />

The NPHR modelling tool is a<br />

system dynamics simulation of a<br />

nuclear power programme and the<br />

national nuclear work<strong>for</strong>ce. The model<br />

includes the educational tracks, training,<br />

and career cycles <strong>for</strong> the work<strong>for</strong>ce<br />

supporting the owner/operator<br />

organizations, the regulatory body,<br />

and the construction work<strong>for</strong>ce. The<br />

tool is useful <strong>for</strong> providing a long perspective<br />

look at the work<strong>for</strong>ce to determine<br />

any skill gaps that might present<br />

risk to the programme. More than 14<br />

Member States have so far been<br />

trained in using the model.<br />

Users of the modelling tool from<br />

ten nuclear newcomer countries<br />

(Egypt, Ghana, Kazakhstan, Kenya,<br />

Morocco, Niger, Nigeria, Poland,<br />

Saudi Arabia, Sudan, Turkey and<br />

Uganda) gathered <strong>for</strong> the Technical<br />

Meeting on Human Resource Development<br />

Analysis and the Use of the<br />

NPHR Modelling Tool <strong>for</strong> New <strong>Nuclear</strong><br />

<strong>Power</strong> Progammes, held from 12 to<br />

15 February 2019 at the IAEA. In<br />

addition, experts from operating<br />

countries (France, Russia, the UK and<br />

the USA) highlighted the status of<br />

their nuclear work<strong>for</strong>ce and the challenges<br />

that every country may face.<br />

Each of the embarking countries<br />

presented results of their human<br />

resource development studies and<br />

explained how they used the model.<br />

Most Member States indicated that<br />

their national work<strong>for</strong>ce studies were<br />

directed by the nuclear energy programme<br />

implementing organization<br />

(NEPIO) and conducted with participants<br />

from other relevant organizations.<br />

The studies relied on data from<br />

the national education system and the<br />

national work<strong>for</strong>ce.<br />

Several Member States indicated<br />

that modifications to the model were<br />

needed to properly reflect their education<br />

system. Participants reported on<br />

additional modelling they did in their<br />

countries to validate modelling results<br />

and on national gaps that they had<br />

identified as well as decisions made to<br />

close them.<br />

Main take-away points were the<br />

identification of key events during<br />

programme development with which<br />

the human resource development<br />

plan must be coordinated: the delivery<br />

of a full scale simulator of a reactor<br />

control room and the delivery of fuel<br />

prior to commissioning. Participants<br />

also discussed the other factors that<br />

can affect the work<strong>for</strong>ce requirements,<br />

and the resources available to<br />

embarking countries.<br />

The model users highlighted that<br />

working groups composed of representatives<br />

from different national<br />

organizations should support the<br />

analysis and reiterated the need <strong>for</strong> a<br />

national ef<strong>for</strong>t.<br />

Human resource development<br />

and the NPHR Model<br />

Human resource development is one<br />

of the 19 infrastructure issues identified<br />

in the three-phased, comprehensive<br />

IAEA Milestones Approach which<br />

enables a sound programme development<br />

process. It is an important component<br />

<strong>for</strong> developing the nuclear<br />

power infrastructure and must be<br />

started at the earliest phases of a<br />

nuclear power programme. Suitably<br />

qualified and experienced workers are<br />

required in every phase of the programme.<br />

It can take more than a<br />

decade to grow the required skills in<br />

sufficient numbers <strong>for</strong> the organizations<br />

that need them, and the resulting<br />

work<strong>for</strong>ce must be sustained<br />

<strong>for</strong> the life time of the plant.<br />

| | www.iaea.org<br />

NEI: Why we should listen to<br />

Bill Gates on nuclear energy<br />

(nei) As the founder of one of the<br />

world’s most recognized and successful<br />

companies, Bill Gates receives a lot<br />

of attention <strong>for</strong> what he says and does.<br />

When Bill Gates talks, people listen.<br />

And today, Bill Gates is talking about<br />

nuclear energy.<br />

In his 2018 year-in-review blog<br />

post, Gates said: “<strong>Nuclear</strong> is ideal <strong>for</strong><br />

dealing with climate change, because<br />

it is the only carbon-free, scalable<br />

energy source that’s available 24 hours<br />

a day.” But to Bill Gates, nuclear energy<br />

is not just a technology that can<br />

help us meet climate change goals; it<br />

also can be used to reduce global poverty.<br />

Gates believes that if we are able<br />

to expand access to af<strong>for</strong>dable and<br />

clean electricity, it would drastically<br />

improve living conditions <strong>for</strong> millions<br />

and would ultimately be a huge step in<br />

lifting those people out of poverty.<br />

Gates has done more than just<br />

write about the benefits of nuclear<br />

energy. In 2006, he helped launch<br />

Terra<strong>Power</strong> LLC, a nuclear reactor<br />

design company that aims “to improve<br />

the world through nuclear energy and<br />

science.” In Gates’s view, investing in<br />

advanced nuclear technology can help<br />

America regain its position as the<br />

global leader on nuclear energy while<br />

fighting poverty and driving worldwide<br />

decarbonization.<br />

“<strong>Nuclear</strong> is ideal <strong>for</strong> dealing with<br />

climate change, because it is the only<br />

carbon-free, scalable energy source<br />

that´s available 24 hours a day.” – Bill<br />

Gates on why he believes in the potential<br />

of nuclear. https://bit.ly/2DSSXUS<br />

As important as Bill Gates’ voice is to<br />

the cause of promoting nuclear energy<br />

as a critical solution to solving complex<br />

global problems, he is hardly alone<br />

among technology entrepreneurs. The<br />

late Paul Allen, who was co-founder of<br />

Microsoft Corp. with Bill Gates, also<br />

championed the benefits of nuclear energy.<br />

And Peter Thiel, the co-founder of<br />

PayPal, Palantir Technologies and<br />

Founders Fund, wrote a New York Times<br />

op-ed arguing <strong>for</strong> adapting U.S. energy<br />

policy to support a new atomic age.<br />

Thiel wrote: “If we are serious<br />

about replacing fossil fuels, we are<br />

going to need nuclear power, so the<br />

choice is stark: We can keep on merely<br />

talking about a carbon-free world, or<br />

we can go ahead and create one.”<br />

Gates, Allen and Thiel are just a few<br />

names of our nation’s most technologically<br />

savvy business leaders who have<br />

invested in promoting the value of<br />

nuclear energy. And as more and more<br />

organizations and environmental<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Operating Results December 2018<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 744 680 983 7 001 022 261 655 208 100.00 88.25 99.05 87.24 100.58 87.82<br />

