03.05.2019 Views

atw - International Journal for Nuclear Power | 05.2019

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

2019<br />

5<br />

<strong>Nuclear</strong> <strong>Power</strong>:<br />

“No Thanks.”<br />

“Yes, Please.”<br />

Proposals to ‘Evolve’ Euratom<br />

Treaty Should Be Handled<br />

with Care<br />

The Current Status on<br />

How to Develop a Vision <strong>for</strong><br />

<strong>Nuclear</strong> Waste Management<br />

ISSN · 1431-5254<br />

24.– €<br />

Operating Results 2018<br />

Join the Celebration


Media Partner<br />

www.amnt2020.com<br />

#51AMNT<br />

Save the Date<br />

5 – 6 May 2020<br />

Estrel Convention Center Berlin, Germany<br />

Key Topics<br />

Outstanding Know-How & Sustainable Innovations<br />

Enhanced Safety & Operation Excellence<br />

Decommissioning Experience & Waste Management Solutions<br />

The <strong>International</strong> Expert Conference on <strong>Nuclear</strong> Technology


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Welcome Addresses <strong>for</strong> the 50 th Annual<br />

Meeting on <strong>Nuclear</strong> Technology (AMNT 2019)<br />

243<br />

7 and 8 May 2019<br />

KTG (German <strong>Nuclear</strong> Society)<br />

The Chairman<br />

Our Annual Meeting on <strong>Nuclear</strong> Technology –<br />

the original <strong>for</strong> 50 years. At the beginning<br />

of May, the industry meets again in Berlin <strong>for</strong><br />

the 50 th time. We can be very proud of that<br />

together.<br />

We are convinced that the <strong>for</strong>thcoming meeting will be<br />

particularly good. Especially because <strong>for</strong> this year's AMNT a number<br />

of extraordinary highlights have been prepared <strong>for</strong> our participants.<br />

Let yourself be surprised!<br />

KTG has again prepared an excellent and highly topical program.<br />

Especially in times of great challenges, the contribution of our KTG<br />

members, who are personally involved with great commitment to<br />

nuclear technology “made in Germany” in general and <strong>for</strong> our annual<br />

conference in particular, cannot be appreciated highly enough.<br />

Currently, 7 nuclear power plants are connected to the grid in<br />

Germany and feed an average of approx. 14 % of the basic electricity<br />

supply required in Germany into the transmission grids with<br />

unprecedented reliability. 27 plants are in the post-operational<br />

or decommissioning phase. The high number of deconstruction<br />

projects in progress at the same time shows that specialized<br />

companies have enough work to do.<br />

In 2017, the Commission to Review the Financing <strong>for</strong> the<br />

Phase-out of <strong>Nuclear</strong> Energy recommended an amendment to the<br />

legislation with new – and above all financial – delimitation of<br />

responsibility <strong>for</strong> the storage and ownership of all nuclear waste<br />

and spent fuel elements between the operators and the Federal<br />

Government. One result is the establishment of two new federal<br />

companies <strong>for</strong> waste disposal tasks.<br />

Operators, manufacturers, authorities and experts, education<br />

and research continue to be linked by a central topic: nuclear knowhow<br />

must be preserved in Germany in order, among other things, to<br />

secure the remaining operation, post-operation, decommissioning<br />

and dismantling of German nuclear power plants and to sustainably<br />

solve the final disposal issue, to secure the export business of German<br />

suppliers and service providers, to be able to carry out national and<br />

international safety assessments and also in future to be able to<br />

maintain the contribution of German innovations and standards<br />

to international developments <strong>for</strong> new technologies.<br />

In the various <strong>for</strong>mats of our annual conference under the<br />

headings “Outstanding Know-how & Sustainable Innovations”,<br />

“ Enhanced Safety & Operation” and “Decomissioning Experience &<br />

Waste Management Solutions”, we will reflect on current topics in<br />

nuclear technology and focus on the technical dialogue between<br />

national and international experts. This year's AMNT will also<br />

continue successful <strong>for</strong>mats <strong>for</strong> young people such as the <strong>Nuclear</strong><br />

Technology Campus or the Young Scientists' Workshop.<br />

For our conference I wish all participants new insights, interesting<br />

encounters, contacts and conversations. What unites the members<br />

of KTG is “fascination of nuclear technology”. Let it enchant you,<br />

too...<br />

DAtF (German Atomic Forum)<br />

The President<br />

The political conditions <strong>for</strong> nuclear energy<br />

couldn't be more different between 1969, the<br />

year of the first “Reactor Conference” in<br />

Frankfurt am Main, and 2019, the year of the<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology.<br />

The spirit of optimism and political support across all political parties<br />

at that time is in huge contrast to the current withdrawal from the<br />

use of nuclear energy <strong>for</strong> electricity generation in Germany.<br />

However, the fact that the DAtF and the KTG are organising one<br />

of the most recognised and renowned nuclear conferences in<br />

the world on 7 and 8 May 2019 in Berlin, even in the eighth year of<br />

the accelerated nuclear phase-out, clearly shows that the nuclear<br />

industry will continue to be needed in the future despite the political<br />

change in recent years. Many other modern societies do not want to<br />

do without nuclear power and the global outlook <strong>for</strong> nuclear<br />

technology is positive. We will be demonstrating this again next year<br />

at the 51 st AMNT in Berlin on 5 and 6 May 2020.<br />

Our top-level list of speakers of the plenary day with Thomas<br />

Bareiß MdB (BMWi), Prof. Dr. Martin Neumann MdB (FDP),<br />

Prof. Dr. Renate Köcher (Allensbach), Steffen Kanitz (BGE) and<br />

Matthias Horx (Zukunftsinstitut) testifies to the thematic breadth<br />

of our annual conference and its importance as a network meeting of<br />

our industry. Despite political change, the nuclear industry and<br />

research remain important pillars of Germany's economic success.<br />

You can also look <strong>for</strong>ward to exciting presentations and<br />

discussions regarding the specialist lectures. We will discuss with you<br />

the technical innovations and challenges in the areas of new build,<br />

research and development. We will exchange ideas about innovations<br />

and opportunities <strong>for</strong> optimisation in the dismantling of nuclear<br />

power plants and the disposal of radioactive waste. And we would<br />

like to examine the question of what role SMRs can play in the use of<br />

nuclear power in the future. As we did 50 years ago, together we will<br />

contribute significantly to making nuclear power and technology<br />

even safer and more efficient.<br />

This year's anniversary meeting offers you an exposition with<br />

photos and exhibits amidst the traditional exhibition of companies<br />

and organisations. The industrial exhibition with its numerous<br />

national and international participants as well as the national<br />

pavilions from the United Kingdom and the Czech Republic offers<br />

not only the opportunity to make new contacts and maintain existing<br />

ones, but also allows you to experience the history and present of<br />

nuclear energy in Germany up close.<br />

It is your expertise and active participation that have ensured the<br />

success of our annual conference <strong>for</strong> 50 years. I would like to thank<br />

all speakers and participants as well as all exhibitors and sponsors<br />

with all my heart.<br />

Dr Ralf Güldner<br />

WELCOME TO AMNT 2019<br />

Frank Apel<br />

Editorial<br />

Welcome Addresses <strong>for</strong> the 50th Annual Meeting on <strong>Nuclear</strong> Technology (AMNT 2019)


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

244<br />

Grußworte zum 50. Annual Meeting<br />

on <strong>Nuclear</strong> Technology (AMNT 2019)<br />

WELCOME TO AMNT 2019<br />

7. und 8. Mai 2019, Berlin<br />

KTG (Kerntechnische Gesellschaft e. V.)<br />

Der Vorsitzende<br />

Unsere Jahrestagung Kerntechnik – das Original<br />

seit 50 Jahren. Anfang Mai trifft sich in Berlin<br />

erneut die Branche, zum 50. Mal. Darauf können<br />

wir gemeinsam sehr stolz sein.<br />

Wir sind überzeugt, dass die bevorstehende<br />

Jahrestagung ganz besonders gut wird. Ganz<br />

besonders, weil wir für die heurige AMNT eine Reihe von außergewöhnlichen<br />

Highlights für Sie vorbereitet haben. Lassen Sie sich<br />

überraschen!<br />

Die KTG hat erneut ein exzellentes und hochaktuelles Programm<br />

mit vorbereitet. Gerade in Zeiten großer Heraus<strong>for</strong>derungen ist der<br />

Beitrag unserer KTG-Mitglieder, die sich persönlich mit großem<br />

Engagement für Kerntechnik „made in Germany“ im Allgemeinen<br />

und für unsere Jahrestagung im Speziellen einbringen, nicht hoch<br />

genug zu würdigen.<br />

Derzeit sind in Deutschland sieben Kernkraftwerke am Netz und<br />

speisen aktuell im Mittel ca. 14 % der in Deutschland benötigten<br />

Grundenergieversorgung beispiellos sicher in die Energieübertragungsnetze<br />

ein. 26 Anlagen sind in der Nachbetriebs- bzw.<br />

Stilllegungsphase. Die hohe Zahl an Projekten im Rückbau, die<br />

gleichzeitig in Bearbeitung sind, zeigt, dass für spezialisierte<br />

Unternehmen genügend Aufgaben anstehen.<br />

Die Kommission zur Überprüfung der Finanzierung des Kernenergieausstiegs<br />

(KFK) empfahl in 2017 eine Novellierung der<br />

Gesetzgebung mit neuer – vor allen Dingen auch finanzieller –<br />

Abgrenzung der Verantwortung für die Lagerung und die Eigentümerschaft<br />

aller Abfälle und der abgebrannten Brennelemente<br />

zwischen den Betreibern und der Bundesregierung. Ein Ergebnis ist<br />

die Gründung von zwei neuen Bundesgesellschaften für Aufgaben<br />

der Abfallentsorgung.<br />

Betreiber, Hersteller, Behörden und Gutachter, Lehre und<br />

Forschung verbindet nach wie vor ein zentrales Thema: das<br />

kerntechnische Know-how muss in Deutschland erhalten werden,<br />

um u. a. den verbleibenden Leistungsbetrieb, den Nachbetrieb, die<br />

Stilllegung und den Rückbau deutscher Anlagen sicherzustellen und<br />

die Entsorgungsfrage nachhaltig zu lösen, das Exportgeschäft<br />

deutscher Anbieter und Dienstleister zu sichern, nationale und<br />

internationale Sicherheitsbewertungen durchführen zu können und<br />

auch in Zukunft den Beitrag deutscher Innovationen und Standards<br />

zu internationalen Entwicklungen für neue Technologien erhalten<br />

zu können.<br />

In den unterschiedlichen Formaten unserer Jahrestagung unter<br />

den Überschriften „Kompetenz & Innovation“, „Sicherheitsstandards<br />

& Betriebsexzellenz“ sowie „Rückbauerfahrung & Entsorgungslösungen“<br />

werden wir aktuelle Themen der Kerntechnik reflektieren<br />

und setzen dabei auf den fachlichen Dialog zwischen nationalen und<br />

internationalen Wissensträgern. Auch unser diesjähriges AMNT wird<br />

erfolgreiche Formate der Nachwuchsarbeit wie den <strong>Nuclear</strong> Technology<br />

Campus oder den Young Scientists‘ Workshop <strong>for</strong>tführen.<br />

Für unsere Tagung wünsche ich allen Teilnehmern neue Erkenntnisse,<br />

interessante Begegnungen, Kontakte und Gespräche. Was die<br />

Mitlieder der KTG verbindet, ist die „Faszination Kerntechnik“.<br />

Lassen auch Sie sich davon anstecken…<br />

DAtF (Deutsches Atom<strong>for</strong>um e. V.)<br />

Der Präsident<br />

Die politischen Voraussetzungen für die Kernenergie<br />

könnten zwischen 1969, dem Jahr der<br />

ersten „Reaktortagung“ in Frankfurt am Main,<br />

und 2019, dem Jahr des 50. Annual Meeting on<br />

<strong>Nuclear</strong> Technology, kaum unterschiedlicher<br />

sein. Die Aufbruchsstimmung und politische<br />

Unterstützung über alle politischen Parteien hinweg damals, stehen<br />

in einem krassen Gegensatz zu dem heutigen Ausstieg aus der<br />

Nutzung der Kernenergie zur Stromerzeugung.<br />

Die Tatsache, dass wir als DAtF und KTG auch im achten Jahr<br />

des beschleunigten Ausstiegs eine der anerkanntesten und<br />

renommiertesten kerntechnischen Fachtagungen weltweit am 7. und<br />

8. Mai 2019 in Berlin ausrichten, zeigt jedoch deutlich, dass trotz des<br />

politischen Wetterumschwungs der vergangenen Jahre die kerntechnische<br />

Branche auch in Zukunft benötigt wird. Viele andere<br />

moderne Industriegesellschaften wollen nicht auf die Kernenergie<br />

verzichten und die weltweite Perspektive für die Kerntechnik ist<br />

positiv. Das werden wir auch im kommenden Jahr am 5. und 6. Mai<br />

2020 beim 51. AMNT in Berlin unter Beweis stellen.<br />

Unsere hochkarätige Liste an Rednern des Plenartages zeugt mit<br />

Thomas Bareiß MdB (BMWi), Prof. Dr. Martin Neumann MdB (FDP),<br />

Prof. Dr. Renate Köcher (Allensbach), Steffen Kanitz (BGE) und<br />

Matthias Horx (Zukunftsinstitut) von der thematischen Breite<br />

unserer Jahrestagung und von der Bedeutung als Netzwerktreffen<br />

unserer Branche. Trotz des politischen Wandels bleiben die kerntechnische<br />

Industrie und Forschung bedeutende Säulen des wirtschaftlichen<br />

Erfolgs Deutschlands.<br />

Auch hinsichtlich der Fachvorträge dürfen Sie sich auf spannende<br />

Präsentationen und Diskussionen freuen. Wir diskutieren mit<br />

Ihnen die technischen Neuerungen und Heraus<strong>for</strong>derungen in den<br />

Bereichen Neubau, Forschung und Entwicklung. Wir tauschen uns<br />

über Innovationen und Optimierungsmöglichkeiten beim KKW-<br />

Rückbau und der Entsorgung von radioaktiven Reststoffen aus. Und<br />

wir möchten der Frage nachgehen, welche Rolle SMR bei der<br />

Nutzung der Kernenergie künftig spielen können. Wie schon vor<br />

50 Jahren werden wir gemeinsam einen wichtigen Beitrag leisten,<br />

die Kernenergie und Kerntechnik noch sicherer und effizienter zu<br />

machen.<br />

Die Jubiläumstagung in diesem Jahr bietet Ihnen inmitten der<br />

traditionellen Leistungsschau der Unternehmen und Organisationen<br />

unserer Ausstellung eine Foto- und Exponatenausstellung. Die<br />

Industrieausstellung mit ihren zahlreichen nationalen und internationalen<br />

Ausstellern sowie den Länderpavillions aus dem<br />

Vereinigten Königreich und Tschechien bietet so nicht nur die<br />

Gelegenheit, neue Kontakte zu knüpfen und vorhandene zu pflegen,<br />

sondern lässt Sie die Geschichte und Gegenwart der Kernenergie in<br />

Deutschland hautnah erleben.<br />

Es sind Ihre Fachkenntnisse und Ihre aktive Beteiligung, die den<br />

Erfolg unserer Jahrestagung seit 50 Jahren sichern. Gerne möchte<br />

ich dafür allen Rednern und Teilnehmern sowie allen Ausstellern<br />

und Sponsoren von ganzem Herzen danken.<br />

Dr. Ralf Güldner<br />

Frank Apel<br />

Editorial<br />

Grußworte zum 50. Annual Meeting on <strong>Nuclear</strong> Technology (AMNT 2019)


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chancen und Regularien<br />

RA Kay Höft M. A.<br />

O. L. Kreuzer<br />

Dr.-Ing. Wolfgang Steinwarz<br />

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019<br />

10.03.2020<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

Atomrecht – Was Sie wissen müssen<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke 22.10.2019<br />

18.02.2020<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

12.06. - 13.06.2019 Berlin<br />

Berlin<br />

Berlin<br />

07.11.2019 Berlin<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –<br />

Themen und Formate<br />

Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin<br />

November 2019<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 <strong>Nuclear</strong> English<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Matthias Bauerfeind<br />

RA Dr. Christian Raetzke<br />

25.06. - 26.06.2019<br />

10.09. - 11.09.2019<br />

15.10. - 16.10.2019<br />

13.11. - 14.11.2019<br />

Berlin<br />

24.09. - 25.09.2019 Berlin<br />

Enhancing Your <strong>Nuclear</strong> English Angela Lloyd 22.05. - 23.<strong>05.2019</strong> Berlin<br />

Advancing Your <strong>Nuclear</strong> English (Aufbaukurs) Angela Lloyd 18.09. - 19.09.2019 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Veränderungsprozesse gestalten – Heraus <strong>for</strong>derungen<br />

meistern, Beteiligte gewinnen<br />

Erfolgreicher Wissenstransfer in der Kerntechnik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

26.11. - 27.11.2019 Berlin<br />

24.03. - 25.03.2020 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

246<br />

Issue 5 | 2019<br />

May<br />

CONTENTS<br />

Contents<br />

Welcome To AMNT 2019<br />

Welcome Addresses <strong>for</strong> the 50 th Annual Meeting<br />

on <strong>Nuclear</strong> Technology (AMNT 2019) E/G 243<br />

DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Why Europe Should Put More Focus on <strong>Nuclear</strong> R&D<br />

and Fast Breeder Reactors 249<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250<br />

Feature | 60 Years DAtF<br />

<strong>Nuclear</strong> <strong>Power</strong>: “No Thanks.” “Yes, Please.” G 251<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Atomic Energy Law Amendment<br />

<strong>for</strong> <strong>Nuclear</strong> Plant Safety Planned G 260<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning & Transmutation and<br />

How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management 261<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />

The <strong>Nuclear</strong> Waste Management Strategy: Russia | Part 2 267<br />

Guideline to Prepare a Preliminary Decommissioning Plan<br />

<strong>for</strong> <strong>Nuclear</strong> Facilities in Republic of Korea 270<br />

Research and Innovation . . . . . . . . . . . . . . . . . . . . . . 275<br />

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling<br />

<strong>for</strong> High Fidelity PWR Reactor Core Simulation:<br />

Preliminary Results 275<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Yes to the Use of <strong>Nuclear</strong> <strong>Power</strong><br />

in <strong>International</strong> Security Partnership G 280<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2018 <strong>atw</strong> Compact Statistics 284<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288<br />

Report<br />

Operating Results 2018 294<br />

Cover:<br />

NPP Grohnde. Courtesy: PreussenElektra GmbH<br />

<strong>Nuclear</strong> Today<br />

Proposals to ‘Evolve’ Euratom Treaty<br />

Should Be Handled with Care 310<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Imprint 248<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

247<br />

Feature<br />

60 Years DAtF<br />

251 <strong>Nuclear</strong> <strong>Power</strong>: “No Thanks.” “Yes, Please.”<br />

Atomkraft: „Nein danke.“ „Ja bitte.“<br />

CONTENTS<br />

Friedrich Schröder<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

261 The Current Status of Partitioning & Transmutation and<br />

How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management<br />

Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead<br />

Decommissioning and Waste Management<br />

267 A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />

The <strong>Nuclear</strong> Waste Management Strategy: Russia Part 2<br />

Mark Callis Sanders and Charlotta E. Sanders<br />

Special Topic | A Journey Through 50 Years AMNT<br />

280 Yes to the Use of <strong>Nuclear</strong> <strong>Power</strong> in <strong>International</strong> Security Partnership<br />

Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft<br />

Klaus Töpfer<br />

Report<br />

294 Operating Results 2018<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

248<br />

DATF NOTES<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

DAtF<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

kernenergie.de<br />

www.kernenergie.de<br />

Notes<br />

The Countries Most Ready <strong>for</strong><br />

the Global Energy Transition<br />

The recent insight report “Fostering Effective Energy<br />

Transition” of the World Economic Forum gives a<br />

comparative analysis of the state and prospects of<br />

energy transition in over 100 countries summarizing its<br />

findings in an Energy Transition Index (ETI) ranking the<br />

countries. The World Ecomomic <strong>for</strong>um defines, “effective<br />

energy transition is the timely transition towards a more<br />

inclusive, sustainable, af<strong>for</strong>dable and secure global<br />

energy system. That system provides solutions to global<br />

energy-related challenges while creating value <strong>for</strong><br />

society, without compromising the balance of the energy<br />

triangle.”<br />

The ETI score is composed of a System Per<strong>for</strong>mance<br />

Index that considers the energy triangle (energy security<br />

and access, economic development and growth,<br />

environmental sustain ability) and the Transition Readiness<br />

Score summarizing six factors: energy system<br />

structure, regulation and political commitment,<br />

institutions and governance, infrastructure and innovative<br />

business environment, capital and investment,<br />

human capital and consumer participation.<br />

Energy Transition Index 2019¹ results<br />

Country<br />

name<br />

2019<br />

ETI Score 2<br />

System<br />

Per<strong>for</strong>mance<br />

Transition<br />

Readiness<br />

1 Sweden 75 % 81 % 69 %<br />

2 Switzerland 74 % 78 % 71 %<br />

3 Norway 73 % 82 % 65 %<br />

4 Finland 73 % 72 % 74 %<br />

5 Denmark 72 % 72 % 73 %<br />

6 Austria 71 % 71 % 71 %<br />

7 United Kingdom 70 % 74 % 66 %<br />

8 France 69 % 77 % 60 %<br />

9 Netherlands 69 % 71 % 66 %<br />

10 Iceland 69 % 75 % 62 %<br />

17 Germany 65 % 66 % 64 %<br />

1<br />

The Energy Transition Index benchmarks countries on the per<strong>for</strong>mance of their energy system,<br />

as well as their readiness <strong>for</strong> transition to a secure, sustainable, aordable, and reliable<br />

energy future. ETI 2019 score on a scale from 0 to 100 %.<br />

2<br />

ETI 2019 score on a scale from 0 % to 100 %.<br />

Source: World Economic Forum<br />

Imprint<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Guido Knott<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Ingo Neuhaus<br />

Dr. Joachim Ohnemus<br />

Prof. Dr. Winfried Petry<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Prof. Dr. Bruno Thomauske<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

| | Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Nicole Koch (Editor)<br />

c/o INFORUM, Berlin, Germany<br />

Phone: +49 176 84184604<br />

E-mail: nicole.koch@nucmag.com<br />

| | Official <strong>Journal</strong> of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| | Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

| | Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2019<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

DAtF Notes


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Why Europe Should Put More Focus on<br />

<strong>Nuclear</strong> R&D and Fast Breeder Reactors<br />

Research and development in the nuclear sector in Europe should focus on fast breeder reactors that will<br />

be capable of supplying energy needs <strong>for</strong> thousands of years with existing uranium or thorium resources,<br />

Leon Cizelj, president of the European <strong>Nuclear</strong> Education Network (ENEN), told NucNet.<br />

Mr Cizelj said Generation IV breeder technology will also<br />

reduce the already small amount of radioactive waste that<br />

conventional reactors produce by a factor of three or more.<br />

A fast breeder reactor is one that generates more fissile<br />

material than it consumes. They have been and are being<br />

explored in Russia, France, India, China, Japan and the<br />

US. They allow a significant increase in the amount of<br />

energy obtained from natural, depleted and recycled<br />

uranium. The technology also enables plutonium and<br />

other actinides to be used and recycled.<br />

Mr Cizelj, warned, however, that most national nuclear<br />

R&D programmes in the EU are decreasing in scope, funds<br />

and the number of researchers. EU nuclear R&D budgets<br />

<strong>for</strong> member states have been stable through recent years<br />

but modest, and generally national nuclear energy programmes<br />

are in decline, he said.<br />

There are 36 research reactors operational in the EU<br />

with one under construction – Jules Horowitz at Cadarache<br />

in France – and two planned – Myrrha in Belgium and<br />

Pallas in the Netherlands. There are about 150 research<br />

reactors in various stages of decommissioning in the EU.<br />

“This is a clear indication that the retirement [of<br />

research reactors] is taking place at a much faster pace<br />

than the construction of new ones,” Mr Cizelj said. “This<br />

diminishes the opportunities <strong>for</strong> related research and<br />

competence building.”<br />

“For comparison, Russia alone operates 53 research<br />

reactors. This indicates that their research and development<br />

side of the nuclear cycle is much more alive.”<br />

Europe’s Horizon 2020 research and innovation<br />

programme has a budget of € 80 bn over seven years. Out<br />

of this, nearly € 6 bn is <strong>for</strong> non-nuclear clean energy<br />

research.<br />

Conventional nuclear fission – the only efficient and<br />

around-the-clock zero-carbon technology – receives about<br />

€ 60 m a year <strong>for</strong> the seven years, “so it is not a question<br />

of the availability of funds, but a question of priorities”, he<br />

said.<br />

The EU should focus on Generation IV breeder reactor<br />

development and provide R&D support in this field. “The<br />

most important feature of nuclear is its energy density and<br />

if we want to go <strong>for</strong> its full potential then we have to focus<br />

on breeder reactors,” Mr Cizelj said.<br />

Energy density refers to the amount of heat energy that<br />

can be extracted from a unit of an energy storage material,<br />

such as uranium, coal, or hydrogen to name a few. Thorium<br />

and uranium are among the commonly known sources of<br />

energy with the highest energy densities.<br />

Mr Cizelj said the nuclear industry has overlooked the<br />

importance of the long-term search <strong>for</strong> future opportunities<br />

and technologies. “They seem to be somehow stuck in the<br />

technological past.”<br />

The nuclear industry in Europe and overseas has<br />

developed excellence in operations and in the “know-how”<br />

of reactor designs. But it has lagged behind when it comes<br />

to the “know-why” of research, which is usually done at<br />

universities and institutes.<br />

“This ‘know-why’ is indispensable <strong>for</strong> the<br />

development of new technologies, new<br />

approaches, improved safety regulations,” said Mr Cizelj<br />

said. “The long-term success of any technology can only be<br />

achieved by a balanced approach to ‘know-how’ and<br />

‘ know-why’. In other words, through appropriate<br />

cooperation in R&D.”<br />

Mr Cizelj warned that existing nuclear facilities are<br />

ageing and expensive to run and maintain, resulting in<br />

closures, and building new nuclear facilities is a long and<br />

expensive process. There are ambitious plans in many<br />

countries, but few of them will be successfully completed<br />

in the near future, he said.<br />

Another concern <strong>for</strong> the nuclear industry is the future<br />

of the labour <strong>for</strong>ce, Mr Cizelj said. In complex technologies<br />

like nuclear, about 10 years of a 40-year career is an investment<br />

in gaining the education and skills. Both this<br />

“ apprenticeship” time and its costs are not always<br />

appreciated by stakeholders.<br />

He said: “Attracting new blood into the industry is a<br />

challenge. It may require long-term commitment on behalf<br />

of those who are investing in the future of nuclear and in<br />

research, be it industry, government or the European<br />

Commission.<br />

“This commitment will need to give reasonable<br />

assurance to young people that they are investing their<br />

‘ apprenticeship’ time into knowledge and skills of some<br />

value to employers and society at large.”<br />

Mr Cizelj comments echo those in a position paper last<br />

year in which the European Atomic Energy Society said<br />

Europe risks losing much of its nuclear research capacity<br />

because of a “crisis in political vision” on energy issues and<br />

limited public funds.<br />

The paper said investment is needed <strong>for</strong> advanced<br />

nuclear research and the successful development of new<br />

nuclear technologies can only be achieved by research<br />

laboratories with appropriate infrastructure and with<br />

cooperation and support by the industry. This requires<br />

“stable and dedicated funding programmes from national,<br />

European and private sources”.<br />

Leon Cizelj is president of the European <strong>Nuclear</strong> Education<br />

Network (ENEN), president of the European Atomic Energy<br />

Society and head of the reactor engineering division at the<br />

Jožef Stefan Institute in Slovenia.<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency<br />

Editor responsible <strong>for</strong> this story: Kamen Kraev<br />

Avenue des Arts 56<br />

1000 Brussels, Belgium<br />

www.nucnet.org<br />

249<br />

INSIDE NUCLEAR WITH NUCNET<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Why Europe Should Put More Focus on <strong>Nuclear</strong> R&D and Fast Breeder Reactors


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

250<br />

Calendar<br />

2019<br />

CALENDAR<br />

07.05.-08.<strong>05.2019</strong><br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology<br />

AMNT 2019 | 50. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.amnt2019.com – Register Now!<br />

15.05.-17.<strong>05.2019</strong><br />

1 st <strong>International</strong> Conference of Materials,<br />

Chemistry and Fitness-For-Service Solutions<br />

<strong>for</strong> <strong>Nuclear</strong> Systems. Toronto, Canada, Canadian<br />

<strong>Nuclear</strong> Society (CNS), www.cns-snc.ca<br />

16.05.-17.<strong>05.2019</strong><br />

Emergency <strong>Power</strong> Systems at <strong>Nuclear</strong> <strong>Power</strong><br />

Plants. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de/eps-symposium<br />

24.05.-26.<strong>05.2019</strong><br />

<strong>International</strong> Topical Workshop on Fukushima<br />

Decommissioning Research – FDR2019. Fukushima,<br />

Japan, The University of Tokyo, fdr2019.org<br />

29.05.-31.<strong>05.2019</strong><br />

Global <strong>Nuclear</strong> <strong>Power</strong> Tech. Seoul, South Korea, Korea<br />

Electric Engineers Association, electrickorea.org/eng<br />

03.06.-05.06.2019<br />

<strong>Nuclear</strong> Energy Assembly. Washington DC, USA,<br />

<strong>Nuclear</strong> Energy Institute (NEI), www.nei.org<br />

03.06.-07.06.2019<br />

World <strong>Nuclear</strong> University Short Course:<br />

The World <strong>Nuclear</strong> Industry Today.<br />

Rio de Janeiro, Brazil, World <strong>Nuclear</strong> University,<br />

www.world-nuclear-university.org<br />

25.06.-26.06.2019<br />

ICNDRWM 2019 – 21 st <strong>International</strong> Conference<br />

on <strong>Nuclear</strong> Decommissioning and Radioactive<br />

Waste Management. Venice, Italy, World Academy<br />

of Science, Engineering & Technology,<br />

www.waset.org<br />

21.07.-24.07.2019<br />

14 th <strong>International</strong> Conference on CANDU Fuel.<br />

Mississauga, Ontario, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

28.07.-01.08.2019<br />

Radiation Protection Forum. Memphis TN, USA,<br />

<strong>Nuclear</strong> Energy Institute (NEI), www.nei.org<br />

29.07.-02.08.2019<br />

27 th <strong>International</strong> <strong>Nuclear</strong> Physics Conference<br />

(INPC). Glasgow, Scotland, inpc2019.iopconfs.org<br />

04.08.-09.08.2019<br />

PATRAM 2019 – Packaging and Transportation<br />

of Radioactive Materials Symposium.<br />

New Orleans, LA, USA. www.patram.org<br />

21.08.-30.08.2019<br />

Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />

FJOH-2019 – Innovative Reactors: Matching the<br />

Design to Future Deployment and Energy Needs.<br />

Karlsruhe, Germany, <strong>Nuclear</strong> Energy Division<br />

of Commissariat à l’énergie atomique et aux<br />

énergies alternatives (CEA) and Karlsruher Institut<br />

für Technologie (KIT), www.fjohss.eu<br />

04.09.-06.09.2019<br />

World <strong>Nuclear</strong> Association Symposium 2019.<br />

London, UK, World <strong>Nuclear</strong> Association (WNA),<br />

www.wna-symposium.org<br />

04.09.-05.09.2019<br />

VGB Congress 2019 – Innovation in <strong>Power</strong><br />

Generation. Salzburg, Austria, VGB <strong>Power</strong>Tech e.V.,<br />

www.vgb.org<br />

07.10. – 11.10.2019<br />

<strong>International</strong> Conference on Climate Change and<br />

the Role of <strong>Nuclear</strong> <strong>Power</strong>. Vienna, Austria,<br />

IAEA, www.iaea.org<br />

07.10. – 18.10.2019<br />

ICTP-IAEA <strong>Nuclear</strong> Energy Management School.<br />

Trieste, Italy, IAEA, www.iaea.org<br />

15.10. – 18.10.2019<br />

Technical Meeting on Siting <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong><br />

Plants. Vienna, Austria, IAEA, www.iaea.org<br />

22.10.-25.10.2019<br />

SWINTH-2019 Specialists Workshop on Advanced<br />

Instrumentation and Measurement Techniques<br />

<strong>for</strong> Experiments Related to <strong>Nuclear</strong> Reactor<br />

Thermal Hydraulics and Severe Accidents.<br />

Livorno, Italy, www.nineeng.org/swinth2019/<br />

23.10.- 24.10.2019<br />

Chemistry in <strong>Power</strong> Plants. Würzburg, Germany,<br />

VGB <strong>Power</strong>Tech e.V., www.vgb.org/en/<br />

chemie_im_kraftwerk_2019.html<br />

27.10.-30.10.2019<br />

FSEP CNS <strong>International</strong> Meeting on Fire Safety<br />

and Emergency Preparedness <strong>for</strong> the <strong>Nuclear</strong><br />

Industry. Ottawa, Canada, Canadian <strong>Nuclear</strong> Society<br />

(CNS), www.cns-snc.ca<br />

04.11.-07.11.2019<br />

<strong>International</strong> Conference on Effective Regulatory<br />

Systems 2019. The Hague, Netherlands,<br />

<strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/events/conference-on-effectiveregulatory-systems-2019<br />

04.06.-07.06.2019<br />

FISA 2019 and EURADWASTE ‘19. 9 th European<br />

Commission Conferences on Euratom Research<br />

and Training in Safety of Reactor Systems and<br />

Radioactive Waste Management. Pitesti, Romania,<br />

www.nucleu2020.eu<br />

09.06.-11.06.2019<br />

WNFM 46 th Annual Meeting and <strong>International</strong><br />

Conference on <strong>Nuclear</strong> Fuel. Lisbon, Portugal,<br />

World <strong>Nuclear</strong> Fuel Market, www.wnfm.com<br />

11.06.-12.06.2019<br />

<strong>Nuclear</strong> New Build 2019. London, UK, <strong>Nuclear</strong><br />

Industry Association, www.nuclearnewbuild2019.co<br />

17.06.-21.06.2019<br />

MIT <strong>Nuclear</strong> Plant Safety Course. Cambridge, MA,<br />

USA, Massachusetts Institute of Technology (MIT),<br />

professional.mit.edu/programs/short-programs/<br />

nuclear-plant-safety<br />

23.06.-27.06.2019<br />

World <strong>Nuclear</strong> University Summer Institute.<br />

Romania and Switzerland, World <strong>Nuclear</strong> University,<br />

www.world-nuclear-university.org<br />

24.06.-28.06.2019<br />

2019 <strong>International</strong> Conference on the Management<br />

of Spent Fuel from <strong>Nuclear</strong> <strong>Power</strong> Reactors.<br />

Vienna, Austria, <strong>International</strong> Atomic Energy Agency<br />

(IAEA), www.iaea.org<br />

08.09.-11.09.2019<br />

4 th <strong>Nuclear</strong> Waste Management,<br />

Decommissioning and Environmental Restoration<br />

(NWMDER). Ottawa, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

09.09.-12.09.2019<br />

24 th World Energy Congress. Abu Dhabi, UAE,<br />

www.wec24.org<br />

09.09.-12.09.2019<br />

Jahrestagung 2019 – Fachverband für<br />

Strahlenschutz | Strahlenschutz und Medizin.<br />

Würzburg, Germany,<br />

www.fs-ev.org/jahrestagung-2019<br />

15.09.-21.09.2019<br />

13 th <strong>International</strong> Conference on WWER Fuel<br />

Per<strong>for</strong>mance, Modelling and Experimental<br />

Support. Nessebar, Bulgaria, INRNE-BAS in<br />

cooperation with IAEA,<br />

www.inrne.bas.bg/wwerfuel2019<br />

16.09.-20.09.2019<br />

63 rd Annual Conference of the IAEA. Vienna,<br />

Austria, <strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/about/governance/generalconference<br />

22.09.-27.09.2019<br />

ISFNT-14 – <strong>International</strong> Symposium on Fusion<br />

<strong>Nuclear</strong> Technology. Budapest, Hungary, Wigner<br />

Research Centre <strong>for</strong> Physics, www.isfnt-14.org<br />

12.11.-14.11.2019<br />

<strong>International</strong> Conference on <strong>Nuclear</strong><br />

Decommissioning – ICOND 2019. Eurogress<br />

Aachen, Aachen Institute <strong>for</strong> <strong>Nuclear</strong> Training GmbH,<br />

www.icond.de<br />

25.11.-29-11.2019<br />

<strong>International</strong> Conference on Research Reactors:<br />

Addressing Challenges and Opportunities to<br />

Ensure Effectiveness and Sustainability.<br />

Buenos Aires, Argentina, <strong>International</strong> Atomic<br />

Energy Agency (IAEA), www.iaea.org/events/<br />

conference-on-research-reactors-2019<br />

2020<br />

05.05.-06.05.2020<br />

51 st Annual Meeting on <strong>Nuclear</strong> Technology<br />

AMNT 2020 | 51. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.amnt2020.com<br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Feature | 60 Years DAtF (German Atomic Forum)<br />

Atomkraft: „Nein danke.“ „Ja bitte.“<br />

Energiepolitik in Deutschland im Wandel der Zeit<br />

Deutsches Atom<strong>for</strong>um (DAtF) – 60 Jahre im Dienste<br />

der Öffentlichkeitsarbeit<br />

Der Weg der Bundesrepublik in die friedliche Nutzung der Kernenergie war für Industrie und Politik gleichsam eine<br />

schwierige Geburt. Zu dicht folgte dieser Schritt auf den verlorenen zweiten Weltkrieg und auf die Atombombenabwürfe<br />

auf zwei Städte in Japan. Gleichwohl sahen Energiepolitik und Wirtschaft in der Nutzung der Kernkraft und<br />

Kern<strong>for</strong>schung einen guten Weg, die Energiewirtschaft zum Wohle der Bevölkerung in der Bundesrepublik<br />

voranzubringen. Doch was waren das für mächtige Kräfte, die zuverlässig zu bündeln und zu kontrollieren waren?<br />

Was verstanden die Menschen im Lande davon? Und, brauchten wir die Kernenergie überhaupt? Und falls ja, war sie<br />

verantwortbar und sicher?<br />

Wir brauchten also in Deutschland eine Institution, die als<br />

Sprachrohr allen Bereichen und Anwendungsfeldern der<br />

Kerntechnik eine Stimme mit den Instrumentarien der<br />

Öffentlichkeitsarbeit gab. Das DAtF (Deutsches Atom<strong>for</strong>um<br />

e. V.) wurde mit diesem Auftrag im Jahr 1959<br />

gegründet. Zu seinen Mitgliedern zählten Unternehmen<br />

und Organisationen aus Energieversorgungsunternehmen,<br />

Herstellern, Zulieferern, Dienstleistern, Hochschulen und<br />

Forschungsinstitute, Wirtschaftsvereinigungen etc.<br />

251<br />

FEATURE | 60 YEARS DATF<br />

Erinnern, nicht verdrängen<br />

Nie vergessen! Hiroshima, Nagasaki 1945. Auch wenn<br />

US-Präsident „Ike“ Eisenhower 1953 das Schlagwort<br />

„Atoms <strong>for</strong> peace“ prägte, die Atombombenabwürfe und<br />

die zerstörerischen Folgen begleiten uns noch heute.<br />

Gleichwohl und vor dem Hintergrund des wachsenden<br />

Energiebedarfs, begann in den 50er-Jahren in vielen<br />

Ländern die Förderung der friedlichen Nutzung der Kernenergie.<br />

Doch Deutschland war als Folge des verlorenen<br />

zweiten Weltkrieges zunächst außen vor.<br />

Im Dezember 1954 stimmte die Französische Natio nalversammlung<br />

der Ratifizierung der Pariser Verträge<br />

zu. Damit stand der Wiederherstellung der deutschen<br />

Souveränität nichts mehr im Wege. Mit Erlangung<br />

der Souveränität bemühte sich die Bundesrepublik<br />

Deutschland im Rahmen der europäischen Einigung auch<br />

um eine eigenständige Atompolitik. Man war bestrebt<br />

Kern <strong>for</strong>schung zu betreiben und an der Entwicklung zur<br />

friedlichen Nutzung der Kernenergie teilzuhaben.<br />

Die USA waren unbestritten Vorreiter der Nutzung der<br />

„Atomkraft“ zur zivilen Nutzung als Energiequelle. Im<br />

Dezember 1951 wurde mit dem „Experimental Breeder<br />

Reactor Number 1 (EBR-1)“ in Idaho erstmals Strom<br />

erzeugt. Mitte der fünfziger Jahre war man überzeugt,<br />

mit der Atomkraft alle Energieprobleme der Menschheit<br />

lösen zu können. Das überzeugte auch Politik und<br />

Industrie der jungen Bundesrepublik Deutschland. Im<br />

Oktober 1955 rief Adenauer das „Bundesministerium für<br />

Atomfragen“ ins Leben. Es hagelte Kritik aus den eigenen<br />

Reihen, da es dafür kein Vorbild im Ausland gab. Ludwig<br />

Erhard soll sich sogar darüber lustig gemacht haben,<br />

indem er ein zusätzliches „Dampfkesselministerium“<br />

<strong>for</strong>derte.<br />

Erster Atomminister wurde Franz Josef Strauß. Gegenüber<br />

dem NWDR (Nordwestdeutscher Rundfunk)<br />

erläuterte Strauß am 21. Oktober 1955 seine Aufgaben als<br />

Minister für Atomfragen. Unter anderem stellte er heraus,<br />

| | Kernkraftwerk Grohnde.<br />

dass es auch darum gehe, den Rückstand, den die Bundesrepublik<br />

Deutschland in der Ausnutzung der Atom- Energie<br />

für friedliche Zwecke habe, in möglichst geringer Zeit<br />

einzuholen. Strauß erarbeitete in seiner kurzen Amtszeit<br />

bis 1956 den sogenannten Drei-Stufen-Plan für ein eigenes<br />

deutsches Atomprogramm.<br />

Stufe 1 galt den durch Kriegsfolgen entstandenen<br />

Mangel an qualifizierten Wissenschaftlern und Technikern<br />

auszugleichen. Stufe 2 dem Erwerb von fünf Forschungsreaktoren<br />

von den USA und Großbritannien, die in<br />

München, Frankfurt, Königs<strong>for</strong>st bei Köln, Berlin und<br />

Hamburg aufgestellt werden sollten. Stufe 3 beinhaltete<br />

den Bau eines Kernreaktors deutscher Konstruktion und<br />

Fabrikation durch das Reaktorzentrum Karlsruhe.<br />

Strauß setzte auf US-Technologie<br />

Am 26. Januar 1956 wurde die „Deutsche Atomkommission<br />

(DAtK)“ nach dem Vorbild der US-amerikanischen<br />

„Atomic Energy Commission“ gegründet. Unter dem<br />

Vorsitz von Strauß, gehörten der Kommission 27 Personen<br />

aus Wissenschaft, Technik, Wirtschaft und den Gewerkschaften<br />

an. In der Eröffnungsrede stellte Strauß u. a.<br />

heraus: „Es ist ohne Zweifel eine Tragik in der Geschichte<br />

der Menschheit, dass der Begriff Atom nicht als heilende<br />

und helfende Kraft, sondern zuerst als Faktor von unvorstellbarer<br />

Zerstörungswirkung zum Bewusstsein der Allgemeinheit<br />

gekommen ist.“<br />

Feature | 60 Years DAtF


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

252<br />

FEATURE | 60 YEARS DATF<br />

„Es ist ohne Zweifel eine<br />

Tragik in der Geschichte<br />

der Menschheit, dass der<br />

Begriff Atom nicht als<br />

heilende und helfende<br />

Kraft, sondern zuerst als<br />

Faktor von unvorstellbarer<br />

Zerstörungswirkung zum<br />

Bewusstsein der Allgemeinheit<br />

gekommen ist.“<br />

Es ist belegt, dass Strauß einem schnellen Einstieg<br />

in die Nutzung der Atomkraft zur Energieerzeugung<br />

eher zurückhaltend gegenüber stand. Er lehnte den<br />

Bau von in Deutschland entwickelten Reaktoren nicht<br />

zuletzt wegen hoher Entwicklungskosten<br />

ab. Stattdessen<br />

bevorzugte er die Übernahme<br />

amerikanischer Technologien.<br />

Anders sein Nachfolger im<br />

Amt, Siegfried Baalke, der am<br />

16. Oktober 1956 das Ministerium<br />

von Strauß übernahm.<br />

Er unterstützte mehr die technologische<br />

Eigenständigkeit<br />

Deutschlands. 1957 war die<br />

Bundesrepublik Gründungsmitglied<br />

der <strong>International</strong>en<br />

Atomenergie-Organisation<br />

(IAEO).<br />

Die DAtK erarbeitete 1957 das erste deutsche Atomprogramm.<br />

Es wurde auch „Eltviller Programm“ oder auch<br />

„500-MW-Programm“ genannt. Es sah den Bau von fünf<br />

Atomkraftwerken vor, von denen jedes eine Leistung von<br />

100 MW haben sollte. Das Programm verfolgte auch das<br />

Ziel der Brennstoff-Autarkie, die man mit der Entwicklung<br />

von Schnellen Brütern und Hochtemperaturreaktoren<br />

erreichen wollte.<br />

Wissenschaftler: Nein zur atomaren<br />

Aufrüstung der Bundeswehr<br />

1957 wurde öffentlich bekannt, dass die Bundesregierung<br />

unter Konrad Adenauer beabsichtigte, die Bundeswehr<br />

atomar zu bewaffnen. Umgehend <strong>for</strong>mierte sich Widerstand.<br />

18 deutsche Atom<strong>for</strong>scher und Kernphysiker um<br />

Carl Friedrich von Weizsäcker, darunter die Nobelpreisträger<br />

Otto Hahn, Werner Heisenberg, Max von Laue und<br />

Max Born, verurteilten die Pläne der Adenauer-Regierung.<br />

In ihrer „Göttinger Erklärung“ lehnten sie jegliche<br />

Mitarbeit an der Herstellung atomarer Waffen ab. Die<br />

Ablehnung der Wissenschaftler war nicht unbegründet.<br />

Denn einige von ihnen, unter anderem von Weizsäcker<br />

und Heisenberg, hatten in den vierziger Jahren freiwillig<br />

und engagiert, so „Welt.de/Geschichte“, im Uranverein,<br />

dem Atomprojekt des deutschen Heereswaffenamtes,<br />

mitgearbeitet.<br />

Für Adenauer war die atomare Bewaffnung der Bundeswehr<br />

eine Frage der Souveränität, der Ebenbürtigkeit, der<br />

Gleichberechtigung mit anderen europäischen Großmächten.<br />

Um die Bedeutung der Nuklearwaffen vor den<br />

ängstlichen Deutschen herunterzuspielen, definierte er in<br />

einer Pressekonferenz am 5. April 1957: „…. Die taktischen<br />

atomaren Waffen sind im Grunde genommen nichts<br />

anderes als die Weiterentwicklung der Artillerie.“<br />

Das brachte das Fass der Göttinger 18 zum Überlaufen.<br />

Am 12. April 1957 veröffentlichten die Atomphysiker die<br />

„Göttinger Erklärung“ in allen überregionalen deutschen<br />

Zeitungen. Trotz der überwältigenden Resonanz in der<br />

Öffentlichkeit auf diese Erklärung gewannen CDU und<br />

CSU im September 1957 die Wahlen zum 3. Bundestag mit<br />

50,2 Prozent. Adenauer war es dem Deutschlandfunk<br />

zufolge offensichtlich gelungen „… die Angst vor Atomwaffen<br />

durch die Angst vor der Sowjetunion zu überlagern.“<br />

Die politische Euphorie verflog Ende der 1950er Jahre<br />

als klar wurde, dass die deutschen Stromversorger nicht<br />

in die Entwicklung von Atomkraftwerken investieren<br />

wollten. Überdies war mit einer marktwirtschaftlichen<br />

Rentabilität der geplanten Nuklearanlagen nicht zu<br />

rechnen. Auch die Verdoppelung staatlicher Verlustbürgschaften<br />

und Investitionshilfen waren für die<br />

Stromversorger kein besonderer Anreiz. Das erste Atomprogramm<br />

erwies sich als Flop.<br />

Von den fünf geplanten Atomkraftwerken wurden<br />

nur Kahl und Niederaichbach mit geringer Leistung<br />

umgesetzt. Für die Realisierung des Atomkraftwerks<br />

Gundremmingen Block A musste der Staat zwei Drittel der<br />

Kosten vorschießen. Die Anlage ging 1966 – Eigentümer:<br />

Bayernwerk, RWE – als erstes kommerzielles Kraftwerk<br />

Deutschlands mit Siedewasserreaktor und einer elektrischen<br />

Leistung von 237 MW in Betrieb. Durch Eislast<br />

auf den Leiterseilen des Hochspannungsnetzes, in das<br />

das Kraftwerk einspeiste, wurde die Fortleitung des Stroms<br />

am 13. Januar 1977 unterbrochen. Dabei kam es zu<br />

einer folgenreichen Reaktorschnellabschaltung; der TÜV<br />

<strong>for</strong>derte nach Analyse ein neues Sicherheitskonzept.<br />

Wegen der hohen Kosten für die Umsetzung des Konzepts<br />

wurde im Januar 1980 beschlossen, Block A stillzulegen.<br />

Nicht zuletzt dieser Störfall – 1975 gab es in der Anlage<br />

einen Störfall mit Austritt von radioaktivem Dampf, bei<br />

dem zwei Mitarbeiter getötet wurden - bewirkte, dass die<br />

Atomskepsis in der deutschen Bevölkerung zunahm. Seit<br />

1983 wird die Anlage zurückgebaut.<br />

| | Kernkraftwerk Kahl.<br />

Die zwei Gesichter des Atoms<br />

Kernwaffengegner in Großbritannien initiierten 1957 den<br />

ersten „Ostermarsch“. Sie beschworen die Angst vor dem<br />

gefährlichen und zerstörerischen Atom. Am 7. April zogen<br />

rund 10.000 Demonstranten vom Londoner Trafalgar<br />

Square zum britischen Atom<strong>for</strong>schungszentrum Aldermaston.<br />

Seither gibt es die Ostermarschierer auch bei uns.<br />

In der Bunderepublik wuchs die Teilnehmerzahl von<br />

anfangs 1.000 auf etwa 300.000 im Jahr der Studentenrevolte<br />

1968.<br />

Für die gute Seite der Radioaktivität gingen damals<br />

wie heute keine Menschen auf die Straße. Als selbstverständlich<br />

wird beispielsweise die Nuklearmedizin hingenommen.<br />

Etwa die Strahlentherapie bei Krebserkrankungen<br />

oder die Radiojodtherapie bei Schilddrüsenerkrankungen<br />

wird von Erkrankten widerstandslos<br />

hingenommen. Kein noch so entschiedener Gegner der<br />

Atomenergie würde sich bei Bedarf gegen solch eine<br />

Therapie wehren.<br />

Feature | 60 Years DAtF


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Unterdessen verfolgte die Bundesregierung den von<br />

