atw 2019-05

viktor.frank

nucmag.com

2019

5

Nuclear Power:

“No Thanks.”

“Yes, Please.”

Proposals to ‘Evolve’ Euratom

Treaty Should Be Handled

with Care

The Current Status on

How to Develop a Vision for

Nuclear Waste Management

ISSN · 1431-5254

24.– €

Operating Results 2018

Join the Celebration


Media Partner

www.amnt2020.com

#51AMNT

Save the Date

5 – 6 May 2020

Estrel Convention Center Berlin, Germany

Key Topics

Outstanding Know-How & Sustainable Innovations

Enhanced Safety & Operation Excellence

Decommissioning Experience & Waste Management Solutions

The International Expert Conference on Nuclear Technology


atw Vol. 64 (2019) | Issue 5 ı May

Welcome Addresses for the 50 th Annual

Meeting on Nuclear Technology (AMNT 2019)

243

7 and 8 May 2019

KTG (German Nuclear Society)

The Chairman

Our Annual Meeting on Nuclear Technology –

the original for 50 years. At the beginning

of May, the industry meets again in Berlin for

the 50 th time. We can be very proud of that

together.

We are convinced that the forthcoming meeting will be

particularly good. Especially because for this year's AMNT a number

of extraordinary highlights have been prepared for our participants.

Let yourself be surprised!

KTG has again prepared an excellent and highly topical program.

Especially in times of great challenges, the contribution of our KTG

members, who are personally involved with great commitment to

nuclear technology “made in Germany” in general and for our annual

conference in particular, cannot be appreciated highly enough.

Currently, 7 nuclear power plants are connected to the grid in

Germany and feed an average of approx. 14 % of the basic electricity

supply required in Germany into the transmission grids with

unprecedented reliability. 27 plants are in the post-operational

or decommissioning phase. The high number of deconstruction

projects in progress at the same time shows that specialized

companies have enough work to do.

In 2017, the Commission to Review the Financing for the

Phase-out of Nuclear Energy recommended an amendment to the

legislation with new – and above all financial – delimitation of

responsibility for the storage and ownership of all nuclear waste

and spent fuel elements between the operators and the Federal

Government. One result is the establishment of two new federal

companies for waste disposal tasks.

Operators, manufacturers, authorities and experts, education

and research continue to be linked by a central topic: nuclear knowhow

must be preserved in Germany in order, among other things, to

secure the remaining operation, post-operation, decommissioning

and dismantling of German nuclear power plants and to sustainably

solve the final disposal issue, to secure the export business of German

suppliers and service providers, to be able to carry out national and

international safety assessments and also in future to be able to

maintain the contribution of German innovations and standards

to international developments for new technologies.

In the various formats of our annual conference under the

headings “Outstanding Know-how & Sustainable Innovations”,

“ Enhanced Safety & Operation” and “Decomissioning Experience &

Waste Management Solutions”, we will reflect on current topics in

nuclear technology and focus on the technical dialogue between

national and international experts. This year's AMNT will also

continue successful formats for young people such as the Nuclear

Technology Campus or the Young Scientists' Workshop.

For our conference I wish all participants new insights, interesting

encounters, contacts and conversations. What unites the members

of KTG is “fascination of nuclear technology”. Let it enchant you,

too...

DAtF (German Atomic Forum)

The President

The political conditions for nuclear energy

couldn't be more different between 1969, the

year of the first “Reactor Conference” in

Frankfurt am Main, and 2019, the year of the

50 th Annual Meeting on Nuclear Technology.

The spirit of optimism and political support across all political parties

at that time is in huge contrast to the current withdrawal from the

use of nuclear energy for electricity generation in Germany.

However, the fact that the DAtF and the KTG are organising one

of the most recognised and renowned nuclear conferences in

the world on 7 and 8 May 2019 in Berlin, even in the eighth year of

the accelerated nuclear phase-out, clearly shows that the nuclear

industry will continue to be needed in the future despite the political

change in recent years. Many other modern societies do not want to

do without nuclear power and the global outlook for nuclear

technology is positive. We will be demonstrating this again next year

at the 51 st AMNT in Berlin on 5 and 6 May 2020.

Our top-level list of speakers of the plenary day with Thomas

Bareiß MdB (BMWi), Prof. Dr. Martin Neumann MdB (FDP),

Prof. Dr. Renate Köcher (Allensbach), Steffen Kanitz (BGE) and

Matthias Horx (Zukunftsinstitut) testifies to the thematic breadth

of our annual conference and its importance as a network meeting of

our industry. Despite political change, the nuclear industry and

research remain important pillars of Germany's economic success.

You can also look forward to exciting presentations and

discussions regarding the specialist lectures. We will discuss with you

the technical innovations and challenges in the areas of new build,

research and development. We will exchange ideas about innovations

and opportunities for optimisation in the dismantling of nuclear

power plants and the disposal of radioactive waste. And we would

like to examine the question of what role SMRs can play in the use of

nuclear power in the future. As we did 50 years ago, together we will

contribute significantly to making nuclear power and technology

even safer and more efficient.

This year's anniversary meeting offers you an exposition with

photos and exhibits amidst the traditional exhibition of companies

and organisations. The industrial exhibition with its numerous

national and international participants as well as the national

pavilions from the United Kingdom and the Czech Republic offers

not only the opportunity to make new contacts and maintain existing

ones, but also allows you to experience the history and present of

nuclear energy in Germany up close.

It is your expertise and active participation that have ensured the

success of our annual conference for 50 years. I would like to thank

all speakers and participants as well as all exhibitors and sponsors

with all my heart.

Dr Ralf Güldner

WELCOME TO AMNT 2019

Frank Apel

Editorial

Welcome Addresses for the 50th Annual Meeting on Nuclear Technology (AMNT 2019)


atw Vol. 64 (2019) | Issue 5 ı May

244

Grußworte zum 50. Annual Meeting

on Nuclear Technology (AMNT 2019)

WELCOME TO AMNT 2019

7. und 8. Mai 2019, Berlin

KTG (Kerntechnische Gesellschaft e. V.)

Der Vorsitzende

Unsere Jahrestagung Kerntechnik – das Original

seit 50 Jahren. Anfang Mai trifft sich in Berlin

erneut die Branche, zum 50. Mal. Darauf können

wir gemeinsam sehr stolz sein.

Wir sind überzeugt, dass die bevorstehende

Jahrestagung ganz besonders gut wird. Ganz

besonders, weil wir für die heurige AMNT eine Reihe von außergewöhnlichen

Highlights für Sie vorbereitet haben. Lassen Sie sich

überraschen!

Die KTG hat erneut ein exzellentes und hochaktuelles Programm

mit vorbereitet. Gerade in Zeiten großer Herausforderungen ist der

Beitrag unserer KTG-Mitglieder, die sich persönlich mit großem

Engagement für Kerntechnik „made in Germany“ im Allgemeinen

und für unsere Jahrestagung im Speziellen einbringen, nicht hoch

genug zu würdigen.

Derzeit sind in Deutschland sieben Kernkraftwerke am Netz und

speisen aktuell im Mittel ca. 14 % der in Deutschland benötigten

Grundenergieversorgung beispiellos sicher in die Energieübertragungsnetze

ein. 26 Anlagen sind in der Nachbetriebs- bzw.

Stilllegungsphase. Die hohe Zahl an Projekten im Rückbau, die

gleichzeitig in Bearbeitung sind, zeigt, dass für spezialisierte

Unternehmen genügend Aufgaben anstehen.

Die Kommission zur Überprüfung der Finanzierung des Kernenergieausstiegs

(KFK) empfahl in 2017 eine Novellierung der

Gesetzgebung mit neuer – vor allen Dingen auch finanzieller –

Abgrenzung der Verantwortung für die Lagerung und die Eigentümerschaft

aller Abfälle und der abgebrannten Brennelemente

zwischen den Betreibern und der Bundesregierung. Ein Ergebnis ist

die Gründung von zwei neuen Bundesgesellschaften für Aufgaben

der Abfallentsorgung.

Betreiber, Hersteller, Behörden und Gutachter, Lehre und

Forschung verbindet nach wie vor ein zentrales Thema: das

kerntechnische Know-how muss in Deutschland erhalten werden,

um u. a. den verbleibenden Leistungsbetrieb, den Nachbetrieb, die

Stilllegung und den Rückbau deutscher Anlagen sicherzustellen und

die Entsorgungsfrage nachhaltig zu lösen, das Exportgeschäft

deutscher Anbieter und Dienstleister zu sichern, nationale und

internationale Sicherheitsbewertungen durchführen zu können und

auch in Zukunft den Beitrag deutscher Innovationen und Standards

zu internationalen Entwicklungen für neue Technologien erhalten

zu können.

In den unterschiedlichen Formaten unserer Jahrestagung unter

den Überschriften „Kompetenz & Innovation“, „Sicherheitsstandards

& Betriebsexzellenz“ sowie „Rückbauerfahrung & Entsorgungslösungen“

werden wir aktuelle Themen der Kerntechnik reflektieren

und setzen dabei auf den fachlichen Dialog zwischen nationalen und

internationalen Wissensträgern. Auch unser diesjähriges AMNT wird

erfolgreiche Formate der Nachwuchsarbeit wie den Nuclear Technology

Campus oder den Young Scientists‘ Workshop fortführen.

Für unsere Tagung wünsche ich allen Teilnehmern neue Erkenntnisse,

interessante Begegnungen, Kontakte und Gespräche. Was die

Mitlieder der KTG verbindet, ist die „Faszination Kerntechnik“.

Lassen auch Sie sich davon anstecken…

DAtF (Deutsches Atomforum e. V.)

Der Präsident

Die politischen Voraussetzungen für die Kernenergie

könnten zwischen 1969, dem Jahr der

ersten „Reaktortagung“ in Frankfurt am Main,

und 2019, dem Jahr des 50. Annual Meeting on

Nuclear Technology, kaum unterschiedlicher

sein. Die Aufbruchsstimmung und politische

Unterstützung über alle politischen Parteien hinweg damals, stehen

in einem krassen Gegensatz zu dem heutigen Ausstieg aus der

Nutzung der Kernenergie zur Stromerzeugung.

Die Tatsache, dass wir als DAtF und KTG auch im achten Jahr

des beschleunigten Ausstiegs eine der anerkanntesten und

renommiertesten kerntechnischen Fachtagungen weltweit am 7. und

8. Mai 2019 in Berlin ausrichten, zeigt jedoch deutlich, dass trotz des

politischen Wetterumschwungs der vergangenen Jahre die kerntechnische

Branche auch in Zukunft benötigt wird. Viele andere

moderne Industriegesellschaften wollen nicht auf die Kernenergie

verzichten und die weltweite Perspektive für die Kerntechnik ist

positiv. Das werden wir auch im kommenden Jahr am 5. und 6. Mai

2020 beim 51. AMNT in Berlin unter Beweis stellen.

Unsere hochkarätige Liste an Rednern des Plenartages zeugt mit

Thomas Bareiß MdB (BMWi), Prof. Dr. Martin Neumann MdB (FDP),

Prof. Dr. Renate Köcher (Allensbach), Steffen Kanitz (BGE) und

Matthias Horx (Zukunftsinstitut) von der thematischen Breite

unserer Jahrestagung und von der Bedeutung als Netzwerktreffen

unserer Branche. Trotz des politischen Wandels bleiben die kerntechnische

Industrie und Forschung bedeutende Säulen des wirtschaftlichen

Erfolgs Deutschlands.

Auch hinsichtlich der Fachvorträge dürfen Sie sich auf spannende

Präsentationen und Diskussionen freuen. Wir diskutieren mit

Ihnen die technischen Neuerungen und Herausforderungen in den

Bereichen Neubau, Forschung und Entwicklung. Wir tauschen uns

über Innovationen und Optimierungsmöglichkeiten beim KKW-

Rückbau und der Entsorgung von radioaktiven Reststoffen aus. Und

wir möchten der Frage nachgehen, welche Rolle SMR bei der

Nutzung der Kernenergie künftig spielen können. Wie schon vor

50 Jahren werden wir gemeinsam einen wichtigen Beitrag leisten,

die Kernenergie und Kerntechnik noch sicherer und effizienter zu

machen.

Die Jubiläumstagung in diesem Jahr bietet Ihnen inmitten der

traditionellen Leistungsschau der Unternehmen und Organisationen

unserer Ausstellung eine Foto- und Exponatenausstellung. Die

Industrieausstellung mit ihren zahlreichen nationalen und internationalen

Ausstellern sowie den Länderpavillions aus dem

Vereinigten Königreich und Tschechien bietet so nicht nur die

Gelegenheit, neue Kontakte zu knüpfen und vorhandene zu pflegen,

sondern lässt Sie die Geschichte und Gegenwart der Kernenergie in

Deutschland hautnah erleben.

Es sind Ihre Fachkenntnisse und Ihre aktive Beteiligung, die den

Erfolg unserer Jahrestagung seit 50 Jahren sichern. Gerne möchte

ich dafür allen Rednern und Teilnehmern sowie allen Ausstellern

und Sponsoren von ganzem Herzen danken.

Dr. Ralf Güldner

Frank Apel

Editorial

Grußworte zum 50. Annual Meeting on Nuclear Technology (AMNT 2019)


Kommunikation und

Training für Kerntechnik

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort

3 Atom-, Vertrags- und Exportrecht

Export kerntechnischer Produkte und Dienstleistungen –

Chancen und Regularien

RA Kay Höft M. A.

O. L. Kreuzer

Dr.-Ing. Wolfgang Steinwarz

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019

10.03.2020

Atomrecht – Ihr Weg durch Genehmigungs- und

Aufsichtsverfahren

Atomrecht – Was Sie wissen müssen

3 Kommunikation und Politik

RA Dr. Christian Raetzke 22.10.2019

18.02.2020

RA Dr. Christian Raetzke

Akos Frank LL. M.

12.06. - 13.06.2019 Berlin

Berlin

Berlin

07.11.2019 Berlin

Public Hearing Workshop –

Öffentliche Anhörungen erfolgreich meistern

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –

Themen und Formate

Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin

November 2019

3 Rückbau und Strahlenschutz

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:

3 Nuclear English

Das neue Strahlenschutzgesetz –

Folgen für Recht und Praxis

Stilllegung und Rückbau in Recht und Praxis

Dr. Maria Poetsch

RA Dr. Christian Raetzke

Dr. Matthias Bauerfeind

RA Dr. Christian Raetzke

25.06. - 26.06.2019

10.09. - 11.09.2019

15.10. - 16.10.2019

13.11. - 14.11.2019

Berlin

24.09. - 25.09.2019 Berlin

Enhancing Your Nuclear English Angela Lloyd 22.05. - 23.05.2019 Berlin

Advancing Your Nuclear English (Aufbaukurs) Angela Lloyd 18.09. - 19.09.2019 Berlin

3 Wissenstransfer und Veränderungsmanagement

Veränderungsprozesse gestalten – Heraus forderungen

meistern, Beteiligte gewinnen

Erfolgreicher Wissenstransfer in der Kerntechnik –

Methoden und praktische Anwendung

Dr. Tanja-Vera Herking

Dr. Christien Zedler

Dr. Tanja-Vera Herking

Dr. Christien Zedler

26.11. - 27.11.2019 Berlin

24.03. - 25.03.2020 Berlin

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30

Kontakt

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de

Die INFORUM-Seminare können je nach

Inhalt ggf. als Beitrag zur Aktualisierung

der Fachkunde geeignet sein.


atw Vol. 64 (2019) | Issue 5 ı May

246

Issue 5 | 2019

May

CONTENTS

Contents

Welcome To AMNT 2019

Welcome Addresses for the 50 th Annual Meeting

on Nuclear Technology (AMNT 2019) E/G 243

DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Inside Nuclear with NucNet

Why Europe Should Put More Focus on Nuclear R&D

and Fast Breeder Reactors 249

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Feature | 60 Years DAtF

Nuclear Power: “No Thanks.” “Yes, Please.” G 251

Spotlight on Nuclear Law

Atomic Energy Law Amendment

for Nuclear Plant Safety Planned G 260

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning & Transmutation and

How to Develop a Vision for Nuclear Waste Management 261

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’:

The Nuclear Waste Management Strategy: Russia | Part 2 267

Guideline to Prepare a Preliminary Decommissioning Plan

for Nuclear Facilities in Republic of Korea 270

Research and Innovation . . . . . . . . . . . . . . . . . . . . . . 275

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling

for High Fidelity PWR Reactor Core Simulation:

Preliminary Results 275

Special Topic | A Journey Through 50 Years AMNT

Yes to the Use of Nuclear Power

in International Security Partnership G 280

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Statistics

Nuclear Power Plants: 2018 atw Compact Statistics 284

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Report

Operating Results 2018 294

Cover:

NPP Grohnde. Courtesy: PreussenElektra GmbH

Nuclear Today

Proposals to ‘Evolve’ Euratom Treaty

Should Be Handled with Care 310

G

E/G

= German

= English/German

Imprint 248

Contents


atw Vol. 64 (2019) | Issue 5 ı May

247

Feature

60 Years DAtF

251 Nuclear Power: “No Thanks.” “Yes, Please.”

Atomkraft: „Nein danke.“ „Ja bitte.“

CONTENTS

Friedrich Schröder

Serial | Major Trends in Energy Policy and Nuclear Power

261 The Current Status of Partitioning & Transmutation and

How to Develop a Vision for Nuclear Waste Management

Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead

Decommissioning and Waste Management

267 A World’s Dilemma ‘Upon Which the Sun Never Sets’:

The Nuclear Waste Management Strategy: Russia Part 2

Mark Callis Sanders and Charlotta E. Sanders

Special Topic | A Journey Through 50 Years AMNT

280 Yes to the Use of Nuclear Power in International Security Partnership

Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft

Klaus Töpfer

Report

294 Operating Results 2018

Contents


atw Vol. 64 (2019) | Issue 5 ı May

248

DATF NOTES

For further details

please contact:

Nicolas Wendler

DAtF

Robert-Koch-Platz 4

10115 Berlin

Germany

E-mail: presse@

kernenergie.de

www.kernenergie.de

Notes

The Countries Most Ready for

the Global Energy Transition

The recent insight report “Fostering Effective Energy

Transition” of the World Economic Forum gives a

comparative analysis of the state and prospects of

energy transition in over 100 countries summarizing its

findings in an Energy Transition Index (ETI) ranking the

countries. The World Ecomomic forum defines, “effective

energy transition is the timely transition towards a more

inclusive, sustainable, affordable and secure global

energy system. That system provides solutions to global

energy-related challenges while creating value for

society, without compromising the balance of the energy

triangle.”

The ETI score is composed of a System Performance

Index that considers the energy triangle (energy security

and access, economic development and growth,

environmental sustain ability) and the Transition Readiness

Score summarizing six factors: energy system

structure, regulation and political commitment,

institutions and governance, infrastructure and innovative

business environment, capital and investment,

human capital and consumer participation.

Energy Transition Index 2019¹ results

Country

name

2019

ETI Score 2

System

Performance

Transition

Readiness

1 Sweden 75 % 81 % 69 %

2 Switzerland 74 % 78 % 71 %

3 Norway 73 % 82 % 65 %

4 Finland 73 % 72 % 74 %

5 Denmark 72 % 72 % 73 %

6 Austria 71 % 71 % 71 %

7 United Kingdom 70 % 74 % 66 %

8 France 69 % 77 % 60 %

9 Netherlands 69 % 71 % 66 %

10 Iceland 69 % 75 % 62 %

17 Germany 65 % 66 % 64 %

1

The Energy Transition Index benchmarks countries on the performance of their energy system,

as well as their readiness for transition to a secure, sustainable, aordable, and reliable

energy future. ETI 2019 score on a scale from 0 to 100 %.

2

ETI 2019 score on a scale from 0 % to 100 %.

Source: World Economic Forum

Imprint

| | Editorial Advisory Board

Frank Apel

Erik Baumann

Dr. Erwin Fischer

Carsten George

Eckehard Göring

Florian Gremme

Dr. Ralf Güldner

Carsten Haferkamp

Christian Jurianz

Dr. Guido Knott

Prof. Dr. Marco K. Koch

Ulf Kutscher

Herbert Lenz

Jan-Christan Lewitz

Andreas Loeb

Dr. Thomas Mull

Dr. Ingo Neuhaus

Dr. Joachim Ohnemus

Prof. Dr. Winfried Petry

Dr. Tatiana Salnikova

Dr. Andreas Schaffrath

Dr. Jens Schröder

Norbert Schröder

Prof. Dr. Jörg Starflinger

Prof. Dr. Bruno Thomauske

Dr. Brigitte Trolldenier

Dr. Walter Tromm

Dr. Hans-Georg Willschütz

Dr. Hannes Wimmer

Ernst Michael Züfle

| | Editorial Office

Christopher Weßelmann (Editor in Chief)

Im Tal 121, 45529 Hattingen, Germany

Phone: +49 2324 4397723

Fax: +49 2324 4397724

E-mail: editorial@nucmag.com

Nicole Koch (Editor)

c/o INFORUM, Berlin, Germany

Phone: +49 176 84184604

E-mail: nicole.koch@nucmag.com

| | Official Journal of

Kerntechnische Gesellschaft e. V. (KTG)

| | Publisher

INFORUM Verlags- und

Verwaltungsgesellschaft mbH

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-30

Fax: +49 30 498555-18

www.nucmag.com

| | General Manager

Christian Wößner

| | Advertising and Subscription

Petra Dinter-Tumtzak

Phone: +49 30 498555-30

Fax: +49 30 498555-18

E-mail: petra.dinter@nucmag.com

| | Layout

zi.zero Kommunikation

Antje Zimmermann

Berlin, Germany

| | Printing

inpuncto:asmuth

druck + medien gmbh

Baunscheidtstraße 11, 53113 Bonn, Germany

| | Price List for Advertisement

Valid as of 1 January 2019

Published monthly, 9 issues per year

Germany:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT and postage) 187.- €

All EU member states without VAT number:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT, excl. postage) 187.- €

EU member states with VAT number

and all other countries:

Per issues/copy (no VAT, excl. postage) 22.43 €

Annual subscription (no VAT, excl. postage) 174.77 €

| | Copyright

The journal and all papers and photos contained in it are protected by

copyright. Any use made thereof outside the Copyright Act without the

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft

mbH, is prohibited. This applies to reproductions, translations,

micro filming and the input and incorporation into electronic systems.

The individual author is held responsible for the contents of the

respective paper. Please address letters and manuscripts only to the

Editorial Staff and not to individual persons of the association´s staff.

We do not assume any responsibility for unrequested contributions.

Signed articles do not necessarily represent the views of the editorial.

ISSN 1431-5254

DAtF Notes


atw Vol. 64 (2019) | Issue 5 ı May

Why Europe Should Put More Focus on

Nuclear R&D and Fast Breeder Reactors

Research and development in the nuclear sector in Europe should focus on fast breeder reactors that will

be capable of supplying energy needs for thousands of years with existing uranium or thorium resources,

Leon Cizelj, president of the European Nuclear Education Network (ENEN), told NucNet.

Mr Cizelj said Generation IV breeder technology will also

reduce the already small amount of radioactive waste that

conventional reactors produce by a factor of three or more.

A fast breeder reactor is one that generates more fissile

material than it consumes. They have been and are being

explored in Russia, France, India, China, Japan and the

US. They allow a significant increase in the amount of

energy obtained from natural, depleted and recycled

uranium. The technology also enables plutonium and

other actinides to be used and recycled.

Mr Cizelj, warned, however, that most national nuclear

R&D programmes in the EU are decreasing in scope, funds

and the number of researchers. EU nuclear R&D budgets

for member states have been stable through recent years

but modest, and generally national nuclear energy programmes

are in decline, he said.

There are 36 research reactors operational in the EU

with one under construction – Jules Horowitz at Cadarache

in France – and two planned – Myrrha in Belgium and

Pallas in the Netherlands. There are about 150 research

reactors in various stages of decommissioning in the EU.

“This is a clear indication that the retirement [of

research reactors] is taking place at a much faster pace

than the construction of new ones,” Mr Cizelj said. “This

diminishes the opportunities for related research and

competence building.”

“For comparison, Russia alone operates 53 research

reactors. This indicates that their research and development

side of the nuclear cycle is much more alive.”

Europe’s Horizon 2020 research and innovation

programme has a budget of € 80 bn over seven years. Out

of this, nearly € 6 bn is for non-nuclear clean energy

research.

Conventional nuclear fission – the only efficient and

around-the-clock zero-carbon technology – receives about

€ 60 m a year for the seven years, “so it is not a question

of the availability of funds, but a question of priorities”, he

said.

The EU should focus on Generation IV breeder reactor

development and provide R&D support in this field. “The

most important feature of nuclear is its energy density and

if we want to go for its full potential then we have to focus

on breeder reactors,” Mr Cizelj said.

Energy density refers to the amount of heat energy that

can be extracted from a unit of an energy storage material,

such as uranium, coal, or hydrogen to name a few. Thorium

and uranium are among the commonly known sources of

energy with the highest energy densities.

Mr Cizelj said the nuclear industry has overlooked the

importance of the long-term search for future opportunities

and technologies. “They seem to be somehow stuck in the

technological past.”

The nuclear industry in Europe and overseas has

developed excellence in operations and in the “know-how”

of reactor designs. But it has lagged behind when it comes

to the “know-why” of research, which is usually done at

universities and institutes.

“This ‘know-why’ is indispensable for the

development of new technologies, new

approaches, improved safety regulations,” said Mr Cizelj

said. “The long-term success of any technology can only be

achieved by a balanced approach to ‘know-how’ and

‘ know-why’. In other words, through appropriate

cooperation in R&D.”

Mr Cizelj warned that existing nuclear facilities are

ageing and expensive to run and maintain, resulting in

closures, and building new nuclear facilities is a long and

expensive process. There are ambitious plans in many

countries, but few of them will be successfully completed

in the near future, he said.

Another concern for the nuclear industry is the future

of the labour force, Mr Cizelj said. In complex technologies

like nuclear, about 10 years of a 40-year career is an investment

in gaining the education and skills. Both this

“ apprenticeship” time and its costs are not always

appreciated by stakeholders.

He said: “Attracting new blood into the industry is a

challenge. It may require long-term commitment on behalf

of those who are investing in the future of nuclear and in

research, be it industry, government or the European

Commission.

“This commitment will need to give reasonable

assurance to young people that they are investing their

‘ apprenticeship’ time into knowledge and skills of some

value to employers and society at large.”

Mr Cizelj comments echo those in a position paper last

year in which the European Atomic Energy Society said

Europe risks losing much of its nuclear research capacity

because of a “crisis in political vision” on energy issues and

limited public funds.

The paper said investment is needed for advanced

nuclear research and the successful development of new

nuclear technologies can only be achieved by research

laboratories with appropriate infrastructure and with

cooperation and support by the industry. This requires

“stable and dedicated funding programmes from national,

European and private sources”.

Leon Cizelj is president of the European Nuclear Education

Network (ENEN), president of the European Atomic Energy

Society and head of the reactor engineering division at the

Jožef Stefan Institute in Slovenia.

Author

NucNet

The Independent Global Nuclear News Agency

Editor responsible for this story: Kamen Kraev

Avenue des Arts 56

1000 Brussels, Belgium

www.nucnet.org

249

INSIDE NUCLEAR WITH NUCNET

Inside Nuclear with NucNet

Why Europe Should Put More Focus on Nuclear R&D and Fast Breeder Reactors


atw Vol. 64 (2019) | Issue 5 ı May

250

Calendar

2019

CALENDAR

07.05.-08.05.2019

50 th Annual Meeting on Nuclear Technology

AMNT 2019 | 50. Jahrestagung Kerntechnik.

Berlin, Germany, DAtF and KTG,

www.amnt2019.com – Register Now!

15.05.-17.05.2019

1 st International Conference of Materials,

Chemistry and Fitness-For-Service Solutions

for Nuclear Systems. Toronto, Canada, Canadian

Nuclear Society (CNS), www.cns-snc.ca

16.05.-17.05.2019

Emergency Power Systems at Nuclear Power

Plants. Munich, Germany, TÜV SÜD,

www.tuev-sued.de/eps-symposium

24.05.-26.05.2019

International Topical Workshop on Fukushima

Decommissioning Research – FDR2019. Fukushima,

Japan, The University of Tokyo, fdr2019.org

29.05.-31.05.2019

Global Nuclear Power Tech. Seoul, South Korea, Korea

Electric Engineers Association, electrickorea.org/eng

03.06.-05.06.2019

Nuclear Energy Assembly. Washington DC, USA,

Nuclear Energy Institute (NEI), www.nei.org

03.06.-07.06.2019

World Nuclear University Short Course:

The World Nuclear Industry Today.

Rio de Janeiro, Brazil, World Nuclear University,

www.world-nuclear-university.org

25.06.-26.06.2019

ICNDRWM 2019 – 21 st International Conference

on Nuclear Decommissioning and Radioactive

Waste Management. Venice, Italy, World Academy

of Science, Engineering & Technology,

www.waset.org

21.07.-24.07.2019

14 th International Conference on CANDU Fuel.

Mississauga, Ontario, Canada, Canadian Nuclear

Society (CNS), www.cns-snc.ca

28.07.-01.08.2019

Radiation Protection Forum. Memphis TN, USA,

Nuclear Energy Institute (NEI), www.nei.org

29.07.-02.08.2019

27 th International Nuclear Physics Conference

(INPC). Glasgow, Scotland, inpc2019.iopconfs.org

04.08.-09.08.2019

PATRAM 2019 – Packaging and Transportation

of Radioactive Materials Symposium.

New Orleans, LA, USA. www.patram.org

21.08.-30.08.2019

Frédéric Joliot/Otto Hahn (FJOH) Summer School

FJOH-2019 – Innovative Reactors: Matching the

Design to Future Deployment and Energy Needs.

Karlsruhe, Germany, Nuclear Energy Division

of Commissariat à l’énergie atomique et aux

énergies alternatives (CEA) and Karlsruher Institut

für Technologie (KIT), www.fjohss.eu

04.09.-06.09.2019

World Nuclear Association Symposium 2019.

London, UK, World Nuclear Association (WNA),

www.wna-symposium.org

04.09.-05.09.2019

VGB Congress 2019 – Innovation in Power

Generation. Salzburg, Austria, VGB PowerTech e.V.,

www.vgb.org

07.10. – 11.10.2019

International Conference on Climate Change and

the Role of Nuclear Power. Vienna, Austria,

IAEA, www.iaea.org

07.10. – 18.10.2019

ICTP-IAEA Nuclear Energy Management School.

Trieste, Italy, IAEA, www.iaea.org

15.10. – 18.10.2019

Technical Meeting on Siting for Nuclear Power

Plants. Vienna, Austria, IAEA, www.iaea.org

22.10.-25.10.2019

SWINTH-2019 Specialists Workshop on Advanced

Instrumentation and Measurement Techniques

for Experiments Related to Nuclear Reactor

Thermal Hydraulics and Severe Accidents.

Livorno, Italy, www.nineeng.org/swinth2019/

23.10.- 24.10.2019

Chemistry in Power Plants. Würzburg, Germany,

VGB PowerTech e.V., www.vgb.org/en/

chemie_im_kraftwerk_2019.html

27.10.-30.10.2019

FSEP CNS International Meeting on Fire Safety

and Emergency Preparedness for the Nuclear

Industry. Ottawa, Canada, Canadian Nuclear Society

(CNS), www.cns-snc.ca

04.11.-07.11.2019

International Conference on Effective Regulatory

Systems 2019. The Hague, Netherlands,

International Atomic Energy Agency (IAEA),

www.iaea.org/events/conference-on-effectiveregulatory-systems-2019

04.06.-07.06.2019

FISA 2019 and EURADWASTE ‘19. 9 th European

Commission Conferences on Euratom Research

and Training in Safety of Reactor Systems and

Radioactive Waste Management. Pitesti, Romania,

www.nucleu2020.eu

09.06.-11.06.2019

WNFM 46 th Annual Meeting and International

Conference on Nuclear Fuel. Lisbon, Portugal,

World Nuclear Fuel Market, www.wnfm.com

11.06.-12.06.2019

Nuclear New Build 2019. London, UK, Nuclear

Industry Association, www.nuclearnewbuild2019.co

17.06.-21.06.2019

MIT Nuclear Plant Safety Course. Cambridge, MA,

USA, Massachusetts Institute of Technology (MIT),

professional.mit.edu/programs/short-programs/

nuclear-plant-safety

23.06.-27.06.2019

World Nuclear University Summer Institute.

Romania and Switzerland, World Nuclear University,

www.world-nuclear-university.org

24.06.-28.06.2019

2019 International Conference on the Management

of Spent Fuel from Nuclear Power Reactors.

Vienna, Austria, International Atomic Energy Agency

(IAEA), www.iaea.org

08.09.-11.09.2019

4 th Nuclear Waste Management,

Decommissioning and Environmental Restoration

(NWMDER). Ottawa, Canada, Canadian Nuclear

Society (CNS), www.cns-snc.ca

09.09.-12.09.2019

24 th World Energy Congress. Abu Dhabi, UAE,

www.wec24.org

09.09.-12.09.2019

Jahrestagung 2019 – Fachverband für

Strahlenschutz | Strahlenschutz und Medizin.

Würzburg, Germany,

www.fs-ev.org/jahrestagung-2019

15.09.-21.09.2019

13 th International Conference on WWER Fuel

Performance, Modelling and Experimental

Support. Nessebar, Bulgaria, INRNE-BAS in

cooperation with IAEA,

www.inrne.bas.bg/wwerfuel2019

16.09.-20.09.2019

63 rd Annual Conference of the IAEA. Vienna,

Austria, International Atomic Energy Agency (IAEA),

www.iaea.org/about/governance/generalconference

22.09.-27.09.2019

ISFNT-14 – International Symposium on Fusion

Nuclear Technology. Budapest, Hungary, Wigner

Research Centre for Physics, www.isfnt-14.org

12.11.-14.11.2019

International Conference on Nuclear

Decommissioning – ICOND 2019. Eurogress

Aachen, Aachen Institute for Nuclear Training GmbH,

www.icond.de

25.11.-29-11.2019

International Conference on Research Reactors:

Addressing Challenges and Opportunities to

Ensure Effectiveness and Sustainability.

Buenos Aires, Argentina, International Atomic

Energy Agency (IAEA), www.iaea.org/events/

conference-on-research-reactors-2019

2020

05.05.-06.05.2020

51 st Annual Meeting on Nuclear Technology

AMNT 2020 | 51. Jahrestagung Kerntechnik.

Berlin, Germany, DAtF and KTG,

www.amnt2020.com

This is not a full list and may be subject to change.

Calendar


atw Vol. 64 (2019) | Issue 5 ı May

Feature | 60 Years DAtF (German Atomic Forum)

Atomkraft: „Nein danke.“ „Ja bitte.“

Energiepolitik in Deutschland im Wandel der Zeit

Deutsches Atomforum (DAtF) – 60 Jahre im Dienste

der Öffentlichkeitsarbeit

Der Weg der Bundesrepublik in die friedliche Nutzung der Kernenergie war für Industrie und Politik gleichsam eine

schwierige Geburt. Zu dicht folgte dieser Schritt auf den verlorenen zweiten Weltkrieg und auf die Atombombenabwürfe

auf zwei Städte in Japan. Gleichwohl sahen Energiepolitik und Wirtschaft in der Nutzung der Kernkraft und

Kernforschung einen guten Weg, die Energiewirtschaft zum Wohle der Bevölkerung in der Bundesrepublik

voranzubringen. Doch was waren das für mächtige Kräfte, die zuverlässig zu bündeln und zu kontrollieren waren?

Was verstanden die Menschen im Lande davon? Und, brauchten wir die Kernenergie überhaupt? Und falls ja, war sie

verantwortbar und sicher?

Wir brauchten also in Deutschland eine Institution, die als

Sprachrohr allen Bereichen und Anwendungsfeldern der

Kerntechnik eine Stimme mit den Instrumentarien der

Öffentlichkeitsarbeit gab. Das DAtF (Deutsches Atomforum

e. V.) wurde mit diesem Auftrag im Jahr 1959

gegründet. Zu seinen Mitgliedern zählten Unternehmen

und Organisationen aus Energieversorgungsunternehmen,

Herstellern, Zulieferern, Dienstleistern, Hochschulen und

Forschungsinstitute, Wirtschaftsvereinigungen etc.

251

FEATURE | 60 YEARS DATF

Erinnern, nicht verdrängen

Nie vergessen! Hiroshima, Nagasaki 1945. Auch wenn

US-Präsident „Ike“ Eisenhower 1953 das Schlagwort

„Atoms for peace“ prägte, die Atombombenabwürfe und

die zerstörerischen Folgen begleiten uns noch heute.

Gleichwohl und vor dem Hintergrund des wachsenden

Energiebedarfs, begann in den 50er-Jahren in vielen

Ländern die Förderung der friedlichen Nutzung der Kernenergie.

Doch Deutschland war als Folge des verlorenen

zweiten Weltkrieges zunächst außen vor.

Im Dezember 1954 stimmte die Französische Natio nalversammlung

der Ratifizierung der Pariser Verträge

zu. Damit stand der Wiederherstellung der deutschen

Souveränität nichts mehr im Wege. Mit Erlangung

der Souveränität bemühte sich die Bundesrepublik

Deutschland im Rahmen der europäischen Einigung auch

um eine eigenständige Atompolitik. Man war bestrebt

Kern forschung zu betreiben und an der Entwicklung zur

friedlichen Nutzung der Kernenergie teilzuhaben.

Die USA waren unbestritten Vorreiter der Nutzung der

„Atomkraft“ zur zivilen Nutzung als Energiequelle. Im

Dezember 1951 wurde mit dem „Experimental Breeder

Reactor Number 1 (EBR-1)“ in Idaho erstmals Strom

erzeugt. Mitte der fünfziger Jahre war man überzeugt,

mit der Atomkraft alle Energieprobleme der Menschheit

lösen zu können. Das überzeugte auch Politik und

Industrie der jungen Bundesrepublik Deutschland. Im

Oktober 1955 rief Adenauer das „Bundesministerium für

Atomfragen“ ins Leben. Es hagelte Kritik aus den eigenen

Reihen, da es dafür kein Vorbild im Ausland gab. Ludwig

Erhard soll sich sogar darüber lustig gemacht haben,

indem er ein zusätzliches „Dampfkesselministerium“

forderte.

Erster Atomminister wurde Franz Josef Strauß. Gegenüber

dem NWDR (Nordwestdeutscher Rundfunk)

erläuterte Strauß am 21. Oktober 1955 seine Aufgaben als

Minister für Atomfragen. Unter anderem stellte er heraus,

| | Kernkraftwerk Grohnde.

dass es auch darum gehe, den Rückstand, den die Bundesrepublik

Deutschland in der Ausnutzung der Atom- Energie

für friedliche Zwecke habe, in möglichst geringer Zeit

einzuholen. Strauß erarbeitete in seiner kurzen Amtszeit

bis 1956 den sogenannten Drei-Stufen-Plan für ein eigenes

deutsches Atomprogramm.

Stufe 1 galt den durch Kriegsfolgen entstandenen

Mangel an qualifizierten Wissenschaftlern und Technikern

auszugleichen. Stufe 2 dem Erwerb von fünf Forschungsreaktoren

von den USA und Großbritannien, die in

München, Frankfurt, Königsforst bei Köln, Berlin und

Hamburg aufgestellt werden sollten. Stufe 3 beinhaltete

den Bau eines Kernreaktors deutscher Konstruktion und

Fabrikation durch das Reaktorzentrum Karlsruhe.

Strauß setzte auf US-Technologie

Am 26. Januar 1956 wurde die „Deutsche Atomkommission

(DAtK)“ nach dem Vorbild der US-amerikanischen

„Atomic Energy Commission“ gegründet. Unter dem

Vorsitz von Strauß, gehörten der Kommission 27 Personen

aus Wissenschaft, Technik, Wirtschaft und den Gewerkschaften

an. In der Eröffnungsrede stellte Strauß u. a.

heraus: „Es ist ohne Zweifel eine Tragik in der Geschichte

der Menschheit, dass der Begriff Atom nicht als heilende

und helfende Kraft, sondern zuerst als Faktor von unvorstellbarer

Zerstörungswirkung zum Bewusstsein der Allgemeinheit

gekommen ist.“

Feature | 60 Years DAtF


atw Vol. 64 (2019) | Issue 5 ı May

252

FEATURE | 60 YEARS DATF

„Es ist ohne Zweifel eine

Tragik in der Geschichte

der Menschheit, dass der

Begriff Atom nicht als

heilende und helfende

Kraft, sondern zuerst als

Faktor von unvorstellbarer

Zerstörungswirkung zum

Bewusstsein der Allgemeinheit

gekommen ist.“

Es ist belegt, dass Strauß einem schnellen Einstieg

in die Nutzung der Atomkraft zur Energieerzeugung

eher zurückhaltend gegenüber stand. Er lehnte den

Bau von in Deutschland entwickelten Reaktoren nicht

zuletzt wegen hoher Entwicklungskosten

ab. Stattdessen

bevorzugte er die Übernahme

amerikanischer Technologien.

Anders sein Nachfolger im

Amt, Siegfried Baalke, der am

16. Oktober 1956 das Ministerium

von Strauß übernahm.

Er unterstützte mehr die technologische

Eigenständigkeit

Deutschlands. 1957 war die

Bundesrepublik Gründungsmitglied

der Internationalen

Atomenergie-Organisation

(IAEO).

Die DAtK erarbeitete 1957 das erste deutsche Atomprogramm.