OL2 Olkiluoto BWR FI 910 880 744 686 482 7 597 361 251 896 543 100.00 95.31 100.00 94.58 100.29 94.27<br />

KCB Borssele PWR NL 512 484 744 379 826 3 514 770 161 721 689 99.47 79.32 99.46 79.00 100.03 78.49<br />

KKB 1 Beznau 7) PWR CH 380 365 744 286 584 2 588 023 127 334 110 100.00 78.73 100.00 78.26 101.43 77.68<br />

KKB 2 Beznau 7) PWR CH 380 365 744 285 074 3 185 534 134 350 407 100.00 96.40 100.00 96.28 100.84 95.62<br />

KKG Gösgen 7) PWR CH 1060 1010 744 794 572 8 680 941 313 875 528 100.00 94.10 99.99 93.77 100.75 93.49<br />

KKM Mühleberg BWR CH 390 373 744 283 870 3 066 170 127 404 315 100.00 92.84 98.80 92.01 97.83 89.75<br />

CNT-I Trillo PWR ES 1066 1003 744 789 917 8 267 245 247 291 669 100.00 89.51 100.00 89.26 99.16 88.00<br />

Dukovany B1 PWR CZ 500 473 729 362 664 3 599 011 112 229 493 97.98 83.36 97.06 82.84 97.49 82.17<br />

Dukovany B2 2) PWR CZ 500 473 744 370 524 3 611 634 108 234 171 100.00 84.01 99.98 83.55 99.60 82.46<br />

Dukovany B3 PWR CZ 500 473 161 70 038 3 875 614 106 498 041 21.64 90.72 21.25 90.37 18.83 88.48<br />

Dukovany B4 PWR CZ 500 473 744 376 529 3 171 527 106 443 269 100.00 74.18 99.99 72.99 101.22 72.41<br />

Temelin B1 PWR CZ 1080 1030 744 809 838 7 879 748 114 361 042 100.00 83.58 99.94 83.33 100.60 83.18<br />

Temelin B2 PWR CZ 1080 1030 744 816 260 7 782 571 109 272 517 100.00 82.29 99.99 82.14 101.40 82.21<br />

Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 30.83 0 30.81 0 30.91<br />

Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 38.82 0 38.70 0 38.89<br />

Doel 3 PWR BE 1056 1006 744 804 825 3 963 264 255 132 485 100.00 42.82 100.00 42.19 101.82 42.62<br />

Doel 4 2) PWR BE 1084 1033 292 188 760 5 827 569 260 373 410 39.24 62.54 22.26 60.98 22.26 60.65<br />

Tihange 1 PWR BE 1009 962 744 760 609 7 991 982 298 830 858 100.00 91.59 100.00 91.05 101.61 90.59<br />

Tihange 2 3) PWR BE 1055 1008 0 0 5 702 393 254 651 930 0 62.33 0 61.67 0 62.04<br />

Tihange 3 3) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 24.40 0 24.37 0 24.43<br />

233<br />

NEWS<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 744 952 106 10 375 751 350 567 810 100.00 90.60 94.33 84.72 86.08 79.65<br />

KKE Emsland 4) DWR 1406 1335 744 1 007 298 11 495 686 346 818 969 100.00 94.78 100.00 94.67 96.21 93.33<br />

KWG Grohnde DWR 1430 1360 744 1 013 399 10 946 635 377 574 214 100.00 92.82 99.98 91.61 94.60 86.79<br />

KRB C Gundremmingen SWR 1344 1288 744 1 005 494 10 361 862 330 941 755 100.00 90.41 100.00 89.85 99.93 87.51<br />

KKI-2 Isar DWR 1485 1410 744 1 084 754 12 127 490 353 725 813 100.00 95.46 100.00 95.24 97.90 92.92<br />

KKP-2 Philippsburg DWR 1468 1402 744 1 068 384 10 993 639 366 161 155 100.00 90.63 100.00 90.47 96.33 84.05<br />

GKN-II Neckarwestheim 2) DWR 1400 1310 744 1 025 400 9 703 700 329 826 834 100.00 81.35 100.00 81.00 98.80 79.29<br />

groups stand behind carbon-free<br />

nuclear energy, the support <strong>for</strong> nuclear<br />

has never been so vast and varied.<br />

Some of the smartest thinkers of<br />

our time are calling on us to see<br />

nuclear energy <strong>for</strong> its potential to<br />

change the world.<br />

It’s time we listen.<br />

| | www.nei.org<br />

EU needs all low-carbon<br />

sources to achieve its 2050<br />

decarbonisation goals<br />

(<strong>for</strong>atom) Reflecting on how low-carbon<br />

technologies can help the European<br />

Union achieve its 2050 decarbonisation<br />

objectives and what the needs of the<br />

industrial sector are when it comes to<br />

increased electrification were the main<br />

topics discussed during an event hosted<br />

in Brussels by the Permanent Representation<br />

of Romania to the EU and<br />

organised in the context of the country’s<br />

Presidency of the Council.<br />

The event “Solutions <strong>for</strong> a 2050<br />

Carbon- free Europe”, organised by the<br />

Romanian Ministry of Energy in cooperation<br />

with FORATOM and the Romanian<br />

Atomic Forum (ROMATOM),<br />

gathered together more than 100 representatives<br />

of EU Member States, EU<br />

institutions and power industries. The<br />

conference provided participants with a<br />

plat<strong>for</strong>m to exchange views on how<br />

low-carbon technologies can together<br />

contribute to reaching EU climate goals.<br />

During his keynote speech, EU Commissioner<br />

<strong>for</strong> Climate Action & Energy<br />

Miguel Arias Cañete stated that by 2050<br />

the deployment of renewables and a<br />

stable share of nuclear energy is the solution<br />

to make the European power sector<br />

carbon- free. He also underlined that the<br />

role of low-carbon technologies is essential<br />

in reaching carbon-neutrality.<br />

This approach was echoed by the<br />

Ro manian Minister of Energy Anton<br />

Anton, who – in his introductory speech<br />

– reiterated that all low-carbon energy<br />

sources need to be explored in the<br />

future in order to ensure a sustainable<br />

development of economy. He also stated<br />

that Europe has already managed to<br />

achieve a lot in this field, also thanks to<br />

the contribution of nuclear energy.<br />

Fabien Roques, Executive Vice President<br />

of FTI Compass Lexecon Energy<br />

presented in detail a recent study<br />

entitled “Pathways to 2050: role of<br />

nuclear in a low-carbon Europe”, commissioned<br />

by FORATOM pro viding the<br />

vision <strong>for</strong> the nuclear sector by midcentury.<br />

According to the study,<br />

nuclear energy provides an important<br />

contribution to an efficient transition<br />

towards a decarbonised European<br />

power system as it can help ensure<br />

compliance with EU emissions targets,<br />

avoid temporary increase of emissions<br />

and locking in fossil fuels investments.<br />

The complementarity role of nuclear<br />

<strong>for</strong> renewables was also emphasised.<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data <strong>for</strong> the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