Franz Josef Strauß vorgezeichneten Weg zur friedlichen<br />

Nutzung der Kernenergie. Als beratende Institutionen<br />

gingen aus der Atomkommission die Strahlenschutz- und<br />

Reaktorsicherheitskommission sowie der Kerntechnische<br />

Ausschuss hervor. Ihre Aufgabe war nicht zuletzt, das<br />

Bundesamt für Strahlenschutz als Aufsichtsbehörde zu<br />

unterstützen.<br />

1959: Gründungsjahr des DAtF<br />

Der Ausbau der Atomenergie nahm Fahrt auf. Mit dem<br />

Ausbau wuchs auch das öffentliche Interesse an der<br />

Atomenergie. In diese Zeit des Aufbruchs gründeten die<br />

Arbeitsgemeinschaft für Kerntechnik in Düsseldorf, die<br />

Deutsche Gesellschaft für Atomenergie (DGA) in Bonn,<br />

der Verein „Atom für den Frieden“ in München und die<br />

Physikalische Studiengesellschaft (PSG) in Düsseldorf am<br />

26. Mai 1959 das Deutsche Atom<strong>for</strong>um e. V. (DAtF). Dass<br />

das DAtF in Bonn angesiedelt wurde, war nur folgerichtig,<br />

da es als Interessensvertretung und In<strong>for</strong>mationsdrehscheibe<br />

insbesondere für Politik, Presse, Öffentlichkeit<br />

und seine Mitglieder tätig werden sollte.<br />

Auf Initiative einiger Einzelmitglieder des DAtF wurde<br />

1969 – zunächst unter dem Dach des DAtF – die Kerntechnische<br />

Gesellschaft e. V. (KTG) gegründet. Die KTG<br />

wurde 1979 als eigenständiger wissenschaftlicher Verein<br />

ausgegliedert. DAtF und KTG kooperieren seitdem fachlich<br />

und organisatorisch sowie beispielsweise bei Ausrichtung<br />

der gemeinsamen Jahrestagung, dem späteren Annual<br />

Meeting on <strong>Nuclear</strong> Technology (AMNT).<br />

Auch die Führungsspitzen der Unternehmen, die<br />

sich für die Stromproduktion mittels Kernenergie entschieden<br />

hatten, lernten, dass sie aus dem Schatten<br />

ihres Handelns heraustreten mussten, um der Öffentlichkeit<br />

zu erklären, warum sie auf diese Technologie setzten.<br />

Es wurden Stabsstellen für Presse- und Öffentlichkeitsarbeit<br />

implementiert; <strong>Journal</strong>isten als Pressesprecher<br />

eingestellt. Ingenieure und Techniker, die besonders für<br />

die Öffentlichkeitsarbeit geeignet erschienen, wurden<br />

geschult. Eigens hierfür wurden spezielle Seminare von<br />

DAtF und VDEW konzipiert. Im Fortbildungszentrum<br />

der VDEW, Neu-Kranichstein bei Darmstadt, wurden<br />

diese Mit arbeiter unter wissenschaftlicher Betreuung<br />

auf ihre verant wortungs volle Kommunikationsaufgabe<br />

vorbereitet.<br />

War damit alles gut? Die atomare Bewaffnung vergessen?<br />

Weit gefehlt! Denn nach wie vor wurde alles, was<br />

sich mit dem Begriff Atom verbinden ließ, als gefährlich<br />

gedeutet, machte Angst.<br />

Wen wundert es, dass die positive Seite der friedlichen<br />

Nutzung der Kernenergie frei nach dem Eisenhower-Motto<br />

„Atoms <strong>for</strong> peace“ in der Öffentlichkeit schlechte Karten<br />

hatte. Jetzt Konrad Adenauer dafür die Schuld zu geben,<br />

dürfte zu kurz greifen. Aber sein Vorstoß, die Bundeswehr<br />

atomar aufzurüsten, machte <strong>for</strong>tan einen vorurteilsfreien<br />

Dialog in der Öffentlichkeit fast unmöglich. Der Begriff<br />

„Atompolitik“ war negativ belegt.<br />

Man verwendete sehr viel Energie darauf, die politischen<br />

Schlagworte mit der Vorsilbe „Atom-“ ins positive<br />

zu verkehren. Kernenergiebefürworter bevorzugten die<br />

Vorsilbe „Kern-„: Kernkraftwerk, Kernenergie oder kerntechnische<br />

Anlage, Kern<strong>for</strong>schungszentrum etc. Diese<br />

semantische Optimierung führte allerdings nicht zu mehr<br />

Akzeptanz der Kernenergie, sondern artikulierte lediglich<br />

gegensätzliche Positionen. Das DAtF ließ sich durch solche<br />

Diskussionen nicht beeindrucken; das Deutsche Atom<strong>for</strong>um<br />

blieb das Deutsche Atom<strong>for</strong>um.<br />

| | THTR Thorium-Hochtemperatur-Reaktor bei Hamm-Uentrop.<br />

Wyhl? „Nai hämmer gsait!“<br />

Die sechziger Jahre standen im Zeichen des Aufbruchs in<br />

die großtechnische Nutzung der Kernenergie. Die Nordwestdeutschen<br />

Kraftwerke (NWK) beantragten den Bau<br />

des Kernkraftwerks Stade (Druckwasserreaktor) am<br />

niedersächsischen Ufer der Elbe, Baubeginn 1967. Die<br />

damalige Preußenelektra zog nach und beantragte das<br />

Kernkraftwerk Würgassen (Siedewasserreaktor) mit<br />

Standort an der Weser bei Beverungen in Nordrhein<br />

Westfalen, Baubeginn 1968. Stade mit einer Brutto leistung<br />

von 662 MW nahm seinen kommerziellen Betrieb im<br />

Mai 1972 auf. Würgassen mit 670 MW Brutto ging 1971<br />

ans Netz. Beide Anlagen wurden im Vergleich zu späteren<br />

Bauvorhaben nahezu ungestört gebaut.<br />

Entscheidungen fielen auch zum Bau eines THTR<br />

Thorium-Hochtemperatur-Reaktor bei Hamm-Uentrop,<br />

Baubeginn 1971, und zum Bau des SNR-300 – Schneller<br />

Natriumgekühlter Brutreaktor bei Kalkar, Baubeginn 1973.<br />

Der THTR wurde 1983 testweise in Betrieb ge nommen und<br />

1989 aus technischen, sicherheits technischen und wirtschaftlichen<br />

Gründen stillgelegt. Der SNR-300 wurde 1985<br />

zwar fertiggestellt, ging aber vor allem wegen sicherheitstechnischer<br />

und politischer Bedenken nie in Betrieb.<br />

An einer Stelle jedoch, in Baden-Württemberg, geriet<br />

der Ausbau ins Stocken: 1973 gab die Landesregierung<br />

den Standort eines geplanten Kernkraftwerks in Wyhl<br />

am nördlichen Kaiserstuhl bekannt. Ministerpräsident<br />

Filbinger hatte dem „swr.de/geschichte“ zufolge die Vision<br />

eines „Ruhrgebiets am Rhein“ mit tausenden von Arbeitsplätzen<br />

zwischen Basel und Frankfurt. Die saubere Energie<br />

der Atomkraft sollte das möglich machen.<br />

Filbinger hatte die Rechnung ohne die Wyhler gemacht.<br />

Der Widerstand gegen die Pläne der Landesregierung<br />

<strong>for</strong>mierte sich. Zum ersten Mal in der kurzen Geschichte<br />

der Kernenergie entlud sich der Zorn der Bürger. Sie<br />

artikulierten nicht nur die Angst vor den Gefahren durch<br />

Strahlung, sondern die Winzer befürchteten auch klimatische<br />

Veränderungen durch den Betrieb von Kühltürmen.<br />

Bürgerinitiativen wurden gegründet, Demonstrationen<br />

organisiert, Flugblätter verteilt und Info-Veranstaltungen<br />

fanden in wachsender Zahl Zuhörer. Schließlich wurde<br />

daraus ein perfekt organisierter Widerstand gegen das<br />

Vorhaben.<br />

Ein Bürgerentscheid in Wyhl brachte im Januar 1975<br />

zunächst einen Sieg für die Befürworter; die Gegner gaben<br />

jedoch nicht auf. Als im Folgemonat mit dem Bau<br />

des Kernkraftwerks begonnen wurde, besetzten sie den<br />

Bauplatz.<br />

253<br />

FEATURE | 60 YEARS DATF<br />

Feature | 60 Years DAtF


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

254<br />

FEATURE | 60 YEARS DATF<br />

Es waren Winzer, Bauern, Hausfrauen Rentner und<br />

Handwerker. Viele von ihnen waren bis dato mit der Politik<br />

der regierenden CDU einverstanden. Die Landesregierung<br />

setzte Polizei in Bewegung, die mit Hunden und Wasserwerfern<br />

gegen die gewaltfreien Besetzer vorgingen, so<br />

„swr.de/geschichte“. Die Räumung der Baustelle sorgte<br />

bundesweit für Aufsehen. Wenig später demonstrierten<br />

28.000 Menschen in Wyhl. Als Folge der massiven Proteste<br />

und eines vom Verwaltungsgericht Freiburg veranlassten<br />

Baustopps wurden die Bauarbeiten 1977 eingestellt.<br />

Komponenten für das Wyhler Kraftwerk wurden später in<br />

Philippsburg am Rhein verbaut.<br />

Nicht zuletzt Wyhl offenbarte einen gesteigerten<br />

öffentlichen Aufklärungs- und In<strong>for</strong>mationsbedarf. Auch<br />

vor diesem Hintergrund wurde 1975 der In<strong>for</strong>mationskreis<br />

Kernenergie (IK) innerhalb des DAtF gegründet. Es<br />

galt die Öffentlichkeit effizient, sachlich und umfassend<br />

über die friedliche Nutzung der Kernenergie auch über alle<br />

Parteigrenzen hinweg zu in<strong>for</strong>mieren.<br />

„Atomkraft?“ Nein danke. Ja bitte.<br />

Die Gemeinde Wyhl wurde nicht nur in Deutschland zum<br />

Symbol des bürgerlichen Widerstands gegen die Politik.<br />

Die „Atomkraft-Nein-Danke-Bewegung“ entstand hier.<br />

Dass der organisierte Bürgerprotest für weitere Bauvorhaben<br />

Konsequenzen haben würde, war absehbar. Das<br />

DAtF veranlasste turnusmäßig Meinungs<strong>for</strong>schungen zur<br />

Akzeptanz der Kernenergie. Die Befragungen zeichneten<br />

mitnichten begeisterte Zustimmung zur Kernenergie, aber<br />

auch keine krasse Ablehnung.<br />

Es lag in der Natur der Sache, dass beim weiteren<br />

Ausbau der Kernkraftwerke öffentliche Kontroversen und<br />

Demonstrationen nicht ausblieben. Besonders im niedersächsischen<br />

Grohnde und im schleswig-holsteinischen<br />

Brokdorf eskalierte der Widerstand gegen die Bauvorhaben.<br />

Geschätzte 30.000 Demonstranten reisten im<br />

November 1976 aus der ganzen Bundesrepublik nach<br />

Brokdorf. Militante mischten sich unter die Demonstranten<br />

und schürten Gewalt.<br />

Wenig später in Emmerthal an der Weser: Rund 20.000<br />

Demonstranten versammelten sich am 19. März 1977,<br />

um gegen den Bau des Kernkraftwerks Grohnde zu<br />

demonstrieren. Es sollte ein friedlicher Protest werden,<br />

der von Militanten genutzt wurde, die Konfrontation mit<br />

der Polizei zu provozieren.<br />

Im Oktober 1977 verfügte das OVG Lüneburg den<br />

unbefristeten Baustopp für das Kernkraftwerk Brokdorf,<br />

weil die Entsorgung nicht geklärt sei. Ältere Fernsehzuschauer<br />

werden sich vielleicht erinnern, wie der<br />

Aufsichtsrats vorsitzende der NWK, Erhard Keltsch, in<br />

einer Talkrunde engagiert darauf bestand, dass ohne<br />

Brokdorf bald die Lichter ausgehen würden. Gut drei Jahre<br />

später, im Januar 1981, hob das Gericht den Baustopp auf.<br />

In<strong>for</strong>mation: Kärrnerarbeit vor Ort<br />

Weniger spektakulär und oft verkannt stellten sich<br />

währenddessen die Mitarbeiterinnen und Mitarbeiter in<br />

den In<strong>for</strong>mationszentren den Fragen der Öffentlichkeit.<br />

Sie standen den Besuchern Rede und Antwort. Sie<br />

erklärten unermüdlich die Funktion eines Kernkraftwerks,<br />

die Barrieren der Sicherheit, die hohen Sicherheitsstandards,<br />

verwiesen auf sorgfältig ausgesuchtes und<br />

bestens ausgebildetes Personal in den Anlagen und zeigten<br />

die Wege der Entsorgung radioaktiver Rückstände auf, bis<br />

hin zum Rückbau der Kernkraftwerke am Ende ihrer<br />

Laufzeit. Sie machten Vertrauenswerbung im besten Sinne<br />

des Wortes.<br />

Es waren aber nicht nur „Hausfrauenvereine“, Feuerwehren<br />

oder Kegelklubs, die die In<strong>for</strong>mationszentren<br />

besuchten, sondern es kamen auch gut vorbereitete<br />

Schüler und Studenten, von denen viele vorurteilsbelastet<br />

waren. Für sie gab es nicht den hypothetischen GAU. Sie<br />

argumentierten mit ihrer Angst vor einem großen Reaktorunfall<br />

und dessen Folgen.<br />

Dann geschah das schier Unmögliche: Am 28. März<br />

1979 kam es im Kernkraftwerk Three Mile Island in USA zu<br />

einem Reaktorunfall mit einer partiellen Kernschmelze.<br />

Das hatte auch bei uns Konsequenzen. Die Pressestelle des<br />

DAtF, örtlich nahe an der Bonner Politik, stand vor der<br />

Heraus<strong>for</strong>derung, den Unfall interpretieren zu müssen.<br />

Denn die Öffentlichkeit wollte von den Fachleuten im DAtF<br />

immer „so<strong>for</strong>t“ wissen, welche Konsequenzen ein solcher<br />

Unfall für die Sicherheit unserer Kernkraftwerke haben<br />

würde.<br />

Nach umfassenden Analysen des Unfallhergangs waren<br />

Politik, Industrie, und Reaktorsicherheitskommission<br />

(RSK) sich einig, dass die Vorsorge das Handeln bestimmen<br />

müsse. Zur Sicherheitserhöhung schlug die RSK ein Reihe<br />

von Nachrüstmaßnamen vor, darunter RDB-Füllstandsmessung,<br />

Rekombinatoren zum Abbau von Wasserstoff<br />

im Containment und Systeme zur gefilterten Druckentlastung.<br />

Die Wiederaufnahme der Bauarbeiten in Brokdorf rief<br />

die Gegner erneut auf den Plan. Sie kündigten für den<br />

28. Februar 1981 eine Groß-Demo an. Der Landrat des<br />

Kreises Steinburg ließ die Demo für die gesamte Wilster<br />

Marsch verbieten. Das Verwaltungsgericht Schleswig hingegen<br />

hob dieses Verbot teilweise auf. Nur wenige Stunden<br />

später, unterdessen waren schon zahlreiche Gegner<br />

angereist, verhängte das OVG Lüneburg ein Demonstrationsverbot<br />

für die gesamte Region.<br />

Nichtsdestotrotz strömten geschätzte 100.000 Demonstranten<br />

aus allen Richtungen in die Wilster Marsch. Zwar<br />

hatte die Polizei weiträumig kontrolliert und Zufahrtstraßen<br />

zum Kraftwerksgelände gesperrt, doch viele<br />

umgingen die Sperren und suchten zu Fuß ihren Weg zur<br />

Baustelle über Felder und Wiesen und zugefrorene Gräben.<br />

Alles verlief zunächst friedlich, bis es nachmittags<br />

eskalierte. Etwa 3.000 militante Demonstranten warfen<br />

Steine, Brandflaschen, Wurfgeschosse und auch mit<br />

Schwarzpulver gefüllte Beutel mit Pyrotechnik als Zünder<br />

auf und zwischen die Polizisten. Die Ordnungskräfte versuchten<br />

die Demonstration der Gewalt aufzulösen. Dabei<br />

brach ein Polizist in einem vereisten Graben ein. Der<br />

wehrlose Beamte wurde von einem Chaoten mit einem<br />

Klappspaten traktiert. Es hieß andersherum, die Atomlobby<br />

wolle die „Atomkraft“ ja auch mit Brachialgewalt<br />

durchsetzen.<br />

Dem Hamburger Bürgermeister Hans-Ulrich Klose<br />

(SPD) war diese Entwicklung nicht geheuer. Er wünschte<br />

sich den Ausstieg aus dem Kraftwerksprojekt, an dem die<br />

Hamburgische Electricitäts-Werke AG (HEW) beteiligt<br />

war. Allerdings konnte er sich gegen Teile der Hamburger<br />

SPD-Führung nicht durchsetzen und trat schließlich von<br />

seinem Amt zurück.<br />

WAA Gorleben kippt<br />

Kernenergienutzung, Wiederaufarbeitung und Endlagerung<br />

aller radioaktiven Rückstände – ein geschlossener<br />

Brennstoffkreislauf war das Ziel. Am 22. Februar<br />

1977 verkündete der niedersächsische Ministerpräsident<br />

Ernst Albrecht, dass in Gorleben ein „Nukleares Entsorgungszentrum“<br />

entstehen soll. Eine Wiederaufarbeitungsanlage<br />

und ein Endlager für die radioaktiven<br />

Feature | 60 Years DAtF


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Rückstände in unserem Salzstock? Einen Monat später<br />

gingen mehrere tausend Atomkraftgegner in Gorleben auf<br />

die Barrikaden. Andreas Graf von Bernstorff aus Gartow,<br />

dem das Land über dem Salzstock gehörte, wollte trotz des<br />

Angebots von über 26 Millionen DM nicht verkaufen.<br />

Vom 25. bis 31. März 1979 zogen Atomkraftgegner aus<br />

dem Wendland in einem einwöchigen Treck in die Landeshauptstadt<br />

Hannover. Die Abschlusskundgebung zählte<br />

fast 100.000 Demonstranten. Kurz darauf, am 16. Mai<br />

1979, gab die Landesregierung bekannt, dass auf die<br />

Wiederaufarbeitungsanlage in Gorleben verzichtet werden<br />

soll. „Die politischen Voraussetzungen sind zurzeit nicht<br />

gegeben“, so die Begründung Albrechts. Die Pläne für<br />

die Einrichtung eines Endlagers im Salzstock Gorleben<br />

wurden allerdings nicht aufgegeben.<br />

Der Salzstock Gorleben wurde in mehr als drei<br />

Jahrzehnten mit Unterbrechungen auf seine Eignung hin<br />

erkundet. 2013 wurden die Erkundungsarbeiten auf<br />

der Grundlage des Standortauswahlgesetzes eingestellt;<br />

wenig später auch die Öffentlichkeitsarbeit vor Ort.<br />

Die Abklingbecken in den Kernkraftwerken stießen<br />

unterdessen an die Grenzen ihrer Aufnahmekapazität. So<br />

wurde 1982 mit dem Bau eines Zwischenlagers in Gorleben<br />

begonnen. Hier sollten Brennelemente, die nicht für die<br />

Aufarbeitung in Frankreich oder Großbritannien vorgesehen<br />

waren, in sogenannten Castor-Behältern sicher<br />

zwischengelagert werden. Am 25. April 1995, als „Tag X“<br />

deklariert, gab es den ersten Castor-Transport<br />

nach Gorleben. Wie zu erwarten kam es<br />

zu massiven Ausein andersetzungen. Das<br />

Medieninteresse war enorm, wie auch bei<br />

den folgenden Transporten. Das übergroße<br />

gelbe „X“, das in der Region Straßen und<br />

Häuser kennzeichnet, wurde zum zentralen<br />

Symbol des wend ländischen Widerstands.<br />

Nachdem die Pläne für die Wiederaufarbeitung in<br />

Gorleben gescheitert waren, erklärte sich die bayerische<br />

Landesregierung unter Franz Josef Strauß 1980 bereit,<br />

einen geeigneten Standort mit einer „industriegewohnten“<br />

Bevölkerung für solch eine Anlage in Bayern zu suchen. Das<br />

oberpfälzische Wackersdorf schien geeignet zu sein. Doch<br />

eine große Mehrheit der Bevölkerung sowie der Landrat<br />

waren gegen das Projekt. Trotzdem wurde im Dezember<br />

1985 mit den Bauarbeiten begonnen. Unterdessen bewertete<br />

die Betreibergesellschaft die Planungen der Anlage<br />

hinsichtlich ihrer Kapazität neu. Sodann wurden aus politischen<br />

Gründen und wegen des anhaltenden öffentlichen<br />

Widerstands die Bauarbeiten im Mai 1989 eingestellt.<br />

Mit dem Baubeginn der Kernkraftwerke Isar/Ohu 2,<br />

Bayern, Emsland/Lingen in Niedersachsen und Neckarwestheim<br />

2 im Jahr 1982 sollte das Ausbauprogramm<br />

Kernenergie zunächst abgeschlossen sein. Bis hierhin<br />

hatte die Bonner Politik, die von 1949 bis 1963 von Konrad<br />

Adenauer, 1963 bis 1966 von Ludwig Erhard, von 1966 bis<br />

1969 von Kurt Georg Kiesinger, von 1969 bis 1974 von Willi<br />

Brandt und von 1974 bis 1982 von Helmut Schmidt als<br />

Bundeskanzler geleitet wurde, die Kernenergie politisch<br />

unterstützt. Die Ölkrise im Jahr 1973 <strong>for</strong>derte ein<br />

Umdenken. Willy Brandt und Helmut Schmidt erwogen,<br />

der Ölkrise mit dem Neubau von 40 Kernkraftwerken zu<br />

begegnen.<br />

Eiserner Vorhang weg – „Aus“ für DDR-KKW<br />

Helmut Kohl löste 1982 Helmut Schmidt ab und wurde<br />

Bundeskanzler des 10. Deutschen Bundestages. Die<br />

Grünen hatten Grund zu „strahlen“. Ihnen gelang zum<br />

ersten Mal der Sprung in den Bundestag. Nichts sollte<br />

„Die politischen<br />

Voraussetzungen<br />

sind zurzeit nicht<br />

gegeben“<br />

| | Gelände Erkundungsbergwerk Gorleben.<br />

auf der politischen Bühne Bonns so bleiben, wie es war.<br />

Entscheidungen zur Kernenergie wurden schwieriger,<br />

denn die Grünen hatten nun eine supermediale Platt<strong>for</strong>m<br />

für ihre Anti-Atom-Politik. Das blieb auch in einigen<br />

Bundesländern nicht ohne Wirkung: Seit 1985 sitzen die<br />

Grünen, Bündnis 90 bzw. Bündnis 90/Die<br />

Grünen mit an den Kabinettstischen von<br />

Landesregierungen. Seit dem 12. Mai 2011<br />

ist Winfried Kretschmann, Bündnis 90/<br />

Die Grünen, Ministerpräsident in Baden-<br />

Württemberg.<br />

Die Nuklearkatastrophe von Tschernobyl<br />

im April 1986 mit schwerwiegenden Folgen für Menschen<br />

und Umwelt erschütterte die Welt. Die Rufe nach dem Ausstieg<br />

aus der „Atomenergie“ wurden in Deutschland immer<br />

lauter, die Grünen sahen sich bestätigt. In der SPD<br />

zeichnete sich bei seinerzeitigen Befürwortern ein Meinungswandel<br />

ab. Mit dem Beschluss der SPD im August<br />

1986 gegen die perspektivische Nutzung der Kernenergie<br />

war der Grundstein für den Ausstiegsbeschluss der rot-grünen<br />

Bundes regierung im Jahre 2000 gelegt. Es war nicht<br />

mehr zu übersehen, dass Kernenergiebranche und DAtF<br />

sich künftig auf stimmungsanfällige politische Entscheidungen<br />

einstellen musste.<br />

Nach dem Zusammenbruch der DDR und dem Fall<br />

der Berliner Mauer am 9. November 1989 stand die<br />

DDR- Kernenergie zur Disposition. Seit 1974 wurde am<br />

Atomkraftwerk Stendal gebaut. Gleich nach der Wiedervereinigung<br />

wurde die Großbaustelle Stendal wegen<br />

Anwohnerprotesten und unzureichender Sicherheitsvorkehrungen<br />

aufgelöst. Die vier Blöcke des Atomkraftwerks<br />

Lubmin, etwa 20 km von Greifswald entfernt, und in<br />

Rheinsberg nördlich von Berlin wurden 1990 stillgelegt.<br />

Die DDR-Entsorgung? Ausgediente Brennelemente<br />

wurden bis zum Fall des „Eisernen Vorhangs“ in getarnten<br />

Waggons in die UDSSR gebracht. Für schwach- und mittelradioaktive<br />

Abfälle gab es das Endlager Morsleben in<br />

Sachsen-Anhalt. Die Verantwortung für diesen Betrieb hat<br />

die Bundesgesellschaft für Endlagerung (BGE).<br />

Der 3. Oktober 1990 wird zum Tag der Einheit erklärt.<br />

Als Kanzler der Einheit ist Kohl schon damals in die<br />

Geschichte eingegangen. Bei den Bundestagswahlen im<br />

Dezember 1990 kam es zu einer Neuauflage der Koalition<br />

CDU/CSU/FDP. Die Grünen scheiterten an der Fünf-<br />

Prozent-Klausel.<br />

255<br />

FEATURE | 60 YEARS DATF<br />

Feature | 60 Years DAtF


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

256<br />

FEATURE | 60 YEARS DATF<br />

| | Baustelle des Kernkraftwerks Stendal an der Elbe.<br />

Stromwettbewerb: Aufbruch ins Ungewisse<br />

Ein wichtiges Ziel der Kohl-Politik nach der Wiedervereinigung<br />

war die Liberalisierung der Energiewirtschaft<br />

in Europa. Außerdem sollten verlässliche Rahmenbedingungen<br />

für die Einspeisung von Strom aus regenerativen<br />

Energien geschaffen werden. Mit dem Stromeinspeisungsgesetz<br />

(StromEinspG) vom 7. Dezember 1990<br />

(BGBl. I S. 2633), im Langtitel „Gesetz über die Einspeisung<br />

von Strom aus erneuerbaren Energien in das<br />

öffentliche Netz“, wurden die Stromversorger verpflichtet,<br />

den in ihrem Versorgungsgebiet erzeugten Strom aus<br />

erneuerbaren Energien abzunehmen und entsprechend zu<br />

vergüten.<br />

Der nächste Zug wurde vorbereitet: Mit Blick auf<br />

die EG-Richtlinie zum Energiebinnenmarkt wurde das<br />

Energie wirtschaftsgesetz, das Jahrzehnte Gültigkeit hatte,<br />

umgekrempelt. Es wurde 1998 durch das „Gesetz zur<br />

Neuregelung des Energiewirtschaftsrechts“ ersetzt. Das<br />

war das Ende der Strommonopole. Die Unternehmen der<br />

Elektrizitätswirtschaft mussten sich neu ausrichten und<br />

sich dem Wettbewerb stellen. Dieser Paradigmenwechsel<br />

war für die Stromversorger ein Aufbruch ins Ungewisse.<br />

Die Folge: Verwaltungen wurden umstrukturiert.<br />

Kraftwerke und Netze in eigene Gesellschaften überführt.<br />

Neue Abteilungen entstanden mit Hilfe von Unternehmensberatern.<br />

Marketingspezialisten und Stromhändler<br />

wurden als Absatzstrategen eingekauft, Marktstudien<br />

veranlasst. Werbeagenturen hatten Hochkonjunktur.<br />

Man erfand „sympathische“ Produkte, die<br />

dem Wunschbild der Verbraucher entsprachen, etwa<br />

Ökostromprodukte. Kernstrom war aus Marketingsicht ein<br />

„No-go“, das man aus der Produktwerbung raushalten<br />

sollte.<br />

Der Anzeigenmarkt boomte. „Also ich weiß, mein<br />

Strom ist blau.“, so RWE in Anzeigen. EnBW konterte mit<br />

Yello Strom: „Ich kauf doch keinen Strom von einem, der<br />

blau ist.“ Die medialen Verbrauchertipps ließen auch nicht<br />

lange auf sich warten. Auf der Titelseite des FOCUS vom<br />

29. September 1999 leuchtete aus der Mitte eine gelbe<br />

Steckdose. Darunter stand in dicken Lettern: „30 % sparen!<br />

So senken Sie Ihre Stromrechnung“. Der Stern zeigte ein<br />

skizziertes Sparschein auf dem Cover. Darunter stand:<br />

„BILLIGER STROM: Der Stern erklärt, wie das geht.“ Das<br />

Produkt Strom, das bis dahin eine Dienstleistung unter<br />

staatlicher Preisaufsicht mit Liefergarantie war, wurde zur<br />

Ware, für die man beispielsweise auch in einem „Kaufhaus“<br />

einen Liefervertrag abschließen konnte.<br />

Die Kernenergie stand also nicht mehr im Mittelpunkt<br />

unternehmerischen Interesses. Sie lieferte nach wie vor<br />

und mit hoher Verlässlichkeit Strom rund um die Uhr.<br />

Durch sie wurde gutes Geld verdient, das war’s. Es wäre<br />

aber sicherlich zu kühn gewesen, ein industriefreundliches<br />

und kostengünstiges Kernstromprodukt auf den Markt zu<br />

bringen, und dafür auch zu werben. Nicht zuletzt vor<br />

diesen Hintergründen stellte sich auch für das DAtF die<br />

Sinnfrage nach seiner Existenz.<br />

Zeitenwende – eine Kurz-Chronik<br />

Im Oktober 1998 löste Gerhard Schröder Helmut Kohl als<br />

Kanzler ab. Zu seinem Minister für Umwelt, Naturschutz<br />

und Reaktorsicherheit ernannte er Jürgen Trittin. Es<br />

wurde nicht lange gefackelt, der Ausstieg aus der<br />

Kernenergie wurde Programm. Nun ging es Schlag auf<br />

Schlag: Die wichtigsten Entscheidungen:<br />

Januar 1999: Rot-grüne Koalition verständigt sich auf<br />

Eckpunkte eines Atomgesetzentwurfes. Die Nutzung der<br />

Kernenergie soll „geordnet und sicher“ beendet werden.<br />

1. April 2000: Der Ausbau der erneuerbaren Energien<br />

ist zentrales Anliegen der rot-grünen Koalition; das<br />

Erneuerbare-Energien-Gesetz (EEG), tritt im Jahr 2000 in<br />

Kraft. Es löst das Stromeinspeisungsgesetz (StrEG) von<br />

1990 ab. Mit der EEG-Umlage wird der Ausbau der<br />

Erneuerbaren Energien finanziert; sie verteuert die<br />

Strompreise.<br />

Juni 2000: Schröder einigt sich mit Strommanagern auf<br />

den „Atomkonsens“, der Laufzeiten und Reststrommengen<br />

der Kernkraftwerke beinhaltet.<br />

Um den Zeitraum bis zur Inbetriebnahme des von der<br />

Bundesregierung bis 2030 geplanten Endlagers zu überbrücken,<br />

entstehen standortnahe, dezentrale Zwischenlager<br />

an den Kernkraftwerken.<br />

1. Oktober 2000: Im Salzstock Gorleben tritt ein<br />

Moratorium in Kraft. Die Erkundungsarbeiten werden<br />

vorläufig gestoppt. Das zwischen Regierung und Energieversorgern<br />

vereinbarte Ende des Moratoriums ist 2010.<br />

April 2002: Mit der Novelle des Atomgesetzes macht die<br />

rot-grüne Koalition ernst: Das “Gesetz zur geordneten<br />

Beendigung der Kernenergienutzung zur gewerblichen<br />

Erzeugung von Elektrizität” änderte die seit 1959 geltende<br />

Rechtslage grundlegend. Das Atomförderungsgesetz<br />

wurde vom Atomausstiegsgesetz ersetzt. Danach sollten<br />

bis etwa 2021 alle 19 deutschen Kernkraftwerke abgeschaltet<br />

sein. Der Bau neuer gewerblicher Atomkraftwerke<br />

und Wiederaufbereitungsanlagen war nicht mehr erlaubt.<br />

Das Atomausstiegsgesetz trat am 27. April 2002 in Kraft.<br />

Mit dem Reaktor Stade wurde 2003 das erste Kernkraftwerk<br />

dauerhaft abgeschaltet.<br />

November 2005: Regierungswechsel. CDU und SPD<br />

bilden Große Koalition. Eventuelle Rücknahme des Atomausstiegs<br />

wird in der Großen Koalition nicht erwogen.<br />

Oktober 2009: Im Koalitionsvertrag von Union und FDP<br />

heißt es: “Die Kernenergie ist eine Brückentechnologie, bis<br />

sie durch erneuerbare Energien verlässlich ersetzt werden<br />

kann.” Man sei dazu sei bereit, die Laufzeiten der Kernkraftwerke<br />

zu verlängern.<br />

5. September 2010: Die Regierungskoalition setzt<br />

die Laufzeitverlängerung der Kernkraftwerke um 8 bzw.<br />

14 Jahre durch. An den Erlösen aus den erzeugten Mehrmengen<br />

sollte der Staat etwa hälftig beteiligt werden.<br />

9. September 2010: Konzerne lassen sich Schutzklauseln<br />

zusichern. Kosten für Sicherheitsnachrüstungen werden<br />

danach auf jeweils 500 Millionen Euro pro AKW begrenzt.<br />

18. September 2010: Großdemonstration in Berlin gegen<br />

schwarz-gelbe Atompolitik.<br />

Feature | 60 Years DAtF


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

1. Oktober 2010: Das Erkundungsmoratorium ist offiziell<br />

beendet. Die Wiederaufnahme der Erkundungsarbeiten<br />

am Salzstock Gorleben wird vorbereitet.<br />

28. Oktober 2010: Der Bundestag verabschiedet gegen<br />

den Widerstand der Opposition längere Laufzeiten für die<br />

Kernkraftwerke.<br />

28. Februar 2011: Fünf SPD-regierte Bundesländer<br />

klagen vor dem Bundesverfassungsgericht gegen die<br />

Laufzeitverlängerung.<br />

11. März 2011: Atomunfall Fukushima. Laufzeitverlängerung<br />

wird für drei Monate ausgesetzt. Kanzlerin<br />

Merkel kündigt Sicherheitschecks in allen deutschen<br />

Kernkraftwerken an.<br />

15. März 2011: Kurz vor wichtigen Landtagswahlen<br />

ändert die Kanzlerin ihren Kurs: Sieben ältere AKW sollen<br />

vorübergehend abgeschaltet werden. Auch das nach<br />

Pannen stillstehende AKW Krümmel soll abge schaltet<br />

bleiben.<br />

22. März 2011: Die Reaktorsicherheitskommission (RSK)<br />

wird beauftragt, alle Kernkraftwerke technisch zu überprüfen.<br />

Eine neue Ethikkommission soll eine Risikoabschätzung<br />

vornehmen.<br />

17. Mai 2011: Aus dem Prüfbericht der RSK lässt sich kein<br />

klares Urteil ableiten. Es wird aber darauf hingewiesen,<br />

dass die ältesten Anlagen besonders schlecht gegen<br />

Flugzeugabstürze geschützt seien.<br />

28. Mai 2011: Die Ethikkommission empfiehlt Atomausstieg<br />

binnen zehn Jahren.<br />

30. Mai 2011: Die schwarz-gelbe Koalition will das letzte<br />

Kernkraftwerk bis 2022 abschalten. Die sieben ältesten<br />

Kernkraftwerke sowie das Kernkraftwerk Krümmel sollen<br />

so<strong>for</strong>t stillgelegt werden.<br />

3. Juni 2011: Die Bundesländer verlangen eine stufenweise<br />

Abschaltung der verbleibenden neun AKW. Merkel<br />

verkündet nach einem Treffen mit den Ministerpräsidenten<br />

einen Fünf-Stufen-Plan: 2015, 2017 und 2019 je ein<br />

Kernkraftwerk, 2021 und 2022 jeweils drei Anlagen.<br />

Juni 2011: Der Ausstieg aus der Kernenergie und sieben<br />

weitere Gesetze zur Energiewende werden im Bundestag<br />

beschlossen. Überdies werden Regelungen zum Netzausbau<br />

und zur Ökostrom-Förderung verabschiedet.<br />

Trotz des Ausstiegsbeschlusses werden die Themen<br />

rund um die Kerntechnik und die Entsorgung in den<br />

nächsten Jahren Politik, Forschung, Industrie und Öffentlichkeit<br />

beschäftigen. Die stillgelegten und noch in Betrieb<br />

befindlichen Kernkraftwerke, ihr Rückbau und die Entsorgung<br />

sowie der Strahlenschutz haben aber nach wie<br />

vor öffentliche Relevanz. Auch die Fragen zum Industrieund<br />

Forschungsstandort Deutschland und speziell auch<br />

zur Reaktorsicherheits<strong>for</strong>schung, zum Transportwesen<br />

und zur Kerntechnik im Alltag müssen beantwortet<br />

werden. Mit dem Abschluss des Rückbaus ist frühestens<br />

2040 zu rechnen.<br />

1979 beschrieb. Seine Thesen haben damals wie heute<br />

Gültigkeit.<br />

Deutschland leistet sich den Luxus bis 2022 aus der<br />

friedlichen Nutzung der Kernenergie auszusteigen. Bis<br />

2038 soll bei uns der Ausstieg aus der Kohleverstromung<br />

vollzogen sein. Vor dem Hintergrund, dass in 59 Ländern,<br />

allen voran China und Indien, in den nächsten Jahren<br />

rund 1.400 Kohlekraftwerke (Handelsblatt v. 4.10.2018)<br />

geplant bzw. gebaut werden, mutet der deutsche Alleingang<br />

abenteuerlich an.<br />

Die Frage muss erlaubt sein, ob wir mit der Energiewende<br />

auf dem richtigen Weg sind. Auch wenn der Ausbau<br />

der Photovoltaik und der Windenergie mit großen finanziellen<br />

und technischen Anstrengungen voran getrieben<br />

wird – wo soll der Strom bei Dunkelheit und Flaute<br />

herkommen? In Deutschland sind rd. 30.000 Windräder<br />

mit einer Kapazität von gut 60.000 Megawatt und<br />

rd. 1,5 Millionen PV-Anlagen mit gut 42.000 Megawatt<br />

Leistung installiert. Im Januar 2019 hat sich gezeigt, wozu<br />

Wind und Sonne fähig sind. Laut Agora herrschte zwischen<br />

dem 18. und 26. Januar tagelange Dunkelflaute. Am<br />

25. Januar, 02.00 Uhr morgens beispielsweise, lieferte<br />

Wind an Land Null; Sonne Null und Wind auf See<br />

rd. 400 Megawatt. Wasserkraft und Biomasse lieferten<br />

zusammen rd. 6.000 Megawatt in der Grundlast. Der<br />

Strombedarf lag um diese Zeit bei rd. 59.000 Megawatt.<br />

Es bestand also eine Deckungslücke von rd. 53.000 Megawatt,<br />

die mittels Gas-, Kohle- und Kernkraftwerken<br />

geschlossen werden musste.<br />

Deutschland, das ist Fakt, ist also noch weit davon<br />

entfernt seinen Strombedarf ausschließlich über Erneuerbare<br />

Energien decken zu können. Der Bau dringend<br />

notwendiger Leitungen für den Windstromtransport von<br />

Nord nach Süd stockt. Noch fehlen großtechnische<br />

Technologien, etwa Pumpspeicherkraftwerke, um Windoder<br />

Sonnenenergie in großen Mengen speichern zu<br />

können. Auf „<strong>Power</strong> to Gas“ mit Umwandlung in Strom<br />

setzen Politiker große Hoffnungen.<br />

Es ist jedoch zweifelhaft, ob solche Systeme zeitnah zu<br />

den „Shut downs“ der Kern- bzw. Kohlekraftwerke zur<br />

Verfügung stehen werden. Also werden wir verstärkt auf<br />

Stromimporte angewiesen sein, etwa auf französischen<br />

Atomstrom oder auf Kohlestrom aus Polen.<br />

Kernenergie-Know-how wird gebraucht<br />

In vielen Ländern ist und bleibt die Kernenergie Stütze der<br />

Stromversorgung. Selbst Japan setzt nach Fukushima auf<br />

die friedliche Nutzung der Kernenergie. Mit Stand Januar<br />

257<br />

FEATURE | 60 YEARS DATF<br />

Nicht allein auf der Welt<br />

Es wäre indes gefährlich, sich rückwärts zu orientieren.<br />

Wir müssen nach vorn blicken und der Realität ins Auge<br />

sehen. Die Weltbevölkerung wächst mit ungeahnt hoher<br />

Geschwindigkeit. 2018 bevölkerten rund 7,63 Milliarden<br />

Menschen den Globus. Die UNO errechnete, das zwischen<br />

2015 bis 2020 die Weltbevölkerung jährlich um<br />

78 Millionen Menschen wachsen würde. Bis 2050,<br />

also in nur einunddreißig Jahren, wird erwartet, dass<br />

die Welt bevölkerung auf knapp 10 Milliarden Menschen<br />

anwächst. Der Hunger nach Energie wird immens sein.<br />

Und alle Menschen haben ein Recht auf Energie, wie<br />

Anton Zischka in seinem Buch „Kampf ums Überleben“<br />

| | Kernkraftwerk Krümmel.<br />

Feature | 60 Years DAtF


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

258<br />

FEATURE | 60 YEARS DATF<br />

| | Zwischenlager Ahaus der BGZ Gesellschaft für Zwischenlagerung mbH<br />

2019 planen laut Statista China 43, Russland 25, USA 14,<br />

Indien 14, Japan 9, Großbritannien 7, Polen 8, Vietnam 4,<br />

Iran 4, Türkei 3, Argentinien und Kanada jeweils 2 Kernkraftwerke,<br />

die innerhalb der nächsten acht bis zehn Jahre<br />

in Betrieb gehen sollen.<br />

In der Kernenergie<strong>for</strong>schung werden international<br />

Akzente gesetzt. Mit Hochdruck wird an <strong>for</strong>tschrittlichen<br />

Reaktorlinien gearbeitet. Auch an der Fusions<strong>for</strong>schung.<br />

Über die EU ist die Bundesrepublik Deutschland an<br />

ITER, dem „<strong>International</strong> Thermonuklear Experimental<br />

Reaktor“, beteiligt. Dieser Kernfusionsreaktor ist im<br />

südfranzösischen Kern<strong>for</strong>schungszentrum Cadarache im<br />

Bau. Nach den Planungen soll in der Anlage 2025 erstmals<br />

Wasserstoffplasma erzeugt werden. Das Max-Plank-<br />

Institut für Plasma<strong>for</strong>schung <strong>for</strong>scht an verschiedenen<br />

Standorten in Deutschland im Bereich der Kernfusion.<br />

In den Bereichen der Nuklearmedizin, medizinischen<br />

Diagnostik und Krebstherapie oder etwa bei der zerstörungsfreien<br />

Prüfung von Materialien ist die Kern<strong>for</strong>schung<br />

nicht mehr wegzudenken.<br />

Die Erfahrungen aus über 50 Jahren sicheren Betriebs<br />

unserer Kernkraftwerke mit ihren hochqualifizierten<br />

Mannschaften bilden heute das Know-how-Rückgrat für<br />

die anstehenden Aufgaben. Für den Rückbau und die<br />

Zwischen- und Endlagerung, hat sich seit 2016 eine<br />

Arbeitsteilung ergeben: Zuständig für die Stilllegung, den<br />

Rückbau sowie der fachgerechten Verpackung der Rückbaumaterialien<br />

sind die Kernkraftwerksbetreiber. Für die<br />

Zwischenlagerung sind die beiden bundeseigenen Gesellschaften<br />

BGZ Gesellschaft für Zwischenlagerung mbH, für<br />

die Endlagerung der radioaktiven Rückstände ist die BGE<br />

Bundesgesellschaft für Endlagerung mbH gegründet<br />

worden. Die Bundesrepublik Deutschland ist Alleineigentümerin<br />

beider Gesellschaften. Die finanziellen Lasten der<br />

Zwischen- und Endlagerung müssen die Betreiber der<br />

Kernkraftwerke tragen. Hochqualifizierte Mitarbeiter aus<br />

den kerntechnischen Anlagen der Betreiber sind von den<br />

beiden Bundesgesellschaften übernommen worden.<br />

weiteren Nutzung der Kernenergie wurde zwischen 1979<br />

und 2016 in repräsentativen Umfragen ermittelt. 1979 und<br />

2016 sollen näher betrachtet werden:<br />

Während 1979 nach einer repräsentativen Umfrage des<br />

Instituts Allensbach lediglich 12 % der Befragten sich für<br />

den schnellstmöglichen Ausstieg aus der Kernenergie aussprachen,<br />

meinten 39 % das man die bestehenden Kernkraftwerke<br />

bis zum Ende ihrer Laufzeit nutzen sollte und<br />

37 % plädierten dafür, die Kernenergie langfristig zu<br />

nutzen und bei Bedarf Ersatzreaktoren zu bauen.<br />

Aktuell hat sich auch ein Vergleichsportal im Internet<br />

mit der Einschätzung der Bevölkerung zur Kernenergie<br />

beschäftigt. Demnach sprachen sich im Mai 2018 20 % der<br />

Befragten für ein Festhalten an der Kernenergie aus, sollte<br />

dies zu Senkungen beim Strompreis führen. Im März 2019<br />

hielten es fast die Hälfte für einen klimapolitischen Fehler,<br />

aus der Kernenergie zeitlich vor dem Ende der Kohleverstromung<br />

auszusteigen.<br />

Doch welchen Wert haben solche Meinungstrends und<br />

was können sie bewirken? Tatsache ist, dass die Kernenergiewirtschaft<br />

im Gespräch mit der Öffentlichkeit<br />

bleiben muss. Es gibt noch viel zu tun. Und die Fragen von<br />

gestern sind auch die Fragen von heute und morgen. So<br />

wird die institutionelle Presse- und Öffentlichkeitsarbeit<br />

auch weiterhin für die Kernenergie nötig sein. Sowohl der<br />

Rückbau als auch die Zwischen- und Endlagerung und<br />

die Kern<strong>for</strong>schung er<strong>for</strong>dern Kommunikation mit Knowhow.<br />