Es wurde auch „Eltviller Programm“ oder auch

„500-MW-Programm“ genannt. Es sah den Bau von fünf

Atomkraftwerken vor, von denen jedes eine Leistung von

100 MW haben sollte. Das Programm verfolgte auch das

Ziel der Brennstoff-Autarkie, die man mit der Entwicklung

von Schnellen Brütern und Hochtemperaturreaktoren

erreichen wollte.

Wissenschaftler: Nein zur atomaren

Aufrüstung der Bundeswehr

1957 wurde öffentlich bekannt, dass die Bundesregierung

unter Konrad Adenauer beabsichtigte, die Bundeswehr

atomar zu bewaffnen. Umgehend formierte sich Widerstand.

18 deutsche Atomforscher und Kernphysiker um

Carl Friedrich von Weizsäcker, darunter die Nobelpreisträger

Otto Hahn, Werner Heisenberg, Max von Laue und

Max Born, verurteilten die Pläne der Adenauer-Regierung.

In ihrer „Göttinger Erklärung“ lehnten sie jegliche

Mitarbeit an der Herstellung atomarer Waffen ab. Die

Ablehnung der Wissenschaftler war nicht unbegründet.

Denn einige von ihnen, unter anderem von Weizsäcker

und Heisenberg, hatten in den vierziger Jahren freiwillig

und engagiert, so „Welt.de/Geschichte“, im Uranverein,

dem Atomprojekt des deutschen Heereswaffenamtes,

mitgearbeitet.

Für Adenauer war die atomare Bewaffnung der Bundeswehr

eine Frage der Souveränität, der Ebenbürtigkeit, der

Gleichberechtigung mit anderen europäischen Großmächten.

Um die Bedeutung der Nuklearwaffen vor den

ängstlichen Deutschen herunterzuspielen, definierte er in

einer Pressekonferenz am 5. April 1957: „…. Die taktischen

atomaren Waffen sind im Grunde genommen nichts

anderes als die Weiterentwicklung der Artillerie.“

Das brachte das Fass der Göttinger 18 zum Überlaufen.

Am 12. April 1957 veröffentlichten die Atomphysiker die

„Göttinger Erklärung“ in allen überregionalen deutschen

Zeitungen. Trotz der überwältigenden Resonanz in der

Öffentlichkeit auf diese Erklärung gewannen CDU und

CSU im September 1957 die Wahlen zum 3. Bundestag mit

50,2 Prozent. Adenauer war es dem Deutschlandfunk

zufolge offensichtlich gelungen „… die Angst vor Atomwaffen

durch die Angst vor der Sowjetunion zu überlagern.“

Die politische Euphorie verflog Ende der 1950er Jahre

als klar wurde, dass die deutschen Stromversorger nicht

in die Entwicklung von Atomkraftwerken investieren

wollten. Überdies war mit einer marktwirtschaftlichen

Rentabilität der geplanten Nuklearanlagen nicht zu

rechnen. Auch die Verdoppelung staatlicher Verlustbürgschaften

und Investitionshilfen waren für die

Stromversorger kein besonderer Anreiz. Das erste Atomprogramm

erwies sich als Flop.

Von den fünf geplanten Atomkraftwerken wurden

nur Kahl und Niederaichbach mit geringer Leistung

umgesetzt. Für die Realisierung des Atomkraftwerks

Gundremmingen Block A musste der Staat zwei Drittel der

Kosten vorschießen. Die Anlage ging 1966 – Eigentümer:

Bayernwerk, RWE – als erstes kommerzielles Kraftwerk

Deutschlands mit Siedewasserreaktor und einer elektrischen

Leistung von 237 MW in Betrieb. Durch Eislast

auf den Leiterseilen des Hochspannungsnetzes, in das

das Kraftwerk einspeiste, wurde die Fortleitung des Stroms

am 13. Januar 1977 unterbrochen. Dabei kam es zu

einer folgenreichen Reaktorschnellabschaltung; der TÜV

forderte nach Analyse ein neues Sicherheitskonzept.

Wegen der hohen Kosten für die Umsetzung des Konzepts

wurde im Januar 1980 beschlossen, Block A stillzulegen.

Nicht zuletzt dieser Störfall – 1975 gab es in der Anlage

einen Störfall mit Austritt von radioaktivem Dampf, bei

dem zwei Mitarbeiter getötet wurden - bewirkte, dass die

Atomskepsis in der deutschen Bevölkerung zunahm. Seit

1983 wird die Anlage zurückgebaut.

| | Kernkraftwerk Kahl.

Die zwei Gesichter des Atoms

Kernwaffengegner in Großbritannien initiierten 1957 den

ersten „Ostermarsch“. Sie beschworen die Angst vor dem

gefährlichen und zerstörerischen Atom. Am 7. April zogen

rund 10.000 Demonstranten vom Londoner Trafalgar

Square zum britischen Atomforschungszentrum Aldermaston.

Seither gibt es die Ostermarschierer auch bei uns.

In der Bunderepublik wuchs die Teilnehmerzahl von

anfangs 1.000 auf etwa 300.000 im Jahr der Studentenrevolte

1968.

Für die gute Seite der Radioaktivität gingen damals

wie heute keine Menschen auf die Straße. Als selbstverständlich

wird beispielsweise die Nuklearmedizin hingenommen.

Etwa die Strahlentherapie bei Krebserkrankungen

oder die Radiojodtherapie bei Schilddrüsenerkrankungen

wird von Erkrankten widerstandslos

hingenommen. Kein noch so entschiedener Gegner der

Atomenergie würde sich bei Bedarf gegen solch eine

Therapie wehren.

Feature | 60 Years DAtF


atw Vol. 64 (2019) | Issue 5 ı May

Unterdessen verfolgte die Bundesregierung den von

Franz Josef Strauß vorgezeichneten Weg zur friedlichen

Nutzung der Kernenergie. Als beratende Institutionen

gingen aus der Atomkommission die Strahlenschutz- und

Reaktorsicherheitskommission sowie der Kerntechnische

Ausschuss hervor. Ihre Aufgabe war nicht zuletzt, das

Bundesamt für Strahlenschutz als Aufsichtsbehörde zu

unterstützen.

1959: Gründungsjahr des DAtF

Der Ausbau der Atomenergie nahm Fahrt auf. Mit dem

Ausbau wuchs auch das öffentliche Interesse an der

Atomenergie. In diese Zeit des Aufbruchs gründeten die

Arbeitsgemeinschaft für Kerntechnik in Düsseldorf, die

Deutsche Gesellschaft für Atomenergie (DGA) in Bonn,

der Verein „Atom für den Frieden“ in München und die

Physikalische Studiengesellschaft (PSG) in Düsseldorf am

26. Mai 1959 das Deutsche Atomforum e. V. (DAtF). Dass

das DAtF in Bonn angesiedelt wurde, war nur folgerichtig,

da es als Interessensvertretung und Informationsdrehscheibe

insbesondere für Politik, Presse, Öffentlichkeit

und seine Mitglieder tätig werden sollte.

Auf Initiative einiger Einzelmitglieder des DAtF wurde

1969 – zunächst unter dem Dach des DAtF – die Kerntechnische

Gesellschaft e. V. (KTG) gegründet. Die KTG

wurde 1979 als eigenständiger wissenschaftlicher Verein

ausgegliedert. DAtF und KTG kooperieren seitdem fachlich

und organisatorisch sowie beispielsweise bei Ausrichtung

der gemeinsamen Jahrestagung, dem späteren Annual

Meeting on Nuclear Technology (AMNT).

Auch die Führungsspitzen der Unternehmen, die

sich für die Stromproduktion mittels Kernenergie entschieden

hatten, lernten, dass sie aus dem Schatten

ihres Handelns heraustreten mussten, um der Öffentlichkeit

zu erklären, warum sie auf diese Technologie setzten.

Es wurden Stabsstellen für Presse- und Öffentlichkeitsarbeit

implementiert; Journalisten als Pressesprecher

eingestellt. Ingenieure und Techniker, die besonders für

die Öffentlichkeitsarbeit geeignet erschienen, wurden

geschult. Eigens hierfür wurden spezielle Seminare von

DAtF und VDEW konzipiert. Im Fortbildungszentrum

der VDEW, Neu-Kranichstein bei Darmstadt, wurden

diese Mit arbeiter unter wissenschaftlicher Betreuung

auf ihre verant wortungs volle Kommunikationsaufgabe

vorbereitet.

War damit alles gut? Die atomare Bewaffnung vergessen?

Weit gefehlt! Denn nach wie vor wurde alles, was

sich mit dem Begriff Atom verbinden ließ, als gefährlich

gedeutet, machte Angst.

Wen wundert es, dass die positive Seite der friedlichen

Nutzung der Kernenergie frei nach dem Eisenhower-Motto

„Atoms for peace“ in der Öffentlichkeit schlechte Karten

hatte. Jetzt Konrad Adenauer dafür die Schuld zu geben,

dürfte zu kurz greifen. Aber sein Vorstoß, die Bundeswehr

atomar aufzurüsten, machte fortan einen vorurteilsfreien

Dialog in der Öffentlichkeit fast unmöglich. Der Begriff

„Atompolitik“ war negativ belegt.

Man verwendete sehr viel Energie darauf, die politischen

Schlagworte mit der Vorsilbe „Atom-“ ins positive

zu verkehren. Kernenergiebefürworter bevorzugten die

Vorsilbe „Kern-„: Kernkraftwerk, Kernenergie oder kerntechnische

Anlage, Kernforschungszentrum etc. Diese

semantische Optimierung führte allerdings nicht zu mehr

Akzeptanz der Kernenergie, sondern artikulierte lediglich

gegensätzliche Positionen. Das DAtF ließ sich durch solche

Diskussionen nicht beeindrucken; das Deutsche Atomforum

blieb das Deutsche Atomforum.

| | THTR Thorium-Hochtemperatur-Reaktor bei Hamm-Uentrop.

Wyhl? „Nai hämmer gsait!“

Die sechziger Jahre standen im Zeichen des Aufbruchs in

die großtechnische Nutzung der Kernenergie. Die Nordwestdeutschen

Kraftwerke (NWK) beantragten den Bau

des Kernkraftwerks Stade (Druckwasserreaktor) am

niedersächsischen Ufer der Elbe, Baubeginn 1967. Die

damalige Preußenelektra zog nach und beantragte das

Kernkraftwerk Würgassen (Siedewasserreaktor) mit

Standort an der Weser bei Beverungen in Nordrhein

Westfalen, Baubeginn 1968. Stade mit einer Brutto leistung

von 662 MW nahm seinen kommerziellen Betrieb im

Mai 1972 auf. Würgassen mit 670 MW Brutto ging 1971

ans Netz. Beide Anlagen wurden im Vergleich zu späteren

Bauvorhaben nahezu ungestört gebaut.

Entscheidungen fielen auch zum Bau eines THTR

Thorium-Hochtemperatur-Reaktor bei Hamm-Uentrop,

Baubeginn 1971, und zum Bau des SNR-300 – Schneller

Natriumgekühlter Brutreaktor bei Kalkar, Baubeginn 1973.

Der THTR wurde 1983 testweise in Betrieb ge nommen und

1989 aus technischen, sicherheits technischen und wirtschaftlichen

Gründen stillgelegt. Der SNR-300 wurde 1985

zwar fertiggestellt, ging aber vor allem wegen sicherheitstechnischer

und politischer Bedenken nie in Betrieb.

An einer Stelle jedoch, in Baden-Württemberg, geriet

der Ausbau ins Stocken: 1973 gab die Landesregierung

den Standort eines geplanten Kernkraftwerks in Wyhl

am nördlichen Kaiserstuhl bekannt. Ministerpräsident

Filbinger hatte dem „swr.de/geschichte“ zufolge die Vision

eines „Ruhrgebiets am Rhein“ mit tausenden von Arbeitsplätzen

zwischen Basel und Frankfurt. Die saubere Energie

der Atomkraft sollte das möglich machen.

Filbinger hatte die Rechnung ohne die Wyhler gemacht.

Der Widerstand gegen die Pläne der Landesregierung

formierte sich. Zum ersten Mal in der kurzen Geschichte

der Kernenergie entlud sich der Zorn der Bürger. Sie

artikulierten nicht nur die Angst vor den Gefahren durch

Strahlung, sondern die Winzer befürchteten auch klimatische

Veränderungen durch den Betrieb von Kühltürmen.

Bürgerinitiativen wurden gegründet, Demonstrationen

organisiert, Flugblätter verteilt und Info-Veranstaltungen

fanden in wachsender Zahl Zuhörer. Schließlich wurde

daraus ein perfekt organisierter Widerstand gegen das

Vorhaben.

Ein Bürgerentscheid in Wyhl brachte im Januar 1975

zunächst einen Sieg für die Befürworter; die Gegner gaben

jedoch nicht auf. Als im Folgemonat mit dem Bau

des Kernkraftwerks begonnen wurde, besetzten sie den

Bauplatz.

253

FEATURE | 60 YEARS DATF

Feature | 60 Years DAtF


atw Vol. 64 (2019) | Issue 5 ı May

254

FEATURE | 60 YEARS DATF

Es waren Winzer, Bauern, Hausfrauen Rentner und

Handwerker. Viele von ihnen waren bis dato mit der Politik

der regierenden CDU einverstanden. Die Landesregierung

setzte Polizei in Bewegung, die mit Hunden und Wasserwerfern

gegen die gewaltfreien Besetzer vorgingen, so

„swr.de/geschichte“. Die Räumung der Baustelle sorgte

bundesweit für Aufsehen. Wenig später demonstrierten

28.000 Menschen in Wyhl. Als Folge der massiven Proteste

und eines vom Verwaltungsgericht Freiburg veranlassten

Baustopps wurden die Bauarbeiten 1977 eingestellt.

Komponenten für das Wyhler Kraftwerk wurden später in

Philippsburg am Rhein verbaut.

Nicht zuletzt Wyhl offenbarte einen gesteigerten

öffentlichen Aufklärungs- und Informationsbedarf. Auch

vor diesem Hintergrund wurde 1975 der Informationskreis

Kernenergie (IK) innerhalb des DAtF gegründet. Es

galt die Öffentlichkeit effizient, sachlich und umfassend

über die friedliche Nutzung der Kernenergie auch über alle

Parteigrenzen hinweg zu informieren.

„Atomkraft?“ Nein danke. Ja bitte.

Die Gemeinde Wyhl wurde nicht nur in Deutschland zum

Symbol des bürgerlichen Widerstands gegen die Politik.

Die „Atomkraft-Nein-Danke-Bewegung“ entstand hier.

Dass der organisierte Bürgerprotest für weitere Bauvorhaben

Konsequenzen haben würde, war absehbar. Das

DAtF veranlasste turnusmäßig Meinungsforschungen zur

Akzeptanz der Kernenergie. Die Befragungen zeichneten

mitnichten begeisterte Zustimmung zur Kernenergie, aber

auch keine krasse Ablehnung.

Es lag in der Natur der Sache, dass beim weiteren

Ausbau der Kernkraftwerke öffentliche Kontroversen und

Demonstrationen nicht ausblieben. Besonders im niedersächsischen

Grohnde und im schleswig-holsteinischen

Brokdorf eskalierte der Widerstand gegen die Bauvorhaben.

Geschätzte 30.000 Demonstranten reisten im

November 1976 aus der ganzen Bundesrepublik nach

Brokdorf. Militante mischten sich unter die Demonstranten

und schürten Gewalt.

Wenig später in Emmerthal an der Weser: Rund 20.000

Demonstranten versammelten sich am 19. März 1977,

um gegen den Bau des Kernkraftwerks Grohnde zu

demonstrieren. Es sollte ein friedlicher Protest werden,

der von Militanten genutzt wurde, die Konfrontation mit

der Polizei zu provozieren.

Im Oktober 1977 verfügte das OVG Lüneburg den

unbefristeten Baustopp für das Kernkraftwerk Brokdorf,

weil die Entsorgung nicht geklärt sei. Ältere Fernsehzuschauer

werden sich vielleicht erinnern, wie der

Aufsichtsrats vorsitzende der NWK, Erhard Keltsch, in

einer Talkrunde engagiert darauf bestand, dass ohne

Brokdorf bald die Lichter ausgehen würden. Gut drei Jahre

später, im Januar 1981, hob das Gericht den Baustopp auf.

Information: Kärrnerarbeit vor Ort

Weniger spektakulär und oft verkannt stellten sich

währenddessen die Mitarbeiterinnen und Mitarbeiter in

den Informationszentren den Fragen der Öffentlichkeit.

Sie standen den Besuchern Rede und Antwort. Sie

erklärten unermüdlich die Funktion eines Kernkraftwerks,

die Barrieren der Sicherheit, die hohen Sicherheitsstandards,

verwiesen auf sorgfältig ausgesuchtes und

bestens ausgebildetes Personal in den Anlagen und zeigten

die Wege der Entsorgung radioaktiver Rückstände auf, bis

hin zum Rückbau der Kernkraftwerke am Ende ihrer

Laufzeit. Sie machten Vertrauenswerbung im besten Sinne

des Wortes.

Es waren aber nicht nur „Hausfrauenvereine“, Feuerwehren

oder Kegelklubs, die die Informationszentren

besuchten, sondern es kamen auch gut vorbereitete

Schüler und Studenten, von denen viele vorurteilsbelastet

waren. Für sie gab es nicht den hypothetischen GAU. Sie

argumentierten mit ihrer Angst vor einem großen Reaktorunfall

und dessen Folgen.

Dann geschah das schier Unmögliche: Am 28. März

1979 kam es im Kernkraftwerk Three Mile Island in USA zu

einem Reaktorunfall mit einer partiellen Kernschmelze.

Das hatte auch bei uns Konsequenzen. Die Pressestelle des

DAtF, örtlich nahe an der Bonner Politik, stand vor der

Herausforderung, den Unfall interpretieren zu müssen.

Denn die Öffentlichkeit wollte von den Fachleuten im DAtF

immer „sofort“ wissen, welche Konsequenzen ein solcher

Unfall für die Sicherheit unserer Kernkraftwerke haben

würde.

Nach umfassenden Analysen des Unfallhergangs waren

Politik, Industrie, und Reaktorsicherheitskommission

(RSK) sich einig, dass die Vorsorge das Handeln bestimmen

müsse. Zur Sicherheitserhöhung schlug die RSK ein Reihe

von Nachrüstmaßnamen vor, darunter RDB-Füllstandsmessung,

Rekombinatoren zum Abbau von Wasserstoff

im Containment und Systeme zur gefilterten Druckentlastung.

Die Wiederaufnahme der Bauarbeiten in Brokdorf rief

die Gegner erneut auf den Plan. Sie kündigten für den

28. Februar 1981 eine Groß-Demo an. Der Landrat des

Kreises Steinburg ließ die Demo für die gesamte Wilster

Marsch verbieten. Das Verwaltungsgericht Schleswig hingegen

hob dieses Verbot teilweise auf. Nur wenige Stunden

später, unterdessen waren schon zahlreiche Gegner

angereist, verhängte das OVG Lüneburg ein Demonstrationsverbot

für die gesamte Region.

Nichtsdestotrotz strömten geschätzte 100.000 Demonstranten

aus allen Richtungen in die Wilster Marsch. Zwar

hatte die Polizei weiträumig kontrolliert und Zufahrtstraßen

zum Kraftwerksgelände gesperrt, doch viele

umgingen die Sperren und suchten zu Fuß ihren Weg zur

Baustelle über Felder und Wiesen und zugefrorene Gräben.

Alles verlief zunächst friedlich, bis es nachmittags

eskalierte. Etwa 3.000 militante Demonstranten warfen

Steine, Brandflaschen, Wurfgeschosse und auch mit

Schwarzpulver gefüllte Beutel mit Pyrotechnik als Zünder

auf und zwischen die Polizisten. Die Ordnungskräfte versuchten

die Demonstration der Gewalt aufzulösen. Dabei

brach ein Polizist in einem vereisten Graben ein. Der

wehrlose Beamte wurde von einem Chaoten mit einem

Klappspaten traktiert. Es hieß andersherum, die Atomlobby

wolle die „Atomkraft“ ja auch mit Brachialgewalt

durchsetzen.

Dem Hamburger Bürgermeister Hans-Ulrich Klose

(SPD) war diese Entwicklung nicht geheuer. Er wünschte

sich den Ausstieg aus dem Kraftwerksprojekt, an dem die

Hamburgische Electricitäts-Werke AG (HEW) beteiligt

war. Allerdings konnte er sich gegen Teile der Hamburger

SPD-Führung nicht durchsetzen und trat schließlich von

seinem Amt zurück.

WAA Gorleben kippt

Kernenergienutzung, Wiederaufarbeitung und Endlagerung

aller radioaktiven Rückstände – ein geschlossener

Brennstoffkreislauf war das Ziel. Am 22. Februar

1977 verkündete der niedersächsische Ministerpräsident

Ernst Albrecht, dass in Gorleben ein „Nukleares Entsorgungszentrum“

entstehen soll. Eine Wiederaufarbeitungsanlage

und ein Endlager für die radioaktiven

Feature | 60 Years DAtF


atw Vol. 64 (2019) | Issue 5 ı May

Rückstände in unserem Salzstock? Einen Monat später

gingen mehrere tausend Atomkraftgegner in Gorleben auf

die Barrikaden. Andreas Graf von Bernstorff aus Gartow,

dem das Land über dem Salzstock gehörte, wollte trotz des

Angebots von über 26 Millionen DM nicht verkaufen.

Vom 25. bis 31. März 1979 zogen Atomkraftgegner aus

dem Wendland in einem einwöchigen Treck in die Landeshauptstadt

Hannover. Die Abschlusskundgebung zählte

fast 100.000 Demonstranten. Kurz darauf, am 16. Mai

1979, gab die Landesregierung bekannt, dass auf die

Wiederaufarbeitungsanlage in Gorleben verzichtet werden

soll. „Die politischen Voraussetzungen sind zurzeit nicht

gegeben“, so die Begründung Albrechts. Die Pläne für

die Einrichtung eines Endlagers im Salzstock Gorleben

wurden allerdings nicht aufgegeben.

Der Salzstock Gorleben wurde in mehr als drei

Jahrzehnten mit Unterbrechungen auf seine Eignung hin

erkundet. 2013 wurden die Erkundungsarbeiten auf

der Grundlage des Standortauswahlgesetzes eingestellt;

wenig später auch die Öffentlichkeitsarbeit vor Ort.

Die Abklingbecken in den Kernkraftwerken stießen

unterdessen an die Grenzen ihrer Aufnahmekapazität. So

wurde 1982 mit dem Bau eines Zwischenlagers in Gorleben

begonnen. Hier sollten Brennelemente, die nicht für die

Aufarbeitung in Frankreich oder Großbritannien vorgesehen

waren, in sogenannten Castor-Behältern sicher

zwischengelagert werden. Am 25. April 1995, als „Tag X“

deklariert, gab es den ersten Castor-Transport

nach Gorleben. Wie zu erwarten kam es

zu massiven Ausein andersetzungen. Das

Medieninteresse war enorm, wie auch bei

den folgenden Transporten. Das übergroße

gelbe „X“, das in der Region Straßen und

Häuser kennzeichnet, wurde zum zentralen

Symbol des wend ländischen Widerstands.

Nachdem die Pläne für die Wiederaufarbeitung in

Gorleben gescheitert waren, erklärte sich die bayerische

Landesregierung unter Franz Josef Strauß 1980 bereit,

einen geeigneten Standort mit einer „industriegewohnten“

Bevölkerung für solch eine Anlage in Bayern zu suchen. Das

oberpfälzische Wackersdorf schien geeignet zu sein. Doch

eine große Mehrheit der Bevölkerung sowie der Landrat

waren gegen das Projekt. Trotzdem wurde im Dezember

1985 mit den Bauarbeiten begonnen. Unterdessen bewertete

die Betreibergesellschaft die Planungen der Anlage

hinsichtlich ihrer Kapazität neu. Sodann wurden aus politischen

Gründen und wegen des anhaltenden öffentlichen

Widerstands die Bauarbeiten im Mai 1989 eingestellt.

Mit dem Baubeginn der Kernkraftwerke Isar/Ohu 2,

Bayern, Emsland/Lingen in Niedersachsen und Neckarwestheim

2 im Jahr 1982 sollte das Ausbauprogramm

Kernenergie zunächst abgeschlossen sein. Bis hierhin

hatte die Bonner Politik, die von 1949 bis 1963 von Konrad

Adenauer, 1963 bis 1966 von Ludwig Erhard, von 1966 bis

1969 von Kurt Georg Kiesinger, von 1969 bis 1974 von Willi

Brandt und von 1974 bis 1982 von Helmut Schmidt als

Bundeskanzler geleitet wurde, die Kernenergie politisch

unterstützt. Die Ölkrise im Jahr 1973 forderte ein

Umdenken. Willy Brandt und Helmut Schmidt erwogen,

der Ölkrise mit dem Neubau von 40 Kernkraftwerken zu

begegnen.

Eiserner Vorhang weg – „Aus“ für DDR-KKW

Helmut Kohl löste 1982 Helmut Schmidt ab und wurde

Bundeskanzler des 10. Deutschen Bundestages. Die

Grünen hatten Grund zu „strahlen“. Ihnen gelang zum

ersten Mal der Sprung in den Bundestag. Nichts sollte

„Die politischen

Voraussetzungen

sind zurzeit nicht

gegeben“

| | Gelände Erkundungsbergwerk Gorleben.

auf der politischen Bühne Bonns so bleiben, wie es war.

Entscheidungen zur Kernenergie wurden schwieriger,

denn die Grünen hatten nun eine supermediale Plattform

für ihre Anti-Atom-Politik. Das blieb auch in einigen

Bundesländern nicht ohne Wirkung: Seit 1985 sitzen die

Grünen, Bündnis 90 bzw. Bündnis 90/Die

Grünen mit an den Kabinettstischen von

Landesregierungen. Seit dem 12. Mai 2011

ist Winfried Kretschmann, Bündnis 90/

Die Grünen, Ministerpräsident in Baden-

Württemberg.

Die Nuklearkatastrophe von Tschernobyl

im April 1986 mit schwerwiegenden Folgen für Menschen

und Umwelt erschütterte die Welt. Die Rufe nach dem Ausstieg

aus der „Atomenergie“ wurden in Deutschland immer

lauter, die Grünen sahen sich bestätigt. In der SPD

zeichnete sich bei seinerzeitigen Befürwortern ein Meinungswandel

ab. Mit dem Beschluss der SPD im August

1986 gegen die perspektivische Nutzung der Kernenergie

war der Grundstein für den Ausstiegsbeschluss der rot-grünen

Bundes regierung im Jahre 2000 gelegt. Es war nicht

mehr zu übersehen, dass Kernenergiebranche und DAtF

sich künftig auf stimmungsanfällige politische Entscheidungen

einstellen musste.

Nach dem Zusammenbruch der DDR und dem Fall

der Berliner Mauer am 9. November 1989 stand die

DDR- Kernenergie zur Disposition. Seit 1974 wurde am

Atomkraftwerk Stendal gebaut. Gleich nach der Wiedervereinigung

wurde die Großbaustelle Stendal wegen

Anwohnerprotesten und unzureichender Sicherheitsvorkehrungen

aufgelöst. Die vier Blöcke des Atomkraftwerks

Lubmin, etwa 20 km von Greifswald entfernt, und in

Rheinsberg nördlich von Berlin wurden 1990 stillgelegt.

Die DDR-Entsorgung? Ausgediente Brennelemente

wurden bis zum Fall des „Eisernen Vorhangs“ in getarnten

Waggons in die UDSSR gebracht. Für schwach- und mittelradioaktive

Abfälle gab es das Endlager Morsleben in

Sachsen-Anhalt. Die Verantwortung für diesen Betrieb hat

die Bundesgesellschaft für Endlagerung (BGE).

Der 3. Oktober 1990 wird zum Tag der Einheit erklärt.

Als Kanzler der Einheit ist Kohl schon damals in die

Geschichte eingegangen. Bei den Bundestagswahlen im

Dezember 1990 kam es zu einer Neuauflage der Koalition

CDU/CSU/FDP. Die Grünen scheiterten an der Fünf-

Prozent-Klausel.

255

FEATURE | 60 YEARS DATF

Feature | 60 Years DAtF


atw Vol. 64 (2019) | Issue 5 ı May

256

FEATURE | 60 YEARS DATF

| | Baustelle des Kernkraftwerks Stendal an der Elbe.

Stromwettbewerb: Aufbruch ins Ungewisse

Ein wichtiges Ziel der Kohl-Politik nach der Wiedervereinigung

war die Liberalisierung der Energiewirtschaft

in Europa. Außerdem sollten verlässliche Rahmenbedingungen

für die Einspeisung von Strom aus regenerativen

Energien geschaffen werden. Mit dem Stromeinspeisungsgesetz

(StromEinspG) vom 7. Dezember 1990

(BGBl. I S. 2633), im Langtitel „Gesetz über die Einspeisung

von Strom aus erneuerbaren Energien in das

öffentliche Netz“, wurden die Stromversorger verpflichtet,

den in ihrem Versorgungsgebiet erzeugten Strom aus

erneuerbaren Energien abzunehmen und entsprechend zu

vergüten.

Der nächste Zug wurde vorbereitet: Mit Blick auf

die EG-Richtlinie zum Energiebinnenmarkt wurde das

Energie wirtschaftsgesetz, das Jahrzehnte Gültigkeit hatte,

umgekrempelt. Es wurde 1998 durch das „Gesetz zur

Neuregelung des Energiewirtschaftsrechts“ ersetzt. Das

war das Ende der Strommonopole. Die Unternehmen der

Elektrizitätswirtschaft mussten sich neu ausrichten und

sich dem Wettbewerb stellen. Dieser Paradigmenwechsel

war für die Stromversorger ein Aufbruch ins Ungewisse.

Die Folge: Verwaltungen wurden umstrukturiert.

Kraftwerke und Netze in eigene Gesellschaften überführt.

Neue Abteilungen entstanden mit Hilfe von Unternehmensberatern.

Marketingspezialisten und Stromhändler

wurden als Absatzstrategen eingekauft, Marktstudien

veranlasst. Werbeagenturen hatten Hochkonjunktur.

Man erfand „sympathische“ Produkte, die

dem Wunschbild der Verbraucher entsprachen, etwa

Ökostromprodukte. Kernstrom war aus Marketingsicht ein

„No-go“, das man aus der Produktwerbung raushalten

sollte.

Der Anzeigenmarkt boomte. „Also ich weiß, mein

Strom ist blau.“, so RWE in Anzeigen. EnBW konterte mit

Yello Strom: „Ich kauf doch keinen Strom von einem, der

blau ist.“ Die medialen Verbrauchertipps ließen auch nicht

lange auf sich warten. Auf der Titelseite des FOCUS vom

29. September 1999 leuchtete aus der Mitte eine gelbe

Steckdose. Darunter stand in dicken Lettern: „30 % sparen!

So senken Sie Ihre Stromrechnung“. Der Stern zeigte ein

skizziertes Sparschein auf dem Cover. Darunter stand:

„BILLIGER STROM: Der Stern erklärt, wie das geht.“ Das

Produkt Strom, das bis dahin eine Dienstleistung unter

staatlicher Preisaufsicht mit Liefergarantie war, wurde zur

Ware, für die man beispielsweise auch in einem „Kaufhaus“

einen Liefervertrag abschließen konnte.

Die Kernenergie stand also nicht mehr im Mittelpunkt

unternehmerischen Interesses. Sie lieferte nach wie vor

und mit hoher Verlässlichkeit Strom rund um die Uhr.

Durch sie wurde gutes Geld verdient, das war’s. Es wäre

aber sicherlich zu kühn gewesen, ein industriefreundliches

und kostengünstiges Kernstromprodukt auf den Markt zu

bringen, und dafür auch zu werben. Nicht zuletzt vor

diesen Hintergründen stellte sich auch für das DAtF die

Sinnfrage nach seiner Existenz.

Zeitenwende – eine Kurz-Chronik

Im Oktober 1998 löste Gerhard Schröder Helmut Kohl als

Kanzler ab. Zu seinem Minister für Umwelt, Naturschutz

und Reaktorsicherheit ernannte er Jürgen Trittin. Es

wurde nicht lange gefackelt, der Ausstieg aus der

Kernenergie wurde Programm. Nun ging es Schlag auf

Schlag: Die wichtigsten Entscheidungen:

Januar 1999: Rot-grüne Koalition verständigt sich auf

Eckpunkte eines Atomgesetzentwurfes. Die Nutzung der

Kernenergie soll „geordnet und sicher“ beendet werden.

1. April 2000: Der Ausbau der erneuerbaren Energien

ist zentrales Anliegen der rot-grünen Koalition; das

Erneuerbare-Energien-Gesetz (EEG), tritt im Jahr 2000 in

Kraft. Es löst das Stromeinspeisungsgesetz (StrEG) von

1990 ab. Mit der EEG-Umlage wird der Ausbau der

Erneuerbaren Energien finanziert; sie verteuert die

Strompreise.

Juni 2000: Schröder einigt sich mit Strommanagern auf

den „Atomkonsens“, der Laufzeiten und Reststrommengen

der Kernkraftwerke beinhaltet.

Um den Zeitraum bis zur Inbetriebnahme des von der

Bundesregierung bis 2030 geplanten Endlagers zu überbrücken,

entstehen standortnahe, dezentrale Zwischenlager

an den Kernkraftwerken.

1. Oktober 2000: Im Salzstock Gorleben tritt ein

Moratorium in Kraft. Die Erkundungsarbeiten werden

vorläufig gestoppt. Das zwischen Regierung und Energieversorgern

vereinbarte Ende des Moratoriums ist 2010.

April 2002: Mit der Novelle des Atomgesetzes macht die

rot-grüne Koalition ernst: Das “Gesetz zur geordneten

Beendigung der Kernenergienutzung zur gewerblichen

Erzeugung von Elektrizität” änderte die seit 1959 geltende

Rechtslage grundlegend. Das Atomförderungsgesetz

wurde vom Atomausstiegsgesetz ersetzt. Danach sollten

bis etwa 2021 alle 19 deutschen Kernkraftwerke abgeschaltet

sein. Der Bau neuer gewerblicher Atomkraftwerke

und Wiederaufbereitungsanlagen war nicht mehr erlaubt.

Das Atomausstiegsgesetz trat am 27. April 2002 in Kraft.

Mit dem Reaktor Stade wurde 2003 das erste Kernkraftwerk

dauerhaft abgeschaltet.

November 2005: Regierungswechsel. CDU und SPD

bilden Große Koalition. Eventuelle Rücknahme des Atomausstiegs

wird in der Großen Koalition nicht erwogen.

Oktober 2009: Im Koalitionsvertrag von Union und FDP

heißt es: “Die Kernenergie ist eine Brückentechnologie, bis

sie durch erneuerbare Energien verlässlich ersetzt werden

kann.” Man sei dazu sei bereit, die Laufzeiten der Kernkraftwerke

zu verlängern.

5. September 2010: Die Regierungskoalition setzt

die Laufzeitverlängerung der Kernkraftwerke um 8 bzw.

14 Jahre durch. An den Erlösen aus den erzeugten Mehrmengen

sollte der Staat etwa hälftig beteiligt werden.

9. September 2010: Konzerne lassen sich Schutzklauseln

zusichern. Kosten für Sicherheitsnachrüstungen werden

danach auf jeweils 500 Millionen Euro pro AKW begrenzt.

18. September 2010: Großdemonstration in Berlin gegen

schwarz-gelbe Atompolitik.

Feature | 60 Years DAtF


atw Vol. 64 (2019) | Issue 5 ı May

1. Oktober 2010: Das Erkundungsmoratorium ist offiziell

beendet. Die Wiederaufnahme der Erkundungsarbeiten

am Salzstock Gorleben wird vorbereitet.

28. Oktober 2010: Der Bundestag verabschiedet gegen

den Widerstand der Opposition längere Laufzeiten für die

Kernkraftwerke.

28. Februar 2011: Fünf SPD-regierte Bundesländer

klagen vor dem Bundesverfassungsgericht gegen die

Laufzeitverlängerung.

11. März 2011: Atomunfall Fukushima. Laufzeitverlängerung

wird für drei Monate ausgesetzt. Kanzlerin

Merkel kündigt Sicherheitschecks in allen deutschen

Kernkraftwerken an.

15. März 2011: Kurz vor wichtigen Landtagswahlen

ändert die Kanzlerin ihren Kurs: Sieben ältere AKW sollen

vorübergehend abgeschaltet werden. Auch das nach

Pannen stillstehende AKW Krümmel soll abge schaltet

bleiben.

22. März 2011: Die Reaktorsicherheitskommission (RSK)

wird beauftragt, alle Kernkraftwerke technisch zu überprüfen.

Eine neue Ethikkommission soll eine Risikoabschätzung

vornehmen.

17. Mai 2011: Aus dem Prüfbericht der RSK lässt sich kein

klares Urteil ableiten. Es wird aber darauf hingewiesen,

dass die ältesten Anlagen besonders schlecht gegen

Flugzeugabstürze geschützt seien.

28. Mai 2011: Die Ethikkommission empfiehlt Atomausstieg

binnen zehn Jahren.

30. Mai 2011: Die schwarz-gelbe Koalition will das letzte

Kernkraftwerk bis 2022 abschalten. Die sieben ältesten

Kernkraftwerke sowie das Kernkraftwerk Krümmel sollen

sofort stillgelegt werden.

3. Juni 2011: Die Bundesländer verlangen eine stufenweise

Abschaltung der verbleibenden neun AKW. Merkel

verkündet nach einem Treffen mit den Ministerpräsidenten

einen Fünf-Stufen-Plan: 2015, 2017 und 2019 je ein

Kernkraftwerk, 2021 und 2022 jeweils drei Anlagen.

Juni 2011: Der Ausstieg aus der Kernenergie und sieben

weitere Gesetze zur Energiewende werden im Bundestag

beschlossen. Überdies werden Regelungen zum Netzausbau

und zur Ökostrom-Förderung verabschiedet.

Trotz des Ausstiegsbeschlusses werden die Themen

rund um die Kerntechnik und die Entsorgung in den

nächsten Jahren Politik, Forschung, Industrie und Öffentlichkeit

beschäftigen. Die stillgelegten und noch in Betrieb

befindlichen Kernkraftwerke, ihr Rückbau und die Entsorgung

sowie der Strahlenschutz haben aber nach wie

vor öffentliche Relevanz. Auch die Fragen zum Industrieund

Forschungsstandort Deutschland und speziell auch

zur Reaktorsicherheitsforschung, zum Transportwesen

und zur Kerntechnik im Alltag müssen beantwortet

werden. Mit dem Abschluss des Rückbaus ist frühestens

2040 zu rechnen.

1979 beschrieb. Seine Thesen haben damals wie heute

Gültigkeit.

Deutschland leistet sich den Luxus bis 2022 aus der

friedlichen Nutzung der Kernenergie auszusteigen. Bis

2038 soll bei uns der Ausstieg aus der Kohleverstromung

vollzogen sein. Vor dem Hintergrund, dass in 59 Ländern,

allen voran China und Indien, in den nächsten Jahren

rund 1.400 Kohlekraftwerke (Handelsblatt v. 4.10.2018)

geplant bzw. gebaut werden, mutet der deutsche Alleingang

abenteuerlich an.

Die Frage muss erlaubt sein, ob wir mit der Energiewende

auf dem richtigen Weg sind. Auch wenn der Ausbau

der Photovoltaik und der Windenergie mit großen finanziellen

und technischen Anstrengungen voran getrieben

wird – wo soll der Strom bei Dunkelheit und Flaute

herkommen? In Deutschland sind rd. 30.000 Windräder

mit einer Kapazität von gut 60.000 Megawatt und

rd. 1,5 Millionen PV-Anlagen mit gut 42.000 Megawatt

Leistung installiert. Im Januar 2019 hat sich gezeigt, wozu

Wind und Sonne fähig sind. Laut Agora herrschte zwischen

dem 18. und 26. Januar tagelange Dunkelflaute. Am

25. Januar, 02.00 Uhr morgens beispielsweise, lieferte

Wind an Land Null; Sonne Null und Wind auf See

rd. 400 Megawatt. Wasserkraft und Biomasse lieferten

zusammen rd. 6.000 Megawatt in der Grundlast. Der

Strombedarf lag um diese Zeit bei rd. 59.000 Megawatt.

Es bestand also eine Deckungslücke von rd. 53.000 Megawatt,

die mittels Gas-, Kohle- und Kernkraftwerken

geschlossen werden musste.

Deutschland, das ist Fakt, ist also noch weit davon

entfernt seinen Strombedarf ausschließlich über Erneuerbare

Energien decken zu können. Der Bau dringend

notwendiger Leitungen für den Windstromtransport von

Nord nach Süd stockt. Noch fehlen großtechnische

Technologien, etwa Pumpspeicherkraftwerke, um Windoder

Sonnenenergie in großen Mengen speichern zu

können. Auf „Power to Gas“ mit Umwandlung in Strom

setzen Politiker große Hoffnungen.

Es ist jedoch zweifelhaft, ob solche Systeme zeitnah zu

den „Shut downs“ der Kern- bzw. Kohlekraftwerke zur

Verfügung stehen werden. Also werden wir verstärkt auf

Stromimporte angewiesen sein, etwa auf französischen

Atomstrom oder auf Kohlestrom aus Polen.

Kernenergie-Know-how wird gebraucht

In vielen Ländern ist und bleibt die Kernenergie Stütze der

Stromversorgung. Selbst Japan setzt nach Fukushima auf

die friedliche Nutzung der Kernenergie. Mit Stand Januar

257

FEATURE | 60 YEARS DATF

Nicht allein auf der Welt

Es wäre indes gefährlich, sich rückwärts zu orientieren.