234<br />

NEWS<br />

This last notion was addressed by<br />

Giles Dickson, CEO of WindEurope,<br />

who referred to the recent analysis<br />

published by the <strong>International</strong> Energy<br />

Agency. According to the IEA, the<br />

share of electricity generated by wind<br />

power will reach more than 30%<br />

globally by 2039. However, as pointed<br />

out by Mr Dickson, the power sector is<br />

not the only sector which needs to be<br />

significantly decarbonised in the<br />

coming years. The same challenges<br />

will need to be addressed by the transport<br />

and heating sectors.<br />

One of the possible solutions to<br />

achieve this goal is increased electrification<br />

which will play a key role<br />

in achieving a low-carbon future.<br />

Eurelectric Secretary General Kristian<br />

Ruby presented a recent study carried<br />

out by the organisation, which focuses<br />

on decarbonising the European Union<br />

through strong electrification, energy<br />

efficiency, and support from other<br />

non-emitting fuels. Each of the scenarios<br />

developed by the association<br />

will allow the EU power sector to be<br />

fully decarbonised by 2045 and in<br />

each of them the bulk of electricity<br />

will be provided by renewables and<br />

nuclear energy. Mr Ruby mentioned<br />

also the importance of system reliability<br />

and flexibility, which need to<br />

be provided by multiple sources in the<br />

power sector, including hydro, nuclear<br />

and gas, but also emerging sources<br />

such as hydrogen or battery storage.<br />

The issue of storage was discussed<br />

by Peter Claes, Vice President of the<br />

<strong>International</strong> Federation of Industrial<br />

Energy Consumers. During his speech,<br />

Mr Claes pointed to the importance of<br />

security of supply <strong>for</strong> efficient, reliable<br />

and safe operation. In this context, the<br />

current capability of battery storage as<br />

a backup to renewables does not<br />

guarantee the continuous supply of the<br />

electricity needed by the industry.<br />

Other potential pathways to decarbonise<br />

the power sector, listed by Mr<br />

Claes, were renewables with gas,<br />

nuclear energy and geothermal energy.<br />

The potential nuclear pathway and<br />

the role nuclear energy has to play in<br />

decarbonising Europe was underlined<br />

during a speech given by <strong>Nuclear</strong>electrica<br />

CEO and ROMATOM President<br />

Cosmin Ghita. Mr Ghita stressed that<br />

there is no decarbonisation without<br />

nuclear energy, and all low-carbon<br />

energy sources should be treated<br />

equally as they are all needed to reach<br />

the decarbonisation goal and help the<br />

EU achieve its climate objectives.<br />

During his closing remarks,<br />

FORATOM Director General Yves<br />

Desbazeille briefly presented the key<br />

takeaways of the FTI study commissioned<br />

by FORATOM, noting that keeping<br />

a share of nuclear provides clear<br />

environmental, social and economic<br />

benefits. The long-term operation of<br />

existing reactors is a must and more<br />

needs to be done to trigger investment<br />

in new nuclear reactors. He also identified<br />

some actions which must be undertaken<br />

by both the EU and industry<br />

in order to ensure nuclear remains part<br />

of the mix and can help Europe achieve<br />

its decar bonisation targets.<br />

He was followed by Gerassimos<br />

Thomas, Deputy Director-General of<br />

DG Energy, who stressed the fact that<br />

energy mix included in the long-term<br />

greenhouse gas emissions reductions<br />

strategy is based on the feedback<br />

received from the Member States.<br />

According to the in<strong>for</strong>mation received,<br />

two low-carbon sources will make up<br />

the EU electricity mix: renewables<br />

(80%) and nuclear (15-20%). These<br />

two energy sources should work together<br />

and not against each other as all<br />

low-carbon energy sources are needed<br />

in order to achieve the EU’s climate<br />

objectives. Other innovative technologies<br />

should be developed and there<strong>for</strong>e<br />

increased attention to the R&D sector<br />

should be paid. Competitiveness<br />

should be improved, as this has an<br />

impact on all technologies. Waste,<br />

decommissioning and encouraging<br />

young people to join the nuclear industry<br />

were also points highlighted by<br />

Mr Thomas.<br />

At the end of the event, Elena<br />

Popescu, Director General, DG Energy<br />

and Climate Change, Romanian Ministry<br />

of Energy, drew attention to the specificities<br />

of each country in terms of<br />

availability of energy sources and the<br />

need to adapt to specific conditions.<br />

Electrification will play an important<br />

role in achieving the mid-century decarbonisation<br />

targets, as long as it is<br />

based on low-carbon electricity sources.<br />

| | www.<strong>for</strong>atom.org<br />

World<br />

EU and IAEA review progress<br />

and agree on priorities in<br />

nuclear cooperation at annual<br />

meeting<br />

(iaea) The <strong>International</strong> Atomic Energy<br />

Agency (IAEA) and the European<br />

Union (EU) reviewed progress achieved<br />

in working together on a range of<br />

nuclear activities and agreed to further<br />

enhance cooperation during their<br />

seventh annual Senior Officials Meeting,<br />

in Luxembourg, this week.<br />

The talks provided a <strong>for</strong>um <strong>for</strong><br />

exchanging views on strengthening<br />

collaboration on nuclear safety, security,<br />

safeguards and nuclear research,<br />

innovation and training. In particular,<br />

the two organizations took note of<br />

progress they have made in cooperation<br />

on nuclear safety and security, as<br />

well as nuclear safeguards. The role of<br />

nuclear energy in addressing climate<br />

change, <strong>for</strong> those countries choosing<br />

to use it, was among the topics raised<br />

in the discussions.<br />

“We took stock of important developments<br />

in areas of common interest<br />

and steered the direction of our<br />

