atw - International Journal for Nuclear Power | 05.2019
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
nucmag.com
2019
5
Nuclear Power:
“No Thanks.”
“Yes, Please.”
Proposals to ‘Evolve’ Euratom
Treaty Should Be Handled
with Care
The Current Status on
How to Develop a Vision for
Nuclear Waste Management
ISSN · 1431-5254
24.– €
Operating Results 2018
Join the Celebration
Media Partner
www.amnt2020.com
#51AMNT
Save the Date
5 – 6 May 2020
Estrel Convention Center Berlin, Germany
Key Topics
Outstanding Know-How & Sustainable Innovations
Enhanced Safety & Operation Excellence
Decommissioning Experience & Waste Management Solutions
The International Expert Conference on Nuclear Technology
atw Vol. 64 (2019) | Issue 5 ı May
Welcome Addresses for the 50 th Annual
Meeting on Nuclear Technology (AMNT 2019)
243
7 and 8 May 2019
KTG (German Nuclear Society)
The Chairman
Our Annual Meeting on Nuclear Technology –
the original for 50 years. At the beginning
of May, the industry meets again in Berlin for
the 50 th time. We can be very proud of that
together.
We are convinced that the forthcoming meeting will be
particularly good. Especially because for this year's AMNT a number
of extraordinary highlights have been prepared for our participants.
Let yourself be surprised!
KTG has again prepared an excellent and highly topical program.
Especially in times of great challenges, the contribution of our KTG
members, who are personally involved with great commitment to
nuclear technology “made in Germany” in general and for our annual
conference in particular, cannot be appreciated highly enough.
Currently, 7 nuclear power plants are connected to the grid in
Germany and feed an average of approx. 14 % of the basic electricity
supply required in Germany into the transmission grids with
unprecedented reliability. 27 plants are in the post-operational
or decommissioning phase. The high number of deconstruction
projects in progress at the same time shows that specialized
companies have enough work to do.
In 2017, the Commission to Review the Financing for the
Phase-out of Nuclear Energy recommended an amendment to the
legislation with new – and above all financial – delimitation of
responsibility for the storage and ownership of all nuclear waste
and spent fuel elements between the operators and the Federal
Government. One result is the establishment of two new federal
companies for waste disposal tasks.
Operators, manufacturers, authorities and experts, education
and research continue to be linked by a central topic: nuclear knowhow
must be preserved in Germany in order, among other things, to
secure the remaining operation, post-operation, decommissioning
and dismantling of German nuclear power plants and to sustainably
solve the final disposal issue, to secure the export business of German
suppliers and service providers, to be able to carry out national and
international safety assessments and also in future to be able to
maintain the contribution of German innovations and standards
to international developments for new technologies.
In the various formats of our annual conference under the
headings “Outstanding Know-how & Sustainable Innovations”,
“ Enhanced Safety & Operation” and “Decomissioning Experience &
Waste Management Solutions”, we will reflect on current topics in
nuclear technology and focus on the technical dialogue between
national and international experts. This year's AMNT will also
continue successful formats for young people such as the Nuclear
Technology Campus or the Young Scientists' Workshop.
For our conference I wish all participants new insights, interesting
encounters, contacts and conversations. What unites the members
of KTG is “fascination of nuclear technology”. Let it enchant you,
too...
DAtF (German Atomic Forum)
The President
The political conditions for nuclear energy
couldn't be more different between 1969, the
year of the first “Reactor Conference” in
Frankfurt am Main, and 2019, the year of the
50 th Annual Meeting on Nuclear Technology.
The spirit of optimism and political support across all political parties
at that time is in huge contrast to the current withdrawal from the
use of nuclear energy for electricity generation in Germany.
However, the fact that the DAtF and the KTG are organising one
of the most recognised and renowned nuclear conferences in
the world on 7 and 8 May 2019 in Berlin, even in the eighth year of
the accelerated nuclear phase-out, clearly shows that the nuclear
industry will continue to be needed in the future despite the political
change in recent years. Many other modern societies do not want to
do without nuclear power and the global outlook for nuclear
technology is positive. We will be demonstrating this again next year
at the 51 st AMNT in Berlin on 5 and 6 May 2020.
Our top-level list of speakers of the plenary day with Thomas
Bareiß MdB (BMWi), Prof. Dr. Martin Neumann MdB (FDP),
Prof. Dr. Renate Köcher (Allensbach), Steffen Kanitz (BGE) and
Matthias Horx (Zukunftsinstitut) testifies to the thematic breadth
of our annual conference and its importance as a network meeting of
our industry. Despite political change, the nuclear industry and
research remain important pillars of Germany's economic success.
You can also look forward to exciting presentations and
discussions regarding the specialist lectures. We will discuss with you
the technical innovations and challenges in the areas of new build,
research and development. We will exchange ideas about innovations
and opportunities for optimisation in the dismantling of nuclear
power plants and the disposal of radioactive waste. And we would
like to examine the question of what role SMRs can play in the use of
nuclear power in the future. As we did 50 years ago, together we will
contribute significantly to making nuclear power and technology
even safer and more efficient.
This year's anniversary meeting offers you an exposition with
photos and exhibits amidst the traditional exhibition of companies
and organisations. The industrial exhibition with its numerous
national and international participants as well as the national
pavilions from the United Kingdom and the Czech Republic offers
not only the opportunity to make new contacts and maintain existing
ones, but also allows you to experience the history and present of
nuclear energy in Germany up close.