Wir müssen nach vorn blicken und der Realität ins Auge

sehen. Die Weltbevölkerung wächst mit ungeahnt hoher

Geschwindigkeit. 2018 bevölkerten rund 7,63 Milliarden

Menschen den Globus. Die UNO errechnete, das zwischen

2015 bis 2020 die Weltbevölkerung jährlich um

78 Millionen Menschen wachsen würde. Bis 2050,

also in nur einunddreißig Jahren, wird erwartet, dass

die Welt bevölkerung auf knapp 10 Milliarden Menschen

anwächst. Der Hunger nach Energie wird immens sein.

Und alle Menschen haben ein Recht auf Energie, wie

Anton Zischka in seinem Buch „Kampf ums Überleben“

| | Kernkraftwerk Krümmel.

Feature | 60 Years DAtF


atw Vol. 64 (2019) | Issue 5 ı May

258

FEATURE | 60 YEARS DATF

| | Zwischenlager Ahaus der BGZ Gesellschaft für Zwischenlagerung mbH

2019 planen laut Statista China 43, Russland 25, USA 14,

Indien 14, Japan 9, Großbritannien 7, Polen 8, Vietnam 4,

Iran 4, Türkei 3, Argentinien und Kanada jeweils 2 Kernkraftwerke,

die innerhalb der nächsten acht bis zehn Jahre

in Betrieb gehen sollen.

In der Kernenergieforschung werden international

Akzente gesetzt. Mit Hochdruck wird an fortschrittlichen

Reaktorlinien gearbeitet. Auch an der Fusionsforschung.

Über die EU ist die Bundesrepublik Deutschland an

ITER, dem „International Thermonuklear Experimental

Reaktor“, beteiligt. Dieser Kernfusionsreaktor ist im

südfranzösischen Kernforschungszentrum Cadarache im

Bau. Nach den Planungen soll in der Anlage 2025 erstmals

Wasserstoffplasma erzeugt werden. Das Max-Plank-

Institut für Plasmaforschung forscht an verschiedenen

Standorten in Deutschland im Bereich der Kernfusion.

In den Bereichen der Nuklearmedizin, medizinischen

Diagnostik und Krebstherapie oder etwa bei der zerstörungsfreien

Prüfung von Materialien ist die Kernforschung

nicht mehr wegzudenken.

Die Erfahrungen aus über 50 Jahren sicheren Betriebs

unserer Kernkraftwerke mit ihren hochqualifizierten

Mannschaften bilden heute das Know-how-Rückgrat für

die anstehenden Aufgaben. Für den Rückbau und die

Zwischen- und Endlagerung, hat sich seit 2016 eine

Arbeitsteilung ergeben: Zuständig für die Stilllegung, den

Rückbau sowie der fachgerechten Verpackung der Rückbaumaterialien

sind die Kernkraftwerksbetreiber. Für die

Zwischenlagerung sind die beiden bundeseigenen Gesellschaften

BGZ Gesellschaft für Zwischenlagerung mbH, für

die Endlagerung der radioaktiven Rückstände ist die BGE

Bundesgesellschaft für Endlagerung mbH gegründet

worden. Die Bundesrepublik Deutschland ist Alleineigentümerin

beider Gesellschaften. Die finanziellen Lasten der

Zwischen- und Endlagerung müssen die Betreiber der

Kernkraftwerke tragen. Hochqualifizierte Mitarbeiter aus

den kerntechnischen Anlagen der Betreiber sind von den

beiden Bundesgesellschaften übernommen worden.

weiteren Nutzung der Kernenergie wurde zwischen 1979

und 2016 in repräsentativen Umfragen ermittelt. 1979 und

2016 sollen näher betrachtet werden:

Während 1979 nach einer repräsentativen Umfrage des

Instituts Allensbach lediglich 12 % der Befragten sich für

den schnellstmöglichen Ausstieg aus der Kernenergie aussprachen,

meinten 39 % das man die bestehenden Kernkraftwerke

bis zum Ende ihrer Laufzeit nutzen sollte und

37 % plädierten dafür, die Kernenergie langfristig zu

nutzen und bei Bedarf Ersatzreaktoren zu bauen.

Aktuell hat sich auch ein Vergleichsportal im Internet

mit der Einschätzung der Bevölkerung zur Kernenergie

beschäftigt. Demnach sprachen sich im Mai 2018 20 % der

Befragten für ein Festhalten an der Kernenergie aus, sollte

dies zu Senkungen beim Strompreis führen. Im März 2019

hielten es fast die Hälfte für einen klimapolitischen Fehler,

aus der Kernenergie zeitlich vor dem Ende der Kohleverstromung

auszusteigen.

Doch welchen Wert haben solche Meinungstrends und

was können sie bewirken? Tatsache ist, dass die Kernenergiewirtschaft

im Gespräch mit der Öffentlichkeit

bleiben muss. Es gibt noch viel zu tun. Und die Fragen von

gestern sind auch die Fragen von heute und morgen. So

wird die institutionelle Presse- und Öffentlichkeitsarbeit

auch weiterhin für die Kernenergie nötig sein. Sowohl der

Rückbau als auch die Zwischen- und Endlagerung und

die Kernforschung erfordern Kommunikation mit Knowhow.

Seit 1959 hat das DAtF diese oft nicht leichte

Kommunikationsaufgabe bewältigt. Es versorgte ihre

Mitglieder und die Öffentlichkeit stets mit aktuellem

Informationsmaterial. Lehrfilme über den Brennstoffkreislauf

wurden produziert. DAtF und IK unterhielten den

Kontakt zu den Mitarbeitern in den Informationszentren

der Kernkraftwerke. Sie pflegten überdies umfassende

Schulkontakte und versorgten Lehrer mit didaktisch

aufbereitetem Lehr- und Lernmaterial. Das DAtF leistete

Zielgruppenarbeit im besten Sinne des Wortes.

Internationalen Ruf erwarb sich das DAtF mit der

Organisation der Jahrestagung Kernenergie, einem Forum

für Kernenergieexperten aus Wirtschaft, Forschung sowie

aus Politik und Verwaltung aus aller Welt. Diese Tagungen

finden seit nunmehr 50 Jahren in Deutschland statt.

Die umfassenden Erfahrungen des DAtF dürften

auch in Zukunft ein wichtiger Baustein der Presse- und

Öffentlichkeitsarbeit für die Beteiligten in Rückbau,

Zwischen- und Endlagerung und Kernforschung sein.

Author

Friedrich Schröder

Presse & Öffentlichkeitsarbeit NWK, PreussenElektra, E.ON,

IZE, Treuhandanstalt Berlin

Institutionelle Presse- und Öffentlichkeitsarbeit

ist Zukunftsarbeit

Meinungsforschung zur Kernenergie gehörte zum „Alltag“

des DAtF. Es liegt auf der Hand, dass die Akzeptanz der

Kernenergie sich über die Jahre je nach Ereignis als

Wechselbad zwischen dagegen, eher dafür oder dafür

darstellte. Speziell die Grundhaltung der Bevölkerung zur

Feature | 60 Years DAtF


Competence for

Nuclear Services

Visit us at the

Waste Management

Spent Fuel Management

Nuclear Casks

Calculation Services and Consulting

Waste Processing Systems and Engineering

7 – 8 May 2019 in Berlin

amnt2019.com

AMNT2019_Visitv1.indd 1 14.03.19 09:

GNS Gesellschaft für Nuklear-Service mbH

Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de


atw Vol. 64 (2019) | Issue 5 ı May

260

SPOTLIGHT ON NUCLEAR LAW

Atomgesetz-Novelle zur nuklearen

Anlagensicherung geplant

Tobias Leidinger

Der erforderliche Schutz gegen Störmaßnahmen oder sonstige Einwirkungen Dritter (SEWD) muss gewährleistet

sein, damit eine atomrechtliche Genehmigung erteilt werden kann. Diese Voraussetzung ist gleichlautend für alle

relevanten Tätigkeiten im Atomgesetz – Anlagenbetrieb, Transport, Zwischen- und Endlagerung – vorgesehen. Beim

SEWD-Schutz geht es um die Anlagensicherung, also um diejenigen Einwirkungen, die auf die Anlage oder Tätigkeit

von außen einwirken oder abzielen. Der Gesetzgeber plant aktuell eine Novelle des Atomgesetzes, mit der die Vorgaben

für den SEWD-Schutz von Anlagen nun erstmals auf gesetzlicher Ebene weiter konkretisiert werden sollen.

I Das Grundproblem

Die Genehmigungsbehörde steht bei der Beurteilung des

erforderlichen SEWD-Schutzes vor einem grundsätzlichen

Problem: Während sich die erforderliche Anlagensicherheit

(Schadensvorsorge) anhand rationaler Kriterien wie

der Eintrittshäufigkeit bestimmter Ereignisse und der

Versagenshäufigkeit der dagegen ergriffenen Schutzmaßnahmen

heranziehen lässt, ist dies für den SEWD-Bereich

so einfach nicht möglich. Im SEWD-Bereich fehlt es

an technisch-naturwissenschaftlichen Deduktionen und

berechenbaren Eintrittswahrscheinlichkeiten, um die

Schutzanforderungen bestimmen zu können.

II Geltende Rechtslage

Nach der geltenden Rechtslage werden – ausgehend von

dem im Atomgesetz abstrakt bestimmten SEWD-Schutzanspruch

– die für seine Konkretisierung erforderlichen

Maßgaben durch behördliche Festlegungen getroffen. Die

Behörden legen in (vertraulichen) Richtlinien zur SEWD

zunächst die Lastannahmen und Szenarien fest, die zu

unterstellen und zu beherrschen sind. Dabei greifen sie auf

Erkenntnisse der Sicherheitsbehörden (u. a. des Bundesamts

für Verfassungsschutz, des Bundeskriminalamts und

des Bundesnachrichtendienstes) zurück. Auf diese Weise

werden Täterbilder und Tatszenarien ebenso wie die

einzuhaltenden Schutzziele und Sicherungsgrundsätze

bestimmt. Der atomrechtlichen Genehmigungsbehörde

steht dabei eine sog. Einschätzungsprärogative zu, d. h. IV

ein gerichtlich nur beschränkt überprüfbarer Beurteilungsspielraum.

Denn es ist objektiv keinem Beweis

zugänglich, ob beispielsweise bestimmte Tatmittel in einer

bestimmten Anzahl und Qualität in einem angenommenen

Szenario verfügbar sind oder ein bestimmtes Täterverhalten

als Einzelperson oder aus einer Gruppe heraus zu

unterstellen ist. Die relevanten Tatsachen einerseits und

ihre Bewertung andererseits sind untrennbar miteinander

verbunden. Deshalb dürfen die Gerichte nicht – auf Grund

von z. B. im Internet zugänglichen Informationen – die

behördliche Beurteilung durch eine von ihnen selbst

vorgenommene Einschätzung ersetzen. Die bloße Denkmöglichkeit

anderer Konstellationen löst noch keine

weiter gehende Ermittlungspflicht des Gerichts aus.

Gleichwohl ist in der gerichtlichen Praxis die Tendenz

festzustellen, die Überprüfung sicherungsrelevanter

Sachverhalte weiter zu vertiefen und auszudehnen. Damit

wächst indes die Gefahr, dass der behördliche Funktionsvorbehalt

eingeschränkt wird, mit der Folge, dass

Genehmigungen am Ende wegen angeblicher Ermittlungsdefizite

in Bezug auf den SEWD-Schutz aufgehoben Autor

werden.

III Atomgesetznovelle zur Konkretisierung

von Sicherungsgrundsätzen

Ein Anliegen der geplanten AtG-Novelle zur nuklearen

Sicherung von Anlagen ist es, die rechtlichen „Leit planken“

für den SEWD-Schutz – und damit auch für seine gerichtliche

Überprüfung – bereits auf Gesetzesebene verbindlich

zu regeln. Damit bestünde zukünftig ein durch den

Gesetzgeber selbst vorgegebener Maßstab, der auch

von den Gerichten im Rahmen ihrer Kontrolle strikt zu

beachten ist.

Im Übrigen soll die Novelle der Umsetzung von

Empfehlungen zur Anlagensicherung dienen, die aus der

sog. IPPAS-Mission 2017 resultieren. Der „International

Physical Protection Advisory Service (IPPAS)“ ist ein 1995

gegründeter Beratungsservice der IAEO zur Stärkung

des weltweiten Erfahrungsaustausches zur Stärkung

der nationalen Sicherungssysteme. Das Expertenteam

vergleicht die nukleare Sicherung des jeweiligen Staates

mit internationalen Empfehlungen und bewährten Verfahren.

Auf dieser Grundlage macht es Vorschläge. Die

AtG- Novelle will die Umsetzung der Empfehlungen der

IPPAS- Mission in Deutschland 2017, u. a. durch Erstellung

von Aktionsplänen zur Sicherung, fördern.

Schließlich soll eine Rechtsgrundlage für die sog.

deterministische Sicherungsanalyse (DSA) für sonstige

kerntechnische Anlagen geschaffen werden. In der DSA

wird untersucht, ob die administrativen und technischen

Einrichtungen der jeweiligen Anlage zur Sicherung ausreichen,

um Einwirkungen Dritter sicher abwehren zu

können.

Rechtssicherheit und Funktionsvorbehalt

der Exekutive stärken

Eine Atomgesetzesnovelle zur nuklearen Anlagensicherung

ist zu begrüßen, wenn sie klare und operable

Vor gaben für den SEWD-Schutz bereithält. Ziel der

Novelle sollte es sein, dadurch nicht nur die Umsetzung

von Sicherungsmaßnahmen in der Praxis zu erleichtern,

sondern – soweit es um die gerichtliche Kontrolle von

Genehmigungsvoraussetzungen zum SEWD-Schutz geht –

den Funktionsvorbehalt der Exekutive zu stärken. Das

setzt tatbestandlich genau normierte Regelungen voraus.

Der Grundsatz, dass die Abschätzung von Risiken im

Atomrecht – auch soweit es um den SEWD-Schutz geht –

der Exekutive zugewiesen ist, verdient Beachtung und

Stärkung. Wenn die Novelle zur nuklearen Sicherung dazu

einen Beitrag leistet, indem sie verbindliche und klare

„Leitplanken“ auch für die gerichtliche Kontrolle von

behördlichen Entscheidungen zu SEWD-Risiken vorgibt,

wäre das ein Schritt in die richtige Richtung.

Prof. Dr. Tobias Leidinger

Rechtsanwalt und Fachanwalt für Verwaltungsrecht

Luther Rechtsanwaltsgesellschaft

Graf-Adolf-Platz 15

40213 Düsseldorf

Spotlight on Nuclear Law

Atomic Energy Law Amendment for Nuclear Plant Safety Planned ı Tobias Leidinger


atw Vol. 64 (2019) | Issue 5 ı May

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning &

Transmutation and How to Develop a

Vision for Nuclear Waste Management

Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead

Introduction The waste management strategy of partitioning and transmutation is currently the cutting edge

development of nuclear technologies, which has been intensively researched over the last several decades, as it is

highlighted in the following two excerpts on the history of partitioning and transmutation given below.

“Nuclear Partitioning and Transmutation is one of the

most promising fields of nuclear technology. We expect that

partitioning and transmutation technology would contribute

to the enhancement of the efficiency of high- level waste

disposal and the utilization of resources in the spent fuel. We

believe that the basic research and development effort in this

field would be beneficial for the future generations although

it is not quite an alternative to the present back-end policy”

[1]. These are the words of T. Yamamoto of the Atomic

Energy Bureau Science and Technology Agency, taken

from the welcome address at the First International

Information Exchange Meeting on Actinide and Fission

Product Separation and Transmutation (IEM P&T) 1990 in

Mito, Japan. This meeting initiated a series of exchange

meetings organized by the Nuclear Energy Agency (NEA),

with the 15 th Information Exchange Meeting recently held

in Manchester, UK. The NEA is an agency, specialized in

the support of the development of nuclear systems, within

the Organization for Economic Co-operation and Development

(OECD).

“One of the greatest challenges in the use of nuclear energy

is the highly radioactive waste which is generated during

power production. It must be dealt with safely and effectively.

While technical solutions exist, including deep geological

repositories, progress in the disposal of radioactive waste

has been influenced, and in many cases delayed, by public

perceptions about the safety of the technology. One of the

primary reasons for this is the long life of many of the

radioisotopes generated from fission, with half-lives on the

order of 100,000 to a million years. Problems of perception

could be reduced to an essential degree if there were a way to

burn or destroy the most toxic long-lived radioactive wastes

during the production of energy” [2]. These are the words of

Victor Arkhipov a consultant in the IAEA division of nuclear

power and the fuel cycle, in the nuclear power technology

development section which highlights the importance of

the topic for the future acceptance of nuclear technologies,

published in the IAEA Bulletin number 39 in 1997.

History of Partitioning & Transmutation

The discussion of partitioning & transmutation of nuclear

waste, mainly concerning transuranic nuclides, is a

phenomenon which received a large amount of attention

in the late 1980’s and early 1990’s. The increasing

importance of the topic is reflected by the creation of the

Information Exchange Meeting on P&T organized by the

NEA every second year, as outlined in the previous section.

The title of the meeting ‘Exchange Meeting on Actinide

and Fission Product Separation and Transmutation’

already points out that the vision of P&T is much larger

than just recycling and burning Plutonium. However, the

first experiments to insert minor actinides containing fuel

into nuclear reactors to burn these isotopes are much

older. “In the 70’s, minor actinide (Np, Am) containing

mixed oxide fuels were designed and successfully irradiated in

fast reactors: KNK II and PHENIX. The composition of the fuel

covered the homogeneous as well as the heterogeneous recycle

of minor actinides” [4].

The first strong push to the technology of partitioning &

transmutation (P&T) of transuranium isotopes has been

given by two important international projects: the OMEGA

program in Japan and the CAPRA/CADRA project in

France. The OMEGA program, launched in 1988: “In

addition, the Japan’s Atomic Energy Commission submitted

in October 1988 a report entitled “Long-Term Program for

Research and Development on Nuclide Partitioning and

Transmutation (P&T)”, from the viewpoints of conversion of

HLW into useful resources and its disposal efficiency. The

program plots a course for technological development up to

the year 2000 and is called “OMEGA” which is the acronym

derived from Options for Making Extra Gains from Actinides

and fission products” [5] is the first major project related to

P&T. Shortly after the OMEGA program, the CAPRA/

CADRA project started in France in the begin of the 1990’s:

“CAPRA/CADRA was created in response to the 1991 French

law which mandated a 15-year research programme to

investigate the technical options available for the nuclear fuel

cycle in France” [6] with the aim to investigate future

opportunities to apply fast reactors for the burning of

excess plutonium. In contrast to the Japanese OMEGA project

focused on partitioning as well as on transmutation,

the French CAPRA/CADRA project was only dedicated to

transmutation, with a major focus on the reuse and incineration

of Plutonium in Superphenix. “The potential of fast

reactor systems to burn plutonium and minor actinides

(MAs) (Np, Am, Cm) is studied within the CAPRA/CADRA

program (Barré, 1998) 1 . CAPRA mainly deals with managing

the plutonium stockpile and CADRA is related to the burning/

transmutation of MAs and long-lived fission products” [7].

The next major step in Europe was the launch of the

Integrated Project EUROTRANS as a part of the 6 th EU

Framework Program (FP). “Among the prior research and

development topics of EURATOM 6 th Framework Programme

is the management of high-level nuclear wastes. In particular,

the development of technical solutions of nuclear waste

management is considered important” [8]. IP EUROTRANS

has been followed by a large number of smaller projects in

FP 7 and now in HORIZON 2020. The focus is on specific

problems related to partitioning and transmutation or

integrated into projects with a wider focus like fast reactor

development.

A very specific project has been undertaken in Germany

following the nuclear phase out decision taken in 2011.

The Federal Ministry for Economic Affairs and Energy

1) Barré, B., 1998.

The Future of

CAPRA. 5 th Int.

CAPRA Seminar,

Karlsruhe

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 261

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


atw Vol. 64 (2019) | Issue 5 ı May

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 262

| | Fig. 1.

Process steps of Partitioning & Transmutation as applied for the demonstration of the technology.

(BMWi) and the Federal Ministry of Education and

Research (BMBF) launched a comprehensive study

managed by the National Academy of Science and

Engineering (acatech) to create a robust scientific basis for

an evidence based approach on the future of the P&T research

under the boundary conditions of the nuclear phase

out. The study consists of two parts: the first part

is concerned with technological issues („Studie zur

Partitionierung und Transmutation (P&T) hochradioaktiver

Abfälle“ [9]) while the second part is concerned

with an evaluation of chances and risks of the technology

to the society (“Gesellschaftliche Implikationen der Partitionierungs-

und Transmutationsforschung” [9]). The

information collected in the German study on P&T [10]

created the basis for the acatech POSITION “Partitioning

and Transmutation of Nuclear Waste. Chances and Risks

in Research and Application“ (“Partitionierung und

Transmutation nuklearer Abfälle. Chancen und Risiken in

Forschung und Anwendung” [11]). The results of this

study, as well as the acatech POSITION have been

presented at both national [12] and international levels

[13].

At the last International Information Exchange Meeting

on Actinide and Fission Product Separation and Transmutation

(IEM P&T) in Manchester in 2018, Russia

announced its commitment to P&T [23]. Their approach

will be based on aqueous reprocessing with downstream

minor actinide separation in the Mayak facility and transmutation

in homogeneous or heterogeneous mode in the

sodium cooled fast reactor BN-800. This will incorporate

investments into scaling of BN-800 spent nuclear fuel

(SNF) management process (transportation, storage and

reprocessing) in the first approach, complemented with

the Brest-OD three stage development: 1) the construction

and commis sioning of a nitride fuel production facility; 2)

the construction and commissioning of the reactor itself;

and 3) the spent nuclear fuel reprocessing facility. In the

same time, the long-term research will focus on minor

actinide burning in molten salt reactors.

State of the Art

Partitioning & Transmutation cannot be seen as a single

process. In fact, it is a whole chain of interlinked processes

which have to be worked through in a cyclic way, see

Figure 1. The whole chain of the process has been followed

for the successful lab scale demonstration of the feasibility

of Partitioning & Transmutation using French facilities

for reprocessing, fuel production and the sodium cooled

fast reactor Phenix [14]. However, it has to be kept in mind

that almost each of the steps of demonstration is based on

technologies which have been available at this time, even if

developed for another purpose – the production and the

separation of Plutonium.

The introductory step into the technology is what is

currently known as aqueous reprocessing amended with

some downstream processes to recover Americium. The

discussion about reinsertion of Curium into the reactor has

been at least postponed due to the challenges in the

radiation protection during fuel production. The opening

step: classical aqueous reprocessing of LWR fuel, is

currently commercially performed on industrial level in at

least three facilities, in France at La Hague, in Russia in

Mayak, and in the THORP facility at the Sellafield site in

the UK which has just been finished operation. There have

been several downstream processes and advanced

reprocessing flow sheets developed on lab scale. The down

selection of possible processes for a future industrial

application is currently part of the GENOIRS Horizon

2020 project [20]. Different styles of trans mutation fuels

have been produced, irradiated, and examined in IP

EUROTRANS and several follow up projects [21, 22]. However,

all these processes have only been demonstrated in

laboratory scale and even the production of mixed oxide

fuels (MOX) with plutonium loadings required for fast

reactor operation has never been brought from the preindustrial

level used for the fuel production of Superphenix

to the industrial level. New Russian studies [19] on

the expected cost and the cost structure of closing the fuel

cycle point out that the production of high loaded MOX

will be a major cost driver. The study indicates that the

front-end cost (fuel production) versus back end cost

( reprocessing) will be shared ~75% to 25% based on the

application of currently available technologies in Russia.

The cost of Americium bearing fuels will be even higher

due to the lack of experience. However, cost is only one

of the challenges. Another important point is addressing

the high radiation exposure [23] associated with the

production of Americium targets (i.e. fuel rods with a high

Americium content). It will require fully remote (automated)

fuel fabrication and handling technologies due to

an increase of the radiation exposure from the fuel

assembly by a factor of ~100 compared to standard fast

reactor MOX fuel, based on data given in [23].

Transmutation of transuranic (TRU) isotopes like

Plutonium, Americium or Curium could theoretically be

achieved in any kind of nuclear reactor where a high

enough neutron flux is available for efficient burning.

However, studies have shown that the efficiency of

the transmutation process depends significantly on the

amount of fast neutrons available in the specific reactor.

“The fission/absorption ratios are consistently higher for

the fast spectrum SFR. Thus, in a fast spectrum, actinides

are preferentially fissioned, not transmuted into higher

actinides” [26]. This is due to the strong energy dependence

of the relation between the fission and the absorption cross

sections. This relation thus depends strongly on the

average neutron spectrum available in a specific nuclear

reactor. The mentioned fission-to-absorption ratio

describes the probability of a desired fission event – which

will destroy the TRU isotope, compared to an undesirable

absorption event – which will only lead to breeding of a

heavier TRU isotope. Studies have shown a significant

difference between the PWR and the SFR, with regard to

trans mutation efficiency [26]. In the PWR the main

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


atw Vol. 64 (2019) | Issue 5 ı May

isotopes which have a high fission-to-absorption ratio are

U-235, Pu-239, and Pu-241. Thus these isotopes have a

high probability to undergo a fission reaction. Typical

other isotopes (Np-237, Pu-238, Pu-240, Pu-242, Am and

Cm) indicate a low or very low fission-to-absorption ratio,

thus these isotopes have a high probability to undergo an

absorption reaction leading to a breeding process. In the

fast neutron spectrum, almost all transuranium isotopes

show a significantly higher fission-to-absorption ratio than

in thermal reactors. This demonstrates that a fast neutron

spectrum reactor, is essential to achieve reasonable

transmutation rates for TRU isotopes.

Different kinds of fast reactors can be dedicated for the

transmutation of TRU isotopes. Up to now only sodium

cooled fast reactors have been envisaged and used for the

demonstration of closing the nuclear fuel cycle as well as

for the demonstration of transmutation, due to their

availability - mainly the Phenix reactor in France – and due

to the experience in the operation of this reactor type [14].

However, two problems have to be highlighted: 1) It would

be necessary to demonstrate an industrial level of fast

reactor operation, employing a closed fuel cycle whilst

applying transmutation, but these efforts have received a

significant setback due to the decision to delay the

industrial demonstration of SFR technology to 2080 in the

ASTRID project [25]; and 2) The insertion of transmutation

fuel, mainly a high amount of Americium, will

have a significant effect on reactor stability and thus

operability. “Increasing the minor actinide content [in a SFR

core] enforces the positive coolant temperature and sodium

void effect. Additionally, the absolute value of the negative

Doppler effect and the delayed neutron fraction are decreased

as well as the melting temperature of the MOX fuel. These

changes degrade system safety, making the enhancement of

the feedback effects mandatory for a transmutation system to

enable it to attain the safety characteristics comparable to

those of a classical SFR” [14].

The first step which would be required to demonstrate

P&T technology at an industrial level by completing

the cycle for Pu, thus demonstrating closed fuel cycle

operation, since plutonium forms more than 90% of the

transuranic nuclides which are produced during LWR

operation. However, due the reconfiguration of the

ASTRID project, the objective of industrial demonstration

pertaining to closed fuel cycle operation, has been postponed

until 2080. This will create uncertainties related to

deployment due to the unavailability of any fast reactor

irradiation facility for future steps related to the demonstration

of Americium incineration in Europe. This delay

will impact on the reprocessing of Americium bearing

fuel/targets, too. There are two limitations, firstly there is

no driver for the development and the manufacturing of

Americium bearing fuel when it cannot be irradiated, and

secondly there will be no irradiated fuel available for hot

lab tests to develop the technology required for the specific

fuel form which is not yet decided for.

To summarise, it becomes clear that the demonstration

of P&T technology at the lab-scale has been deployed

successfully. However, most of the steps have been based

on technologies which have not been designed for the

purpose. The demonstrations have been based on alternative

application and extension of existing equipment

like aqueous reprocessing and the sodium cooled fast

reactor PHENIX. A major question for the future is how

to proceed with the application of P&T technology at the

pre-industrial and later industrial level. One should

recognise the enormous challenges moving from small

scale to large scale particularly in applications where the

uncertainties and the required investments are high. In

this case we cannot predict accurately enough how the

performance at scale will be influenced by small imperfections

in the technological solution at the lower scale.

Here the lack of a credible demonstrator at scale is laid

bare. This leads directly to the major question for the

future: Is it the right way to base the future development

on existing technologies and solve the massive challenges

or should cutting edge research in nuclear be focused on

developing a system specially dedicated to the requirements

of P&T?

To answer this question, we need to have a more holistic

view of the socio-economic costs of each proposed solution.

This is a much greater problem than a business deciding

what product to bring to market. Here we have to pose the

question – how much society is willing to ‘loose’ (in the

form of an unattractive investment) to make a problem

safe or to avoid another ‘imperfect’ solution which is seen

as a worse choice by the society. P&T needs to beat the next

best option for the problem to be viable.

Key Challenges

The following Figure 2 is used to collate the key challenges

of P&T based on the current technologies, which are:

pp

The challenge in partitioning relates to the demand for

very high recovery rates for the TRUs requiring multistage

processes. However, these recovery rates are

essential to avoid a carryover and accumulation of

TRUs in the waste stream which would reduce the

effects of P&T on the final disposal. In addition, reprocessing

and especially the downstream processes form

a costly challenge both for the development as well as

for the application.

pp

The challenge in solid fuel production is due to the very

high cost and significant increase in radiation levels

during fuel production and handling. The high

radiation levels will require remote handling and

manufacturing technologies [23].

pp

The challenge in transmutation is the requirement for a

solid fuelled fast reactor where the right balance

between efficiency (requiring a high Pu and minor

actinide content in the core) and the effect of the TRUs

on reactor stability [27]. In addition, the currently high

cost of fast reactor technology and the relatively limited

experience in operating these reactors at demonstrator

level also create further uncertainties.

| | Fig. 2.

The reverse quadrature of the circle or P&T between today and tomorrow.

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 263

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


atw Vol. 64 (2019) | Issue 5 ı May

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 264

pp

The challenge of the whole cycles lies in the request for

a multiple recycling scheme since only a part of the

TRUs or minor actinides can be transmuted during one

operational cycle of a fuel assembly. The multi- recycling

requirement will demand to run through the whole

costly system in a multiple way accumulating cost and

time while creating a huge number of handovers with

each handover creating a proliferation risk. However,

there is another limiting factor which has a consequence

for the whole system, this is the accumulation of

losses which depends on the one hand on the losses in

the partitioning and the fuel production and on the

other hand on the efficiency of the transmutation [24].

Thus the multi-recycling request poses high challenges

onto the separation chemistry and fuel production as

well as on the reactor design. In addition, multirecycling

will lead to a significant mass of fuel being

resident in the fuel cycle due to the requested times for

cooling, reprocessing, and fuel manu facturing.

Based on the mentioned challenges, it is important to at

least consider other advanced technologies and proposals

relating to how P&T technology could be made accessible

without requiring a costly engineering solution for the

above challenges. Recently, two different approaches have

been proposed in the acatech POSITION [11] which has

been developed in the aftermath of the acatech P&T Study

[10]. The proposed solutions are either the application of

accelerator driven systems (ADS) for transmutation or the

application of molten salt reactor technologies for the

whole P&T process.

In our view the application of ADS systems for transmutation

has the potential to improve the transmutation of

TRUs since due to the promised enhanced neutron physical

reactor stability and the external neutron supply, a

higher load of TRUs is possible which has the potential

to improve the efficiency of the transmutation as well

as to reduce the number of multi-recycling cycles.

However, this approach tackles only the reactor part of

the quadrangle and effects slightly the multi-recycling. A

more comprehensive view onto the problem with the focus

of avoiding most of the challenges leads to the application

of molten salt reactors for P&T [15, 16, 17] since a liquid

fuelled reactor offers the opportunity to integrate major

parts of the fuel cycle into the reactor while avoiding

some of the major challenges associated with solid fuel

production. Taking into account all advantages of a liquid

fuel technology associated with molten salt reactors, leads

to the recognition that the molten salt fast reactor approach

has the potential to eliminate some of the most costly steps

of the P&T tech nology. If a molten salt reactor would be

used, solid fuel production, one of the major cost drivers as

well as one of the major time consuming research

challenges would be eliminated and replaced by another

process. The approach focuses research into another technology

that may offer a superior solution based on current

research priorities in nuclear technology. One of the

keys to making of MSR technology available would be to

produce nuclear fuel in the salt phase like, as is already

required for the advanced reprocessing relying on pyro

processes. Pyro processes are already under research in

several countries, including in the UK as part of the REFINE

project [28].

The challenges in the reactor are partly reduced since a

homogeneous system is employed with the fuel dissolved

within the coolant. These systems provide much stronger

feedback effects than solid fuelled fast reactors since in

the case of an appropriate design, the amount of fissile

material in the core is reduced when the density is reduced

due to temperature increase which will allow a significantly

higher loading of transuranic nuclides as long as the solubility

of the transuranics in the carrier salt can be assured.

In

addition, there is neither an inhomogeneous core composition

like it would be the case in heterogeneous

Americium burning using targets nor a problem

with the fission gas accumulation in the fuel pellets and

rods which limits the burnup of minor actinides due

to the pressure increase in the fuel rods. However,

due to the release of the fission gas directly in the

liquid fuel most probably a reliable off-gas treatment

with the demands on a safety grade system will have

to be operated.

The challenges of the multi-recycling will be eliminated

completely in a molten salt reactor, since in these kinds of

reactors, the salt has to be cleaned in an online process.

This means a small share of the salt will be continuously

withdrawn from the operating reactor. This stream will be

cleaned from the fission products which prevent the

reactor from achieving long term operability and the

cleaned stream will be fed back into the reactor. This

reduces the proliferation risk significantly if the processes

are designed in an appropriate way since the fissile

material will stay in the solution, the plutonium quality

will always be reduced due to the mixing of all materials

and the handovers of fissile material are eliminated.

However, it has to be mentioned that the required clean-up

processes have to be developed following a completely

new approach, instead of the separation of fissile materials

like in the conventional reprocessing, the new processes

have to be designed to separate specific isotopes like

Neodymium and Caesium which cause almost 50% of the

effect on criticality, with Zirconium and Samarium causing

further 30% of the fission product effect on criticality [29].

Nevertheless, a successful design of the salt clean-up system

will eliminate the step of partitioning of fast reactor

fuel completely since there is no demand to separate fissile

material to produce new, clean fuel. In contrast, all material

which is foreseen for transmutation will stay in the reactor

until the nuclei have undergone a fission process.

The manuscript has been opened with the remark

that P&T is the cutting-edge research topic of nuclear

technology and that the lab scale demonstration of the

technology has been accomplished successfully. In general,

if we intend to get the technology into an industrial

application, which will be required if we intend to reduce

the long term challenges in final disposal, a significant

amount of research and development work will be required

[11]. It is now on the community to define the ideal

strategic approach which will in our view require a careful

evaluation of the available approaches to identify the ideal

approach. All approaches require a strong development

demand to achieve industrial application and the research

community will have to face a wide set of new challenges.

However, it will be more promising to invest into tailored

approaches to solve existing problems with innovative

approaches which are ideally based on the application

of already existing skill sets (e. g. nuclear chemistry,

advanced fluid dynamics) taking advantage of technological

approaches which are already available or under

development in other technologies (e. g. pyro-repro cessing

for fuel production, or off-gas cleaning like in reprocessing

facilities).

Before entering into the next step of development

the community should undergo a strategic development

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


atw Vol. 64 (2019) | Issue 5 ı May

process for demand driven research planning [31] with

an unbiased analysis of different options before taking

major investments into R&D. Getting P&T into industrial

application is a very long, time consuming mission

requiring a massive investment even when we would rely

on existing technologies. Why not focus on an improved

solution to direct the future R&D into a more innovative

dimension which promises some clear benefits. The focus

should lie on creating innovative, demand driven solutions

which on the one hand have the potential to provide new

IP and market opportunities while promising the

elimination of some major challenges which would require

very costly engineering solutions. The focus on disruptive

solutions has the potential to bring more innovation

into nuclear technologies which have suffered from a

lack of ground breaking innovation in the last several

decades. The proposed application of molten salt reactors

for transmutation is not a singular view of the authors,

see MA burning in molten salt reactors proposed by

Russia [29] and early proposals to use molten salt reactors

for the burning of weapon grade plutonium in the 1990’s

[33].

A Possible Outlook

All thoughts mentioned up to now have focused on the

issue of developing the P&T technology as a waste

treatment technology separate from the development of

power reactor technology. There are currently clear

reasons for this approach since the current reactor fleets

worldwide are based on light water reactor technology

while P&T will require fast reactor technology. However, a

slight change in the approach to the problem has the

potential to create a new way of thinking. We currently

tend to look at the spent nuclear fuel (SNF) of light water

reactors as waste to be stored safely instead of the common

approach of other industries when developing production

chains – ‘up to now, this is a material we haven’t found the

ideal use for’. On this basis, we have to see SNF as a

resource, a potential energy source for the future. The

same approach can change the recognition of the fission

products, a resource we have to find a better solution or

use. Taking this alternative view and looking into the

future of nuclear hopefully based on closed fuel cycle

operation creates the opportunity to bring the major

nuclear technologies – power production and waste

management – closer together. The last consequences

could be the recently proposed operation of molten salt

reactors directly on spent nuclear fuel originating from

light water reactors without prior reprocessing [30, 31,

32]. This approach has the potential to eliminate the very

costly pre-step into closing the fuel cycle which has all the

time been accepted as unavoidable – the reprocessing of

the LWR fuel – thus eliminating on of the most challenging

and costly hurdles to get closed fuel cycle operation into

future application. Thus, this new approach can ideally

provide society with the advantages of closed fuel cycle

operation without the massive pre- investments into

chemical separation of Plutonium and the related

production of mixed oxide fuel with high plutonium

content. The approach would allow society to solve P&T as

a side effect of a new and disruptive, highly efficient and

sustainable nuclear energy system which could serve as a

reliable low carbon energy source for the world. The

strategic thinking leading to this development and the

process which would have to be established will be

described in another article in the next edition of this

journal [34].

Conclusions

The waste management strategy of partitioning and

transmutation (P&T), encompassing reprocessing and

reactor technology, is currently the cutting-edge development

of nuclear technologies. It has been intensively

researched over the last few decades with most effort

spent in the IP EUROTRANS program and several follow

up projects. Almost all required technological steps have

been demonstrated at least at laboratory scale based on

existing technologies like aqueous reprocessing with

added downstream processes, mixed oxide fuel production

and sodium cooled fat reactor operation. However, putting

a deep look into the described challenges faced during

these demonstrations as well as taking an outlook to the

much larger challenges which will appear during upscaling

of the technology to industrial scale gives rise to the

question, ‘Is the chosen way for the demonstration the

right, most efficient way forward or do we need to adopt a

much more disruptive approach?? A detailed discussion of

the key challenges as well as the evaluation of possible

innovative approaches has been given working out

approaches which would be required to make P&T an

attractive choice for real industrial application.

The discussion leads the way to an innovative, demand

driven re-thinking of the whole technological process

typical for solid fuelled reactor systems and their related

fuel cycle. The outcome of this discussion delivers an

approach that avoids the most costly and challenging

process steps associated with the solid transmutation fuel

production by applying a demand driven technology

development using a liquid fuel operated system like a

molten salt reactor specially designed for the challenges of

P&T.

Finally, overcoming frames of the historic separation of

power production and waste management is proposed

by applying wider out of the box thinking to improve

the attractiveness of nuclear technologies. A disruptive

approach of developing a molten salt reactor system with

demand driven salt clean-up directly operating on spent

nuclear fuel is worked out which will offer the potential to

operate a nuclear reactor in closed fuel cycle mode without

requiring prior reprocessing as initial step. Applying this

approach would allow, to make the large energy amount

available which is still contained in spent nuclear fuel,

while the requests of waste management using P&T are

fulfilled as a side effect. Both points together have the

potential to make nuclear one of the most promising

answers to the rapidly rising demand for low carbon

technologies.

References

[1] Yamamoto T (1990) WELCOME ADDRESS. Proceedings of the First International Information

Exchange Meeting on Actinide and Fission Product Separation and Transmutation 1990,

Mito, Japan https://www.oecd-nea.org/pt/docs/iem/mito90/mit-1-00.pdf, accessed

10.06.2013

[2] Arkhipov V (1997) Future nuclear energy systems: Generating electricity, burning wastes. IAEA

BULLETIN, 39/2/1997 https://www.iaea.org/sites/default/files/publications/magazines/

bulletin/bull39-2/39204783033.pdf, accessed 27.02.2015

[3] Oi N (1998) PLUTONIUM CHALLENGES - Changing Dimensions of Global Cooperation,

IAEA Bulletin 40-1,Comparing Energy Options, Available http://www.iaea.org/

Publications/Magazines/Bulletin/Bull401/article3.html,

Accessed March 26, 2015

[4] Koch L (1990) System-immanent Long-lived Radioisotope Transmutation. First International

Information Exchange Meeting on Actinide and Fission Product Separation and Transmutation

1990, Mito, Japan, https://www.oecd-nea.org/pt/docs/iem/mito90/mit-4-01.pdf, accessed

10.06.2013

[5] Nakamura M et al. (1992) Present Status of the Omega Program in Japan. Second International

Information Exchange Meeting on Actinide and Fission Product Separation and Transmutation

Argonne, USA, 1992, https://www.oecd-nea.org/pt/docs/iem/argonne92/arg02.pdf, accessed

10.06.2013

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 265

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


atw Vol. 64 (2019) | Issue 5 ı May

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 266

[6] Plutonium Management in the Medium Term A Review by the OECD/NEA Working Party on the

Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR), Nuclear Science ISBN 92-64-

02151-5, OECD 2003, http://www.oecd-nea.org/science/docs/pubs/nea4451-plutonium.pdf,

accessed 10.06.2013

[7] Vasile A et al. (2001)The Capra – Cadra Programme”,Proc. ICONE 8, 8th conference on Nuclear

Engineering, April 2–6 2000, Baltimore,US, Professional Engineering Publishing, Suffolk, UK.