cooperation <strong>for</strong> the year ahead. The<br />

EU is one of our most relevant partners<br />

and its support <strong>for</strong> the IAEA’s<br />

mandate and work is valued,” said<br />

Cornel Feruta, Assistant Director General,<br />

Chief Coordinator <strong>for</strong> the IAEA.<br />

“<strong>Nuclear</strong> safety and security remain<br />

a major priority in the EU”, said<br />

Gerassimos Thomas, Deputy Director<br />

General in the Directorate-General <strong>for</strong><br />

Energy of the European Commission.<br />

“In 2018, the EU completed its first<br />

ever topical peer review on ageing<br />

management of nuclear power plants<br />

and research reactors under the<br />

amended <strong>Nuclear</strong> Safety Directive.”<br />

To support continuous safety improvements,<br />

the EU would continue<br />

to support the IAEA’s peer review services<br />

IRRS and ARTEMIS, which were<br />

being widely used by EU Member<br />

States to fulfil their legal obligations<br />

on nuclear safety and waste management.<br />

Developments related to Small<br />

Modular Reactors (SMRs), in particular<br />

regulatory aspects, were also<br />

discussed.<br />

EU support <strong>for</strong> a variety of IAEA<br />

activities has delivered consistent and<br />

concrete results over the past year.<br />

Officials commended the long-standing<br />

and fruitful cooperation under the<br />

Instrument <strong>for</strong> <strong>Nuclear</strong> Safety Cooperation<br />

and in the Regulatory Cooperation<br />

Forum. Joint ef<strong>for</strong>ts to address<br />

environmental remediation in Central<br />

Asia will continue following the successful<br />

donors’ conference in 2018.<br />

The EU reiterated its support <strong>for</strong><br />

the IAEA’s role in verifying and monitoring<br />

the implementation of Iran’s<br />

nuclear-related commitments under<br />

the Joint Comprehensive Plan of<br />

Action (JCPOA).<br />

During the talks, the EU and the<br />

IAEA agreed to further strengthen<br />

cooperation in training as well as<br />

research and development. In this<br />

context, they welcomed progress<br />

in advancing activities on nuclear<br />

applications under the Practical<br />

News


All results are from a survey of 2,061 people, conducted on behalf of the <strong>Nuclear</strong> Industry Association by YouGov, 29 November to 6 December2018<br />

<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

Arrangements over the second year of<br />

their implementation.<br />

The EU reaffirmed its support <strong>for</strong><br />

the IAEA’s 2018-2021 <strong>Nuclear</strong> Security<br />

Plan, highlighting the importance of<br />

the universalisation and implementation<br />

of the Amendment to the Convention<br />

on the Physical Protection of<br />

<strong>Nuclear</strong> Material (A/CPPNM). Implementation<br />

of the EU Council Decisions<br />

in support of IAEA’s activities on<br />

nuclear security was also discussed.<br />

The two sides also reviewed cooperation<br />

on technical matters in the field of<br />

nuclear security.<br />

Officials reviewed progress on the<br />

implementation of nuclear safeguards<br />

in EU Member States and on the European<br />

Commission Safeguards Support<br />

Programme to the IAEA.<br />

The next Senior Officials Meeting<br />

is expected to take place in Vienna in<br />

early 2020<br />

| | www.iaea.org<br />

Did you miss the NEA webinar<br />

on the true costs of decarbonisation?<br />

(nea) The NEA hosted a webinar on<br />

17 January to preview the findings<br />

from the report The Costs of Decarbonisation:<br />

System Costs with High<br />

Shares of <strong>Nuclear</strong> and Renewables.<br />

The webinar featured introductory<br />

remarks by the OECD Secretary-<br />

General Ángel Gurría and NEA<br />

Director- General Magwood, who led a<br />

discussion on the importance of<br />

system costs in assessing the overall<br />

costs of the energy transitions under<br />

way. If you missed the live webcast,<br />

the video recording is available at<br />

oe.cd/nea‐system‐costs‐webinar‐2019<br />

| | www.oecd-nea.org<br />

<strong>Nuclear</strong> Industry Association<br />

publishes 2018 public polling<br />

(niauk) New research, carried out <strong>for</strong><br />

the <strong>Nuclear</strong> Industry Association by<br />

YouGov has revealed what the public<br />

thinks about nuclear energy.<br />

The 2018 polling data has found<br />

that 72% of people support nuclear as<br />

part of a low carbon energy mix. In<br />

addition, nuclear is seen as the most<br />

secure <strong>for</strong> keeping the lights on, with<br />

35% agreeing it is the most secure, followed<br />

by 16% <strong>for</strong> solar, and 13% <strong>for</strong><br />

gas and offshore wind respectively.<br />

The 2008 Climate Change Act established<br />

a legally binding climate<br />

change target aiming to reduce the<br />

UK’s emissions by at least 80% by<br />

2050. However, the research showed<br />

that 73% of people agreed the government<br />

should be doing more to combat<br />

carbon emissions.<br />

When asked about small reactors,<br />

two in five of those asked agreed that<br />

they could play a role in tackling climate<br />

change, and 45% agreed they<br />

could increase energy security.<br />

The research also showed nuclear<br />

is considered the best <strong>for</strong> job creation<br />

and investment, when compared to<br />

other energy sources.<br />

| | www.niauk.org<br />

Reactors<br />

NIA Polling:<br />

What the public think<br />

YouGov, on behalf of the <strong>Nuclear</strong> Industry Association, has carried out polling to find<br />

out what the public think about nuclear. Here are the findings of the 2018 research.<br />

More people support nuclear as<br />

part of a low carbon energy mix<br />

<strong>Nuclear</strong> energy is ranked highest<br />

<strong>for</strong> job creation and investment<br />

<strong>Nuclear</strong> Industry Association is a company limited by guarantee registered in England No. 2804518.<br />

Registered Office: 5 th Floor, Tower House, 10 Southampton Street, London WC2E 7HA<br />