Seit 1959 hat das DAtF diese oft nicht leichte<br />

Kommunikationsaufgabe bewältigt. Es versorgte ihre<br />

Mitglieder und die Öffentlichkeit stets mit aktuellem<br />

In<strong>for</strong>mationsmaterial. Lehrfilme über den Brennstoffkreislauf<br />

wurden produziert. DAtF und IK unterhielten den<br />

Kontakt zu den Mitarbeitern in den In<strong>for</strong>mationszentren<br />

der Kernkraftwerke. Sie pflegten überdies umfassende<br />

Schulkontakte und versorgten Lehrer mit didaktisch<br />

aufbereitetem Lehr- und Lernmaterial. Das DAtF leistete<br />

Zielgruppenarbeit im besten Sinne des Wortes.<br />

<strong>International</strong>en Ruf erwarb sich das DAtF mit der<br />

Organisation der Jahrestagung Kernenergie, einem Forum<br />

für Kernenergieexperten aus Wirtschaft, Forschung sowie<br />

aus Politik und Verwaltung aus aller Welt. Diese Tagungen<br />

finden seit nunmehr 50 Jahren in Deutschland statt.<br />

Die umfassenden Erfahrungen des DAtF dürften<br />

auch in Zukunft ein wichtiger Baustein der Presse- und<br />

Öffentlichkeitsarbeit für die Beteiligten in Rückbau,<br />

Zwischen- und Endlagerung und Kern<strong>for</strong>schung sein.<br />

Author<br />

Friedrich Schröder<br />

Presse & Öffentlichkeitsarbeit NWK, PreussenElektra, E.ON,<br />

IZE, Treuhandanstalt Berlin<br />

Institutionelle Presse- und Öffentlichkeitsarbeit<br />

ist Zukunftsarbeit<br />

Meinungs<strong>for</strong>schung zur Kernenergie gehörte zum „Alltag“<br />

des DAtF. Es liegt auf der Hand, dass die Akzeptanz der<br />

Kernenergie sich über die Jahre je nach Ereignis als<br />

Wechselbad zwischen dagegen, eher dafür oder dafür<br />

darstellte. Speziell die Grundhaltung der Bevölkerung zur<br />

Feature | 60 Years DAtF


Competence <strong>for</strong><br />

<strong>Nuclear</strong> Services<br />

Visit us at the<br />

Waste Management<br />

Spent Fuel Management<br />

<strong>Nuclear</strong> Casks<br />

Calculation Services and Consulting<br />

Waste Processing Systems and Engineering<br />

7 – 8 May 2019 in Berlin<br />

amnt2019.com<br />

AMNT2019_Visitv1.indd 1 14.03.19 09:<br />

GNS Gesellschaft für Nuklear-Service mbH<br />

Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

260<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Atomgesetz-Novelle zur nuklearen<br />

Anlagensicherung geplant<br />

Tobias Leidinger<br />

Der er<strong>for</strong>derliche Schutz gegen Störmaßnahmen oder sonstige Einwirkungen Dritter (SEWD) muss gewährleistet<br />

sein, damit eine atomrechtliche Genehmigung erteilt werden kann. Diese Voraussetzung ist gleichlautend für alle<br />

relevanten Tätigkeiten im Atomgesetz – Anlagenbetrieb, Transport, Zwischen- und Endlagerung – vorgesehen. Beim<br />

SEWD-Schutz geht es um die Anlagensicherung, also um diejenigen Einwirkungen, die auf die Anlage oder Tätigkeit<br />

von außen einwirken oder abzielen. Der Gesetzgeber plant aktuell eine Novelle des Atomgesetzes, mit der die Vorgaben<br />

für den SEWD-Schutz von Anlagen nun erstmals auf gesetzlicher Ebene weiter konkretisiert werden sollen.<br />

I Das Grundproblem<br />

Die Genehmigungsbehörde steht bei der Beurteilung des<br />

er<strong>for</strong>derlichen SEWD-Schutzes vor einem grundsätzlichen<br />

Problem: Während sich die er<strong>for</strong>derliche Anlagensicherheit<br />

(Schadensvorsorge) anhand rationaler Kriterien wie<br />

der Eintrittshäufigkeit bestimmter Ereignisse und der<br />

Versagenshäufigkeit der dagegen ergriffenen Schutzmaßnahmen<br />

heranziehen lässt, ist dies für den SEWD-Bereich<br />

so einfach nicht möglich. Im SEWD-Bereich fehlt es<br />

an technisch-naturwissenschaftlichen Deduktionen und<br />

berechenbaren Eintrittswahrscheinlichkeiten, um die<br />

Schutzan<strong>for</strong>derungen bestimmen zu können.<br />

II Geltende Rechtslage<br />

Nach der geltenden Rechtslage werden – ausgehend von<br />

dem im Atomgesetz abstrakt bestimmten SEWD-Schutzanspruch<br />

– die für seine Konkretisierung er<strong>for</strong>derlichen<br />

Maßgaben durch behördliche Festlegungen getroffen. Die<br />

Behörden legen in (vertraulichen) Richtlinien zur SEWD<br />

zunächst die Lastannahmen und Szenarien fest, die zu<br />

unterstellen und zu beherrschen sind. Dabei greifen sie auf<br />

Erkenntnisse der Sicherheitsbehörden (u. a. des Bundesamts<br />

für Verfassungsschutz, des Bundeskriminalamts und<br />

des Bundesnachrichtendienstes) zurück. Auf diese Weise<br />

werden Täterbilder und Tatszenarien ebenso wie die<br />

einzuhaltenden Schutzziele und Sicherungsgrundsätze<br />

bestimmt. Der atomrechtlichen Genehmigungsbehörde<br />

steht dabei eine sog. Einschätzungsprärogative zu, d. h. IV<br />

ein gerichtlich nur beschränkt überprüfbarer Beurteilungsspielraum.<br />

Denn es ist objektiv keinem Beweis<br />

zugänglich, ob beispielsweise bestimmte Tatmittel in einer<br />

bestimmten Anzahl und Qualität in einem angenommenen<br />

Szenario verfügbar sind oder ein bestimmtes Täterverhalten<br />

als Einzelperson oder aus einer Gruppe heraus zu<br />

unterstellen ist. Die relevanten Tatsachen einerseits und<br />

ihre Bewertung andererseits sind untrennbar miteinander<br />

verbunden. Deshalb dürfen die Gerichte nicht – auf Grund<br />

von z. B. im Internet zugänglichen In<strong>for</strong>mationen – die<br />

behördliche Beurteilung durch eine von ihnen selbst<br />

vorgenommene Einschätzung ersetzen. Die bloße Denkmöglichkeit<br />

anderer Konstellationen löst noch keine<br />

weiter gehende Ermittlungspflicht des Gerichts aus.<br />

Gleichwohl ist in der gerichtlichen Praxis die Tendenz<br />

festzustellen, die Überprüfung sicherungsrelevanter<br />

Sachverhalte weiter zu vertiefen und auszudehnen. Damit<br />

wächst indes die Gefahr, dass der behördliche Funktionsvorbehalt<br />

eingeschränkt wird, mit der Folge, dass<br />

Genehmigungen am Ende wegen angeblicher Ermittlungsdefizite<br />

in Bezug auf den SEWD-Schutz aufgehoben Autor<br />

werden.<br />

III Atomgesetznovelle zur Konkretisierung<br />

von Sicherungsgrundsätzen<br />

Ein Anliegen der geplanten AtG-Novelle zur nuklearen<br />

Sicherung von Anlagen ist es, die rechtlichen „Leit planken“<br />

für den SEWD-Schutz – und damit auch für seine gerichtliche<br />

Überprüfung – bereits auf Gesetzesebene verbindlich<br />

zu regeln. Damit bestünde zukünftig ein durch den<br />

Gesetzgeber selbst vorgegebener Maßstab, der auch<br />

von den Gerichten im Rahmen ihrer Kontrolle strikt zu<br />

beachten ist.<br />

Im Übrigen soll die Novelle der Umsetzung von<br />

Empfehlungen zur Anlagensicherung dienen, die aus der<br />

sog. IPPAS-Mission 2017 resultieren. Der „<strong>International</strong><br />

Physical Protection Advisory Service (IPPAS)“ ist ein 1995<br />

gegründeter Beratungsservice der IAEO zur Stärkung<br />

des weltweiten Erfahrungsaustausches zur Stärkung<br />

der nationalen Sicherungssysteme. Das Expertenteam<br />

vergleicht die nukleare Sicherung des jeweiligen Staates<br />

mit internationalen Empfehlungen und bewährten Verfahren.<br />

Auf dieser Grundlage macht es Vorschläge. Die<br />

AtG- Novelle will die Umsetzung der Empfehlungen der<br />

IPPAS- Mission in Deutschland 2017, u. a. durch Erstellung<br />

von Aktionsplänen zur Sicherung, fördern.<br />

Schließlich soll eine Rechtsgrundlage für die sog.<br />

deterministische Sicherungsanalyse (DSA) für sonstige<br />

kerntechnische Anlagen geschaffen werden. In der DSA<br />

wird untersucht, ob die administrativen und technischen<br />

Einrichtungen der jeweiligen Anlage zur Sicherung ausreichen,<br />

um Einwirkungen Dritter sicher abwehren zu<br />

können.<br />

Rechtssicherheit und Funktionsvorbehalt<br />

der Exekutive stärken<br />

Eine Atomgesetzesnovelle zur nuklearen Anlagensicherung<br />

ist zu begrüßen, wenn sie klare und operable<br />

Vor gaben für den SEWD-Schutz bereithält. Ziel der<br />

Novelle sollte es sein, dadurch nicht nur die Umsetzung<br />

von Sicherungsmaßnahmen in der Praxis zu erleichtern,<br />

sondern – soweit es um die gerichtliche Kontrolle von<br />

Genehmigungsvoraussetzungen zum SEWD-Schutz geht –<br />

den Funktionsvorbehalt der Exekutive zu stärken. Das<br />

setzt tatbestandlich genau normierte Regelungen voraus.<br />

Der Grundsatz, dass die Abschätzung von Risiken im<br />

Atomrecht – auch soweit es um den SEWD-Schutz geht –<br />

der Exekutive zugewiesen ist, verdient Beachtung und<br />

Stärkung. Wenn die Novelle zur nuklearen Sicherung dazu<br />

einen Beitrag leistet, indem sie verbindliche und klare<br />

„Leitplanken“ auch für die gerichtliche Kontrolle von<br />

behördlichen Entscheidungen zu SEWD-Risiken vorgibt,<br />

wäre das ein Schritt in die richtige Richtung.<br />

Prof. Dr. Tobias Leidinger<br />

Rechtsanwalt und Fachanwalt für Verwaltungsrecht<br />

Luther Rechtsanwaltsgesellschaft<br />

Graf-Adolf-Platz 15<br />

40213 Düsseldorf<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Atomic Energy Law Amendment <strong>for</strong> <strong>Nuclear</strong> Plant Safety Planned ı Tobias Leidinger


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning &<br />

Transmutation and How to Develop a<br />

Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management<br />

Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead<br />

Introduction The waste management strategy of partitioning and transmutation is currently the cutting edge<br />

development of nuclear technologies, which has been intensively researched over the last several decades, as it is<br />

highlighted in the following two excerpts on the history of partitioning and transmutation given below.<br />

“<strong>Nuclear</strong> Partitioning and Transmutation is one of the<br />

most promising fields of nuclear technology. We expect that<br />

partitioning and transmutation technology would contribute<br />

to the enhancement of the efficiency of high- level waste<br />

disposal and the utilization of resources in the spent fuel. We<br />

believe that the basic research and development ef<strong>for</strong>t in this<br />

field would be beneficial <strong>for</strong> the future generations although<br />

it is not quite an alternative to the present back-end policy”<br />

[1]. These are the words of T. Yamamoto of the Atomic<br />

Energy Bureau Science and Technology Agency, taken<br />

from the welcome address at the First <strong>International</strong><br />

In<strong>for</strong>mation Exchange Meeting on Actinide and Fission<br />

Product Separation and Transmutation (IEM P&T) 1990 in<br />

Mito, Japan. This meeting initiated a series of exchange<br />

meetings organized by the <strong>Nuclear</strong> Energy Agency (NEA),<br />

with the 15 th In<strong>for</strong>mation Exchange Meeting recently held<br />

in Manchester, UK. The NEA is an agency, specialized in<br />

the support of the development of nuclear systems, within<br />

the Organization <strong>for</strong> Economic Co-operation and Development<br />

(OECD).<br />

“One of the greatest challenges in the use of nuclear energy<br />

is the highly radioactive waste which is generated during<br />

power production. It must be dealt with safely and effectively.<br />

While technical solutions exist, including deep geological<br />

repositories, progress in the disposal of radioactive waste<br />

has been influenced, and in many cases delayed, by public<br />

perceptions about the safety of the technology. One of the<br />

primary reasons <strong>for</strong> this is the long life of many of the<br />

radioisotopes generated from fission, with half-lives on the<br />

order of 100,000 to a million years. Problems of perception<br />

could be reduced to an essential degree if there were a way to<br />

burn or destroy the most toxic long-lived radioactive wastes<br />

during the production of energy” [2]. These are the words of<br />

Victor Arkhipov a consultant in the IAEA division of nuclear<br />

power and the fuel cycle, in the nuclear power technology<br />

development section which highlights the importance of<br />

the topic <strong>for</strong> the future acceptance of nuclear technologies,<br />

published in the IAEA Bulletin number 39 in 1997.<br />

History of Partitioning & Transmutation<br />

The discussion of partitioning & transmutation of nuclear<br />

waste, mainly concerning transuranic nuclides, is a<br />

phenomenon which received a large amount of attention<br />

in the late 1980’s and early 1990’s. The increasing<br />

importance of the topic is reflected by the creation of the<br />

In<strong>for</strong>mation Exchange Meeting on P&T organized by the<br />

NEA every second year, as outlined in the previous section.<br />

The title of the meeting ‘Exchange Meeting on Actinide<br />

and Fission Product Separation and Transmutation’<br />

already points out that the vision of P&T is much larger<br />

than just recycling and burning Plutonium. However, the<br />

first experiments to insert minor actinides containing fuel<br />

into nuclear reactors to burn these isotopes are much<br />

older. “In the 70’s, minor actinide (Np, Am) containing<br />

mixed oxide fuels were designed and successfully irradiated in<br />

fast reactors: KNK II and PHENIX. The composition of the fuel<br />

covered the homogeneous as well as the heterogeneous recycle<br />

of minor actinides” [4].<br />

The first strong push to the technology of partitioning &<br />

transmutation (P&T) of transuranium isotopes has been<br />

given by two important international projects: the OMEGA<br />

program in Japan and the CAPRA/CADRA project in<br />

France. The OMEGA program, launched in 1988: “In<br />

addition, the Japan’s Atomic Energy Commission submitted<br />

in October 1988 a report entitled “Long-Term Program <strong>for</strong><br />

Research and Development on Nuclide Partitioning and<br />

Transmutation (P&T)”, from the viewpoints of conversion of<br />

HLW into useful resources and its disposal efficiency. The<br />

program plots a course <strong>for</strong> technological development up to<br />

the year 2000 and is called “OMEGA” which is the acronym<br />

derived from Options <strong>for</strong> Making Extra Gains from Actinides<br />

and fission products” [5] is the first major project related to<br />

P&T. Shortly after the OMEGA program, the CAPRA/<br />

CADRA project started in France in the begin of the 1990’s:<br />

“CAPRA/CADRA was created in response to the 1991 French<br />

law which mandated a 15-year research programme to<br />

investigate the technical options available <strong>for</strong> the nuclear fuel<br />

cycle in France” [6] with the aim to investigate future<br />

opportunities to apply fast reactors <strong>for</strong> the burning of<br />

excess plutonium. In contrast to the Japanese OMEGA project<br />

focused on partitioning as well as on transmutation,<br />

the French CAPRA/CADRA project was only dedicated to<br />

transmutation, with a major focus on the reuse and incineration<br />

of Plutonium in Superphenix. “The potential of fast<br />

reactor systems to burn plutonium and minor actinides<br />

(MAs) (Np, Am, Cm) is studied within the CAPRA/CADRA<br />

program (Barré, 1998) 1 . CAPRA mainly deals with managing<br />

the plutonium stockpile and CADRA is related to the burning/<br />

transmutation of MAs and long-lived fission products” [7].<br />

The next major step in Europe was the launch of the<br />

Integrated Project EUROTRANS as a part of the 6 th EU<br />

Framework Program (FP). “Among the prior research and<br />

development topics of EURATOM 6 th Framework Programme<br />

is the management of high-level nuclear wastes. In particular,<br />

the development of technical solutions of nuclear waste<br />

management is considered important” [8]. IP EUROTRANS<br />

has been followed by a large number of smaller projects in<br />

FP 7 and now in HORIZON 2020. The focus is on specific<br />

problems related to partitioning and transmutation or<br />

integrated into projects with a wider focus like fast reactor<br />

development.<br />

A very specific project has been undertaken in Germany<br />

following the nuclear phase out decision taken in 2011.<br />

The Federal Ministry <strong>for</strong> Economic Affairs and Energy<br />

1) Barré, B., 1998.<br />

The Future of<br />

CAPRA. 5 th Int.<br />

CAPRA Seminar,<br />

Karlsruhe<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 261<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning & Transmutation and How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 262<br />

| | Fig. 1.<br />

Process steps of Partitioning & Transmutation as applied <strong>for</strong> the demonstration of the technology.<br />

(BMWi) and the Federal Ministry of Education and<br />

Research (BMBF) launched a comprehensive study<br />

managed by the National Academy of Science and<br />

Engineering (acatech) to create a robust scientific basis <strong>for</strong><br />

an evidence based approach on the future of the P&T research<br />

under the boundary conditions of the nuclear phase<br />

out. The study consists of two parts: the first part<br />

is concerned with technological issues („Studie zur<br />

Partitionierung und Transmutation (P&T) hochradioaktiver<br />

Abfälle“ [9]) while the second part is concerned<br />

with an evaluation of chances and risks of the technology<br />

to the society (“Gesellschaftliche Implikationen der Partitionierungs-<br />

und Transmutations<strong>for</strong>schung” [9]). The<br />

in<strong>for</strong>mation collected in the German study on P&T [10]<br />

created the basis <strong>for</strong> the acatech POSITION “Partitioning<br />

and Transmutation of <strong>Nuclear</strong> Waste. Chances and Risks<br />

in Research and Application“ (“Partitionierung und<br />

Transmutation nuklearer Abfälle. Chancen und Risiken in<br />

Forschung und Anwendung” [11]). The results of this<br />

study, as well as the acatech POSITION have been<br />

presented at both national [12] and international levels<br />

[13].<br />

At the last <strong>International</strong> In<strong>for</strong>mation Exchange Meeting<br />

on Actinide and Fission Product Separation and Transmutation<br />

(IEM P&T) in Manchester in 2018, Russia<br />

announced its commitment to P&T [23]. Their approach<br />

will be based on aqueous reprocessing with downstream<br />

minor actinide separation in the Mayak facility and transmutation<br />

in homogeneous or heterogeneous mode in the<br />

sodium cooled fast reactor BN-800. This will incorporate<br />

investments into scaling of BN-800 spent nuclear fuel<br />

(SNF) management process (transportation, storage and<br />

reprocessing) in the first approach, complemented with<br />

the Brest-OD three stage development: 1) the construction<br />

and commis sioning of a nitride fuel production facility; 2)<br />

the construction and commissioning of the reactor itself;<br />

and 3) the spent nuclear fuel reprocessing facility. In the<br />

same time, the long-term research will focus on minor<br />

actinide burning in molten salt reactors.<br />

State of the Art<br />

Partitioning & Transmutation cannot be seen as a single<br />

process. In fact, it is a whole chain of interlinked processes<br />

which have to be worked through in a cyclic way, see<br />

Figure 1. The whole chain of the process has been followed<br />

<strong>for</strong> the successful lab scale demonstration of the feasibility<br />

of Partitioning & Transmutation using French facilities<br />

<strong>for</strong> reprocessing, fuel production and the sodium cooled<br />

fast reactor Phenix [14]. However, it has to be kept in mind<br />

that almost each of the steps of demonstration is based on<br />

technologies which have been available at this time, even if<br />

developed <strong>for</strong> another purpose – the production and the<br />

separation of Plutonium.<br />

The introductory step into the technology is what is<br />

currently known as aqueous reprocessing amended with<br />

some downstream processes to recover Americium. The<br />

discussion about reinsertion of Curium into the reactor has<br />

been at least postponed due to the challenges in the<br />

radiation protection during fuel production. The opening<br />

step: classical aqueous reprocessing of LWR fuel, is<br />

currently commercially per<strong>for</strong>med on industrial level in at<br />

least three facilities, in France at La Hague, in Russia in<br />

Mayak, and in the THORP facility at the Sellafield site in<br />

the UK which has just been finished operation. There have<br />

been several downstream processes and advanced<br />

reprocessing flow sheets developed on lab scale. The down<br />

selection of possible processes <strong>for</strong> a future industrial<br />

application is currently part of the GENOIRS Horizon<br />

2020 project [20]. Different styles of trans mutation fuels<br />

have been produced, irradiated, and examined in IP<br />

EUROTRANS and several follow up projects [21, 22]. However,<br />

all these processes have only been demonstrated in<br />

laboratory scale and even the production of mixed oxide<br />

fuels (MOX) with plutonium loadings required <strong>for</strong> fast<br />

reactor operation has never been brought from the preindustrial<br />

level used <strong>for</strong> the fuel production of Superphenix<br />

to the industrial level. New Russian studies [19] on<br />

the expected cost and the cost structure of closing the fuel<br />

cycle point out that the production of high loaded MOX<br />

will be a major cost driver. The study indicates that the<br />

front-end cost (fuel production) versus back end cost<br />

( reprocessing) will be shared ~75% to 25% based on the<br />

application of currently available technologies in Russia.<br />

The cost of Americium bearing fuels will be even higher<br />

due to the lack of experience. However, cost is only one<br />

of the challenges. Another important point is addressing<br />

the high radiation exposure [23] associated with the<br />

production of Americium targets (i.e. fuel rods with a high<br />

Americium content). It will require fully remote (automated)<br />

fuel fabrication and handling technologies due to<br />

an increase of the radiation exposure from the fuel<br />

assembly by a factor of ~100 compared to standard fast<br />

reactor MOX fuel, based on data given in [23].<br />

Transmutation of transuranic (TRU) isotopes like<br />

Plutonium, Americium or Curium could theoretically be<br />

achieved in any kind of nuclear reactor where a high<br />

enough neutron flux is available <strong>for</strong> efficient burning.<br />

However, studies have shown that the efficiency of<br />

the transmutation process depends significantly on the<br />

amount of fast neutrons available in the specific reactor.<br />

“The fission/absorption ratios are consistently higher <strong>for</strong><br />

the fast spectrum SFR. Thus, in a fast spectrum, actinides<br />

are preferentially fissioned, not transmuted into higher<br />

actinides” [26]. This is due to the strong energy dependence<br />

of the relation between the fission and the absorption cross<br />

sections. This relation thus depends strongly on the<br />

average neutron spectrum available in a specific nuclear<br />

reactor. The mentioned fission-to-absorption ratio<br />

describes the probability of a desired fission event – which<br />

will destroy the TRU isotope, compared to an undesirable<br />

absorption event – which will only lead to breeding of a<br />

heavier TRU isotope. Studies have shown a significant<br />

difference between the PWR and the SFR, with regard to<br />

trans mutation efficiency [26]. In the PWR the main<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning & Transmutation and How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

isotopes which have a high fission-to-absorption ratio are<br />

U-235, Pu-239, and Pu-241. Thus these isotopes have a<br />

high probability to undergo a fission reaction. Typical<br />

other isotopes (Np-237, Pu-238, Pu-240, Pu-242, Am and<br />

Cm) indicate a low or very low fission-to-absorption ratio,<br />

thus these isotopes have a high probability to undergo an<br />

absorption reaction leading to a breeding process. In the<br />

fast neutron spectrum, almost all transuranium isotopes<br />

show a significantly higher fission-to-absorption ratio than<br />

in thermal reactors. This demonstrates that a fast neutron<br />

spectrum reactor, is essential to achieve reasonable<br />

transmutation rates <strong>for</strong> TRU isotopes.<br />

Different kinds of fast reactors can be dedicated <strong>for</strong> the<br />

transmutation of TRU isotopes. Up to now only sodium<br />

cooled fast reactors have been envisaged and used <strong>for</strong> the<br />

demonstration of closing the nuclear fuel cycle as well as<br />

<strong>for</strong> the demonstration of transmutation, due to their<br />

availability - mainly the Phenix reactor in France – and due<br />

to the experience in the operation of this reactor type [14].<br />

However, two problems have to be highlighted: 1) It would<br />

be necessary to demonstrate an industrial level of fast<br />

reactor operation, employing a closed fuel cycle whilst<br />

applying transmutation, but these ef<strong>for</strong>ts have received a<br />

significant setback due to the decision to delay the<br />

industrial demonstration of SFR technology to 2080 in the<br />

ASTRID project [25]; and 2) The insertion of transmutation<br />

fuel, mainly a high amount of Americium, will<br />

have a significant effect on reactor stability and thus<br />

operability. “Increasing the minor actinide content [in a SFR<br />

core] en<strong>for</strong>ces the positive coolant temperature and sodium<br />

void effect. Additionally, the absolute value of the negative<br />

Doppler effect and the delayed neutron fraction are decreased<br />

as well as the melting temperature of the MOX fuel. These<br />

changes degrade system safety, making the enhancement of<br />

the feedback effects mandatory <strong>for</strong> a transmutation system to<br />

enable it to attain the safety characteristics comparable to<br />

those of a classical SFR” [14].<br />

The first step which would be required to demonstrate<br />

P&T technology at an industrial level by completing<br />

the cycle <strong>for</strong> Pu, thus demonstrating closed fuel cycle<br />

operation, since plutonium <strong>for</strong>ms more than 90% of the<br />

transuranic nuclides which are produced during LWR<br />

operation. However, due the reconfiguration of the<br />

ASTRID project, the objective of industrial demonstration<br />

pertaining to closed fuel cycle operation, has been postponed<br />

until 2080. This will create uncertainties related to<br />

deployment due to the unavailability of any fast reactor<br />

irradiation facility <strong>for</strong> future steps related to the demonstration<br />

of Americium incineration in Europe. This delay<br />

will impact on the reprocessing of Americium bearing<br />

fuel/targets, too. There are two limitations, firstly there is<br />

no driver <strong>for</strong> the development and the manufacturing of<br />

Americium bearing fuel when it cannot be irradiated, and<br />

secondly there will be no irradiated fuel available <strong>for</strong> hot<br />

lab tests to develop the technology required <strong>for</strong> the specific<br />

fuel <strong>for</strong>m which is not yet decided <strong>for</strong>.<br />

To summarise, it becomes clear that the demonstration<br />

of P&T technology at the lab-scale has been deployed<br />

successfully. However, most of the steps have been based<br />

on technologies which have not been designed <strong>for</strong> the<br />

purpose. The demonstrations have been based on alternative<br />

application and extension of existing equipment<br />

like aqueous reprocessing and the sodium cooled fast<br />

reactor PHENIX. A major question <strong>for</strong> the future is how<br />

to proceed with the application of P&T technology at the<br />

pre-industrial and later industrial level. One should<br />

recognise the enormous challenges moving from small<br />

scale to large scale particularly in applications where the<br />

uncertainties and the required investments are high. In<br />

this case we cannot predict accurately enough how the<br />

per<strong>for</strong>mance at scale will be influenced by small imperfections<br />

in the technological solution at the lower scale.<br />

Here the lack of a credible demonstrator at scale is laid<br />

bare. This leads directly to the major question <strong>for</strong> the<br />

future: Is it the right way to base the future development<br />

on existing technologies and solve the massive challenges<br />

or should cutting edge research in nuclear be focused on<br />

developing a system specially dedicated to the requirements<br />

of P&T?<br />

To answer this question, we need to have a more holistic<br />

view of the socio-economic costs of each proposed solution.<br />

This is a much greater problem than a business deciding<br />

what product to bring to market. Here we have to pose the<br />

question – how much society is willing to ‘loose’ (in the<br />

<strong>for</strong>m of an unattractive investment) to make a problem<br />

safe or to avoid another ‘imperfect’ solution which is seen<br />

as a worse choice by the society. P&T needs to beat the next<br />

best option <strong>for</strong> the problem to be viable.<br />

Key Challenges<br />

The following Figure 2 is used to collate the key challenges<br />

of P&T based on the current technologies, which are:<br />

pp<br />

The challenge in partitioning relates to the demand <strong>for</strong><br />

very high recovery rates <strong>for</strong> the TRUs requiring multistage<br />

processes. However, these recovery rates are<br />

essential to avoid a carryover and accumulation of<br />

TRUs in the waste stream which would reduce the<br />

effects of P&T on the final disposal. In addition, reprocessing<br />

and especially the downstream processes <strong>for</strong>m<br />

a costly challenge both <strong>for</strong> the development as well as<br />

<strong>for</strong> the application.<br />

pp<br />

The challenge in solid fuel production is due to the very<br />

high cost and significant increase in radiation levels<br />

during fuel production and handling. The high<br />

radiation levels will require remote handling and<br />

manufacturing technologies [23].<br />

pp<br />

The challenge in transmutation is the requirement <strong>for</strong> a<br />

solid fuelled fast reactor where the right balance<br />

between efficiency (requiring a high Pu and minor<br />

actinide content in the core) and the effect of the TRUs<br />

on reactor stability [27]. In addition, the currently high<br />

cost of fast reactor technology and the relatively limited<br />

experience in operating these reactors at demonstrator<br />

level also create further uncertainties.<br />

| | Fig. 2.<br />

The reverse quadrature of the circle or P&T between today and tomorrow.<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 263<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning & Transmutation and How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 264<br />

pp<br />

The challenge of the whole cycles lies in the request <strong>for</strong><br />

a multiple recycling scheme since only a part of the<br />

TRUs or minor actinides can be transmuted during one<br />

operational cycle of a fuel assembly. The multi- recycling<br />

requirement will demand to run through the whole<br />

costly system in a multiple way accumulating cost and<br />

time while creating a huge number of handovers with<br />

each handover creating a proliferation risk. However,<br />

there is another limiting factor which has a consequence<br />

<strong>for</strong> the whole system, this is the accumulation of<br />

losses which depends on the one hand on the losses in<br />

the partitioning and the fuel production and on the<br />

other hand on the efficiency of the transmutation [24].<br />

Thus the multi-recycling request poses high challenges<br />

onto the separation chemistry and fuel production as<br />

well as on the reactor design. In addition, multirecycling<br />

will lead to a significant mass of fuel being<br />

resident in the fuel cycle due to the requested times <strong>for</strong><br />

cooling, reprocessing, and fuel manu facturing.<br />

Based on the mentioned challenges, it is important to at<br />

least consider other advanced technologies and proposals<br />

relating to how P&T technology could be made accessible<br />

without requiring a costly engineering solution <strong>for</strong> the<br />

above challenges. Recently, two different approaches have<br />

been proposed in the acatech POSITION [11] which has<br />

been developed in the aftermath of the acatech P&T Study<br />

[10]. The proposed solutions are either the application of<br />

accelerator driven systems (ADS) <strong>for</strong> transmutation or the<br />

application of molten salt reactor technologies <strong>for</strong> the<br />

whole P&T process.<br />

In our view the application of ADS systems <strong>for</strong> transmutation<br />

has the potential to improve the transmutation of<br />

TRUs since due to the promised enhanced neutron physical<br />

reactor stability and the external neutron supply, a<br />

higher load of TRUs is possible which has the potential<br />

to improve the efficiency of the transmutation as well<br />

as to reduce the number of multi-recycling cycles.<br />

However, this approach tackles only the reactor part of<br />

the quadrangle and effects slightly the multi-recycling. A<br />

more comprehensive view onto the problem with the focus<br />

of avoiding most of the challenges leads to the application<br />

of molten salt reactors <strong>for</strong> P&T [15, 16, 17] since a liquid<br />

fuelled reactor offers the opportunity to integrate major<br />

parts of the fuel cycle into the reactor while avoiding<br />

some of the major challenges associated with solid fuel<br />

production. Taking into account all advantages of a liquid<br />

fuel technology associated with molten salt reactors, leads<br />

to the recognition that the molten salt fast reactor approach<br />

has the potential to eliminate some of the most costly steps<br />

of the P&T tech nology. If a molten salt reactor would be<br />

used, solid fuel production, one of the major cost drivers as<br />

well as one of the major time consuming research<br />

challenges would be eliminated and replaced by another<br />

process. The approach focuses research into another technology<br />

that may offer a superior solution based on current<br />

research priorities in nuclear technology. One of the<br />

keys to making of MSR technology available would be to<br />

produce nuclear fuel in the salt phase like, as is already<br />

required <strong>for</strong> the advanced reprocessing relying on pyro<br />

processes. Pyro processes are already under research in<br />

several countries, including in the UK as part of the REFINE<br />

project [28].<br />

The challenges in the reactor are partly reduced since a<br />

homogeneous system is employed with the fuel dissolved<br />

within the coolant. These systems provide much stronger<br />

feedback effects than solid fuelled fast reactors since in<br />

the case of an appropriate design, the amount of fissile<br />

material in the core is reduced when the density is reduced<br />

due to temperature increase which will allow a significantly<br />

higher loading of transuranic nuclides as long as the solubility<br />

of the transuranics in the carrier salt can be assured.<br />

In<br />

addition, there is neither an inhomogeneous core composition<br />

like it would be the case in heterogeneous<br />

Americium burning using targets nor a problem<br />

with the fission gas accumulation in the fuel pellets and<br />

rods which limits the burnup of minor actinides due<br />

to the pressure increase in the fuel rods. However,<br />

due to the release of the fission gas directly in the<br />

liquid fuel most probably a reliable off-gas treatment<br />

with the demands on a safety grade system will have<br />

to be operated.<br />

The challenges of the multi-recycling will be eliminated<br />

completely in a molten salt reactor, since in these kinds of<br />

reactors, the salt has to be cleaned in an online process.<br />

This means a small share of the salt will be continuously<br />

withdrawn from the operating reactor. This stream will be<br />

cleaned from the fission products which prevent the<br />

reactor from achieving long term operability and the<br />

cleaned stream will be fed back into the reactor. This<br />

reduces the proliferation risk significantly if the processes<br />

are designed in an appropriate way since the fissile<br />

material will stay in the solution, the plutonium quality<br />

will always be reduced due to the mixing of all materials<br />

and the handovers of fissile material are eliminated.<br />

However, it has to be mentioned that the required clean-up<br />

processes have to be developed following a completely<br />

new approach, instead of the separation of fissile materials<br />

like in the conventional reprocessing, the new processes<br />

have to be designed to separate specific isotopes like<br />

Neodymium and Caesium which cause almost 50% of the<br />

effect on criticality, with Zirconium and Samarium causing<br />

further 30% of the fission product effect on criticality [29].<br />

Nevertheless, a successful design of the salt clean-up system<br />

will eliminate the step of partitioning of fast reactor<br />

fuel completely since there is no demand to separate fissile<br />

material to produce new, clean fuel. In contrast, all material<br />

which is <strong>for</strong>eseen <strong>for</strong> transmutation will stay in the reactor<br />

until the nuclei have undergone a fission process.<br />

The manuscript has been opened with the remark<br />

that P&T is the cutting-edge research topic of nuclear<br />

technology and that the lab scale demonstration of the<br />

technology has been accomplished successfully. In general,<br />

if we intend to get the technology into an industrial<br />

application, which will be required if we intend to reduce<br />

the long term challenges in final disposal, a significant<br />

amount of research and development work will be required<br />

[11]. It is now on the community to define the ideal<br />

strategic approach which will in our view require a careful<br />

evaluation of the available approaches to identify the ideal<br />

approach. All approaches require a strong development<br />

demand to achieve industrial application and the research<br />

community will have to face a wide set of new challenges.<br />

However, it will be more promising to invest into tailored<br />

approaches to solve existing problems with innovative<br />

approaches which are ideally based on the application<br />

of already existing skill sets (e. g. nuclear chemistry,<br />

advanced fluid dynamics) taking advantage of technological<br />

approaches which are already available or under<br />

development in other technologies (e. g. pyro-repro cessing<br />

<strong>for</strong> fuel production, or off-gas cleaning like in reprocessing<br />

facilities).<br />

Be<strong>for</strong>e entering into the next step of development<br />

the community should undergo a strategic development<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning & Transmutation and How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

process <strong>for</strong> demand driven research planning [31] with<br />

an unbiased analysis of different options be<strong>for</strong>e taking<br />

major investments into R&D. Getting P&T into industrial<br />

application is a very long, time consuming mission<br />

requiring a massive investment even when we would rely<br />

on existing technologies. Why not focus on an improved<br />

solution to direct the future R&D into a more innovative<br />

dimension which promises some clear benefits. The focus<br />

should lie on creating innovative, demand driven solutions<br />

which on the one hand have the potential to provide new<br />

IP and market opportunities while promising the<br />

elimination of some major challenges which would require<br />

very costly engineering solutions. The focus on disruptive<br />

solutions has the potential to bring more innovation<br />

into nuclear technologies which have suffered from a<br />

lack of ground breaking innovation in the last several<br />

decades. The proposed application of molten salt reactors<br />

<strong>for</strong> transmutation is not a singular view of the authors,<br />

see MA burning in molten salt reactors proposed by<br />

Russia [29] and early proposals to use molten salt reactors<br />

<strong>for</strong> the burning of weapon grade plutonium in the 1990’s<br />

[33].<br />

A Possible Outlook<br />

All thoughts mentioned up to now have focused on the<br />

issue of developing the P&T technology as a waste<br />

treatment technology separate from the development of<br />

power reactor technology. There are currently clear<br />

reasons <strong>for</strong> this approach since the current reactor fleets<br />

worldwide are based on light water reactor technology<br />

while P&T will require fast reactor technology. However, a<br />

slight change in the approach to the problem has the<br />

potential to create a new way of thinking. We currently<br />

tend to look at the spent nuclear fuel (SNF) of light water<br />

reactors as waste to be stored safely instead of the common<br />

approach of other industries when developing production<br />

chains – ‘up to now, this is a material we haven’t found the<br />

ideal use <strong>for</strong>’. On this basis, we have to see SNF as a<br />

resource, a potential energy source <strong>for</strong> the future. The<br />

same approach can change the recognition of the fission<br />

products, a resource we have to find a better solution or<br />

use. Taking this alternative view and looking into the<br />

future of nuclear hopefully based on closed fuel cycle<br />

operation creates the opportunity to bring the major<br />

nuclear technologies – power production and waste<br />

management – closer together. The last consequences<br />

could be the recently proposed operation of molten salt<br />

reactors directly on spent nuclear fuel originating from<br />

light water reactors without prior reprocessing [30, 31,<br />

32]. This approach has the potential to eliminate the very<br />

costly pre-step into closing the fuel cycle which has all the<br />

time been accepted as unavoidable – the reprocessing of<br />

the LWR fuel – thus eliminating on of the most challenging<br />

and costly hurdles to get closed fuel cycle operation into<br />

future application. Thus, this new approach can ideally<br />

provide society with the advantages of closed fuel cycle<br />

operation without the massive pre- investments into<br />

chemical separation of Plutonium and the related<br />

production of mixed oxide fuel with high plutonium<br />

content. The approach would allow society to solve P&T as<br />

a side effect of a new and disruptive, highly efficient and<br />

sustainable nuclear energy system which could serve as a<br />

reliable low carbon energy source <strong>for</strong> the world. The<br />

strategic thinking leading to this development and the<br />

process which would have to be established will be<br />

described in another article in the next edition of this<br />

journal [34].<br />

Conclusions<br />

The waste management strategy of partitioning and<br />

transmutation (P&T), encompassing reprocessing and<br />

reactor technology, is currently the cutting-edge development<br />

of nuclear technologies. It has been intensively<br />

researched over the last few decades with most ef<strong>for</strong>t<br />

spent in the IP EUROTRANS program and several follow<br />

up projects. Almost all required technological steps have<br />

been demonstrated at least at laboratory scale based on<br />

existing technologies like aqueous reprocessing with<br />

added downstream processes, mixed oxide fuel production<br />

and sodium cooled fat reactor operation. However, putting<br />

a deep look into the described challenges faced during<br />

these demonstrations as well as taking an outlook to the<br />

much larger challenges which will appear during upscaling<br />

of the technology to industrial scale gives rise to the<br />

question, ‘Is the chosen way <strong>for</strong> the demonstration the<br />

right, most efficient way <strong>for</strong>ward or do we need to adopt a<br />

much more disruptive approach?? A detailed discussion of<br />

the key challenges as well as the evaluation of possible<br />

innovative approaches has been given working out<br />

approaches which would be required to make P&T an<br />

attractive choice <strong>for</strong> real industrial application.<br />

The discussion leads the way to an innovative, demand<br />

driven re-thinking of the whole technological process<br />

typical <strong>for</strong> solid fuelled reactor systems and their related<br />

fuel cycle. The outcome of this discussion delivers an<br />

approach that avoids the most costly and challenging<br />

process steps associated with the solid transmutation fuel<br />

production by applying a demand driven technology<br />

development using a liquid fuel operated system like a<br />

molten salt reactor specially designed <strong>for</strong> the challenges of<br />

P&T.<br />

Finally, overcoming frames of the historic separation of<br />

power production and waste management is proposed<br />

by applying wider out of the box thinking to improve<br />

the attractiveness of nuclear technologies. A disruptive<br />

approach of developing a molten salt reactor system with<br />

demand driven salt clean-up directly operating on spent<br />

nuclear fuel is worked out which will offer the potential to<br />

operate a nuclear reactor in closed fuel cycle mode without<br />

requiring prior reprocessing as initial step. Applying this<br />

approach would allow, to make the large energy amount<br />

available which is still contained in spent nuclear fuel,<br />

while the requests of waste management using P&T are<br />

fulfilled as a side effect. Both points together have the<br />

potential to make nuclear one of the most promising<br />

answers to the rapidly rising demand <strong>for</strong> low carbon<br />

technologies.<br />

References<br />

[1] Yamamoto T (1990) WELCOME ADDRESS. Proceedings of the First <strong>International</strong> In<strong>for</strong>mation<br />

Exchange Meeting on Actinide and Fission Product Separation and Transmutation 1990,<br />

Mito, Japan https://www.oecd-nea.org/pt/docs/iem/mito90/mit-1-00.pdf, accessed<br />

10.06.2013<br />

[2] Arkhipov V (1997) Future nuclear energy systems: Generating electricity, burning wastes. IAEA<br />

BULLETIN, 39/2/1997 https://www.iaea.org/sites/default/files/publications/magazines/<br />

bulletin/bull39-2/39204783033.pdf, accessed 27.02.2015<br />

[3] Oi N (1998) PLUTONIUM CHALLENGES - Changing Dimensions of Global Cooperation,<br />

IAEA Bulletin 40-1,Comparing Energy Options, Available http://www.iaea.org/<br />

Publications/Magazines/Bulletin/Bull401/article3.html,<br />

Accessed March 26, 2015<br />

[4] Koch L (1990) System-immanent Long-lived Radioisotope Transmutation. First <strong>International</strong><br />

In<strong>for</strong>mation Exchange Meeting on Actinide and Fission Product Separation and Transmutation<br />

1990, Mito, Japan, https://www.oecd-nea.org/pt/docs/iem/mito90/mit-4-01.pdf, accessed<br />

10.06.2013<br />

[5] Nakamura M et al. (1992) Present Status of the Omega Program in Japan. Second <strong>International</strong><br />

In<strong>for</strong>mation Exchange Meeting on Actinide and Fission Product Separation and Transmutation<br />

Argonne, USA, 1992, https://www.oecd-nea.org/pt/docs/iem/argonne92/arg02.pdf, accessed<br />

10.06.2013<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 265<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning & Transmutation and How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 266<br />

[6] Plutonium Management in the Medium Term A Review by the OECD/NEA Working Party on the<br />

Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR), <strong>Nuclear</strong> Science ISBN 92-64-<br />

02151-5, OECD 2003, http://www.oecd-nea.org/science/docs/pubs/nea4451-plutonium.pdf,<br />

accessed 10.06.2013<br />

[7] Vasile A et al. (2001)The Capra – Cadra Programme”,Proc. ICONE 8, 8th conference on <strong>Nuclear</strong><br />

Engineering, April 2–6 2000, Baltimore,US, Professional Engineering Publishing, Suffolk, UK.<br />

[8] Knebel J et al. (2004) IP EUROTRANS: A European Research Programme <strong>for</strong> the Transmutation<br />

of High Level <strong>Nuclear</strong> Waste in an Accelerator Driven System. Actinide and Fission Product<br />

Partitioning & Transmutation Eighth In<strong>for</strong>mation Exchange Meeting Las Vegas, Nevada, USA<br />

9-11 November 2004, http://www.oecd-nea.org/pt/docs/iem/lasvegas04/11_Session_V/<br />

S5_01.pdf, accessed 10.06.2013<br />

[9] Studie zur Partitionierung und Transmutation (P&T) hochradioaktiver Abfälle http://doku.uba.<br />

de, accessed 10.06.2013<br />

[10] Renn, Ortwin (Hrsg.): Partitionierung und Transmutation. Forschung – Entwicklung –<br />

Gesellschaftliche Implikationen (acatech STUDIE), München: Herbert Utz Verlag 2014<br />

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/<br />

de/Projekte/Laufende_Projekte/Transmutation/PuT_Studie_komplett_2013-10-22.pdf,<br />

acsessed 27.11.2014<br />

[11] acatech (Hrsg.): Partitionierung und Transmutation nuklearer Abfälle. Chancen und Risiken in<br />

Forschung und Anwendung (acatech POSITION), München: Herbert Utz Verlag 2014 http://<br />

www.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/partitionierungund-transmutation-nuklearer-abfaelle-chancen-und-risiken-in-<strong>for</strong>schung-und-anwend.html,<br />

acsessed 06.03.2015<br />

[12] Merk B, Geist A, Modolo G, Knebel J (2015) Results and Conclusions from the German P&T Study<br />

– A View of the Contributing Helmholtz Research Centres, 46th Annual Meeting on <strong>Nuclear</strong><br />

Technology, Berlin<br />

[13] Merk B, Geist A, Modolo G, Knebel J (2014) The German P&T study – results and conclusions<br />

in the view of the contributing Helmholtz research centers, Actinide and Fission Product<br />

Partitioning and Transmutation 13th In<strong>for</strong>mation Exchange Meeting, 23.-26.09.2014, Seoul,<br />

Republic of Korea<br />

[14] Merk B, Stanculescu A, Chellapandi P, Hill R (2015) Progress in reliability of fast reactor operation<br />

and new trends to increased inherent safety, Applied Energy 147, 1 June 2015, Pages 104–116<br />

[15] Merk B, Rohde U, Glivici-Cotruta V, Litskevich D, Scholl S (2014) On the Molten Salt Fast Reactor<br />

<strong>for</strong> Applying an Idealized Transmutation Scenario <strong>for</strong> the <strong>Nuclear</strong> Phase Out”, PLoS ONE 9(4):<br />

e92776. doi: 10.1371/journal.pone.0092776 (2014). PMID: 24690768<br />

[16] B. Merk, D. Litskevich: “Transmutation of All German Transuranium under <strong>Nuclear</strong> Phase Out<br />

Conditions – Is This Feasible from Neutronic Point of View?”, PLOS ONE, DOI: 10.1371/journal.<br />

pone.0145652<br />

[17] B. Merk, D. Litskevich: ”On the Burning of Plutonium Originating from Light Water Reactor Use in<br />

a Fast Molten Salt Reactor—A Neutron Physical Study”, Energies 2015, 8, 12557–12572;<br />

doi:10.3390/en81112328<br />

[18] acatech (Ed.): Partitioning and Transmutation of <strong>Nuclear</strong> Waste. Opportunities and Risks in<br />

Research and Application (acatech POSITION PAPER), Munich 2014. http://www.acatech.de/<br />

fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/<br />

Stellungnahmen/acatech_EN__POS_Transmutations<strong>for</strong>schung.pdf<br />

[19] V. Dekusar , V. Usanov , A. Yegorov: “Comparative Analysis of Electricity Generation Fuel Cost<br />

Component at NPPs with WWER and BN-type Reactor Facilities, <strong>International</strong> Conference on<br />

Fast Reactors and Related Fuel Cycles: Next Generation <strong>Nuclear</strong> Systems <strong>for</strong> Sustainable<br />

Development (FR17) Yekaterinburg, Russian Federation, 26 – 29 June 2017, available:<br />

https://www-legacy.iaea.org/<strong>Nuclear</strong><strong>Power</strong>/Downloadable/Meetings/2017/2017-12-12-12-<br />

12-NPTDS-test/FR17_WebSite/papers/FR17-435.pdf, accessed 26/02/2019<br />

[20] GENIORS - GEN IV integrated oxide fuels recycling strategies, available: http://www.geniors.eu/,<br />

accessed 26/02/2019<br />

[21] Somers, J.: „Fabrication of Fuel and Recycling of Minor Actinides in Fast Reactors“.In: Science and<br />

Technology, Volume 73, 2010, S. 97-103.<br />

[22] Delage, F./Arai, Y./Belin, R./Chen, X.-N./ D’Agata, E./ Hania, R./Klaassen, F./Maschek, W./<br />

Oigawa, H./Ottaviani, J. P./Rineiski, A./ Sobolev, V./Somers, J./Staicu, D./Thet<strong>for</strong>d, R./Wallenius,<br />

J./Wernli, B.: Minor-Actinides Transmutation in an Accelerator Driven System Prototype: Results<br />

from Fuel Developments within the European Program EUROTRANS, IEMPT11, San Francisco, CA,<br />

1.-4. November 2010.<br />

[23] A. Khaperskaya, Khomyakov Yu , Shadrin A, Feinberg O.,Conceptual approaches and the main<br />

directions of R & D on partitioning and transmutation of minor actinides and long-lived fission<br />

products in the Russian Federation State atomic energy corporation “Rosatom”, Manchester ,<br />

15th <strong>International</strong> Exchange Meeting on Partitioning and Transmutation 2 October 2018<br />

Manchester<br />

[24] Magill, J & Berthou, V & Haas, D & Galy, J & Schenkel, R & Wiese, H.-W & Heusener, G &<br />

Tommasi, J & Youinou, G. (2003). Impact Limits of Partitioning and Transmutation Scenarios on<br />

Radiotoxicity of Actinides in Radioactive Waste. <strong>Nuclear</strong> Energy-journal of The British <strong>Nuclear</strong><br />