[8] Knebel J et al. (2004) IP EUROTRANS: A European Research Programme for the Transmutation

of High Level Nuclear Waste in an Accelerator Driven System. Actinide and Fission Product

Partitioning & Transmutation Eighth Information Exchange Meeting Las Vegas, Nevada, USA

9-11 November 2004, http://www.oecd-nea.org/pt/docs/iem/lasvegas04/11_Session_V/

S5_01.pdf, accessed 10.06.2013

[9] Studie zur Partitionierung und Transmutation (P&T) hochradioaktiver Abfälle http://doku.uba.

de, accessed 10.06.2013

[10] Renn, Ortwin (Hrsg.): Partitionierung und Transmutation. Forschung – Entwicklung –

Gesellschaftliche Implikationen (acatech STUDIE), München: Herbert Utz Verlag 2014

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/

de/Projekte/Laufende_Projekte/Transmutation/PuT_Studie_komplett_2013-10-22.pdf,

acsessed 27.11.2014

[11] acatech (Hrsg.): Partitionierung und Transmutation nuklearer Abfälle. Chancen und Risiken in

Forschung und Anwendung (acatech POSITION), München: Herbert Utz Verlag 2014 http://

www.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/partitionierungund-transmutation-nuklearer-abfaelle-chancen-und-risiken-in-forschung-und-anwend.html,

acsessed 06.03.2015

[12] Merk B, Geist A, Modolo G, Knebel J (2015) Results and Conclusions from the German P&T Study

– A View of the Contributing Helmholtz Research Centres, 46th Annual Meeting on Nuclear

Technology, Berlin

[13] Merk B, Geist A, Modolo G, Knebel J (2014) The German P&T study – results and conclusions

in the view of the contributing Helmholtz research centers, Actinide and Fission Product

Partitioning and Transmutation 13th Information Exchange Meeting, 23.-26.09.2014, Seoul,

Republic of Korea

[14] Merk B, Stanculescu A, Chellapandi P, Hill R (2015) Progress in reliability of fast reactor operation

and new trends to increased inherent safety, Applied Energy 147, 1 June 2015, Pages 104–116

[15] Merk B, Rohde U, Glivici-Cotruta V, Litskevich D, Scholl S (2014) On the Molten Salt Fast Reactor

for Applying an Idealized Transmutation Scenario for the Nuclear Phase Out”, PLoS ONE 9(4):

e92776. doi: 10.1371/journal.pone.0092776 (2014). PMID: 24690768

[16] B. Merk, D. Litskevich: “Transmutation of All German Transuranium under Nuclear Phase Out

Conditions – Is This Feasible from Neutronic Point of View?”, PLOS ONE, DOI: 10.1371/journal.

pone.0145652

[17] B. Merk, D. Litskevich: ”On the Burning of Plutonium Originating from Light Water Reactor Use in

a Fast Molten Salt Reactor—A Neutron Physical Study”, Energies 2015, 8, 12557–12572;

doi:10.3390/en81112328

[18] acatech (Ed.): Partitioning and Transmutation of Nuclear Waste. Opportunities and Risks in

Research and Application (acatech POSITION PAPER), Munich 2014. http://www.acatech.de/

fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/

Stellungnahmen/acatech_EN__POS_Transmutationsforschung.pdf

[19] V. Dekusar , V. Usanov , A. Yegorov: “Comparative Analysis of Electricity Generation Fuel Cost

Component at NPPs with WWER and BN-type Reactor Facilities, International Conference on

Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable

Development (FR17) Yekaterinburg, Russian Federation, 26 – 29 June 2017, available:

https://www-legacy.iaea.org/NuclearPower/Downloadable/Meetings/2017/2017-12-12-12-

12-NPTDS-test/FR17_WebSite/papers/FR17-435.pdf, accessed 26/02/2019

[20] GENIORS - GEN IV integrated oxide fuels recycling strategies, available: http://www.geniors.eu/,

accessed 26/02/2019

[21] Somers, J.: „Fabrication of Fuel and Recycling of Minor Actinides in Fast Reactors“.In: Science and

Technology, Volume 73, 2010, S. 97-103.

[22] Delage, F./Arai, Y./Belin, R./Chen, X.-N./ D’Agata, E./ Hania, R./Klaassen, F./Maschek, W./

Oigawa, H./Ottaviani, J. P./Rineiski, A./ Sobolev, V./Somers, J./Staicu, D./Thetford, R./Wallenius,

J./Wernli, B.: Minor-Actinides Transmutation in an Accelerator Driven System Prototype: Results

from Fuel Developments within the European Program EUROTRANS, IEMPT11, San Francisco, CA,

1.-4. November 2010.

[23] A. Khaperskaya, Khomyakov Yu , Shadrin A, Feinberg O.,Conceptual approaches and the main

directions of R & D on partitioning and transmutation of minor actinides and long-lived fission

products in the Russian Federation State atomic energy corporation “Rosatom”, Manchester ,

15th International Exchange Meeting on Partitioning and Transmutation 2 October 2018

Manchester

[24] Magill, J & Berthou, V & Haas, D & Galy, J & Schenkel, R & Wiese, H.-W & Heusener, G &

Tommasi, J & Youinou, G. (2003). Impact Limits of Partitioning and Transmutation Scenarios on

Radiotoxicity of Actinides in Radioactive Waste. Nuclear Energy-journal of The British Nuclear

Energy Society - NUCL ENERG-J BRIT NUCL ENERG. 42. 263-277. 10.1680/nuen.42.5.263.37622.

[25] E. Abonneau: Astrid Project Overview, 3rd ASTRID Fast Reactor Seminar – Civil Engineering and

Construction plus ZEPHYR – CEA’s Zero power Experimental PHYsics Reactor, Birmingham

University, Wednesday 31st January 2018

[26] Massimo Salvatores: Neutronics for critical fission reactors and sub-critical fission in hybrids,

WORKSHOP ONFUSION FOR NEUTRONS ANDSUB-CRITICAL NUCLEAR FISSIONFUNFIVilla

Monastero, Varenna, Italy, September , 2011

[27] B. Merk: Moderating Material to Compensate the Drawback of High Minor Actinide Containing

Transmutation Fuel on the Feedback Effects in SFR Cores, Science and Technology of Nuclear

Installations, Volume 2013, Article ID 172518, http://dx.doi.org/10.1155/2013/172518

[28] REFINE: A coordinated materials programme for the sustainable REduction of spent

Fuel vital In a closed loop Nuclear Energy cycle, UKRI, avaialble: https://gtr.ukri.org/

projects?ref=EP%2FJ000779%2F1, accessed 02/04/2019

[29] Merk B, Litskevich D, Gregg R, Mount AR (2018) Demand driven salt clean-up in a molten salt

fast reactor – Defining a priority list. PLoS ONE 13(3): e0192020. https://doi.org/10.1371/

journal.pone.0192020

[30] Merk B., Litskevich D., Whittle K. R., Bankhead M., Taylor R., Mathers D.:”On a Long Term

Strategy for the Success of Nuclear Power”, ENERGIES, 8(11), 12557–12572.

[31] Merk B., Litskevich D., Bankhead M., Taylor R.:”An innovative way of thinking Nuclear Waste

Management–Neutron physics of a reactor directly operating on SNF”, PLOS ONE July 27,

2017, https://doi.org/10.1371/journal.pone.0180703

[32] Bruno Merk and Ulrich Rohde; Transmutation von Transuranen unter den Randbedingungen des

Kernenergieausstiegs – Technisch machbar?, ATW 259 (4) 2016

[33] URI GAT and J. R., ENGEL, H. L. DODDS MOLTEN SALT REACTORS FOR BURNING DISMANTLED

WEAPONS FUEL, TECHNICAL NOTE, Nuclear Technoloy Vol. 100, Dec. 1992, available:

http://moltensalt.org.s3-website-us-east-1.amazonaws.com/references/static/

home.earthlink.net/bhoglund/uri_MSR_WPu.html, accessed July 15th, 2015

[34] B. Merk et al: iMAGINE - A disruptive change to nuclear or how can we make more out of the

existing spent nuclear fuel and what has to be done to make it possible in the UK?,

to be published in atw 6/7-2019

Authors

Bruno Merk

Dzianis Litskevich

University of Liverpool,

School of Engineering,

L69 3GH,

United Kingdom

National Nuclear Laboratory,

Chadwick House,

Warrington,

WA3 6AE,

United Kingdom

Aiden Peakman

Mark Bankhead

National Nuclear Laboratory,

Chadwick House,

Warrington,

WA3 6AE,

United Kingdom

Serial | Major Trends in Energy Policy and Nuclear Power

The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


atw Vol. 64 (2019) | Issue 5 ı May

A World’s Dilemma ‘Upon Which

the Sun Never Sets’: The Nuclear Waste

Management Strategy: Russia

Part 2

Mark Callis Sanders and Charlotta E. Sanders

4 Eurasia

4.1 Russian Federation or

Российская Федерация

(Russia)

4.1.1 Historical Overview & Law

Russia’s 1

economy and government

financial structure is over reliant on

the monies it obtains through its oil

and natural gas production. Swings

in global commodity prices have

been known to create unrealistic and

unsustainable economic bubbles in

the Russian economy, which then lead

to severe economic downturns. In

1954, Russia developed and operated

the world’s first nuclear power plant.

By the mid-1980s, the Union of Soviet

Socialist Republic (USSR) had an

expanding civilian nuclear power

program, when the world’s worst

nuclear accident occurred in 1986 at

Chernobyl. 2

Throughout the 1990’s,

Russia’s economy experienced a

steady downward trajectory, resulting

in a tightening of funding available

for its nuclear power programs.

Toward the end of the 1990’s,

Russia began to export its reactors to

Iran, China and India, which saw the

revival of its domestic nuclear power

program [27]. Russia is expanding its

civilian nuclear power program

having in 2014 initiated the “Development

of the Russian Nuclear Power

Generation Complex” policy which

provides for the country to construct

and/or commission at “least 10 new

nuclear power units [through] 2020” 3

[28].

It is now just over a hundred years

since the Russian revolution, which

resulted in the overthrow of Tsar

Nikolai II. From this period of history,

Russia has travelled through various

| | Nuclear power in Russia: electricity generation.

political systems, but with each

focused on one dynamic: centralized

state power and control. In June of

1941, the USSR was attacked by Nazi

Germany in Hitler’s quest for ‘lebensraum’

and Russia entered into an

alliance with both major allied

powers, the United Kingdom in the

summer of 1941, and later with the

United States (US) following its entry

into the war. However, following the

conclusion of World War II, and with

Soviet dominance of Eastern Europe,

these previous allies entered into a

stalemate of attrition as each side

sought for geopolitical influence in

various corners of the globe. 4

Democracy came to Russia in the

early 1990’s as the USSR splintered

into Russia and 14 other independent

republics. President Boris Yeltsin’s

term as president (1991-99), was a

bitter time of corruption and economic

stagnation/decline for the

Russian people. To overcome these

economic hardships, the Russian

people sought new leadership electing

President Vladimir Putin. Under

Putin, Russia’s foreign policy has been

marked by aggression towards its

neighbors, as it seeks to regain its

former influence.

4.1.2 Government & Legislative

Regime

A study of Russian culture provides an

insight into the abrupt changes of

Russia’s political systems during the

course of history as one charts the

exodus of its cultural riches from 1917

through “the catastrophic losses due

to Nazi atrocities during World War

II,” and during the past couple of

decades, “the diffusion and disbandment

of Soviet collections” [29].

Though the pendulum of Russia’s

political system appears to have

violent swings throughout its long

history, it is a zeal for centralized

power and control, by the State, that

affords the Russian political system

and cultural heritage with a continuity

of stability.

Russia is considered a “ democracy,”

with “democratically” elected members

of government. However, given

State control of the media and

elections, Russian democracy may

generally not be viewed in a similar

vein of ‘democracy’ as applied in the

US or Western Europe. That being

said, given Russians’ experiences

throughout its Tsarist and Communist

history, Russian democracy today is

certainly democratic in comparison to

those standards.

The Russian federal government

retains and exercises exclusive

powers. Its executive branch of

government is led by the prime

minister. The Constitution of the

Russian Federation and the federal

constitutional law “On the Government

of the Russian Federation” establishes

the mechanisms for the

Federal government to legislate by

way of acts. The executive must

exercise power in a manner which is

not in contrast to the con stitution or

267

DECOMMISSIONING AND WASTE MANAGEMENT

1 Throughout the paper, the Union of Soviet Socialist Republic (USSR) or The Soviet Union is used interchangeable with the word Russia dependent

on the historical point of reference being discussed.

2 The world’s worst nuclear disaster occurred on 25–26 April 1986 near the now-abandoned town of Pripyat, located in the Ukrainian Soviet

Socialist Republic, now the Ukraine.

3 Resolution of the Government of the Russian Federation No. 516-12.

4 This period of world history is referred to as the Cold War, lasting from 1947-1991.

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia Part 2 ı Mark Callis Sanders and Charlotta E. Sanders


atw Vol. 64 (2019) | Issue 5 ı May

DECOMMISSIONING AND WASTE MANAGEMENT 268

| | Nuclear fuel cycle.

the laws of the state and/or Presidential

decrees [30].

Russia’s legislature is bicameral,

divided between the Federal Assembly

with 170 seats and the State Duma

with 450 seats. In the 2016 federal

election, one-half of the members

were directly elected through a simple

majority vote, while the other half

is directly elected by proportional

representation. Its judicial branch

contains various courts of jurisdiction

with the Supreme Court of the Russian

Federation sitting at the top of the

structure [31].

4.1.2.1 Corruption

The Russian constitution establishes

that “man and his rights and freedoms

shall have the highest value” and that

it is the “responsibility of the state

to recognize, observe and protect

the rights and freedoms of man

and citizen” [32]. A major potential

challenge in the fulfillment of this

noble ideal is with issues surrounding

corruption. It is readily acknowledged

that corruption does exist and is

practiced in all political systems and

cultures. Corruption, certainly, is not

something that is unique to Russia.

However, in the latest Transparency

International Corruption Perceptions

Index (CPI), Russia ranked an abysmal

135 out of 180 countries in 2017. 5

Before the nineteenth century, the

word ‘corruption’ was not commonly

used but colloquially became more

commonplace “in the post-Soviet

period” [33]. In the decades since the

collapse of communism, Russia has

experienced a development of an

oligarchy that controls the nation’s

industry and mineral reserves. This

has given rise to the view among the

Russian people “[that] government

officials [are] wealth-grabbers and

[that there is a need for] personal

contacts and relationships to get

| | Handling of nuclear waste.

things done” [34]. The past century

has brought about dramatic shifts of

political power in Russia. Despite

these changes, Russia is known for,

and continues to experience, relatively

high rates of corruption [35]. At the

end of 2017, it was estimated that the

overall economic cost of corruption

for the preceding two years was more

than $2.5 billion. 6

4.1.2.2 Legislative Framework

The Federal Atomic Energy Agency

(Rosatom 7 ) is the duly authorized

federal executive body. It functions

to implement state policy, to provide

applicable regulations, and exercise

regulatory competencies authorized

by the Federal government. Additionally,

it is the state designated actor

responsible for atomic energy, including

the development and safe

functioning of nuclear power plants,

aspects of the nuclear fuel cycle,

advancement of nuclear science and

technology, and other matters involving

international corroboration

[28].

In 2011, Federal Law on the Management

of Radioactive Wastes and

amendments to certain legislative acts

of the Russian Federation 8 (2011 Law)

was adopted as the first Federal Law

for the management of radioactive

waste. Other applicable laws, which

function concurrently with the 2011

Law, 9

include: (1) Federal Law No.

170-FZ “On the Use of Atomic Energy”

5 See: Transparency International Corruption Perceptions Index, https://www.transparency.org/news/feature/corruption_perceptions_index_2017,

viewed April 19, 2018.

6 For a recent discussion on corruption in Russia, see: Abuse of office, bribes & embezzlement: Top 5 Russian corruption scandals,

https://www.rt.com/politics/413538-top-5-recent-russian-corruption/, viewed June 13, 2018. Recommended: the Council of Europe website,

‘Action against Economic Crime and Corruption’ at https://www.coe.int/en/web/corruption/anti-corruption-digest/russian-federation, viewed

June 13, 2018, which provides an updated expansive list on the topic of corruption in Russia.

7 The Federal Law “On the State Atomic Energy Corporation – Rosatom” 317-FZ, Amended by Federal Law No. 305-FZ amending Federal Law No.

317-FZ on the State Atomic Energy Corporation Rosatom (2010) and Federal Law No. 188-FZ amending Federal Law No. 317-FZ on the State

Atomic Energy Corporation Rosatom (2014) establishes the procedure to provide for adequate financial resources for the creation of any needed

radioactive waste and spent fuel management facilities. See: https://www.ecolex.org/details/legislation/federal-law-no-317-fz-on-the-stateatomic-energy-corporation-rosatom-lex-faoc079146/,

viewed July 12, 2018.

8 See: 'Federal Law on the Management of Radioactive Wastes and amendments to certain legislative acts of the Russian Federation' 2011, Nuclear

Law Bulletin, 88, pp. 181-200, Academic Search Premier, EBSCOhost, viewed 25 July 2018.

9 Additionally, Russia has undertaken a number of crucial initiatives toward the development of an appropriate legal framework in establishing a

Unified State System for radioactive waste management. These decrees and resolutions may be found in § A.4.4, “Near-term initiatives to improve

the safety of SNF and RW management.” Go to: The Fourth National Report of the Russian Federation, http://www.rosatom.ru/upload/

iblock/8c0/8c0b6fba95869e6673962ee96f467da2.pdf, viewed April 09, 2018.

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia Part 2

ı Mark Callis Sanders and Charlotta E. Sanders


atw Vol. 64 (2019) | Issue 5 ı May

| | More than electricity and heat generation: Nuclear powered ice breaker.

of November 21, 1995; Federal Law

No. 3-FZ “On the Radiation Safety of

Population” of January 9, 1996; and,

(3) Federal Law No. 7-FZ “On the

Environmental Protection” of January

10, 2002 [28].

4.1.3 Nuclear Waste

Management

The 2011 Law requires the final

disposal 10 of all legacy 11 and newly

generated domestic radioactive waste.

Additionally, the 2011 Law provides

for creating a state controlled

unified system of radioactive waste

management by establishing a

national operator. The 2011 Law

creates two distinct groups of radioactive

wastes: remov able and special

radioactive wastes, 12

which receive

their classifica tion demarcation by

the federal government taking into

account the technical and operational

limitations involved with nuclear

waste management.

The ‘National Operator for Radioactive

Waste Management’, a federal

entity, has sole responsibility as the

duly authorized agent by the Russian

Federation to carry out activities

relating to final isolation of radioactive

waste and arrangement of

any relevant infrastructure [36].

According to Rosatom, design work is References

complete for a deep waste repository,

with activities in progress for the

implementation of a project that will

“enable [the] final disposal of all

radioactive waste accumulated” [36].

Previously, nuclear waste management

activities involved the injecting

of these low and intermediate level

wastes “into deep-seated reservoir

beds (deep well injection facilities)

located at three sites” [28].

4.1.3.1 Permanent Disposal

Each nuclear power plant has a spent

fuel storage pool. Spent fuel is kept in

the pool for a period of three years.

If necessary, storage time can be

increased to reduce heat generation.

Reprocessing of spent nuclear fuel is

performed at RT-1 (Mayak). Additionally,

various nuclear power plants

have multifunctional complexes providing

radioactive waste treatment

and pre-treatment. The most probable

media for the final storage and disposal

of high-level waste within Russia

is in crystalline rocks. These

planned repositories “[should] be

sited in seismically stable blocks” and

also areas containing no or limited

mineral resources [37]. Within Russia,

vitrified high-level waste is “stored in

steel containers 60 cm in diameter,

80 cm in height, and 3 cm in thickness”

[37]. Each cask is able to accommodate

three containers.

[27] Nuclear Power in Russia, World Nuclear Association,

http://www.world-nuclear.org/information-library/countryprofiles/countries-o-s/russia-nuclear-power.aspx,

viewed January 31, 2018.

[28] The Fourth National Report of the Russian Federation,

http://www.rosatom.ru/upload/iblock/8c0/

8c0b6fba95869e6673962ee96f467da2.pdf, viewed April 09, 2018.

[29] Dianina, K 2015, ‘Russian Cultural History Lost and Found’,

Russian Studies In History, 54, 4, pp. 279-285, Academic Search

Premier, EBSCOhost, viewed 31 January 2018.

[30] Government of the Russian Federation,

http://www.russianembassy.org/page/government-of-therussian-federation,

viewed April 05, 2018.

[31] ‘Russia,’ CIA Fact book, Central Intelligence Agency,

https://www.cia.gov/library/publications/the-world-factbook/

geos/print_rs.html, viewed April 19, 2018.

[32] Lomovtseva, M, & Henderson, J 2009, ‘Constitutional Justice

in Russia’, Review Of Central & East European Law, 34, 1,

pp. 37-69, Academic Search Premier, EBSCOhost,

viewed 31 January 2018.

[33] Berdy, MA 2016, ‘On the Take’, Russian Life, 59, 2, p. 26,

Academic Search Premier, EBSCOhost, viewed 19 April 2018.

[34] Ledeneva, AV 2013, ‘Russia’s Practical Norms and Informal

Governance: The Origins of Endemic Corruption’, Social Research,

80, 4, pp. 1135-1162, Academic Search Premier, EBSCOhost,

viewed 19 April 2018.

[35] Fein, E 2017, ‘Cognition, cultural practices, and the working

of political institutions: An adult developmental perspective on

corruption in Russian history’, Behavioral Development Bulletin,

22, 2, pp. 279-297, Academic Search Premier, EBSCOhost, viewed

31 January 2018.

[36] About Rosatom, http://www.rosatom.ru/en/rosatom-group/

back-end/national-operator-for-radioactive-waste-management/,

viewed April 05, 2018.

[37] Laverov, N, Omel’yanenko, B, & Yudintsev, S 2011,

‘ Crystalline rocks as a medium for nuclear waste disposal’, Russian

Journal Of General Chemistry, 81, 9, pp. 1980-1993, Academic

Search Premier, EBSCOhost, viewed 5 April 2018.

Authors

Mark Callis Sanders

Sanders Engineering

1350 E. Flamingo Road Ste. 13B

#290

Las Vegas NV 89119

USA

Charlotta E. Sanders

Department of Mechanical

Engineering

University of Nevada

Las Vegas (UNLV)

4505 S. Maryland Pwky

Las Vegas, NV 89154

USA

DECOMMISSIONING AND WASTE MANAGEMENT 269

10 Interestingly, the 2011 Law considers and makes final determination on issues surrounding retrievability of spent nuclear fuel and radioactive

waste. Per Article 3.1. (8) “disposal” is defined as: “the safe holding of radioactive wastes in a radioactive waste disposal site not requiring any

subsequent removal.”

11 Legacy waste is defined per Article 3.1 (1), and consists of such waste created before the promulgation of the 2011 law.

12 The waste categorization description is provided in Article 4 of the 2011 Law.

Decommissioning and Waste Management

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia Part 2 ı Mark Callis Sanders and Charlotta E. Sanders


atw Vol. 64 (2019) | Issue 5 ı May

DECOMMISSIONING AND WASTE MANAGEMENT 270

Guideline to Prepare a Preliminary

Decommissioning Plan for Nuclear

Facilities in Republic of Korea

Byung-Sik Lee and Kyung-Woo Choi

1 Introduction The legal framework of decommissioning in Korea was enhanced through the revision of

Nuclear Safety Act (NSA) and its subordinate status in 2015. According to the revised NSA, the nuclear power plant

licensee should prepare the decommissioning plan (DP), i.e. preliminary DP, at the construction/operation stage of

NPP. Additionally, the licensee should submit the DP, i.e. final DP, for approval of NPP decommissioning in Korea. In

particular, the preliminary DP includes comprehensive implementation plans, maintenance of facility records, and

physical and procedural methods to limit contamination and activation [1]. Therefore it is clear that the nuclear facility

is considered for decommissioning in site selection, design, construction, commissioning and operation phases.

The DP generally includes the decommissioning

strategy including a relevant

technical review report, to provide a

justification for selecting a decommissioning

strategy. The decom missioning

cost is included in the DP, which is estimated

based on the decommissioning

activities of the nuclear facilities to be

dismantled, and if necessary, a decommissioning

cost estimate report should

be attached. The DP also includes

decommissioning schedules, decommissioning

techniques, and manpower/

training programs. Most importantly,

provisions on safety and radiation protection

for population and workers are

systema tically and deeply described [2].

To this end, the DP is divided into a

preliminary DP and a final DP in

accordance with the construction/

operation phase and decommissioning

phase of the nuclear facility,

respectively [1]. The details of the DP

from the preliminary to the final plan

are progressively described in detail.

The most important factor in preparing

the DP is to make full use of the

design/construction/operation data

of the nuclear facilities.

The new nuclear facilities are subjected

to a background survey of the

site including the acquisition of

environ mental information necessary

for environmental impact assessment

from the site selection stage. These data

will be periodically revised until the

decommissioning process, when practical,

it should be helpful. Indeed, such

site-related environmental information

is used as a basis for defining the

surrounding natural radiation of nuclear

facilities and is used as a comparison

to assess the environmental impact

of dismantling nuclear facilities.

However, if there is no background

survey on the sur rounding environment

at the nuclear facility construction

stage, the site environmental survey

is conducted during the operation

of the facility. But, if there is not

enough time to investigate further,

similar area surveys are avail able. In

the case of a new nuclear facility, a

preliminary DP has to be prepared

from its construction license stage and

periodically revised until the final

shutdown of the nuclear facility. The

decommissioning operators include

the appropriateness of decommissioning

method, the appropriateness of

decommissioning cost, the appropriateness

of decommis sioning resources,

the method of decommissioning

safety evaluation, and the decommissioning

waste management plan [3].

The preliminary DP can clearly

show that important records related

to decommissioning, such as facility

design data, design data change

history, and operation records, are

maintained in accordance with the

procedure throughout the life of the

nuclear facility. According to the NSA,

the preliminary DP should be revised

periodically every 10 years in consideration

of operation experience,

lessons of decommissioning similar

facilities, new safety requirements or

revised safety requirements related

with decommissioning, development

trends of selected decommissioning

strategies and related decommissioning

technologies, and so on.

The purpose of this paper is to provide

the guideline how to prepare the

preliminary DP in view of safety considerations

based on the experience of

nuclear facility decommissioning in

major foreign countries.

2 Considerations to

prepare a preliminary

decommissioning plan

The preliminary DP must be sub mitted

at the time of applying for the operating

license of the new nuclear facilities.

Therefore, there is a limit to the depth

of the technical contents of each item

in comparison of the final DP. However,

the preliminary DP should include

the expected decommissioning strategy,

appropriateness of decommissioning

method, calculation of decommissioning

cost, assurance of decommissioning

finance, decom missioning

safety and radiation protection plan,

and decommis sioning waste management

plan. Also, since the most important

inputs to the DP are the design/

construction/operation data, the plan

should describe how these records are

maintained in accordance with relevant

quality assurance programs for

important records related to decommissioning

over the life span. That is,

design data of nuclear facilities, design

data change history, operating records,

etc. should be described in the preliminary

DP [3, 4].

In the preliminary DP, considerations

are given to the following items by

referring to the results of the decommissioning

pre-feasibility study at the

engineering stage of nuclear facilities,

the design specification of facilities,

and the previous decommissioning

experience data at home and abroad.

pp

Final goal of the decommissioning

and application criteria and standards.

pp

Management of spent fuel and

decommissioning waste.

pp

Analysis of critical path activities in

disassembly scenario.

pp

Disclosure important factors in the

decommissioning project management.

3 Identification of

contents in a preliminary

decommissioning plan

3.1 Management of design,

construction and operation

record

Data on design, construction and

operation experience necessary for

Decommissioning and Waste Management

Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


atw Vol. 64 (2019) | Issue 5 ı May

decommissioning activities should be

systematically managed and used as

basic data for DP [3]. The list of necessary

data for each step of the facility

life span is as follows.

pp

Design/construction data management

pp

Management of changes to all

structures, systems and components

(SSCs) using Configuration

Management System

(CMS)

pp

Track design considerations to

increase easy decommissioning

activity

pp

Information on underground

pipes and components in the

site

pp

Startup/operation record management

pp

Modification data management

of SSCs during the facility operation

using CMS

pp

Management of incident/accident

data during the facility

operation

pp

Knowledge management related

with operation experience

pp

Basic site characteristics data

through sampling

pp

Operational waste information

pp

Information on spent fuel

pp

Location and characteristics of

contaminated material release

pp

Existing internal/external

stake holders communication

related materials

Therefore, the decommissioning

operator should provide the details of

how to document and manage the

contents of the preliminary DP during

the operation of nuclear facilities.

Documentation and management

measures should be in place for

nuclear facilities to comply with

existing QA/QC systems.

3.2 Decommissioning organization

and manpower

In general, decommissioning manpower

and organization are important

not only for safe decommissioning

of nuclear facilities but also for

estimate of the decommissioning

cost, because labor cost due to the

manpower and organization is the

important fixed cost in the decommissioning

of nuclear facilities. Therefore,

the preliminary DP should

describe a potential organization and

estimated manpower to perform

decommis sioning activities of the

facility in the decommissioning phase

[5, 6].

In addition, the facility licensee

should describe a decommissioning

support team in the operating

orga nization including the main

duties of its decommissioning workforce

in the operation phase, which

can prepare pre-decommissioning

tasks during the operation period.

And it is also required to describe the

expertise required to perform the

related service, and the qualification

requirements and training requirements

for maintaining its expertise in

the preliminary DP.

3.3 Preliminary decommissioning

cost estimate and

finance assurance

The decommissioning operator shall

estimate the preliminary decommissioning

cost considering the decommissioning

strategy, facility/site characteristics,

applied decommissioning

technique, etc., which are determined

at the design stage of the nuclear facilities

and present the appropriateness

of the estimated results [3]. The main

factors affecting the preliminary cost

are as follows.

pp

Characteristic data of nuclear facility/site

and its decommissioning

scenario.

pp

Experience/knowledge data of the

decommissioning of the facility

and overall decommissioning

market environment (demand and

supply).

pp

Decommissioning waste management:

release criteria, availability

of disposal facilities and acquisition

of waste acceptance criteria.

pp

Schedule of spent fuel transfer

campaign and availability of spent

fuel transport/storage cask.

pp

Site release criteria and site reuse.

pp

Availability of manpower and

decommissioning techniques.

pp

Asset recovery after decommissioning

(asset valuation, asset

recovery method, etc.).

The assumptions and the strategic

decisions for each of above factors

should be clearly indicated in the

preliminary DP, and they should be

continuously managed so that they

can be used to calculate the revised

decommissioning cost for the amendment

DP. The method of securing the

decommissioning resources differs

depending on the country. In Korea,

based on its operating decommissioning

cost funding system, the following

items should be described in

the preliminary DP.

pp

Disbursement fund accumulation

according to result of decommissioning

cost estimate every 2 years.

pp

The decommissioning cost items

and the cost management plan is

precisely specified.

It is also necessary to conduct surveillance

activities to maintain the

security of decommissioning cost, such

as the availability of the cost funding

system, the suitability of the cost

estimation, and the appropriateness of

the cost utilization. For this, the

decommissioning cost execution plan

should be regularly checked step by

step.

3.4 Site and environmental

survey

3.4.1 Status of site and

environment

The site and environmental characteristic

survey are conducted to

obtain the construction permit and

the operation license of the nuclear

facility in the construction phase [5].

Therefore, using these characteristic

data, the preliminary DP should

describe the following site and

environmental status data for the

decommissioning of the facility, which

is used as the basic input data of the

decommis sioning environmental impact

assessment and safety assessment.

pp

Meteorological and topographical

characteristics to predict the

spread of radioactive materials.

pp

Population data for environmental

impact assessment.

pp

Provisions of equipment access to a

decommissioning site and transportation

of decommissioning

waste.

pp

Assessing the social and economic

impact due to the decommissioning

business.

The main items of site and environmental

data to be used in the decommissioning

of the nuclear facility will

be selected from the site and environment

reports prepared for the construction/operation

license of the

nuclear facility. The decommissioning

operator needs to present the management

plan for these important data

related to the decommissioning it in

the preliminary DP.

3.4.2 Radiological status of the

facility, the site and the

environment

Radiological characteristic data

are the basic inputs to all radiation

safety assessment including radiation

environmental impact assessment,

worker exposure dose prediction.

And it can also be used for the selection

of the decommissioning tools/

method, the necessity of the shielding

or iso lation facility, and the waste

management policy [3].

DECOMMISSIONING AND WASTE MANAGEMENT 271

Decommissioning and Waste Management

Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


atw Vol. 64 (2019) | Issue 5 ı May

DECOMMISSIONING AND WASTE MANAGEMENT 272

Therefore, in the preliminary DP it

is necessary to identify all construction

and operation data that are

important to evaluate the radiological

characteristics of facility and site, and

describe the method of systematically

managing these data in operation

stages. These data are used as the

important input for radiological

characterization during the decommissioning

phase. According to experience

of decommissioning at home

and abroad, the following data are

expected to be necessary for the

evalu ation of radiological characteristics

[5, 6].

pp

Radiation distribution inside and

out side the decommissioning facility.

pp

Contamination degree and contamination

distribution.

pp

Nuclide inventory.

pp

Radionuclide type, radioactivity

and distribution.

pp

Justification of measurement point

through prior sampling.

In particular, the design provisions

should be reflected in the reduction of

radiation exposure of workers and the

ease of sampling when performing

these radiological characterization

works.

3.5 Decommissioning strategy

and method

3.5.1 Decommissioning strategy

The decommissioning strategy is

a general plan to achieve the successful

decommissioning, and is set

con sidering the decommissioning

policy, the decommissioning method

and the final goal of the decommissioning

[3]. The decommissioning

operator may determine ‘immediate

decommis sioning’ or ‘delayed decommissioning’

as the decommissioning

strategy through a review of

the adequacy evaluation considering

the following factors or may decide

a third alter native that combines

‘ immediate’ and ‘delayed decommissioning’.

National decommissioning policy.

pp

Laws, regulations and standards to

be applied to the decommissioning

activity.

pp

Facility characteristics, operation

history, radioactivity inventory and

its change with time.

pp

Radiological and conventional

safety assessment.

pp

Spent fuel and decommissioning

waste management.

pp

Change of facility physical conditions

during the decommissioning

period.

pp

Appropriateness and availability of

decommissioning resources.

pp

Availability of experienced personnel

and proven technologies.

pp

Lessons learned from past decommissioning

projects.

pp

Residents’ concerns, including

their social and economic impact

on the community.

pp

Influence of several units within

the site.

pp

Plan of reuse of site or facility (part

of facility) after completion of

decommissioning.

pp

Stakeholder interaction.

The decommissioning operator

should show in the preliminary DP

that the strategy has been established

by appropriately reflecting all above

factors necessary for the strategy

establishment.

3.5.2 Decommissioning method

and schedule

The decommissioning method and

the schedule should be described

roughly in accordance with the

selected decommissioning strategy in

the preliminary DP. It is necessary to

define the decommissioning activities

for each decommissioning step based

on the decommissioning method, and

the decommissioning schedule should

be provided as the project milestone

level [5].

The comprehensive decommissioning

schedule as the milestone level

can show the optimal timetable for decommissioning

sequences considering

the decommissioning stra tegy, the

execution of major activities, and legal

requirements. This should enable us to

understand the overall decommissioning

activities to be carried out during

the entire decommissioning period.

The schedule development helps to

efficiently utilize decommissioning

resources and is also useful for estimating

decommissioning cost. Therefore,

the following key factors should

be considered when establishing the

schedule.

pp

Decommissioning strategies and

methods, experience/knowledge

data.

pp

Decommissioning waste management.

pp

Decommissioning scenario.

pp

Spent fuel transportation schedule

and availability of transport/storage

casks.

pp

Availability of domestic decommissioning

technology/manpower.

pp

Availability of decommissioning

supply chains.

pp

Financial constraints.

pp

Political and social environment.

3.6 Design characteristics and

measures for the decommissioning

facilitation

3.6.1 Design characteristics

The preliminary DP should describe

the information related to the “design

characteristics for the decommissioning

facilitation” as follows [3].

pp

Access way for equipment maintenance

and laydown space for

equipment replacement, which

can be used as a decommissioning

work space in the decommissioning

phase.

pp

Design characteristics to minimize

the radioactive contamination and

the leakage of radioactive materials

from the radioactive systems.

pp

Minimization of concrete buried

pipes and ducts.

pp

Minimization of underground

radioactive waste tanks, sumps

and pipes.

pp

Impurities management in steel

and concrete materials to prevent

the generation of activation products

that affect decommissioning

work.

pp

Equipment layout considering

ALARA guideline when replacing

equipment.

Therefore, the preliminary DP should

also outline the following management

plans and explain how to maintain

its design characteristics.

pp

Management plan of the facility

configuration management system

(CMS) and their records during

the operation phase.

pp

Management plan of the radioactive

material leakage management

system and their records

during operation phase.

pp

Management plan of the design

characteristics for the decommissioning

facilitation during the

operation phase.

3.6.2 Design measures to minimize

radioactive material

leakage, radioactive contamination

and radioactive

waste generation during

the operation

Actions to be performed at the construction

and operation phase of a

nuclear facility should be provided to

confirm the minimization of radioactive

material leakage, radioactive

contamination and radioactive waste

generation, which can be prepared

for the future decommissioning as

follows [5, 6];

pp

Design information on on-site

surveillance systems that can

detect leakage and contamination

Decommissioning and Waste Management

Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


atw Vol. 64 (2019) | Issue 5 ı May

from underground and concrete

buried pipes early.

pp

Design information on separation

and collection of radioactive waste

and non-radioactive waste.

Such information is used as input data

such as “safety assessment” and

“ radioactive protection plan” establishment.

Therefore, it is needed to

describe the information such as

incidents and accidents that contaminated

a facility and a site during

the operation period of nuclear facility,

which can affect decommissioning

activities.

3.7 Safety assessment

Existing safety related systems and

engineered safety features are dismantled

and altered through the

decommissioning of a nuclear facility.

Therefore, the safety assessment of the

decommissioning phase is limited to

the effects of dismantling equipment,

installing new systems, or changing

existing systems. According to the

overseas decommissioning experience,

the decommissioning stage generally

carries out a safety assessment of the

following events [3, 7]:

pp

Fire in facility.

pp

Leaks from container or system.

pp

Heavy material drop.

pp

Supply system failure.

pp

Criticality accident.

pp

Intrusion of water into a facility

with delayed decommissioning.

pp

External accidents (that is earthquakes,

storms, floods etc.).

Radioactive material leakage prevention

and mitigation systems, which

are operating at the operational stage

of a nuclear facility, are not operated

any more due to power supply interruption

or demolition at the disassembly

stage. Therefore, it is necessary

to partially localize the contaminated

area during dismantling

work or to install an additional mobile

exhaust system.

Especially when the exhaust

system fails due to fire, “fire” will

become a radiological representative

design basis accident. It is necessary

to describe the development of

scenarios for these various accidents,

the evaluation methodology for

them, and describe the methods

of preventing and mitigating accidents.

3.8 Radiation protection

A radiation protection plan during the

decommissioning phase should be

established to identify major issues

affecting worker exposure by decommissioning

activities. In general, the

radiation protection plan should

include the following [3, 4]:

pp

Prediction and minimization of

radiation exposure of workers.

pp

Radiation safety management plan

during decommissioning work.

pp

For the various decommissioning

options, prediction of the expected

dose and measures to comply with

the ALARA guidelines through

decommissioning radiation management.

When establishing the preliminary

DP, the radiation protection plan is

described as follows by establishing a

radiation safety management plan

that minimizes the workers’ exposure.

pp

Establishment of radiation protection

policy and application of

ALARA guidelines.

pp

Radiation Safety Plan during

decommissioning activities.

pp

Monitoring plan of special radiation

dose and air contamination in

the workplace.

pp

Plan for entry and exit of workers

and equipment.

pp

Evaluation and selection of radiation

protection tools.

3.9 Decommissioning activity

There are many decontamination,

dismantling and demolition techniques

necessary for the decommissioning

of nuclear facilities, which

depends on the type of facilities (types

of radioactive contaminations, degree

of contamination), regulatory clearance

and removal of radionuclides.

Therefore, proper decommissioning

techniques should be selected considering

the characteristics of decommissioning

activities and contents of

each decommissioning stage [4].

When decommissioning techniques

(or potential decommissioning techniques)

are selected, consider the

following points.

pp

Safety,

pp

Efficiency,

pp

Cost-effectiveness,

pp

Waste minimization,

pp

Feasibility of industrialization.

The decommissioning operator

should identify the status of proven

decommissioning technologies and

potential decommissioning technologies,

and periodically review these

decommissioning technologies from

the viewpoint of technology availability.

Therefore, it is necessary to investigate

the optimal decommissioning

techniques from the above five

perspectives based on the time of

preparation of the preliminary DP,

and describe them in the preliminary

DP. And it is necessary to outline the

decommissioning execution plan

using these techniques.

3.10 Radioactive waste

management

In Korea, the decommissioning waste

management cost accounts for about

40% of total decommissioning cost.