<strong>Nuclear</strong> energy is seen<br />

as most secure <strong>for</strong><br />

keeping the lights on<br />

Most agree government<br />

should be doing more to<br />

combat CO 2 emissions<br />

45% agree, SMRs<br />

could increase<br />

energy security<br />

Two in five agree<br />

SMRs could tackle<br />

climate change<br />

Men favour new build<br />

more than women<br />

NIAUK.ORG<br />

| | <strong>Nuclear</strong> Industry Association publishes 2018<br />

public polling<br />

40 years after Three Mile Island,<br />

nuclear plants are among the<br />

safest U.S. Facilities<br />

(nei) March 28 marks 40 years since<br />

the accident that damaged the core of<br />

the Three Mile Island (TMI) 2 nuclear<br />

reactor. The event was caused by a<br />

combination of equipment failure and<br />

the inability of plant operators to<br />

understand the reactor’s condition at<br />

certain times during the event.<br />

The TMI accident was a cultural<br />

touchstone <strong>for</strong> the nation and a turning<br />

point <strong>for</strong> the industry. And while there<br />

were no reported injuries or adverse<br />

health effects from the accident, our<br />

industry learned crucial lessons from<br />

that day and has continued to enhance<br />

the safety of our plants year after year.<br />

As a result, safety is in the DNA of<br />

every U.S. nuclear plant. By a variety<br />

of metrics – rate of human error, worker<br />

injury or equipment failure, number<br />

of unplanned shutdowns and level<br />

of occupational exposure – plant operations<br />

are smooth, stable and smart.<br />

<strong>Nuclear</strong> plants pursue excellence<br />

All companies operating power reactors<br />

have adopted a shared safety model<br />

and <strong>for</strong>med an independent safety<br />

organization, the Institute of <strong>Nuclear</strong><br />

<strong>Power</strong> Operations, to per<strong>for</strong>m frequent<br />

in-depth audits of all the reactors including<br />

peer audits, in which operators<br />

of similar plants travel from site to site<br />

to critically examine each other’s practices,<br />

successes and challenges.<br />

Additionally, plant executives brief<br />

each other on their malfunctions, personnel<br />

errors and other events and<br />

critique each other’s approach to operations.<br />

The plants still adhere to a strict<br />

code of regulations from the U.S.<br />

<strong>Nuclear</strong> Regulatory Commission, but<br />

the peer-to-peer interactions are more<br />

comprehensive and promote a level of<br />

safety and excellence in operations far<br />

beyond what the government requires.<br />

In fact, the Electric <strong>Power</strong> Research<br />

Institute (EPRI) found that the risks<br />

posed to public health and safety from<br />

nuclear plants are much lower than<br />

previously understood. While studies<br />

in the 1980s and 1990s showed plants<br />

had operated at a relatively modest<br />

margin of safety, a recent EPRI study<br />

shows that U.S. plants are nearly 100<br />

times more safe than the NRC’s own<br />

safety goals.<br />

<strong>Nuclear</strong> plants are well-run<br />

Highly trained experts run America’s<br />

98 nuclear plants. With the NRC’s oversight<br />

and layers of safety precautions, a<br />

nuclear plant is one of the safest industrial<br />

environments in the United States.<br />

Plant workers are well- qualified: Reactor<br />

operators must hold federal licenses<br />

that require extensive training to<br />

obtain and they typically spend one<br />

week out of every five in training.<br />

Following the accident at Three<br />

Mile Island 2, the industry <strong>for</strong>med the<br />

National Academy <strong>for</strong> <strong>Nuclear</strong> Training<br />

to promote the highest levels of training<br />

program excellence and consistency<br />

across the industry. Every four<br />

years nuclear power plants are required<br />

to demonstrate high standards in their<br />

training programs to maintain program<br />

accreditation by the academy.<br />

Plants also have training simulators,<br />

which are exact duplicates of control<br />

rooms, but connected to a computer,<br />

not a reactor. That allows the operators<br />

to practice responses to postulated accidents<br />

that cannot be run on a real reactor,<br />

similar to jet pilots who practice<br />

engine failures or instrument malfunctions<br />

on a simulated airliner.<br />

<strong>Nuclear</strong> plants have evolved<br />

since 1979<br />

Innovation drives the nuclear industry.<br />

These plants may look the same<br />

on the outside, but throughout their<br />

operation, they are continuously<br />

235<br />

NEWS<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

236<br />

NEWS<br />

* The Loviisa nuclear<br />

power plant consists<br />

of two pressurized<br />

water reactors with<br />

an installed net<br />

capacity of 507 megawatt<br />

each. It is situated<br />

on the south<br />

coast of Finland.<br />

Loviisa 1 started<br />

commercial operation<br />

in 1977, Loviisa 2<br />

followed in 1980.<br />

upgraded with the latest technology<br />

and monitored <strong>for</strong> optimal<br />

per<strong>for</strong>mance.<br />

By the time a facility seeks to<br />

extend its operating license with<br />

the NRC beyond 40 years –<br />

because of improvements to<br />

turbines, pumps, instrumentation<br />

and other components – the<br />

plants are extensively updated.<br />

Through equipment upgrades,<br />

many plants have been<br />

able to raise the amount of<br />

power they produce. These<br />

improvements, along with other efficiencies,<br />

have helped plants spend<br />

more time generating elec tricity. The<br />

average capacity factor <strong>for</strong> all nuclear<br />

plants in 2018 was 92.3 percent,<br />

which means that the plants were<br />

almost always up and making electricity.<br />

In contrast, in the 1970s,<br />

reactors on average operated less than<br />

60 percent of the hours in a year.<br />

The industry has not stopped<br />

improving either, as it continues to<br />

develop advanced technology like<br />

accident-tolerant fuels, which could<br />

further boost plant per<strong>for</strong>mance,<br />

increase safety and reduce costs.<br />

<strong>Nuclear</strong> plants are prepared <strong>for</strong><br />

the worst<br />

The operators at every nuclear plant<br />

prepare detailed plans with one goal<br />

in mind: to protect their communities<br />

and employees.<br />

These plans meet requirements<br />

set by the NRC and the Federal<br />

Emergency Management Agency. Plant<br />

workers conduct training and drills<br />

every month, and every two years they<br />

test their plans with state and local<br />

government agencies and the NRC.<br />

Emergency plans are also updated<br />

based on emerging issues. After the<br />

terrorist attacks of Sept. 11, the<br />

industry re-evaluated its plans to cover<br />

a broader array of un<strong>for</strong>eseen events.<br />

Additionally, after the Fukushima accident<br />

in 2011, the industry stationed<br />

more backup safety equipment at<br />

plants and regional depots. The FLEX<br />

strategy made about 1,500 pieces of<br />

additional equipment, from nozzles to<br />

generators, available to every nuclear<br />