Energy Society - NUCL ENERG-J BRIT NUCL ENERG. 42. 263-277. 10.1680/nuen.42.5.263.37622.<br />

[25] E. Abonneau: Astrid Project Overview, 3rd ASTRID Fast Reactor Seminar – Civil Engineering and<br />

Construction plus ZEPHYR – CEA’s Zero power Experimental PHYsics Reactor, Birmingham<br />

University, Wednesday 31st January 2018<br />

[26] Massimo Salvatores: Neutronics <strong>for</strong> critical fission reactors and sub-critical fission in hybrids,<br />

WORKSHOP ONFUSION FOR NEUTRONS ANDSUB-CRITICAL NUCLEAR FISSIONFUNFIVilla<br />

Monastero, Varenna, Italy, September , 2011<br />

[27] B. Merk: Moderating Material to Compensate the Drawback of High Minor Actinide Containing<br />

Transmutation Fuel on the Feedback Effects in SFR Cores, Science and Technology of <strong>Nuclear</strong><br />

Installations, Volume 2013, Article ID 172518, http://dx.doi.org/10.1155/2013/172518<br />

[28] REFINE: A coordinated materials programme <strong>for</strong> the sustainable REduction of spent<br />

Fuel vital In a closed loop <strong>Nuclear</strong> Energy cycle, UKRI, avaialble: https://gtr.ukri.org/<br />

projects?ref=EP%2FJ000779%2F1, accessed 02/04/2019<br />

[29] Merk B, Litskevich D, Gregg R, Mount AR (2018) Demand driven salt clean-up in a molten salt<br />

fast reactor – Defining a priority list. PLoS ONE 13(3): e0192020. https://doi.org/10.1371/<br />

journal.pone.0192020<br />

[30] Merk B., Litskevich D., Whittle K. R., Bankhead M., Taylor R., Mathers D.:”On a Long Term<br />

Strategy <strong>for</strong> the Success of <strong>Nuclear</strong> <strong>Power</strong>”, ENERGIES, 8(11), 12557–12572.<br />

[31] Merk B., Litskevich D., Bankhead M., Taylor R.:”An innovative way of thinking <strong>Nuclear</strong> Waste<br />

Management–Neutron physics of a reactor directly operating on SNF”, PLOS ONE July 27,<br />

2017, https://doi.org/10.1371/journal.pone.0180703<br />

[32] Bruno Merk and Ulrich Rohde; Transmutation von Transuranen unter den Randbedingungen des<br />

Kernenergieausstiegs – Technisch machbar?, ATW 259 (4) 2016<br />

[33] URI GAT and J. R., ENGEL, H. L. DODDS MOLTEN SALT REACTORS FOR BURNING DISMANTLED<br />

WEAPONS FUEL, TECHNICAL NOTE, <strong>Nuclear</strong> Technoloy Vol. 100, Dec. 1992, available:<br />

http://moltensalt.org.s3-website-us-east-1.amazonaws.com/references/static/<br />

home.earthlink.net/bhoglund/uri_MSR_WPu.html, accessed July 15th, 2015<br />

[34] B. Merk et al: iMAGINE - A disruptive change to nuclear or how can we make more out of the<br />

existing spent nuclear fuel and what has to be done to make it possible in the UK?,<br />

to be published in <strong>atw</strong> 6/7-2019<br />

Authors<br />

Bruno Merk<br />

Dzianis Litskevich<br />

University of Liverpool,<br />

School of Engineering,<br />

L69 3GH,<br />

United Kingdom<br />

National <strong>Nuclear</strong> Laboratory,<br />

Chadwick House,<br />

Warrington,<br />

WA3 6AE,<br />

United Kingdom<br />

Aiden Peakman<br />

Mark Bankhead<br />

National <strong>Nuclear</strong> Laboratory,<br />

Chadwick House,<br />

Warrington,<br />

WA3 6AE,<br />

United Kingdom<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Current Status of Partitioning & Transmutation and How to Develop a Vision <strong>for</strong> <strong>Nuclear</strong> Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

A World’s Dilemma ‘Upon Which<br />

the Sun Never Sets’: The <strong>Nuclear</strong> Waste<br />

Management Strategy: Russia<br />

Part 2<br />

Mark Callis Sanders and Charlotta E. Sanders<br />

4 Eurasia<br />

4.1 Russian Federation or<br />

Российская Федерация<br />

(Russia)<br />

4.1.1 Historical Overview & Law<br />

Russia’s 1<br />

economy and government<br />

financial structure is over reliant on<br />

the monies it obtains through its oil<br />

and natural gas production. Swings<br />

in global commodity prices have<br />

been known to create unrealistic and<br />

unsustainable economic bubbles in<br />

the Russian economy, which then lead<br />

to severe economic downturns. In<br />

1954, Russia developed and operated<br />

the world’s first nuclear power plant.<br />

By the mid-1980s, the Union of Soviet<br />

Socialist Republic (USSR) had an<br />

expanding civilian nuclear power<br />

program, when the world’s worst<br />

nuclear accident occurred in 1986 at<br />

Chernobyl. 2<br />

Throughout the 1990’s,<br />

Russia’s economy experienced a<br />

steady downward trajectory, resulting<br />

in a tightening of funding available<br />

<strong>for</strong> its nuclear power programs.<br />

Toward the end of the 1990’s,<br />

Russia began to export its reactors to<br />

Iran, China and India, which saw the<br />

revival of its domestic nuclear power<br />

program [27]. Russia is expanding its<br />

civilian nuclear power program<br />

having in 2014 initiated the “Development<br />

of the Russian <strong>Nuclear</strong> <strong>Power</strong><br />

Generation Complex” policy which<br />

provides <strong>for</strong> the country to construct<br />

and/or commission at “least 10 new<br />

nuclear power units [through] 2020” 3<br />

[28].<br />

It is now just over a hundred years<br />

since the Russian revolution, which<br />

resulted in the overthrow of Tsar<br />

Nikolai II. From this period of history,<br />

Russia has travelled through various<br />

| | <strong>Nuclear</strong> power in Russia: electricity generation.<br />

political systems, but with each<br />

focused on one dynamic: centralized<br />

state power and control. In June of<br />

1941, the USSR was attacked by Nazi<br />

Germany in Hitler’s quest <strong>for</strong> ‘lebensraum’<br />

and Russia entered into an<br />

alliance with both major allied<br />

powers, the United Kingdom in the<br />

summer of 1941, and later with the<br />

United States (US) following its entry<br />

into the war. However, following the<br />

conclusion of World War II, and with<br />

Soviet dominance of Eastern Europe,<br />

these previous allies entered into a<br />

stalemate of attrition as each side<br />

sought <strong>for</strong> geopolitical influence in<br />

various corners of the globe. 4<br />

Democracy came to Russia in the<br />

early 1990’s as the USSR splintered<br />

into Russia and 14 other independent<br />

republics. President Boris Yeltsin’s<br />

term as president (1991-99), was a<br />

bitter time of corruption and economic<br />

stagnation/decline <strong>for</strong> the<br />

Russian people. To overcome these<br />

economic hardships, the Russian<br />

people sought new leadership electing<br />

President Vladimir Putin. Under<br />

Putin, Russia’s <strong>for</strong>eign policy has been<br />

marked by aggression towards its<br />

neighbors, as it seeks to regain its<br />

<strong>for</strong>mer influence.<br />

4.1.2 Government & Legislative<br />

Regime<br />

A study of Russian culture provides an<br />

insight into the abrupt changes of<br />

Russia’s political systems during the<br />

course of history as one charts the<br />

exodus of its cultural riches from 1917<br />

through “the catastrophic losses due<br />

to Nazi atrocities during World War<br />

II,” and during the past couple of<br />

decades, “the diffusion and disbandment<br />

of Soviet collections” [29].<br />

Though the pendulum of Russia’s<br />

political system appears to have<br />

violent swings throughout its long<br />

history, it is a zeal <strong>for</strong> centralized<br />

power and control, by the State, that<br />

af<strong>for</strong>ds the Russian political system<br />

and cultural heritage with a continuity<br />

of stability.<br />

Russia is considered a “ democracy,”<br />

with “democratically” elected members<br />

of government. However, given<br />

State control of the media and<br />

elections, Russian democracy may<br />

generally not be viewed in a similar<br />

vein of ‘democracy’ as applied in the<br />

US or Western Europe. That being<br />

said, given Russians’ experiences<br />

throughout its Tsarist and Communist<br />

history, Russian democracy today is<br />

certainly democratic in comparison to<br />

those standards.<br />

The Russian federal government<br />

retains and exercises exclusive<br />

powers. Its executive branch of<br />

government is led by the prime<br />

minister. The Constitution of the<br />

Russian Federation and the federal<br />

constitutional law “On the Government<br />

of the Russian Federation” establishes<br />

the mechanisms <strong>for</strong> the<br />

Federal government to legislate by<br />

way of acts. The executive must<br />

exercise power in a manner which is<br />

not in contrast to the con stitution or<br />

267<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

1 Throughout the paper, the Union of Soviet Socialist Republic (USSR) or The Soviet Union is used interchangeable with the word Russia dependent<br />

on the historical point of reference being discussed.<br />

2 The world’s worst nuclear disaster occurred on 25–26 April 1986 near the now-abandoned town of Pripyat, located in the Ukrainian Soviet<br />

Socialist Republic, now the Ukraine.<br />

3 Resolution of the Government of the Russian Federation No. 516-12.<br />

4 This period of world history is referred to as the Cold War, lasting from 1947-1991.<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia Part 2 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

DECOMMISSIONING AND WASTE MANAGEMENT 268<br />

| | <strong>Nuclear</strong> fuel cycle.<br />

the laws of the state and/or Presidential<br />

decrees [30].<br />

Russia’s legislature is bicameral,<br />

divided between the Federal Assembly<br />

with 170 seats and the State Duma<br />

with 450 seats. In the 2016 federal<br />

election, one-half of the members<br />

were directly elected through a simple<br />

majority vote, while the other half<br />

is directly elected by proportional<br />

representation. Its judicial branch<br />

contains various courts of jurisdiction<br />

with the Supreme Court of the Russian<br />

Federation sitting at the top of the<br />

structure [31].<br />

4.1.2.1 Corruption<br />

The Russian constitution establishes<br />

that “man and his rights and freedoms<br />

shall have the highest value” and that<br />

it is the “responsibility of the state<br />

to recognize, observe and protect<br />

the rights and freedoms of man<br />

and citizen” [32]. A major potential<br />

challenge in the fulfillment of this<br />

noble ideal is with issues surrounding<br />

corruption. It is readily acknowledged<br />

that corruption does exist and is<br />

practiced in all political systems and<br />

cultures. Corruption, certainly, is not<br />

something that is unique to Russia.<br />

However, in the latest Transparency<br />

<strong>International</strong> Corruption Perceptions<br />

Index (CPI), Russia ranked an abysmal<br />

135 out of 180 countries in 2017. 5<br />

Be<strong>for</strong>e the nineteenth century, the<br />

word ‘corruption’ was not commonly<br />

used but colloquially became more<br />

commonplace “in the post-Soviet<br />

period” [33]. In the decades since the<br />

collapse of communism, Russia has<br />

experienced a development of an<br />

oligarchy that controls the nation’s<br />

industry and mineral reserves. This<br />

has given rise to the view among the<br />

Russian people “[that] government<br />

officials [are] wealth-grabbers and<br />

[that there is a need <strong>for</strong>] personal<br />

contacts and relationships to get<br />

| | Handling of nuclear waste.<br />

things done” [34]. The past century<br />

has brought about dramatic shifts of<br />

political power in Russia. Despite<br />

these changes, Russia is known <strong>for</strong>,<br />

and continues to experience, relatively<br />

high rates of corruption [35]. At the<br />

end of 2017, it was estimated that the<br />

overall economic cost of corruption<br />

<strong>for</strong> the preceding two years was more<br />

than $2.5 billion. 6<br />

4.1.2.2 Legislative Framework<br />

The Federal Atomic Energy Agency<br />

(Rosatom 7 ) is the duly authorized<br />

federal executive body. It functions<br />

to implement state policy, to provide<br />

applicable regulations, and exercise<br />

regulatory competencies authorized<br />

by the Federal government. Additionally,<br />

it is the state designated actor<br />

responsible <strong>for</strong> atomic energy, including<br />

the development and safe<br />

functioning of nuclear power plants,<br />

aspects of the nuclear fuel cycle,<br />

advancement of nuclear science and<br />

technology, and other matters involving<br />

international corroboration<br />

[28].<br />

In 2011, Federal Law on the Management<br />

of Radioactive Wastes and<br />

amendments to certain legislative acts<br />

of the Russian Federation 8 (2011 Law)<br />

was adopted as the first Federal Law<br />

<strong>for</strong> the management of radioactive<br />

waste. Other applicable laws, which<br />

function concurrently with the 2011<br />

Law, 9<br />

include: (1) Federal Law No.<br />

170-FZ “On the Use of Atomic Energy”<br />

5 See: Transparency <strong>International</strong> Corruption Perceptions Index, https://www.transparency.org/news/feature/corruption_perceptions_index_2017,<br />

viewed April 19, 2018.<br />

6 For a recent discussion on corruption in Russia, see: Abuse of office, bribes & embezzlement: Top 5 Russian corruption scandals,<br />

https://www.rt.com/politics/413538-top-5-recent-russian-corruption/, viewed June 13, 2018. Recommended: the Council of Europe website,<br />

‘Action against Economic Crime and Corruption’ at https://www.coe.int/en/web/corruption/anti-corruption-digest/russian-federation, viewed<br />

June 13, 2018, which provides an updated expansive list on the topic of corruption in Russia.<br />

7 The Federal Law “On the State Atomic Energy Corporation – Rosatom” 317-FZ, Amended by Federal Law No. 305-FZ amending Federal Law No.<br />

317-FZ on the State Atomic Energy Corporation Rosatom (2010) and Federal Law No. 188-FZ amending Federal Law No. 317-FZ on the State<br />

Atomic Energy Corporation Rosatom (2014) establishes the procedure to provide <strong>for</strong> adequate financial resources <strong>for</strong> the creation of any needed<br />

radioactive waste and spent fuel management facilities. See: https://www.ecolex.org/details/legislation/federal-law-no-317-fz-on-the-stateatomic-energy-corporation-rosatom-lex-faoc079146/,<br />

viewed July 12, 2018.<br />

8 See: 'Federal Law on the Management of Radioactive Wastes and amendments to certain legislative acts of the Russian Federation' 2011, <strong>Nuclear</strong><br />

Law Bulletin, 88, pp. 181-200, Academic Search Premier, EBSCOhost, viewed 25 July 2018.<br />

9 Additionally, Russia has undertaken a number of crucial initiatives toward the development of an appropriate legal framework in establishing a<br />

Unified State System <strong>for</strong> radioactive waste management. These decrees and resolutions may be found in § A.4.4, “Near-term initiatives to improve<br />

the safety of SNF and RW management.” Go to: The Fourth National Report of the Russian Federation, http://www.rosatom.ru/upload/<br />

iblock/8c0/8c0b6fba95869e6673962ee96f467da2.pdf, viewed April 09, 2018.<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia Part 2<br />

ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

| | More than electricity and heat generation: <strong>Nuclear</strong> powered ice breaker.<br />

of November 21, 1995; Federal Law<br />

No. 3-FZ “On the Radiation Safety of<br />

Population” of January 9, 1996; and,<br />

(3) Federal Law No. 7-FZ “On the<br />

Environmental Protection” of January<br />

10, 2002 [28].<br />

4.1.3 <strong>Nuclear</strong> Waste<br />

Management<br />

The 2011 Law requires the final<br />

disposal 10 of all legacy 11 and newly<br />

generated domestic radioactive waste.<br />

Additionally, the 2011 Law provides<br />

<strong>for</strong> creating a state controlled<br />

unified system of radioactive waste<br />

management by establishing a<br />

national operator. The 2011 Law<br />

creates two distinct groups of radioactive<br />

wastes: remov able and special<br />

radioactive wastes, 12<br />

which receive<br />

their classifica tion demarcation by<br />

the federal government taking into<br />

account the technical and operational<br />

limitations involved with nuclear<br />

waste management.<br />

The ‘National Operator <strong>for</strong> Radioactive<br />

Waste Management’, a federal<br />

entity, has sole responsibility as the<br />

duly authorized agent by the Russian<br />

Federation to carry out activities<br />

relating to final isolation of radioactive<br />

waste and arrangement of<br />

any relevant infrastructure [36].<br />

According to Rosatom, design work is References<br />

complete <strong>for</strong> a deep waste repository,<br />

with activities in progress <strong>for</strong> the<br />

implementation of a project that will<br />

“enable [the] final disposal of all<br />

radioactive waste accumulated” [36].<br />

Previously, nuclear waste management<br />

activities involved the injecting<br />

of these low and intermediate level<br />

wastes “into deep-seated reservoir<br />

beds (deep well injection facilities)<br />

located at three sites” [28].<br />

4.1.3.1 Permanent Disposal<br />

Each nuclear power plant has a spent<br />

fuel storage pool. Spent fuel is kept in<br />

the pool <strong>for</strong> a period of three years.<br />

If necessary, storage time can be<br />

increased to reduce heat generation.<br />

Reprocessing of spent nuclear fuel is<br />

per<strong>for</strong>med at RT-1 (Mayak). Additionally,<br />

various nuclear power plants<br />

have multifunctional complexes providing<br />

radioactive waste treatment<br />

and pre-treatment. The most probable<br />

media <strong>for</strong> the final storage and disposal<br />

of high-level waste within Russia<br />

is in crystalline rocks. These<br />

planned repositories “[should] be<br />

sited in seismically stable blocks” and<br />

also areas containing no or limited<br />

mineral resources [37]. Within Russia,<br />

vitrified high-level waste is “stored in<br />

steel containers 60 cm in diameter,<br />

80 cm in height, and 3 cm in thickness”<br />

[37]. Each cask is able to accommodate<br />

three containers.<br />

[27] <strong>Nuclear</strong> <strong>Power</strong> in Russia, World <strong>Nuclear</strong> Association,<br />

http://www.world-nuclear.org/in<strong>for</strong>mation-library/countryprofiles/countries-o-s/russia-nuclear-power.aspx,<br />

viewed January 31, 2018.<br />

[28] The Fourth National Report of the Russian Federation,<br />

http://www.rosatom.ru/upload/iblock/8c0/<br />

8c0b6fba95869e6673962ee96f467da2.pdf, viewed April 09, 2018.<br />

[29] Dianina, K 2015, ‘Russian Cultural History Lost and Found’,<br />

Russian Studies In History, 54, 4, pp. 279-285, Academic Search<br />

Premier, EBSCOhost, viewed 31 January 2018.<br />

[30] Government of the Russian Federation,<br />

http://www.russianembassy.org/page/government-of-therussian-federation,<br />

viewed April 05, 2018.<br />

[31] ‘Russia,’ CIA Fact book, Central Intelligence Agency,<br />

https://www.cia.gov/library/publications/the-world-factbook/<br />

geos/print_rs.html, viewed April 19, 2018.<br />

[32] Lomovtseva, M, & Henderson, J 2009, ‘Constitutional Justice<br />

in Russia’, Review Of Central & East European Law, 34, 1,<br />

pp. 37-69, Academic Search Premier, EBSCOhost,<br />

viewed 31 January 2018.<br />

[33] Berdy, MA 2016, ‘On the Take’, Russian Life, 59, 2, p. 26,<br />

Academic Search Premier, EBSCOhost, viewed 19 April 2018.<br />

[34] Ledeneva, AV 2013, ‘Russia’s Practical Norms and In<strong>for</strong>mal<br />

Governance: The Origins of Endemic Corruption’, Social Research,<br />

80, 4, pp. 1135-1162, Academic Search Premier, EBSCOhost,<br />

viewed 19 April 2018.<br />

[35] Fein, E 2017, ‘Cognition, cultural practices, and the working<br />

of political institutions: An adult developmental perspective on<br />

corruption in Russian history’, Behavioral Development Bulletin,<br />

22, 2, pp. 279-297, Academic Search Premier, EBSCOhost, viewed<br />

31 January 2018.<br />

[36] About Rosatom, http://www.rosatom.ru/en/rosatom-group/<br />

back-end/national-operator-<strong>for</strong>-radioactive-waste-management/,<br />

viewed April 05, 2018.<br />

[37] Laverov, N, Omel’yanenko, B, & Yudintsev, S 2011,<br />

‘ Crystalline rocks as a medium <strong>for</strong> nuclear waste disposal’, Russian<br />

<strong>Journal</strong> Of General Chemistry, 81, 9, pp. 1980-1993, Academic<br />

Search Premier, EBSCOhost, viewed 5 April 2018.<br />

Authors<br />

Mark Callis Sanders<br />

Sanders Engineering<br />

1350 E. Flamingo Road Ste. 13B<br />

#290<br />

Las Vegas NV 89119<br />

USA<br />

Charlotta E. Sanders<br />

Department of Mechanical<br />

Engineering<br />

University of Nevada<br />

Las Vegas (UNLV)<br />

4505 S. Maryland Pwky<br />

Las Vegas, NV 89154<br />

USA<br />

DECOMMISSIONING AND WASTE MANAGEMENT 269<br />

10 Interestingly, the 2011 Law considers and makes final determination on issues surrounding retrievability of spent nuclear fuel and radioactive<br />

waste. Per Article 3.1. (8) “disposal” is defined as: “the safe holding of radioactive wastes in a radioactive waste disposal site not requiring any<br />

subsequent removal.”<br />

11 Legacy waste is defined per Article 3.1 (1), and consists of such waste created be<strong>for</strong>e the promulgation of the 2011 law.<br />

12 The waste categorization description is provided in Article 4 of the 2011 Law.<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Russia Part 2 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

DECOMMISSIONING AND WASTE MANAGEMENT 270<br />

Guideline to Prepare a Preliminary<br />

Decommissioning Plan <strong>for</strong> <strong>Nuclear</strong><br />

Facilities in Republic of Korea<br />

Byung-Sik Lee and Kyung-Woo Choi<br />

1 Introduction The legal framework of decommissioning in Korea was enhanced through the revision of<br />

<strong>Nuclear</strong> Safety Act (NSA) and its subordinate status in 2015. According to the revised NSA, the nuclear power plant<br />

licensee should prepare the decommissioning plan (DP), i.e. preliminary DP, at the construction/operation stage of<br />

NPP. Additionally, the licensee should submit the DP, i.e. final DP, <strong>for</strong> approval of NPP decommissioning in Korea. In<br />

particular, the preliminary DP includes comprehensive implementation plans, maintenance of facility records, and<br />

physical and procedural methods to limit contamination and activation [1]. There<strong>for</strong>e it is clear that the nuclear facility<br />

is considered <strong>for</strong> decommissioning in site selection, design, construction, commissioning and operation phases.<br />

The DP generally includes the decommissioning<br />

strategy including a relevant<br />

technical review report, to provide a<br />

justification <strong>for</strong> selecting a decommissioning<br />

strategy. The decom missioning<br />

cost is included in the DP, which is estimated<br />

based on the decommissioning<br />

activities of the nuclear facilities to be<br />

dismantled, and if necessary, a decommissioning<br />

cost estimate report should<br />

be attached. The DP also includes<br />

decommissioning schedules, decommissioning<br />

techniques, and manpower/<br />

training programs. Most importantly,<br />

provisions on safety and radiation protection<br />

<strong>for</strong> population and workers are<br />

systema tically and deeply described [2].<br />

To this end, the DP is divided into a<br />

preliminary DP and a final DP in<br />

accordance with the construction/<br />

operation phase and decommissioning<br />

phase of the nuclear facility,<br />

respectively [1]. The details of the DP<br />

from the preliminary to the final plan<br />

are progressively described in detail.<br />

The most important factor in preparing<br />

the DP is to make full use of the<br />

design/construction/operation data<br />

of the nuclear facilities.<br />

The new nuclear facilities are subjected<br />

to a background survey of the<br />

site including the acquisition of<br />

environ mental in<strong>for</strong>mation necessary<br />

<strong>for</strong> environmental impact assessment<br />

from the site selection stage. These data<br />

will be periodically revised until the<br />

decommissioning process, when practical,<br />

it should be helpful. Indeed, such<br />

site-related environmental in<strong>for</strong>mation<br />

is used as a basis <strong>for</strong> defining the<br />

surrounding natural radiation of nuclear<br />

facilities and is used as a comparison<br />

to assess the environmental impact<br />

of dismantling nuclear facilities.<br />

However, if there is no background<br />

survey on the sur rounding environment<br />

at the nuclear facility construction<br />

stage, the site environmental survey<br />

is conducted during the operation<br />

of the facility. But, if there is not<br />

enough time to investigate further,<br />

similar area surveys are avail able. In<br />

the case of a new nuclear facility, a<br />

preliminary DP has to be prepared<br />

from its construction license stage and<br />

periodically revised until the final<br />

shutdown of the nuclear facility. The<br />

decommissioning operators include<br />

the appropriateness of decommissioning<br />

method, the appropriateness of<br />

decommissioning cost, the appropriateness<br />

of decommis sioning resources,<br />

the method of decommissioning<br />

safety evaluation, and the decommissioning<br />

waste management plan [3].<br />

The preliminary DP can clearly<br />

show that important records related<br />

to decommissioning, such as facility<br />

design data, design data change<br />

history, and operation records, are<br />

maintained in accordance with the<br />

procedure throughout the life of the<br />

nuclear facility. According to the NSA,<br />

the preliminary DP should be revised<br />

periodically every 10 years in consideration<br />

of operation experience,<br />

lessons of decommissioning similar<br />

facilities, new safety requirements or<br />

revised safety requirements related<br />

with decommissioning, development<br />

trends of selected decommissioning<br />

strategies and related decommissioning<br />

technologies, and so on.<br />

The purpose of this paper is to provide<br />

the guideline how to prepare the<br />

preliminary DP in view of safety considerations<br />

based on the experience of<br />

nuclear facility decommissioning in<br />

major <strong>for</strong>eign countries.<br />

2 Considerations to<br />

prepare a preliminary<br />

decommissioning plan<br />

The preliminary DP must be sub mitted<br />

at the time of applying <strong>for</strong> the operating<br />

license of the new nuclear facilities.<br />

There<strong>for</strong>e, there is a limit to the depth<br />

of the technical contents of each item<br />

in comparison of the final DP. However,<br />

the preliminary DP should include<br />

the expected decommissioning strategy,<br />

appropriateness of decommissioning<br />

method, calculation of decommissioning<br />

cost, assurance of decommissioning<br />

finance, decom missioning<br />

safety and radiation protection plan,<br />

and decommis sioning waste management<br />

plan. Also, since the most important<br />

inputs to the DP are the design/<br />

construction/operation data, the plan<br />

should describe how these records are<br />

maintained in accordance with relevant<br />

quality assurance programs <strong>for</strong><br />

important records related to decommissioning<br />

over the life span. That is,<br />

design data of nuclear facilities, design<br />

data change history, operating records,<br />

etc. should be described in the preliminary<br />

DP [3, 4].<br />

In the preliminary DP, considerations<br />

are given to the following items by<br />

referring to the results of the decommissioning<br />

pre-feasibility study at the<br />

engineering stage of nuclear facilities,<br />

the design specification of facilities,<br />

and the previous decommissioning<br />

experience data at home and abroad.<br />

pp<br />

Final goal of the decommissioning<br />

and application criteria and standards.<br />

pp<br />

Management of spent fuel and<br />

decommissioning waste.<br />

pp<br />

Analysis of critical path activities in<br />

disassembly scenario.<br />

pp<br />

Disclosure important factors in the<br />

decommissioning project management.<br />

3 Identification of<br />

contents in a preliminary<br />

decommissioning plan<br />

3.1 Management of design,<br />

construction and operation<br />

record<br />

Data on design, construction and<br />

operation experience necessary <strong>for</strong><br />

Decommissioning and Waste Management<br />

Guideline to Prepare a Preliminary Decommissioning Plan <strong>for</strong> <strong>Nuclear</strong> Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

decommissioning activities should be<br />

systematically managed and used as<br />

basic data <strong>for</strong> DP [3]. The list of necessary<br />

data <strong>for</strong> each step of the facility<br />

life span is as follows.<br />

pp<br />

Design/construction data management<br />

pp<br />

Management of changes to all<br />

structures, systems and components<br />

(SSCs) using Configuration<br />

Management System<br />

(CMS)<br />

pp<br />

Track design considerations to<br />

increase easy decommissioning<br />

activity<br />

pp<br />

In<strong>for</strong>mation on underground<br />

pipes and components in the<br />

site<br />

pp<br />

Startup/operation record management<br />

pp<br />

Modification data management<br />

of SSCs during the facility operation<br />

using CMS<br />

pp<br />

Management of incident/accident<br />

data during the facility<br />

operation<br />

pp<br />

Knowledge management related<br />

with operation experience<br />

pp<br />

Basic site characteristics data<br />

through sampling<br />

pp<br />

Operational waste in<strong>for</strong>mation<br />

pp<br />

In<strong>for</strong>mation on spent fuel<br />

pp<br />

Location and characteristics of<br />

contaminated material release<br />

pp<br />

Existing internal/external<br />

stake holders communication<br />

related materials<br />

There<strong>for</strong>e, the decommissioning<br />

operator should provide the details of<br />

how to document and manage the<br />

contents of the preliminary DP during<br />

the operation of nuclear facilities.<br />

Documentation and management<br />

measures should be in place <strong>for</strong><br />

nuclear facilities to comply with<br />

existing QA/QC systems.<br />

3.2 Decommissioning organization<br />

and manpower<br />

In general, decommissioning manpower<br />

and organization are important<br />

not only <strong>for</strong> safe decommissioning<br />

of nuclear facilities but also <strong>for</strong><br />

estimate of the decommissioning<br />

cost, because labor cost due to the<br />

manpower and organization is the<br />

important fixed cost in the decommissioning<br />

of nuclear facilities. There<strong>for</strong>e,<br />

the preliminary DP should<br />

describe a potential organization and<br />

estimated manpower to per<strong>for</strong>m<br />

decommis sioning activities of the<br />

facility in the decommissioning phase<br />

[5, 6].<br />

In addition, the facility licensee<br />

should describe a decommissioning<br />

support team in the operating<br />

orga nization including the main<br />

duties of its decommissioning work<strong>for</strong>ce<br />

in the operation phase, which<br />

can prepare pre-decommissioning<br />

tasks during the operation period.<br />

And it is also required to describe the<br />

expertise required to per<strong>for</strong>m the<br />

related service, and the qualification<br />

requirements and training requirements<br />

<strong>for</strong> maintaining its expertise in<br />

the preliminary DP.<br />

3.3 Preliminary decommissioning<br />

cost estimate and<br />

finance assurance<br />

The decommissioning operator shall<br />

estimate the preliminary decommissioning<br />

cost considering the decommissioning<br />

strategy, facility/site characteristics,<br />

applied decommissioning<br />

technique, etc., which are determined<br />

at the design stage of the nuclear facilities<br />

and present the appropriateness<br />

of the estimated results [3]. The main<br />

factors affecting the preliminary cost<br />

are as follows.<br />

pp<br />

Characteristic data of nuclear facility/site<br />

and its decommissioning<br />

scenario.<br />

pp<br />

Experience/knowledge data of the<br />

decommissioning of the facility<br />

and overall decommissioning<br />

market environment (demand and<br />

supply).<br />

pp<br />

Decommissioning waste management:<br />

release criteria, availability<br />

of disposal facilities and acquisition<br />

of waste acceptance criteria.<br />

pp<br />

Schedule of spent fuel transfer<br />

campaign and availability of spent<br />

fuel transport/storage cask.<br />

pp<br />

Site release criteria and site reuse.<br />

pp<br />

Availability of manpower and<br />

decommissioning techniques.<br />

pp<br />

Asset recovery after decommissioning<br />

(asset valuation, asset<br />

recovery method, etc.).<br />

The assumptions and the strategic<br />

decisions <strong>for</strong> each of above factors<br />

should be clearly indicated in the<br />

preliminary DP, and they should be<br />

continuously managed so that they<br />

can be used to calculate the revised<br />

decommissioning cost <strong>for</strong> the amendment<br />

DP. The method of securing the<br />

decommissioning resources differs<br />

depending on the country. In Korea,<br />

based on its operating decommissioning<br />

cost funding system, the following<br />

items should be described in<br />

the preliminary DP.<br />

pp<br />

Disbursement fund accumulation<br />

according to result of decommissioning<br />

cost estimate every 2 years.<br />

pp<br />

The decommissioning cost items<br />

and the cost management plan is<br />

precisely specified.<br />

It is also necessary to conduct surveillance<br />

activities to maintain the<br />

security of decommissioning cost, such<br />

as the availability of the cost funding<br />

system, the suitability of the cost<br />

estimation, and the appropriateness of<br />

the cost utilization. For this, the<br />

decommissioning cost execution plan<br />

should be regularly checked step by<br />

step.<br />

3.4 Site and environmental<br />

survey<br />

3.4.1 Status of site and<br />

environment<br />

The site and environmental characteristic<br />

survey are conducted to<br />

obtain the construction permit and<br />

the operation license of the nuclear<br />

facility in the construction phase [5].<br />

There<strong>for</strong>e, using these characteristic<br />

data, the preliminary DP should<br />

describe the following site and<br />

environmental status data <strong>for</strong> the<br />

decommissioning of the facility, which<br />

is used as the basic input data of the<br />

decommis sioning environmental impact<br />

assessment and safety assessment.<br />

pp<br />

Meteorological and topographical<br />

characteristics to predict the<br />

spread of radioactive materials.<br />

pp<br />

Population data <strong>for</strong> environmental<br />

impact assessment.<br />

pp<br />

Provisions of equipment access to a<br />

decommissioning site and transportation<br />

of decommissioning<br />

waste.<br />

pp<br />

Assessing the social and economic<br />

impact due to the decommissioning<br />

business.<br />

The main items of site and environmental<br />

data to be used in the decommissioning<br />

of the nuclear facility will<br />

be selected from the site and environment<br />

reports prepared <strong>for</strong> the construction/operation<br />

license of the<br />

nuclear facility. The decommissioning<br />

operator needs to present the management<br />

plan <strong>for</strong> these important data<br />

related to the decommissioning it in<br />

the preliminary DP.<br />

3.4.2 Radiological status of the<br />

facility, the site and the<br />

environment<br />

Radiological characteristic data<br />

are the basic inputs to all radiation<br />

safety assessment including radiation<br />

environmental impact assessment,<br />

worker exposure dose prediction.<br />

And it can also be used <strong>for</strong> the selection<br />

of the decommissioning tools/<br />

method, the necessity of the shielding<br />

or iso lation facility, and the waste<br />

management policy [3].<br />

DECOMMISSIONING AND WASTE MANAGEMENT 271<br />

Decommissioning and Waste Management<br />

Guideline to Prepare a Preliminary Decommissioning Plan <strong>for</strong> <strong>Nuclear</strong> Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

DECOMMISSIONING AND WASTE MANAGEMENT 272<br />

There<strong>for</strong>e, in the preliminary DP it<br />

is necessary to identify all construction<br />

and operation data that are<br />

important to evaluate the radiological<br />

characteristics of facility and site, and<br />

describe the method of systematically<br />

managing these data in operation<br />

stages. These data are used as the<br />

important input <strong>for</strong> radiological<br />

characterization during the decommissioning<br />

phase. According to experience<br />

of decommissioning at home<br />

and abroad, the following data are<br />

expected to be necessary <strong>for</strong> the<br />

evalu ation of radiological characteristics<br />

[5, 6].<br />

pp<br />

Radiation distribution inside and<br />

out side the decommissioning facility.<br />

pp<br />

Contamination degree and contamination<br />

distribution.<br />

pp<br />

Nuclide inventory.<br />

pp<br />

Radionuclide type, radioactivity<br />

and distribution.<br />

pp<br />

Justification of measurement point<br />

through prior sampling.<br />

In particular, the design provisions<br />

should be reflected in the reduction of<br />

radiation exposure of workers and the<br />

ease of sampling when per<strong>for</strong>ming<br />

these radiological characterization<br />

works.<br />

3.5 Decommissioning strategy<br />

and method<br />

3.5.1 Decommissioning strategy<br />

The decommissioning strategy is<br />

a general plan to achieve the successful<br />

decommissioning, and is set<br />

con sidering the decommissioning<br />

policy, the decommissioning method<br />

and the final goal of the decommissioning<br />

[3]. The decommissioning<br />

operator may determine ‘immediate<br />

decommis sioning’ or ‘delayed decommissioning’<br />

as the decommissioning<br />

strategy through a review of<br />

the adequacy evaluation considering<br />

the following factors or may decide<br />

a third alter native that combines<br />

‘ immediate’ and ‘delayed decommissioning’.<br />

National decommissioning policy.<br />

pp<br />

Laws, regulations and standards to<br />

be applied to the decommissioning<br />

activity.<br />

pp<br />

Facility characteristics, operation<br />

history, radioactivity inventory and<br />

its change with time.<br />

pp<br />

Radiological and conventional<br />

safety assessment.<br />

pp<br />

Spent fuel and decommissioning<br />

waste management.<br />

pp<br />

Change of facility physical conditions<br />

during the decommissioning<br />

period.<br />

pp<br />

Appropriateness and availability of<br />

decommissioning resources.<br />

pp<br />

Availability of experienced personnel<br />

and proven technologies.<br />

pp<br />

Lessons learned from past decommissioning<br />

projects.<br />

pp<br />

Residents’ concerns, including<br />

their social and economic impact<br />

on the community.<br />

pp<br />

Influence of several units within<br />

the site.<br />

pp<br />

Plan of reuse of site or facility (part<br />

of facility) after completion of<br />

decommissioning.<br />

pp<br />

Stakeholder interaction.<br />

The decommissioning operator<br />

should show in the preliminary DP<br />

that the strategy has been established<br />

by appropriately reflecting all above<br />

factors necessary <strong>for</strong> the strategy<br />

establishment.<br />

3.5.2 Decommissioning method<br />

and schedule<br />

The decommissioning method and<br />

the schedule should be described<br />

roughly in accordance with the<br />

selected decommissioning strategy in<br />

the preliminary DP. It is necessary to<br />

define the decommissioning activities<br />

<strong>for</strong> each decommissioning step based<br />

on the decommissioning method, and<br />

the decommissioning schedule should<br />

be provided as the project milestone<br />

level [5].<br />

The comprehensive decommissioning<br />

schedule as the milestone level<br />

can show the optimal timetable <strong>for</strong> decommissioning<br />

sequences considering<br />

the decommissioning stra tegy, the<br />

execution of major activities, and legal<br />

requirements. This should enable us to<br />

understand the overall decommissioning<br />

activities to be carried out during<br />

the entire decommissioning period.<br />

The schedule development helps to<br />

efficiently utilize decommissioning<br />

resources and is also useful <strong>for</strong> estimating<br />

decommissioning cost. There<strong>for</strong>e,<br />

the following key factors should<br />

be considered when establishing the<br />

schedule.<br />

pp<br />

Decommissioning strategies and<br />

methods, experience/knowledge<br />

data.<br />

pp<br />

Decommissioning waste management.<br />

pp<br />

Decommissioning scenario.<br />

pp<br />

Spent fuel transportation schedule<br />

and availability of transport/storage<br />

casks.<br />

pp<br />

Availability of domestic decommissioning<br />

technology/manpower.<br />

pp<br />

Availability of decommissioning<br />

supply chains.<br />

pp<br />

Financial constraints.<br />

pp<br />

Political and social environment.<br />

3.6 Design characteristics and<br />

measures <strong>for</strong> the decommissioning<br />

facilitation<br />

3.6.1 Design characteristics<br />

The preliminary DP should describe<br />

the in<strong>for</strong>mation related to the “design<br />

characteristics <strong>for</strong> the decommissioning<br />

facilitation” as follows [3].<br />

pp<br />

Access way <strong>for</strong> equipment maintenance<br />

and laydown space <strong>for</strong><br />

equipment replacement, which<br />

can be used as a decommissioning<br />

work space in the decommissioning<br />

phase.<br />

pp<br />

Design characteristics to minimize<br />

the radioactive contamination and<br />

the leakage of radioactive materials<br />

from the radioactive systems.<br />

pp<br />

Minimization of concrete buried<br />

pipes and ducts.<br />

pp<br />

Minimization of underground<br />

radioactive waste tanks, sumps<br />

and pipes.<br />

pp<br />

Impurities management in steel<br />

and concrete materials to prevent<br />

the generation of activation products<br />

that affect decommissioning<br />

work.<br />

pp<br />

Equipment layout considering<br />

ALARA guideline when replacing<br />

equipment.<br />

There<strong>for</strong>e, the preliminary DP should<br />

also outline the following management<br />

plans and explain how to maintain<br />

its design characteristics.<br />

pp<br />

Management plan of the facility<br />

configuration management system<br />

(CMS) and their records during<br />

the operation phase.<br />

pp<br />

Management plan of the radioactive<br />

material leakage management<br />

system and their records<br />

during operation phase.<br />

pp<br />

Management plan of the design<br />

characteristics <strong>for</strong> the decommissioning<br />

facilitation during the<br />

operation phase.<br />

3.6.2 Design measures to minimize<br />

radioactive material<br />

leakage, radioactive contamination<br />

and radioactive<br />

waste generation during<br />

the operation<br />

Actions to be per<strong>for</strong>med at the construction<br />

and operation phase of a<br />

nuclear facility should be provided to<br />

confirm the minimization of radioactive<br />

material leakage, radioactive<br />

contamination and radioactive waste<br />

generation, which can be prepared<br />

<strong>for</strong> the future decommissioning as<br />

follows [5, 6];<br />

pp<br />

Design in<strong>for</strong>mation on on-site<br />

surveillance systems that can<br />

detect leakage and contamination<br />

Decommissioning and Waste Management<br />

Guideline to Prepare a Preliminary Decommissioning Plan <strong>for</strong> <strong>Nuclear</strong> Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

from underground and concrete<br />

buried pipes early.<br />

pp<br />

Design in<strong>for</strong>mation on separation<br />

and collection of radioactive waste<br />

and non-radioactive waste.<br />

Such in<strong>for</strong>mation is used as input data<br />

such as “safety assessment” and<br />

“ radioactive protection plan” establishment.<br />

There<strong>for</strong>e, it is needed to<br />

describe the in<strong>for</strong>mation such as<br />

incidents and accidents that contaminated<br />

a facility and a site during<br />

the operation period of nuclear facility,<br />

which can affect decommissioning<br />

activities.<br />

3.7 Safety assessment<br />

Existing safety related systems and<br />

engineered safety features are dismantled<br />

and altered through the<br />

decommissioning of a nuclear facility.<br />

There<strong>for</strong>e, the safety assessment of the<br />

decommissioning phase is limited to<br />

the effects of dismantling equipment,<br />

installing new systems, or changing<br />

existing systems. According to the<br />

overseas decommissioning experience,<br />

the decommissioning stage generally<br />

carries out a safety assessment of the<br />

following events [3, 7]:<br />

pp<br />

Fire in facility.<br />

pp<br />

Leaks from container or system.<br />

pp<br />

Heavy material drop.<br />

pp<br />

Supply system failure.<br />

pp<br />

Criticality accident.<br />

pp<br />

Intrusion of water into a facility<br />

with delayed decommissioning.<br />

pp<br />

External accidents (that is earthquakes,<br />

storms, floods etc.).<br />

Radioactive material leakage prevention<br />

and mitigation systems, which<br />

are operating at the operational stage<br />

of a nuclear facility, are not operated<br />

any more due to power supply interruption<br />

or demolition at the disassembly<br />

stage. There<strong>for</strong>e, it is necessary<br />

to partially localize the contaminated<br />

area during dismantling<br />

work or to install an additional mobile<br />

exhaust system.<br />

Especially when the exhaust<br />

system fails due to fire, “fire” will<br />

become a radiological representative<br />

design basis accident. It is necessary<br />

to describe the development of<br />

scenarios <strong>for</strong> these various accidents,<br />

the evaluation methodology <strong>for</strong><br />

them, and describe the methods<br />

of preventing and mitigating accidents.<br />

3.8 Radiation protection<br />

A radiation protection plan during the<br />

decommissioning phase should be<br />

established to identify major issues<br />

affecting worker exposure by decommissioning<br />

activities. In general, the<br />

radiation protection plan should<br />

include the following [3, 4]:<br />

pp<br />

Prediction and minimization of<br />

radiation exposure of workers.<br />

pp<br />

Radiation safety management plan<br />

during decommissioning work.<br />

pp<br />

For the various decommissioning<br />

options, prediction of the expected<br />

dose and measures to comply with<br />

the ALARA guidelines through<br />

decommissioning radiation management.<br />

When establishing the preliminary<br />

DP, the radiation protection plan is<br />

described as follows by establishing a<br />

radiation safety management plan<br />

that minimizes the workers’ exposure.<br />

pp<br />

Establishment of radiation protection<br />

policy and application of<br />

ALARA guidelines.<br />

pp<br />

Radiation Safety Plan during<br />

decommissioning activities.<br />

pp<br />

Monitoring plan of special radiation<br />

dose and air contamination in<br />

the workplace.<br />

pp<br />

Plan <strong>for</strong> entry and exit of workers<br />

and equipment.<br />

pp<br />

Evaluation and selection of radiation<br />

protection tools.<br />

3.9 Decommissioning activity<br />

There are many decontamination,<br />

dismantling and demolition techniques<br />

necessary <strong>for</strong> the decommissioning<br />

of nuclear facilities, which<br />

depends on the type of facilities (types<br />

of radioactive contaminations, degree<br />

of contamination), regulatory clearance<br />

and removal of radionuclides.<br />

There<strong>for</strong>e, proper decommissioning<br />

techniques should be selected considering<br />

the characteristics of decommissioning<br />

activities and contents of<br />

each decommissioning stage [4].<br />

When decommissioning techniques<br />

(or potential decommissioning techniques)<br />

are selected, consider the<br />

following points.<br />

pp<br />

Safety,<br />

pp<br />

Efficiency,<br />

pp<br />

Cost-effectiveness,<br />

pp<br />

Waste minimization,<br />

pp<br />

Feasibility of industrialization.<br />

The decommissioning operator<br />

should identify the status of proven<br />

decommissioning technologies and<br />

potential decommissioning technologies,<br />

and periodically review these<br />

decommissioning technologies from<br />

the viewpoint of technology availability.<br />

There<strong>for</strong>e, it is necessary to investigate<br />

the optimal decommissioning<br />

techniques from the above five<br />

perspectives based on the time of<br />

preparation of the preliminary DP,<br />

and describe them in the preliminary<br />

DP. And it is necessary to outline the<br />

decommissioning execution plan<br />

using these techniques.<br />

3.10 Radioactive waste<br />

management<br />

In Korea, the decommissioning waste<br />

management cost accounts <strong>for</strong> about<br />

40% of total decommissioning cost.<br />

There<strong>for</strong>e, it is necessary to establish a<br />

decommissioning waste management<br />

plan and make every ef<strong>for</strong>t to minimize<br />

the amount of radioactive waste<br />

generated during the decommissioning<br />

phase. To this end, decommissioning<br />

waste management in the preliminary<br />

DP is considered <strong>for</strong> the as<br />

following points, and they should be<br />

outlined in the preliminary DP [3]:<br />

pp<br />

Management plan of radioactive<br />

waste generated during operation<br />

of nuclear facilities including spent<br />

fuel be<strong>for</strong>e entering decommissioning<br />

activity.<br />

pp<br />

Review of decommissioning waste<br />

management plan including sorting/disposal<br />

method, recycling<br />

method, volume reduction method<br />

by cost/benefit analysis.<br />

pp<br />

Operation plan review of decommissioning<br />

waste comprehensive<br />

treatment facility.<br />

pp<br />

Estimation and confirmation of<br />

total decommissioning wastes.<br />

pp<br />

Comprehensive plan <strong>for</strong> removal<br />

and disposal of large-sized equipment.<br />

The decommissioning waste management<br />

plan is closely related to the<br />

national waste management policy<br />

and should there<strong>for</strong>e be taken into<br />

account. The preliminary DP outlines<br />

the radioactive waste management<br />

based on the following technical<br />

review:<br />

pp<br />

Waste classification.<br />

pp<br />

Evaluation of liquid/solid waste<br />

treatment technology.<br />

pp<br />

Evaluation of waste characteristics<br />

technology.<br />

pp<br />

Utilization and disposal plan of<br />

clearance wastes.<br />

pp<br />

Management plan of non-radioactive<br />

waste in the decommissioning<br />

of nuclear facilities.<br />

3.11 Environmental impact<br />

assessment<br />

The population exposure is assessed<br />

in the radiological environmental<br />

impact assessment due to the release<br />

of radioactive materials to the environment<br />

during the decommissioning<br />

phase. In the assessment, it is necessary<br />

to evaluate the environmental<br />

impacts of decommissioning period<br />

by using survey data of environmental<br />

characteristics such as terrain and<br />

DECOMMISSIONING AND WASTE MANAGEMENT 273<br />

Decommissioning and Waste Management<br />

Guideline to Prepare a Preliminary Decommissioning Plan <strong>for</strong> <strong>Nuclear</strong> Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