Therefore, it is necessary to establish a

decommissioning waste management

plan and make every effort to minimize

the amount of radioactive waste

generated during the decommissioning

phase. To this end, decommissioning

waste management in the preliminary

DP is considered for the as

following points, and they should be

outlined in the preliminary DP [3]:

pp

Management plan of radioactive

waste generated during operation

of nuclear facilities including spent

fuel before entering decommissioning

activity.

pp

Review of decommissioning waste

management plan including sorting/disposal

method, recycling

method, volume reduction method

by cost/benefit analysis.

pp

Operation plan review of decommissioning

waste comprehensive

treatment facility.

pp

Estimation and confirmation of

total decommissioning wastes.

pp

Comprehensive plan for removal

and disposal of large-sized equipment.

The decommissioning waste management

plan is closely related to the

national waste management policy

and should therefore be taken into

account. The preliminary DP outlines

the radioactive waste management

based on the following technical

review:

pp

Waste classification.

pp

Evaluation of liquid/solid waste

treatment technology.

pp

Evaluation of waste characteristics

technology.

pp

Utilization and disposal plan of

clearance wastes.

pp

Management plan of non-radioactive

waste in the decommissioning

of nuclear facilities.

3.11 Environmental impact

assessment

The population exposure is assessed

in the radiological environmental

impact assessment due to the release

of radioactive materials to the environment

during the decommissioning

phase. In the assessment, it is necessary

to evaluate the environmental

impacts of decommissioning period

by using survey data of environmental

characteristics such as terrain and

DECOMMISSIONING AND WASTE MANAGEMENT 273

Decommissioning and Waste Management

Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


atw Vol. 64 (2019) | Issue 5 ı May

DECOMMISSIONING AND WASTE MANAGEMENT 274

climate, radioactive material release

data etc., and then to establish countermeasures

to minimize the impact.

Even if counter measures are properly

established, the radiation surveillance

of the surrounding area should be

continuously carried out to confirm

the validity and sustainability of the

impact assessment to be performed

[3, 4].

The radiological impact assessment

plan for population needs a rough

description of the following points:

pp

Exposure scenarios with potential

exposure pathways.

pp

Population exposure evaluation

method during the normal operation.

pp

Population exposure evaluation

method during the accident.

pp

Plan to minimize radiological

impacts.

3.12 Fire protection

Since there are combustible materials

such as electric wires and PVC pipes in

nuclear facilities, there is a possibility

of a potential fire accident when

decommissioning as follows [6, 7];

pp

Fire risk due to electric short

circuit.

pp

Fire hazard when cutting with

oxygen-acetylene torch.

To minimize the likelihood of fire

accident during the decommissioning

phase, flammable materials should

not be stored in decommissioning

facilities unless stored in a refractory

installation. In order to prevent the

possibility of fire accident due to short

circuit, all existing power supply is cut

off and a separate external power

supply is used. Since additional

flammable and ignitable materials

can be used in the decommissioning

of nuclear facilities, the fire protection

plan applied to the operating nuclear

facility must be modified in consideration

of decommissioning

charac teristics.

Therefore, the preliminary DP

should outline the fire protection

plan for prevention, detection, and

evolution of fires that may occur during

the decommissioning process, taking

into consideration the characteristics

of the expected decommissioning

activities.

4 Conclusion remarks

The decommissioning plan (DP) is

divided into the preliminary DP

and the final DP according to the construction/operation

phase of the nuclear

facility in Korea. It is described in

detail from the preliminary DP to the

final DP. The most important factor in

preparing the DP is to make full use of

the design/construction/operation

data of the nuclear facilities.

Therefore, in this study, it is

reviewed the major safety considerations

such as safe dismantling activities

of nuclear facilities, dismantling

procedures and dismantling methods,

which is necessary for the preparation

of the DP through the review of local

and oversea decommissioning lessons

learned experience.

Since the preliminary DP must be

submitted at the time of applying for

the construction phase of the new

nuclear facilities, there is a limit to the

depth of the technical contents of each

item in comparison with the final DP.

Nonetheless, the preliminary DP

should include the expected decommissioning

strategy, the appropriateness

of decommissioning, securing

decommissioning resources, decommissioning

safety and radiation protection

plans, and the amount of

decommissioning waste generation.

Since the most important input to

prepare the DP is the design/construction/

operation data, these data are

carefully maintained over their lifetime

in accordance with the relevant

quality assurance procedures. Therefore,

it is necessary to describe the

management programs of these data

in the preliminary DP.

The safety consideration for the

preparation of the preliminary DP is

reviewed and its preparation guideline

is established. However, in order to

prepare a preliminary DP for existing

nuclear facilities in Korea, it is necessary

to draw up important factors for

enhancing decommis sioning safety

and efficiency by conducting a conceptual

decommis sioning design, when

prepare the DP. And it needs to know in

advance what the key design and operational

data related to these factors are.

For example, the database showing

the contamination information inside

the nuclear facility is a basic data for

evaluating the facility characteristics,

managing the radiation of the workers,

and evaluating the amount of

waste disposal. Therefore, it is necessary

to understand and supplement

the current status on the database in

the nuclear facilities. For all important

factors it is necessary to construct and

operate related database system to

manage them for decommissioning

activity from the design stage of

nuclear facilities.

Acknowledgments

This work was supported by the

Nuclear Safety Research Program

through the Korea Foundation of

Nuclear Safety (KoFONS), granted

financial resource from the Nuclear

Safety and Security Commission

( NSSC) (No. 1605008-0318-SB110),

and by the National Research Foundation

of Korea (NRF), granted financial

resource from the Ministry of

Science, ICT and Future Planning

(No. 2017M2A8A5015148 and No.

2016M2B2B1945086), Republic of

Korea.

References

1. NSSC Notice 2015-8 (2015), Standard Format and Content of

Decommissioning Plan for Nuclear Facilities, Korea Nuclear

Safety and Security Commission.

2. IAEA (2005), Standard Format and Content for Safety Related

Decommissioning Documents. IAEA Safety Reports Series No.

45

3. IAEA (2014), Decommissioning of Facilities “General Safety

Requirements”. IAEA Safety Standard Series No. GSR Part 6

4. IAEA (1999), Safety Guide on Decommissioning of Nuclear

Power and Research Reactors. Safety Standard Series No.

WS-G-2.1

5. EPRI (2001), Decommissioning Pre-Planning Manual.

1003025, Final Report

6. EPRI (2006), Decommissioning Planning, Experiences from

U.S. Utilities. 1013510, Final Report

7. GRS (2009), Guide to the Decommissioning, the Safe Enclosure

and the Dismantling of facilities or parts thereof as defined

in Section 7 of the Atomic Energy Act.

Authors

Byung-Sik Lee

1 Dankook University

119, Dandae-ro, Dongnam-gu,

Cheonan-si

Chungnam, 31116

Republic of Korea

Kyung-Woo Choi

2 Korea Institute of Nuclear Safety

62 Gwahak-ro, Yuseong-gu

Daejeon, 34142

Republic of Korea

Decommissioning and Waste Management

Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


atw Vol. 64 (2019) | Issue 5 ı May

PARCS-Subchanflow-TRANSURANUS

Multiphysics Coupling for High Fidelity

PWR Reactor Core Simulation:

Preliminary Results

Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan

1 Introduction Traditionally, reactor core simulators use simplified models to predict the fuel temperature

and thermal-hydraulic conditions in the core. To achieve better accuracy detailed models should be used to describe all

different physical processes (Multiphysics approach).

Simplified solvers for the fuel temperature

don’t capture the material

behavior under irradiation such as,

swelling, cracking, pellet-clad interaction,

etc. These phenomena affect

properties such as fuel thermal

conductivity, the fuel rod gap conductance

which has an impact in the

calculation of the fuel temperature. It

is known that the gap conductance

during reactor lifetime, depends

strongly on the irradiation and power

history as shown for instance in [Bielen

2015] thermal-hydraulic, and fuel

thermo-mechanical behavior of the

core components. Typically in current

generation reactor physics analysis

these three component areas are given

separate consideration or are at best

loosely coupled. Within this work, a

methodology for tightly coupling the

core neutronics code PARCS, thermalhydraulics

code PATHS, and fuel

rod simulator code FRAPCON was developed.

This coupled code package,

referred to as FRAPARCS, was applied

to two fuel depletion problems: a pin

cell and a 5x5 assembly mini-core.

The results of the depletion calculations

indicate that standalone PARCS

does not adequately capture the

evolution of fuel rod behavior which

influences the Doppler fuel temperature

used in cross section evaluation,

and as a result significant differences

in computed core performance can be

seen. In particular, the behavior of

the fuel-cladding gap and associated

temperature drop was found to be important.

FRAPARCS was then applied

to the pin cell calculation to evaluate

the uncertainty and sensitivity of the

nuclear performance of the core due

to the influence of fuel thermo-mechanical

models available for manipulation

in FRAPCON. A sensitivity study

was conducted to determine which

fuel models were influential on the

neutronics outputs; we determined

that fuel thermal conductivity, fuel

thermal expansion, cladding creep,

and fuel swelling had an important

influence on the core Doppler temperature

and reactivity. Additionally,

the heat transfer coefficient was found

to be important. Then, FRAPARCS

was integrated within the DAKOTA

uncertainty package. Two varieties

of sampling-based methods (Random

and Latin Hypercube Sampling).

There are only few publications about

mutiphysics simulations in the area of

fuel behavior studies [e.g. Magedanz

et al. 2015; Hales et al. 2014] and,

even less containing studies of reactor

core simulations [Holt et al. 2016; Holt

et al. 2014].

In an evolutionary approach, at the

Karlsruhe Institute for Technology

(KIT), the NRC’s neutronics core

simulator PARCS [Downar et al. 2012]

is being integrated with KIT’s subchannel

code SUBCHANFLOW (SCF)

[Imke, Sanchez, and Gomez-Torres

2010] and ITU’s fuel behavior code

TRANSURANUS (TU) [Lassman et al.

1992] into a single code, PARCS- SCF-

TU. For the SCF model, each fuel

assembly is represented as a single

channel and, analogously, a fuel

assembly in the TU model is represented

as an average fuel rod. One of

the objectives of this coupling is to

study the impact that high fidelity

solvers have on reactor core simulations.

Moreover, a main objective of

this coupling is the modeling of

the RIA transient scenario for high

burnup conditions. For this scenario,

the fuel properties and fuel temperature

modeling are of great importance

since current simulations don’t

account for details of the fuel rod

thermos-mechanics and subchannel

thermal hydraulics. The need of this

kind of calculations is an issue brought

up in recent years by the CSNI

( Committee on the Safety of Nuclear

Installations) Working Group on Fuel

Safety [OECD/NEA 2010] and a topic

under discussion for regulatory

authorities in many countries in

Europe.

In this paper, results for the OECD/

NEA and U.S. NRC PWR MOX/UO2

core transient benchmark core are

used to compare PARCS-SCF and

PARCS-SCF-TU with the PARCS

standalone solution. Preliminary results

are given, which show the impact

of modeling the fuel temperature

with a fuel behavior code considering

burnup.

2 Methodology

The neutronics core simulator PARCS,

the sub-channel solver SCF and the

fuel behavior solver TU have been

merged together into a single executable

PARCS-SCF-TU. In this Multiphysics

coupling, SCF replaces the

simple thermal hydraulic solver of

PARCS and TU replaces the fuel rod

solver of SCF to compute the fuel and

cladding temperature distributions.

The involved codes are written

in FORTRAN using different programming

styles and FORTRAN versions.

The internal coupling has been

developed in Microsoft Visual Studio

following its convention for solutions

and projects management. To maintain

an organized coding and avoid

undesired callings to duplicate subroutines

or variable names a modularized

approach is used. The original

codes are encapsulated in projects and

they only interact with each other via

a main project. Only in special circumstances

this rule isn’t followed.

New coding necessary for the communication

of the codes is modularized

in a project dedicated to the

coupling. All modifications to the

original source code were implemented

with pre-compiler directives.

This allows the user to compile either

only PARCS, or only PARCS-SCF or

PARCS-SCF-TU depending on the

used keywords.

275

RESEARCH AND INNOVATION

Research and Innovation

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


atw Vol. 64 (2019) | Issue 5 ı May

RESEARCH AND INNOVATION 276

In this coupling approach, the

activation of the different solvers e.g.

SCF’s TH model or TU’s fuel solver

can be activated by the analyst

independently. If SCF is activated, the

options belonging to SCF can be used

for the simulation. If the TU solver is

invoked, then the SCF solver must be

also used. In the reactor core model

for PARCS-SCF-TU, each fuel assembly

is represented by one neutronic node

in PARCS, by one average thermal

hydraulic channel in SCF and by one

average fuel rod in TU. The three

codes share the same axial discretization.

The original PARCS input deck

has been extended to control the

coupled simulation and the mapping

between the three different computational

domains.

PARCS and SCF are coupled for

steady state and transient simulations,

whereas TU is coupled to PARCS-SCF

for steady state simulations and the

transient coupling is under development.

The coupling was implemented

in such a way that the original inputs

of each code can be used with minimal

or no modifications. Only the PARCS’

input includes new key commands to

indicate that a coupled simulation will

be performed, to choose the parameters

for the coupling and to define

information about the mapping.

2.1 Coupling description

A loose, nodal level coupling using

the Operator-Splitting (OS) method

[Faragó 2008] was implemented. The

operator split method has the advantage

of allowing the use of legacy

codes with minor modifications to the

original source. This is a valuable

point since the validation of individual

code requires big effort, making

the reuse of validated tools a common

practice in the nuclear field.

The PARCS-SCF-TU’s iteration

scheme for the steady state coupling

is represented in Figure 1 and the

iteration process is described hereafter:

Initialization:

1) PARCS assumes flat TH conditions,

and predicts 3D power distribution

à pass information to TU.

2) SCF assumes initial flat power

distribution and compute TH

distribution à pass TH conditions

to TU.

3) TU compute fuel temperature

distribution (fuel and clad) for all

fuel assemblies à pass information

to SCF.

4) SCF computes TH conditions with

given clad temperature as B.C. à

pass TH information to TU.

5) Iteration loop consisting of step 3

and 4 until convergence of fuel

temperature and TH conditions is

achieved.

6) SCF/TU Converges à pass fuel and

coolant temperature and coolant

density to PARCS.

Then, the process continues with the

iteration loop after initialization:

1) PARCS computes power with updated

TH conditions: k pass power

to TU.

2) TU Computes fuel assemblies k

pass fuel temperature fields to SCF.

3) SCF computes TH conditions k

pass information to TU.

4) Iteration loop from step 2 to 3 until

convergence k when convergence

criteria is achieved, information is

passed to PARCS.

5) Finally, the iterative process iterates

from 1) until convergence criteria

are met.

The coupling scheme for PARC-SCF

transient calculation is shown in

Figure 2. An explicit coupling is used

in these calculations and its convergence

is achieved with small time

steps [Mylonakis et al. 2014] various

physical phenomena of different

nature are interrelated. Multi- physics

calculations that account for the interrelated

nature of the neu tronic and

thermal-hydraulic pheno mena are of

major importance in reactor safety and

design and as a result a special effort is

developed within the nuclear engineering

scientific community to improve

their efficiency and accuracy. In

addition, the strongly hetero geneous

nature of reactor cores involves phenomena

of different scales. The interaction

between different scales is a

specificity of these systems, since a

local per turbation might influence

the be havior of the whole core, or a

global perturbation can influence the

properties of the media on all scales.

As a consequence, multi- scale calculations

are required in order to take

the reactor core multi- scale nature

into account. It should be mentioned

that the multi-physics nature of a

nuclear reactor cannot be separated

from the multi-scale one in the

framework of computational nuclear

engineering as reactor design and

safety require computational tools

which are able to examine globally the

com plicated nature of a nuclear reactor

in various scales. In this work a

global overview of the current status

of two- physics (neutronic/thermalhydraulic.

The transient coupling has been

implemented for PARCS with SCF.

The coupling with TU is under development.

3 Verification

of the coupled tool

PARCS-SCF-TU is compiled into one

single executable and certain options

in PARCS input are enabled or disabled

to run either PARCS standalone,

PARCS-SCF or PARCS-SCF-TU.

During the verification, several

small tests cases were performed in a 3

by 3 fuel assemblies PWR minicore for

steady state (PARCS-SCF and PARCS-

SCF-TU) and transient (PARCS- SCF)

situations observing good agreement

between the codes. For the sake of

brevity only results for a more complex

reactor will be presented here. The

OECD/NEA and U.S. NRC PWR MOX/

UO2 core transient benchmark

[ Kozlowski, T and Downar 2003] was

used for verification purposes. The

cross sections used for the simulation

are directly taken from the benchmark.

Input models for SCF, PARCS

| | Fig. 1.

PARCS-SCF-TU coupling scheme for steady

state simulations.

| | Fig. 2.

Time flow scheme for PARCS-SCF coupling.

Research and Innovation

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


atw Vol. 64 (2019) | Issue 5 ı May

PARCS-SCF

PARCS- internal TH

Number of outer iterations 28 28

Time (sec) 124.1 18.8

Critical Boron concentration (ppm) 1693 1681

Tcenterline-max (°C) [local] 1406 1560

Tcool-outlet (°C) 325.81 325.84

Tcool-inlet (°C) 286.85

| | Tab. 1.

Results for HFP conditions with al CR out.

and TU are derived from the benchmark

specifications.

The purpose is to test the correctness

of the implementation by

comparing the results obtained with

PARCS standalone, PARCS-SCF and

PARCS-SCF-TU. The SCF model is as

similar as possible to the PARCS internal

thermal-hydraulics. The model of

TU corresponds to a fresh UO 2 fuel pin

with the geometry derived from the

benchmark specifications, being the

purpose of this to match the simplified

model of PARCS’ internal solver.

3.1 OECD/NEA and U.S. NRC

PWR MOX/UO2 Core

Transient Benchmark

description

The benchmark PWR reactor core

consist of 193 fuel assemblies

arranged in a Cartesian geometry. It’s

composed by UO 2 and MOX fuel types

with dif ferent enrichments, and seven

different burnup points. The necessary

specifications to generate the input

models are described in the

benchmark [Kozlowski, T and Downar

2003].

In the benchmark, burnup is

considered in the cross-section

generation but not in the material

properties of the fuel.

thermal-hydraulics to check the correct

implementation of SCF in the coupling.

When comparing local differences for

the power distribution, the maximum

local difference (node to node comparison)

is


atw Vol. 64 (2019) | Issue 5 ı May

RESEARCH AND INNOVATION 278

| | Fig. 4.

Power evolution for the OECD/NEA and U.S. NRC PWR MOX/UO2 core transient benchmark computed

with PARCS-SCF and compared against other benchmark participants.

The calls to TU’s solver increase

greatly the computational time. There

are 2 main reasons for this, the first is

that TU’s solver must read TU’s input

every time the solver is called which

generates a big overhead for TU’s

calculations. The second is that TU’s

solver is more time consuming than

the simplified solver of SCF for the

fuel temperature since it describes the

thermo-mechanics including fission

gas release in a more accurate manner

than SCF. TU solvers one FA at a time,

so a parallel implementation for TU

is being considered to speed up the

calculations.

3.3.1 PARCS-SCF-TU:

Burnup consideration

in fuel properties

One of the advantages of having

coupled TU with PARCS-SCF is the

possibility to simulate the burnup

dependent fuel material properties

and the behavior of irradiated fuel. In

the benchmark PWR core, the fuels

have 7 defined burnup points. These

burnups are considered in the crosssection

generation process, but they

are not considered in the material

properties (such as the gap conductance)

when computing the radial

fuel temperature (in an average pin).

A steady state calculation for the

benchmark PWR core was performed

with PARCS-SCF-TU for 2 cases: The

first case considering fresh uranium

in the TU model, the second case considering

the corresponding burnup

condition of each fuel in the TU

model. The rest of the parameters in

the model of PARCS, SCF and TU

remain the same.

Figure 6 shows a comparison of

the fuel centerline temperature for

calculations with PARCS-SCF-TU for

three different fuels with different

burnup. As it is expected the difference

between both solutions (with

and without BU considerations in

TU’s input model) grow higher as the

burnup goes up.

4 Discussion

In the comparison for the PARCS-SCF-

TU calculation with burnup considerations,

it is observed that there

is a considerable influence of the

burnup in the fuel temperature

distribution. Figure 6 shows that

the higher the burnup, the higher the

differences in the fuel temperature

when comparing to cases w/o burnup.

Differences for the fuel centerline

temperature rising up to 130 ºC when

comparing results considering the

burnup history of the fuels or not

doing so in TU input. These differences

show that there is a considerably

impact when having taken

into account fuel BU history in

material properties and suggest that

further analyses should be done in

this direction.

A good agreement has been found

in the steady state and transient

comparisons of PARCS-SCF against

PARCS standalone solution showing

a correct implementation of the

coupling. The comparison of the

PARCS- SCF results against the ones of

the benchmark participants shows a

good agreement.

Regarding the comparison of

PARCS-SCF against PARCS standalone

for the transient simulation a small

over peak can be observed in PARCS-

SCF which can be explained because

of the different models for fuel rod

properties. Whereas the peak time

and the width of the peak are the

same as expected since (as explained

by the adiabatic Nordheim-Fuchs

model) they depend on the inserted

a) PARCS-SCF axially integrated power at power peak time. b) PARCS-SCF vs PARCS standalone relative power

difference at power peak time.

| | Fig. 5.

UO2/MOX PWR Benchmark axially integrated power distribution - Comparison of PARCS-SCF vs PARCS standalone solutions.

Research and Innovation

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


atw Vol. 64 (2019) | Issue 5 ı May

| | Fig. 6.

Centerline fuel temperature. Results considering No Burnup (blue) vs considering Burnup (red)

at different burnup points.

| | Magedanz, J., M. Avramova, Y. Perin, and A.K. Velkov. 2015.

High-Fidelity Multi-Physics System TORT-TD/CTF/FRAPTRAN for

Light Water Reactor Analysis. Annals of Nuclear Energy 84.

Elsevier Ltd: 234–43. doi:10.1016/j.anucene.2015.01.033.

| | Mylonakis, A. G., M. Varvayanni, N. Catsaros, P. Savva, and D. G

E Grigoriadis. 2014. Multi-Physics and Multi-Scale Methods Used

in Nuclear Reactor Analysis. Annals of Nuclear Energy 72. Elsevier

Ltd: 104–19. doi:10.1016/j.anucene.2014.05.002.

| | OECD/NEA. 2010. Nuclear Fuel Behaviour during Reactivity

Initiated Accidents. Paris, France.

Authors

Joaquín R. Basualdo

Victor H. Sánchez

Robert Stieglitz

Karlsruhe Institute of Technology

Institute of Neutron Physics and

Reactor Technology

Herman-vom-Helmholtz-Platz-1

76344 Eggenstein-Leopoldshafen

Germany

Rafael Macián-Juan

Technische Universität München

Lehrstuhl für Nukleartechnik

Boltzmannstraße 15

85747 Garching bei München

Germany

RESEARCH AND INNOVATION 279

reactivity and the precursors constant

which are the same in both cases.

PARCS-SCF-TU results have been

compared against PARCS-SCF and

PARCS standalone using fresh fuel

condition in TU model. Local comparisons

for the fuel average, and fuel

centerline temperature, show a good

agreement between the solutions

confirming the correct implementation

of the coupling approach.

Finally, it should be noted that the

calculation time of PARCS-SCF-TU increased

considerably since the TUsolver

must be called as many time as

the number of fuel assemblies during

each SOR-iteration of SCF. This is

approximately 193 calls to the TUsolver

times approximately 10 to 15

SOR iterations per PARCS inner

iterations (~30). So far, no optimization

of the numerical methods

to accelerate convergence have been

implemented and implementations

like the predictor-corrector method

is in the plans for future improvements.

5 Conclusions and Outlook

The consideration of burnup history

in fuel properties in PARCS-SCF-

TU has shown significant differences

in fuel temperature prediction as

expected. The code-to-code comparison

demonstrated the correct implementation

of the coupling.

The implementation of a predictorcorrector

method to accelerate the

convergence on the fuel temperature,

along with a parallel implementation

are planned to be implemented for the

PARCS-SCF-TU code to speed up the

calculation. The development of

PARCS-SCF-TU for transient simulations

is underway and it will pave the

way for the analysis of RIA-scenarios

and high burnup fuels.

Acknowledgments

The authors acknowledge the support

of the Nuclear Safety Program of the

Karlsruhe Institute of Technology and

the support of the DAAD for the

founding on the PhD research of J.

Basualdo.

References

| | Bielen, Andrew Scott. 2015. Sensitivity and Uncertainty Analysis

of Multiphysics Nuclear Reactor Core Depletion. University of

Michigan.

| | Downar, Thomas, Yunlin Xu, Volkan Seker, and Nathan Hudson.

2012. PARCS v3.0 U.S. NRC Core Neutronics Simulator: Theory

Manual. Ann Arbor.

| | Faragó, István. 2008. A Modified Iterated Operator Splitting

Method. Applied Mathematical Modelling 32 (8): 1542–51.

doi:10.1016/j.apm.2007.04.018.

| | Hales, J.D., M.R. Tonks, F.N. Gleicher, B.W. Spencer, S.R.

Novascone, R.L. Williamson, G. Pastore, and D.M. Perez. 2014. Advanced

Multiphysics Coupling for LWR Fuel Performance Analysis.

Annals of Nuclear Energy 84. Elsevier Ltd: 98–110. doi:10.1016/j.

anucene.2014.11.003.

| | Holt, L., U. Rohde, S. Kliem, S. Baier, M. Seidl, P. Van Uffelen, and

R. Macián-Juan. 2016. Investigation of Feedback on Neutron

Kinetics and Thermal Hydraulics from Detailed Online Fuel

Behavior Modeling during a Boron Dilution Transient in a PWR

with the Two-Way Coupled Code System DYN3D-TRANSURANUS.

Nuclear Engineering and Design 297 (December 2015). Elsevier

B.V.: 32–43. doi:10.1016/j.nucengdes.2015.11.005.

| | Holt, L., U. Rohde, M. Seidl, A. Schubert, P. Van Uffelen, and R.

Macián-Juan. 2014. Development of a General Coupling Interface

for the Fuel Performance Code TRANSURANUS - Tested with the

Reactor Dynamics Code DYN3D. Annals of Nuclear Energy 84.

Elsevier Ltd: 73–85. doi:10.1016/j.anucene.2014.10.040.

| | Imke, Uwe, Victor Sanchez, and Armando Miguel Gomez-Torres.

2010. SUBCHANFLOW: A New Empirical Knowledge Based

Subchannel Code. In KTG. Berlin.

| | Kozlowski, T, and T.J. Downar. 2003. OECD/NEA and US NRC

PWR MOX/UO2 Core Transient Benchmark. Working Party of the

Physics of Plutonium Fuels and Innovative Fuel Cycles, OECD/NEA

Nuclear Science Committee, no. December: 1–18. http://scholar.

google.com/scholar?hl=en&btnG=Search&q=intitle:OECD/

NEA+AND+U.S.+NRC+PWR+MOX/UO2+CORE+TRANSIENT+

BENCHMARK#0.

| | Lassman, K., C. O. Carroll, J. van de Laar, and C. Ott. 1992.

TRANSURANUS: A Fuel Analysis Code Ready for Use. Journal of

Nuclear Materials, 295–302.

Research and Innovation

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


atw Vol. 64 (2019) | Issue 5 ı May

Special Topic | A Journey Through 50 Years AMNT

280

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT

Am 7. und 8. Mai

2019 begehen wir

das 50. Jubiläum

unserer Jahrestagung

Kerntechnik. Zu

diesem Anlass öffnen

wir unser atw-Archiv

für Sie und präsentieren

Ihnen in jeder

Ausgabe einen

historischen Artikel.

Aus der Ansprache

des Bundesministers

für Umwelt,

Naturschutz und

Reaktorsicherheit,

Prof. Dr. K. Töpfer,

an die Teilnehmer

der JK’88 am 17. Mai

1988 in Travemünde.

Ja zur Kernenergienutzung in

internationaler Sicherheitspartnerschaft

Klaus Töpfer

| | Eröffnungsveranstaltung 1988.

Auch und gerade unter dem Eindruck der Unzulänglichkeiten und Verfehlungen, die die öffentliche Diskussion um

die Kernenergie bei uns in den vergangenen Monaten bestimmt haben, ist es meine feste Überzeugung, daß auch der

Sachverstand der Unternehmen, ihr Eigeninteresse und ihre hohe Verantwortung für einen sicheren und umweltverträglichen

Betrieb wesentlicher Teil des Kontrollgefüges in einer hochtechnisierten, modernen Industrie ist. Dieses

Interesse und die Verantwortlichkeit müssen allerdings nachdrücklich wahrgenommenund kontinuierlich unter Beweis

gestellt werden. In der internationalen Diskussion nach Tschernobyl ist für dieses ständige Bemühen um die verantwortliche

Gewährleistung von Sicherheit, für die Selbstverpflichtung auf exzellente Leistung und auf eine dynamische

Weiterentwicklung von Sicherheit und Risikovorsorge der Begriff Sicherheitskultur als Ethos für die in der Kerntechnik

Tätigen geprägt worden. Ich glaube, daß dies sehr genau das trifft, was wir für jeden sichtbar zukünftig unter Beweis

stellen müssen.

Eine Technologie mit dem Anspruch Zukunftstechnologie

kann und darf nicht gegen die Bevölkerung durchgesetzt

werden. Wenn Vertrauen und Zuversicht in eine erfolgreiche

Kerntechnik zum Nutzen von Mensch und Umwelt

wiederhergestellt werden sollen, dann muß rückhaltlos

aufgeklärt und offen informiert werden, dann muß die

Gegenwart neu geordnet und der Weg in die Zukunft neu

bestimmt werden und überall wo nötig, muß auch tief

geschnitten werden. Genau das hat die Bundesregierung

in den zurückliegenden zwei Jahren klar und unmißverständlich

getan, und sie wird es auch weiterhin tun.

Mit der Neustrukturierung der Kernenergiewirtschaft

verbinde ich folgende Zielsetzungen:

pp

Schaffung klar abgegrenzter Aufgabenbereiche;

pp

eindeutige Zuordnung wirtschaftlicher Verantwortlichkeiten;

pp

nachhaltige Verbesserung der Kontrollmöglichkeiten

für die Exekutive;

pp

Transparenz und Nachvollziehbarkeit des Aufgabenverständnisses

und der Aufgabenwahrnehmung für

Politik und Öffentlichkeit.

Um dies zu erreichen, werden die Verflechtungen in der

deutschen Kernenergiewirtschaft deutlich verringert.

Querverbindungen in sensiblen Bereichen müssen ausgeschlossen

werden, damit sich ähnliche Vorfälle in Zukunft

nicht wiederholen können.

Im Mittelpunkt des Konzeptes, das ich mit den Verantwortlichen

der deutschen Wirtschaft abgestimmt habe

und das auch von den Genehmigungs- und Aufsichtsbehörden

der Länder mitgetragen wird, steht eine klare

Trennung der unternehmerischen Verantwortung in

folgenden Bereichen:

1. Transport von radioaktiven Abfällen und Brennelementen;

2. Konditionierung und Zwischenlagerung schwach- und

mittelradioaktiver Abfälle;

3. Herstellung von Kernbrennstoffen;

4. Betrieb von Kernkraftwerken und Wiederaufarbeitung

von Kernbrennstoffen.

Für die Beförderung radioaktiver Abfälle und Brennelemente

ist die Zusammenfassung der Dienstleistungen

unter der unternehmerischen Führung der Deutschen

Bundesbahn vorgesehen.

Der Bereich der Konditionierung schwach- und mittelradioaktiver

Abfälle wird einem Unternehmen übertragen.

Die Verantwortung jedes einzelnen Kernkraftwerksbetreibers

nach § 9 a AtG als Abfallverursacher und

Ablieferungspflichtiger ans Endlager und die Gesamtverantwortung

aller Betreiber bleibt bei dieser Lösung

unberührt.

Auch der Bereich der Zwischenlagerung radioaktiver

Abfälle wird- wie die Konditionierung-einem Unter nehmen

zugeordnet.

Die Antwort auf erkannte Schwachstellen und Risiken

und möglichen negativen Folgewirkungen von Technik ist

nicht der Verzicht auf den technologischen Fortschritt, sondern

ist die ständige Suche nach der besseren, sichereren

Technik, ist eine ständige weitere Optimierung von Umweltvorsorge,

durch Risikovorsorge und durch Zukunftsvorsorge.

Die Pflicht zur bestmöglichen Vorsorge für Bevölkerung

und Umwelt bedeutet aber, daß man sich auf dieses

Präventivkonzept allein nicht beschränken darf. Solange

schwere Reaktorunfälle, wie Kernschmelzen, mit einer Freisetzung

größerer Mengen radioaktiver Stoffe in die Umwelt

nicht völlig ausgeschlossen werden können, muß auch für

Special Topic | A Journey Through 50 Years AMNT

Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft ı Klaus Töpfer


atw Vol. 64 (2019) | Issue 5 ı May

281

| | Blick ins Auditorium in Travemünde. | | Ansprache des Bundesministers für Umwelt, Naturschutz

und Reaktorsicherheit, Prof. Dr. K. Töpfer.

diesen Fall Vorsorge getroffen werden. Staatlich geförderte

Forschung und Entwicklung hat in diesem Bereich zahlreiche

Möglichkeiten eröffnet. Mir geht es darum, bei den

heutigen Kernkraftwerken über die getroffene Schadensvorsorge

hinaus zu erreichen, daß die letzte entscheidende

Barriere für die Zurückhaltung radioaktiver Stoffe von der

Umwelt, nämlich der Sicherheitsbehälter, auch bei Belastungen

infolge schwerer Reaktorstörfälle, insbesondere

Kernschmelzen, in seiner Wirksamkeit weitgehend erhalten

werden kann. Unsere Kernkraftwerke verfügen hier über

technische Potentiale, die erschlossen werden können, wie

es z. B. mit der kontrollierten, gefilterten Druckentlastung

bereits geschehen ist. Die Vorsorge ist hier noch weiter zu

optimieren, z. B. was die Kontrolle des Wasserstoff problems

angeht, das durch den Bericht des Senators Rausch für das

französische Parlament besondere Aktualität bekommen

hat. Durch die Inertisierung bei Siedewasserreaktoren wird

diesem Problem dort Rechnung getragen; das Prüfprogramm

der RSK vom 21. Oktober 1986 sieht hierzu auch

die Prüfung von Maßnahmen bei Druckwasserreaktoren

vor. Mit Vor schlägen für Maßnahmen des anlageninternen

Notfallschutzes ist in absehbarer Zeit zu rechnen. Anerkennung

gebührt der Kernenergiewirtschaft, die sich – in

bisher nicht gekannter Offenheit – dieser Herausforderung

gestellt hat und in eigenen Arbeiten und Veröffent lichungen

ihre Vorstellungen dargelegt hat und Maß nahmen durchgeführt

hat.

Harrisburg und Tschernobyl haben gezeigt, daß die

kernenergienutzenden Staaten in eine Risikogemeinschaft

eingebunden sind. Der sicherheitstechnische Mißerfolg

des einen ist zugleich auch Rückschlag für alle anderen.

Dies gilt selbst dann, wenn bei einem Reaktorunfall

gravierende Auswirkungen auf die Umgebung verhindert

werden können. Daher brauchen wir eine internationale

Sicherheitspartnerschaft.

Die Bundesrepublik Deutschland hat sich an dem

Prozeß verstärkter internationaler Kooperation maßgeblich

beteiligt. Ausgehend von der lAEO-Sonderkonferenz

im September 1986 wurde viel erreicht. Für

unser grundlegendes Ziel, international eine Gewährleistung

der kerntechnischen Sicherheit auf möglichst

einheitlichem hohen Niveau zu erreichen, wurden wichtige

erste Schritte geleistet. Die sicherheitstech nischen Regeln

der internationalen Atomenergieagentur (NUSSAG) sind

in ihren grundlegenden Anforderungen überarbeitet worden.

Die Bundesregierung erwartet nun, daß sie vom

IAEO-Gouverneursrat verabschiedet und dann auch von

allen IAEO-Mitgliedsstaaten voll berücksichtigt werden.

Die Bundesregierung wird in Fortführung ihrer

Anstrengungen auf diesem Gebiet und gemeinsam mit

OECD und IAEO im November 1988 in München ein internationales

Symposium über die regulatorische Praxis und

über die sicherheitstechnischen Regeln veranstalten.

Zentrale Aufgabe für unsere gegenwärtige und

zukünftige Energiepolitik ist es, einen breitgetragenen

Konsens wiederzugewinnen. Energiepolitik muß schon

aus Gründen der Entwicklungs- und Einführungszeiten

und auch der Kosten auf größere Zeiträume angelegt sein.

Auf grundlegende Entscheidungen muß dauerhaft Verlaß

sein. Daher brauchen wir für die weitere Um strukturierung

unserer Energieversorgung zu einem ver sorgungssicheren,

umweltverträglichen und risikoarmen System wieder

einen breitgetragenen energiepolitischen Grundkonsens.

Die gemeinsame Verantwortung für die Kernenergieentscheidungen

in den 60er und 70er Jahren verpflichtet

alle Beteiligten auch heute noch. Das Denken in Pro und

Contra muß einer differenzierten Betrachtungsweise Platz

machen. Kernenergie wird auf absehbare Zeit weltweit

weiter genutzt werden. Eine Verständigung über konkret

zu stellende Anforderungen an Sicherheit und Risikovorsorge

und über das Vorgehen bei ihren praktischen

Verwirklichungen ist unerläßlicher Bestandteil verantwortungsvoller

Politik.

Ich bin überzeugt, daß wir immer wieder versuchen

müssen, auch mit denjenigen, die der Kerntechnik distanziert

oder ablehnend gegenüberstehen, ein gemeinsames

Gespräch zu führen. Mit dem, was ich Ihnen heute darlegen

konnte, haben wir in wichtigen Bereichen der Kernenergie

nutzung ein Vorsorgeniveau erreicht, das deutlich

über dem liegt, was in den 70er Jahren von damals

politischen Verantwortlichen als ausreichend betrachtet

wurde. Auch dies ist Anlaß und Grundlage genug, um sich

um eine Erneuerung des Grundkonsenses zu bemühen.

Auch wer die Kernenergie nur für eine vorübergehende

Zeit nutzen will, ist in der Pflicht, sich zur Sicherheitsgewährleistung

und zur Entsorgung zu erklären.

Ein weiteres Ergebnis der Bemühungen der Bundesregierung

um mehr internationale Sicherheitszusammenarbeit

in der Kerntechnik sind die „grundlegenden Sicherheitsprinzipien

für Kernkraftwerke“, die jetzt von einem

Expertenteam der Internationalen Atomenergie Organisation

vorgelegt worden sind. Mit diesen Grundsätzen wird

aus Sicht führender Experten der kerntechnischen Sicherheit

über das Regelwerk hinausgehend dargelegt, wie

Schadensvorsorge erfolgreich praktiziert werden kann.

Diese Sicherheitsprinzipien sollten zum Ausgangspunkt

einer rückhaltlosen Diskussion um die Zukunft

der Sicherheit der Kernkraftwerke in unserem Lande

werden, in die wir auch unbeschadet früherer Erfahrungen

diejenigen einbeziehen sollten, die der Kernenergie aus

konkreten sicherheitstechnischen oder Risikogründen

ablehnend gegenüberstehen. Ich bin überzeugt, daß wir

mit dieser Diskussion und der praktischen Umsetzung

ihrer Ergebnisse nicht nur in unserem Lande, sondern

generell einen wichtigen Beitrag zur Sicherung unserer

zukünftigen Entwicklung leisten können.

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT

Special Topic | A Journey Through 50 Years AMNT

Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft ı Klaus Töpfer


atw Vol. 64 (2019) | Issue 5 ı May

282

KTG INSIDE

Inside

| | „Studierenden und Absolventen zuhören und deren Wünsche, Ziele und

Zukunftsvisionen stärker hörbar zu machen, sind für mich zentrale

Anliegen.“ Prof. Dr.-Ing. Jörg Starflinger, Mitglied im Vorstand der KTG und

Ansprechpartner für die Junge Generation.

Liebe Mitgliederinnen und Mitglieder der KTG,

als neues Vorstandsmitglied möchte ich in der Rubrik

„KTG inside“ über meine Motivation für die Kerntechnik

berichten. Als Universitätsprofessor liegen mir die Ausbildung

und die Entwicklung der Karriere junger Menschen

sehr am Herzen. Ich bin daher sehr gerne Ansprechpartner

für die „Junge Generation“ im KTG-Vorstand. Studierenden

und Absolventen zuhören und deren Wünsche, Ziele

und Zukunftsvisionen stärker hörbar zu machen, sind für

mich zentrale Anliegen. Schließlich gehört den jungen

Menschen die Zukunft – auch in der Kerntechnik … oder

vielleicht doch nicht?

Vor knapp vier Jahren landete eine E-Mail mit einer

Umfrage in meinem Postfach. Mal wieder eine dieser

Spam-Emails, von denen täglich Dutzende das Postfach

zumüllen. Diese war jedoch anders: eine Umfrage im

Rahmen eines BMBF geförderten Projektes zur Erfassung

sogenannter „kleiner Fächer“ an Universitäten. Kleine

Fächer haben einen eigenen Studiengang, ein eigenes

Curriculum, aber wenig Doktoranden, wenig Studierende,

wenig Professorinnen und Professoren. Ich fragte mich:

„Sind wir in der Kerntechnik bereits so weit, dass wir als

‚kleines Fach‘ gelten? Warum werde ich angeschrieben?“

Nach meinen Studierendenzahlen gelte ich sicher als

„ kleines Fach“. Die Zahl der Bachelor-Studierenden sinkt

derzeit massiv. Influencer auf Instagram scheint attraktiver

zu sein als ein Maschinenbaustudium. Die Anzahl

der absolvierten Prüfungen in meiner Kern technik vertiefungsrichtung

im Masterstudium sinkt kontinuierlich.