plant in case of an emergency.<br />

<strong>Nuclear</strong> plants don’t just provide<br />

more than 55 percent of carbon-free<br />

electricity in the United States. They<br />

also are among the safest and most<br />

secure industrial facilities in the<br />

country. And 40 years after the<br />

accident at Three Mile Island, nuclear<br />

energy remains the safest and cleanest<br />

<strong>for</strong>m of baseload power generation.<br />

| | www.nei.org<br />

| | Framatome. Innovation: Robotics<br />

Company News<br />

Framatome.<br />

Innovation: Robotics<br />

(framatome) They go by names such as<br />

Charli, Eloise, Pelican or Forerunner<br />

and they’ve joined the ranks at<br />

Framatome to lend their iron hands to<br />

our teams and our customers’ teams.<br />

These robotic collaborators significantly<br />

improve safety in the field and<br />

enhance the per<strong>for</strong>mance of operations.<br />

They are the illustration of our<br />

innovation approach, aiming to offer<br />

safe and increasingly competitive<br />

nuclear energy.<br />

Driven by major technological<br />

advances, these robots represent years<br />

of productive, collective research and<br />

development. Experience some of this<br />

innovation in action: from the Saint-<br />

Marcel plant, where operators use robotic<br />

arms to facilitate strenuous work<br />

and reduce occupational risk, through<br />

to dismantling of the Superphénix reactor,<br />

where the laser robot Eloise has<br />

become quite simply… indispensable.<br />

Available in a variety of models,<br />

SUSI can examine most reactor coolant<br />

system components as well as reactor<br />

pressure vessel, reactor pressure vessel<br />

head, pumps, pressurizers and piping<br />

in nuclear power plants worldwide.<br />

SUSI also per<strong>for</strong>ms visual ultrasonic<br />

inspections of baffle bolts. Plus,<br />

it can serve as a gripping device to<br />

retrieve <strong>for</strong>eign objects. In addition,<br />

the robot can be calibrated under water<br />

at any time during the inspection.<br />

A separate satellite camera system<br />

can be deployed with SUSI or on its<br />

own to further enhance inspection<br />

results in hard-to-reach areas.<br />

| | www.framatome.com<br />

Finland: Framatome successfully<br />

completes modification<br />

of Loviisa nuclear power<br />

plant’s Control rod instrumentation<br />

& control system<br />

Framatome has successfully modified<br />

the Preventive Protection System (PPS)<br />

at the Loviisa* nuclear power plant,<br />

operated by the Finnish utility Fortum.<br />

The Preventive Protection System uses<br />

control rods to monitor the reactor<br />

power and contributes to the safe operation<br />

of the plant. Implemen tation of<br />

the PPS is part of the modernization of<br />

the plant’s I&C system.<br />

The project started in 2016 when<br />

Fortum awarded Framatome the<br />

contract <strong>for</strong> the PPS and included the<br />

modification of the TELEPERM XS<br />

technology, originally delivered by<br />

Framatome in 2008 (Unit 1) and 2009<br />

(Unit 2).<br />

Framatome’s I&C teams prepared<br />

the required documentation, designed<br />

and engineered the system modification<br />

and per<strong>for</strong>med the final testing,<br />

installation and commissioning on site<br />

during the 2018 outage. These tasks<br />

are essential <strong>for</strong> the functionality of<br />

the entire system and are also mandatory<br />

<strong>for</strong> obtaining the licensing by<br />

the Finnish safety authority STUK.<br />

A joint team approach and close<br />

cooperation between Framatome and<br />

Fortum at all stages of the project<br />

were key to ensuring successful completion<br />

on time and to budget.<br />

“This successful modification<br />

project proves Framatome’s ability to<br />

provide I&C upgrades to different<br />

reactor types worldwide. Our<br />

TELEPERM XS I&C system is well<br />

known to Finnish operators and the<br />

authority STUK which is a perfect<br />

basis <strong>for</strong> further projects”, said<br />

Frédéric Lelièvre, Senior Executive<br />

Vice President in charge of Sales,<br />

Regional Plat<strong>for</strong>ms and the Instrumentation<br />

and Control Business Unit<br />

at Framatome.<br />

| | www.framatome.com<br />

GNS: Package design approval<br />

<strong>for</strong> CASTOR® MTR3<br />

(gns) On 17 January 2019, the German<br />

Federal Office <strong>for</strong> the Safety of <strong>Nuclear</strong><br />

Waste Management (Bundesamt<br />

für kerntechnische Entsorgungssicherheit/BfE)<br />

issued the package design<br />

approval certificate <strong>for</strong> the transport<br />

and storage cask CASTOR® MTR3 as<br />

type B(U)F packaging. The cask was<br />

developed by GNS Gesellschaft für<br />

Nuklear-Service mbH especially <strong>for</strong><br />

spent fuel elements from research<br />

reactors. The approval complies with<br />

the internationally valid regulations<br />

of the <strong>International</strong> Atomic Energy<br />

Agency (IAEA) <strong>for</strong> the safe transport<br />

of radioactive materials.<br />

The CASTOR® MTR3 will initially<br />

be used <strong>for</strong> the transport and storage<br />

of spent fuel elements of the research<br />

reactor FRM II of the TU Munich. In<br />

addition, the cask will be able to<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

accommodate further fuel assembly<br />

types from other research reactors<br />

(e.g. TRIGA, MTR) with the use of<br />

individually adapted fuel baskets.<br />

The casks, which are about 160 cm<br />

high and weigh 16 t, essentially consist<br />

of a body made of ductile cast iron, a<br />

basket <strong>for</strong> accommodating the fuel<br />

elements and a double lid system<br />

with metallic sealings. These design<br />

features ensure safe containment the<br />

radioactive materials both during<br />

transport and subsequent storage.<br />

The comparatively small CASTOR®<br />

MTR3 casks are made of the same<br />

materials and have the same design<br />

features and safety functions as<br />

the CASTOR® casks from GNS <strong>for</strong><br />

fuel assemblies from commercial<br />

power plants, which are up to four<br />

times larger and have already<br />

proven their reliability well over 1000<br />

times.<br />

| | www.gns.de<br />

Uranium Prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Year<br />

Yearly average prices in real USD,<br />

base: US prices (1982 to1984) *<br />

1980 1985 1990 1995 2000 2005 2010 2015 2019<br />

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

180.00<br />

160.00<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

| | Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

0.00<br />

Jan.<br />

Year<br />

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019<br />

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />

) 1<br />

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Jan.<br />

Year<br />

) 1<br />

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019<br />

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Jan.<br />

Year<br />

) 1<br />

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019<br />

* Actual nominal USD prices. Sources: Energy Intelligence, Nukem; Figure: <strong>atw</strong> 2019<br />