DECOMMISSIONING AND WASTE MANAGEMENT 274<br />

climate, radioactive material release<br />

data etc., and then to establish countermeasures<br />

to minimize the impact.<br />

Even if counter measures are properly<br />

established, the radiation surveillance<br />

of the surrounding area should be<br />

continuously carried out to confirm<br />

the validity and sustainability of the<br />

impact assessment to be per<strong>for</strong>med<br />

[3, 4].<br />

The radiological impact assessment<br />

plan <strong>for</strong> population needs a rough<br />

description of the following points:<br />

pp<br />

Exposure scenarios with potential<br />

exposure pathways.<br />

pp<br />

Population exposure evaluation<br />

method during the normal operation.<br />

pp<br />

Population exposure evaluation<br />

method during the accident.<br />

pp<br />

Plan to minimize radiological<br />

impacts.<br />

3.12 Fire protection<br />

Since there are combustible materials<br />

such as electric wires and PVC pipes in<br />

nuclear facilities, there is a possibility<br />

of a potential fire accident when<br />

decommissioning as follows [6, 7];<br />

pp<br />

Fire risk due to electric short<br />

circuit.<br />

pp<br />

Fire hazard when cutting with<br />

oxygen-acetylene torch.<br />

To minimize the likelihood of fire<br />

accident during the decommissioning<br />

phase, flammable materials should<br />

not be stored in decommissioning<br />

facilities unless stored in a refractory<br />

installation. In order to prevent the<br />

possibility of fire accident due to short<br />

circuit, all existing power supply is cut<br />

off and a separate external power<br />

supply is used. Since additional<br />

flammable and ignitable materials<br />

can be used in the decommissioning<br />

of nuclear facilities, the fire protection<br />

plan applied to the operating nuclear<br />

facility must be modified in consideration<br />

of decommissioning<br />

charac teristics.<br />

There<strong>for</strong>e, the preliminary DP<br />

should outline the fire protection<br />

plan <strong>for</strong> prevention, detection, and<br />

evolution of fires that may occur during<br />

the decommissioning process, taking<br />

into consideration the characteristics<br />

of the expected decommissioning<br />

activities.<br />

4 Conclusion remarks<br />

The decommissioning plan (DP) is<br />

divided into the preliminary DP<br />

and the final DP according to the construction/operation<br />

phase of the nuclear<br />

facility in Korea. It is described in<br />

detail from the preliminary DP to the<br />

final DP. The most important factor in<br />

preparing the DP is to make full use of<br />

the design/construction/operation<br />

data of the nuclear facilities.<br />

There<strong>for</strong>e, in this study, it is<br />

reviewed the major safety considerations<br />

such as safe dismantling activities<br />

of nuclear facilities, dismantling<br />

procedures and dismantling methods,<br />

which is necessary <strong>for</strong> the preparation<br />

of the DP through the review of local<br />

and oversea decommissioning lessons<br />

learned experience.<br />

Since the preliminary DP must be<br />

submitted at the time of applying <strong>for</strong><br />

the construction phase of the new<br />

nuclear facilities, there is a limit to the<br />

depth of the technical contents of each<br />

item in comparison with the final DP.<br />

Nonetheless, the preliminary DP<br />

should include the expected decommissioning<br />

strategy, the appropriateness<br />

of decommissioning, securing<br />

decommissioning resources, decommissioning<br />

safety and radiation protection<br />

plans, and the amount of<br />

decommissioning waste generation.<br />

Since the most important input to<br />

prepare the DP is the design/construction/<br />

operation data, these data are<br />

carefully maintained over their lifetime<br />

in accordance with the relevant<br />

quality assurance procedures. There<strong>for</strong>e,<br />

it is necessary to describe the<br />

management programs of these data<br />

in the preliminary DP.<br />

The safety consideration <strong>for</strong> the<br />

preparation of the preliminary DP is<br />

reviewed and its preparation guideline<br />

is established. However, in order to<br />

prepare a preliminary DP <strong>for</strong> existing<br />

nuclear facilities in Korea, it is necessary<br />

to draw up important factors <strong>for</strong><br />

enhancing decommis sioning safety<br />

and efficiency by conducting a conceptual<br />

decommis sioning design, when<br />

prepare the DP. And it needs to know in<br />

advance what the key design and operational<br />

data related to these factors are.<br />

For example, the database showing<br />

the contamination in<strong>for</strong>mation inside<br />

the nuclear facility is a basic data <strong>for</strong><br />

evaluating the facility characteristics,<br />

managing the radiation of the workers,<br />

and evaluating the amount of<br />

waste disposal. There<strong>for</strong>e, it is necessary<br />

to understand and supplement<br />

the current status on the database in<br />

the nuclear facilities. For all important<br />

factors it is necessary to construct and<br />

operate related database system to<br />

manage them <strong>for</strong> decommissioning<br />

activity from the design stage of<br />

nuclear facilities.<br />

Acknowledgments<br />

This work was supported by the<br />

<strong>Nuclear</strong> Safety Research Program<br />

through the Korea Foundation of<br />

<strong>Nuclear</strong> Safety (KoFONS), granted<br />

financial resource from the <strong>Nuclear</strong><br />

Safety and Security Commission<br />

( NSSC) (No. 1605008-0318-SB110),<br />

and by the National Research Foundation<br />

of Korea (NRF), granted financial<br />

resource from the Ministry of<br />

Science, ICT and Future Planning<br />

(No. 2017M2A8A5015148 and No.<br />

2016M2B2B1945086), Republic of<br />

Korea.<br />

References<br />

1. NSSC Notice 2015-8 (2015), Standard Format and Content of<br />

Decommissioning Plan <strong>for</strong> <strong>Nuclear</strong> Facilities, Korea <strong>Nuclear</strong><br />

Safety and Security Commission.<br />

2. IAEA (2005), Standard Format and Content <strong>for</strong> Safety Related<br />

Decommissioning Documents. IAEA Safety Reports Series No.<br />

45<br />

3. IAEA (2014), Decommissioning of Facilities “General Safety<br />

Requirements”. IAEA Safety Standard Series No. GSR Part 6<br />

4. IAEA (1999), Safety Guide on Decommissioning of <strong>Nuclear</strong><br />

<strong>Power</strong> and Research Reactors. Safety Standard Series No.<br />

WS-G-2.1<br />

5. EPRI (2001), Decommissioning Pre-Planning Manual.<br />

1003025, Final Report<br />

6. EPRI (2006), Decommissioning Planning, Experiences from<br />

U.S. Utilities. 1013510, Final Report<br />

7. GRS (2009), Guide to the Decommissioning, the Safe Enclosure<br />

and the Dismantling of facilities or parts thereof as defined<br />

in Section 7 of the Atomic Energy Act.<br />

Authors<br />

Byung-Sik Lee<br />

1 Dankook University<br />

119, Dandae-ro, Dongnam-gu,<br />

Cheonan-si<br />

Chungnam, 31116<br />

Republic of Korea<br />

Kyung-Woo Choi<br />

2 Korea Institute of <strong>Nuclear</strong> Safety<br />

62 Gwahak-ro, Yuseong-gu<br />

Daejeon, 34142<br />

Republic of Korea<br />

Decommissioning and Waste Management<br />

Guideline to Prepare a Preliminary Decommissioning Plan <strong>for</strong> <strong>Nuclear</strong> Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

PARCS-Subchanflow-TRANSURANUS<br />

Multiphysics Coupling <strong>for</strong> High Fidelity<br />

PWR Reactor Core Simulation:<br />

Preliminary Results<br />

Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan<br />

1 Introduction Traditionally, reactor core simulators use simplified models to predict the fuel temperature<br />

and thermal-hydraulic conditions in the core. To achieve better accuracy detailed models should be used to describe all<br />

different physical processes (Multiphysics approach).<br />

Simplified solvers <strong>for</strong> the fuel temperature<br />

don’t capture the material<br />

behavior under irradiation such as,<br />

swelling, cracking, pellet-clad interaction,<br />

etc. These phenomena affect<br />

properties such as fuel thermal<br />

conductivity, the fuel rod gap conductance<br />

which has an impact in the<br />

calculation of the fuel temperature. It<br />

is known that the gap conductance<br />

during reactor lifetime, depends<br />

strongly on the irradiation and power<br />

history as shown <strong>for</strong> instance in [Bielen<br />

2015] thermal-hydraulic, and fuel<br />

thermo-mechanical behavior of the<br />

core components. Typically in current<br />

generation reactor physics analysis<br />

these three component areas are given<br />

separate consideration or are at best<br />

loosely coupled. Within this work, a<br />

methodology <strong>for</strong> tightly coupling the<br />

core neutronics code PARCS, thermalhydraulics<br />

code PATHS, and fuel<br />

rod simulator code FRAPCON was developed.<br />

This coupled code package,<br />

referred to as FRAPARCS, was applied<br />

to two fuel depletion problems: a pin<br />

cell and a 5x5 assembly mini-core.<br />

The results of the depletion calculations<br />

indicate that standalone PARCS<br />

does not adequately capture the<br />

evolution of fuel rod behavior which<br />

influences the Doppler fuel temperature<br />

used in cross section evaluation,<br />

and as a result significant differences<br />

in computed core per<strong>for</strong>mance can be<br />

seen. In particular, the behavior of<br />

the fuel-cladding gap and associated<br />

temperature drop was found to be important.<br />

FRAPARCS was then applied<br />

to the pin cell calculation to evaluate<br />

the uncertainty and sensitivity of the<br />

nuclear per<strong>for</strong>mance of the core due<br />

to the influence of fuel thermo-mechanical<br />

models available <strong>for</strong> manipulation<br />

in FRAPCON. A sensitivity study<br />

was conducted to determine which<br />

fuel models were influential on the<br />

neutronics outputs; we determined<br />

that fuel thermal conductivity, fuel<br />

thermal expansion, cladding creep,<br />

and fuel swelling had an important<br />

influence on the core Doppler temperature<br />

and reactivity. Additionally,<br />

the heat transfer coefficient was found<br />

to be important. Then, FRAPARCS<br />

was integrated within the DAKOTA<br />

uncertainty package. Two varieties<br />

of sampling-based methods (Random<br />

and Latin Hypercube Sampling).<br />

There are only few publications about<br />

mutiphysics simulations in the area of<br />

fuel behavior studies [e.g. Magedanz<br />

et al. 2015; Hales et al. 2014] and,<br />

even less containing studies of reactor<br />

core simulations [Holt et al. 2016; Holt<br />

et al. 2014].<br />

In an evolutionary approach, at the<br />

Karlsruhe Institute <strong>for</strong> Technology<br />

(KIT), the NRC’s neutronics core<br />

simulator PARCS [Downar et al. 2012]<br />

is being integrated with KIT’s subchannel<br />

code SUBCHANFLOW (SCF)<br />

[Imke, Sanchez, and Gomez-Torres<br />

2010] and ITU’s fuel behavior code<br />

TRANSURANUS (TU) [Lassman et al.<br />

1992] into a single code, PARCS- SCF-<br />

TU. For the SCF model, each fuel<br />

assembly is represented as a single<br />

channel and, analogously, a fuel<br />

assembly in the TU model is represented<br />

as an average fuel rod. One of<br />

the objectives of this coupling is to<br />

study the impact that high fidelity<br />

solvers have on reactor core simulations.<br />

Moreover, a main objective of<br />

this coupling is the modeling of<br />

the RIA transient scenario <strong>for</strong> high<br />

burnup conditions. For this scenario,<br />

the fuel properties and fuel temperature<br />

modeling are of great importance<br />

since current simulations don’t<br />

account <strong>for</strong> details of the fuel rod<br />

thermos-mechanics and subchannel<br />

thermal hydraulics. The need of this<br />

kind of calculations is an issue brought<br />

up in recent years by the CSNI<br />

( Committee on the Safety of <strong>Nuclear</strong><br />

Installations) Working Group on Fuel<br />

Safety [OECD/NEA 2010] and a topic<br />

under discussion <strong>for</strong> regulatory<br />

authorities in many countries in<br />

Europe.<br />

In this paper, results <strong>for</strong> the OECD/<br />

NEA and U.S. NRC PWR MOX/UO2<br />

core transient benchmark core are<br />

used to compare PARCS-SCF and<br />

PARCS-SCF-TU with the PARCS<br />

standalone solution. Preliminary results<br />

are given, which show the impact<br />

of modeling the fuel temperature<br />

with a fuel behavior code considering<br />

burnup.<br />

2 Methodology<br />

The neutronics core simulator PARCS,<br />

the sub-channel solver SCF and the<br />

fuel behavior solver TU have been<br />

merged together into a single executable<br />

PARCS-SCF-TU. In this Multiphysics<br />

coupling, SCF replaces the<br />

simple thermal hydraulic solver of<br />

PARCS and TU replaces the fuel rod<br />

solver of SCF to compute the fuel and<br />

cladding temperature distributions.<br />

The involved codes are written<br />

in FORTRAN using different programming<br />

styles and FORTRAN versions.<br />

The internal coupling has been<br />

developed in Microsoft Visual Studio<br />

following its convention <strong>for</strong> solutions<br />

and projects management. To maintain<br />

an organized coding and avoid<br />

undesired callings to duplicate subroutines<br />

or variable names a modularized<br />

approach is used. The original<br />

codes are encapsulated in projects and<br />

they only interact with each other via<br />

a main project. Only in special circumstances<br />

this rule isn’t followed.<br />

New coding necessary <strong>for</strong> the communication<br />

of the codes is modularized<br />

in a project dedicated to the<br />

coupling. All modifications to the<br />

original source code were implemented<br />

with pre-compiler directives.<br />

This allows the user to compile either<br />

only PARCS, or only PARCS-SCF or<br />

PARCS-SCF-TU depending on the<br />

used keywords.<br />

275<br />

RESEARCH AND INNOVATION<br />

Research and Innovation<br />

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling <strong>for</strong> High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

RESEARCH AND INNOVATION 276<br />

In this coupling approach, the<br />

activation of the different solvers e.g.<br />

SCF’s TH model or TU’s fuel solver<br />

can be activated by the analyst<br />

independently. If SCF is activated, the<br />

options belonging to SCF can be used<br />

<strong>for</strong> the simulation. If the TU solver is<br />

invoked, then the SCF solver must be<br />

also used. In the reactor core model<br />

<strong>for</strong> PARCS-SCF-TU, each fuel assembly<br />

is represented by one neutronic node<br />

in PARCS, by one average thermal<br />

hydraulic channel in SCF and by one<br />

average fuel rod in TU. The three<br />

codes share the same axial discretization.<br />

The original PARCS input deck<br />

has been extended to control the<br />

coupled simulation and the mapping<br />

between the three different computational<br />

domains.<br />

PARCS and SCF are coupled <strong>for</strong><br />

steady state and transient simulations,<br />

whereas TU is coupled to PARCS-SCF<br />

<strong>for</strong> steady state simulations and the<br />

transient coupling is under development.<br />

The coupling was implemented<br />

in such a way that the original inputs<br />

of each code can be used with minimal<br />

or no modifications. Only the PARCS’<br />

input includes new key commands to<br />

indicate that a coupled simulation will<br />

be per<strong>for</strong>med, to choose the parameters<br />

<strong>for</strong> the coupling and to define<br />

in<strong>for</strong>mation about the mapping.<br />

2.1 Coupling description<br />

A loose, nodal level coupling using<br />

the Operator-Splitting (OS) method<br />

[Faragó 2008] was implemented. The<br />

operator split method has the advantage<br />

of allowing the use of legacy<br />

codes with minor modifications to the<br />

original source. This is a valuable<br />

point since the validation of individual<br />

code requires big ef<strong>for</strong>t, making<br />

the reuse of validated tools a common<br />

practice in the nuclear field.<br />

The PARCS-SCF-TU’s iteration<br />

scheme <strong>for</strong> the steady state coupling<br />

is represented in Figure 1 and the<br />

iteration process is described hereafter:<br />

Initialization:<br />

1) PARCS assumes flat TH conditions,<br />

and predicts 3D power distribution<br />

à pass in<strong>for</strong>mation to TU.<br />

2) SCF assumes initial flat power<br />

distribution and compute TH<br />

distribution à pass TH conditions<br />

to TU.<br />

3) TU compute fuel temperature<br />

distribution (fuel and clad) <strong>for</strong> all<br />

fuel assemblies à pass in<strong>for</strong>mation<br />

to SCF.<br />

4) SCF computes TH conditions with<br />

given clad temperature as B.C. à<br />

pass TH in<strong>for</strong>mation to TU.<br />

5) Iteration loop consisting of step 3<br />

and 4 until convergence of fuel<br />

temperature and TH conditions is<br />

achieved.<br />

6) SCF/TU Converges à pass fuel and<br />

coolant temperature and coolant<br />

density to PARCS.<br />

Then, the process continues with the<br />

iteration loop after initialization:<br />

1) PARCS computes power with updated<br />

TH conditions: k pass power<br />

to TU.<br />

2) TU Computes fuel assemblies k<br />

pass fuel temperature fields to SCF.<br />

3) SCF computes TH conditions k<br />

pass in<strong>for</strong>mation to TU.<br />

4) Iteration loop from step 2 to 3 until<br />

convergence k when convergence<br />

criteria is achieved, in<strong>for</strong>mation is<br />

passed to PARCS.<br />

5) Finally, the iterative process iterates<br />

from 1) until convergence criteria<br />

are met.<br />

The coupling scheme <strong>for</strong> PARC-SCF<br />

transient calculation is shown in<br />

Figure 2. An explicit coupling is used<br />

in these calculations and its convergence<br />

is achieved with small time<br />

steps [Mylonakis et al. 2014] various<br />

physical phenomena of different<br />

nature are interrelated. Multi- physics<br />

calculations that account <strong>for</strong> the interrelated<br />

nature of the neu tronic and<br />

thermal-hydraulic pheno mena are of<br />

major importance in reactor safety and<br />

design and as a result a special ef<strong>for</strong>t is<br />

developed within the nuclear engineering<br />

scientific community to improve<br />

their efficiency and accuracy. In<br />

addition, the strongly hetero geneous<br />

nature of reactor cores involves phenomena<br />

of different scales. The interaction<br />

between different scales is a<br />

specificity of these systems, since a<br />

local per turbation might influence<br />

the be havior of the whole core, or a<br />

global perturbation can influence the<br />

properties of the media on all scales.<br />

As a consequence, multi- scale calculations<br />

are required in order to take<br />

the reactor core multi- scale nature<br />

into account. It should be mentioned<br />

that the multi-physics nature of a<br />

nuclear reactor cannot be separated<br />

from the multi-scale one in the<br />

framework of computational nuclear<br />

engineering as reactor design and<br />

safety require computational tools<br />

which are able to examine globally the<br />

com plicated nature of a nuclear reactor<br />

in various scales. In this work a<br />

global overview of the current status<br />

of two- physics (neutronic/thermalhydraulic.<br />

The transient coupling has been<br />

implemented <strong>for</strong> PARCS with SCF.<br />

The coupling with TU is under development.<br />

3 Verification<br />

of the coupled tool<br />

PARCS-SCF-TU is compiled into one<br />

single executable and certain options<br />

in PARCS input are enabled or disabled<br />

to run either PARCS standalone,<br />

PARCS-SCF or PARCS-SCF-TU.<br />

During the verification, several<br />

small tests cases were per<strong>for</strong>med in a 3<br />

by 3 fuel assemblies PWR minicore <strong>for</strong><br />

steady state (PARCS-SCF and PARCS-<br />

SCF-TU) and transient (PARCS- SCF)<br />

situations observing good agreement<br />

between the codes. For the sake of<br />

brevity only results <strong>for</strong> a more complex<br />

reactor will be presented here. The<br />

OECD/NEA and U.S. NRC PWR MOX/<br />

UO2 core transient benchmark<br />

[ Kozlowski, T and Downar 2003] was<br />

used <strong>for</strong> verification purposes. The<br />

cross sections used <strong>for</strong> the simulation<br />

are directly taken from the benchmark.<br />

Input models <strong>for</strong> SCF, PARCS<br />

| | Fig. 1.<br />

PARCS-SCF-TU coupling scheme <strong>for</strong> steady<br />

state simulations.<br />

| | Fig. 2.<br />

Time flow scheme <strong>for</strong> PARCS-SCF coupling.<br />

Research and Innovation<br />

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling <strong>for</strong> High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

PARCS-SCF<br />

PARCS- internal TH<br />

Number of outer iterations 28 28<br />

Time (sec) 124.1 18.8<br />

Critical Boron concentration (ppm) 1693 1681<br />

Tcenterline-max (°C) [local] 1406 1560<br />

Tcool-outlet (°C) 325.81 325.84<br />

Tcool-inlet (°C) 286.85<br />

| | Tab. 1.<br />

Results <strong>for</strong> HFP conditions with al CR out.<br />

and TU are derived from the benchmark<br />

specifications.<br />

The purpose is to test the correctness<br />

of the implementation by<br />

comparing the results obtained with<br />

PARCS standalone, PARCS-SCF and<br />

PARCS-SCF-TU. The SCF model is as<br />

similar as possible to the PARCS internal<br />

thermal-hydraulics. The model of<br />

TU corresponds to a fresh UO 2 fuel pin<br />

with the geometry derived from the<br />

benchmark specifications, being the<br />

purpose of this to match the simplified<br />

model of PARCS’ internal solver.<br />

3.1 OECD/NEA and U.S. NRC<br />

PWR MOX/UO2 Core<br />

Transient Benchmark<br />

description<br />

The benchmark PWR reactor core<br />

consist of 193 fuel assemblies<br />

arranged in a Cartesian geometry. It’s<br />

composed by UO 2 and MOX fuel types<br />

with dif ferent enrichments, and seven<br />

different burnup points. The necessary<br />

specifications to generate the input<br />

models are described in the<br />

benchmark [Kozlowski, T and Downar<br />

2003].<br />

In the benchmark, burnup is<br />

considered in the cross-section<br />

generation but not in the material<br />

properties of the fuel.<br />

thermal-hydraulics to check the correct<br />

implementation of SCF in the coupling.<br />

When comparing local differences <strong>for</strong><br />

the power distribution, the maximum<br />

local difference (node to node comparison)<br />

is


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

RESEARCH AND INNOVATION 278<br />

| | Fig. 4.<br />

<strong>Power</strong> evolution <strong>for</strong> the OECD/NEA and U.S. NRC PWR MOX/UO2 core transient benchmark computed<br />

with PARCS-SCF and compared against other benchmark participants.<br />

The calls to TU’s solver increase<br />

greatly the computational time. There<br />

are 2 main reasons <strong>for</strong> this, the first is<br />

that TU’s solver must read TU’s input<br />

every time the solver is called which<br />

generates a big overhead <strong>for</strong> TU’s<br />

calculations. The second is that TU’s<br />

solver is more time consuming than<br />

the simplified solver of SCF <strong>for</strong> the<br />

fuel temperature since it describes the<br />

thermo-mechanics including fission<br />

gas release in a more accurate manner<br />

than SCF. TU solvers one FA at a time,<br />

so a parallel implementation <strong>for</strong> TU<br />

is being considered to speed up the<br />

calculations.<br />

3.3.1 PARCS-SCF-TU:<br />

Burnup consideration<br />

in fuel properties<br />

One of the advantages of having<br />

coupled TU with PARCS-SCF is the<br />

possibility to simulate the burnup<br />

dependent fuel material properties<br />

and the behavior of irradiated fuel. In<br />

the benchmark PWR core, the fuels<br />

have 7 defined burnup points. These<br />

burnups are considered in the crosssection<br />

generation process, but they<br />

are not considered in the material<br />

properties (such as the gap conductance)<br />

when computing the radial<br />

fuel temperature (in an average pin).<br />

A steady state calculation <strong>for</strong> the<br />

benchmark PWR core was per<strong>for</strong>med<br />

with PARCS-SCF-TU <strong>for</strong> 2 cases: The<br />

first case considering fresh uranium<br />

in the TU model, the second case considering<br />

the corresponding burnup<br />

condition of each fuel in the TU<br />

model. The rest of the parameters in<br />

the model of PARCS, SCF and TU<br />

remain the same.<br />

Figure 6 shows a comparison of<br />

the fuel centerline temperature <strong>for</strong><br />

calculations with PARCS-SCF-TU <strong>for</strong><br />

three different fuels with different<br />

burnup. As it is expected the difference<br />

between both solutions (with<br />

and without BU considerations in<br />

TU’s input model) grow higher as the<br />

burnup goes up.<br />

4 Discussion<br />

In the comparison <strong>for</strong> the PARCS-SCF-<br />

TU calculation with burnup considerations,<br />

it is observed that there<br />

is a considerable influence of the<br />

burnup in the fuel temperature<br />

distribution. Figure 6 shows that<br />

the higher the burnup, the higher the<br />

differences in the fuel temperature<br />

when comparing to cases w/o burnup.<br />

Differences <strong>for</strong> the fuel centerline<br />

temperature rising up to 130 ºC when<br />

comparing results considering the<br />

burnup history of the fuels or not<br />

doing so in TU input. These differences<br />

show that there is a considerably<br />

impact when having taken<br />

into account fuel BU history in<br />

material properties and suggest that<br />

further analyses should be done in<br />

this direction.<br />

A good agreement has been found<br />

in the steady state and transient<br />

comparisons of PARCS-SCF against<br />

PARCS standalone solution showing<br />

a correct implementation of the<br />

coupling. The comparison of the<br />

PARCS- SCF results against the ones of<br />

the benchmark participants shows a<br />

good agreement.<br />

Regarding the comparison of<br />

PARCS-SCF against PARCS standalone<br />

<strong>for</strong> the transient simulation a small<br />

over peak can be observed in PARCS-<br />

SCF which can be explained because<br />

of the different models <strong>for</strong> fuel rod<br />

properties. Whereas the peak time<br />

and the width of the peak are the<br />

same as expected since (as explained<br />

by the adiabatic Nordheim-Fuchs<br />

model) they depend on the inserted<br />

a) PARCS-SCF axially integrated power at power peak time. b) PARCS-SCF vs PARCS standalone relative power<br />

difference at power peak time.<br />

| | Fig. 5.<br />

UO2/MOX PWR Benchmark axially integrated power distribution - Comparison of PARCS-SCF vs PARCS standalone solutions.<br />

Research and Innovation<br />

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling <strong>for</strong> High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

| | Fig. 6.<br />

Centerline fuel temperature. Results considering No Burnup (blue) vs considering Burnup (red)<br />

at different burnup points.<br />

| | Magedanz, J., M. Avramova, Y. Perin, and A.K. Velkov. 2015.<br />

High-Fidelity Multi-Physics System TORT-TD/CTF/FRAPTRAN <strong>for</strong><br />

Light Water Reactor Analysis. Annals of <strong>Nuclear</strong> Energy 84.<br />

Elsevier Ltd: 234–43. doi:10.1016/j.anucene.2015.01.033.<br />

| | Mylonakis, A. G., M. Varvayanni, N. Catsaros, P. Savva, and D. G<br />

E Grigoriadis. 2014. Multi-Physics and Multi-Scale Methods Used<br />

in <strong>Nuclear</strong> Reactor Analysis. Annals of <strong>Nuclear</strong> Energy 72. Elsevier<br />

Ltd: 104–19. doi:10.1016/j.anucene.2014.05.002.<br />

| | OECD/NEA. 2010. <strong>Nuclear</strong> Fuel Behaviour during Reactivity<br />

Initiated Accidents. Paris, France.<br />

Authors<br />

Joaquín R. Basualdo<br />

Victor H. Sánchez<br />

Robert Stieglitz<br />

Karlsruhe Institute of Technology<br />

Institute of Neutron Physics and<br />

Reactor Technology<br />

Herman-vom-Helmholtz-Platz-1<br />

76344 Eggenstein-Leopoldshafen<br />

Germany<br />

Rafael Macián-Juan<br />

Technische Universität München<br />

Lehrstuhl für Nukleartechnik<br />

Boltzmannstraße 15<br />

85747 Garching bei München<br />

Germany<br />

RESEARCH AND INNOVATION 279<br />

reactivity and the precursors constant<br />

which are the same in both cases.<br />

PARCS-SCF-TU results have been<br />

compared against PARCS-SCF and<br />

PARCS standalone using fresh fuel<br />

condition in TU model. Local comparisons<br />

<strong>for</strong> the fuel average, and fuel<br />

centerline temperature, show a good<br />

agreement between the solutions<br />

confirming the correct implementation<br />

of the coupling approach.<br />

Finally, it should be noted that the<br />

calculation time of PARCS-SCF-TU increased<br />

considerably since the TUsolver<br />

must be called as many time as<br />

the number of fuel assemblies during<br />

each SOR-iteration of SCF. This is<br />

approximately 193 calls to the TUsolver<br />

times approximately 10 to 15<br />

SOR iterations per PARCS inner<br />

iterations (~30). So far, no optimization<br />

of the numerical methods<br />

to accelerate convergence have been<br />

implemented and implementations<br />

like the predictor-corrector method<br />

is in the plans <strong>for</strong> future improvements.<br />

5 Conclusions and Outlook<br />

The consideration of burnup history<br />

in fuel properties in PARCS-SCF-<br />

TU has shown significant differences<br />

in fuel temperature prediction as<br />

expected. The code-to-code comparison<br />

demonstrated the correct implementation<br />

of the coupling.<br />

The implementation of a predictorcorrector<br />

method to accelerate the<br />

convergence on the fuel temperature,<br />

along with a parallel implementation<br />

are planned to be implemented <strong>for</strong> the<br />

PARCS-SCF-TU code to speed up the<br />

calculation. The development of<br />

PARCS-SCF-TU <strong>for</strong> transient simulations<br />

is underway and it will pave the<br />

way <strong>for</strong> the analysis of RIA-scenarios<br />

and high burnup fuels.<br />

Acknowledgments<br />

The authors acknowledge the support<br />

of the <strong>Nuclear</strong> Safety Program of the<br />

Karlsruhe Institute of Technology and<br />

the support of the DAAD <strong>for</strong> the<br />

founding on the PhD research of J.<br />

Basualdo.<br />

References<br />

| | Bielen, Andrew Scott. 2015. Sensitivity and Uncertainty Analysis<br />

of Multiphysics <strong>Nuclear</strong> Reactor Core Depletion. University of<br />

Michigan.<br />

| | Downar, Thomas, Yunlin Xu, Volkan Seker, and Nathan Hudson.<br />

2012. PARCS v3.0 U.S. NRC Core Neutronics Simulator: Theory<br />

Manual. Ann Arbor.<br />

| | Faragó, István. 2008. A Modified Iterated Operator Splitting<br />

Method. Applied Mathematical Modelling 32 (8): 1542–51.<br />

doi:10.1016/j.apm.2007.04.018.<br />

| | Hales, J.D., M.R. Tonks, F.N. Gleicher, B.W. Spencer, S.R.<br />

Novascone, R.L. Williamson, G. Pastore, and D.M. Perez. 2014. Advanced<br />

Multiphysics Coupling <strong>for</strong> LWR Fuel Per<strong>for</strong>mance Analysis.<br />

Annals of <strong>Nuclear</strong> Energy 84. Elsevier Ltd: 98–110. doi:10.1016/j.<br />

anucene.2014.11.003.<br />

| | Holt, L., U. Rohde, S. Kliem, S. Baier, M. Seidl, P. Van Uffelen, and<br />

R. Macián-Juan. 2016. Investigation of Feedback on Neutron<br />

Kinetics and Thermal Hydraulics from Detailed Online Fuel<br />

Behavior Modeling during a Boron Dilution Transient in a PWR<br />

with the Two-Way Coupled Code System DYN3D-TRANSURANUS.<br />

<strong>Nuclear</strong> Engineering and Design 297 (December 2015). Elsevier<br />

B.V.: 32–43. doi:10.1016/j.nucengdes.2015.11.005.<br />

| | Holt, L., U. Rohde, M. Seidl, A. Schubert, P. Van Uffelen, and R.<br />

Macián-Juan. 2014. Development of a General Coupling Interface<br />

<strong>for</strong> the Fuel Per<strong>for</strong>mance Code TRANSURANUS - Tested with the<br />

Reactor Dynamics Code DYN3D. Annals of <strong>Nuclear</strong> Energy 84.<br />

Elsevier Ltd: 73–85. doi:10.1016/j.anucene.2014.10.040.<br />

| | Imke, Uwe, Victor Sanchez, and Armando Miguel Gomez-Torres.<br />

2010. SUBCHANFLOW: A New Empirical Knowledge Based<br />

Subchannel Code. In KTG. Berlin.<br />

| | Kozlowski, T, and T.J. Downar. 2003. OECD/NEA and US NRC<br />

PWR MOX/UO2 Core Transient Benchmark. Working Party of the<br />

Physics of Plutonium Fuels and Innovative Fuel Cycles, OECD/NEA<br />

<strong>Nuclear</strong> Science Committee, no. December: 1–18. http://scholar.<br />

google.com/scholar?hl=en&btnG=Search&q=intitle:OECD/<br />

NEA+AND+U.S.+NRC+PWR+MOX/UO2+CORE+TRANSIENT+<br />

BENCHMARK#0.<br />

| | Lassman, K., C. O. Carroll, J. van de Laar, and C. Ott. 1992.<br />

TRANSURANUS: A Fuel Analysis Code Ready <strong>for</strong> Use. <strong>Journal</strong> of<br />

<strong>Nuclear</strong> Materials, 295–302.<br />

Research and Innovation<br />

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling <strong>for</strong> High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Special Topic | A Journey Through 50 Years AMNT<br />

280<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Am 7. und 8. Mai<br />

2019 begehen wir<br />

das 50. Jubiläum<br />

unserer Jahrestagung<br />

Kerntechnik. Zu<br />

diesem Anlass öffnen<br />

wir unser <strong>atw</strong>-Archiv<br />

für Sie und präsentieren<br />

Ihnen in jeder<br />

Ausgabe einen<br />

historischen Artikel.<br />

Aus der Ansprache<br />

des Bundesministers<br />

für Umwelt,<br />

Naturschutz und<br />

Reaktorsicherheit,<br />

Prof. Dr. K. Töpfer,<br />

an die Teilnehmer<br />

der JK’88 am 17. Mai<br />

1988 in Travemünde.<br />

Ja zur Kernenergienutzung in<br />

internationaler Sicherheitspartnerschaft<br />

Klaus Töpfer<br />

| | Eröffnungsveranstaltung 1988.<br />

Auch und gerade unter dem Eindruck der Unzulänglichkeiten und Verfehlungen, die die öffentliche Diskussion um<br />

die Kernenergie bei uns in den vergangenen Monaten bestimmt haben, ist es meine feste Überzeugung, daß auch der<br />

Sachverstand der Unternehmen, ihr Eigeninteresse und ihre hohe Verantwortung für einen sicheren und umweltverträglichen<br />

Betrieb wesentlicher Teil des Kontrollgefüges in einer hochtechnisierten, modernen Industrie ist. Dieses<br />

Interesse und die Verantwortlichkeit müssen allerdings nachdrücklich wahrgenommenund kontinuierlich unter Beweis<br />

gestellt werden. In der internationalen Diskussion nach Tschernobyl ist für dieses ständige Bemühen um die verantwortliche<br />

Gewährleistung von Sicherheit, für die Selbstverpflichtung auf exzellente Leistung und auf eine dynamische<br />

Weiterentwicklung von Sicherheit und Risikovorsorge der Begriff Sicherheitskultur als Ethos für die in der Kerntechnik<br />

Tätigen geprägt worden. Ich glaube, daß dies sehr genau das trifft, was wir für jeden sichtbar zukünftig unter Beweis<br />

stellen müssen.<br />

Eine Technologie mit dem Anspruch Zukunftstechnologie<br />

kann und darf nicht gegen die Bevölkerung durchgesetzt<br />

werden. Wenn Vertrauen und Zuversicht in eine erfolgreiche<br />

Kerntechnik zum Nutzen von Mensch und Umwelt<br />

wiederhergestellt werden sollen, dann muß rückhaltlos<br />

aufgeklärt und offen in<strong>for</strong>miert werden, dann muß die<br />

Gegenwart neu geordnet und der Weg in die Zukunft neu<br />

bestimmt werden und überall wo nötig, muß auch tief<br />

geschnitten werden. Genau das hat die Bundesregierung<br />

in den zurückliegenden zwei Jahren klar und unmißverständlich<br />

getan, und sie wird es auch weiterhin tun.<br />

Mit der Neustrukturierung der Kernenergiewirtschaft<br />

verbinde ich folgende Zielsetzungen:<br />

pp<br />

Schaffung klar abgegrenzter Aufgabenbereiche;<br />

pp<br />

eindeutige Zuordnung wirtschaftlicher Verantwortlichkeiten;<br />

pp<br />

nachhaltige Verbesserung der Kontrollmöglichkeiten<br />

für die Exekutive;<br />

pp<br />

Transparenz und Nachvollziehbarkeit des Aufgabenverständnisses<br />

und der Aufgabenwahrnehmung für<br />

Politik und Öffentlichkeit.<br />

Um dies zu erreichen, werden die Verflechtungen in der<br />

deutschen Kernenergiewirtschaft deutlich verringert.<br />

Querverbindungen in sensiblen Bereichen müssen ausgeschlossen<br />

werden, damit sich ähnliche Vorfälle in Zukunft<br />

nicht wiederholen können.<br />

Im Mittelpunkt des Konzeptes, das ich mit den Verantwortlichen<br />

der deutschen Wirtschaft abgestimmt habe<br />

und das auch von den Genehmigungs- und Aufsichtsbehörden<br />

der Länder mitgetragen wird, steht eine klare<br />

Trennung der unternehmerischen Verantwortung in<br />

folgenden Bereichen:<br />

1. Transport von radioaktiven Abfällen und Brennelementen;<br />

2. Konditionierung und Zwischenlagerung schwach- und<br />

mittelradioaktiver Abfälle;<br />

3. Herstellung von Kernbrennstoffen;<br />

4. Betrieb von Kernkraftwerken und Wiederaufarbeitung<br />

von Kernbrennstoffen.<br />

Für die Beförderung radioaktiver Abfälle und Brennelemente<br />

ist die Zusammenfassung der Dienstleistungen<br />

unter der unternehmerischen Führung der Deutschen<br />

Bundesbahn vorgesehen.<br />

Der Bereich der Konditionierung schwach- und mittelradioaktiver<br />

Abfälle wird einem Unternehmen übertragen.<br />

Die Verantwortung jedes einzelnen Kernkraftwerksbetreibers<br />

nach § 9 a AtG als Abfallverursacher und<br />

Ablieferungspflichtiger ans Endlager und die Gesamtverantwortung<br />

aller Betreiber bleibt bei dieser Lösung<br />

unberührt.<br />

Auch der Bereich der Zwischenlagerung radioaktiver<br />

Abfälle wird- wie die Konditionierung-einem Unter nehmen<br />

zugeordnet.<br />

Die Antwort auf erkannte Schwachstellen und Risiken<br />

und möglichen negativen Folgewirkungen von Technik ist<br />

nicht der Verzicht auf den technologischen Fortschritt, sondern<br />

ist die ständige Suche nach der besseren, sichereren<br />

Technik, ist eine ständige weitere Optimierung von Umweltvorsorge,<br />

durch Risikovorsorge und durch Zukunftsvorsorge.<br />

Die Pflicht zur bestmöglichen Vorsorge für Bevölkerung<br />

und Umwelt bedeutet aber, daß man sich auf dieses<br />

Präventivkonzept allein nicht beschränken darf. Solange<br />

schwere Reaktorunfälle, wie Kernschmelzen, mit einer Freisetzung<br />

größerer Mengen radioaktiver Stoffe in die Umwelt<br />

nicht völlig ausgeschlossen werden können, muß auch für<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft ı Klaus Töpfer


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

281<br />

| | Blick ins Auditorium in Travemünde. | | Ansprache des Bundesministers für Umwelt, Naturschutz<br />

und Reaktorsicherheit, Prof. Dr. K. Töpfer.<br />

diesen Fall Vorsorge getroffen werden. Staatlich geförderte<br />

Forschung und Entwicklung hat in diesem Bereich zahlreiche<br />

Möglichkeiten eröffnet. Mir geht es darum, bei den<br />

heutigen Kernkraftwerken über die getroffene Schadensvorsorge<br />

hinaus zu erreichen, daß die letzte entscheidende<br />

Barriere für die Zurückhaltung radioaktiver Stoffe von der<br />

Umwelt, nämlich der Sicherheitsbehälter, auch bei Belastungen<br />

infolge schwerer Reaktorstörfälle, insbesondere<br />

Kernschmelzen, in seiner Wirksamkeit weitgehend erhalten<br />

werden kann. Unsere Kernkraftwerke verfügen hier über<br />

technische Potentiale, die erschlossen werden können, wie<br />

es z. B. mit der kontrollierten, gefilterten Druckentlastung<br />

bereits geschehen ist. Die Vorsorge ist hier noch weiter zu<br />

optimieren, z. B. was die Kontrolle des Wasserstoff problems<br />

angeht, das durch den Bericht des Senators Rausch für das<br />

französische Parlament besondere Aktualität bekommen<br />

hat. Durch die Inertisierung bei Siedewasserreaktoren wird<br />

diesem Problem dort Rechnung getragen; das Prüfprogramm<br />

der RSK vom 21. Oktober 1986 sieht hierzu auch<br />

die Prüfung von Maßnahmen bei Druckwasserreaktoren<br />

vor. Mit Vor schlägen für Maßnahmen des anlageninternen<br />

Notfallschutzes ist in absehbarer Zeit zu rechnen. Anerkennung<br />

gebührt der Kernenergiewirtschaft, die sich – in<br />

bisher nicht gekannter Offenheit – dieser Heraus<strong>for</strong>derung<br />

gestellt hat und in eigenen Arbeiten und Veröffent lichungen<br />

ihre Vorstellungen dargelegt hat und Maß nahmen durchgeführt<br />

hat.<br />

Harrisburg und Tschernobyl haben gezeigt, daß die<br />

kernenergienutzenden Staaten in eine Risikogemeinschaft<br />

eingebunden sind. Der sicherheitstechnische Mißerfolg<br />

des einen ist zugleich auch Rückschlag für alle anderen.<br />

Dies gilt selbst dann, wenn bei einem Reaktorunfall<br />

gravierende Auswirkungen auf die Umgebung verhindert<br />

werden können. Daher brauchen wir eine internationale<br />

Sicherheitspartnerschaft.<br />

Die Bundesrepublik Deutschland hat sich an dem<br />

Prozeß verstärkter internationaler Kooperation maßgeblich<br />

beteiligt. Ausgehend von der lAEO-Sonderkonferenz<br />

im September 1986 wurde viel erreicht. Für<br />

unser grundlegendes Ziel, international eine Gewährleistung<br />

der kerntechnischen Sicherheit auf möglichst<br />

einheitlichem hohen Niveau zu erreichen, wurden wichtige<br />

erste Schritte geleistet. Die sicherheitstech nischen Regeln<br />

der internationalen Atomenergieagentur (NUSSAG) sind<br />

in ihren grundlegenden An<strong>for</strong>derungen überarbeitet worden.<br />

Die Bundesregierung erwartet nun, daß sie vom<br />

IAEO-Gouverneursrat verabschiedet und dann auch von<br />

allen IAEO-Mitgliedsstaaten voll berücksichtigt werden.<br />

Die Bundesregierung wird in Fortführung ihrer<br />

Anstrengungen auf diesem Gebiet und gemeinsam mit<br />

OECD und IAEO im November 1988 in München ein internationales<br />

Symposium über die regulatorische Praxis und<br />

über die sicherheitstechnischen Regeln veranstalten.<br />

Zentrale Aufgabe für unsere gegenwärtige und<br />

zukünftige Energiepolitik ist es, einen breitgetragenen<br />

Konsens wiederzugewinnen. Energiepolitik muß schon<br />

aus Gründen der Entwicklungs- und Einführungszeiten<br />

und auch der Kosten auf größere Zeiträume angelegt sein.<br />

Auf grundlegende Entscheidungen muß dauerhaft Verlaß<br />

sein. Daher brauchen wir für die weitere Um strukturierung<br />

unserer Energieversorgung zu einem ver sorgungssicheren,<br />

umweltverträglichen und risikoarmen System wieder<br />

einen breitgetragenen energiepolitischen Grundkonsens.<br />

Die gemeinsame Verantwortung für die Kernenergieentscheidungen<br />

in den 60er und 70er Jahren verpflichtet<br />

alle Beteiligten auch heute noch. Das Denken in Pro und<br />

Contra muß einer differenzierten Betrachtungsweise Platz<br />

machen. Kernenergie wird auf absehbare Zeit weltweit<br />

weiter genutzt werden. Eine Verständigung über konkret<br />

zu stellende An<strong>for</strong>derungen an Sicherheit und Risikovorsorge<br />

und über das Vorgehen bei ihren praktischen<br />

Verwirklichungen ist unerläßlicher Bestandteil verantwortungsvoller<br />

Politik.<br />

Ich bin überzeugt, daß wir immer wieder versuchen<br />

müssen, auch mit denjenigen, die der Kerntechnik distanziert<br />

oder ablehnend gegenüberstehen, ein gemeinsames<br />

Gespräch zu führen. Mit dem, was ich Ihnen heute darlegen<br />

konnte, haben wir in wichtigen Bereichen der Kernenergie<br />

nutzung ein Vorsorgeniveau erreicht, das deutlich<br />

über dem liegt, was in den 70er Jahren von damals<br />

politischen Verantwortlichen als ausreichend betrachtet<br />

wurde. Auch dies ist Anlaß und Grundlage genug, um sich<br />

um eine Erneuerung des Grundkonsenses zu bemühen.<br />

Auch wer die Kernenergie nur für eine vorübergehende<br />

Zeit nutzen will, ist in der Pflicht, sich zur Sicherheitsgewährleistung<br />

und zur Entsorgung zu erklären.<br />

Ein weiteres Ergebnis der Bemühungen der Bundesregierung<br />

um mehr internationale Sicherheitszusammenarbeit<br />

in der Kerntechnik sind die „grundlegenden Sicherheitsprinzipien<br />

für Kernkraftwerke“, die jetzt von einem<br />

Expertenteam der <strong>International</strong>en Atomenergie Organisation<br />

vorgelegt worden sind. Mit diesen Grundsätzen wird<br />

aus Sicht führender Experten der kerntechnischen Sicherheit<br />

über das Regelwerk hinausgehend dargelegt, wie<br />

Schadensvorsorge erfolgreich praktiziert werden kann.<br />

Diese Sicherheitsprinzipien sollten zum Ausgangspunkt<br />

einer rückhaltlosen Diskussion um die Zukunft<br />

der Sicherheit der Kernkraftwerke in unserem Lande<br />

werden, in die wir auch unbeschadet früherer Erfahrungen<br />

diejenigen einbeziehen sollten, die der Kernenergie aus<br />

konkreten sicherheitstechnischen oder Risikogründen<br />

ablehnend gegenüberstehen. Ich bin überzeugt, daß wir<br />

mit dieser Diskussion und der praktischen Umsetzung<br />

ihrer Ergebnisse nicht nur in unserem Lande, sondern<br />

generell einen wichtigen Beitrag zur Sicherung unserer<br />

zukünftigen Entwicklung leisten können.<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft ı Klaus Töpfer


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

282<br />

KTG INSIDE<br />

Inside<br />

| | „Studierenden und Absolventen zuhören und deren Wünsche, Ziele und<br />

Zukunftsvisionen stärker hörbar zu machen, sind für mich zentrale<br />

Anliegen.“ Prof. Dr.-Ing. Jörg Starflinger, Mitglied im Vorstand der KTG und<br />