Die Doktorandenzahlen sind hingegen erfreulicherweise

nicht so stark zurückgegangen, dank erfolgreicher Einwerbung

von Projekten bei der EU und bei nationalen

Förderinstitutionen; hier sind besonders das BMWi

und BMBF genannt. Professorenstellen werden derzeit

gestrichen, ganze Fachbereiche fallen weg: Typischer

Universitätskannibalismus. Vor diesem Hintergrund habe

ich mich damals entschlossen, bei der Umfrage mitzumachen

und habe meine Daten eingegeben.

Ich engagiere mich im European Nuclear Education

Network (ENEN), in dem sich über 50 europäische

Universitäten, Forschungszentren und auch einige Unternehmen

im Bereich „Education & Training“ zusammengeschlossen

haben. Ich habe das Thema „sinkende

Studierendenzahlen“ dort thematisiert und erfahren, dass

dies kein rein deutscher Trend ist. Auch in anderen

Ländern, die nicht einmal einen Kernenergieausstieg

vollziehen, sondern Laufzeitverlängerungen genehmigt

bekommen haben, sinkt die Zahl der Studierenden. ENEN

hat deshalb Programme aufgelegt, um das kerntechnische

Studium international attraktiver zu gestalten. ENEN

unterstützt beispielsweise die Mobilität von Studierenden

und Doktoranden zu Konferenzen oder übernimmt Reisekosten

bei Auslandsaufenthalten. Die Zusammenarbeit

mit Schulen soll intensiviert werden, um dort Themen wie

Strahlung und Kerntechnik zu vermitteln.

Wie könnte diesem negativen Trend der Studierendenzahlen

an den Universitäten entgegengewirkt werden?

Zum einen könnten nationale Programme im Bereich

der Ausbildung und Studierendenförderung aufgelegt

werden. Zu diesen Bottom-up-Ansätzen, die bereits

bei ENEN einige Vorbilder haben, ist aber auch ein Top-

Down-Ansatz erforderlich. Wir sollten eine „Strategie

zur Kompetenzentwicklung in der Kerntechnik 2050“ erarbeiten.

In diesem Prozess sollten nicht nur Univer sitäten,

sondern auch Unternehmen, die sich proaktiv der Entwicklung

neuer Technologien in der Kerntechnik widmen,

beteiligt sein. Weitere „Stakeholder“, wie Vertreter von

Bund und Ländern, letztere sind bekanntlich für Universitäten

zuständig, sind unbedingt einzubinden. Auch Behörden,

die sich zukünftig mit Zwischenlagerung und Endlagerung

beschäftigen, gehören an einen runden Tisch, der

diesen Top-Dow-Ansatz erarbeitet. Ein Endlager haben

wir erst 2070 – vielleicht. Was müssen wir dann noch

wissen (Education) und können (Training)? Von diesem

Top-Down-Ansatz muss das klare zukunfts gerichtete

Signal ausgehen, dass wir auch weiterhin junge motivierte

Menschen brauchen, die von der Kerntechnik fasziniert

sind und in unserer Branche arbeiten wollen.

Was passiert, wenn uns das nicht gelingt? Es entsteht

eine demographische Lücke. Mit etwa 2 bis 2,5 Jahren

zeitlicher Verzögerung (durchschnittliche Dauer eines

Masterstudiums) werden dann Unternehmen, Gutachter

und auch Behörden feststellen, dass der Markt leer ist. Das

aktuellste Beispiel scheint gerade der Strahlenschutz zu

sein, wo es kaum geeignet qualifizierte Personen auf dem

Arbeitsmarkt gibt. Unter der Annahme, dass ohne Verzögerung

gehandelt wird, werden dann wiederum 2 bis

2,5 Jahre vergehen, bis neue hochqualifizierte Personen

auf den Arbeitsmarkt kommen. Die entstehende Lücke

ist vier bis fünf Jahre lang. Wenn nun noch Lehrstühle

wegfallen, entsteht eine noch längere Lücke (bestimmt 15

Jahre). Hinzu kommt, dass im europäischen Umfeld

Kraftwerke gebaut (Finnland, Ungarn, Frankreich …) und

bei einer Nichtbesetzung der Lehrstühle und bei zu

geringem Nachwuchs auch hier die Expertise verloren

geht. Gerade vor dem Hintergrund der Langfristigkeit

der Aufgaben in unserer Branche muss auch die strategisch

ausgerichtete Langfristigkeit der kerntechnischen

Ausbildung sicher gestellt werden. Dieses gilt selbstverständlich

auch für die berufliche Ausbildung, die

nicht minder wichtig ist, für die ich allerdings keine

Zahlen habe.

Ich halte die KTG und ihre Mitglieder, die Unternehmen,

Forschungseinrichtungen und Universitäten

repräsentieren, für das richtige Forum, von dem Impulse

zu einer „Strategie zur Kompetenzentwicklung in der

Kerntechnik 2050“ ausgehen kann. Nutzen wir doch diese

Chance durch Gespräche, beispielsweise auf dem 50 th

AMNT in Berlin.

KTG Inside


atw Vol. 64 (2019) | Issue 5 ı May

Übrigens habe ich noch einmal auf die Webseite der

„kleinen Fächer“ geschaut. Die Kerntechnik hat es nicht

geschafft, dort erwähnt zu werden. Lassen Sie uns

bitte zielgerichtet daran arbeiten, dass dies auch nicht

geschieht.

Ihr Jörg Starflinger

Mitglied im Vorstand der KTG

Professor an der Universität Stuttgart,

Institut für Kernenergetik und Energiesysteme (IKE)

283

Sektion NORD

Vortragsankündigung

Windenergie in Deutschland und Europa

Status, Potenziale und Herausforderungen in der Grund versorgung mit Strom

KTG INSIDE

Thomas Linnemann

am Dienstag, den 14. Mai 2019 um 17:30 Uhr,

PreussenElektra GmbH,

Tresckowstraße 5, Hannover

Die kumulierte Nennleistung der Windenergieanlagen in

Deutschland hat sich in den letzten 18 Jahren bis Ende

2017 auf 56.000 Megawatt (MW) mehr als verzwölffacht.

Zusammen mit weiteren europäischen 17 Ländern erhöhte

sich die kumulierte Nennleistung in Europa zeitgleich

sogar um das 18-fache auf fast 170.000 MW. Damit verfügt

allein Deutschland über gut ein Drittel der europaweiten

Windenergieanlagenleistung.

Für eine zuverlässige Stromversorgung sind Leistung

und Energie bedarfsgerecht bereitzustellen, eine Fähigkeit,

über die vom Windangebot abhängige Windenergieanlagen

eingeschränkt verfügen. Der Vortrag

fasst Betriebserfahrungen zur Windstromproduktion in

Deutschland seit dem Jahr 2010 und in weiteren 17

Ländern Europas seit 2015 zusammen und geht unter

anderem der Frage nach, ob in einem deutschland- oder

europaweit verstärkten Netzverbund gemäß dem Motto

„irgendwo weht immer Wind“ ausreichende gegenseitige

Ausgleichsmöglichkeiten bestehen.

Thomas Linnemann studierte Maschinenbau mit der

Vertiefungsrichtung Energie-, Anlagen- und Umwelttechnik

an der Ruhr-Universität Bochum und war dort

nach Abschluss seines Diploms bis 2000 als Projektingenieur

in der europäischen Reaktorsicherheitsforschung

bei Prof. Herrmann Unger tätig. Anschließend

arbeitete er bis 2011 als Redakteur für das Energie-

Fachmagazin BWK des Springer-VDI-Verlags in Düsseldorf

und ist seit März 2011 als Referent des VGB PowerTech e.V.

in Essen tätig.

Im Anschluss an den etwa einstündigen Vortrag wird es

ausreichend Gelegenheit für weitere Diskussionen geben.

Interessierte KTG-Mitglieder sowie Freunde und

Bekannte sind herzlich eingeladen.

Dr.-Ing. Hans-Georg Willschütz

Sprecher KTG-Sektion NORD

Thomas Fröhmel

Stellv. Sprecher der KTG-Sektion NORD

pp

PS: Wir bitten um eine namentliche Anmeldung

der Teilnehmer unter 0511 439-2184 oder

an thomas.froehmel@preussenelektra.de

KTG Inside

Verantwortlich

für den Inhalt:

Die Autoren.

Lektorat:

Natalija Cobanov,

Kerntechnische

Gesellschaft e. V.

(KTG)

Robert-Koch-Platz 4

10115 Berlin

T: +49 30 498555-50

F: +49 30 498555-51

E-Mail:

natalija.cobanov@

ktg.org

www.ktg.org

Herzlichen Glückwunsch!

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag

und wünscht ihnen weiterhin alles Gute!

Juni 2019

40 Jahre | 1979

19. Dr. Gerben Dirksen, Zirndorf

60 Jahre | 1959

6. Gabriele Bertram, Bonn

70 Jahre | 1949

28. Wolfgang Schwarz, Brackenheim

75 Jahre | 1944

8. Jürgen Fabian, Büsingen am Hochrhein

24. Hans-Jürgen Schlesinger, Essen

77 Jahre | 1942

10. Ing. Wolfgang Feltes,

Bergisch Gladbach

78 Jahre | 1941

15. Dr. Frank Depisch, Erlangen

79 Jahre | 1940

4. Dipl.-Phys. Hans-Peter Dyck, Forchheim

13. Dr. Heinz Hoffmann, Einhausen

80 Jahre | 1939

6. Dr. Peter Drehmann, Kornwestheim

10. Dipl.-Ing. Reinhard Seepolt, Hamburg

14. Dr. Gustav Meyer-Kretschmer, Jülich

23. Dr. Rolf Krieg, Karlsruhe

81 Jahre |1938

25. Dipl.-Ing. Horst Roepenack, Bruchköbel

82 Jahre | 1937

10. Dipl.-Phys. Reinhard Wolf,

Grosskrotzenburg

83 Jahre | 1936

12. Dipl.-Ing. Heinz Malmström, Ahaus

30. Kai-Michael Pülschen, Erlangen

84 Jahre | 1935

8. Ing. Karl Rudolph, Wettingen/CH

8. Dr. Ing. Heinrich Löffler, Wennigsen

22. Dipl.-Ing. Johann Pisecker, Tulln/AU

23. Dipl.-Ing. Werner Schultz, Hirschberg

87 Jahre | 1932

28. Hans Schuster, Aachen

93 Jahre | 1926

27. Dipl.-Ing. Heinz-Arnold Leising,

Bergisch Gladbach

Wenn Sie künftig eine

Erwähnung Ihres

Geburtstages in der

atw wünschen, teilen

Sie dies bitte der KTG-

Geschäftsstelle mit.


12. März 2019 ı

Prof. Dr.

Albert Ziegler

Karlsbad

Die KTG verliert in

ihm ein langjähriges

aktives Mitglied,

dem sie ein ehrendes

Andenken bewahren

wird. Seiner Familie

gilt unsere Anteilnahme

KTG Inside


atw Vol. 64 (2019) | Issue 5 ı May

284

STATISTICS

Nuclear Power Plants:

2018 atw Compact Statistics

Editorial

At the end of the last year 2018 (key date: 31 December 2018), nuclear power plants were operating in 31 countries

worldwide (cf. Table 1). In total, 451 nuclear power plants were operating on the key date. This means that the number

increased by 2 units compared to the previous year’s number on 31 December 2017 (449), which means the highest

number of units since the first start of an commercial nuclear power plant in 1956, due to first criticalities on the one

hand and shut-downs on the other. The gross power output of these nuclear power plant units amounted to around

425 GWe*, the net power output was approximately 401 GWe. This means that the available gross capacity and the

available net capacity also increased by about 4 GW compared with the previous year's numbers. Additionally this is

also the highest capacity since the first grid connection of a commercial nuclear power plant.

Eight (8) nuclear power plants started (nuclear) operation 1

in two countries in 2018. These units reached initial

criticality (C), were synchronized with the grid (G) and

started commercial operation (O) for the first time in

2018 (cf. Table 1): China: Haiyang 1 (1250 MW, PWR),

Sanmen 1 (1251 MW, PWR), Sanmen 2 (1251 MW, PWR),

Taishan 1 (1750 MW, PWR), Tianwan 4 (1060 MW, PWR),

Yangjiang 5 (1086 MW, PWR); Russia: Leningrad 2-1

(1187 MW, PWR). One unit, Haiyang 2 (1250 MW, PWR),

reached first criticality and was synchronized with the grid

in 2018 (CG), commercial operation (O) started for the

first time in 2019.

For the fourth time since the accidents in Fukushima

( Japan) four (4)units in Japan, Genkai 3 (1180 MW,

PWR); Genkai 4 (1180 MW, PWR); Ohi 3 (1180 MW,

PWR); Ohi 4 (1180 MW, PWR) resumed operation in 2018

in Japan after a long-term shut-down.

Six (6) nuclear power plant units were definitively

per manently shut-down worldwide in four (4) countries in

2018. In Japan the Ikata 2 (566 MW, PWR) and the Ohi 1

(1175 MW, PWR) and Ohi 2 (1175 MW, PWR) plant ceased

operation. In Russia the RBMK-type unit Leningrad 1

(1000 MW, LWGR) was shut-down. There are ten units of

this reactor type remaining in operation. In Taiwan, China

the Chin Shan 1 (636 MW, BWR) plant and in the USA the

Oyster Creek (595 MW, BWR) reactor were shut down.

Five new projects (two more than in the previous year

2017) started with the first concrete and further build

activities. In Bangladesh one additional new build project

started with Rooppur 2 (1200 MW), Korea started the new

build of the sixth unit at Shin Kori (1400 MW) and in

Russia one additional project started with the Kursk II-1

project (1255 MW). At the Kursk site four RMBK reactors

are in operation which should be replaced by modern

GEN III+ PWR technology units. The first nuclear power

project of Turkey started at the Akkuyu site. Two 1200 MW

(gross) VVER-PWR are planned. The first unit should start

operation in 2023. After more than 10 years of preparation

the British nuclear new build programme started with

the official project start of Hinkley Point C-1 (1720 MW,

PWR).

In total 53 reactors are under construction worldwide

in 18 countries. The total gross capacity of this projects is

about 58 GW*, the net capacity 55 GW, in other words the

number was lower (3 untis) compared to the previous year

number due to the eight (8) operation starts and five (5)

new build projects. Compared with the millennium change

1999/2000 this means that the number of projects under

construction has risen, when 30 nuclear power plants were

under construction worldwide.

Active construction projects (numbers in brackets)

listed are: Argentina (1), Bangladesh (2), Belarus (2),

Brazil (1), China (11), Finland (1), France (1), India (7),

Japan (2), Republic of Korea (5), Pakistan (2), Russia (6),

Slovak Republic (2), Taiwan (2), Turkey (1), the USA (2),

the United Arab Emirates (4) and the United Kingdom (1).

In addition, there are about 150 nuclear power plant

units in 25 countries worldwide that are in an advanced

planning stage, others are in the pre-planning phase

( status: 31 December 2018).

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Argentina

Atucha 1 p D2O-PWR 357 341 1974

Embalse p Candu 648 600 1983

Atucha 2 p D2O-PWR 745 692 2014

CAREM25 P PWR 29 25 (2020)

Armenia

Metsamor 2 p VVER-PWR 408 376 1980

Belarus

Belarusian 1 P VVER-PWR 1 194 1 109 (2019)

Belarusian 2 P VVER-PWR 1 194 1 109 (2021)

Bangladesh

Rooppur 1 P VVER-PWR 1 200 1 080 (2022)

Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2023)

Belgium

Doel 1 p PWR 454 433 1975

Doel 2 p PWR 454 433 1975

Doel 3 p PWR 1 056 1 006 1982

Doel 4 p PWR 1 090 1 039 1985

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Tihange 1 p PWR 1 009 962 1975

Tihange 2 p PWR 1 055 1 008 1983

Tihange 3 p PWR 1 094 1 046 1985

Brazil

Angra 1 p PWR 640 609 1984

Angra 2 p PWR 1 350 1 275 1999

Angra 3 P PWR 1 300 1 245 (2021)

Bulgarien

Kozloduj 5 p VVER-PWR 1 000 953 1987

Kozloduj 6 p VVER-PWR 1 000 953 1989

Canada

Bruce 1 p Candu 824 772 1977

Bruce 2 p Candu 786 734 1977

Bruce 3 p Candu 805 730 1977

Bruce 4 p Candu 805 750 1979

Bruce 5 p Candu 872 817 1985

Bruce 6 p Candu 891 822 1984

Bruce 7 p Candu 872 817 1986

Statistics

Nuclear Power Plants: 2018 atw Compact Statistics


atw Vol. 64 (2019) | Issue 5 ı May

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Bruce 8 p Candu 845 817 1987

Darlington 1 p Candu 934 878 1993

Darlington 2 p Candu 934 878 1990

Darlington 3 p Candu 934 878 1993

Darlington 4 p Candu 934 878 1993

Pickering 1 p Candu 542 515 1971

Pickering 4 p Candu 542 515 1973

Pickering 5 p Candu 540 516 1983

Pickering 6 p Candu 540 516 1984

Pickering 7 p Candu 540 516 1985

Pickering 8 p Candu 540 516 1986

Point Lepreau p Candu 705 660 1983

China

CEFR p SNR 25 20 2011

Changjiang 1 p PWR 650 610 2015

Changjiang 2 p PWR 650 601 2016

Fangchenggang 1 p PWR 1 080 1 000 2015

Fangchenggang 2 p PWR 1 088 1 000 2016

Fangjiashan 1 p PWR 1 080 1 000 2014

Fangjiashan 2 p PWR 1 080 1 000 2014

Fuqing 1 p PWR 1 087 1 000 2014

Fuqing 2 p PWR 1 087 1 000 2015

Fuqing 3 p PWR 1 089 1 000 2016

Fuqing 4 p PWR 1 089 1 089 2017

Guandong 1 p PWR 984 944 1993

Guandong 2 p PWR 984 944 1994

Haiyang 1 [1] p PWR 1 180 1 100 2018

Haiyang 2 [1] p PWR 1 180 1 100 2018

Hongyanhe 1 p PWR 1 080 1 000 2013

Hongyanhe 2 p PWR 1 080 1 000 2013

Hongyanhe 3 p PWR 1 080 1 000 2014

Hongyanhe 4 p PWR 1 119 1 000 2016

Lingao 1 p PWR 990 938 2002

Lingao 2 p PWR 990 938 2002

Lingao II-1 p PWR 1 087 1 000 2010

Lingao II-2 p PWR 1 087 1 000 2011

Ningde 1 p PWR 1 087 1 000 2012

Ningde 2 p PWR 1 080 1 000 2014

Ningde 3 p PWR 1 080 1 000 2015

Ningde 4 p PWR 1 089 1 018 2016

Qinshan 1 p PWR 310 288 1992

Qinshan II-1 p PWR 650 610 2002

Qinshan II-2 p PWR 650 610 2004

Qinshan II-3 p PWR 642 610 2010

Qinshan II-4 p PWR 642 610 2011

Qinshan III-1 p Candu 728 665 2002

Qinshan III-2 p Candu 728 665 2003

Sanmen 1 [1] p PWR 1 180 1 100 2018

Sanmen 2 [1] p PWR 1 180 1 100 2018

Taishan 1 [1] p PWR 1 750 1 660 2018

Tianwan 1 p VVER-PWR 1 060 990 2005

Tianwan 2 p VVER-PWR 1 060 990 2007

Tianwan 3 p VVER-PWR 1 126 1 060 2017

Tianwan 4 [1] p VVER-PWR 1 126 1 060 2018

Yangjiang 1 p PWR 1 080 1 000 2013

Yangjiang 2 p PWR 1 080 1 000 2015

Yangjiang 3 p PWR 1 080 1 000 2015

Yangjiang 4 p PWR 1 086 1 000 2016

Yangjiang 5 [1] p PWR 1 080 1 000 2018

Fangchenggang 3 P PWR 1 080 1 000 (2020)

Fangchenggang 4 P PWR 1 080 1 000 (2022)

Fuqing 5 P PWR 1 087 1 000 (2020)

Fuqing 6 P PWR 1 087 1 000 (2020)

Hongyanhe 5 P PWR 1 080 1 000 (2020)

Hongyanhe 6 P PWR 1 080 1 000 (2021)

Shidaowan 1 P HTGR 211 200 (2020)

Taishan 2 P PWR 1 750 1 660 (2019)

Tianwan 5 P VVER-PWR 1 118 1 000 (2020)

Tianwan 6 P VVER-PWR 1 118 1 000 (2022)

Yangjiang 6 P PWR 1 080 1 000 (2019)

Czech Republic

Dukovany 1 p VVER-PWR 500 473 1985

Dukovany 2 p VVER-PWR 500 473 1986

Dukovany 3 p VVER-PWR 500 473 1987

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Dukovany 4 p VVER-PWR 500 473 1987

Temelín 1 p VVER-PWR 1 077 1 027 1999

Temelín 2 p VVER-PWR 1 056 1 006 2002

Finland

Loviisa 1 p VVER-PWR 520 496 1977

Loviisa 2 p VVER-PWR 520 496 1981

Olkiluoto 1 p BWR 890 860 1979

Olkiluoto 2 p BWR 890 860 1982

Olkiluoto 3 P PWR 1 600 1 510 (2019)

France

Belleville 1 p PWR 1 363 1 310 1987

Belleville 2 p PWR 1 363 1 310 1988

Blayais 1 p PWR 951 910 1981

Blayais 2 p PWR 951 910 1982

Blayais 3 p PWR 951 910 1983

Blayais 4 p PWR 951 910 1983

Bugey 2 p PWR 945 910 1978

Bugey 3 p PWR 945 910 1978

Bugey 4 p PWR 917 880 1979

Bugey 5 p PWR 917 880 1979

Cattenom 1 p PWR 1 362 1 300 1986

Cattenom 2 p PWR 1 362 1 300 1987

Cattenom 3 p PWR 1 362 1 300 1990

Cattenom 4 p PWR 1 362 1 300 1991

Chinon B-1 p PWR 954 905 1982

Chinon B-2 p PWR 954 905 1983

Chinon B-3 p PWR 954 905 1986

Chinon B-4 p PWR 954 905 1987

Chooz B-1 p PWR 1 560 1 500 1996

Chooz B-2 p PWR 1 560 1 500 1997

Civaux 1 p PWR 1 561 1 495 1997

Civaux 2 p PWR 1 561 1 495 1999

Cruas Meysse 1 p PWR 956 915 1983

Cruas Meysse 2 p PWR 956 915 1984

Cruas Meysse 3 p PWR 956 915 1984

Cruas Meysse 4 p PWR 956 915 1984

Dampierre 1 p PWR 937 890 1980

Dampierre 2 p PWR 937 890 1980

Dampierre 3 p PWR 937 890 1981

Dampierre 4 p PWR 937 890 1981

Fessenheim 1 p PWR 920 880 1977

Fessenheim 2 p PWR 920 880 1977

Flamanville 1 p PWR 1 382 1 330 1985

Flamanville 2 p PWR 1 382 1 330 1986

Golfech 1 p PWR 1 363 1 310 1990

Golfech 2 p PWR 1 363 1 310 1993

Gravelines B-1 p PWR 951 910 1980

Gravelines B-2 p PWR 951 910 1980

Gravelines B-3 p PWR 951 910 1980

Gravelines B-4 p PWR 951 910 1981

Gravelines C-5 p PWR 951 910 1984

Gravelines C-6 p PWR 951 910 1985

Nogent 1 p PWR 1 363 1 310 1987

Nogent 2 p PWR 1 363 1 310 1988

Paluel 1 p PWR 1 382 1 330 1984

Paluel 2 p PWR 1 382 1 330 1984

Paluel 3 p PWR 1 382 1 330 1985

Paluel 4 p PWR 1 382 1 330 1986

Penly 1 p PWR 1 382 1 330 1990

Penly 2 p PWR 1 382 1 330 1992

St. Alban 1 p PWR 1 381 1 335 1986

St. Alban 2 p PWR 1 381 1 335 1987

St. Laurent B-1 p PWR 956 915 1981

St. Laurent B-2 p PWR 956 915 1981

Tricastin 1 p PWR 955 915 1980

Tricastin 2 p PWR 955 915 1980

Tricastin 3 p PWR 955 915 1980

Tricastin 4 p PWR 955 915 1981

Flamanville 3 P PWR 1 600 1 510 (2020)

Germany

Brokdorf p PWR 1 480 1 410 1986

Emsland p PWR 1 406 1 335 1988

Grohnde p PWR 1 430 1 360 1985

Gundremmingen C p BWR 1 344 1 288 1985

285

STATISTICS

Statistics

Nuclear Power Plants: 2018 atw Compact Statistics


atw Vol. 64 (2019) | Issue 5 ı May

286

STATISTICS

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Isar 2 p PWR 1 485 1 410 1988

Neckarwestheim II p PWR 1 400 1 310 1989

Philippsburg 2 p PWR 1 468 1 402 1985

Hungary

Paks 1 p VVER-PWR 500 470 1983

Paks 2 p VVER-PWR 500 473 1984

Paks 3 p VVER-PWR 500 473 1986

Paks 4 p VVER-PWR 500 473 1987

India

Kaiga 1 p Candu (IND) 220 202 2001

Kaiga 2 p Candu (IND) 220 202 1999

Kaiga 3 p Candu (IND) 220 202 2007

Kaiga 4 p Candu (IND) 220 202 2010

Kakrapar 1 p Candu (IND) 220 202 1993

Kakrapar 2 p Candu (IND) 220 202 1995

Kudankulam 1 p VVER-PWR 1 000 917 2013

Kudankulam 2 p VVER-PWR 1 000 917 2016

Madras Kalpakkam 1 p Candu (IND) 220 205 1984

Madras Kalpakkam 2 p Candu (IND) 220 205 1986

Narora 1 p Candu (IND) 220 202 1992

Narora 2 p Candu (IND) 220 202 1991

Rajasthan 1 p Candu 100 90 1973

Rajasthan 2 p Candu 200 187 1981

Rajasthan 3 p Candu (IND) 220 202 1999

Rajasthan 4 p Candu (IND) 220 202 2000

Rajasthan 5 p Candu (IND) 220 202 2009

Rajasthan 6 p Candu (IND) 220 202 2010

Tarapur 1 p BWR 160 150 1969

Tarapur 2 p BWR 160 150 1969

Tarapur 3 p Candu (IND) 540 490 2006

Tarapur 4 p Candu (IND) 540 490 2005

Kakrapar 3 P Candu (IND) 700 640 (2019)

Kakrapar 4 P Candu (IND) 700 640 (2020)

PFBR (Kalpakkam) P SNR 500 470 (2020)

Kudankulam 3 P VVER-PWR 1 000 917 (2023)

Kudankulam 4 P VVER-PWR 1 000 917 (2023)

Rajasthan 7 P Candu (IND) 700 630 (2020)

Rajasthan 8 P Candu (IND) 700 630 (2021)

Iran

Bushehr 1 p VVER-PWR 1 000 953 2011

Japan

Fukushima Daini 1 p BWR 1 100 1 067 1982

Fukushima Daini 2 p BWR 1 100 1 067 1984

Fukushima Daini 3 p BWR 1 100 1 067 1985

Fukushima Daini 4 p BWR 1 100 1 067 1987

Genkai 2 p PWR 559 529 1981

Genkai 3 [4] p PWR 1 180 1 127 1994

Genkai 4 [4] p PWR 1 180 1 127 1997

Hamaoka 3 p BWR 1 100 1 056 1987

Hamaoka 4 p BWR 1 137 1 092 1993

Hamaoka 5 p BWR 1 267 1 216 2004

Higashidori 1 p BWR 1 100 1 067 2005

Ikata 3 p PWR 890 846 1994

Kashiwazaki Kariwa 1 p BWR 1 100 1 067 1985

Kashiwazaki Kariwa 2 p BWR 1 100 1 067 1990

Kashiwazaki Kariwa 3 p BWR 1 100 1 067 1993

Kashiwazaki Kariwa 4 p BWR 1 100 1 067 1994

Kashiwazaki Kariwa 5 p BWR 1 100 1 067 1990

Kashiwazaki Kariwa 6 p BWR 1 356 1 315 1996

Kashiwazaki Kariwa 7 p BWR 1 356 1 315 1997

Mihama 3 p PWR 826 781 1976

Ohi 3 [4] p PWR 1 180 1 127 1991

Ohi 4 [4] p PWR 1 180 1 127 1993

Onagawa 1 p BWR 524 496 1984

Onagawa 2 p BWR 825 796 1995

Onagawa 3 p BWR 825 798 2002

Sendai 1 p PWR 890 846 1984

Sendai 2 p PWR 890 846 1985

Shika 1 p BWR 540 505 1993

Shika 2 p BWR 1 358 1 304 2005

Shimane 2 p BWR 820 791 1989

Takahama 1 p PWR 826 780 1974

Takahama 2 p PWR 826 780 1975

Takahama 3 p PWR 870 830 1985

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Takahama 4 p PWR 870 830 1985

Tokai 2 p BWR 1 100 1 067 1978

Tomari 1 p PWR 579 550 1989

Tomari 2 p PWR 579 550 1991

Tomari 3 p PWR 912 866 2009

Tsuruga 2 p PWR 1 160 1 115 1986

Shimane 3 P BWR 1 375 1 325 (2022)

Ohma P BWR 1 385 1 325 (2023)

Ikata 2 j PWR 566 538 1981

Ohi 1 j PWR 1 175 1 120 1979

Ohi 2 j PWR 1 175 1 120 1979

Korea (Republic)

Kori 2 p PWR 676 639 1983

Kori 3 p PWR 1 042 1 003 1985

Kori 4 p PWR 1 041 1 001 1986

Shin Kori 1 p PWR 1 048 996 2010

Shin Kori 2 p PWR 1 045 993 2011

Shin Kori 3 p PWR 1 400 1 340 2016

Hanul 1 p PWR 1 003 960 1988

Hanul 2 p PWR 1 008 962 1989

Hanul 3 p PWR 1 050 994 1998

Hanul 4 p PWR 1 053 998 1998

Hanul 5 p PWR 1 051 996 2003

Hanul 6 p PWR 1 051 996 2004

Wolsong 1 p Candu 687 645 1983

Wolsong 2 p Candu 678 653 1997

Wolsong 3 p Candu 698 675 1999

Wolsong 4 p Candu 703 679 1999

Shin Wolsong 1 p PWR 1 043 991 2012

Shin Wolsong 2 p PWR 1 000 960 2015

Hanbit 1 p PWR 996 953 1986

Hanbit 2 p PWR 993 945 1987

Hanbit 3 p PWR 1 050 997 1995

Hanbit 4 p PWR 1 049 997 1996

Hanbit 5 p PWR 1 053 997 2001

Hanbit 6 p PWR 1 052 995 2002

Shin Kori 4 P PWR 1 400 1 340 (2019)

Shin Kori 5 P PWR 1 400 1 340 (2022)

Shin Kori 6 [2] P PWR 1 400 1 340 (2024)

Shin Hanul 1 P PWR 1 400 1 340 (2020)

Shin Hanul 2 P PWR 1 400 1 340 (2022)

Mexico

Laguna Verde 1 p BWR 820 765 1990

Laguna Verde 2 p BWR 820 765 1995

Netherlands

Borssele p PWR 515 482 1973

Pakistan

Kanupp 1 p Candu 137 909 1972

Chasnupp 1 p PWR 325 300 2000

Chasnupp 2 p PWR 325 300 2011

Chasnupp 3 p PWR 340 315 2016

Chasnupp 4 p PWR 340 315 2017

Kanupp 2 P PWR 1 100 1 014 (2021)

Kanupp 3 P PWR 1 100 1 014 (2022)

Romania

Cernavoda 1 p Candu 706 650 1996

Cernavoda 2 p Candu 706 655 2007

Russia

Balakovo 1 p VVER-PWR 1 000 953 1986

Balakovo 2 p VVER-PWR 1 000 953 1988

Balakovo 3 p VVER-PWR 1 000 953 1990

Balakovo 4 p VVER-PWR 1 000 953 1993

Beloyarsky 3 p FBR 600 560 1981

Beloyarsky 4 p FBR 800 750 2014

Bilibino 1 p LWGR 12 11 1974

Bilibino 2 p LWGR 12 11 1975

Bilibino 3 p LWGR 12 11 1976

Bilibino 4 p LWGR 12 11 1977

Kalinin 1 p VVER-PWR 1 000 953 1985

Kalinin 2 p VVER-PWR 1 000 953 1987

Kalinin 3 p VVER-PWR 1 000 953 2004

Kalinin 4 p VVER-PWR 1 000 953 2011

Kola 1 p VVER-PWR 440 411 1973

Kola 2 p VVER-PWR 440 411 1975

Statistics

Nuclear Power Plants: 2018 atw Compact Statistics


atw Vol. 64 (2019) | Issue 5 ı May

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Kola 3 p VVER-PWR 440 411 1982

Kola 4 p VVER-PWR 440 411 1984

Kursk 1 p LWGR 1 000 925 1977

Kursk 2 p LWGR 1 000 925 1979

Kursk 3 p LWGR 1 000 925 1984

Kursk 4 p LWGR 1 000 925 1986

Leningrad 2 p LWGR 1 000 925 1976

Leningrad 3 p LWGR 1 000 925 1980

Leningrad 4 p LWGR 1 000 925 1981

Leningrad II-1 [1] p VVER-PWR 1 187 1 085 2018

Novovoronezh 4 p VVER-PWR 417 385 1973

Novovoronezh 5 p VVER-PWR 1 000 953 1981

Novovoronezh II-1 p VVER-PWR 1 000 955 2016

Rostov 1 p VVER-PWR 1 000 953 2001

Rostov 2 p VVER-PWR 1 000 953 2010

Rostov 3 p VVER-PWR 1 000 950 2014

Rostov 4 p VVER-PWR 1 030 980 2017

Smolensk 1 p LWGR 1 000 925 1983

Smolensk 2 p LWGR 1 000 925 1985

Smolensk 3 p LWGR 1 000 925 1990

Akademik Lomonosov I P PWR 40 35 (2019)

Akademik Lomonosov I P PWR 40 35 (2019)

Baltic 1 (Kaliningrad) P VVER-PWR 1 170 1 080 (2020)

Kursk II-1 [2] P VVER-PWR 1 255 1 175 (2024)

Leningrad II-2 P VVER-PWR 1 170 1 085 (2021)

Novovoronezh II-2 P VVER-PWR 1 000 955 (2019)

Leningrad 1 [6] j LWGR 1 000 925 1974

Slovakia

Bohunice 3 p VVER-PWR 505 472 1985

Bohunice 4 p VVER-PWR 505 472 1985

Mochovce 1 p VVER-PWR 470 436 1998

Mochovce 2 p VVER-PWR 470 436 1999

Mochovce 3 P VVER-PWR 440 408 (2020)

Mochovce 4 P VVER-PWR 440 408 (2020)

Slovenia

Krsko p PWR 727 696 1983

South Africa

Koeberg 1 p PWR 970 930 1984

Koeberg 2 p PWR 970 930 1985

Spain

Almaraz 1 p PWR 1 049 1 011 1981

Almaraz 2 p PWR 1 044 1 006 1983

Ascó 1 p PWR 1 033 995 1984

Ascó 2 p PWR 1 027 997 1985

Cofrentes p BWR 1 092 1 064 1985

Trillo 1 p PWR 1 066 1 002 1988

Vandellos 2 p PWR 1 087 1 045 1987

Sweden

Forsmark 1 p BWR 1 022 984 1980

Forsmark 2 p BWR 1 158 1 120 1981

Forsmark 3 p BWR 1 212 1 170 1985

Oskarshamn 2 p BWR 661 638 1975

Oskarshamn 3 p BWR 1 450 1 400 1985

Ringhals 1 p BWR 910 878 1976

Ringhals 2 p PWR 847 807 1975

Ringhals 3 p PWR 1 117 1 064 1981

Ringhals 4 p PWR 990 940 1983

Switzerland

Beznau 1 p PWR 380 365 1969

Beznau 2 p PWR 380 365 1972

Gösgen p PWR 1 060 1 010 1979

Leibstadt p BWR 1 275 1 220 1984

Mühleberg p BWR 390 373 1973

Taiwan, China

Chin Shan 2 p BWR 636 604 1979

Kuosheng 1 p BWR 985 948 1981

Kuosheng 2 p BWR 985 948 1983

Maanshan 1 p PWR 951 890 1984

Maanshan 2 p PWR 951 890 1985

Lungmen 1 P BWR 1 356 1 315 (2020)

Lungmen 2 P BWR 1 356 1 315 (2021)

Chin Shan 1 [6] j BWR 636 604 1978

Turkey

Akkuyu 1 [2] P VVER-PWR 1 200 1 114 (2023)

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

United Arab Emirates

Barakah 1 P PWR 1 400 1 340 (2018)

Barakah 2 P PWR 1 400 1 340 (2019)

Barakah 3 P PWR 1 400 1 340 (2020)

Barakah 4 P PWR 1 400 1 340 (2021)

United Kingdom

Dungeness B-1 p AGR 615 520 1985

Dungeness B-2 p AGR 615 520 1986

Hartlepool-1 p AGR 655 595 1984

Hartlepool-2 p AGR 655 585 1985

Heysham I-1 p AGR 625 585 1984

Heysham I-2 p AGR 625 575 1985

Heysham II-1 p AGR 682 595 1988

Heysham II-2 p AGR 682 595 1989

Hinkley Point B-1 p AGR 655 610 1976

Hinkley Point B-2 p AGR 655 610 1977

Hunterston B-1 p AGR 644 460 1976

Hunterston B-2 p AGR 644 430 1977

Sizewell B p PWR 1 250 1 191 1995

Torness Point 1 p AGR 682 595 1988

Torness Point 2 p AGR 682 595 1989

Hinkley Point C-1 [2] P PWR 1 720 1 630 (2025)

Ukraine

Khmelnitski 1 p VVER-PWR 1 000 950 1985

Khmelnitski 2 p VVER-PWR 1 000 950 2004

Rovno 1 p VVER-PWR 402 363 1981

Rovno 2 p VVER-PWR 416 377 1982

Rovno 3 p VVER-PWR 1 000 950 1987

Rovno 4 p VVER-PWR 1 000 950 2004

Zaporozhe 1 p VVER-PWR 1 000 950 1985

Zaporozhe 2 p VVER-PWR 1 000 950 1985

Zaporozhe 3 p VVER-PWR 1 000 950 1987

Zaporozhe 4 p VVER-PWR 1 000 950 1988

Zaporozhe 5 p VVER-PWR 1 000 950 1988

Zaporozhe 6 p VVER-PWR 1 000 950 1989

South Ukraine 1 p VVER-PWR 1 000 950 1983

South Ukraine 2 p VVER-PWR 1 000 950 1985

South Ukraine 3 p VVER-PWR 1 000 950 1989

USA

Arkansas Nuclear One 1 p PWR 969 903 1974

Arkansas Nuclear One 2 p PWR 1 006 943 1980

Beaver Valley 1 p PWR 955 923 1976

Beaver Valley 2 p PWR 957 923 1987

Braidwood 1 p PWR 1 289 1 225 1988

Braidwood 2 p PWR 1 289 1 225 1988

Browns Ferry 1 p BWR 1 200 1 152 1974

Browns Ferry 2 p BWR 1 193 1 152 1975

Browns Ferry 3 p BWR 1 232 1 190 1977

Brunswick 1 p BWR 1 074 1 002 1977

Brunswick 2 p BWR 1 075 1 002 1975

Byron 1 p PWR 1 307 1 225 1985

Byron 2 p PWR 1 304 1 225 1987

Callaway p PWR 1 316 1 236 1985

Calvert Cliffs 1 p PWR 935 918 1975

Calvert Cliffs 2 p PWR 939 911 1977

Catawba 1 p PWR 1 286 1 205 1985

Catawba 2 p PWR 1 286 1 205 1986

Clinton 1 p BWR 1 175 1 138 1987

Comanche Peak 1 p PWR 1 283 1 215 1990

Comanche Peak 2 p PWR 1 283 1 215 1993

Donald Cook 1 p PWR 1 266 1 152 1975

Donald Cook 2 p PWR 1 210 1 133 1978

Columbia (WNP 2) p BWR 1 244 1 200 1984

Cooper p BWR 844 801 1974

Davis Besse 1 p PWR 971 925 1978

Diablo Canyon 1 p PWR 1 236 1 159 1985

Diablo Canyon 2 p PWR 1 246 1 164 1985

Dresden 2 p BWR 1 057 1 009 1970

Dresden 3 p BWR 1 057 1 009 1971

Duane Arnold p BWR 737 680 1975

Farley 1 p PWR 933 888 1977

Farley 2 p PWR 934 888 1981

Fermi 2 p BWR 1 317 1 217 1988

FitzPatrick p BWR 918 882 1975

287

STATISTICS

Statistics

Nuclear Power Plants: 2018 atw Compact Statistics


atw Vol. 64 (2019) | Issue 5 ı May

288

NEWS

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

Ginna p PWR 713 614 1970

Grand Gulf 1 p BWR 1 516 1 440 1985

Hatch 1 p BWR 891 857 1974

Hatch 2 p BWR 905 865 1979

Hope Creek 1 p BWR 1 360 1 291 1986

Indian Point 2 p PWR 1 348 1 299 1974

Indian Point 3 p PWR 1 051 1 012 1976

La Salle 1 p BWR 1 242 1 170 1984

La Salle 2 p BWR 1 238 1 170 1984

Limerick 1 p BWR 1 203 1 139 1986

Limerick 2 p BWR 1 199 1 139 1990

McGuire 1 p PWR 1 358 1 220 1981

McGuire 2 p PWR 1 358 1 220 1984

Millstone 2 p PWR 946 91 0 1975

Millstone 3 p PWR 1 308 1 253 1986

Monticello p BWR 734 685 1971

Nine Mile Point 1 p BWR 671 642 1969

Nine Mile Point 2 p BWR 1 302 1 259 1988

North Anna 1 p PWR 1 035 980 1978

North Anna 2 p PWR 1 033 980 1980

Oconee 1 p PWR 955 887 1973

Oconee 2 p PWR 955 887 1974

Oconee 3 p PWR 961 893 1974

Palisades p PWR 870 81 2 1971

Palo Verde 1 p PWR 1 528 1 403 1986

Palo Verde 2 p PWR 1 524 1 403 1988

Palo Verde 3 p PWR 1 524 1 403 1986

Peach Bottom 2 p BWR 1 233 1 1 60 1974

Peach Bottom 3 p BWR 1 233 1 1 60 1974

Perry 1 p BWR 1 397 1 31 2 1987

Pilgrim p BWR 71 2 670 1972

Point Beach 1 p PWR 696 643 1970

Point Beach 2 p PWR 696 643 1972

Prairie Island 1 p PWR 642 593 1973

Prairie Island 2 p PWR 641 593 1974

Quad Cities 1 p BWR 1 061 1 009 1973

Quad Cities 2 p BWR 1 061 1 009 1973

RiverBend 1 p BWR 1 073 1 036 1986

Robinson 2 p PWR 855 769 1971

Salem 1 p PWR 1 276 1 1 70 1977

Salem 2 p PWR 1 303 1 1 70 1981

Seabrook 1 p PWR 1 330 1 242 1990

Sequoyah 1 p PWR 1 259 1 221 1981

Sequoyah 2 p PWR 1 279 1 221 1982

Shearon Harris 1 p PWR 983 951 1987

South Texas 1 p PWR 1 41 0 1 354 1988

Country Location/

Station name

Status Reactor

type

Capacity

gross

[MW]

Capacity

net

[MW]

1 st

Criticality

[Year]

South Texas 2 p PWR 1 41 0 1 354 1989

St. Lucie 1 p PWR 1 1 22 1 080 1976

St. Lucie 2 p PWR 1 1 35 1 080 1983

Virgil C. Summer p PWR 1 071 1 030 1984

Surry 1 p PWR 900 848 1972

Surry 2 p PWR 900 848 1973

Susquehanna 1 p BWR 1 374 1 298 1983

Susquehanna 2 p BWR 1 374 1 298 1985

Three Mile Island 1 p PWR 1 021 976 1974

Turkey Point 3 p PWR 906 877 1972

Turkey Point 4 p PWR 800 760 1973

Vogtle 1 p PWR 1 223 1 1 60 1987

Vogtle 2 p PWR 1 226 1 1 60 1989

Waterford 3 p PWR 1 250 1 200 1985

Watts Bar 1 p PWR 1 370 1 270 1996

Watts Bar 2 p PWR 1 240 1 180 2016

Wolf Creek p PWR 1 351 1 268 1984

Vogtle 3 P PWR 1 080 1 000 (2021)

Vogtle 4 P PWR 1 080 1 000 (2022)

Oyster Creek [6] j BWR 595 550 1969

1) Start of nuclear operation (first criticality: C, first grid connection: G, commercial

operation: O): 8 units in 2 countries in 2018: China Haiyang 1 (1250 MW, PWR,

CGO), Haiyang 2 (1250 MW, PWR, CG, O in 2019), Sanmen 1 (1251 MW, PWR,

CGO), Sanmen 2 (1251 MW, PWR, CGO), Taishan 1 (1750 MW, PWR, CGO),

Tianwan 4 (1060 MW, PWR, CGO), Yangjiang 5 (1086 MW, PWR, CGO), Russia:

Leningrad 2-1 (1187 MW, PWR, CGO), Rostov 4 (1030 MW, PWR, CGO). Tianwan 3

(1060 MW, PWR, O in 2019).