237<br />

NEWS<br />

Market data<br />

| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

2014<br />

pp<br />

Uranium: 28.10–42.00<br />

pp<br />

Conversion: 7.25–11.00<br />

pp<br />

Separative work: 86.00–98.00<br />

2015<br />

pp<br />

Uranium: 35.00–39.75<br />

pp<br />

Conversion: 6.25–9.50<br />

pp<br />

Separative work: 58.00–92.00<br />

2016<br />

pp<br />

Uranium: 18.75–35.25<br />

pp<br />

Conversion: 5.50–6.75<br />

pp<br />

Separative work: 47.00–62.00<br />

2017<br />

pp<br />

Uranium: 19.25–26.50<br />

pp<br />

Conversion: 4.50–6.75<br />

pp<br />

Separative work: 39.00–50.00<br />

2018<br />

January to June 2018<br />

pp<br />

Uranium: 21.75–24.00<br />

pp<br />

Conversion: 6.00–9.50<br />

pp<br />

Separative work: 35.00–42.00<br />

February 2018<br />

pp<br />

Uranium: 21.25–22.50<br />

pp<br />

Conversion: 6.25–7.25<br />

pp<br />

Separative work: 37.00–40.00<br />

March 2018<br />

pp<br />

Uranium: 20.50–22.25<br />

pp<br />

Conversion: 6.50–7.50<br />

pp<br />

Separative work: 36.00–39.00<br />

April 2018<br />

pp<br />

Uranium: 20.00–21.75<br />

pp<br />

Conversion: 7.50–8.50<br />

pp<br />

Separative work: 36.00–39.00<br />

May 2018<br />

pp<br />

Uranium: 21.75–22.80<br />

pp<br />

Conversion: 8.00–8.75<br />

pp<br />

Separative work: 36.00–39.00<br />

June 2018<br />

pp<br />

Uranium: 22.50–23.75<br />

pp<br />

Conversion: 8.50–9.50<br />

pp<br />

Separative work: 35.00–38.00<br />

July 2018<br />

pp<br />

Uranium: 23.00–25.90<br />

pp<br />

Conversion: 9.00–10.50<br />

pp<br />

Separative work: 34.00–38.00<br />

August 2018<br />

pp<br />

Uranium: 25.50–26.50<br />

pp<br />

Conversion: 11.00–14.00<br />

pp<br />

Separative work: 34.00–38.00<br />

September 2018<br />

pp<br />

Uranium: 26.50–27.50<br />

pp<br />

Conversion: 12.00–13.00<br />

pp<br />

Separative work: 38.00–40.00<br />

October 2018<br />

pp<br />

Uranium: 27.30–29.00<br />

pp<br />

Conversion: 12.00–15.00<br />

pp<br />

Separative work: 37.00–40.00<br />

November 2018<br />

pp<br />

Uranium: 28.00–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 39.00–40.00<br />

December 2018<br />

pp<br />

Uranium: 28.50–29.20<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 40.00–41.00<br />

2019<br />

January 2019<br />

pp<br />

Uranium: 28.70–29.10<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 41.00–44.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

<strong>for</strong> Hard Coal<br />

Cross-border price <strong>for</strong> hard coal in<br />

[€/t TCE] and orders in [t TCE] <strong>for</strong><br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2012: 93.02; 27,453,635<br />

2013: 79.12, 31,637,166<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

2017: 91.28, 25,739,010<br />

2018<br />

I. quarter: 89.88; 5,838,003<br />

II. quarter: 88.25; 4,341,359<br />

III. quarter: 100.79; 5,135,198<br />

IV. quarter: 100.91; 6,814,244<br />

| | Source: BAFA, some data provisional,<br />

www.bafa.de<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 4 ı April<br />

238<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

journalist who has<br />

covered the nuclear<br />

industry <strong>for</strong> the past<br />

20 years and is<br />

currently editor-in-chief<br />

of UK-based Energy<br />

Storage Publishing.<br />

Reference links:<br />

Testimony from<br />

Dr Fatih Birol<br />

https://bit.ly/2EuwpsN<br />

EPRI study<br />

https://bit.ly/2VPA5MQ<br />

Events of the Past Need Not Dictate<br />

an Industry’s Future<br />

The US will have reached an important milestone in March of this year, when it marks 40 years since the accident that<br />

damaged the core of the Three Mile Island (TMI) 2 nuclear reactor.<br />

As I write, there has been no public relations offensive of<br />

note by nuclear energy opponents in the build up to the<br />

memory of what happened in Pennsylvania on 28 March<br />

1979 – which is perhaps testament to how the nuclear<br />

debate has moved on since.<br />

For the record, the event was caused by a combination<br />

of equipment failure and the inability of plant operators to<br />

understand the reactor’s condition at certain times during<br />

the event.<br />

And while there were no reported injuries or adverse<br />

health effects from the accident, TMI was a turning point<br />

<strong>for</strong> the industry in the US and arguably worldwide.<br />

In the US, the event led to the establishment of the<br />

Atlanta- based Institute of <strong>Nuclear</strong> <strong>Power</strong> Operations and<br />

the <strong>for</strong>mation of what is today the <strong>Nuclear</strong> Energy Institute.<br />

Despite its setbacks, nuclear has powered ahead and is<br />

increasingly recognised <strong>for</strong> its durability, reliability, safety<br />

and sustainability in a world that sometimes seems to have<br />

lost sight of the need <strong>for</strong> real energy security while<br />

pursuing fads of the day. Indeed, a study published in 2018<br />

by the Electric <strong>Power</strong> Research Institute (EPRI) indicated<br />

that US plants are nearly 100 times more safe than the<br />

safety goals set by the US <strong>Nuclear</strong> Regulatory Commission.<br />

One welcome intervention came recently from the head<br />

of the Paris-based <strong>International</strong> Energy Association (IEA),<br />