Ansprechpartner für die Junge Generation.<br />

Liebe Mitgliederinnen und Mitglieder der KTG,<br />

als neues Vorstandsmitglied möchte ich in der Rubrik<br />

„KTG inside“ über meine Motivation für die Kerntechnik<br />

berichten. Als Universitätsprofessor liegen mir die Ausbildung<br />

und die Entwicklung der Karriere junger Menschen<br />

sehr am Herzen. Ich bin daher sehr gerne Ansprechpartner<br />

für die „Junge Generation“ im KTG-Vorstand. Studierenden<br />

und Absolventen zuhören und deren Wünsche, Ziele<br />

und Zukunftsvisionen stärker hörbar zu machen, sind für<br />

mich zentrale Anliegen. Schließlich gehört den jungen<br />

Menschen die Zukunft – auch in der Kerntechnik … oder<br />

vielleicht doch nicht?<br />

Vor knapp vier Jahren landete eine E-Mail mit einer<br />

Umfrage in meinem Postfach. Mal wieder eine dieser<br />

Spam-Emails, von denen täglich Dutzende das Postfach<br />

zumüllen. Diese war jedoch anders: eine Umfrage im<br />

Rahmen eines BMBF geförderten Projektes zur Erfassung<br />

sogenannter „kleiner Fächer“ an Universitäten. Kleine<br />

Fächer haben einen eigenen Studiengang, ein eigenes<br />

Curriculum, aber wenig Doktoranden, wenig Studierende,<br />

wenig Professorinnen und Professoren. Ich fragte mich:<br />

„Sind wir in der Kerntechnik bereits so weit, dass wir als<br />

‚kleines Fach‘ gelten? Warum werde ich angeschrieben?“<br />

Nach meinen Studierendenzahlen gelte ich sicher als<br />

„ kleines Fach“. Die Zahl der Bachelor-Studierenden sinkt<br />

derzeit massiv. Influencer auf Instagram scheint attraktiver<br />

zu sein als ein Maschinenbaustudium. Die Anzahl<br />

der absolvierten Prüfungen in meiner Kern technik vertiefungsrichtung<br />

im Masterstudium sinkt kontinuierlich.<br />

Die Doktorandenzahlen sind hingegen erfreulicherweise<br />

nicht so stark zurückgegangen, dank erfolgreicher Einwerbung<br />

von Projekten bei der EU und bei nationalen<br />

Förderinstitutionen; hier sind besonders das BMWi<br />

und BMBF genannt. Professorenstellen werden derzeit<br />

gestrichen, ganze Fachbereiche fallen weg: Typischer<br />

Universitätskannibalismus. Vor diesem Hintergrund habe<br />

ich mich damals entschlossen, bei der Umfrage mitzumachen<br />

und habe meine Daten eingegeben.<br />

Ich engagiere mich im European <strong>Nuclear</strong> Education<br />

Network (ENEN), in dem sich über 50 europäische<br />

Universitäten, Forschungszentren und auch einige Unternehmen<br />

im Bereich „Education & Training“ zusammengeschlossen<br />

haben. Ich habe das Thema „sinkende<br />

Studierendenzahlen“ dort thematisiert und erfahren, dass<br />

dies kein rein deutscher Trend ist. Auch in anderen<br />

Ländern, die nicht einmal einen Kernenergieausstieg<br />

vollziehen, sondern Laufzeitverlängerungen genehmigt<br />

bekommen haben, sinkt die Zahl der Studierenden. ENEN<br />

hat deshalb Programme aufgelegt, um das kerntechnische<br />

Studium international attraktiver zu gestalten. ENEN<br />

unterstützt beispielsweise die Mobilität von Studierenden<br />

und Doktoranden zu Konferenzen oder übernimmt Reisekosten<br />

bei Auslandsaufenthalten. Die Zusammenarbeit<br />

mit Schulen soll intensiviert werden, um dort Themen wie<br />

Strahlung und Kerntechnik zu vermitteln.<br />

Wie könnte diesem negativen Trend der Studierendenzahlen<br />

an den Universitäten entgegengewirkt werden?<br />

Zum einen könnten nationale Programme im Bereich<br />

der Ausbildung und Studierendenförderung aufgelegt<br />

werden. Zu diesen Bottom-up-Ansätzen, die bereits<br />

bei ENEN einige Vorbilder haben, ist aber auch ein Top-<br />

Down-Ansatz er<strong>for</strong>derlich. Wir sollten eine „Strategie<br />

zur Kompetenzentwicklung in der Kerntechnik 2050“ erarbeiten.<br />

In diesem Prozess sollten nicht nur Univer sitäten,<br />

sondern auch Unternehmen, die sich proaktiv der Entwicklung<br />

neuer Technologien in der Kerntechnik widmen,<br />

beteiligt sein. Weitere „Stakeholder“, wie Vertreter von<br />

Bund und Ländern, letztere sind bekanntlich für Universitäten<br />

zuständig, sind unbedingt einzubinden. Auch Behörden,<br />

die sich zukünftig mit Zwischenlagerung und Endlagerung<br />

beschäftigen, gehören an einen runden Tisch, der<br />

diesen Top-Dow-Ansatz erarbeitet. Ein Endlager haben<br />

wir erst 2070 – vielleicht. Was müssen wir dann noch<br />

wissen (Education) und können (Training)? Von diesem<br />

Top-Down-Ansatz muss das klare zukunfts gerichtete<br />

Signal ausgehen, dass wir auch weiterhin junge motivierte<br />

Menschen brauchen, die von der Kerntechnik fasziniert<br />

sind und in unserer Branche arbeiten wollen.<br />

Was passiert, wenn uns das nicht gelingt? Es entsteht<br />

eine demographische Lücke. Mit etwa 2 bis 2,5 Jahren<br />

zeitlicher Verzögerung (durchschnittliche Dauer eines<br />

Masterstudiums) werden dann Unternehmen, Gutachter<br />

und auch Behörden feststellen, dass der Markt leer ist. Das<br />

aktuellste Beispiel scheint gerade der Strahlenschutz zu<br />

sein, wo es kaum geeignet qualifizierte Personen auf dem<br />

Arbeitsmarkt gibt. Unter der Annahme, dass ohne Verzögerung<br />

gehandelt wird, werden dann wiederum 2 bis<br />

2,5 Jahre vergehen, bis neue hochqualifizierte Personen<br />

auf den Arbeitsmarkt kommen. Die entstehende Lücke<br />

ist vier bis fünf Jahre lang. Wenn nun noch Lehrstühle<br />

wegfallen, entsteht eine noch längere Lücke (bestimmt 15<br />

Jahre). Hinzu kommt, dass im europäischen Umfeld<br />

Kraftwerke gebaut (Finnland, Ungarn, Frankreich …) und<br />

bei einer Nichtbesetzung der Lehrstühle und bei zu<br />

geringem Nachwuchs auch hier die Expertise verloren<br />

geht. Gerade vor dem Hintergrund der Langfristigkeit<br />

der Aufgaben in unserer Branche muss auch die strategisch<br />

ausgerichtete Langfristigkeit der kerntechnischen<br />

Ausbildung sicher gestellt werden. Dieses gilt selbstverständlich<br />

auch für die berufliche Ausbildung, die<br />

nicht minder wichtig ist, für die ich allerdings keine<br />

Zahlen habe.<br />

Ich halte die KTG und ihre Mitglieder, die Unternehmen,<br />

Forschungseinrichtungen und Universitäten<br />

repräsentieren, für das richtige Forum, von dem Impulse<br />

zu einer „Strategie zur Kompetenzentwicklung in der<br />

Kerntechnik 2050“ ausgehen kann. Nutzen wir doch diese<br />

Chance durch Gespräche, beispielsweise auf dem 50 th<br />

AMNT in Berlin.<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Übrigens habe ich noch einmal auf die Webseite der<br />

„kleinen Fächer“ geschaut. Die Kerntechnik hat es nicht<br />

geschafft, dort erwähnt zu werden. Lassen Sie uns<br />

bitte zielgerichtet daran arbeiten, dass dies auch nicht<br />

geschieht.<br />

Ihr Jörg Starflinger<br />

Mitglied im Vorstand der KTG<br />

Professor an der Universität Stuttgart,<br />

Institut für Kernenergetik und Energiesysteme (IKE)<br />

283<br />

Sektion NORD<br />

Vortragsankündigung<br />

Windenergie in Deutschland und Europa<br />

Status, Potenziale und Heraus<strong>for</strong>derungen in der Grund versorgung mit Strom<br />

KTG INSIDE<br />

Thomas Linnemann<br />

am Dienstag, den 14. Mai 2019 um 17:30 Uhr,<br />

PreussenElektra GmbH,<br />

Tresckowstraße 5, Hannover<br />

Die kumulierte Nennleistung der Windenergieanlagen in<br />

Deutschland hat sich in den letzten 18 Jahren bis Ende<br />

2017 auf 56.000 Megawatt (MW) mehr als verzwölffacht.<br />

Zusammen mit weiteren europäischen 17 Ländern erhöhte<br />

sich die kumulierte Nennleistung in Europa zeitgleich<br />

sogar um das 18-fache auf fast 170.000 MW. Damit verfügt<br />

allein Deutschland über gut ein Drittel der europaweiten<br />

Windenergieanlagenleistung.<br />

Für eine zuverlässige Stromversorgung sind Leistung<br />

und Energie bedarfsgerecht bereitzustellen, eine Fähigkeit,<br />

über die vom Windangebot abhängige Windenergieanlagen<br />

eingeschränkt verfügen. Der Vortrag<br />

fasst Betriebserfahrungen zur Windstromproduktion in<br />

Deutschland seit dem Jahr 2010 und in weiteren 17<br />

Ländern Europas seit 2015 zusammen und geht unter<br />

anderem der Frage nach, ob in einem deutschland- oder<br />

europaweit verstärkten Netzverbund gemäß dem Motto<br />

„irgendwo weht immer Wind“ ausreichende gegenseitige<br />

Ausgleichsmöglichkeiten bestehen.<br />

Thomas Linnemann studierte Maschinenbau mit der<br />

Vertiefungsrichtung Energie-, Anlagen- und Umwelttechnik<br />

an der Ruhr-Universität Bochum und war dort<br />

nach Abschluss seines Diploms bis 2000 als Projektingenieur<br />

in der europäischen Reaktorsicherheits<strong>for</strong>schung<br />

bei Prof. Herrmann Unger tätig. Anschließend<br />

arbeitete er bis 2011 als Redakteur für das Energie-<br />

Fachmagazin BWK des Springer-VDI-Verlags in Düsseldorf<br />

und ist seit März 2011 als Referent des VGB <strong>Power</strong>Tech e.V.<br />

in Essen tätig.<br />

Im Anschluss an den etwa einstündigen Vortrag wird es<br />

ausreichend Gelegenheit für weitere Diskussionen geben.<br />

Interessierte KTG-Mitglieder sowie Freunde und<br />

Bekannte sind herzlich eingeladen.<br />

Dr.-Ing. Hans-Georg Willschütz<br />

Sprecher KTG-Sektion NORD<br />

Thomas Fröhmel<br />

Stellv. Sprecher der KTG-Sektion NORD<br />

pp<br />

PS: Wir bitten um eine namentliche Anmeldung<br />

der Teilnehmer unter 0511 439-2184 oder<br />

an thomas.froehmel@preussenelektra.de<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

Juni 2019<br />

40 Jahre | 1979<br />

19. Dr. Gerben Dirksen, Zirndorf<br />

60 Jahre | 1959<br />

6. Gabriele Bertram, Bonn<br />

70 Jahre | 1949<br />

28. Wolfgang Schwarz, Brackenheim<br />

75 Jahre | 1944<br />

8. Jürgen Fabian, Büsingen am Hochrhein<br />

24. Hans-Jürgen Schlesinger, Essen<br />

77 Jahre | 1942<br />

10. Ing. Wolfgang Feltes,<br />

Bergisch Gladbach<br />

78 Jahre | 1941<br />

15. Dr. Frank Depisch, Erlangen<br />

79 Jahre | 1940<br />

4. Dipl.-Phys. Hans-Peter Dyck, Forchheim<br />

13. Dr. Heinz Hoffmann, Einhausen<br />

80 Jahre | 1939<br />

6. Dr. Peter Drehmann, Kornwestheim<br />

10. Dipl.-Ing. Reinhard Seepolt, Hamburg<br />

14. Dr. Gustav Meyer-Kretschmer, Jülich<br />

23. Dr. Rolf Krieg, Karlsruhe<br />

81 Jahre |1938<br />

25. Dipl.-Ing. Horst Roepenack, Bruchköbel<br />

82 Jahre | 1937<br />

10. Dipl.-Phys. Reinhard Wolf,<br />

Grosskrotzenburg<br />

83 Jahre | 1936<br />

12. Dipl.-Ing. Heinz Malmström, Ahaus<br />

30. Kai-Michael Pülschen, Erlangen<br />

84 Jahre | 1935<br />

8. Ing. Karl Rudolph, Wettingen/CH<br />

8. Dr. Ing. Heinrich Löffler, Wennigsen<br />

22. Dipl.-Ing. Johann Pisecker, Tulln/AU<br />

23. Dipl.-Ing. Werner Schultz, Hirschberg<br />

87 Jahre | 1932<br />

28. Hans Schuster, Aachen<br />

93 Jahre | 1926<br />

27. Dipl.-Ing. Heinz-Arnold Leising,<br />

Bergisch Gladbach<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

<br />

12. März 2019 ı<br />

Prof. Dr.<br />

Albert Ziegler<br />

Karlsbad<br />

Die KTG verliert in<br />

ihm ein langjähriges<br />

aktives Mitglied,<br />

dem sie ein ehrendes<br />

Andenken bewahren<br />

wird. Seiner Familie<br />

gilt unsere Anteilnahme<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

284<br />

STATISTICS<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants:<br />

2018 <strong>atw</strong> Compact Statistics<br />

Editorial<br />

At the end of the last year 2018 (key date: 31 December 2018), nuclear power plants were operating in 31 countries<br />

worldwide (cf. Table 1). In total, 451 nuclear power plants were operating on the key date. This means that the number<br />

increased by 2 units compared to the previous year’s number on 31 December 2017 (449), which means the highest<br />

number of units since the first start of an commercial nuclear power plant in 1956, due to first criticalities on the one<br />

hand and shut-downs on the other. The gross power output of these nuclear power plant units amounted to around<br />

425 GWe*, the net power output was approximately 401 GWe. This means that the available gross capacity and the<br />

available net capacity also increased by about 4 GW compared with the previous year's numbers. Additionally this is<br />

also the highest capacity since the first grid connection of a commercial nuclear power plant.<br />

Eight (8) nuclear power plants started (nuclear) operation 1<br />

in two countries in 2018. These units reached initial<br />

criticality (C), were synchronized with the grid (G) and<br />

started commercial operation (O) <strong>for</strong> the first time in<br />

2018 (cf. Table 1): China: Haiyang 1 (1250 MW, PWR),<br />

Sanmen 1 (1251 MW, PWR), Sanmen 2 (1251 MW, PWR),<br />

Taishan 1 (1750 MW, PWR), Tianwan 4 (1060 MW, PWR),<br />

Yangjiang 5 (1086 MW, PWR); Russia: Leningrad 2-1<br />

(1187 MW, PWR). One unit, Haiyang 2 (1250 MW, PWR),<br />

reached first criticality and was synchronized with the grid<br />

in 2018 (CG), commercial operation (O) started <strong>for</strong> the<br />

first time in 2019.<br />

For the fourth time since the accidents in Fukushima<br />

( Japan) four (4)units in Japan, Genkai 3 (1180 MW,<br />

PWR); Genkai 4 (1180 MW, PWR); Ohi 3 (1180 MW,<br />

PWR); Ohi 4 (1180 MW, PWR) resumed operation in 2018<br />

in Japan after a long-term shut-down.<br />

Six (6) nuclear power plant units were definitively<br />

per manently shut-down worldwide in four (4) countries in<br />

2018. In Japan the Ikata 2 (566 MW, PWR) and the Ohi 1<br />

(1175 MW, PWR) and Ohi 2 (1175 MW, PWR) plant ceased<br />

operation. In Russia the RBMK-type unit Leningrad 1<br />

(1000 MW, LWGR) was shut-down. There are ten units of<br />

this reactor type remaining in operation. In Taiwan, China<br />

the Chin Shan 1 (636 MW, BWR) plant and in the USA the<br />

Oyster Creek (595 MW, BWR) reactor were shut down.<br />

Five new projects (two more than in the previous year<br />

2017) started with the first concrete and further build<br />

activities. In Bangladesh one additional new build project<br />

started with Rooppur 2 (1200 MW), Korea started the new<br />

build of the sixth unit at Shin Kori (1400 MW) and in<br />

Russia one additional project started with the Kursk II-1<br />

project (1255 MW). At the Kursk site four RMBK reactors<br />

are in operation which should be replaced by modern<br />

GEN III+ PWR technology units. The first nuclear power<br />

project of Turkey started at the Akkuyu site. Two 1200 MW<br />

(gross) VVER-PWR are planned. The first unit should start<br />

operation in 2023. After more than 10 years of preparation<br />

the British nuclear new build programme started with<br />

the official project start of Hinkley Point C-1 (1720 MW,<br />

PWR).<br />

In total 53 reactors are under construction worldwide<br />

in 18 countries. The total gross capacity of this projects is<br />

about 58 GW*, the net capacity 55 GW, in other words the<br />

number was lower (3 untis) compared to the previous year<br />

number due to the eight (8) operation starts and five (5)<br />

new build projects. Compared with the millennium change<br />

1999/2000 this means that the number of projects under<br />

construction has risen, when 30 nuclear power plants were<br />

under construction worldwide.<br />

Active construction projects (numbers in brackets)<br />

listed are: Argentina (1), Bangladesh (2), Belarus (2),<br />

Brazil (1), China (11), Finland (1), France (1), India (7),<br />

Japan (2), Republic of Korea (5), Pakistan (2), Russia (6),<br />

Slovak Republic (2), Taiwan (2), Turkey (1), the USA (2),<br />

the United Arab Emirates (4) and the United Kingdom (1).<br />

In addition, there are about 150 nuclear power plant<br />

units in 25 countries worldwide that are in an advanced<br />

planning stage, others are in the pre-planning phase<br />

( status: 31 December 2018).<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Argentina<br />

Atucha 1 p D2O-PWR 357 341 1974<br />

Embalse p Candu 648 600 1983<br />

Atucha 2 p D2O-PWR 745 692 2014<br />

CAREM25 P PWR 29 25 (2020)<br />

Armenia<br />

Metsamor 2 p VVER-PWR 408 376 1980<br />

Belarus<br />

Belarusian 1 P VVER-PWR 1 194 1 109 (2019)<br />

Belarusian 2 P VVER-PWR 1 194 1 109 (2021)<br />

Bangladesh<br />

Rooppur 1 P VVER-PWR 1 200 1 080 (2022)<br />

Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2023)<br />

Belgium<br />

Doel 1 p PWR 454 433 1975<br />

Doel 2 p PWR 454 433 1975<br />

Doel 3 p PWR 1 056 1 006 1982<br />

Doel 4 p PWR 1 090 1 039 1985<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Tihange 1 p PWR 1 009 962 1975<br />

Tihange 2 p PWR 1 055 1 008 1983<br />

Tihange 3 p PWR 1 094 1 046 1985<br />

Brazil<br />

Angra 1 p PWR 640 609 1984<br />

Angra 2 p PWR 1 350 1 275 1999<br />

Angra 3 P PWR 1 300 1 245 (2021)<br />

Bulgarien<br />

Kozloduj 5 p VVER-PWR 1 000 953 1987<br />

Kozloduj 6 p VVER-PWR 1 000 953 1989<br />

Canada<br />

Bruce 1 p Candu 824 772 1977<br />

Bruce 2 p Candu 786 734 1977<br />

Bruce 3 p Candu 805 730 1977<br />

Bruce 4 p Candu 805 750 1979<br />

Bruce 5 p Candu 872 817 1985<br />

Bruce 6 p Candu 891 822 1984<br />

Bruce 7 p Candu 872 817 1986<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2018 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Bruce 8 p Candu 845 817 1987<br />

Darlington 1 p Candu 934 878 1993<br />

Darlington 2 p Candu 934 878 1990<br />

Darlington 3 p Candu 934 878 1993<br />

Darlington 4 p Candu 934 878 1993<br />

Pickering 1 p Candu 542 515 1971<br />

Pickering 4 p Candu 542 515 1973<br />

Pickering 5 p Candu 540 516 1983<br />

Pickering 6 p Candu 540 516 1984<br />

Pickering 7 p Candu 540 516 1985<br />

Pickering 8 p Candu 540 516 1986<br />

Point Lepreau p Candu 705 660 1983<br />

China<br />

CEFR p SNR 25 20 2011<br />

Changjiang 1 p PWR 650 610 2015<br />

Changjiang 2 p PWR 650 601 2016<br />

Fangchenggang 1 p PWR 1 080 1 000 2015<br />

Fangchenggang 2 p PWR 1 088 1 000 2016<br />

Fangjiashan 1 p PWR 1 080 1 000 2014<br />

Fangjiashan 2 p PWR 1 080 1 000 2014<br />

Fuqing 1 p PWR 1 087 1 000 2014<br />

Fuqing 2 p PWR 1 087 1 000 2015<br />

Fuqing 3 p PWR 1 089 1 000 2016<br />

Fuqing 4 p PWR 1 089 1 089 2017<br />

Guandong 1 p PWR 984 944 1993<br />

Guandong 2 p PWR 984 944 1994<br />

Haiyang 1 [1] p PWR 1 180 1 100 2018<br />

Haiyang 2 [1] p PWR 1 180 1 100 2018<br />

Hongyanhe 1 p PWR 1 080 1 000 2013<br />

Hongyanhe 2 p PWR 1 080 1 000 2013<br />

Hongyanhe 3 p PWR 1 080 1 000 2014<br />

Hongyanhe 4 p PWR 1 119 1 000 2016<br />

Lingao 1 p PWR 990 938 2002<br />

Lingao 2 p PWR 990 938 2002<br />

Lingao II-1 p PWR 1 087 1 000 2010<br />

Lingao II-2 p PWR 1 087 1 000 2011<br />

Ningde 1 p PWR 1 087 1 000 2012<br />

Ningde 2 p PWR 1 080 1 000 2014<br />

Ningde 3 p PWR 1 080 1 000 2015<br />

Ningde 4 p PWR 1 089 1 018 2016<br />

Qinshan 1 p PWR 310 288 1992<br />

Qinshan II-1 p PWR 650 610 2002<br />

Qinshan II-2 p PWR 650 610 2004<br />

Qinshan II-3 p PWR 642 610 2010<br />

Qinshan II-4 p PWR 642 610 2011<br />

Qinshan III-1 p Candu 728 665 2002<br />

Qinshan III-2 p Candu 728 665 2003<br />

Sanmen 1 [1] p PWR 1 180 1 100 2018<br />

Sanmen 2 [1] p PWR 1 180 1 100 2018<br />

Taishan 1 [1] p PWR 1 750 1 660 2018<br />

Tianwan 1 p VVER-PWR 1 060 990 2005<br />

Tianwan 2 p VVER-PWR 1 060 990 2007<br />

Tianwan 3 p VVER-PWR 1 126 1 060 2017<br />

Tianwan 4 [1] p VVER-PWR 1 126 1 060 2018<br />

Yangjiang 1 p PWR 1 080 1 000 2013<br />

Yangjiang 2 p PWR 1 080 1 000 2015<br />

Yangjiang 3 p PWR 1 080 1 000 2015<br />

Yangjiang 4 p PWR 1 086 1 000 2016<br />

Yangjiang 5 [1] p PWR 1 080 1 000 2018<br />

Fangchenggang 3 P PWR 1 080 1 000 (2020)<br />

Fangchenggang 4 P PWR 1 080 1 000 (2022)<br />

Fuqing 5 P PWR 1 087 1 000 (2020)<br />

Fuqing 6 P PWR 1 087 1 000 (2020)<br />

Hongyanhe 5 P PWR 1 080 1 000 (2020)<br />

Hongyanhe 6 P PWR 1 080 1 000 (2021)<br />

Shidaowan 1 P HTGR 211 200 (2020)<br />

Taishan 2 P PWR 1 750 1 660 (2019)<br />

Tianwan 5 P VVER-PWR 1 118 1 000 (2020)<br />

Tianwan 6 P VVER-PWR 1 118 1 000 (2022)<br />

Yangjiang 6 P PWR 1 080 1 000 (2019)<br />

Czech Republic<br />

Dukovany 1 p VVER-PWR 500 473 1985<br />

Dukovany 2 p VVER-PWR 500 473 1986<br />

Dukovany 3 p VVER-PWR 500 473 1987<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Dukovany 4 p VVER-PWR 500 473 1987<br />

Temelín 1 p VVER-PWR 1 077 1 027 1999<br />

Temelín 2 p VVER-PWR 1 056 1 006 2002<br />

Finland<br />

Loviisa 1 p VVER-PWR 520 496 1977<br />

Loviisa 2 p VVER-PWR 520 496 1981<br />

Olkiluoto 1 p BWR 890 860 1979<br />

Olkiluoto 2 p BWR 890 860 1982<br />

Olkiluoto 3 P PWR 1 600 1 510 (2019)<br />

France<br />

Belleville 1 p PWR 1 363 1 310 1987<br />

Belleville 2 p PWR 1 363 1 310 1988<br />

Blayais 1 p PWR 951 910 1981<br />

Blayais 2 p PWR 951 910 1982<br />

Blayais 3 p PWR 951 910 1983<br />

Blayais 4 p PWR 951 910 1983<br />

Bugey 2 p PWR 945 910 1978<br />

Bugey 3 p PWR 945 910 1978<br />

Bugey 4 p PWR 917 880 1979<br />

Bugey 5 p PWR 917 880 1979<br />

Cattenom 1 p PWR 1 362 1 300 1986<br />

Cattenom 2 p PWR 1 362 1 300 1987<br />

Cattenom 3 p PWR 1 362 1 300 1990<br />

Cattenom 4 p PWR 1 362 1 300 1991<br />

Chinon B-1 p PWR 954 905 1982<br />

Chinon B-2 p PWR 954 905 1983<br />

Chinon B-3 p PWR 954 905 1986<br />

Chinon B-4 p PWR 954 905 1987<br />

Chooz B-1 p PWR 1 560 1 500 1996<br />

Chooz B-2 p PWR 1 560 1 500 1997<br />

Civaux 1 p PWR 1 561 1 495 1997<br />

Civaux 2 p PWR 1 561 1 495 1999<br />

Cruas Meysse 1 p PWR 956 915 1983<br />

Cruas Meysse 2 p PWR 956 915 1984<br />

Cruas Meysse 3 p PWR 956 915 1984<br />

Cruas Meysse 4 p PWR 956 915 1984<br />

Dampierre 1 p PWR 937 890 1980<br />

Dampierre 2 p PWR 937 890 1980<br />

Dampierre 3 p PWR 937 890 1981<br />

Dampierre 4 p PWR 937 890 1981<br />

Fessenheim 1 p PWR 920 880 1977<br />

Fessenheim 2 p PWR 920 880 1977<br />

Flamanville 1 p PWR 1 382 1 330 1985<br />

Flamanville 2 p PWR 1 382 1 330 1986<br />

Golfech 1 p PWR 1 363 1 310 1990<br />

Golfech 2 p PWR 1 363 1 310 1993<br />

Gravelines B-1 p PWR 951 910 1980<br />

Gravelines B-2 p PWR 951 910 1980<br />

Gravelines B-3 p PWR 951 910 1980<br />

Gravelines B-4 p PWR 951 910 1981<br />

Gravelines C-5 p PWR 951 910 1984<br />

Gravelines C-6 p PWR 951 910 1985<br />

Nogent 1 p PWR 1 363 1 310 1987<br />

Nogent 2 p PWR 1 363 1 310 1988<br />

Paluel 1 p PWR 1 382 1 330 1984<br />

Paluel 2 p PWR 1 382 1 330 1984<br />

Paluel 3 p PWR 1 382 1 330 1985<br />

Paluel 4 p PWR 1 382 1 330 1986<br />

Penly 1 p PWR 1 382 1 330 1990<br />

Penly 2 p PWR 1 382 1 330 1992<br />

St. Alban 1 p PWR 1 381 1 335 1986<br />

St. Alban 2 p PWR 1 381 1 335 1987<br />

St. Laurent B-1 p PWR 956 915 1981<br />

St. Laurent B-2 p PWR 956 915 1981<br />

Tricastin 1 p PWR 955 915 1980<br />

Tricastin 2 p PWR 955 915 1980<br />

Tricastin 3 p PWR 955 915 1980<br />

Tricastin 4 p PWR 955 915 1981<br />

Flamanville 3 P PWR 1 600 1 510 (2020)<br />

Germany<br />

Brokdorf p PWR 1 480 1 410 1986<br />

Emsland p PWR 1 406 1 335 1988<br />

Grohnde p PWR 1 430 1 360 1985<br />

Gundremmingen C p BWR 1 344 1 288 1985<br />

285<br />

STATISTICS<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2018 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

286<br />

STATISTICS<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Isar 2 p PWR 1 485 1 410 1988<br />

Neckarwestheim II p PWR 1 400 1 310 1989<br />

Philippsburg 2 p PWR 1 468 1 402 1985<br />

Hungary<br />

Paks 1 p VVER-PWR 500 470 1983<br />

Paks 2 p VVER-PWR 500 473 1984<br />

Paks 3 p VVER-PWR 500 473 1986<br />

Paks 4 p VVER-PWR 500 473 1987<br />

India<br />

Kaiga 1 p Candu (IND) 220 202 2001<br />

Kaiga 2 p Candu (IND) 220 202 1999<br />

Kaiga 3 p Candu (IND) 220 202 2007<br />

Kaiga 4 p Candu (IND) 220 202 2010<br />

Kakrapar 1 p Candu (IND) 220 202 1993<br />

Kakrapar 2 p Candu (IND) 220 202 1995<br />

Kudankulam 1 p VVER-PWR 1 000 917 2013<br />

Kudankulam 2 p VVER-PWR 1 000 917 2016<br />

Madras Kalpakkam 1 p Candu (IND) 220 205 1984<br />

Madras Kalpakkam 2 p Candu (IND) 220 205 1986<br />

Narora 1 p Candu (IND) 220 202 1992<br />

Narora 2 p Candu (IND) 220 202 1991<br />

Rajasthan 1 p Candu 100 90 1973<br />

Rajasthan 2 p Candu 200 187 1981<br />

Rajasthan 3 p Candu (IND) 220 202 1999<br />

Rajasthan 4 p Candu (IND) 220 202 2000<br />

Rajasthan 5 p Candu (IND) 220 202 2009<br />

Rajasthan 6 p Candu (IND) 220 202 2010<br />

Tarapur 1 p BWR 160 150 1969<br />

Tarapur 2 p BWR 160 150 1969<br />

Tarapur 3 p Candu (IND) 540 490 2006<br />

Tarapur 4 p Candu (IND) 540 490 2005<br />

Kakrapar 3 P Candu (IND) 700 640 (2019)<br />

Kakrapar 4 P Candu (IND) 700 640 (2020)<br />

PFBR (Kalpakkam) P SNR 500 470 (2020)<br />

Kudankulam 3 P VVER-PWR 1 000 917 (2023)<br />

Kudankulam 4 P VVER-PWR 1 000 917 (2023)<br />

Rajasthan 7 P Candu (IND) 700 630 (2020)<br />

Rajasthan 8 P Candu (IND) 700 630 (2021)<br />

Iran<br />

Bushehr 1 p VVER-PWR 1 000 953 2011<br />

Japan<br />

Fukushima Daini 1 p BWR 1 100 1 067 1982<br />

Fukushima Daini 2 p BWR 1 100 1 067 1984<br />

Fukushima Daini 3 p BWR 1 100 1 067 1985<br />

Fukushima Daini 4 p BWR 1 100 1 067 1987<br />

Genkai 2 p PWR 559 529 1981<br />

Genkai 3 [4] p PWR 1 180 1 127 1994<br />

Genkai 4 [4] p PWR 1 180 1 127 1997<br />

Hamaoka 3 p BWR 1 100 1 056 1987<br />

Hamaoka 4 p BWR 1 137 1 092 1993<br />

Hamaoka 5 p BWR 1 267 1 216 2004<br />

Higashidori 1 p BWR 1 100 1 067 2005<br />

Ikata 3 p PWR 890 846 1994<br />

Kashiwazaki Kariwa 1 p BWR 1 100 1 067 1985<br />

Kashiwazaki Kariwa 2 p BWR 1 100 1 067 1990<br />

Kashiwazaki Kariwa 3 p BWR 1 100 1 067 1993<br />

Kashiwazaki Kariwa 4 p BWR 1 100 1 067 1994<br />

Kashiwazaki Kariwa 5 p BWR 1 100 1 067 1990<br />

Kashiwazaki Kariwa 6 p BWR 1 356 1 315 1996<br />

Kashiwazaki Kariwa 7 p BWR 1 356 1 315 1997<br />

Mihama 3 p PWR 826 781 1976<br />

Ohi 3 [4] p PWR 1 180 1 127 1991<br />

Ohi 4 [4] p PWR 1 180 1 127 1993<br />

Onagawa 1 p BWR 524 496 1984<br />

Onagawa 2 p BWR 825 796 1995<br />

Onagawa 3 p BWR 825 798 2002<br />

Sendai 1 p PWR 890 846 1984<br />

Sendai 2 p PWR 890 846 1985<br />

Shika 1 p BWR 540 505 1993<br />

Shika 2 p BWR 1 358 1 304 2005<br />

Shimane 2 p BWR 820 791 1989<br />

Takahama 1 p PWR 826 780 1974<br />

Takahama 2 p PWR 826 780 1975<br />

Takahama 3 p PWR 870 830 1985<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Takahama 4 p PWR 870 830 1985<br />

Tokai 2 p BWR 1 100 1 067 1978<br />

Tomari 1 p PWR 579 550 1989<br />

Tomari 2 p PWR 579 550 1991<br />

Tomari 3 p PWR 912 866 2009<br />

Tsuruga 2 p PWR 1 160 1 115 1986<br />

Shimane 3 P BWR 1 375 1 325 (2022)<br />

Ohma P BWR 1 385 1 325 (2023)<br />

Ikata 2 j PWR 566 538 1981<br />

Ohi 1 j PWR 1 175 1 120 1979<br />

Ohi 2 j PWR 1 175 1 120 1979<br />

Korea (Republic)<br />

Kori 2 p PWR 676 639 1983<br />

Kori 3 p PWR 1 042 1 003 1985<br />

Kori 4 p PWR 1 041 1 001 1986<br />

Shin Kori 1 p PWR 1 048 996 2010<br />

Shin Kori 2 p PWR 1 045 993 2011<br />

Shin Kori 3 p PWR 1 400 1 340 2016<br />

Hanul 1 p PWR 1 003 960 1988<br />

Hanul 2 p PWR 1 008 962 1989<br />

Hanul 3 p PWR 1 050 994 1998<br />

Hanul 4 p PWR 1 053 998 1998<br />

Hanul 5 p PWR 1 051 996 2003<br />

Hanul 6 p PWR 1 051 996 2004<br />

Wolsong 1 p Candu 687 645 1983<br />

Wolsong 2 p Candu 678 653 1997<br />

Wolsong 3 p Candu 698 675 1999<br />

Wolsong 4 p Candu 703 679 1999<br />

Shin Wolsong 1 p PWR 1 043 991 2012<br />

Shin Wolsong 2 p PWR 1 000 960 2015<br />

Hanbit 1 p PWR 996 953 1986<br />

Hanbit 2 p PWR 993 945 1987<br />

Hanbit 3 p PWR 1 050 997 1995<br />

Hanbit 4 p PWR 1 049 997 1996<br />

Hanbit 5 p PWR 1 053 997 2001<br />

Hanbit 6 p PWR 1 052 995 2002<br />

Shin Kori 4 P PWR 1 400 1 340 (2019)<br />

Shin Kori 5 P PWR 1 400 1 340 (2022)<br />

Shin Kori 6 [2] P PWR 1 400 1 340 (2024)<br />

Shin Hanul 1 P PWR 1 400 1 340 (2020)<br />

Shin Hanul 2 P PWR 1 400 1 340 (2022)<br />

Mexico<br />

Laguna Verde 1 p BWR 820 765 1990<br />

Laguna Verde 2 p BWR 820 765 1995<br />

Netherlands<br />

Borssele p PWR 515 482 1973<br />

Pakistan<br />

Kanupp 1 p Candu 137 909 1972<br />

Chasnupp 1 p PWR 325 300 2000<br />

Chasnupp 2 p PWR 325 300 2011<br />

Chasnupp 3 p PWR 340 315 2016<br />

Chasnupp 4 p PWR 340 315 2017<br />

Kanupp 2 P PWR 1 100 1 014 (2021)<br />

Kanupp 3 P PWR 1 100 1 014 (2022)<br />

Romania<br />

Cernavoda 1 p Candu 706 650 1996<br />

Cernavoda 2 p Candu 706 655 2007<br />

Russia<br />

Balakovo 1 p VVER-PWR 1 000 953 1986<br />

Balakovo 2 p VVER-PWR 1 000 953 1988<br />

Balakovo 3 p VVER-PWR 1 000 953 1990<br />

Balakovo 4 p VVER-PWR 1 000 953 1993<br />

Beloyarsky 3 p FBR 600 560 1981<br />

Beloyarsky 4 p FBR 800 750 2014<br />

Bilibino 1 p LWGR 12 11 1974<br />

Bilibino 2 p LWGR 12 11 1975<br />

Bilibino 3 p LWGR 12 11 1976<br />

Bilibino 4 p LWGR 12 11 1977<br />

Kalinin 1 p VVER-PWR 1 000 953 1985<br />

Kalinin 2 p VVER-PWR 1 000 953 1987<br />

Kalinin 3 p VVER-PWR 1 000 953 2004<br />

Kalinin 4 p VVER-PWR 1 000 953 2011<br />

Kola 1 p VVER-PWR 440 411 1973<br />

Kola 2 p VVER-PWR 440 411 1975<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2018 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Kola 3 p VVER-PWR 440 411 1982<br />

Kola 4 p VVER-PWR 440 411 1984<br />

Kursk 1 p LWGR 1 000 925 1977<br />

Kursk 2 p LWGR 1 000 925 1979<br />

Kursk 3 p LWGR 1 000 925 1984<br />

Kursk 4 p LWGR 1 000 925 1986<br />

Leningrad 2 p LWGR 1 000 925 1976<br />

Leningrad 3 p LWGR 1 000 925 1980<br />

Leningrad 4 p LWGR 1 000 925 1981<br />

Leningrad II-1 [1] p VVER-PWR 1 187 1 085 2018<br />

Novovoronezh 4 p VVER-PWR 417 385 1973<br />

Novovoronezh 5 p VVER-PWR 1 000 953 1981<br />

Novovoronezh II-1 p VVER-PWR 1 000 955 2016<br />

Rostov 1 p VVER-PWR 1 000 953 2001<br />

Rostov 2 p VVER-PWR 1 000 953 2010<br />

Rostov 3 p VVER-PWR 1 000 950 2014<br />

Rostov 4 p VVER-PWR 1 030 980 2017<br />

Smolensk 1 p LWGR 1 000 925 1983<br />

Smolensk 2 p LWGR 1 000 925 1985<br />

Smolensk 3 p LWGR 1 000 925 1990<br />

Akademik Lomonosov I P PWR 40 35 (2019)<br />

Akademik Lomonosov I P PWR 40 35 (2019)<br />

Baltic 1 (Kaliningrad) P VVER-PWR 1 170 1 080 (2020)<br />

Kursk II-1 [2] P VVER-PWR 1 255 1 175 (2024)<br />

Leningrad II-2 P VVER-PWR 1 170 1 085 (2021)<br />

Novovoronezh II-2 P VVER-PWR 1 000 955 (2019)<br />

Leningrad 1 [6] j LWGR 1 000 925 1974<br />

Slovakia<br />

Bohunice 3 p VVER-PWR 505 472 1985<br />

Bohunice 4 p VVER-PWR 505 472 1985<br />

Mochovce 1 p VVER-PWR 470 436 1998<br />

Mochovce 2 p VVER-PWR 470 436 1999<br />

Mochovce 3 P VVER-PWR 440 408 (2020)<br />

Mochovce 4 P VVER-PWR 440 408 (2020)<br />

Slovenia<br />

Krsko p PWR 727 696 1983<br />

South Africa<br />

Koeberg 1 p PWR 970 930 1984<br />

Koeberg 2 p PWR 970 930 1985<br />

Spain<br />

Almaraz 1 p PWR 1 049 1 011 1981<br />

Almaraz 2 p PWR 1 044 1 006 1983<br />

Ascó 1 p PWR 1 033 995 1984<br />

Ascó 2 p PWR 1 027 997 1985<br />

Cofrentes p BWR 1 092 1 064 1985<br />

Trillo 1 p PWR 1 066 1 002 1988<br />

Vandellos 2 p PWR 1 087 1 045 1987<br />

Sweden<br />

Forsmark 1 p BWR 1 022 984 1980<br />

Forsmark 2 p BWR 1 158 1 120 1981<br />

Forsmark 3 p BWR 1 212 1 170 1985<br />

Oskarshamn 2 p BWR 661 638 1975<br />

Oskarshamn 3 p BWR 1 450 1 400 1985<br />

Ringhals 1 p BWR 910 878 1976<br />

Ringhals 2 p PWR 847 807 1975<br />

Ringhals 3 p PWR 1 117 1 064 1981<br />

Ringhals 4 p PWR 990 940 1983<br />

Switzerland<br />

Beznau 1 p PWR 380 365 1969<br />

Beznau 2 p PWR 380 365 1972<br />

Gösgen p PWR 1 060 1 010 1979<br />

Leibstadt p BWR 1 275 1 220 1984<br />

Mühleberg p BWR 390 373 1973<br />

Taiwan, China<br />

Chin Shan 2 p BWR 636 604 1979<br />

Kuosheng 1 p BWR 985 948 1981<br />

Kuosheng 2 p BWR 985 948 1983<br />

Maanshan 1 p PWR 951 890 1984<br />

Maanshan 2 p PWR 951 890 1985<br />

Lungmen 1 P BWR 1 356 1 315 (2020)<br />

Lungmen 2 P BWR 1 356 1 315 (2021)<br />

Chin Shan 1 [6] j BWR 636 604 1978<br />

Turkey<br />

Akkuyu 1 [2] P VVER-PWR 1 200 1 114 (2023)<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

United Arab Emirates<br />

Barakah 1 P PWR 1 400 1 340 (2018)<br />

Barakah 2 P PWR 1 400 1 340 (2019)<br />

Barakah 3 P PWR 1 400 1 340 (2020)<br />

Barakah 4 P PWR 1 400 1 340 (2021)<br />

United Kingdom<br />

Dungeness B-1 p AGR 615 520 1985<br />

Dungeness B-2 p AGR 615 520 1986<br />

Hartlepool-1 p AGR 655 595 1984<br />

Hartlepool-2 p AGR 655 585 1985<br />

Heysham I-1 p AGR 625 585 1984<br />

Heysham I-2 p AGR 625 575 1985<br />

Heysham II-1 p AGR 682 595 1988<br />

Heysham II-2 p AGR 682 595 1989<br />

Hinkley Point B-1 p AGR 655 610 1976<br />

Hinkley Point B-2 p AGR 655 610 1977<br />

Hunterston B-1 p AGR 644 460 1976<br />

Hunterston B-2 p AGR 644 430 1977<br />

Sizewell B p PWR 1 250 1 191 1995<br />

Torness Point 1 p AGR 682 595 1988<br />

Torness Point 2 p AGR 682 595 1989<br />

Hinkley Point C-1 [2] P PWR 1 720 1 630 (2025)<br />

Ukraine<br />

Khmelnitski 1 p VVER-PWR 1 000 950 1985<br />

Khmelnitski 2 p VVER-PWR 1 000 950 2004<br />

Rovno 1 p VVER-PWR 402 363 1981<br />

Rovno 2 p VVER-PWR 416 377 1982<br />

Rovno 3 p VVER-PWR 1 000 950 1987<br />

Rovno 4 p VVER-PWR 1 000 950 2004<br />

Zaporozhe 1 p VVER-PWR 1 000 950 1985<br />

Zaporozhe 2 p VVER-PWR 1 000 950 1985<br />

Zaporozhe 3 p VVER-PWR 1 000 950 1987<br />

Zaporozhe 4 p VVER-PWR 1 000 950 1988<br />

Zaporozhe 5 p VVER-PWR 1 000 950 1988<br />

Zaporozhe 6 p VVER-PWR 1 000 950 1989<br />

South Ukraine 1 p VVER-PWR 1 000 950 1983<br />

South Ukraine 2 p VVER-PWR 1 000 950 1985<br />

South Ukraine 3 p VVER-PWR 1 000 950 1989<br />

USA<br />

Arkansas <strong>Nuclear</strong> One 1 p PWR 969 903 1974<br />

Arkansas <strong>Nuclear</strong> One 2 p PWR 1 006 943 1980<br />

Beaver Valley 1 p PWR 955 923 1976<br />

Beaver Valley 2 p PWR 957 923 1987<br />

Braidwood 1 p PWR 1 289 1 225 1988<br />

Braidwood 2 p PWR 1 289 1 225 1988<br />

Browns Ferry 1 p BWR 1 200 1 152 1974<br />

Browns Ferry 2 p BWR 1 193 1 152 1975<br />

Browns Ferry 3 p BWR 1 232 1 190 1977<br />

Brunswick 1 p BWR 1 074 1 002 1977<br />

Brunswick 2 p BWR 1 075 1 002 1975<br />

Byron 1 p PWR 1 307 1 225 1985<br />

Byron 2 p PWR 1 304 1 225 1987<br />

Callaway p PWR 1 316 1 236 1985<br />

Calvert Cliffs 1 p PWR 935 918 1975<br />

Calvert Cliffs 2 p PWR 939 911 1977<br />

Catawba 1 p PWR 1 286 1 205 1985<br />

Catawba 2 p PWR 1 286 1 205 1986<br />

Clinton 1 p BWR 1 175 1 138 1987<br />

Comanche Peak 1 p PWR 1 283 1 215 1990<br />

Comanche Peak 2 p PWR 1 283 1 215 1993<br />

Donald Cook 1 p PWR 1 266 1 152 1975<br />

Donald Cook 2 p PWR 1 210 1 133 1978<br />

Columbia (WNP 2) p BWR 1 244 1 200 1984<br />

Cooper p BWR 844 801 1974<br />

Davis Besse 1 p PWR 971 925 1978<br />

Diablo Canyon 1 p PWR 1 236 1 159 1985<br />

Diablo Canyon 2 p PWR 1 246 1 164 1985<br />

Dresden 2 p BWR 1 057 1 009 1970<br />

Dresden 3 p BWR 1 057 1 009 1971<br />

Duane Arnold p BWR 737 680 1975<br />

Farley 1 p PWR 933 888 1977<br />

Farley 2 p PWR 934 888 1981<br />

Fermi 2 p BWR 1 317 1 217 1988<br />

FitzPatrick p BWR 918 882 1975<br />

287<br />

STATISTICS<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2018 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

288<br />

NEWS<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Ginna p PWR 713 614 1970<br />

Grand Gulf 1 p BWR 1 516 1 440 1985<br />

Hatch 1 p BWR 891 857 1974<br />

Hatch 2 p BWR 905 865 1979<br />

Hope Creek 1 p BWR 1 360 1 291 1986<br />

Indian Point 2 p PWR 1 348 1 299 1974<br />

Indian Point 3 p PWR 1 051 1 012 1976<br />

La Salle 1 p BWR 1 242 1 170 1984<br />

La Salle 2 p BWR 1 238 1 170 1984<br />

Limerick 1 p BWR 1 203 1 139 1986<br />

Limerick 2 p BWR 1 199 1 139 1990<br />

McGuire 1 p PWR 1 358 1 220 1981<br />

McGuire 2 p PWR 1 358 1 220 1984<br />

Millstone 2 p PWR 946 91 0 1975<br />

Millstone 3 p PWR 1 308 1 253 1986<br />

Monticello p BWR 734 685 1971<br />

Nine Mile Point 1 p BWR 671 642 1969<br />

Nine Mile Point 2 p BWR 1 302 1 259 1988<br />

North Anna 1 p PWR 1 035 980 1978<br />

North Anna 2 p PWR 1 033 980 1980<br />

Oconee 1 p PWR 955 887 1973<br />

Oconee 2 p PWR 955 887 1974<br />

Oconee 3 p PWR 961 893 1974<br />

Palisades p PWR 870 81 2 1971<br />

Palo Verde 1 p PWR 1 528 1 403 1986<br />

Palo Verde 2 p PWR 1 524 1 403 1988<br />

Palo Verde 3 p PWR 1 524 1 403 1986<br />

Peach Bottom 2 p BWR 1 233 1 1 60 1974<br />

Peach Bottom 3 p BWR 1 233 1 1 60 1974<br />

Perry 1 p BWR 1 397 1 31 2 1987<br />

Pilgrim p BWR 71 2 670 1972<br />

Point Beach 1 p PWR 696 643 1970<br />

Point Beach 2 p PWR 696 643 1972<br />

Prairie Island 1 p PWR 642 593 1973<br />

Prairie Island 2 p PWR 641 593 1974<br />

Quad Cities 1 p BWR 1 061 1 009 1973<br />

Quad Cities 2 p BWR 1 061 1 009 1973<br />

RiverBend 1 p BWR 1 073 1 036 1986<br />

Robinson 2 p PWR 855 769 1971<br />

Salem 1 p PWR 1 276 1 1 70 1977<br />

Salem 2 p PWR 1 303 1 1 70 1981<br />

Seabrook 1 p PWR 1 330 1 242 1990<br />

Sequoyah 1 p PWR 1 259 1 221 1981<br />

Sequoyah 2 p PWR 1 279 1 221 1982<br />

Shearon Harris 1 p PWR 983 951 1987<br />

South Texas 1 p PWR 1 41 0 1 354 1988<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

South Texas 2 p PWR 1 41 0 1 354 1989<br />

St. Lucie 1 p PWR 1 1 22 1 080 1976<br />

St. Lucie 2 p PWR 1 1 35 1 080 1983<br />

Virgil C. Summer p PWR 1 071 1 030 1984<br />

Surry 1 p PWR 900 848 1972<br />

Surry 2 p PWR 900 848 1973<br />

Susquehanna 1 p BWR 1 374 1 298 1983<br />

Susquehanna 2 p BWR 1 374 1 298 1985<br />

Three Mile Island 1 p PWR 1 021 976 1974<br />

Turkey Point 3 p PWR 906 877 1972<br />

Turkey Point 4 p PWR 800 760 1973<br />

Vogtle 1 p PWR 1 223 1 1 60 1987<br />

Vogtle 2 p PWR 1 226 1 1 60 1989<br />

Water<strong>for</strong>d 3 p PWR 1 250 1 200 1985<br />

Watts Bar 1 p PWR 1 370 1 270 1996<br />

Watts Bar 2 p PWR 1 240 1 180 2016<br />

Wolf Creek p PWR 1 351 1 268 1984<br />

Vogtle 3 P PWR 1 080 1 000 (2021)<br />

Vogtle 4 P PWR 1 080 1 000 (2022)<br />

Oyster Creek [6] j BWR 595 550 1969<br />

1) Start of nuclear operation (first criticality: C, first grid connection: G, commercial<br />

operation: O): 8 units in 2 countries in 2018: China Haiyang 1 (1250 MW, PWR,<br />