2) Start of construction (first concrete), 5 units 5 countries in 2018: Bangladesh:

Rooppur 2 (1200 MW, VVER-PWR); Korea: Shin Kori 6 (1400 MW, PWR); Russia:

Kursk 2-1 (1255 MW, VVER-PWR); Turkey: Akkuyu 1 (1200 MW, VVER-PWR);

United Kingdom: Hinkley Point C-1 (1720 MW, PWR).

3) Project under construction (finally) cancelled: none.

4) Resumed operation: 4 units in 1 country in 2018: Japan: Genkai 3 (1180 MW,

PWR); Genkai 4 (1180 MW, PWR); Ohi 3 (1180 MW, PWR); Ohi 4 (1180 MW, PWR).

5) Nuclear power plant taken in long-term shutdown: none.

6) Nuclear power plants permanently shutdown: 6 units in 4 countries in 2018: Japan:

Ikata 2 (566 MW, PWR); Ohi 1 (1175 MW, PWR); Ohi 2 (1175 MW, PWR); Russia:

Leningrad 1 (1000 MW, LWGR); Taiwan: China, Chin Shan 1 (636 MW, BWR); USA:

Oyster Creek (595 MW, BWR).

(All capacity data in MWe gross)

AGR: Advanced Gas-cooled Reactor, BWR: Boiling water reactor, Candu: CANada

Deuterium Uranium reactor (IND: Indian type), D2O-PWR: heavy water moderated,

pressurised water reactor, PWR: pressurised water reactor, GGR: gas-graphite

reactor, LWGR/GLWR: light water cooled graphite moderated reactor (Russian type

RBMK), FBWR: advanced boiling water reactor, FBR: fast breeder reactor

| | Tab. 1.

Nuclear power plant units worldwide on 31.12.2018 in operation (p), under construction (P), in lay-up operation/long-term shutdown (s) or permanently shut-down in 2018 (j)

[Sources: Operators, IAEO]. All information and data refer to the year 2018. Data have been updated with reference to the sources

Top

IEA: Nuclear generation

reached Pre-Fukushima levels

in 2018

(nucnet) Global generation from

nuclear energy reached pre- Fukushima

levels in 2018, mainly as a result of new

additions in China and the restart of

four reactors in Japan, the International

Energy Agency has said.

In its Global Energy And CO 2

Status Report, published on 26 March,

the Paris-based agency said nuclear

generation increased by 3.3%, or

90 TWh, and nuclear plants worldwide

met 9% of a 4% global increase

in electricity demand.

Production in Switzerland, Taiwan,

Pakistan and Sweden also increased.

Generation fell in South Korea, because

of new maintenance regulations,

and in Belgium, because of shutdowns

caused by safety-related concerns.

According to statistics in the report

nuclear generated 2,724 TWh of

electricity in 2018 representing a 10%

global share of electricity generation.

In 2000 its global share was 17%, the

report said.

Increased generation from nuclear

power plants also reduced emissions,

averting nearly 60 million tonnes of

CO 2 emissions

Global electricity demand rose by

4% in 2018, nearly twice as fast as

overall energy demand, and at its fastest

pace since 2010, the agency said.

Together, renewables and nuclear

power met most of the increase in

power demand. However, generation

from coal- and gas-fired power plants

increased considerably, driving up CO 2

emissions from the sector by 2.5%.

China and the US, the world’s two

largest power markets, accounted for

70% of global demand growth for

electricity. In China, electricity demand

increased by 8.5%, a notable

increase compared with recent years.

This was led by the industrial sector,

including iron, steel and other metals,

cement and construction, as well as

higher demand for cooling.

News


atw Vol. 64 (2019) | Issue 5 ı May

Energy consumption worldwide

grew by 2.3% in 2018, nearly twice

the average rate of growth since 2010,

driven by a robust global economy

and higher heating and cooling needs

in some parts of the world.

The biggest gains came from natural

gas, which emerged as the fuel of

choice last year, accounting for nearly

45% of the increase in total energy

demand. Demand for all fuels rose,

with fossil fuels meeting nearly 70% of

the growth for the second year running.

The Global Energy And CO 2 Status

Report is online:

https://bit.ly/2GS2NWV

| | www.iea.org

FORATOM highlights need for

investment in all low-carbon

technologies to meet climate

challenges

(foratom) The world is facing a major

challenge – in order to prevent

irreversible climate change, global

warming needs to be kept below

1.5 degrees. For Europe, this means a

full decarbonisation of its economy.

And this, in turn, requires adequate

financing and investment in ALL

low-carbon technologies.

The EIB Energy Lending Policy

consultation came to a close on

29 March 2019. In FORATOM’s opinion

it is important to ensure coherence

across EU legislation and for policy

to be in line with the objective of

achieving a carbon-free Europe by

2050. At the same time, such policy

must ensure that

pp

Europe has access to the energy it

needs when it needs it.

pp

New environmental problems are

not created.

pp

It supports jobs and growth in

Europe.

To achieve this, EU legislation must

support ALL low carbon technologies,

rather than cherry-picking one technology

over another. Basing decisions

on political acceptance rather than

objective criteria will make it much

harder for Europe to achieve its goals,

with the risk of a lock-in effect if it

were to rest too much on CO 2 -emitting

technologies.

Last week, the European Parliament

adopted its text on the European

Commission’s proposal for a sustainable

finance taxonomy[1]. Unfortunately,

MEPs have failed to take an

objective approach on what “sustainable”

actually means, assuming that

only technologies which are renewables-based

should be eligible for such

finance. In this respect, the text

adopted goes against:

The European Commission’s “A

Clean Planet for All” strategic vision

which recognises that, nuclear,

together with renewables, will form

the backbone of a carbon-free power

sector in 2050.

The latest Intergovernmental Panel

on Climate Change (IPCC) report

(Global Warming of 1.5°C, 8 October

2018) according to which nuclear

power is essential if the world is to keep

global warming to below 1.5 degrees.

Also, in its current form, the

adopted text raises two problems:

pp

The exclusion of future potential

low-carbon breakthrough technologies

which are not renewablesbased

– thereby preventing them

from ever coming to market.

pp

The risk of creating new environmental

problems. Whilst renewables

such as wind and solar are

low carbon, they require significant

volumes of raw materials,

critical raw materials and rare

earths. They also come with a significant

land footprint, which can

lead to the loss of biodiversity.

| | www.foratom.org

JET future secure

(euro-fusion) The future of EUROfusion

flagship and the world’s largest

operational fusion research facility,

the Joint European Tours, JET, is now

secure. The European Commission

and the UK have signed a contract

extension that will secure at least

€100m from the EU over the next two

years. This means that JET operations

are guaranteed until the end of 2020

regardless of the Brexit outcome.

EUROfusion Programme Manager

Tony Donné said, “A heavy weight has

been lifted off our shoulders. This is

extraordinarily good news for EUROfusion

and the European fusion

community as a whole. We can now

continue to work on the realisation of

fusion energy together with the

indispensable experience of our

British partner.”

Indeed the news brings reassurance

to the more than 500 staff who

work at the JET site. And as important

is the fact that JET can continue to

provide invaluable experimental results

and nurture scientific expertise

before ITER begins operations in

2025. JET is currently the only

tokamak capable of operation with

Deuterium-Tritium, the fusion fuel of

the future. And with its ITER-like wall,

and other diagnostics, the EUROfusion

flagship serves as a test bed for

future ITER operations.

| | www.euro-fusion.org

World

US and India reaffirm

commitment to build six

nuclear plants

(nei) The US and India have signed an

agreement confirming their commitment

to cooperate on the civilian use

of nuclear energy including a proposed

construction of six US-supplied

nuclear power plants in the Asian

country, a statement by the US Department

of State said.

The statement said that India’s

foreign secretary Vijay Gokhale and

US undersecretary of state Andrea

Thompson signed the agreement in

Washington yesterday, but gave no

further details about the nuclear

power plant project.

Former US president Barack

Obama and Indian prime minister

Narendra Modi announced in 2016

that engineering and design work

would begin for Westinghouse to build

six AP1000s in India in a deal that was

expected to be signed by June 2017.

The agreement was the result of a

decade of diplomatic efforts as part of

a US-India civil nuclear agreement

signed in 2008.

In April 2018, US energy secretary

Rick Perry said that reactor manufacturer

Westinghouse Electric Company

is “ready to get to work” on its

projects to build nuclear reactors in

India.

Westinghouse declared bankruptcy

in 2017 because of cost overruns and

was sold by Japan’s Toshiba Corporation

to Canada’s Brookfield Asset

Management in August 2018.

| | www.usa.gov

Russia signs agreement

to build four new reactors

in China

(rosatom) Russia has signed an agreement

to build four new nuclear power

units in China, with two at the

Xudabao site in Liaoning Province,

northeast China, and two at the

Tianwan nuclear power station in

Jiangsu province in the east of the

country.

State nuclear corporation Rosatom

said in a statement that a contract for

the technical design for the construction

of Units 3 and 4 at Xudabao had

been signed in Beijing on 7 March.

Rosatom also said a general contract

had been signed for the construction

of Units 7 and 8 at Tianwan.

There are four Russia-procured

VVER-1000 nuclear units in commercial

operation at Tianwan and two

domestically developed CNP-1000

289

NEWS

News


atw Vol. 64 (2019) | Issue 5 ı May

Operating Results January 2019

290

NEWS

Plant name Country Nominal

capacity

Type

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Month Year Since

commissioning

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Month Year Month Year

OL1 Olkiluoto BWR FI 910 880 744 680 029 680 029 262 335 237 100.00 100.00 98.83 98.83 99.35 99.35

OL2 Olkiluoto BWR FI 910 880 744 686 443 686 443 252 582 985 100.00 100.00 99.92 99.92 100.29 100.29

KCB Borssele PWR NL 512 484 744 380 469 380 469 162 102 158 99.56 99.56 99.56 99.56 100.19 100.19

KKB 1 Beznau 7) PWR CH 380 365 744 286 846 286 846 127 620 956 100.00 100.00 100.00 100.00 101.52 101.52

KKB 2 Beznau 7) PWR CH 380 365 744 285 135 285 135 134 635 542 100.00 100.00 100.00 100.00 100.86 100.86

KKG Gösgen 7) PWR CH 1060 1010 744 796 643 796 643 314 672 171 100.00 100.00 99.97 99.97 101.02 101.01

KKM Mühleberg 1,2) BWR CH 390 373 744 284 490 284 490 127 688 805 100.00 100.00 99.12 99.12 98.05 98.05

CNT-I Trillo PWR ES 1066 1003 744 789 524 789 524 248 081 193 100.00 100.00 100.00 100.00 98.97 98.97

Dukovany B1 PWR CZ 500 473 744 372 054 372 054 112 601 547 100.00 100.00 100.00 100.00 100.01 100.01

Dukovany B2 2) PWR CZ 500 473 744 369 516 369 516 108 603 687 100.00 100.00 100.00 100.00 99.33 99.33

Dukovany B3 PWR CZ 500 473 0 0 0 106 498 041 0 0 0 0 0 0

Dukovany B4 PWR CZ 500 473 744 373 097 373 097 106 816 366 100.00 100.00 99.50 99.50 100.30 100.29

Temelin B1 PWR CZ 1080 1030 744 810 082 810 082 115 171 124 100.00 100.00 100.00 100.00 100.63 100.63

Temelin B2 PWR CZ 1080 1030 744 814 728 814 728 110 087 245 100.00 100.00 100.00 100.00 101.21 101.21

Doel 1 2) PWR BE 454 433 0 0 0 135 444 462 0 0 0 0 0 0

Doel 2 2) PWR BE 454 433 0 0 0 133 801 939 0 0 0 0 0 0

Doel 3 PWR BE 1056 1006 744 805 717 805 717 255 938 202 100.00 100.00 100.00 100.00 101.91 101.91

Doel 4 2) PWR BE 1084 1033 744 746 557 746 557 261 119 967 100.00 100.00 90.64 90.64 90.81 90.81

Tihange 1 PWR BE 1009 962 744 763 658 763 658 299 594 516 100.00 100.00 100.00 100.00 101.95 101.95

Tihange 2 3) PWR BE 1055 1008 0 0 0 254 651 930 0 0 0 0 0 0

Tihange 3 3) PWR BE 1089 1038 742 757 187 757 187 271 984 460 99.71 99.71 93.63 93.63 93.72 93.72

Plant name

Type

Nominal

capacity

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Since Month Year Month Year Month Year

commissioning

KBR Brokdorf DWR 1480 1410 744 940 095 940 095 351 507 906 100.00 100.00 94.17 94.17 84.92 84.92

KKE Emsland 4) DWR 1406 1335 744 1 035 811 1 035 811 347 854 780 100.00 100.00 100.00 100.00 99.06 99.06

KWG Grohnde DWR 1430 1360 744 1 018 634 1 018 634 378 592 848 100.00 100.00 99.89 99.89 95.21 95.21

KRB C Gundremmingen SWR 1344 1288 744 1 009 470 1 009 470 331 951 225 100.00 100.00 100.00 100.00 100.39 100.39

KKI-2 Isar DWR 1485 1410 744 1 093 851 1 093 851 354 819 664 100.00 100.00 99.98 99.98 98.76 98.76

GKN-II Neckarwestheim 2) DWR 1400 1310 744 1 025 300 1 025 300 330 852 134 100.00 100.00 100.00 100.00 98.74 98.74

KKP-2 Philippsburg DWR 1468 1402 744 1 081 282 1 081 282 367 242 437 100.00 100.00 99.93 99.93 97.49 97.49

*)

Net-based values

(Czech and Swiss

nuclear power

plants gross-based)

1)

Refueling

2)

Inspection

3)

Repair

4)

Stretch-out-operation

5)

Stretch-in-operation

6)

Hereof traction supply

7)

Incl. steam supply

8)

New nominal

capacity since

January 2016

9)

Data for the Leibstadt

(CH) NPP will

be published in a

further issue of atw

BWR: Boiling

Water Reactor

PWR: Pressurised

Water Reactor

Source: VGB

pressurised water reactors under construction.

Rosatom gave no details in its

statement of the type of plant for the

two sites, but the company’s directorgeneral

Alexei Likhachev was quoted

last year by the state-owned Tass news

agency as saying that all four units will

be Generation III+ VVER-1200 plants.

The two countries signed initial

agreements for the four units in June

2018.

In April 2014, the Xudabao site was

approved for the construction of two

Westinghouse AP1000 nuclear power

units with the option of building four

more units.

According to International Atomic

Energy Agency statistics, construction

of the two AP1000s has not yet begun.

Russian media reports have said work

on the site began in 2010, but was

suspended after the 2011 Fukushima-

Daiichi accident.

In 2016, China Nuclear Industry 22

Construction Company, a subsidiary

of China Nuclear Engineering and

Construction Corporation, said it had

signed an engineering, procurement

and construction contract for the two

AP1000 units.

China has ambitious nuclear plans

with an official target of 58 GW of

installed nuclear capacity by 2020, up

from almost 36 GW produced by 46

operational reactor units today.

According to Shanghai-based

energy consultancy Nicobar, China’s

goal is to have 110 nuclear units

in commercial operation by 2030,

but this target is likely to be

adjusted in the next Five-Year Plan,

the first draft of which will appear

this year.

Nicobar said state-owned China

National Nuclear Corporation has told

the government China should start

building eight new nuclear power

plants a year before 2030 in a bid

to make the sector profitable and

sustainable.

| | www.rosatom.ru

NEI applauds senators for

introduction of Nuclear

Energy Leadership Bill

(nei) The Nuclear Energy Leadership

Act was introduced to the Senate

Committee on Energy and Natural

Resources. The following is a statement

by Maria Korsnick, president

and chief executive officer of the

Nuclear Energy Institute:

“We thank Sens. Lisa Murkowski

and Cory Booker for their bipartisan

sponsorship of the Nuclear Energy

News


atw Vol. 64 (2019) | Issue 5 ı May

Leadership Act (NELA). This legislation

sends an unmistakable signal

that the United States intends to

re-commit itself as a global leader in

clean, advanced nuclear technology.

“State-owned and state-sponsored

developers in rival nations – especially

China and Russia – are developing

next-generation nuclear technology.

For the American nuclear industry

to compete globally, we must have

significant collaboration among the

federal government, our national labs

and private industry to accelerate

innovation.

“NELA provides the means for

America to continue to lead in nuclear

energy technology. We ask Congress

to pass this legislation to help ensure

the success of advanced nuclear technologies

that will play a tremendous

role in reaching a global clean energy

future, while creating jobs and economic

benefits.”

“This legislation sends an unmistakable

signal that the U.S. intends to

re-commit itself as a global leader in

clean, advanced nuclear technology,”

says @NEI’s Korsnick. Read NEI’s

statement to learn why the NELA bill

is critical for the industry’s future.

| | www.nei.org

Nuclear Industry Association

comments on Micro Reactors

Report

(niauk) The Nuclear Industry Association

has issued a statement in relation

to the Government’s publication of an

independent report on Micro Nuclear

Reactors, their key characteristics and

an assessment of the market and

regulatory challenges.

Peter Haslam, Head of Policy at the

Nuclear Industry Association said:

“We believe small and micro reactors

have a role to play alongside large

reactors in increasing the clean energy

contribution from nuclear, while also

improving the UK’s energy security.

“In addition, the inherent flexibility

of micro reactors presents a big

opportunity for the UK as they can be

constructed here and transported

across the world for assembly.

“The industry will continue to

work with government to realise the

potential of this technology.”

The report outlines the key

tech nological characteristics of Micro

Nuclear Reactors (MNRs) and assesses

the associated market and regulatory

challenges. MNRs are a subgroup

of Small Modular Reactors

which are under ~30 MW in size.

https://bit.ly/2YzzrW2

| | www.niauk.org, www.gov.uk

Reactors

Vogtle milestone signals

momentum for future of

U.S. nuclear industry

(nei) Nuclear Energy Institute’s Maria

Korsnick joined Energy Secretary Rick

Perry and Gov. Brian Kemp of Georgia

for the capping of the containment

vessel on Vogtle 3. The following

is a statement from Maria Korsnick,

president and chief executive officer

of NEI.

“Today is an exciting day for the

state of Georgia and our country as we

move closer to completing the nation’s

first new nuclear plant in 30 years.

The progress made today on Vogtle 3

is another reminder that the United

States remains a significant force in

the global nuclear industry.

“We thank the administration and

Secretary Perry for their support of

the Vogtle project, which is a wise

investment for the future of America’s

nuclear power sector and our clean

energy future.

“Building Vogtle 3 and 4 is the

largest job-producing construction

project in Georgia, and when finished

the reactors will employ hundreds of

highly skilled workers for decades to

come. Producing massive amounts of

emission-free electricity around the

clock, the four-reactor Vogtle nuclear

power station will be one of America’s

largest clean energy facilities.”

| | www.nei.org

Company News

Framatome delivers GAIA fuel

assemblies containing the

first complete Enhanced

Accident Tolerant Fuel concept

(framatome) Framatome delivered the

industry’s first full-length Enhanced

Accident Tolerant Fuel (EATF) concept

containing both pellets and claddings

to Georgia Power’s Alvin W. Vogtle

Electric Generating Plant. Southern

Nuclear, operator of Plant Vogtle,

inserted the GAIA lead fuel assemblies

containing EATF during the Unit 2

spring refueling outage. Framatome

delivered the fuel to the plant in

January 2019.

“This is an important milestone

for Framatome and the industry,” said

Lionel Gaiffe, senior executive vice

president, Fuel Business Unit at

Framatome. “We applaud Southern

Nuclear’s consistent support of EATF

initiatives, and we are pleased to

deploy an economical advanced fuel

technology that offers operators

additional response time and greater

operational flexibility.”

Under the umbrella of its PROtect

program, Framatome’s advanced

chromium coating added to the stateof-the-

art M5Framatome zirconium

alloy cladding improves hightemperature

oxidation resistance and

reduces hydrogen generation during

loss of cooling. The chromium coating

also greatly reduces creep to maintain

a coolable geometry and has

mechanical pro perties that allow for

more operator response time. Further,

the innovative coating offers increased

resistance to debris fretting

during normal operations.

In addition to chromium coated

cladding, this integrated fuel solution

includes chromia-enhanced fuel

pellets, which have a higher density,

reduced fission gas release, and

improved behavior during loss of

cooling. Reduced Pellet Clad Interaction

(PCI) also better supports

power maneuvering.

Framatome has worked for several

years with the support of the U.S.

Department of Energy’s Accident

Tolerant Fuel program, which has

allowed the company to significantly

improve on its initial target of 2022 to

deploy this technology. European

partners, like CEA, which initially

explored and identified the suitable

cladding coating process, and also

EDF, Goesgen Nuclear Power Plant in

Switzerland and leaders from across

the nuclear sector have collaborated

for several years on aspects of this fuel

design.

Framatome fabricated the fuel

assemblies at its fuel manufacturing

facility in Richland, Washington, as

part of a 2017 contract with Southern

Nuclear. Southern Nuclear, a subsidiary

of Southern Company, operates

a total of six units for Alabama Power

and Georgia Power.

| | www.framatome.com

GNS: Twelve CASTOR® casks

for PreussenElektra

(gns) GNS supplies twelve transport

and storage casks of the type CASTOR®

V/19 for the spent fuel from the

German NPPs Brokdorf and Grohnde.

GNS Gesellschaft für Nuklear-

Service mbH has received an order to

supply a total of twelve transport and

storage casks of the type CASTOR®

V/19. The casks will be used for the

removal of spent fuel assemblies from

the two pressurized water reactor

NPPs of PreussenElektra in Brokdorf

and Grohnde which are still in

291

NEWS

News


atw Vol. 64 (2019) | Issue 5 ı May

292

NEWS

operation. The order has a volume of

well over EUR 20 million.

The casks are to be delivered from

the GNS plant in Mülheim an der Ruhr

to the two power plants in the fourth

quarter of 2020. After loading in the

reactor building with 19 fuel elements

each, the casks will be taken to the

local interim storage facilities. More

than 30 loaded casks of this type are

already stored at each of the two sites.

„The CASTOR® casks from GNS

have proven to be reliable packaging

for the irradiated fuel elements from

our nuclear power plants”, explains

Lothar Mertens, Head of Fuel Cycle

and Interim Storage at Preussen-

Elektra. “They ensure the smooth

emptying of our storage pools and

thus form an important component in

the disposal of our power plants both

during power operation and until the

reactor is completely fuel-free.”

| | www.gns.de

Science & Research

LENS launches activities to

strengthen European neutron

science

(lens) Members of a strategic consortium

of neutron research facilities

in Europe, the League of advanced

European Neutron Sources (LENS),

officially launched activities to promote

colla boration on neutron usage,

technology development, innovation,

data, education, and strategies. By

aligning policies among its partners,

LENS will advocate for the user

community and strengthen European

neutron science.

The members of LENS held their

first General Assembly and the first

Executive Board meeting on 26 March

2019 in Liblice, the Czech Republic.

The consortium adopted and signed

Statutes detailing the purpose of

LENS, guiding the work of the

statutory bodies, and laying the

framework for Working Groups responsible

for the execution of foreseen

activities. The Director of Institut

Laue-Langevin (ILL) in France, Helmut

Schober, was elected as LENS

Chair, and the Director of the ISIS

Neutron and Muon Source in the

United Kingdom, Robert McGreevy, as

Vice-Chair.

A community event to mark

the launch of LENS

The signing ceremony was followed

by a public event that celebrated the

launch of LENS in the presence of

around 80 government representatives,

national delegates to the

European Strategy Forum on Research

Infrastructures (ESFRI), the European

Commission, and the wider scientific

community.

“Research on materials will provide

the basis for technologies of the

future that are needed to achieve a

sustainable, high standard of living all

around the globe,” said the newly

elected Chair of LENS, Helmut

Schober. “LENS will help to develop

these technologies by optimizing the

use of resources for neutron investigations

through strategic coordination

among neutron facilities.”

The event also featured panel

discussions about the long-term

sustainability of neutron sources, and

the various ways in which neutrons

contribute to excellent science and

advance innovation. As a collaborative

effort that aims to benefit researchers

and address their needs, LENS seeks to

establish good working relations with

the European Neutron Scattering

Association (ENSA). LENS will be in

close dialogue with the League of

European Accelerator-based Photon

Sources (LEAPS), a strategic consortium

that brings together synchrotron

radiation and free electron laser user

facilities in Europe. Representatives of

both ENSA and LEAPS joined the LENS

launch event in Liblice.

The member base of LENS

expands

LENS was established in September

2018 with the primary goal of facilitating

discussions and decision-making

processes that have the potential to

strengthen European neutron science.

The eight founding members include

national and international neutron

facilities from France, Germany,

Hungary, Norway, Sweden, Switzerland,

and the United Kingdom.

The event in Liblice marked the

first expansion of the consortium’s

member base. Forschungszentrum

Jülich from Germany with its Jülich

Centre for Neutron Science (JCNS)

was welcomed as the ninth member.

LENS is open to new members and

other qualifying neutron facilities

which grant international access to

their experimental devices and

research services are invited to join at

any time. In this way, LENS helps to

contribute to the scientific integration

of Europe.

The LENS launch was held on the

eve of the 68 th ESFRI Forum Meeting,

which brought together senior science

policy officials representing Ministers

responsible for research in each of the

participating state. “We welcome the

launch of LENS. Coordinated efforts of

this type support a better use and

development of research infra structures

in Europe. This is well in line

with the vision that ESFRI has for

European science, “ said Jan Hrušák,

ESFRI Chair.

Shaping the future by utilising

members’ capabilities

Solving the grand challenges facing

our societies often requires the development

of new high-performance

materials. Tailor-made materials and

material systems are required for the

advancement of key technologies,

from information technology and

renewable energy concepts, to safer

and more environmentally friendly

transport systems and life-saving

medical applications. Probing materials

with neutrons stands as one of the

pillars of the analytical techniques in

this chain of discovery.

Neutron-based analytical facilities,

therefore, are used in numerous

disciplines across the entire range of

science and technology development,

and generate a high socio-economic

impact. Europe has achieved global

leadership in this field, serving a very

broad scientific community of more

than 5,000 researchers by providing

them with more than 32,000 instrument

days at neutron scattering facilities.

| | www.frm2.tum.de

Market data

(All information is supplied without

guarantee.)

Nuclear Fuel Supply

Market Data

Information in current (nominal)

U.S.-$. No inflation adjustment of

prices on a base year. Separative work

data for the formerly “secondary

market”. Uranium prices [US-$/lb

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =

0.385 kg U]. Conversion prices [US-$/

kg U], Separative work [US-$/SWU

(Separative work unit)].

2014

pp

Uranium: 28.10–42.00

pp

Conversion: 7.25–11.00

pp

Separative work: 86.00–98.00

2015

pp

Uranium: 35.00–39.75

pp

Conversion: 6.25–9.50

News


atw Vol. 64 (2019) | Issue 5 ı May

Uranium Prize range: Spot market [USD*/lb(US) U 3 O 8 ]

140.00

120.00

) 1

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]

140.00

) 1

120.00

293

100.00

100.00

80.00

60.00

40.00

Yearly average prices in real USD, base: US prices (1982 to1984) *

80.00

60.00

40.00

NEWS

20.00

20.00

0.00

Year

2015

| | Uranium spot market prices from 1980 to 2018 and from 2008 to 2019. The price range is shown. In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.

2019

0.00

Year

Jan.

2012

2013

2014

2015

2016

2017

2018

2019

Separative work: Spot market price range [USD*/kg UTA]

Conversion: Spot conversion price range [USD*/kgU]

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

) 1

Year

Jan.

0.00

2012

2013

2014

2015

2016

2017

2018

2019

0.00

Year

Jan.

2012

2013

2014

2015

2016

2017

2018

2019

| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.

)1

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.

| | * Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bilder/Figures: atw 2019

pp

Separative work: 58.00–92.00

2016

pp

Uranium: 18.75–35.25

pp

Conversion: 5.50–6.75

pp

Separative work: 47.00–62.00

2017

pp

Uranium: 19.25–26.50

pp

Conversion: 4.50–6.75

pp

Separative work: 39.00–50.00

2018

January to June 2018

pp

Uranium: 21.75–24.00

pp

Conversion: 6.00–9.50

pp

Separative work: 35.00–42.00

February 2018

pp

Uranium: 21.25–22.50

pp

Conversion: 6.25–7.25

pp

Separative work: 37.00–40.00

March 2018

pp

Uranium: 20.50–22.25

pp

Conversion: 6.50–7.50

pp

Separative work: 36.00–39.00

April 2018

pp

Uranium: 20.00–21.75

pp

Conversion: 7.50–8.50

pp

Separative work: 36.00–39.00

May 2018

pp

Uranium: 21.75–22.80

pp

Conversion: 8.00–8.75

pp

Separative work: 36.00–39.00

June 2018

pp

Uranium: 22.50–23.75

pp

Conversion: 8.50–9.50

pp

Separative work: 35.00–38.00

July 2018

pp

Uranium: 23.00–25.90

pp

Conversion: 9.00–10.50

pp

Separative work: 34.00–38.00

August 2018

pp

Uranium: 25.50–26.50

pp

Conversion: 11.00–14.00

pp

Separative work: 34.00–38.00

September 2018

pp

Uranium: 26.50–27.50

pp

Conversion: 12.00–13.00

pp

Separative work: 38.00–40.00

October 2018

pp

Uranium: 27.30–29.00

pp

Conversion: 12.00–15.00

pp

Separative work: 37.00–40.00

November 2018

pp

Uranium: 28.00–29.25

pp

Conversion: 13.50–14.50

pp

Separative work: 39.00–40.00

December 2018

pp

Uranium: 28.50–29.20

pp

Conversion: 13.50–14.50

pp

Separative work: 40.00–41.00

2019

January 2019

pp

Uranium: 28.70–29.10

pp

Conversion: 13.50–14.50

pp

Separative work: 41.00–44.00

February 2019

pp

Uranium: 27.50–29.25

pp

Conversion: 13.50–14.50

pp

Separative work: 42.00–45.00

| | Source: Energy Intelligence

www.energyintel.com

Cross-border Price

for Hard Coal

Cross-border price for hard coal in

[€/t TCE] and orders in [t TCE] for

use in power plants (TCE: tonnes of

coal equivalent, German border):

2014: 72.94, 30,591,663

2015: 67.90; 28,919,230

2016: 67.07; 29,787,178

2017: 91.28, 25,739,010

2018

I. quarter: 89.88; 5,838,003

II. quarter: 88.25; 4,341,359

III. quarter: 100.79; 5,135,198

IV. quarter: 100.91; 6,814,244

| | Source: BAFA, some data provisional

www.bafa.de

News


atw Vol. 64 (2019) | Issue 5 ı May

294

Operating Results 2018

REPORT

In 2018 the German nuclear power plants generated

76.00 billion kilowatt hours (kWh) of electricity gross.

No German nuclear power plant ceased operation in

2018 due to the revision of the German Atomic Energy

Act in the political aftermath of the accidents in Fukushima,

Japan, in 2011. Seven nuclear power plants with an

electric gross output of 10,013 MWe were in operation on

31 December 2018.

Six power plants in operation in 2018 achieved results

with a gross production greater than 10 billion kilowatt

hours, one power plants even produced more than 11 billion

kilowatt hours and one more than 12 billion kilowatt

hours.

German nuclear power plants achieved two of the

world’s ten best production results in 2018 (“Top Ten”). At

the end of 2018, 451 reactor units were in operation in 31

countries worldwide and 53 were under construction in 18

countries. The share of nuclear power in world electricity

production was around 11 %. German nuclear power

plants have been occupying top spots in electricity production

for decades thus providing an impressive demonstration

of their efficiency, availability and reliability.

The Chooz B-2 nuclear power plant in France (capacity:

1,560 MWe gross) achieved the world record in electricity

production in 2018 with 12.4 billion kilowatt hours. The

German nuclear power plants Isar 2 (KKI 2, 12.1 billion

kilowatt hours) and Emsland (KKE, 11.3 billion kilowatt

hours) took the second and forth place.

Additionally German nuclear power plants are leading

with their lifetime electricity production. The Brokdorf,

Grohnde, Isar 2 and Philippsburg 2 nuclear power plant

have produced more than 350 billion kilowatt hours since

their first criticality.

D

German nuclear power plant

Top Ten: Electricity production 1981 to 2018

Year

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

Top Ten: Nuclear Power Plants

World's

best

2 3 4 5 6 7 8 9 10

D D D

D D D D

D D D D

D D D D

D D D D D D D

D D D D D D

D D D D D D

D D D D D

D D D D D D D

D D D D D D

D D D D D D D

D D D D D D D

D D D D D D D

D D D D D D D

D D D D D D D

D D D D D D D

D D D D D D D

D D D D D D

D D D D D D D

D D D D D D

D D D D D D D D

D D D D D

D D D D

D D D D D

D D D D D D

D

D

D D D D

D D D

D D D

D

D D D

D

D D D D D

D D D D D D

D

D

D

D

D

D

D D D

D

D D D D

D D D D

2015 D D D D

2016 D D D

2017

D D

2018 D D

D

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

295

Operating results of nuclear power plants in Germany 2017 and 2018

Nuclear power plant Rated power Gross electricity

generation

in MWh

Availability

factor*

in %

Energy availability

factor**

in %

REPORT

gross

in MWe

net

in MWe

2017 2018 2017 2018 2017 2018

Brokdorf KBR 1,480 1,410 5,778,146 10,375,751 51.68 90.60 48.23 84.72

Emsland KKE 1,406 1,335 11,323,704 11,495,686 93.28 94.78 93.13 94.67

Grohnde KWG 1,430 1,360 9,684,880 10,946,635 86.10 92.82 82.40 91.61

Gundremmingen KRB B**** 1,344 1,284 9,689,710 93.10 92.20

Gundremmingen KRB C 1,344 1,288 9,929,820 10,361,862 87.85 90.41 85.93 89.85

Isar KKI 2 1,485 1,410 11,523,513 12,127,490 91.53 95.46 91.15 95.24

Neckarwestheim GKN II 1,400 1,310 10,540,800 9,703,700 88.93 81.29 88.60 81.00

Philippsburg KKP 2 1,468 1,402 7,853,827 10,993,639 63.18 90.63 63.12 90.47

Total (in 2017) 11,357 10,799 76,324,400 81.95 80.47

Total (in 2018) 10,013 9,515 76,004,763 90.85 89.60

* Availability factor (time availability factor) kt = tN/tV: The time availability factor kt is the quotient

of available time of a plant (tV) and the reference period (tN). The time availability factor is a degree

for the deployability of a power plant.

** Energy availability factor kW = WV/WN: The energy availability factor kW is the quotient of available

energy of a plant (WV ) and the nominal energy (WN). The nominal energy WN is the product of nominal

capacity and reference period. This variable is used as a reference variable (100 % value) for availability

considerations. The available energy WV is the energy which can be generated in the reference period

due to the technical and operational condition of the plant. Energy availability factors in excess of 100 %

are thus impossible, as opposed to energy utilisation.

*** Inclusive of round up/down, rated power in 2018.

**** The Gundremmingen nuclear power plant (KRB B) was permanently shutdown on 31 December 2017

due to the revision of the German Atomic Energy Act in 2011.

All data in this report as of 31 March 2019.

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

296

Brokdorf

REPORT

Operating sequence in 2018

100

90

80

70

60

50

40

30

20

10

Electrical output in %

January February March April May June July August September October November December

In the year 2018 nuclear power plant Brokdorf (KBR) was on the grid

with an availability factor of 84.70 % in total 7,937 operating hours.

Gross generation for the year under review amounted to

80 10,376,751 MWh. Also in 2018, the thermal reactor power was limited

to a maximum of 95 % with a coolant temperature reduced by 3 K

60 of nominal power due to the specifications of ME 02/2017 “Increased

oxide layer thickness on fuel rod cladding tubes of fuel assemblies”.

40

Due to high summer temperatures, temporary reductions in output

were necessary in the months of July to September in order to

20

comply with the water law permit.

100

0

Planned shutdowns

On 1 April 2018 the plant was shutdown for the 30 th refuelling and

annual major revision:

The revision included the following priorities:

80

pp

Reactor

Offload of the reactor pressure vessel.

Oxide layer measurement and

60

visual inspection of fuel elements.

40

Inspection of control elements.

Ultrasonic test, reactor pressure vessel,

20

bottom part.

pp

Main coolant pump YD40 Ring exchange of e-motor.

0

Inspection of the axial bearing.

Replacement mechanical shaft seal.

pp

Feed water system Pressure testing.

pp

Coolant

Works on pump stationary head VE30/40.

Works on main coolant water

Positionierung: channel VA10-30.

pp

Turbine Bezug, links, Standard untenservice.

Inspection primary water cooler

of generator.

pp

Transformers VGB: HKS6K Exchange 30 % of transformers

atw: 100 60 CS12, 0 0 CS21, CT31.

pp

Batteries Exchange, redundancy 1

100

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

Unplanned shutdowns and reactor/turbine trip

On 2 May 2018, the generator was disconnected from the grid and

shut down to remove a seal leakage at a non-return flap of the steam

generator blowdown system. On 5 May 2018, after completion of the

repair, a malfunction in the turbine control at one of two electrohydraulic

converters (EHU) occurred during start-up of the plant.

After clearing of the failure the main synchronisation took place on

6 May 2018.

On 12 August 2018 the plant was disconnected from the grid for

repairing the speed monitor selection circuit of the turbine protection

system.