Dr Fatih Birol, who gave testimony to the US Senate Energy<br />

and Natural Resources Committee on prospects <strong>for</strong> global<br />

energy markets, including the role of the US.<br />

In his wide-ranging testimony, no one could be in<br />

any doubt about the relevance – and the importance – of<br />

nuclear energy now and into the future.<br />

Birol said nuclear “should be seen as a key asset in the<br />

US (which) has been a leader in nuclear power generation<br />

technology <strong>for</strong> 60 years, alongside France, Japan and<br />

Russia”.<br />

<strong>Nuclear</strong> still generates “twice as much low-carbon<br />

electricity in the US as wind and solar combined”, Birol<br />

said, adding that nuclear’s baseload capacity in the country<br />

also played a “major role in maintaining electricity<br />

security”. He said this was especially true in the northern<br />

regions, which “experience spikes in electricity and gas<br />

demand during extreme cold spells like the recent polar<br />

vortex – times when solar production can be challenged”.<br />

But Birol pointed out that China is set to be the “new<br />

leader” in terms of nuclear energy if US policies do not<br />

change.<br />

“China has rapidly developed nuclear power over the<br />

past two decades, increasing from just three operating<br />

reactors in 2000 to 46 at the end of last year,” Birol said.<br />

“<strong>Nuclear</strong> capacity in China is set to overtake that of the US<br />

within 10 years.”<br />

According to the IEA chief, “effective policy action” is<br />

needed in the US if it is to avoid the loss of “a substantial<br />

proportion of its (nuclear) capacity”. “From my vantage<br />

point, this would be detrimental to both energy security<br />

and clean energy objectives.”<br />

Birol said American innovation could also play a leading<br />

role in the development of small modular reactors (SMRs),<br />

pointing out that there was “significant international<br />

appetite <strong>for</strong> innovative approaches to nuclear power,<br />

including SMRs”, which could offer significant benefits,<br />

such as factory fabrication, flexibility in where they can be<br />

deployed and lower upfront investment.<br />

The US has to continue to “accelerate innovation in new<br />

nuclear technologies” such as SMRs to safeguard the long<br />

term contribution of nuclear, Birol said.<br />

However, “a first priority should be to safeguard the<br />

existing fleet”. Birol told legislators: “<strong>Nuclear</strong> plant lifetimes<br />

should be extended as long as safety considerations<br />

allow. In large parts of the US this presents a challenge, as<br />

wholesale markets don’t value the energy security and<br />

clean energy contribution of nuclear.”<br />

This was the third consecutive time the IEA’s executive<br />

director has given testimony to the Senate committee, so<br />

his remarks should not be seen as a dramatic intervention,<br />

particularly in terms of nuclear, because the agency’s brief<br />

is to cover the full spectrum of energy issues in its 30<br />

member countries and beyond.<br />

What is notable, however, is that nuclear is rightly<br />

recognised by the IEA as a valued and much-needed<br />

contributor to the international energy mix.<br />

From a strictly personal point of view, I found it<br />

refreshing to hear the head of an esteemed international<br />

body talk about nuclear in such terms. I’ve heard no such<br />

endorsement <strong>for</strong> some time now in the UK (although I<br />

stand to be corrected). By the same token, I don’t recall any<br />

public airing of note of late on the benefits of nuclear in the<br />

European Parliament, regardless of that body’s largely<br />

consultative role in such matters.<br />

<strong>Nuclear</strong> continues to enjoy strong political support in<br />

other countries, such as China (as Birol mentioned),<br />

Russia, and nuclear newcomer the United Arab Emirates.<br />

Policies in those countries are driven of course by a more<br />

‘top-down approach’, but that does nothing to dilute the<br />

value of nuclear in terms of energy security and its<br />

contribution to supporting a nation’s economic well being.<br />

Meanwhile, the Japan Atomic Industrial Forum<br />

reported that two ‘nuclear recruiting’ events were held in<br />

the country recently, attended by students expecting to<br />

graduate in 2020 and looking to start their careers.<br />

Memories of the Fukushima-Daiichi accident have not<br />

faded in Japan, but lessons have been learned and the<br />

country is moving on – and preparing <strong>for</strong> a new nuclear<br />

generation at the industry’s helm.<br />

We would do well to reflect on some words from Sir<br />

Winston Churchill if the nuclear industry is to <strong>for</strong>ge ahead<br />

in helping to resolve the energy challenges of the future:<br />

“A pessimist sees the difficulty in every opportunity; an<br />

optimist sees the opportunity in every difficulty.”<br />

<strong>Nuclear</strong> Today<br />

Events of the Past Need Not Dictate an Industry’s Future ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Export in der Praxis<br />

Seminar:<br />

Export kerntechnischer Produkte und Dienstleistungen<br />

– Chancen und Regularien<br />

In diesem Seminar lernen Sie die ausfuhrrechtlichen Grundlagen unter besonderer<br />

Berücksichtigung der neuen Dual-Use-Verordnung sowie die organisatorischen und<br />

operativen Rückwirkungen auf Unternehmen kennen.<br />

Sie erhalten einen umfangreichen Überblick über die internationalen Märkte, ausgewählte<br />

regionale Spezifika und die unterschiedlichen Zertifizierungsregime ISO und ASME.<br />

Seminarinhalte<br />

ı Ausfuhrrechtliche Grundlagen<br />

ı zentralen Ausfuhrbestimmungen für Produkte und Dienstleistungen<br />

ı Verfahrensschritte und Zeitabläufe im Antragsverfahren<br />

ı Veränderungen in der neuen Dual-Use-Verordnung<br />

ı Märkte und regionale Spezifika<br />

ı Die Welten von ISO und ASME<br />

ı Organisatorische Rückwirkungen des Exportgeschäfts<br />

Zielgruppe<br />

Das Seminar richtet sich an Fach- und Führungskräfte, Projektverantwortliche sowie Mitarbeiterinnen<br />

und Mitarbeiter in den Bereichen Außenwirtschaft/Exportkontrolle, Organisation,<br />

Qualitätsmanagement, Vertrieb, Marketing, Recht oder Personalwesen, welche künftig für den<br />

Export von Produkten, Dienstleistungen und Projekten verantwortlich sind.<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

Lily Kreuzer<br />

RA Kay Höft M. A.<br />

Dr. Ing. Wolfgang Steinwarz<br />

Wir freuen uns auf Ihre Teilnahme!<br />

ı ehem. Rechtsanwältin, Ausfuhrspezialistin<br />

ı Syndikusrechtsanwalt und Compliance-Verantwortlicher<br />

für Außenwirtschaftsrecht<br />

ı ehem. Geschäftsführer Technik,<br />

Siempelkamp Ingenieur und Service GmbH<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termin<br />

2 Tage<br />

12. bis 13. Juni 2019<br />

Tag 1: 10:00 bis 18:00 Uhr<br />

Tag 2: 09:00 bis 12:45 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

998,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung,<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de


www.unserejahrestagung.de<br />

#50AMNT<br />

7. – 8. Mai 2019<br />

Estrel Convention Center Berlin, Deutschland<br />

Unsere Partner, Aussteller und Sponsoren<br />

› Partner<br />

› Weitere Aussteller, Sponsoren und Medienpartner<br />

Änderungen vorbehalten, weitere Unternehmen angekündigt.<br />

Standanmeldung und Registrierung www.amnt2019.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!