CGO), Haiyang 2 (1250 MW, PWR, CG, O in 2019), Sanmen 1 (1251 MW, PWR,<br />

CGO), Sanmen 2 (1251 MW, PWR, CGO), Taishan 1 (1750 MW, PWR, CGO),<br />

Tianwan 4 (1060 MW, PWR, CGO), Yangjiang 5 (1086 MW, PWR, CGO), Russia:<br />

Leningrad 2-1 (1187 MW, PWR, CGO), Rostov 4 (1030 MW, PWR, CGO). Tianwan 3<br />

(1060 MW, PWR, O in 2019).<br />

2) Start of construction (first concrete), 5 units 5 countries in 2018: Bangladesh:<br />

Rooppur 2 (1200 MW, VVER-PWR); Korea: Shin Kori 6 (1400 MW, PWR); Russia:<br />

Kursk 2-1 (1255 MW, VVER-PWR); Turkey: Akkuyu 1 (1200 MW, VVER-PWR);<br />

United Kingdom: Hinkley Point C-1 (1720 MW, PWR).<br />

3) Project under construction (finally) cancelled: none.<br />

4) Resumed operation: 4 units in 1 country in 2018: Japan: Genkai 3 (1180 MW,<br />

PWR); Genkai 4 (1180 MW, PWR); Ohi 3 (1180 MW, PWR); Ohi 4 (1180 MW, PWR).<br />

5) <strong>Nuclear</strong> power plant taken in long-term shutdown: none.<br />

6) <strong>Nuclear</strong> power plants permanently shutdown: 6 units in 4 countries in 2018: Japan:<br />

Ikata 2 (566 MW, PWR); Ohi 1 (1175 MW, PWR); Ohi 2 (1175 MW, PWR); Russia:<br />

Leningrad 1 (1000 MW, LWGR); Taiwan: China, Chin Shan 1 (636 MW, BWR); USA:<br />

Oyster Creek (595 MW, BWR).<br />

(All capacity data in MWe gross)<br />

AGR: Advanced Gas-cooled Reactor, BWR: Boiling water reactor, Candu: CANada<br />

Deuterium Uranium reactor (IND: Indian type), D2O-PWR: heavy water moderated,<br />

pressurised water reactor, PWR: pressurised water reactor, GGR: gas-graphite<br />

reactor, LWGR/GLWR: light water cooled graphite moderated reactor (Russian type<br />

RBMK), FBWR: advanced boiling water reactor, FBR: fast breeder reactor<br />

| | Tab. 1.<br />

<strong>Nuclear</strong> power plant units worldwide on 31.12.2018 in operation (p), under construction (P), in lay-up operation/long-term shutdown (s) or permanently shut-down in 2018 (j)<br />

[Sources: Operators, IAEO]. All in<strong>for</strong>mation and data refer to the year 2018. Data have been updated with reference to the sources<br />

Top<br />

IEA: <strong>Nuclear</strong> generation<br />

reached Pre-Fukushima levels<br />

in 2018<br />

(nucnet) Global generation from<br />

nuclear energy reached pre- Fukushima<br />

levels in 2018, mainly as a result of new<br />

additions in China and the restart of<br />

four reactors in Japan, the <strong>International</strong><br />

Energy Agency has said.<br />

In its Global Energy And CO 2<br />

Status Report, published on 26 March,<br />

the Paris-based agency said nuclear<br />

generation increased by 3.3%, or<br />

90 TWh, and nuclear plants worldwide<br />

met 9% of a 4% global increase<br />

in electricity demand.<br />

Production in Switzerland, Taiwan,<br />

Pakistan and Sweden also increased.<br />

Generation fell in South Korea, because<br />

of new maintenance regulations,<br />

and in Belgium, because of shutdowns<br />

caused by safety-related concerns.<br />

According to statistics in the report<br />

nuclear generated 2,724 TWh of<br />

electricity in 2018 representing a 10%<br />

global share of electricity generation.<br />

In 2000 its global share was 17%, the<br />

report said.<br />

Increased generation from nuclear<br />

power plants also reduced emissions,<br />

averting nearly 60 million tonnes of<br />

CO 2 emissions<br />

Global electricity demand rose by<br />

4% in 2018, nearly twice as fast as<br />

overall energy demand, and at its fastest<br />

pace since 2010, the agency said.<br />

Together, renewables and nuclear<br />

power met most of the increase in<br />

power demand. However, generation<br />

from coal- and gas-fired power plants<br />

increased considerably, driving up CO 2<br />

emissions from the sector by 2.5%.<br />

China and the US, the world’s two<br />

largest power markets, accounted <strong>for</strong><br />

70% of global demand growth <strong>for</strong><br />

electricity. In China, electricity demand<br />

increased by 8.5%, a notable<br />

increase compared with recent years.<br />

This was led by the industrial sector,<br />

including iron, steel and other metals,<br />

cement and construction, as well as<br />

higher demand <strong>for</strong> cooling.<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Energy consumption worldwide<br />

grew by 2.3% in 2018, nearly twice<br />

the average rate of growth since 2010,<br />

driven by a robust global economy<br />

and higher heating and cooling needs<br />

in some parts of the world.<br />

The biggest gains came from natural<br />

gas, which emerged as the fuel of<br />

choice last year, accounting <strong>for</strong> nearly<br />

45% of the increase in total energy<br />

demand. Demand <strong>for</strong> all fuels rose,<br />

with fossil fuels meeting nearly 70% of<br />

the growth <strong>for</strong> the second year running.<br />

The Global Energy And CO 2 Status<br />

Report is online: <br />

https://bit.ly/2GS2NWV<br />

| | www.iea.org<br />

FORATOM highlights need <strong>for</strong><br />

investment in all low-carbon<br />

technologies to meet climate<br />

challenges<br />

(<strong>for</strong>atom) The world is facing a major<br />

challenge – in order to prevent<br />

irreversible climate change, global<br />

warming needs to be kept below<br />

1.5 degrees. For Europe, this means a<br />

full decarbonisation of its economy.<br />

And this, in turn, requires adequate<br />

financing and investment in ALL<br />

low-carbon technologies.<br />

The EIB Energy Lending Policy<br />

consultation came to a close on<br />

29 March 2019. In FORATOM’s opinion<br />

it is important to ensure coherence<br />

across EU legislation and <strong>for</strong> policy<br />

to be in line with the objective of<br />

achieving a carbon-free Europe by<br />

2050. At the same time, such policy<br />

must ensure that<br />

pp<br />

Europe has access to the energy it<br />

needs when it needs it.<br />

pp<br />

New environmental problems are<br />

not created.<br />

pp<br />

It supports jobs and growth in<br />

Europe.<br />

To achieve this, EU legislation must<br />

support ALL low carbon technologies,<br />

rather than cherry-picking one technology<br />

over another. Basing decisions<br />

on political acceptance rather than<br />

objective criteria will make it much<br />

harder <strong>for</strong> Europe to achieve its goals,<br />

with the risk of a lock-in effect if it<br />

were to rest too much on CO 2 -emitting<br />

technologies.<br />

Last week, the European Parliament<br />

adopted its text on the European<br />

Commission’s proposal <strong>for</strong> a sustainable<br />

finance taxonomy[1]. Un<strong>for</strong>tunately,<br />

MEPs have failed to take an<br />

objective approach on what “sustainable”<br />

actually means, assuming that<br />

only technologies which are renewables-based<br />

should be eligible <strong>for</strong> such<br />

finance. In this respect, the text<br />

adopted goes against:<br />

The European Commission’s “A<br />

Clean Planet <strong>for</strong> All” strategic vision<br />

which recognises that, nuclear,<br />

together with renewables, will <strong>for</strong>m<br />

the backbone of a carbon-free power<br />

sector in 2050.<br />

The latest Intergovernmental Panel<br />

on Climate Change (IPCC) report<br />

(Global Warming of 1.5°C, 8 October<br />

2018) according to which nuclear<br />

power is essential if the world is to keep<br />

global warming to below 1.5 degrees.<br />

Also, in its current <strong>for</strong>m, the<br />

adopted text raises two problems:<br />

pp<br />

The exclusion of future potential<br />

low-carbon breakthrough technologies<br />

which are not renewablesbased<br />

– thereby preventing them<br />

from ever coming to market.<br />

pp<br />

The risk of creating new environmental<br />

problems. Whilst renewables<br />

such as wind and solar are<br />

low carbon, they require significant<br />

volumes of raw materials,<br />

critical raw materials and rare<br />

earths. They also come with a significant<br />

land footprint, which can<br />

lead to the loss of biodiversity.<br />

| | www.<strong>for</strong>atom.org<br />

JET future secure<br />

(euro-fusion) The future of EUROfusion<br />

flagship and the world’s largest<br />

operational fusion research facility,<br />

the Joint European Tours, JET, is now<br />

secure. The European Commission<br />

and the UK have signed a contract<br />

extension that will secure at least<br />

€100m from the EU over the next two<br />

years. This means that JET operations<br />

are guaranteed until the end of 2020<br />

regardless of the Brexit outcome.<br />

EUROfusion Programme Manager<br />

Tony Donné said, “A heavy weight has<br />

been lifted off our shoulders. This is<br />

extraordinarily good news <strong>for</strong> EUROfusion<br />

and the European fusion<br />

community as a whole. We can now<br />

continue to work on the realisation of<br />

fusion energy together with the<br />

indispensable experience of our<br />

British partner.”<br />

Indeed the news brings reassurance<br />

to the more than 500 staff who<br />

work at the JET site. And as important<br />

is the fact that JET can continue to<br />

provide invaluable experimental results<br />

and nurture scientific expertise<br />

be<strong>for</strong>e ITER begins operations in<br />

2025. JET is currently the only<br />

tokamak capable of operation with<br />

Deuterium-Tritium, the fusion fuel of<br />

the future. And with its ITER-like wall,<br />

and other diagnostics, the EUROfusion<br />

flagship serves as a test bed <strong>for</strong><br />

future ITER operations.<br />

| | www.euro-fusion.org<br />

World<br />

US and India reaffirm<br />

commitment to build six<br />

nuclear plants<br />

(nei) The US and India have signed an<br />

agreement confirming their commitment<br />

to cooperate on the civilian use<br />

of nuclear energy including a proposed<br />

construction of six US-supplied<br />

nuclear power plants in the Asian<br />

country, a statement by the US Department<br />

of State said.<br />

The statement said that India’s<br />

<strong>for</strong>eign secretary Vijay Gokhale and<br />

US undersecretary of state Andrea<br />

Thompson signed the agreement in<br />

Washington yesterday, but gave no<br />

further details about the nuclear<br />

power plant project.<br />

Former US president Barack<br />

Obama and Indian prime minister<br />

Narendra Modi announced in 2016<br />

that engineering and design work<br />

would begin <strong>for</strong> Westinghouse to build<br />

six AP1000s in India in a deal that was<br />

expected to be signed by June 2017.<br />

The agreement was the result of a<br />

decade of diplomatic ef<strong>for</strong>ts as part of<br />

a US-India civil nuclear agreement<br />

signed in 2008.<br />

In April 2018, US energy secretary<br />

Rick Perry said that reactor manufacturer<br />

Westinghouse Electric Company<br />

is “ready to get to work” on its<br />

projects to build nuclear reactors in<br />

India.<br />

Westinghouse declared bankruptcy<br />

in 2017 because of cost overruns and<br />

was sold by Japan’s Toshiba Corporation<br />

to Canada’s Brookfield Asset<br />

Management in August 2018.<br />

| | www.usa.gov<br />

Russia signs agreement<br />

to build four new reactors<br />

in China<br />

(rosatom) Russia has signed an agreement<br />

to build four new nuclear power<br />

units in China, with two at the<br />

Xudabao site in Liaoning Province,<br />

northeast China, and two at the<br />

Tianwan nuclear power station in<br />

Jiangsu province in the east of the<br />

country.<br />

State nuclear corporation Rosatom<br />

said in a statement that a contract <strong>for</strong><br />

the technical design <strong>for</strong> the construction<br />

of Units 3 and 4 at Xudabao had<br />

been signed in Beijing on 7 March.<br />

Rosatom also said a general contract<br />

had been signed <strong>for</strong> the construction<br />

of Units 7 and 8 at Tianwan.<br />

There are four Russia-procured<br />

VVER-1000 nuclear units in commercial<br />

operation at Tianwan and two<br />

domestically developed CNP-1000<br />

289<br />

NEWS<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Operating Results January 2019<br />

290<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 744 680 029 680 029 262 335 237 100.00 100.00 98.83 98.83 99.35 99.35<br />

OL2 Olkiluoto BWR FI 910 880 744 686 443 686 443 252 582 985 100.00 100.00 99.92 99.92 100.29 100.29<br />

KCB Borssele PWR NL 512 484 744 380 469 380 469 162 102 158 99.56 99.56 99.56 99.56 100.19 100.19<br />

KKB 1 Beznau 7) PWR CH 380 365 744 286 846 286 846 127 620 956 100.00 100.00 100.00 100.00 101.52 101.52<br />

KKB 2 Beznau 7) PWR CH 380 365 744 285 135 285 135 134 635 542 100.00 100.00 100.00 100.00 100.86 100.86<br />

KKG Gösgen 7) PWR CH 1060 1010 744 796 643 796 643 314 672 171 100.00 100.00 99.97 99.97 101.02 101.01<br />

KKM Mühleberg 1,2) BWR CH 390 373 744 284 490 284 490 127 688 805 100.00 100.00 99.12 99.12 98.05 98.05<br />

CNT-I Trillo PWR ES 1066 1003 744 789 524 789 524 248 081 193 100.00 100.00 100.00 100.00 98.97 98.97<br />

Dukovany B1 PWR CZ 500 473 744 372 054 372 054 112 601 547 100.00 100.00 100.00 100.00 100.01 100.01<br />

Dukovany B2 2) PWR CZ 500 473 744 369 516 369 516 108 603 687 100.00 100.00 100.00 100.00 99.33 99.33<br />

Dukovany B3 PWR CZ 500 473 0 0 0 106 498 041 0 0 0 0 0 0<br />

Dukovany B4 PWR CZ 500 473 744 373 097 373 097 106 816 366 100.00 100.00 99.50 99.50 100.30 100.29<br />

Temelin B1 PWR CZ 1080 1030 744 810 082 810 082 115 171 124 100.00 100.00 100.00 100.00 100.63 100.63<br />

Temelin B2 PWR CZ 1080 1030 744 814 728 814 728 110 087 245 100.00 100.00 100.00 100.00 101.21 101.21<br />

Doel 1 2) PWR BE 454 433 0 0 0 135 444 462 0 0 0 0 0 0<br />

Doel 2 2) PWR BE 454 433 0 0 0 133 801 939 0 0 0 0 0 0<br />

Doel 3 PWR BE 1056 1006 744 805 717 805 717 255 938 202 100.00 100.00 100.00 100.00 101.91 101.91<br />

Doel 4 2) PWR BE 1084 1033 744 746 557 746 557 261 119 967 100.00 100.00 90.64 90.64 90.81 90.81<br />

Tihange 1 PWR BE 1009 962 744 763 658 763 658 299 594 516 100.00 100.00 100.00 100.00 101.95 101.95<br />

Tihange 2 3) PWR BE 1055 1008 0 0 0 254 651 930 0 0 0 0 0 0<br />

Tihange 3 3) PWR BE 1089 1038 742 757 187 757 187 271 984 460 99.71 99.71 93.63 93.63 93.72 93.72<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 744 940 095 940 095 351 507 906 100.00 100.00 94.17 94.17 84.92 84.92<br />

KKE Emsland 4) DWR 1406 1335 744 1 035 811 1 035 811 347 854 780 100.00 100.00 100.00 100.00 99.06 99.06<br />

KWG Grohnde DWR 1430 1360 744 1 018 634 1 018 634 378 592 848 100.00 100.00 99.89 99.89 95.21 95.21<br />

KRB C Gundremmingen SWR 1344 1288 744 1 009 470 1 009 470 331 951 225 100.00 100.00 100.00 100.00 100.39 100.39<br />

KKI-2 Isar DWR 1485 1410 744 1 093 851 1 093 851 354 819 664 100.00 100.00 99.98 99.98 98.76 98.76<br />

GKN-II Neckarwestheim 2) DWR 1400 1310 744 1 025 300 1 025 300 330 852 134 100.00 100.00 100.00 100.00 98.74 98.74<br />

KKP-2 Philippsburg DWR 1468 1402 744 1 081 282 1 081 282 367 242 437 100.00 100.00 99.93 99.93 97.49 97.49<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data <strong>for</strong> the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

pressurised water reactors under construction.<br />

Rosatom gave no details in its<br />

statement of the type of plant <strong>for</strong> the<br />

two sites, but the company’s directorgeneral<br />

Alexei Likhachev was quoted<br />

last year by the state-owned Tass news<br />

agency as saying that all four units will<br />

be Generation III+ VVER-1200 plants.<br />

The two countries signed initial<br />

agreements <strong>for</strong> the four units in June<br />

2018.<br />

In April 2014, the Xudabao site was<br />

approved <strong>for</strong> the construction of two<br />

Westinghouse AP1000 nuclear power<br />

units with the option of building four<br />

more units.<br />

According to <strong>International</strong> Atomic<br />

Energy Agency statistics, construction<br />

of the two AP1000s has not yet begun.<br />

Russian media reports have said work<br />

on the site began in 2010, but was<br />

suspended after the 2011 Fukushima-<br />

Daiichi accident.<br />

In 2016, China <strong>Nuclear</strong> Industry 22<br />

Construction Company, a subsidiary<br />

of China <strong>Nuclear</strong> Engineering and<br />

Construction Corporation, said it had<br />

signed an engineering, procurement<br />

and construction contract <strong>for</strong> the two<br />

AP1000 units.<br />

China has ambitious nuclear plans<br />

with an official target of 58 GW of<br />

installed nuclear capacity by 2020, up<br />

from almost 36 GW produced by 46<br />

operational reactor units today.<br />

According to Shanghai-based<br />

energy consultancy Nicobar, China’s<br />

goal is to have 110 nuclear units<br />

in commercial operation by 2030,<br />

but this target is likely to be<br />

adjusted in the next Five-Year Plan,<br />

the first draft of which will appear<br />

this year.<br />

Nicobar said state-owned China<br />

National <strong>Nuclear</strong> Corporation has told<br />

the government China should start<br />

building eight new nuclear power<br />

plants a year be<strong>for</strong>e 2030 in a bid<br />

to make the sector profitable and<br />

sustainable.<br />

| | www.rosatom.ru<br />

NEI applauds senators <strong>for</strong><br />

introduction of <strong>Nuclear</strong><br />

Energy Leadership Bill<br />

(nei) The <strong>Nuclear</strong> Energy Leadership<br />

Act was introduced to the Senate<br />

Committee on Energy and Natural<br />

Resources. The following is a statement<br />

by Maria Korsnick, president<br />

and chief executive officer of the<br />

<strong>Nuclear</strong> Energy Institute:<br />

“We thank Sens. Lisa Murkowski<br />

and Cory Booker <strong>for</strong> their bipartisan<br />

sponsorship of the <strong>Nuclear</strong> Energy<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Leadership Act (NELA). This legislation<br />

sends an unmistakable signal<br />

that the United States intends to<br />

re-commit itself as a global leader in<br />

clean, advanced nuclear technology.<br />

“State-owned and state-sponsored<br />

developers in rival nations – especially<br />

China and Russia – are developing<br />

next-generation nuclear technology.<br />

For the American nuclear industry<br />

to compete globally, we must have<br />

significant collaboration among the<br />

federal government, our national labs<br />

and private industry to accelerate<br />

innovation.<br />

“NELA provides the means <strong>for</strong><br />

America to continue to lead in nuclear<br />

energy technology. We ask Congress<br />

to pass this legislation to help ensure<br />

the success of advanced nuclear technologies<br />

that will play a tremendous<br />

role in reaching a global clean energy<br />

future, while creating jobs and economic<br />

benefits.”<br />

“This legislation sends an unmistakable<br />

signal that the U.S. intends to<br />

re-commit itself as a global leader in<br />

clean, advanced nuclear technology,”<br />

says @NEI’s Korsnick. Read NEI’s<br />

statement to learn why the NELA bill<br />

is critical <strong>for</strong> the industry’s future.<br />

| | www.nei.org<br />

<strong>Nuclear</strong> Industry Association<br />

comments on Micro Reactors<br />

Report<br />

(niauk) The <strong>Nuclear</strong> Industry Association<br />

has issued a statement in relation<br />

to the Government’s publication of an<br />

independent report on Micro <strong>Nuclear</strong><br />

Reactors, their key characteristics and<br />

an assessment of the market and<br />

regulatory challenges.<br />

Peter Haslam, Head of Policy at the<br />

<strong>Nuclear</strong> Industry Association said:<br />

“We believe small and micro reactors<br />

have a role to play alongside large<br />

reactors in increasing the clean energy<br />

contribution from nuclear, while also<br />

improving the UK’s energy security.<br />

“In addition, the inherent flexibility<br />

of micro reactors presents a big<br />

opportunity <strong>for</strong> the UK as they can be<br />

constructed here and transported<br />

across the world <strong>for</strong> assembly.<br />

“The industry will continue to<br />

work with government to realise the<br />

potential of this technology.”<br />

The report outlines the key<br />

tech nological characteristics of Micro<br />

<strong>Nuclear</strong> Reactors (MNRs) and assesses<br />

the associated market and regulatory<br />

challenges. MNRs are a subgroup<br />

of Small Modular Reactors<br />

which are under ~30 MW in size.<br />

https://bit.ly/2YzzrW2<br />

| | www.niauk.org, www.gov.uk<br />

Reactors<br />

Vogtle milestone signals<br />

momentum <strong>for</strong> future of<br />

U.S. nuclear industry<br />

(nei) <strong>Nuclear</strong> Energy Institute’s Maria<br />

Korsnick joined Energy Secretary Rick<br />

Perry and Gov. Brian Kemp of Georgia<br />

<strong>for</strong> the capping of the containment<br />

vessel on Vogtle 3. The following<br />

is a statement from Maria Korsnick,<br />

president and chief executive officer<br />

of NEI.<br />

“Today is an exciting day <strong>for</strong> the<br />

state of Georgia and our country as we<br />

move closer to completing the nation’s<br />

first new nuclear plant in 30 years.<br />

The progress made today on Vogtle 3<br />

is another reminder that the United<br />

States remains a significant <strong>for</strong>ce in<br />

the global nuclear industry.<br />

“We thank the administration and<br />

Secretary Perry <strong>for</strong> their support of<br />

the Vogtle project, which is a wise<br />

investment <strong>for</strong> the future of America’s<br />

nuclear power sector and our clean<br />

energy future.<br />

“Building Vogtle 3 and 4 is the<br />

largest job-producing construction<br />

project in Georgia, and when finished<br />

the reactors will employ hundreds of<br />

highly skilled workers <strong>for</strong> decades to<br />

come. Producing massive amounts of<br />

emission-free electricity around the<br />

clock, the four-reactor Vogtle nuclear<br />

power station will be one of America’s<br />

largest clean energy facilities.”<br />

| | www.nei.org<br />

Company News<br />

Framatome delivers GAIA fuel<br />

assemblies containing the<br />

first complete Enhanced<br />

Accident Tolerant Fuel concept<br />

(framatome) Framatome delivered the<br />

industry’s first full-length Enhanced<br />

Accident Tolerant Fuel (EATF) concept<br />

containing both pellets and claddings<br />

to Georgia <strong>Power</strong>’s Alvin W. Vogtle<br />

Electric Generating Plant. Southern<br />

<strong>Nuclear</strong>, operator of Plant Vogtle,<br />

inserted the GAIA lead fuel assemblies<br />

containing EATF during the Unit 2<br />

spring refueling outage. Framatome<br />

delivered the fuel to the plant in<br />

January 2019.<br />

“This is an important milestone<br />

<strong>for</strong> Framatome and the industry,” said<br />

Lionel Gaiffe, senior executive vice<br />

president, Fuel Business Unit at<br />

Framatome. “We applaud Southern<br />

<strong>Nuclear</strong>’s consistent support of EATF<br />

initiatives, and we are pleased to<br />

deploy an economical advanced fuel<br />

technology that offers operators<br />

additional response time and greater<br />

operational flexibility.”<br />

Under the umbrella of its PROtect<br />

program, Framatome’s advanced<br />

chromium coating added to the stateof-the-<br />

art M5Framatome zirconium<br />

alloy cladding improves hightemperature<br />

oxidation resistance and<br />

reduces hydrogen generation during<br />

loss of cooling. The chromium coating<br />

also greatly reduces creep to maintain<br />

a coolable geometry and has<br />

mechanical pro perties that allow <strong>for</strong><br />

more operator response time. Further,<br />

the innovative coating offers increased<br />

resistance to debris fretting<br />

during normal operations.<br />

In addition to chromium coated<br />

cladding, this integrated fuel solution<br />

includes chromia-enhanced fuel<br />

pellets, which have a higher density,<br />

reduced fission gas release, and<br />

improved behavior during loss of<br />

cooling. Reduced Pellet Clad Interaction<br />

(PCI) also better supports<br />

power maneuvering.<br />

Framatome has worked <strong>for</strong> several<br />

years with the support of the U.S.<br />

Department of Energy’s Accident<br />

Tolerant Fuel program, which has<br />

allowed the company to significantly<br />

improve on its initial target of 2022 to<br />

deploy this technology. European<br />

partners, like CEA, which initially<br />

explored and identified the suitable<br />

cladding coating process, and also<br />

EDF, Goesgen <strong>Nuclear</strong> <strong>Power</strong> Plant in<br />

Switzerland and leaders from across<br />

the nuclear sector have collaborated<br />

<strong>for</strong> several years on aspects of this fuel<br />

design.<br />

Framatome fabricated the fuel<br />

assemblies at its fuel manufacturing<br />

facility in Richland, Washington, as<br />

part of a 2017 contract with Southern<br />

<strong>Nuclear</strong>. Southern <strong>Nuclear</strong>, a subsidiary<br />

of Southern Company, operates<br />

a total of six units <strong>for</strong> Alabama <strong>Power</strong><br />

and Georgia <strong>Power</strong>.<br />

| | www.framatome.com<br />

GNS: Twelve CASTOR® casks<br />

<strong>for</strong> PreussenElektra<br />

(gns) GNS supplies twelve transport<br />

and storage casks of the type CASTOR®<br />

V/19 <strong>for</strong> the spent fuel from the<br />

German NPPs Brokdorf and Grohnde.<br />

GNS Gesellschaft für Nuklear-<br />

Service mbH has received an order to<br />

supply a total of twelve transport and<br />

storage casks of the type CASTOR®<br />

V/19. The casks will be used <strong>for</strong> the<br />

removal of spent fuel assemblies from<br />

the two pressurized water reactor<br />

NPPs of PreussenElektra in Brokdorf<br />

and Grohnde which are still in<br />

291<br />

NEWS<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

292<br />

NEWS<br />

operation. The order has a volume of<br />

well over EUR 20 million.<br />

The casks are to be delivered from<br />

the GNS plant in Mülheim an der Ruhr<br />

to the two power plants in the fourth<br />

quarter of 2020. After loading in the<br />

reactor building with 19 fuel elements<br />

each, the casks will be taken to the<br />

local interim storage facilities. More<br />

than 30 loaded casks of this type are<br />

already stored at each of the two sites.<br />

„The CASTOR® casks from GNS<br />

have proven to be reliable packaging<br />

<strong>for</strong> the irradiated fuel elements from<br />

our nuclear power plants”, explains<br />

Lothar Mertens, Head of Fuel Cycle<br />

and Interim Storage at Preussen-<br />

Elektra. “They ensure the smooth<br />

emptying of our storage pools and<br />

thus <strong>for</strong>m an important component in<br />

the disposal of our power plants both<br />

during power operation and until the<br />

reactor is completely fuel-free.”<br />

| | www.gns.de<br />

Science & Research<br />

LENS launches activities to<br />

strengthen European neutron<br />

science<br />

(lens) Members of a strategic consortium<br />

of neutron research facilities<br />

in Europe, the League of advanced<br />

European Neutron Sources (LENS),<br />

officially launched activities to promote<br />

colla boration on neutron usage,<br />

technology development, innovation,<br />

data, education, and strategies. By<br />

aligning policies among its partners,<br />

LENS will advocate <strong>for</strong> the user<br />

community and strengthen European<br />

neutron science.<br />

The members of LENS held their<br />

first General Assembly and the first<br />

Executive Board meeting on 26 March<br />

2019 in Liblice, the Czech Republic.<br />

The consortium adopted and signed<br />

Statutes detailing the purpose of<br />

LENS, guiding the work of the<br />

statutory bodies, and laying the<br />

framework <strong>for</strong> Working Groups responsible<br />

<strong>for</strong> the execution of <strong>for</strong>eseen<br />

activities. The Director of Institut<br />

Laue-Langevin (ILL) in France, Helmut<br />

Schober, was elected as LENS<br />

Chair, and the Director of the ISIS<br />

Neutron and Muon Source in the<br />

United Kingdom, Robert McGreevy, as<br />

Vice-Chair.<br />

A community event to mark<br />

the launch of LENS<br />

The signing ceremony was followed<br />

by a public event that celebrated the<br />

launch of LENS in the presence of<br />

around 80 government representatives,<br />

national delegates to the<br />

European Strategy Forum on Research<br />

Infrastructures (ESFRI), the European<br />

Commission, and the wider scientific<br />

community.<br />

“Research on materials will provide<br />

the basis <strong>for</strong> technologies of the<br />

future that are needed to achieve a<br />

sustainable, high standard of living all<br />

around the globe,” said the newly<br />

elected Chair of LENS, Helmut<br />

Schober. “LENS will help to develop<br />

these technologies by optimizing the<br />

use of resources <strong>for</strong> neutron investigations<br />

through strategic coordination<br />

among neutron facilities.”<br />

The event also featured panel<br />

discussions about the long-term<br />

sustainability of neutron sources, and<br />

the various ways in which neutrons<br />

contribute to excellent science and<br />

advance innovation. As a collaborative<br />

ef<strong>for</strong>t that aims to benefit researchers<br />

and address their needs, LENS seeks to<br />

establish good working relations with<br />

the European Neutron Scattering<br />

Association (ENSA). LENS will be in<br />

close dialogue with the League of<br />

European Accelerator-based Photon<br />

Sources (LEAPS), a strategic consortium<br />

that brings together synchrotron<br />

radiation and free electron laser user<br />

facilities in Europe. Representatives of<br />

both ENSA and LEAPS joined the LENS<br />

launch event in Liblice.<br />

The member base of LENS<br />

expands<br />

LENS was established in September<br />

2018 with the primary goal of facilitating<br />

discussions and decision-making<br />

processes that have the potential to<br />

strengthen European neutron science.<br />

The eight founding members include<br />

national and international neutron<br />

facilities from France, Germany,<br />

Hungary, Norway, Sweden, Switzerland,<br />

and the United Kingdom.<br />

The event in Liblice marked the<br />

first expansion of the consortium’s<br />

member base. Forschungszentrum<br />

Jülich from Germany with its Jülich<br />

Centre <strong>for</strong> Neutron Science (JCNS)<br />

was welcomed as the ninth member.<br />

LENS is open to new members and<br />

other qualifying neutron facilities<br />

which grant international access to<br />

their experimental devices and<br />

research services are invited to join at<br />

any time. In this way, LENS helps to<br />

contribute to the scientific integration<br />

of Europe.<br />

The LENS launch was held on the<br />

eve of the 68 th ESFRI Forum Meeting,<br />

which brought together senior science<br />

policy officials representing Ministers<br />

responsible <strong>for</strong> research in each of the<br />

participating state. “We welcome the<br />

launch of LENS. Coordinated ef<strong>for</strong>ts of<br />

this type support a better use and<br />

development of research infra structures<br />

in Europe. This is well in line<br />

with the vision that ESFRI has <strong>for</strong><br />

European science, “ said Jan Hrušák,<br />

ESFRI Chair.<br />

Shaping the future by utilising<br />

members’ capabilities<br />

Solving the grand challenges facing<br />

our societies often requires the development<br />

of new high-per<strong>for</strong>mance<br />

materials. Tailor-made materials and<br />

material systems are required <strong>for</strong> the<br />

advancement of key technologies,<br />

from in<strong>for</strong>mation technology and<br />

renewable energy concepts, to safer<br />

and more environmentally friendly<br />

transport systems and life-saving<br />

medical applications. Probing materials<br />

with neutrons stands as one of the<br />

pillars of the analytical techniques in<br />

this chain of discovery.<br />

Neutron-based analytical facilities,<br />

there<strong>for</strong>e, are used in numerous<br />

disciplines across the entire range of<br />

science and technology development,<br />

and generate a high socio-economic<br />

impact. Europe has achieved global<br />

leadership in this field, serving a very<br />

broad scientific community of more<br />

than 5,000 researchers by providing<br />

them with more than 32,000 instrument<br />

days at neutron scattering facilities.<br />

| | www.frm2.tum.de<br />

Market data<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

2014<br />

pp<br />

Uranium: 28.10–42.00<br />

pp<br />

Conversion: 7.25–11.00<br />

pp<br />

Separative work: 86.00–98.00<br />

2015<br />

pp<br />

Uranium: 35.00–39.75<br />

pp<br />

Conversion: 6.25–9.50<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

Uranium Prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

120.00<br />

) 1<br />

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

) 1<br />

120.00<br />

293<br />

100.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

80.00<br />

60.00<br />

40.00<br />

NEWS<br />

20.00<br />

20.00<br />

0.00<br />

Year<br />

2015<br />

| | Uranium spot market prices from 1980 to 2018 and from 2008 to 2019. The price range is shown. In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

2019<br />

0.00<br />

Year<br />

Jan.<br />

2012<br />

2013<br />

2014<br />

2015<br />

2016<br />

2017<br />

2018<br />

2019<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

180.00<br />

160.00<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

) 1<br />

Year<br />

Jan.<br />

0.00<br />

2012<br />

2013<br />

2014<br />

2015<br />

2016<br />

2017<br />

2018<br />

2019<br />

0.00<br />

Year<br />

Jan.<br />

2012<br />

2013<br />

2014<br />

2015<br />

2016<br />

2017<br />

2018<br />

2019<br />

| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

| | * Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bilder/Figures: <strong>atw</strong> 2019<br />

pp<br />

Separative work: 58.00–92.00<br />

2016<br />

pp<br />

Uranium: 18.75–35.25<br />

pp<br />

Conversion: 5.50–6.75<br />

pp<br />

Separative work: 47.00–62.00<br />

2017<br />

pp<br />

Uranium: 19.25–26.50<br />

pp<br />

Conversion: 4.50–6.75<br />

pp<br />

Separative work: 39.00–50.00<br />

2018<br />

January to June 2018<br />

pp<br />

Uranium: 21.75–24.00<br />

pp<br />

Conversion: 6.00–9.50<br />

pp<br />

Separative work: 35.00–42.00<br />

February 2018<br />

pp<br />

Uranium: 21.25–22.50<br />

pp<br />

Conversion: 6.25–7.25<br />

pp<br />

Separative work: 37.00–40.00<br />

March 2018<br />

pp<br />

Uranium: 20.50–22.25<br />

pp<br />

Conversion: 6.50–7.50<br />

pp<br />

Separative work: 36.00–39.00<br />

April 2018<br />

pp<br />

Uranium: 20.00–21.75<br />

pp<br />

Conversion: 7.50–8.50<br />

pp<br />

Separative work: 36.00–39.00<br />

May 2018<br />

pp<br />

Uranium: 21.75–22.80<br />

pp<br />

Conversion: 8.00–8.75<br />

pp<br />

Separative work: 36.00–39.00<br />

June 2018<br />

pp<br />

Uranium: 22.50–23.75<br />

pp<br />

Conversion: 8.50–9.50<br />

pp<br />

Separative work: 35.00–38.00<br />

July 2018<br />

pp<br />

Uranium: 23.00–25.90<br />

pp<br />

Conversion: 9.00–10.50<br />

pp<br />

Separative work: 34.00–38.00<br />

August 2018<br />

pp<br />

Uranium: 25.50–26.50<br />

pp<br />

Conversion: 11.00–14.00<br />

pp<br />

Separative work: 34.00–38.00<br />

September 2018<br />

pp<br />

Uranium: 26.50–27.50<br />

pp<br />

Conversion: 12.00–13.00<br />

pp<br />

Separative work: 38.00–40.00<br />

October 2018<br />

pp<br />

Uranium: 27.30–29.00<br />

pp<br />

Conversion: 12.00–15.00<br />

pp<br />

Separative work: 37.00–40.00<br />

November 2018<br />

pp<br />

Uranium: 28.00–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 39.00–40.00<br />

December 2018<br />

pp<br />

Uranium: 28.50–29.20<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 40.00–41.00<br />

2019<br />

January 2019<br />

pp<br />

Uranium: 28.70–29.10<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 41.00–44.00<br />

February 2019<br />

pp<br />

Uranium: 27.50–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 42.00–45.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

<strong>for</strong> Hard Coal<br />

Cross-border price <strong>for</strong> hard coal in<br />

[€/t TCE] and orders in [t TCE] <strong>for</strong><br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

2017: 91.28, 25,739,010<br />

2018<br />

I. quarter: 89.88; 5,838,003<br />

II. quarter: 88.25; 4,341,359<br />

III. quarter: 100.79; 5,135,198<br />

IV. quarter: 100.91; 6,814,244<br />

| | Source: BAFA, some data provisional<br />

www.bafa.de<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

294<br />

Operating Results 2018<br />

REPORT<br />

In 2018 the German nuclear power plants generated<br />

76.00 billion kilowatt hours (kWh) of electricity gross.<br />

No German nuclear power plant ceased operation in<br />

2018 due to the revision of the German Atomic Energy<br />

Act in the political aftermath of the accidents in Fukushima,<br />

Japan, in 2011. Seven nuclear power plants with an<br />

electric gross output of 10,013 MWe were in operation on<br />

31 December 2018.<br />

Six power plants in operation in 2018 achieved results<br />

with a gross production greater than 10 billion kilowatt<br />

hours, one power plants even produced more than 11 billion<br />

kilowatt hours and one more than 12 billion kilowatt<br />

hours.<br />

German nuclear power plants achieved two of the<br />

world’s ten best production results in 2018 (“Top Ten”). At<br />

the end of 2018, 451 reactor units were in operation in 31<br />

countries worldwide and 53 were under construction in 18<br />

countries. The share of nuclear power in world electricity<br />

production was around 11 %. German nuclear power<br />

plants have been occupying top spots in electricity production<br />

<strong>for</strong> decades thus providing an impressive demonstration<br />

of their efficiency, availability and reliability.<br />

The Chooz B-2 nuclear power plant in France (capacity:<br />

1,560 MWe gross) achieved the world record in electricity<br />

production in 2018 with 12.4 billion kilowatt hours. The<br />

German nuclear power plants Isar 2 (KKI 2, 12.1 billion<br />

kilowatt hours) and Emsland (KKE, 11.3 billion kilowatt<br />

hours) took the second and <strong>for</strong>th place.<br />

Additionally German nuclear power plants are leading<br />

with their lifetime electricity production. The Brokdorf,<br />

Grohnde, Isar 2 and Philippsburg 2 nuclear power plant<br />

have produced more than 350 billion kilowatt hours since<br />

their first criticality.<br />

D<br />

German nuclear power plant<br />

Top Ten: Electricity production 1981 to 2018<br />

Year<br />

1981<br />

1982<br />

1983<br />

1984<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2010<br />

2011<br />

2012<br />

2013<br />

2014<br />

Top Ten: <strong>Nuclear</strong> <strong>Power</strong> Plants<br />

World's<br />

best<br />

2 3 4 5 6 7 8 9 10<br />

D D D<br />

D D D D<br />

D D D D<br />

D D D D<br />

D D D D D D D<br />

D D D D D D<br />

D D D D D D<br />

D D D D D<br />

D D D D D D D<br />

D D D D D D<br />

D D D D D D D<br />

D D D D D D D<br />

D D D D D D D<br />

D D D D D D D<br />

D D D D D D D<br />

D D D D D D D<br />

D D D D D D D<br />

D D D D D D<br />

D D D D D D D<br />

D D D D D D<br />

D D D D D D D D<br />

D D D D D<br />

D D D D<br />

D D D D D<br />

D D D D D D<br />

D<br />

D<br />

D D D D<br />

D D D<br />

D D D<br />

D<br />

D D D<br />

D<br />

D D D D D<br />

D D D D D D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D D D<br />

D<br />

D D D D<br />

D D D D<br />

2015 D D D D<br />

2016 D D D<br />

2017<br />

D D<br />

2018 D D<br />

D<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

295<br />

Operating results of nuclear power plants in Germany 2017 and 2018<br />

<strong>Nuclear</strong> power plant Rated power Gross electricity<br />

generation<br />

in MWh<br />

Availability<br />

factor*<br />

in %<br />

Energy availability<br />

factor**<br />

in %<br />

REPORT<br />

gross<br />

in MWe<br />

net<br />

in MWe<br />

2017 2018 2017 2018 2017 2018<br />

Brokdorf KBR 1,480 1,410 5,778,146 10,375,751 51.68 90.60 48.23 84.72<br />

Emsland KKE 1,406 1,335 11,323,704 11,495,686 93.28 94.78 93.13 94.67<br />

Grohnde KWG 1,430 1,360 9,684,880 10,946,635 86.10 92.82 82.40 91.61<br />

Gundremmingen KRB B**** 1,344 1,284 9,689,710 93.10 92.20<br />

Gundremmingen KRB C 1,344 1,288 9,929,820 10,361,862 87.85 90.41 85.93 89.85<br />

Isar KKI 2 1,485 1,410 11,523,513 12,127,490 91.53 95.46 91.15 95.24<br />

Neckarwestheim GKN II 1,400 1,310 10,540,800 9,703,700 88.93 81.29 88.60 81.00<br />

Philippsburg KKP 2 1,468 1,402 7,853,827 10,993,639 63.18 90.63 63.12 90.47<br />

Total (in 2017) 11,357 10,799 76,324,400 81.95 80.47<br />

Total (in 2018) 10,013 9,515 76,004,763 90.85 89.60<br />

* Availability factor (time availability factor) kt = tN/tV: The time availability factor kt is the quotient<br />

of available time of a plant (tV) and the reference period (tN). The time availability factor is a degree<br />

<strong>for</strong> the deployability of a power plant.<br />

** Energy availability factor kW = WV/WN: The energy availability factor kW is the quotient of available<br />

energy of a plant (WV ) and the nominal energy (WN). The nominal energy WN is the product of nominal<br />

capacity and reference period. This variable is used as a reference variable (100 % value) <strong>for</strong> availability<br />

considerations. The available energy WV is the energy which can be generated in the reference period<br />

due to the technical and operational condition of the plant. Energy availability factors in excess of 100 %<br />

are thus impossible, as opposed to energy utilisation.<br />

*** Inclusive of round up/down, rated power in 2018.<br />

**** The Gundremmingen nuclear power plant (KRB B) was permanently shutdown on 31 December 2017<br />

due to the revision of the German Atomic Energy Act in 2011.<br />

All data in this report as of 31 March 2019.<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

296<br />

Brokdorf<br />

REPORT<br />

Operating sequence in 2018<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Electrical output in %<br />

January February March April May June July August September October November December<br />

In the year 2018 nuclear power plant Brokdorf (KBR) was on the grid<br />

with an availability factor of 84.70 % in total 7,937 operating hours.<br />

Gross generation <strong>for</strong> the year under review amounted to<br />

80 10,376,751 MWh. Also in 2018, the thermal reactor power was limited<br />

to a maximum of 95 % with a coolant temperature reduced by 3 K<br />

60 of nominal power due to the specifications of ME 02/2017 “Increased<br />

oxide layer thickness on fuel rod cladding tubes of fuel assemblies”.<br />

40<br />

Due to high summer temperatures, temporary reductions in output<br />

were necessary in the months of July to September in order to<br />

20<br />

comply with the water law permit.<br />

100<br />

0<br />

Planned shutdowns<br />

On 1 April 2018 the plant was shutdown <strong>for</strong> the 30 th refuelling and<br />

annual major revision:<br />

The revision included the following priorities:<br />

80<br />

pp<br />

Reactor<br />

Offload of the reactor pressure vessel.<br />

Oxide layer measurement and<br />

60<br />

visual inspection of fuel elements.<br />

40<br />

Inspection of control elements.<br />

Ultrasonic test, reactor pressure vessel,<br />

20<br />

bottom part.<br />

pp<br />

Main coolant pump YD40 Ring exchange of e-motor.<br />

0<br />

Inspection of the axial bearing.<br />

Replacement mechanical shaft seal.<br />

pp<br />

Feed water system Pressure testing.<br />

pp<br />

Coolant<br />

Works on pump stationary head VE30/40.<br />

Works on main coolant water<br />

Positionierung: channel VA10-30.<br />

pp<br />

Turbine Bezug, links, Standard untenservice.<br />

Inspection primary water cooler<br />

of generator.<br />

pp<br />

Trans<strong>for</strong>mers VGB: HKS6K Exchange 30 % of trans<strong>for</strong>mers<br />

<strong>atw</strong>: 100 60 CS12, 0 0 CS21, CT31.<br />

pp<br />

Batteries Exchange, redundancy 1<br />

100<br />

X = 20,475 Y = 95,25 B = 173,5 H = 38,2<br />

Unplanned shutdowns and reactor/turbine trip<br />

On 2 May 2018, the generator was disconnected from the grid and<br />

shut down to remove a seal leakage at a non-return flap of the steam<br />

generator blowdown system. On 5 May 2018, after completion of the<br />

repair, a malfunction in the turbine control at one of two electrohydraulic<br />

converters (EHU) occurred during start-up of the plant.<br />

After clearing of the failure the main synchronisation took place on<br />

6 May 2018.<br />

On 12 August 2018 the plant was disconnected from the grid <strong>for</strong><br />

repairing the speed monitor selection circuit of the turbine protection<br />

system.<br />

<strong>Power</strong> reductions above 10 % and longer than <strong>for</strong> 24 h<br />

In the period from 12 to 13 October 2018, power reduction was carried<br />

out <strong>for</strong> the inspection and repair of a connecting slide valve between<br />

a <strong>for</strong>ce-locking basin and a pump antechamber of the secured<br />

secondary cooling water system as well as <strong>for</strong> the detection and removal<br />

of a condenser pipe leakage in the turbine condenser.<br />

In addition, load reductions were carried out in order to implement<br />

the grid-supporting power control in accordance with the specifications<br />

of the mission control centre.<br />

Delivery of fuel elements<br />

During the reporting year 28 fuel elements were delivered.<br />

Waste management status<br />

By the end of the year 2018 33 loaded CASTOR © cask were located at<br />

the on-site intermediate storage Brokdorf.<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

297<br />

Operating data<br />

Review period 2018<br />

REPORT<br />

Plant operator: PreussenElektra GmbH<br />

Shareholder/Owner: PreussenElektra GmbH (80 %),<br />

Vattenfall Europe <strong>Nuclear</strong> Energy GmbH (20 %)<br />

Plant name: Kernkraftwerk Brokdorf (KBR)<br />

Address: PreussenElektra GmbH, Kernkraftwerk Brokdorf,<br />

25576 Brokdorf, Germany<br />

Phone: 04829 752560, Telefax: 04829 511<br />

Web: www.preussenelektra.de<br />

100<br />

90<br />

80<br />

79<br />

Availability factor in %<br />

Capacity factor in %<br />

84<br />

92<br />

93<br />

93<br />

93<br />

90<br />

First synchronisation: 10-14-1986<br />

Date of commercial operation: 12-22-1986<br />

Design electrical rating (gross):<br />

1,480 MW<br />

Design electrical rating (net):<br />

1,410 MW<br />

Reactor type:<br />

PWR<br />

Supplier:<br />

Siemens/KWU<br />

70<br />

60<br />

50<br />

40<br />

44<br />

The following operating results were achieved:<br />

Operating period, reactor:<br />

7,937 h<br />

Gross electrical energy generated in 2018:<br />

10,375,751 MWh<br />

Net electrical energy generated in 2018:<br />

9,838,252 MWh<br />

Gross electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

350,567,809 MWh<br />

Net electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

333,249,131 MWh<br />

Availability factor in 2018: 90.60 %<br />

Availability factor since<br />

date of commercial operation: 89.84 %<br />

Capacity factor 2018: 84.72 %<br />

Capacity factor since<br />

date of commercial operation: 86.19 %<br />

Downtime<br />

(schedule and <strong>for</strong>ced) in 2018: 9.40 %<br />

Number of reactor scrams 2018: 0<br />

Licensed annual emission limits in 2018:<br />

Emission of noble gases with plant exhaust air:<br />

Emission of iodine-131 with plant exhaust air:<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

1.0 · 10 15 Bq<br />

6.0 · 10 9 Bq<br />

5.55 · 10 10 Bq<br />

30<br />

20<br />

10<br />

0<br />

10<br />

9<br />

8<br />

7<br />

6<br />

84<br />

2011<br />

84<br />

2012<br />

93<br />

2013<br />

93<br />

2014<br />

93<br />

2015<br />

93<br />

2016<br />

Collective radiation dose of own<br />

and outside personnel in Sv<br />

52<br />

2017<br />

91<br />

2018<br />

Proportion of licensed annual emission limits<br />

<strong>for</strong> radioactive materials in 2018 <strong>for</strong>:<br />

Emission of noble gases with plant exhaust air: 0.079 %<br />

Emission of iodine-131 with plant exhaust air: 0.000 %<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium): 0.000 %<br />