Power reductions above 10 % and longer than for 24 h

In the period from 12 to 13 October 2018, power reduction was carried

out for the inspection and repair of a connecting slide valve between

a force-locking basin and a pump antechamber of the secured

secondary cooling water system as well as for the detection and removal

of a condenser pipe leakage in the turbine condenser.

In addition, load reductions were carried out in order to implement

the grid-supporting power control in accordance with the specifications

of the mission control centre.

Delivery of fuel elements

During the reporting year 28 fuel elements were delivered.

Waste management status

By the end of the year 2018 33 loaded CASTOR © cask were located at

the on-site intermediate storage Brokdorf.

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

297

Operating data

Review period 2018

REPORT

Plant operator: PreussenElektra GmbH

Shareholder/Owner: PreussenElektra GmbH (80 %),

Vattenfall Europe Nuclear Energy GmbH (20 %)

Plant name: Kernkraftwerk Brokdorf (KBR)

Address: PreussenElektra GmbH, Kernkraftwerk Brokdorf,

25576 Brokdorf, Germany

Phone: 04829 752560, Telefax: 04829 511

Web: www.preussenelektra.de

100

90

80

79

Availability factor in %

Capacity factor in %

84

92

93

93

93

90

First synchronisation: 10-14-1986

Date of commercial operation: 12-22-1986

Design electrical rating (gross):

1,480 MW

Design electrical rating (net):

1,410 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

70

60

50

40

44

The following operating results were achieved:

Operating period, reactor:

7,937 h

Gross electrical energy generated in 2018:

10,375,751 MWh

Net electrical energy generated in 2018:

9,838,252 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2018:

350,567,809 MWh

Net electrical energy generated since

first synchronisation until 12-31-2018:

333,249,131 MWh

Availability factor in 2018: 90.60 %

Availability factor since

date of commercial operation: 89.84 %

Capacity factor 2018: 84.72 %

Capacity factor since

date of commercial operation: 86.19 %

Downtime

(schedule and forced) in 2018: 9.40 %

Number of reactor scrams 2018: 0

Licensed annual emission limits in 2018:

Emission of noble gases with plant exhaust air:

Emission of iodine-131 with plant exhaust air:

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

1.0 · 10 15 Bq

6.0 · 10 9 Bq

5.55 · 10 10 Bq

30

20

10

0

10

9

8

7

6

84

2011

84

2012

93

2013

93

2014

93

2015

93

2016

Collective radiation dose of own

and outside personnel in Sv

52

2017

91

2018

Proportion of licensed annual emission limits

for radioactive materials in 2018 for:

Emission of noble gases with plant exhaust air: 0.079 %

Emission of iodine-131 with plant exhaust air: 0.000 %

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.000 %

Collective dose:

0.142 Sv

5

4

3

2

1

0

0.22

2011

0.13

2012

0.22

2013

0.17

2014

0.14

2015

0.14

2016

0.13 0.14

2017 2018

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

298

Emsland

REPORT

Operating sequence in 2018

Electrical output in %

100

90

80

70

60

50

40

30

20

10

0

January February March April May June July August September October November December

100

80

60

40

20

Apart from the 19 days refuelling outage the Emsland nuclear power

plant had been operating uninterrupted and mainly at full load during

the review period 2018. Producing a gross power generation of

11,495,686 MWh with a capacity factor of 94.67 % the power plant

achieved a very good operating result.

Planned shutdowns

31 th refuelling and overall annual maintenance inspection:

The annual outage was scheduled for the period 25 May to 13 June.

The outage took 19.0 days from breaker to breaker. In addition to the

replacement of 40 fuel elements the following major maintenance

and inspection activities were carried out:

pp

Inspection of core and reactor pressure vessel internals.

100

pp

Inspection of a reactor coolant pump.

pp

Inspection of pressurizer valves.

80

pp

Pressure test on different coolers and tanks.

pp

Inspection on main condensate pump.

60

pp

Maintenance works on different transformers.

pp

Different automatic non-destructive examinations.

0

40

Unplanned shutdowns and reactor/turbine trip

Turbine scram due to increased turbine vibrations after the end of the

outage.

Power reductions above 10 % and longer than for 24 h

22 April to 25 May: Stretch-out operation.

Delivery of fuel elements

24 Uranium-fuel elements were delivered.

Waste management status

4 CASTOR © cask loading were carried out during the review period

2018. At the end of the year 47 loaded casks were stored in the local

interim storage facility.

20

0

Positionierung:

Bezug, links, unten

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

VGB: HKS6K 30 %

atw: 100 60 0 0

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

299

Operating data

Review period 2018

REPORT

Plant operator: Kernkraftwerke Lippe-Ems GmbH

Shareholder/Owner: RWE Power AG (87.5 %),

PreussenElektra GmbH (12.5 %)

Plant name: Kernkraftwerk Emsland (KKE)

Address: Kernkraftwerk Emsland,

Am Hilgenberg , 49811 Lingen, Germany

Phone: 0591 806-1612

Web: www.rwe.com

100

90

80

Availability factor in %

Capacity factor in %

95 95

95

95

91

94

93

95

First synchronisation: 04-19-1988

Date of commercial operation: 06-20-1988

Design electrical rating (gross):

1,406 MW

Design electrical rating (net):

1,335 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

70

60

50

40

The following operating results were achieved:

Operating period, reactor:

8,310 h

Gross electrical energy generated in 2018:

11,495,686 MWh

Net electrical energy generated in 2018:

10,951,033 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2018:

346,818,969 MWh

Net electrical energy generated since

first synchronisation until 12-31-2018:

328,829,904 MWh

Availability factor in 2018: 94.78 %

Availability factor since

date of commercial operation: 94.07 %

Capacity factor 2018: 94.67 %

Capacity factor since

date of commercial operation: 93.93 %

Downtime

(schedule and forced) in 2018: 5.22 %

Number of reactor scrams 2018: 0

Licensed annual emission limits in 2018:

Emission of noble gases with plant exhaust air:

Emission of iodine-131 with plant exhaust air:

(incl. H-3 and C-14)

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

1.0 · 10 15 Bq

5.0 · 10 9 Bq

3.7 · 10 10 Bq

Proportion of licensed annual emission limits

for radioactive materials in 2018 for:

Emission of noble gases with plant exhaust air: 0.099 %

Emission of iodine-131 with plant exhaust air: 0.0 %

(incl. H-3 and C-14)

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.00 %

Collective dose:

0.059 Sv

30

20

10

0

10

9

8

7

6

5

4

3

2

1

95 95

2011 2012

95

2013

95

2014

91

2015

94

2016

Collective radiation dose of own

and outside personnel in Sv

93

2017

95

2018

0

0.07 0.09

2011 2012

0.08

2013

0.06

2014

0.10

2015

0.05

2016

0.09 0.06

2017 2018

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

300

Grohnde

REPORT

Operating sequence in 2018

100

90

80

70

60

50

40

30

20

10

Electrical output in %

January February March April May June July August September October November December

100

During the reporting year 2018 the nuclear power plant Grohnde

was put off the grid for a 26-day major revision with refuelling and

achieved an availability factor of 92.8 % The gross production

amounted to 10,946,634 MWh.

Opposite to the scheduled 21-day downtime the revision extended

by 159 hours due to the maintenance of equipment and repair works

of valve RL71 S003.

The plant was additionally taken off the grid for 4.5 hours on

29 July 2018 due to the repair of a speed monitoring device selection

switch. The reactor was in hot-stand-by operation during this work.

80

60

40

20

0

Planned shutdowns

24 February to 22 March: 35 th Refuelling and major annual revision:

100

Nuclear power plant Grohnde was shut down as scheduled after a

3-day stretch-out operation on 24 February 2018 for the revision and

80

35 th refuelling.

The main planned works during this year’s revision were:

60

pp

Unloading and loading with the replacement of 56 fresh fuel

40

elements.

pp

Full inspection of 20 fuel elements.

p20p

Eddy current test of 23 control elements.

pp

Visual inspection of 15 flow restrictor assembly.

p0

p Main coolant pump YD40 D001: Conversion of the motor and axial

bearing revision HKMP YD20 D001.

pp

Inspection of the safety feed water pump TH35 D001.

pp

Cleaning of the nuclear intercooler TF10 B001.

pp

Non-destructive tests of the YB10 and YB40 steam generators and

the Positionierung:

secondary side.

pp

Start-up Bezug, test of links, the fuel unten element centering pins of the UKG.

pp

Work and tests in the redundancies with the focus on the activities

in the main redundancy 1/5 (maintenance work on valves and

actuators VGB: as HKS6K well as tests 30 on % containers, batteries and electrotechnical

atw: branches). 100 60 0 0

Due to a leakage at a blind plug of the valve detected during the startup

process RL71 S003 was triggered by hand on 20 March at 02:10

RESA and was shut down to subcritical cold for repair.

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

Unplanned shutdowns and reactor/turbine trip

29 July: Downtime for repair of the speed monitoring device selection

switch. The plant was taken off the grid for 4.5 hours.

Power reductions above 10 % and longer than for 24 h

22 to 26 June: Due to disturbances of the speed monitoring device

selection switch the reactor power was reduced down to 80 %.

Load sequence operation was carried out in April, October,

November and December due to the requirements of the load

distributor.

WANO Review/Technical Support Mission

A WANO Peer Review took place at the KWG from 16 to 27 April 2018.

This was a so-called “optimised” peer review, which was carried out

for the first time according to a concept specially agreed for this

purpose. A team of 14 peers from six nations scrutinized many areas

of the power plant, identifying areas with potential for improvement.

At the end of the review, the results were communicated to the power

plant management and executives in a workshop.

Delivery of fuel elements

In February 2018 20 U-/U-Gd-fuel elements of Westinghouse were

delivered.

Waste management status

Between September and November 2018, a total of four

CASTOR © -V/19 containers were loaded. Thus 34 CASTOR © -V/19

containers are currently stored in the ZL-KWG.

General points/management systems

In September 2018, the monitoring audit of the quality management

system (ISO 9001) and the recertification of the environmental management

system (ISO 14001) and the occupational health and safety

management system (OHSAS 18001) were successfully carried out.

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

301

Operating data

Review period 2018

REPORT

Plant operator: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG

Shareholder/Owner: PreussenElektra GmbH (83.3 %),

Stadtwerke Bielefeld (16.7 %)

Plant name: Kernkraftwerk Grohnde (KWG)

Address: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG,

P.O. bx 12 30, 31857 Emmerthal, Germany

Phone: 05155 67-1

Web: www.preussenelektra.de

100

90

80

84

Availability factor in %

Capacity factor in %

95

89

84

89

82

92

First synchronisation: 09-05-1984

Date of commercial operation: 02-01-1985

Design electrical rating (gross):

1,430 MW

Design electrical rating (net):

1,360 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

70

60

50

40

73

The following operating results were achieved:

Operating period, reactor:

8,131 h

Gross electrical energy generated in 2018:

10,946,634 MWh

Net electrical energy generated in 2018:

10,339,242 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2018:

377,574,203 MWh

Net electrical energy generated since

first synchronisation until 12-31-2018:

356,969,277 MWh

Availability factor in 2018: 92.80 %

Availability factor since

date of commercial operation: 91.70 %

Capacity factor 2018: 91.70 %

Capacity factor since

date of commercial operation: 91.30 %

Downtime

(schedule and forced) in 2018: 7.20 %

Number of reactor scrams 2018: 0

Licensed annual emission limits in 2018:

Emission of noble gases with plant exhaust air: 9.0 · 10 14 Bq

Emission of iodine-131 with plant exhaust air: 7.5 · 10 9 Bq

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

5.55 · 10 10 Bq

30

20

10

0

10

9

8

7

6

84 95

2011 2012

90

2013

84

2014

89

2015

75

2016

Collective radiation dose of own

and outside personnel in Sv

86

2017

93

2018

Proportion of licensed annual emission limits

for radioactive materials in 2018 for:

Emission of noble gases with plant exhaust air: 0.005 %

Emission of iodine-131 with plant exhaust air: 0.000 %

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.000 %

Collective dose:

0.124 Sv

5

4

3

2

1

0

0.65

0.27

2011 2012

0.54

2013

0.25

2014

0.31

2015

0.52

2016

0.23 0.12

2017 2018

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

302

Gundremmingen C

REPORT

Operating sequence in 2018

Electrical output in %

100

90

80

70

60

50

40

30

20

10

0

January February March April May June July August September October November December

In the review year 2018, unit C of Gundremmingen nuclear power

plant was operated at full load without any major restrictions except

80

for one planned outage for refuelling.

From

60

1 March to 21 April 2018 unit C was in stretch-out operation.

During 40 the shutdown a total of 138 fuel elements were unloaded

and replaced with 120 fresh and 18 (8 MOX) partially spent fuel elements.

20

During the outage all safety relevant workings were monitored by

the relevant 0 nuclear controlling authority, the Bavarian State Ministry

of the Environment and Consumer Protection (StMUV), and consulted

authorized experts. The inspection of the technical systems

with regard to safety and reliability confirmed the excellent condition

of the plant.

100

A gross total of 10,361,862 MWh of electricity was produced.

80

100

Peer Reviews

Between 5 and 16 March, an “optimized” WANO Peer Review for a

period of two instead of three weeks took place at KGG. The following

focus areas were analysed: work safety, fire protection, chemistry,

radiation protection, handling of fuel assemblies, management

of nuclear fuel.

Delivery of fuel elements

In 2018, for Gundremmingen unit C 132 fresh fuel elements were delivered.

Waste management status

At the end of 2018, the local interim storage facility accommodated

60 loaded CASTOR © casks with each 52 spent fuel elements out of

units B and C.

Planned

60

shutdowns

21 April to 26 May 2018: 32 nd refuelling and annual major inspection.

40

The following major activities were carried out:

p20p

Refuelling and sipping of all fuel elements inside the core; result:

two defective fuel elements.

p0

p Works on turbine, generator and auxiliary systems.

pp

Inspection of main isolation valves of feedwater, main steam and

residual heat removal system.

pp

Emptying of redundancy 5 for preventive measures on valves,

torque motors, motors, pumps and tanks.

pp

Inspection Positionierung:

of one emergency diesel generator.

pp

Extensive Bezug, non-destructive links, unten testing of pipes and tanks.

pp

Emptying of main cooling water system, cleaning of cooling tower

pond, exchange of cooling tower installations.

pp

Optimisation

VGB: HKS6K

measures

30

to

%

ensure non-interaction between permanently

atw: shut 100 down 60 unit 0 0B and operating unit C.

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

Unplanned shutdowns and reactor/turbine trip

None.

Power reductions above 10 % and longer than for 24 h

25 and 26 February: Periodic tests.

1 March to 21 April: Stretch-out operation.

11 to 14 November: Period tests, change of the control rod traversing

order, leak detection in turbine condenser.

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

303

Operating data

Review period 2018

REPORT

Plant operator: Kernkraftwerk Gundremmingen GmbH

Shareholder/Owner: RWE Power AG (75 %),

PreussenElektra GmbH (25 %)

Plant name: Kernkraftwerk Gundremmingen C (KRB C)

Address: Kernkraftwerk Gundremmingen GmbH,

Dr.-August-Weckesser-Straße 1, 89355 Gundremmingen, Germany

Phone: 08224 78-1, Telefax: 08224 78-2900

E-mail: kontakt@kkw-gundremmingen.de

Web: www.kkw-gundremmingen.de

First synchronisation: 11-02-1984

Date of commercial operation: 01-18-1985

Design electrical rating (gross):

1,344 MW

Design electrical rating (net):

1,288 MW

Reactor type:

BWR

Supplier:

Siemens/KWU,

Hochtief

100

90

80

70

60

50

40

84

Availability factor in %

Capacity factor in %

91

89

90

90

86

86

90

The following operating results were achieved:

Operating period, reactor:

7,920 h

Gross electrical energy generated in 2018: 10,361,862 MWh

Net electrical energy generated in 2018: 9,874,200 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2018:

330,941,755 MWh

Net electrical energy generated since

first synchronisation until 12-31-2018:

305,182,060 MWh

Availability factor in 2018: 90.40 %

Availability factor since

date of commercial operation: 89.20 %

Capacity factor 2018: 89.90 %

Capacity factor since

date of commercial operation: 87.60 %

Downtime

(schedule and forced) in 2018: 9.60 %

Number of reactor scrams 2018: 0

30

20

10

0

10

9

8

85 92

2011 2012

90

2013

90

2014

90

2015

86

2016

Collective radiation dose of own

and outside personnel in Sv

88

2017

90

2018

Licensed annual emission limits in 2018

(values added up for Units B and C, site emission):

Emission of noble gases with plant exhaust air: 1.85 · 10 15 Bq

Emission of iodine-131 with plant exhaust air: 2.20 · 10 10 Bq

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

1.10 · 10 11 Bq

7

6

5

Proportion of licensed annual emission limits for radioactive

materials in 2018 for (values added up for Units B and C):

Emission of noble gases with plant exhaust air: 0.93 %

Emission of iodine-131 with plant exhaust air: 0.39 %

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.30 %

Collective dose:

0.55 Sv

4

3

2

1

1.59

0.78

1.36

1.14

1.49

0.84

0.89

0.55

0

2011 2012

2013

2014

2015

2016

2017 2018

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

304

Isar 2

REPORT

Operating sequence in 2018

100

90

80

70

60

50

40

30

20

10

Electrical output in %

January February March April May June July August September October November December

100

On 22 January 1988 unit 2 of Isar nuclear power plant (KKI 2) fed for

80

the first time electricity into the grid. 9 April 2018 marked the 30 th

80

anniversary of the start of commercial power operation at the Isar

60

unit 2 nuclear power plant and was the first nuclear power plant in

60

the German generation statistics. With gross electricity generation of

40

12,127,490 MWh and a unit capability of 95.24 %, Unit 2 achieved an

40

excellent operating result in 2018.

20

In the evening hours of 16 September 2018, KKI 2 was the third

20

single block plant worldwide to achieve gross generation of

0

350 billion kWh since its first criticality. In addition, the 250,000

0

generator operating hours were performed on 5 September 2018 at

around 7 pm.

100

100

Planned shutdowns

14 to 29 July: Refuelling and annual major inspection with duration

80

of 15.8 days. During the revision 40 new fuel elements were inserted.

WANO Review/Technical Support Mission

22 January to 9 February: WANO Peer-Review.

Delivery of fuel elements

In the reporting year 32 uranium fuel elements from Westinghouse

were delivered. 24 uranium fuel elements are in stock at the dry

storage.

Waste management status

Currently 59 CASTOR © V-casks (26 units CASTOR © V/19, 26 units

of CASTOR © V/52 (85-type) and 7 TN © 24E-casks) are stored in the

on-site intermediate storage BELLA.

The interim storage facility was taken over by BGZ Gesellschaft

für Zwischenlagerung mbH on 1 January 2019.

The completion of the project “Structural optimisation of the KKI

BELLA warehouse” was in November 2018.

60

Unplanned shutdowns and reactor/turbine trip

340August : On 3 August at 01:29 a.m. the plant had to be taken off the

grid due to a repair of a drainage valve. At 07:32 p.m. the mains was

switched back.

20

Power 0 reductions above 10 % and longer than for 24 h

None.

Safety Reviews

21 February: Management evaluation KKI.

1 March: Positionierung:

Company review.

13 and Bezug, 15 March: links, Inspection unten in accordance with §16 Störfall Verordnung

– Brandschutz und Immissionsschutz (Major Accidents

Ordinance – Fire Protection and Immission Control).

13 to VGB: 16 March: HKS6K 2 nd Periodic 30 % Audit by DNV GL Business Assurance

Zertifizierung atw: 100 & Umweltgutachter 60 0 0 GmbH according to DIN EN ISO

9001:2015 / 14001:2015, BS OHSAS 18001:2007 and EMAS.

12 to 13 June: Internal “Audit Plant Monitoring” at KKI.

7 August: Management system, status discussion.

27 September: 2 nd operational review KKI (half-year review 2018).

4 to 10 October: Management system audit.

7 and 8 November: Internal Audit “Processing and Execution of Projects”.

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

General points

A grid failure on 8 April 2018 (2-pole short-circuit on a 400 kV line)

led to repercussions via the neighbouring Ottenhofen switching

plant to the plant. Numerous consumers were briefly switched off via

undervoltage monitoring. A voltage drop to 9 kV occurred on the

10 kV bus. Many of the consumers switched on again automatically.

The voltage drop had no influence on the system performance and

did not lead to any tripping in the block protection and safety system.

Emergency exercise with expert ESN on 27 November 2018: The

exercise began outside working hours. The scenario assumed was a

“station black out”, fire alarm in the emergency food building and

failure of various emergency measures. The emergency exercise was

completed professionally and purposefully with a highly motivated

team.

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

305

Operating data

Review period 2018

REPORT

Plant operator: PreussenElektra GmbH

Shareholder/Owner: PreussenElektra GmbH (75 %),

Stadtwerke München GmbH (25 %)

Plant name: Kernkraftwerk Isar 2 (KKI 2)

Address: PreussenElektra GmbH, Kernkraftwerk Isar,

Postfach 11 26, 84049 Essenbach, Germany

Phone: 08702 38-2465, Telefax: 08702 38-2466

Web: www.preussenelektra.de

100

90

80

96

Availability factor in %

Capacity factor in %

94

94

90

89

96

91

95

First synchronisation: 01-22-1988

Date of commercial operation: 04-09-1988

Design electrical rating (gross):

1,485 MW

Design electrical rating (net):

1,410 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

70

60

50

40

The following operating results were achieved:

Operating period, reactor:

8,367 h

Gross electrical energy generated in 2018:

12,127,490 MWh

Net electrical energy generated in 2018: 11,477,215 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2018:

353,725,813 MWh

Net electrical energy generated since

first synchronisation until 12-31-2018:

334,444,116 MWh

Availability factor in 2018: 95.46 %

Availability factor since

date of commercial operation: 93.28 %

Capacity factor 2018: 95.24 %

Capacity factor since

date of commercial operation: 92.37 %

Downtime

(schedule and forced) in 2018: 4.54 %

Number of reactor scrams 2018: 0

Licensed annual emission limits in 2018:

Emission of noble gases with plant exhaust air: 1.1 · 10 15 Bq

Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

5.5 · 10 10 Bq

30

20

10

0

10

9

8

7

6

96

2011

94

2012

96

2013

95

2014

89

2015

96

2016

Collective radiation dose of own

and outside personnel in Sv

92

2017

95

2018

Proportion of licensed annual emission limits

for radioactive materials in 2018 for:

Emission of noble gases with plant exhaust air: 0.07 %

Emission of iodine-131 with plant exhaust air: < limit of detection

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

< limit of detection

Collective dose:

0.064 Sv

5

4

3

2

1

0

0.08 0.14

2011 2012

0.08

2013

0.09

2014

0.25

2015

0.06

2016

0.14 0.06

2017 2018

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

306

Neckarwestheim II

REPORT

Operating sequence in 2018

100

90

80

70

60

50

40

30

20

10

Electrical output in %

January February March April May June July August September October November December

100

During the reporting year 2018 the Neckarwestheim II nuclear power

80

plant (GKN II) generated a gross output of 9,703,700 MWh. The net

electrical energy generation amounted 9,099,358 MWh of which

60

8,949,140 MWh were fed into the public three-phase supply and

754,560 MWh into the static conversion unit of the Deutsche

40

Bahn AG. The plant was 7,121 h on the grid. This corresponds to an

availability of 81.29 %. Since the commissioning of the three-phasemachine

329,830,184 MWh gross and 308,416,137 MWh net were

20

generated.

0

Planned shutdowns

1 September to 8 November: 34 rd and annual major inspection:

pp

Refuelling with exchange of 28 new fuel elements.

pp

Eddy current tests of the heating tubes of all 4 steam generators.

80

pp

Major overhaul of four source isolating valves at system JNA.

pp

Complete overhaul of the residual heat removal pump with motor

60

JNA30-AP001.

p40p

Complete overhaul of intercooling pumps KAA30/31-AP001.

pp

Internal inspection of the flood pool JNK30 with submarine

20 (at UK-Loop).

pp

Major overhaul of the stop valve KAA30-AA010 and various KAB

0 flaps in UJB and UKA.

pp

Secondary tube bottom flushing of all 4 steam generators.

pp

Major overhaul of the main feed water pump LAC20-AP001.

pp

Partial overhaul of the main condensate pump LCB30-AP001.

pp

Major overhaul of the main steam safety valve and the blow-off

shut-off Positionierung:

valve for LBA10.

pp

Major Bezug, overhaul links, of live unten steam shut-off valve and shut-off valve before

safety valve on LBA20.

pp

Inspections of the turbo set and generator.

100

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

VGB: HKS6K 30 %

atw: 100 60 0 0

Unplanned shutdowns and reactor/turbine trip

20 September to 8 November: Unplanned extension of the revision.

Power reductions above 10 % and longer than for 24 h

3 to 31 August: Stretch-out operation.

1 to 7 and 24 to 29 January, 17 and 18 March, 29 April, 21 to 24 July,

8 to 11 and 21 to 22 December: Load sequence operation.

Integrated management system (IMS)

EnKK (NPP KKP, GKN, KWO)

The integrated management system (IMS) of the EnBW Kernkraft

GmbH (EnKK) with its partial system for nuclear safety (SMS),

quality management (QMS/QSÜ) as well as environmental and

energy management (UMS, EnMS, Umwelt- und Energiemanagementsystem)

were also in 2018 continuously further developed.

Scope and content of each process descriptions were gradually

adapted to the different internal requirements and related approval

criteria. Besides the confirmation of conformity for the IMS, the recertification

of the EnKK energy management system (EnMS, Energiemanagementsystem)

according to DIN EN ISO 50001 took place

in 2018 to improve energy efficiency. The certificate was thus extended

by three years.

The completeness and effectiveness of the process-oriented IMS,

including the quality management measures, were confirmed by appropriate

internal audits as well as by a several-day inspection by the

expert (ESN) and the supervisory authority at the GKN and KKP

sites.

The modular and demand-oriented structure of the IMS according

to KTA1402 also enables continuous and efficient adaptation to

the site-specific requirements in operation/post-operation in subsequent

years. Another important focus will be the gradual integration

of dismantling aspects into the IMS in order to exploit synergy effects.

Waste management status

In the year 2018 4 CASTOR © V/19 casks from GKN II were delivered

to the on-site intermediate storage Neckarswestheim. Thus by then

End of 2018 61 loaded CASTOR © V/19-casks, 5 loaded TN 24E-casks

and 15 loaded CASTOR © 440/84 mvK-casks were stored at the onsite

intermediate storage Neckarwestheim.

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

307

Operating data

Review period 2018

REPORT

Plant operator: EnBW Kernkraft GmbH (EnKK)

Shareholder/Owner: EnBW Erneuerbare und Konventionelle

Erzeugung AG (98.45 %), ZEAG Energie AG, Deutsche Bahn AG,

Kernkraftwerk Obrigheim GmbH

Plant name: Kernkraftwerk Neckarwestheim II (GKN II)

Address: EnBW Kernkraft GmbH, Kernkraftwerk Neckarwestheim,

Im Steinbruch, 74382 Neckarwestheim, Germany

Phone: 07133 13-0, Telefax: 07133 17645

E-mail: poststelle-gkn@kk.enbw.com

Web: www.enbw.com

100

90

80

70

95

Availability factor in %

Capacity factor in %

92

90

93

93

94

89

81

First synchronisation: 01-03-1989

Date of commercial operation: 04-15-1989

Design electrical rating (gross):

1,400 MW

Design electrical rating (net):

1,310 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

60

50

40

The following operating results were achieved:

Operating period, reactor:

7,127 h

Gross electrical energy generated in 2018: 9,703,700 MWh

Net electrical energy generated in 2018: 9,099,358 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2018:

329,830,184 MWh

Net electrical energy generated since

first synchronisation until 12-31-2018:

308,416,137 MWh

Availability factor in 2018: 81.29 %

Availability factor since

date of commercial operation: 93.09 %

Capacity factor 2018: 81.00 %

Capacity factor since

date of commercial operation: 92.71 %

Downtime

(schedule and forced) in 2018: 18.71 %

Number of reactor scrams 2018: 0

30

20

10

0

10

9

8

95 92

2011 2012

90

2013

93

2014

93

2015

95

2016

Collective radiation dose of own

and outside personnel in Sv

89

2017

81

2018

Licensed annual emission limits in 2018:

Emission of noble gases with plant exhaust air: 1.0 · 10 15 Bq

Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

6.0 · 10 10 Bq

Proportion of licensed annual emission limits

for radioactive materials in 2018 for:

Emission of noble gases with plant exhaust air: 0.06 %

Emission of iodine-131 with plant exhaust air: < limit of detection

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

< limit of detection

Collective dose:

0.118 Sv

7

6

5

4

3

2

1

0

0.10 0.13

2011 2012

0.08

2013

0.10

2014

0.12

2015

0.08

2016

0.15 0.12

2017 2018

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

308

Philippsburg 2

REPORT

Operating sequence in 2018

100

90

80

70

60

50

40

30

20

10

Electrical output in %

January February March April May June July August September October November December

100

In the reporting year 2018 the nuclear power plant block

80

Philippsburg 2 (KKP 2) generated a gross output of 10,993,639 MWh.

The net electrical power generation consisted of 10,323,151 MWh.

60

The plant was 7,939 h on the grid. This corresponds to a availability

factor of 90.63 %.

40

Since the commissioning of the plant 366,161,155 MWh gross and

347,076,473 MWh net were generated.

Planned 0 shutdowns

11 May to 15 June: 33 nd refuelling and annual major inspection.

Major inspection work carried out:

pp100

Inspection of one of the three main feed pumps.

pp

Eddy current testing of two of the four steam generators.

pp

80 Leak test of reactor containment.

pp

Inspection of the main cooling water system.

pp

60 Engine replacement on two of six main cooling water pumps.

pp

Maintenance work on individual emergency power generators.

40

Unplanned shutdowns and reactor/turbine trip

18 20 August: Turbine trip (TUSA) via the criterion “high condenser

pressure”.

0

20

Power reductions above 10 % and longer than for 24 h

15 March to 11 May: Stretch-out operation

26 July to 24 August: Reduction of heat input into the Rhine and

compliance with the permissible outlet temperature.

15 October Positionierung:

to 2 November: Reduction of heat input into the Rhine

and compliance Bezug, with links, the unten permissible outlet temperature.

8 November to 3 December: Reduction of heat input into the Rhine

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

VGB: HKS6K 30 %

atw: 100 60 0 0

and compliance with the permissible outlet temperature.

Integrated management system (IMS) EnKK

(NPP KKP, GKN, KWO)

The integrated management system (IMS) of the EnBW Kernkraft

GmbH (EnKK) with its partial system for nuclear safety (SMS),

quality management (QMS/QSÜ) as well as environmental and

energy management (UMS, EnMS, Umwelt- und Energiemanagementsystem)

were also in 2018 continuously further developed.

Scope and content of each process descriptions were gradually

adapted to the different internal requirements and related approval

criteria. Besides the confirmation of conformity for the IMS, the recertification

of the EnKK energy management system (EnMS, Energiemanagementsystem)

according to DIN EN ISO 50001 took place

in 2018 to improve energy efficiency. The certificate was thus extended

by three years.

The completeness and effectiveness of the process-oriented IMS,

including the quality management measures, were confirmed by appropriate

internal audits as well as by a several-day inspection by the

expert (ESN) and the supervisory authority at the GKN and KKP

sites.

The modular and demand-oriented structure of the IMS according

to KTA1402 also enables continuous and efficient adaptation to

the site-specific requirements in operation/post-operation in subsequent

years. Another important focus will be the gradual integration

of dismantling aspects into the IMS in order to exploit synergy effects.

Waste management status

During the year 2018 in total 2 transportation and storage casks of

type CASTOR © V/19 were stored in the on-site intermediate storage.

Altogether 33 loaded CASTOR © V/19 and 29 loaded CASTOR ©

V/25 casks were at the on-site intermediate storage.

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

309

Operating data

Review period 2018

REPORT

Plant operator: EnBW Kernkraft GmbH (EnKK)

Shareholder/Owner: EnBW Erneuerbare und Konventionelle

Erzeugung AG (98.45 %), ZEAG Energie AG, Deutsche Bahn AG,

Kernkraftwerk Obrigheim GmbH

Plant name: Kernkraftwerk Philippsburg 2 (KKP 2)

Address: EnBW Kernkraft GmbH, Kernkraftwerk Philippsburg,

P.O. box 11 40, 76652 Philippsburg, Germany

Phone: 07256 95-0, Telefax: 07256 95-2029

E-mail: Poststelle-kkp@kk.enbw.com

Web: www.enbw.com

100

90

80

70

90

Availability factor in %

Capacity factor in %

86

73

82

90

82

90

First synchronisation: 12-17-1984

Date of commercial operation: 04-18-1985

Design electrical rating (gross):

1,468 MW

Design electrical rating (net):

1,402 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

60

50

40

63

The following operating results were achieved:

Operating period, reactor:

7,965 h

Gross electrical energy generated in 2018: 10,993,639 MWh

Net electrical energy generated in 2018: 10,323,151 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2018:

366,161,155 MWh

Net electrical energy generated since

first synchronisation until 12-31-2018:

347,076,473 MWh

Availability factor in 2018: 90.63 %

Availability factor since

date of commercial operation: 88.76 %

Capacity factor 2018: 90.47 %

Capacity factor since

date of commercial operation: 88.49 %

Downtime

(schedule and forced) in 2018: 9.37 %

Number of reactor scrams 2018: 0

30

20

10

0

10

9

8

90

2011

86

2012

73

2013

82

2014

91

2015

82

2016

Collective radiation dose of own

and outside personnel in Sv

63

2017

91

2018

Licensed annual emission limits in 2018:

Emission of noble gases with plant exhaust air: 1.1 · 10 15 Bq

Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

5.5 · 10 10 Bq

Proportion of licensed annual emission limits

for radioactive materials in 2018 for:

Emission of noble gases with plant exhaust air: 0.12 %

Emission of iodine-131 with plant exhaust air: < limit of detection

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.04 %

Collective dose:

0.115 Sv

7

6

5

4

3

2

1

0

0.14

2011

0.22

2012

0.16

2013

0.14

2014

0.15

2015

0.18

2016

0.07 0.12

2017 2018

Report

Operating Results 2018


atw Vol. 64 (2019) | Issue 5 ı May

310

NUCLEAR TODAY

John Shepherd is a

journalist who has

covered the nuclear

industry for the past

20 years and is

currently editor-in-chief

of UK-based Energy

Storage Publishing.

Link to reference

source:

EU Energy Union

report – https://

bit.ly/2UKZQAW

Proposals to ‘Evolve’ Euratom Treaty

Should Be Handled with Care

John Shepherd

Some weeks ago, as I began to cast around for a suitable subject for this column, I received a telephone call from a

contact close to the corridors of power in Brussels who told me to pay particular attention to upcoming announcements

on energy policy from the European Commission.

I was told the plethora of paperwork that would be

produced in the final days of the current Commission’s

term of office deserved close analysis.

And indeed, just as my editor began pressing me to

submit my copy for this issue, the Commission released its

latest ‘State of the Energy Union’. The report effectively

takes stock of the progress made towards building the

‘ Energy Union’ – and highlights “the issues where further

attention is needed”.

At first glance, I spotted the welcoming recognition of

nuclear power “as a reality in today’s European energy

mix”. I’ve been reporting on this sector long enough to

remember when nuclear energy never quite seemed to

benefit from a fond political embrace in Brussels in order

to ‘keep the peace’ between those EU member states who

favour the use of nuclear energy and those who don’t.

Some would argue it still does not today.

The report went on to remind us that half of the (EU)

member states rely on nuclear energy, which represents

nearly 30% of the bloc’s electricity generation.

But then the alarm sounded in my journalistic ears…

The report made reference to the Euratom Treaty and said:

“As part of a forward-looking agenda on energy and

climate policy, there are areas which will need to be further

improved to achieve all the policy objectives.”

The report revealed that, “in the months to come”, the

European Commission will establish “a high level group of

experts whose task will be to assess and report to the

Commission on the state of play of the Euratom Treaty,

with a view to considering how, on the basis of the current

Treaty, its democratic accountability could be improved”.

According to the report, there is “a recognised concern

that the Treaty needs to evolve in line with a more united,

stronger and democratic EU”.

Outgoing Commission president Juncker has said

previously that for “important single market questions”,

decisions in the European Council should be taken more

often by qualified majority – with the equal involvement of

the European Parliament. The energy union report said

this is now “particularly relevant in the nuclear area, where

decisions under the Euratom Treaty do not involve the

European Parliament on the same terms as foreseen in the

ordinary legislative procedure of the Lisbon Treaty”.

When the Euratom Treaty was signed in 1957, nuclear

energy was seen as an energy resource for Europe’s

economic development. As the Commission rightly points

out, the Treaty provides extensive supranational powers

at EU community level. It’s also true to say that the

application of powers under the Treaty have evolved over

time.

According to the Commission, Euratom has also played

an “important role in strengthening nuclear safety in new

member states and in the EU’s neighbourhood”. That

particular comment might still rankle with some states in

eastern Europe, that were forced to close down nuclear

generating plants (and experience hardship as a result) as

a condition of being allowed into the EU years ago.

However, the energy union report now suggests “the

potential cross-border impact of nuclear safety issues

requires – even more today and in the coming years – a

legal framework that goes beyond the borders of the

member states”.

This, I would suggest, deserves extremely close

attention. I don’t mean that to imply anything sinister,

merely to say our industry and its supporters must be

on its guard.

To be fair to EU leaders, the energy union report

acknowledges there is “a clear understanding that the use

of nuclear energy is a national choice to be made by each

member state and this will continue to be the case”. But

the report continues: “There is a recognised concern that

the Euratom Treaty needs to evolve in line with a more

united, stronger and democratic EU.”

In addition, the report suggests that the incoming

European Commission “should also take initiatives to

increase the involvement of civil society in nuclear policymaking.

The report adds: “On some nuclear matters, the

availability of information can be understandably limited,

especially in the field of nuclear security. While this is a

legitimate concern, issues such as nuclear safety, the

management of radioactive waste and emergency planning

deserve to continue to be debated as openly as possible in

line with existing rules.”

The report rightly notes that, in the area of responsible

and safe management of spent fuel and radioactive waste,

it is of “utmost importance that member states continue to

develop comprehensive plans for the management of

nuclear waste and implement these plans”. I also would

not find fault with the report’s conclusion that, “when

cross-border impact is at stake, cross-border consultations

between member states should be promoted as well as

stronger involvement of the European Nuclear Safety

Regulators Group (ENSREG).

Talking and cooperating to maximise the benefits of

clean nuclear energy, and advance nuclear technologies

as part of a wider energy mix for those countries that wish

to, is something that the nuclear energy industry has

championed on the European and world stage.

Problems only arise when attempts are made to

frustrate the use of nuclear energy for purely political

ends. Therefore, we have to take care that, however well

meaning proposals to amend the Euratom Treaty might be,

those intentions are not subverted to dilute the authority

of the governments, regulators and industry leaders in

those EU states that choose to use and advance nuclear.

Author

We need to remain alert!

John Shepherd

Nuclear Today

Proposals to ‘Evolve’ Euratom Treaty Should Be Handled with Care ı John Shepherd


Kommunikation und

Training für Kerntechnik

Atomrecht 360° kompakt

Neuer

Termin

Seminar:

Atomrecht – Was Sie wissen müssen

Seminarinhalte

ı

ı

ı

ı

Einführung: Was muss ich wissen, wenn es um Atomrecht geht?

Atomrecht 360° im Schnelldurchlauf

ı Atomverwaltung

ı Neuorganisation der Entsorgung

ı Genehmigungsverfahren

Vertrags- und Haftungsrecht im Nuklearbereich

Nuklearhaftung

Seminarziel

In dem Seminar werden die wichtigsten Bereiche des deutschen Atomrechts

(mit ausgewählten Verbindungen ins EU- und internationale Atomrecht) im Überblick

behandelt sowie das Vertrags- und Haftungsrecht im Bereich Atomrecht beleuchtet.

Termin

07. November 2019

09:00 bis 17:00 Uhr

Veranstaltungsort

Geschäftsstelle der INFORUM

Robert-Koch-Platz 4

10115 Berlin

Teilnahmegebühr

898,– € ı zzgl. 19 % USt.

Im Preis inbegriffen sind:

ı Seminarunterlagen

ı Teilnahmebescheinigung

ı Pausenverpflegung

inkl. Mittagessen

Zielgruppe

ı

Fach- und Führungskräfte, Projektleiter und -mitarbeiter, Techniker, Energiewirtschaftler,

Öffentlichkeitsarbeiter sowie Juristen anderer Fachbereiche

Maximale Teilnehmerzahl: 12 Personen

Referenten

Dr. Christian Raetzke | Rechtsanwalt Leipzig

Akos Frank LL. M. (SULS Boston) | Experte für Handelsrecht, Group Senior Legal Counsel, NKT A/S;

Referent der OECD NEA International School of Nuclear Law

Wir freuen uns auf Ihre Teilnahme!

Kontakt

INFORUM

Verlags- und Verwaltungsgesellschaft

mbH

Robert-Koch-Platz 4

10115 Berlin

Petra Dinter-Tumtzak

Fon +49 30 498555-30

Fax +49 30 498555-18

seminare@kernenergie.de

Bei Fragen zur Anmeldung

rufen Sie uns bitte an oder

senden uns eine E-Mail.


VPC - EXPANDING INTO NUCLEAR TECHNOLOGY

Repository Documentation Rethought – A comprehensive approach

from untreated waste to packages for final disposal

You can find out more about VPC‘s Nuclear Services if you scan this QR code:

www.vpc-group.biz

Want to keep up with the latest news from our company?

Then follow us on:

More magazines by this user
Similar magazines