Collective dose:<br />

0.142 Sv<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.22<br />

2011<br />

0.13<br />

2012<br />

0.22<br />

2013<br />

0.17<br />

2014<br />

0.14<br />

2015<br />

0.14<br />

2016<br />

0.13 0.14<br />

2017 2018<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

298<br />

Emsland<br />

REPORT<br />

Operating sequence in 2018<br />

Electrical output in %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

January February March April May June July August September October November December<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Apart from the 19 days refuelling outage the Emsland nuclear power<br />

plant had been operating uninterrupted and mainly at full load during<br />

the review period 2018. Producing a gross power generation of<br />

11,495,686 MWh with a capacity factor of 94.67 % the power plant<br />

achieved a very good operating result.<br />

Planned shutdowns<br />

31 th refuelling and overall annual maintenance inspection:<br />

The annual outage was scheduled <strong>for</strong> the period 25 May to 13 June.<br />

The outage took 19.0 days from breaker to breaker. In addition to the<br />

replacement of 40 fuel elements the following major maintenance<br />

and inspection activities were carried out:<br />

pp<br />

Inspection of core and reactor pressure vessel internals.<br />

100<br />

pp<br />

Inspection of a reactor coolant pump.<br />

pp<br />

Inspection of pressurizer valves.<br />

80<br />

pp<br />

Pressure test on different coolers and tanks.<br />

pp<br />

Inspection on main condensate pump.<br />

60<br />

pp<br />

Maintenance works on different trans<strong>for</strong>mers.<br />

pp<br />

Different automatic non-destructive examinations.<br />

0<br />

40<br />

Unplanned shutdowns and reactor/turbine trip<br />

Turbine scram due to increased turbine vibrations after the end of the<br />

outage.<br />

<strong>Power</strong> reductions above 10 % and longer than <strong>for</strong> 24 h<br />

22 April to 25 May: Stretch-out operation.<br />

Delivery of fuel elements<br />

24 Uranium-fuel elements were delivered.<br />

Waste management status<br />

4 CASTOR © cask loading were carried out during the review period<br />

2018. At the end of the year 47 loaded casks were stored in the local<br />

interim storage facility.<br />

20<br />

0<br />

Positionierung:<br />

Bezug, links, unten<br />

X = 20,475 Y = 95,25 B = 173,5 H = 38,2<br />

VGB: HKS6K 30 %<br />

<strong>atw</strong>: 100 60 0 0<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

299<br />

Operating data<br />

Review period 2018<br />

REPORT<br />

Plant operator: Kernkraftwerke Lippe-Ems GmbH<br />

Shareholder/Owner: RWE <strong>Power</strong> AG (87.5 %),<br />

PreussenElektra GmbH (12.5 %)<br />

Plant name: Kernkraftwerk Emsland (KKE)<br />

Address: Kernkraftwerk Emsland,<br />

Am Hilgenberg , 49811 Lingen, Germany<br />

Phone: 0591 806-1612<br />

Web: www.rwe.com<br />

100<br />

90<br />

80<br />

Availability factor in %<br />

Capacity factor in %<br />

95 95<br />

95<br />

95<br />

91<br />

94<br />

93<br />

95<br />

First synchronisation: 04-19-1988<br />

Date of commercial operation: 06-20-1988<br />

Design electrical rating (gross):<br />

1,406 MW<br />

Design electrical rating (net):<br />

1,335 MW<br />

Reactor type:<br />

PWR<br />

Supplier:<br />

Siemens/KWU<br />

70<br />

60<br />

50<br />

40<br />

The following operating results were achieved:<br />

Operating period, reactor:<br />

8,310 h<br />

Gross electrical energy generated in 2018:<br />

11,495,686 MWh<br />

Net electrical energy generated in 2018:<br />

10,951,033 MWh<br />

Gross electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

346,818,969 MWh<br />

Net electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

328,829,904 MWh<br />

Availability factor in 2018: 94.78 %<br />

Availability factor since<br />

date of commercial operation: 94.07 %<br />

Capacity factor 2018: 94.67 %<br />

Capacity factor since<br />

date of commercial operation: 93.93 %<br />

Downtime<br />

(schedule and <strong>for</strong>ced) in 2018: 5.22 %<br />

Number of reactor scrams 2018: 0<br />

Licensed annual emission limits in 2018:<br />

Emission of noble gases with plant exhaust air:<br />

Emission of iodine-131 with plant exhaust air:<br />

(incl. H-3 and C-14)<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

1.0 · 10 15 Bq<br />

5.0 · 10 9 Bq<br />

3.7 · 10 10 Bq<br />

Proportion of licensed annual emission limits<br />

<strong>for</strong> radioactive materials in 2018 <strong>for</strong>:<br />

Emission of noble gases with plant exhaust air: 0.099 %<br />

Emission of iodine-131 with plant exhaust air: 0.0 %<br />

(incl. H-3 and C-14)<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium): 0.00 %<br />

Collective dose:<br />

0.059 Sv<br />

30<br />

20<br />

10<br />

0<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

95 95<br />

2011 2012<br />

95<br />

2013<br />

95<br />

2014<br />

91<br />

2015<br />

94<br />

2016<br />

Collective radiation dose of own<br />

and outside personnel in Sv<br />

93<br />

2017<br />

95<br />

2018<br />

0<br />

0.07 0.09<br />

2011 2012<br />

0.08<br />

2013<br />

0.06<br />

2014<br />

0.10<br />

2015<br />

0.05<br />

2016<br />

0.09 0.06<br />

2017 2018<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

300<br />

Grohnde<br />

REPORT<br />

Operating sequence in 2018<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Electrical output in %<br />

January February March April May June July August September October November December<br />

100<br />

During the reporting year 2018 the nuclear power plant Grohnde<br />

was put off the grid <strong>for</strong> a 26-day major revision with refuelling and<br />

achieved an availability factor of 92.8 % The gross production<br />

amounted to 10,946,634 MWh.<br />

Opposite to the scheduled 21-day downtime the revision extended<br />

by 159 hours due to the maintenance of equipment and repair works<br />

of valve RL71 S003.<br />

The plant was additionally taken off the grid <strong>for</strong> 4.5 hours on<br />

29 July 2018 due to the repair of a speed monitoring device selection<br />

switch. The reactor was in hot-stand-by operation during this work.<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Planned shutdowns<br />

24 February to 22 March: 35 th Refuelling and major annual revision:<br />

100<br />

<strong>Nuclear</strong> power plant Grohnde was shut down as scheduled after a<br />

3-day stretch-out operation on 24 February 2018 <strong>for</strong> the revision and<br />

80<br />

35 th refuelling.<br />

The main planned works during this year’s revision were:<br />

60<br />

pp<br />

Unloading and loading with the replacement of 56 fresh fuel<br />

40<br />

elements.<br />

pp<br />

Full inspection of 20 fuel elements.<br />

p20p<br />

Eddy current test of 23 control elements.<br />

pp<br />

Visual inspection of 15 flow restrictor assembly.<br />

p0<br />

p Main coolant pump YD40 D001: Conversion of the motor and axial<br />

bearing revision HKMP YD20 D001.<br />

pp<br />

Inspection of the safety feed water pump TH35 D001.<br />

pp<br />

Cleaning of the nuclear intercooler TF10 B001.<br />

pp<br />

Non-destructive tests of the YB10 and YB40 steam generators and<br />

the Positionierung:<br />

secondary side.<br />

pp<br />

Start-up Bezug, test of links, the fuel unten element centering pins of the UKG.<br />

pp<br />

Work and tests in the redundancies with the focus on the activities<br />

in the main redundancy 1/5 (maintenance work on valves and<br />

actuators VGB: as HKS6K well as tests 30 on % containers, batteries and electrotechnical<br />

<strong>atw</strong>: branches). 100 60 0 0<br />

Due to a leakage at a blind plug of the valve detected during the startup<br />

process RL71 S003 was triggered by hand on 20 March at 02:10<br />

RESA and was shut down to subcritical cold <strong>for</strong> repair.<br />

X = 20,475 Y = 95,25 B = 173,5 H = 38,2<br />

Unplanned shutdowns and reactor/turbine trip<br />

29 July: Downtime <strong>for</strong> repair of the speed monitoring device selection<br />

switch. The plant was taken off the grid <strong>for</strong> 4.5 hours.<br />

<strong>Power</strong> reductions above 10 % and longer than <strong>for</strong> 24 h<br />

22 to 26 June: Due to disturbances of the speed monitoring device<br />

selection switch the reactor power was reduced down to 80 %.<br />

Load sequence operation was carried out in April, October,<br />

November and December due to the requirements of the load<br />

distributor.<br />

WANO Review/Technical Support Mission<br />

A WANO Peer Review took place at the KWG from 16 to 27 April 2018.<br />

This was a so-called “optimised” peer review, which was carried out<br />

<strong>for</strong> the first time according to a concept specially agreed <strong>for</strong> this<br />

purpose. A team of 14 peers from six nations scrutinized many areas<br />

of the power plant, identifying areas with potential <strong>for</strong> improvement.<br />

At the end of the review, the results were communicated to the power<br />

plant management and executives in a workshop.<br />

Delivery of fuel elements<br />

In February 2018 20 U-/U-Gd-fuel elements of Westinghouse were<br />

delivered.<br />

Waste management status<br />

Between September and November 2018, a total of four<br />

CASTOR © -V/19 containers were loaded. Thus 34 CASTOR © -V/19<br />

containers are currently stored in the ZL-KWG.<br />

General points/management systems<br />

In September 2018, the monitoring audit of the quality management<br />

system (ISO 9001) and the recertification of the environmental management<br />

system (ISO 14001) and the occupational health and safety<br />

management system (OHSAS 18001) were successfully carried out.<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

301<br />

Operating data<br />

Review period 2018<br />

REPORT<br />

Plant operator: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG<br />

Shareholder/Owner: PreussenElektra GmbH (83.3 %),<br />

Stadtwerke Bielefeld (16.7 %)<br />

Plant name: Kernkraftwerk Grohnde (KWG)<br />

Address: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG,<br />

P.O. bx 12 30, 31857 Emmerthal, Germany<br />

Phone: 05155 67-1<br />

Web: www.preussenelektra.de<br />

100<br />

90<br />

80<br />

84<br />

Availability factor in %<br />

Capacity factor in %<br />

95<br />

89<br />

84<br />

89<br />

82<br />

92<br />

First synchronisation: 09-05-1984<br />

Date of commercial operation: 02-01-1985<br />

Design electrical rating (gross):<br />

1,430 MW<br />

Design electrical rating (net):<br />

1,360 MW<br />

Reactor type:<br />

PWR<br />

Supplier:<br />

Siemens/KWU<br />

70<br />

60<br />

50<br />

40<br />

73<br />

The following operating results were achieved:<br />

Operating period, reactor:<br />

8,131 h<br />

Gross electrical energy generated in 2018:<br />

10,946,634 MWh<br />

Net electrical energy generated in 2018:<br />

10,339,242 MWh<br />

Gross electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

377,574,203 MWh<br />

Net electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

356,969,277 MWh<br />

Availability factor in 2018: 92.80 %<br />

Availability factor since<br />

date of commercial operation: 91.70 %<br />

Capacity factor 2018: 91.70 %<br />

Capacity factor since<br />

date of commercial operation: 91.30 %<br />

Downtime<br />

(schedule and <strong>for</strong>ced) in 2018: 7.20 %<br />

Number of reactor scrams 2018: 0<br />

Licensed annual emission limits in 2018:<br />

Emission of noble gases with plant exhaust air: 9.0 · 10 14 Bq<br />

Emission of iodine-131 with plant exhaust air: 7.5 · 10 9 Bq<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

5.55 · 10 10 Bq<br />

30<br />

20<br />

10<br />

0<br />

10<br />

9<br />

8<br />

7<br />

6<br />

84 95<br />

2011 2012<br />

90<br />

2013<br />

84<br />

2014<br />

89<br />

2015<br />

75<br />

2016<br />

Collective radiation dose of own<br />

and outside personnel in Sv<br />

86<br />

2017<br />

93<br />

2018<br />

Proportion of licensed annual emission limits<br />

<strong>for</strong> radioactive materials in 2018 <strong>for</strong>:<br />

Emission of noble gases with plant exhaust air: 0.005 %<br />

Emission of iodine-131 with plant exhaust air: 0.000 %<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium): 0.000 %<br />

Collective dose:<br />

0.124 Sv<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.65<br />

0.27<br />

2011 2012<br />

0.54<br />

2013<br />

0.25<br />

2014<br />

0.31<br />

2015<br />

0.52<br />

2016<br />

0.23 0.12<br />

2017 2018<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

302<br />

Gundremmingen C<br />

REPORT<br />

Operating sequence in 2018<br />

Electrical output in %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

January February March April May June July August September October November December<br />

In the review year 2018, unit C of Gundremmingen nuclear power<br />

plant was operated at full load without any major restrictions except<br />

80<br />

<strong>for</strong> one planned outage <strong>for</strong> refuelling.<br />

From<br />

60<br />

1 March to 21 April 2018 unit C was in stretch-out operation.<br />

During 40 the shutdown a total of 138 fuel elements were unloaded<br />

and replaced with 120 fresh and 18 (8 MOX) partially spent fuel elements.<br />

20<br />

During the outage all safety relevant workings were monitored by<br />

the relevant 0 nuclear controlling authority, the Bavarian State Ministry<br />

of the Environment and Consumer Protection (StMUV), and consulted<br />

authorized experts. The inspection of the technical systems<br />

with regard to safety and reliability confirmed the excellent condition<br />

of the plant.<br />

100<br />

A gross total of 10,361,862 MWh of electricity was produced.<br />

80<br />

100<br />

Peer Reviews<br />

Between 5 and 16 March, an “optimized” WANO Peer Review <strong>for</strong> a<br />

period of two instead of three weeks took place at KGG. The following<br />

focus areas were analysed: work safety, fire protection, chemistry,<br />

radiation protection, handling of fuel assemblies, management<br />

of nuclear fuel.<br />

Delivery of fuel elements<br />

In 2018, <strong>for</strong> Gundremmingen unit C 132 fresh fuel elements were delivered.<br />

Waste management status<br />

At the end of 2018, the local interim storage facility accommodated<br />

60 loaded CASTOR © casks with each 52 spent fuel elements out of<br />

units B and C.<br />

Planned<br />

60<br />

shutdowns<br />

21 April to 26 May 2018: 32 nd refuelling and annual major inspection.<br />

40<br />

The following major activities were carried out:<br />

p20p<br />

Refuelling and sipping of all fuel elements inside the core; result:<br />

two defective fuel elements.<br />

p0<br />

p Works on turbine, generator and auxiliary systems.<br />

pp<br />

Inspection of main isolation valves of feedwater, main steam and<br />

residual heat removal system.<br />

pp<br />

Emptying of redundancy 5 <strong>for</strong> preventive measures on valves,<br />

torque motors, motors, pumps and tanks.<br />

pp<br />

Inspection Positionierung:<br />

of one emergency diesel generator.<br />

pp<br />

Extensive Bezug, non-destructive links, unten testing of pipes and tanks.<br />

pp<br />

Emptying of main cooling water system, cleaning of cooling tower<br />

pond, exchange of cooling tower installations.<br />

pp<br />

Optimisation<br />

VGB: HKS6K<br />

measures<br />

30<br />

to<br />

%<br />

ensure non-interaction between permanently<br />

<strong>atw</strong>: shut 100 down 60 unit 0 0B and operating unit C.<br />

X = 20,475 Y = 95,25 B = 173,5 H = 38,2<br />

Unplanned shutdowns and reactor/turbine trip<br />

None.<br />

<strong>Power</strong> reductions above 10 % and longer than <strong>for</strong> 24 h<br />

25 and 26 February: Periodic tests.<br />

1 March to 21 April: Stretch-out operation.<br />

11 to 14 November: Period tests, change of the control rod traversing<br />

order, leak detection in turbine condenser.<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

303<br />

Operating data<br />

Review period 2018<br />

REPORT<br />

Plant operator: Kernkraftwerk Gundremmingen GmbH<br />

Shareholder/Owner: RWE <strong>Power</strong> AG (75 %),<br />

PreussenElektra GmbH (25 %)<br />

Plant name: Kernkraftwerk Gundremmingen C (KRB C)<br />

Address: Kernkraftwerk Gundremmingen GmbH,<br />

Dr.-August-Weckesser-Straße 1, 89355 Gundremmingen, Germany<br />

Phone: 08224 78-1, Telefax: 08224 78-2900<br />

E-mail: kontakt@kkw-gundremmingen.de<br />

Web: www.kkw-gundremmingen.de<br />

First synchronisation: 11-02-1984<br />

Date of commercial operation: 01-18-1985<br />

Design electrical rating (gross):<br />

1,344 MW<br />

Design electrical rating (net):<br />

1,288 MW<br />

Reactor type:<br />

BWR<br />

Supplier:<br />

Siemens/KWU,<br />

Hochtief<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

84<br />

Availability factor in %<br />

Capacity factor in %<br />

91<br />

89<br />

90<br />

90<br />

86<br />

86<br />

90<br />

The following operating results were achieved:<br />

Operating period, reactor:<br />

7,920 h<br />

Gross electrical energy generated in 2018: 10,361,862 MWh<br />

Net electrical energy generated in 2018: 9,874,200 MWh<br />

Gross electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

330,941,755 MWh<br />

Net electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

305,182,060 MWh<br />

Availability factor in 2018: 90.40 %<br />

Availability factor since<br />

date of commercial operation: 89.20 %<br />

Capacity factor 2018: 89.90 %<br />

Capacity factor since<br />

date of commercial operation: 87.60 %<br />

Downtime<br />

(schedule and <strong>for</strong>ced) in 2018: 9.60 %<br />

Number of reactor scrams 2018: 0<br />

30<br />

20<br />

10<br />

0<br />

10<br />

9<br />

8<br />

85 92<br />

2011 2012<br />

90<br />

2013<br />

90<br />

2014<br />

90<br />

2015<br />

86<br />

2016<br />

Collective radiation dose of own<br />

and outside personnel in Sv<br />

88<br />

2017<br />

90<br />

2018<br />

Licensed annual emission limits in 2018<br />

(values added up <strong>for</strong> Units B and C, site emission):<br />

Emission of noble gases with plant exhaust air: 1.85 · 10 15 Bq<br />

Emission of iodine-131 with plant exhaust air: 2.20 · 10 10 Bq<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

1.10 · 10 11 Bq<br />

7<br />

6<br />

5<br />

Proportion of licensed annual emission limits <strong>for</strong> radioactive<br />

materials in 2018 <strong>for</strong> (values added up <strong>for</strong> Units B and C):<br />

Emission of noble gases with plant exhaust air: 0.93 %<br />

Emission of iodine-131 with plant exhaust air: 0.39 %<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium): 0.30 %<br />

Collective dose:<br />

0.55 Sv<br />

4<br />

3<br />

2<br />

1<br />

1.59<br />

0.78<br />

1.36<br />

1.14<br />

1.49<br />

0.84<br />

0.89<br />

0.55<br />

0<br />

2011 2012<br />

2013<br />

2014<br />

2015<br />

2016<br />

2017 2018<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

304<br />

Isar 2<br />

REPORT<br />

Operating sequence in 2018<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Electrical output in %<br />

January February March April May June July August September October November December<br />

100<br />

On 22 January 1988 unit 2 of Isar nuclear power plant (KKI 2) fed <strong>for</strong><br />

80<br />

the first time electricity into the grid. 9 April 2018 marked the 30 th<br />

80<br />

anniversary of the start of commercial power operation at the Isar<br />

60<br />

unit 2 nuclear power plant and was the first nuclear power plant in<br />

60<br />

the German generation statistics. With gross electricity generation of<br />

40<br />

12,127,490 MWh and a unit capability of 95.24 %, Unit 2 achieved an<br />

40<br />

excellent operating result in 2018.<br />

20<br />

In the evening hours of 16 September 2018, KKI 2 was the third<br />

20<br />

single block plant worldwide to achieve gross generation of<br />

0<br />

350 billion kWh since its first criticality. In addition, the 250,000<br />

0<br />

generator operating hours were per<strong>for</strong>med on 5 September 2018 at<br />

around 7 pm.<br />

100<br />

100<br />

Planned shutdowns<br />

14 to 29 July: Refuelling and annual major inspection with duration<br />

80<br />

of 15.8 days. During the revision 40 new fuel elements were inserted.<br />

WANO Review/Technical Support Mission<br />

22 January to 9 February: WANO Peer-Review.<br />

Delivery of fuel elements<br />

In the reporting year 32 uranium fuel elements from Westinghouse<br />

were delivered. 24 uranium fuel elements are in stock at the dry<br />

storage.<br />

Waste management status<br />

Currently 59 CASTOR © V-casks (26 units CASTOR © V/19, 26 units<br />

of CASTOR © V/52 (85-type) and 7 TN © 24E-casks) are stored in the<br />

on-site intermediate storage BELLA.<br />

The interim storage facility was taken over by BGZ Gesellschaft<br />

für Zwischenlagerung mbH on 1 January 2019.<br />

The completion of the project “Structural optimisation of the KKI<br />

BELLA warehouse” was in November 2018.<br />

60<br />

Unplanned shutdowns and reactor/turbine trip<br />

340August : On 3 August at 01:29 a.m. the plant had to be taken off the<br />

grid due to a repair of a drainage valve. At 07:32 p.m. the mains was<br />

switched back.<br />

20<br />

<strong>Power</strong> 0 reductions above 10 % and longer than <strong>for</strong> 24 h<br />

None.<br />

Safety Reviews<br />

21 February: Management evaluation KKI.<br />

1 March: Positionierung:<br />

Company review.<br />

13 and Bezug, 15 March: links, Inspection unten in accordance with §16 Störfall Verordnung<br />

– Brandschutz und Immissionsschutz (Major Accidents<br />

Ordinance – Fire Protection and Immission Control).<br />

13 to VGB: 16 March: HKS6K 2 nd Periodic 30 % Audit by DNV GL Business Assurance<br />

Zertifizierung <strong>atw</strong>: 100 & Umweltgutachter 60 0 0 GmbH according to DIN EN ISO<br />

9001:2015 / 14001:2015, BS OHSAS 18001:2007 and EMAS.<br />

12 to 13 June: Internal “Audit Plant Monitoring” at KKI.<br />

7 August: Management system, status discussion.<br />

27 September: 2 nd operational review KKI (half-year review 2018).<br />

4 to 10 October: Management system audit.<br />

7 and 8 November: Internal Audit “Processing and Execution of Projects”.<br />

X = 20,475 Y = 95,25 B = 173,5 H = 38,2<br />

General points<br />

A grid failure on 8 April 2018 (2-pole short-circuit on a 400 kV line)<br />

led to repercussions via the neighbouring Ottenhofen switching<br />

plant to the plant. Numerous consumers were briefly switched off via<br />

undervoltage monitoring. A voltage drop to 9 kV occurred on the<br />

10 kV bus. Many of the consumers switched on again automatically.<br />

The voltage drop had no influence on the system per<strong>for</strong>mance and<br />

did not lead to any tripping in the block protection and safety system.<br />

Emergency exercise with expert ESN on 27 November 2018: The<br />

exercise began outside working hours. The scenario assumed was a<br />

“station black out”, fire alarm in the emergency food building and<br />

failure of various emergency measures. The emergency exercise was<br />

completed professionally and purposefully with a highly motivated<br />

team.<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

305<br />

Operating data<br />

Review period 2018<br />

REPORT<br />

Plant operator: PreussenElektra GmbH<br />

Shareholder/Owner: PreussenElektra GmbH (75 %),<br />

Stadtwerke München GmbH (25 %)<br />

Plant name: Kernkraftwerk Isar 2 (KKI 2)<br />

Address: PreussenElektra GmbH, Kernkraftwerk Isar,<br />

Postfach 11 26, 84049 Essenbach, Germany<br />

Phone: 08702 38-2465, Telefax: 08702 38-2466<br />

Web: www.preussenelektra.de<br />

100<br />

90<br />

80<br />

96<br />

Availability factor in %<br />

Capacity factor in %<br />

94<br />

94<br />

90<br />

89<br />

96<br />

91<br />

95<br />

First synchronisation: 01-22-1988<br />

Date of commercial operation: 04-09-1988<br />

Design electrical rating (gross):<br />

1,485 MW<br />

Design electrical rating (net):<br />

1,410 MW<br />

Reactor type:<br />

PWR<br />

Supplier:<br />

Siemens/KWU<br />

70<br />

60<br />

50<br />

40<br />

The following operating results were achieved:<br />

Operating period, reactor:<br />

8,367 h<br />

Gross electrical energy generated in 2018:<br />

12,127,490 MWh<br />

Net electrical energy generated in 2018: 11,477,215 MWh<br />

Gross electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

353,725,813 MWh<br />

Net electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

334,444,116 MWh<br />

Availability factor in 2018: 95.46 %<br />

Availability factor since<br />

date of commercial operation: 93.28 %<br />

Capacity factor 2018: 95.24 %<br />

Capacity factor since<br />

date of commercial operation: 92.37 %<br />

Downtime<br />

(schedule and <strong>for</strong>ced) in 2018: 4.54 %<br />

Number of reactor scrams 2018: 0<br />

Licensed annual emission limits in 2018:<br />

Emission of noble gases with plant exhaust air: 1.1 · 10 15 Bq<br />

Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

5.5 · 10 10 Bq<br />

30<br />

20<br />

10<br />

0<br />

10<br />

9<br />

8<br />

7<br />

6<br />

96<br />

2011<br />

94<br />

2012<br />

96<br />

2013<br />

95<br />

2014<br />

89<br />

2015<br />

96<br />

2016<br />

Collective radiation dose of own<br />

and outside personnel in Sv<br />

92<br />

2017<br />

95<br />

2018<br />

Proportion of licensed annual emission limits<br />

<strong>for</strong> radioactive materials in 2018 <strong>for</strong>:<br />

Emission of noble gases with plant exhaust air: 0.07 %<br />

Emission of iodine-131 with plant exhaust air: < limit of detection<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

< limit of detection<br />

Collective dose:<br />

0.064 Sv<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.08 0.14<br />

2011 2012<br />

0.08<br />

2013<br />

0.09<br />

2014<br />

0.25<br />

2015<br />

0.06<br />

2016<br />

0.14 0.06<br />

2017 2018<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

306<br />

Neckarwestheim II<br />

REPORT<br />

Operating sequence in 2018<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Electrical output in %<br />

January February March April May June July August September October November December<br />

100<br />

During the reporting year 2018 the Neckarwestheim II nuclear power<br />

80<br />

plant (GKN II) generated a gross output of 9,703,700 MWh. The net<br />

electrical energy generation amounted 9,099,358 MWh of which<br />

60<br />

8,949,140 MWh were fed into the public three-phase supply and<br />

754,560 MWh into the static conversion unit of the Deutsche<br />

40<br />

Bahn AG. The plant was 7,121 h on the grid. This corresponds to an<br />

availability of 81.29 %. Since the commissioning of the three-phasemachine<br />

329,830,184 MWh gross and 308,416,137 MWh net were<br />

20<br />

generated.<br />

0<br />

Planned shutdowns<br />

1 September to 8 November: 34 rd and annual major inspection:<br />

pp<br />

Refuelling with exchange of 28 new fuel elements.<br />

pp<br />

Eddy current tests of the heating tubes of all 4 steam generators.<br />

80<br />

pp<br />

Major overhaul of four source isolating valves at system JNA.<br />

pp<br />

Complete overhaul of the residual heat removal pump with motor<br />

60<br />

JNA30-AP001.<br />

p40p<br />

Complete overhaul of intercooling pumps KAA30/31-AP001.<br />

pp<br />

Internal inspection of the flood pool JNK30 with submarine<br />

20 (at UK-Loop).<br />

pp<br />

Major overhaul of the stop valve KAA30-AA010 and various KAB<br />

0 flaps in UJB and UKA.<br />

pp<br />

Secondary tube bottom flushing of all 4 steam generators.<br />

pp<br />

Major overhaul of the main feed water pump LAC20-AP001.<br />

pp<br />

Partial overhaul of the main condensate pump LCB30-AP001.<br />

pp<br />

Major overhaul of the main steam safety valve and the blow-off<br />

shut-off Positionierung:<br />

valve <strong>for</strong> LBA10.<br />

pp<br />

Major Bezug, overhaul links, of live unten steam shut-off valve and shut-off valve be<strong>for</strong>e<br />

safety valve on LBA20.<br />

pp<br />

Inspections of the turbo set and generator.<br />

100<br />

X = 20,475 Y = 95,25 B = 173,5 H = 38,2<br />

VGB: HKS6K 30 %<br />

<strong>atw</strong>: 100 60 0 0<br />

Unplanned shutdowns and reactor/turbine trip<br />

20 September to 8 November: Unplanned extension of the revision.<br />

<strong>Power</strong> reductions above 10 % and longer than <strong>for</strong> 24 h<br />

3 to 31 August: Stretch-out operation.<br />

1 to 7 and 24 to 29 January, 17 and 18 March, 29 April, 21 to 24 July,<br />

8 to 11 and 21 to 22 December: Load sequence operation.<br />

Integrated management system (IMS)<br />

EnKK (NPP KKP, GKN, KWO)<br />

The integrated management system (IMS) of the EnBW Kernkraft<br />

GmbH (EnKK) with its partial system <strong>for</strong> nuclear safety (SMS),<br />

quality management (QMS/QSÜ) as well as environmental and<br />

energy management (UMS, EnMS, Umwelt- und Energiemanagementsystem)<br />

were also in 2018 continuously further developed.<br />

Scope and content of each process descriptions were gradually<br />

adapted to the different internal requirements and related approval<br />

criteria. Besides the confirmation of con<strong>for</strong>mity <strong>for</strong> the IMS, the recertification<br />

of the EnKK energy management system (EnMS, Energiemanagementsystem)<br />

according to DIN EN ISO 50001 took place<br />

in 2018 to improve energy efficiency. The certificate was thus extended<br />

by three years.<br />

The completeness and effectiveness of the process-oriented IMS,<br />

including the quality management measures, were confirmed by appropriate<br />

internal audits as well as by a several-day inspection by the<br />

expert (ESN) and the supervisory authority at the GKN and KKP<br />

sites.<br />

The modular and demand-oriented structure of the IMS according<br />

to KTA1402 also enables continuous and efficient adaptation to<br />

the site-specific requirements in operation/post-operation in subsequent<br />

years. Another important focus will be the gradual integration<br />

of dismantling aspects into the IMS in order to exploit synergy effects.<br />

Waste management status<br />

In the year 2018 4 CASTOR © V/19 casks from GKN II were delivered<br />

to the on-site intermediate storage Neckarswestheim. Thus by then<br />

End of 2018 61 loaded CASTOR © V/19-casks, 5 loaded TN 24E-casks<br />

and 15 loaded CASTOR © 440/84 mvK-casks were stored at the onsite<br />

intermediate storage Neckarwestheim.<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

307<br />

Operating data<br />

Review period 2018<br />

REPORT<br />

Plant operator: EnBW Kernkraft GmbH (EnKK)<br />

Shareholder/Owner: EnBW Erneuerbare und Konventionelle<br />

Erzeugung AG (98.45 %), ZEAG Energie AG, Deutsche Bahn AG,<br />

Kernkraftwerk Obrigheim GmbH<br />

Plant name: Kernkraftwerk Neckarwestheim II (GKN II)<br />

Address: EnBW Kernkraft GmbH, Kernkraftwerk Neckarwestheim,<br />

Im Steinbruch, 74382 Neckarwestheim, Germany<br />

Phone: 07133 13-0, Telefax: 07133 17645<br />

E-mail: poststelle-gkn@kk.enbw.com<br />

Web: www.enbw.com<br />

100<br />

90<br />

80<br />

70<br />

95<br />

Availability factor in %<br />

Capacity factor in %<br />

92<br />

90<br />

93<br />

93<br />

94<br />

89<br />

81<br />

First synchronisation: 01-03-1989<br />

Date of commercial operation: 04-15-1989<br />

Design electrical rating (gross):<br />

1,400 MW<br />

Design electrical rating (net):<br />

1,310 MW<br />

Reactor type:<br />

PWR<br />

Supplier:<br />

Siemens/KWU<br />

60<br />

50<br />

40<br />

The following operating results were achieved:<br />

Operating period, reactor:<br />

7,127 h<br />

Gross electrical energy generated in 2018: 9,703,700 MWh<br />

Net electrical energy generated in 2018: 9,099,358 MWh<br />

Gross electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

329,830,184 MWh<br />

Net electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

308,416,137 MWh<br />

Availability factor in 2018: 81.29 %<br />

Availability factor since<br />

date of commercial operation: 93.09 %<br />

Capacity factor 2018: 81.00 %<br />

Capacity factor since<br />

date of commercial operation: 92.71 %<br />

Downtime<br />

(schedule and <strong>for</strong>ced) in 2018: 18.71 %<br />

Number of reactor scrams 2018: 0<br />

30<br />

20<br />

10<br />

0<br />

10<br />

9<br />

8<br />

95 92<br />

2011 2012<br />

90<br />

2013<br />

93<br />

2014<br />

93<br />

2015<br />

95<br />

2016<br />

Collective radiation dose of own<br />

and outside personnel in Sv<br />

89<br />

2017<br />

81<br />

2018<br />

Licensed annual emission limits in 2018:<br />

Emission of noble gases with plant exhaust air: 1.0 · 10 15 Bq<br />

Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

6.0 · 10 10 Bq<br />

Proportion of licensed annual emission limits<br />

<strong>for</strong> radioactive materials in 2018 <strong>for</strong>:<br />

Emission of noble gases with plant exhaust air: 0.06 %<br />

Emission of iodine-131 with plant exhaust air: < limit of detection<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

< limit of detection<br />

Collective dose:<br />

0.118 Sv<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.10 0.13<br />

2011 2012<br />

0.08<br />

2013<br />

0.10<br />

2014<br />

0.12<br />

2015<br />

0.08<br />

2016<br />

0.15 0.12<br />

2017 2018<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

308<br />

Philippsburg 2<br />

REPORT<br />

Operating sequence in 2018<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Electrical output in %<br />

January February March April May June July August September October November December<br />

100<br />

In the reporting year 2018 the nuclear power plant block<br />

80<br />

Philippsburg 2 (KKP 2) generated a gross output of 10,993,639 MWh.<br />

The net electrical power generation consisted of 10,323,151 MWh.<br />

60<br />

The plant was 7,939 h on the grid. This corresponds to a availability<br />

factor of 90.63 %.<br />

40<br />

Since the commissioning of the plant 366,161,155 MWh gross and<br />

347,076,473 MWh net were generated.<br />

Planned 0 shutdowns<br />

11 May to 15 June: 33 nd refuelling and annual major inspection.<br />

Major inspection work carried out:<br />

pp100<br />

Inspection of one of the three main feed pumps.<br />

pp<br />

Eddy current testing of two of the four steam generators.<br />

pp<br />

80 Leak test of reactor containment.<br />

pp<br />

Inspection of the main cooling water system.<br />

pp<br />

60 Engine replacement on two of six main cooling water pumps.<br />

pp<br />

Maintenance work on individual emergency power generators.<br />

40<br />

Unplanned shutdowns and reactor/turbine trip<br />

18 20 August: Turbine trip (TUSA) via the criterion “high condenser<br />

pressure”.<br />

0<br />

20<br />

<strong>Power</strong> reductions above 10 % and longer than <strong>for</strong> 24 h<br />

15 March to 11 May: Stretch-out operation<br />

26 July to 24 August: Reduction of heat input into the Rhine and<br />

compliance with the permissible outlet temperature.<br />

15 October Positionierung:<br />

to 2 November: Reduction of heat input into the Rhine<br />

and compliance Bezug, with links, the unten permissible outlet temperature.<br />

8 November to 3 December: Reduction of heat input into the Rhine<br />

X = 20,475 Y = 95,25 B = 173,5 H = 38,2<br />

VGB: HKS6K 30 %<br />

<strong>atw</strong>: 100 60 0 0<br />

and compliance with the permissible outlet temperature.<br />

Integrated management system (IMS) EnKK<br />

(NPP KKP, GKN, KWO)<br />

The integrated management system (IMS) of the EnBW Kernkraft<br />

GmbH (EnKK) with its partial system <strong>for</strong> nuclear safety (SMS),<br />

quality management (QMS/QSÜ) as well as environmental and<br />

energy management (UMS, EnMS, Umwelt- und Energiemanagementsystem)<br />

were also in 2018 continuously further developed.<br />

Scope and content of each process descriptions were gradually<br />

adapted to the different internal requirements and related approval<br />

criteria. Besides the confirmation of con<strong>for</strong>mity <strong>for</strong> the IMS, the recertification<br />

of the EnKK energy management system (EnMS, Energiemanagementsystem)<br />

according to DIN EN ISO 50001 took place<br />

in 2018 to improve energy efficiency. The certificate was thus extended<br />

by three years.<br />

The completeness and effectiveness of the process-oriented IMS,<br />

including the quality management measures, were confirmed by appropriate<br />

internal audits as well as by a several-day inspection by the<br />

expert (ESN) and the supervisory authority at the GKN and KKP<br />

sites.<br />

The modular and demand-oriented structure of the IMS according<br />

to KTA1402 also enables continuous and efficient adaptation to<br />

the site-specific requirements in operation/post-operation in subsequent<br />

years. Another important focus will be the gradual integration<br />

of dismantling aspects into the IMS in order to exploit synergy effects.<br />

Waste management status<br />

During the year 2018 in total 2 transportation and storage casks of<br />

type CASTOR © V/19 were stored in the on-site intermediate storage.<br />

Altogether 33 loaded CASTOR © V/19 and 29 loaded CASTOR ©<br />

V/25 casks were at the on-site intermediate storage.<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

309<br />

Operating data<br />

Review period 2018<br />

REPORT<br />

Plant operator: EnBW Kernkraft GmbH (EnKK)<br />

Shareholder/Owner: EnBW Erneuerbare und Konventionelle<br />

Erzeugung AG (98.45 %), ZEAG Energie AG, Deutsche Bahn AG,<br />

Kernkraftwerk Obrigheim GmbH<br />

Plant name: Kernkraftwerk Philippsburg 2 (KKP 2)<br />

Address: EnBW Kernkraft GmbH, Kernkraftwerk Philippsburg,<br />

P.O. box 11 40, 76652 Philippsburg, Germany<br />

Phone: 07256 95-0, Telefax: 07256 95-2029<br />

E-mail: Poststelle-kkp@kk.enbw.com<br />

Web: www.enbw.com<br />

100<br />

90<br />

80<br />

70<br />

90<br />

Availability factor in %<br />

Capacity factor in %<br />

86<br />

73<br />

82<br />

90<br />

82<br />

90<br />

First synchronisation: 12-17-1984<br />

Date of commercial operation: 04-18-1985<br />

Design electrical rating (gross):<br />

1,468 MW<br />

Design electrical rating (net):<br />

1,402 MW<br />

Reactor type:<br />

PWR<br />

Supplier:<br />

Siemens/KWU<br />

60<br />

50<br />

40<br />

63<br />

The following operating results were achieved:<br />

Operating period, reactor:<br />

7,965 h<br />

Gross electrical energy generated in 2018: 10,993,639 MWh<br />

Net electrical energy generated in 2018: 10,323,151 MWh<br />

Gross electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

366,161,155 MWh<br />

Net electrical energy generated since<br />

first synchronisation until 12-31-2018:<br />

347,076,473 MWh<br />

Availability factor in 2018: 90.63 %<br />

Availability factor since<br />

date of commercial operation: 88.76 %<br />

Capacity factor 2018: 90.47 %<br />

Capacity factor since<br />

date of commercial operation: 88.49 %<br />

Downtime<br />

(schedule and <strong>for</strong>ced) in 2018: 9.37 %<br />

Number of reactor scrams 2018: 0<br />

30<br />

20<br />

10<br />

0<br />

10<br />

9<br />

8<br />

90<br />

2011<br />

86<br />

2012<br />

73<br />

2013<br />

82<br />

2014<br />

91<br />

2015<br />

82<br />

2016<br />

Collective radiation dose of own<br />

and outside personnel in Sv<br />

63<br />

2017<br />

91<br />

2018<br />

Licensed annual emission limits in 2018:<br />

Emission of noble gases with plant exhaust air: 1.1 · 10 15 Bq<br />

Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium):<br />

5.5 · 10 10 Bq<br />

Proportion of licensed annual emission limits<br />

<strong>for</strong> radioactive materials in 2018 <strong>for</strong>:<br />

Emission of noble gases with plant exhaust air: 0.12 %<br />

Emission of iodine-131 with plant exhaust air: < limit of detection<br />

Emission of nuclear fission and activation products<br />

with plant waste water (excluding tritium): 0.04 %<br />

Collective dose:<br />

0.115 Sv<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.14<br />

2011<br />

0.22<br />

2012<br />

0.16<br />

2013<br />

0.14<br />

2014<br />

0.15<br />

2015<br />

0.18<br />

2016<br />

0.07 0.12<br />

2017 2018<br />

Report<br />

Operating Results 2018


<strong>atw</strong> Vol. 64 (2019) | Issue 5 ı May<br />

310<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

journalist who has<br />

covered the nuclear<br />

industry <strong>for</strong> the past<br />

20 years and is<br />

currently editor-in-chief<br />

of UK-based Energy<br />

Storage Publishing.<br />

Link to reference<br />

source:<br />

EU Energy Union<br />

report – https://<br />

bit.ly/2UKZQAW<br />

Proposals to ‘Evolve’ Euratom Treaty<br />

Should Be Handled with Care<br />

John Shepherd<br />

Some weeks ago, as I began to cast around <strong>for</strong> a suitable subject <strong>for</strong> this column, I received a telephone call from a<br />

contact close to the corridors of power in Brussels who told me to pay particular attention to upcoming announcements<br />

on energy policy from the European Commission.<br />

I was told the plethora of paperwork that would be<br />

produced in the final days of the current Commission’s<br />

term of office deserved close analysis.<br />

And indeed, just as my editor began pressing me to<br />

submit my copy <strong>for</strong> this issue, the Commission released its<br />

latest ‘State of the Energy Union’. The report effectively<br />

takes stock of the progress made towards building the<br />

‘ Energy Union’ – and highlights “the issues where further<br />

attention is needed”.<br />

At first glance, I spotted the welcoming recognition of<br />

nuclear power “as a reality in today’s European energy<br />

mix”. I’ve been reporting on this sector long enough to<br />

remember when nuclear energy never quite seemed to<br />

benefit from a fond political embrace in Brussels in order<br />

to ‘keep the peace’ between those EU member states who<br />

favour the use of nuclear energy and those who don’t.<br />

Some would argue it still does not today.<br />

The report went on to remind us that half of the (EU)<br />

member states rely on nuclear energy, which represents<br />

nearly 30% of the bloc’s electricity generation.<br />

But then the alarm sounded in my journalistic ears…<br />

The report made reference to the Euratom Treaty and said:<br />

“As part of a <strong>for</strong>ward-looking agenda on energy and<br />

climate policy, there are areas which will need to be further<br />

improved to achieve all the policy objectives.”<br />

The report revealed that, “in the months to come”, the<br />

European Commission will establish “a high level group of<br />

experts whose task will be to assess and report to the<br />

Commission on the state of play of the Euratom Treaty,<br />

with a view to considering how, on the basis of the current<br />

Treaty, its democratic accountability could be improved”.<br />

According to the report, there is “a recognised concern<br />

that the Treaty needs to evolve in line with a more united,<br />

stronger and democratic EU”.<br />

Outgoing Commission president Juncker has said<br />

previously that <strong>for</strong> “important single market questions”,<br />

decisions in the European Council should be taken more<br />

often by qualified majority – with the equal involvement of<br />

the European Parliament. The energy union report said<br />

this is now “particularly relevant in the nuclear area, where<br />

decisions under the Euratom Treaty do not involve the<br />

European Parliament on the same terms as <strong>for</strong>eseen in the<br />

ordinary legislative procedure of the Lisbon Treaty”.<br />

When the Euratom Treaty was signed in 1957, nuclear<br />

energy was seen as an energy resource <strong>for</strong> Europe’s<br />

economic development. As the Commission rightly points<br />

out, the Treaty provides extensive supranational powers<br />

at EU community level. It’s also true to say that the<br />

application of powers under the Treaty have evolved over<br />

time.<br />

According to the Commission, Euratom has also played<br />

an “important role in strengthening nuclear safety in new<br />

member states and in the EU’s neighbourhood”. That<br />

particular comment might still rankle with some states in<br />

eastern Europe, that were <strong>for</strong>ced to close down nuclear<br />

generating plants (and experience hardship as a result) as<br />

a condition of being allowed into the EU years ago.<br />

However, the energy union report now suggests “the<br />

potential cross-border impact of nuclear safety issues<br />

requires – even more today and in the coming years – a<br />

legal framework that goes beyond the borders of the<br />

member states”.<br />

This, I would suggest, deserves extremely close<br />

attention. I don’t mean that to imply anything sinister,<br />

merely to say our industry and its supporters must be<br />

on its guard.<br />

To be fair to EU leaders, the energy union report<br />

acknowledges there is “a clear understanding that the use<br />

of nuclear energy is a national choice to be made by each<br />

member state and this will continue to be the case”. But<br />

the report continues: “There is a recognised concern that<br />

the Euratom Treaty needs to evolve in line with a more<br />

united, stronger and democratic EU.”<br />

In addition, the report suggests that the incoming<br />

European Commission “should also take initiatives to<br />

increase the involvement of civil society in nuclear policymaking.<br />

The report adds: “On some nuclear matters, the<br />

availability of in<strong>for</strong>mation can be understandably limited,<br />

especially in the field of nuclear security. While this is a<br />

legitimate concern, issues such as nuclear safety, the<br />

management of radioactive waste and emergency planning<br />

deserve to continue to be debated as openly as possible in<br />

line with existing rules.”<br />

The report rightly notes that, in the area of responsible<br />

and safe management of spent fuel and radioactive waste,<br />

it is of “utmost importance that member states continue to<br />

develop comprehensive plans <strong>for</strong> the management of<br />

nuclear waste and implement these plans”. I also would<br />

not find fault with the report’s conclusion that, “when<br />

cross-border impact is at stake, cross-border consultations<br />

between member states should be promoted as well as<br />

stronger involvement of the European <strong>Nuclear</strong> Safety<br />

Regulators Group (ENSREG).<br />

Talking and cooperating to maximise the benefits of<br />

clean nuclear energy, and advance nuclear technologies<br />

as part of a wider energy mix <strong>for</strong> those countries that wish<br />

to, is something that the nuclear energy industry has<br />

championed on the European and world stage.<br />

Problems only arise when attempts are made to<br />

frustrate the use of nuclear energy <strong>for</strong> purely political<br />

ends. There<strong>for</strong>e, we have to take care that, however well<br />

meaning proposals to amend the Euratom Treaty might be,<br />

those intentions are not subverted to dilute the authority<br />

of the governments, regulators and industry leaders in<br />

those EU states that choose to use and advance nuclear.<br />

Author<br />

We need to remain alert!<br />

John Shepherd<br />

<strong>Nuclear</strong> Today<br />

Proposals to ‘Evolve’ Euratom Treaty Should Be Handled with Care ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Atomrecht 360° kompakt<br />

Neuer<br />

Termin<br />

Seminar:<br />

Atomrecht – Was Sie wissen müssen<br />

Seminarinhalte<br />

ı<br />

ı<br />

ı<br />

ı<br />

Einführung: Was muss ich wissen, wenn es um Atomrecht geht?<br />

Atomrecht 360° im Schnelldurchlauf<br />

ı Atomverwaltung<br />

ı Neuorganisation der Entsorgung<br />

ı Genehmigungsverfahren<br />

Vertrags- und Haftungsrecht im Nuklearbereich<br />

Nuklearhaftung<br />

Seminarziel<br />

In dem Seminar werden die wichtigsten Bereiche des deutschen Atomrechts<br />

(mit ausgewählten Verbindungen ins EU- und internationale Atomrecht) im Überblick<br />

behandelt sowie das Vertrags- und Haftungsrecht im Bereich Atomrecht beleuchtet.<br />

Termin<br />

07. November 2019<br />

09:00 bis 17:00 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

898,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Zielgruppe<br />

ı<br />

Fach- und Führungskräfte, Projektleiter und -mitarbeiter, Techniker, Energiewirtschaftler,<br />

Öffentlichkeitsarbeiter sowie Juristen anderer Fachbereiche<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

Dr. Christian Raetzke | Rechtsanwalt Leipzig<br />

Akos Frank LL. M. (SULS Boston) | Experte für Handelsrecht, Group Senior Legal Counsel, NKT A/S;<br />

Referent der OECD NEA <strong>International</strong> School of <strong>Nuclear</strong> Law<br />

Wir freuen uns auf Ihre Teilnahme!<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de<br />

Bei Fragen zur Anmeldung<br />

rufen Sie uns bitte an oder<br />

senden uns eine E-Mail.


VPC - EXPANDING INTO NUCLEAR TECHNOLOGY<br />

Repository Documentation Rethought – A comprehensive approach<br />

from untreated waste to packages <strong>for</strong> final disposal<br />

You can find out more about VPC‘s <strong>Nuclear</strong> Services if you scan this QR code:<br />

www.vpc-group.biz<br />

Want to keep up with the latest news from our company?<br />

Then follow us on:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!