It is your expertise and active participation that have ensured the
success of our annual conference for 50 years. I would like to thank
all speakers and participants as well as all exhibitors and sponsors
with all my heart.
Dr Ralf Güldner
WELCOME TO AMNT 2019
Frank Apel
Editorial
Welcome Addresses for the 50th Annual Meeting on Nuclear Technology (AMNT 2019)
atw Vol. 64 (2019) | Issue 5 ı May
244
Grußworte zum 50. Annual Meeting
on Nuclear Technology (AMNT 2019)
WELCOME TO AMNT 2019
7. und 8. Mai 2019, Berlin
KTG (Kerntechnische Gesellschaft e. V.)
Der Vorsitzende
Unsere Jahrestagung Kerntechnik – das Original
seit 50 Jahren. Anfang Mai trifft sich in Berlin
erneut die Branche, zum 50. Mal. Darauf können
wir gemeinsam sehr stolz sein.
Wir sind überzeugt, dass die bevorstehende
Jahrestagung ganz besonders gut wird. Ganz
besonders, weil wir für die heurige AMNT eine Reihe von außergewöhnlichen
Highlights für Sie vorbereitet haben. Lassen Sie sich
überraschen!
Die KTG hat erneut ein exzellentes und hochaktuelles Programm
mit vorbereitet. Gerade in Zeiten großer Herausforderungen ist der
Beitrag unserer KTG-Mitglieder, die sich persönlich mit großem
Engagement für Kerntechnik „made in Germany“ im Allgemeinen
und für unsere Jahrestagung im Speziellen einbringen, nicht hoch
genug zu würdigen.
Derzeit sind in Deutschland sieben Kernkraftwerke am Netz und
speisen aktuell im Mittel ca. 14 % der in Deutschland benötigten
Grundenergieversorgung beispiellos sicher in die Energieübertragungsnetze
ein. 26 Anlagen sind in der Nachbetriebs- bzw.
Stilllegungsphase. Die hohe Zahl an Projekten im Rückbau, die
gleichzeitig in Bearbeitung sind, zeigt, dass für spezialisierte
Unternehmen genügend Aufgaben anstehen.
Die Kommission zur Überprüfung der Finanzierung des Kernenergieausstiegs
(KFK) empfahl in 2017 eine Novellierung der
Gesetzgebung mit neuer – vor allen Dingen auch finanzieller –
Abgrenzung der Verantwortung für die Lagerung und die Eigentümerschaft
aller Abfälle und der abgebrannten Brennelemente
zwischen den Betreibern und der Bundesregierung. Ein Ergebnis ist
die Gründung von zwei neuen Bundesgesellschaften für Aufgaben
der Abfallentsorgung.
Betreiber, Hersteller, Behörden und Gutachter, Lehre und
Forschung verbindet nach wie vor ein zentrales Thema: das
kerntechnische Know-how muss in Deutschland erhalten werden,
um u. a. den verbleibenden Leistungsbetrieb, den Nachbetrieb, die
Stilllegung und den Rückbau deutscher Anlagen sicherzustellen und
die Entsorgungsfrage nachhaltig zu lösen, das Exportgeschäft
deutscher Anbieter und Dienstleister zu sichern, nationale und
internationale Sicherheitsbewertungen durchführen zu können und
auch in Zukunft den Beitrag deutscher Innovationen und Standards
zu internationalen Entwicklungen für neue Technologien erhalten
zu können.
In den unterschiedlichen Formaten unserer Jahrestagung unter
den Überschriften „Kompetenz & Innovation“, „Sicherheitsstandards
& Betriebsexzellenz“ sowie „Rückbauerfahrung & Entsorgungslösungen“
werden wir aktuelle Themen der Kerntechnik reflektieren
und setzen dabei auf den fachlichen Dialog zwischen nationalen und
internationalen Wissensträgern. Auch unser diesjähriges AMNT wird
erfolgreiche Formate der Nachwuchsarbeit wie den Nuclear Technology
Campus oder den Young Scientists‘ Workshop fortführen.
Für unsere Tagung wünsche ich allen Teilnehmern neue Erkenntnisse,
interessante Begegnungen, Kontakte und Gespräche. Was die
Mitlieder der KTG verbindet, ist die „Faszination Kerntechnik“.
Lassen auch Sie sich davon anstecken…
DAtF (Deutsches Atomforum e. V.)
Der Präsident
Die politischen Voraussetzungen für die Kernenergie
könnten zwischen 1969, dem Jahr der
ersten „Reaktortagung“ in Frankfurt am Main,
und 2019, dem Jahr des 50. Annual Meeting on
Nuclear Technology, kaum unterschiedlicher
sein. Die Aufbruchsstimmung und politische
Unterstützung über alle politischen Parteien hinweg damals, stehen
in einem krassen Gegensatz zu dem heutigen Ausstieg aus der
Nutzung der Kernenergie zur Stromerzeugung.
Die Tatsache, dass wir als DAtF und KTG auch im achten Jahr
des beschleunigten Ausstiegs eine der anerkanntesten und
renommiertesten kerntechnischen Fachtagungen weltweit am 7. und
8. Mai 2019 in Berlin ausrichten, zeigt jedoch deutlich, dass trotz des
politischen Wetterumschwungs der vergangenen Jahre die kerntechnische
Branche auch in Zukunft benötigt wird. Viele andere
moderne Industriegesellschaften wollen nicht auf die Kernenergie
verzichten und die weltweite Perspektive für die Kerntechnik ist
positiv. Das werden wir auch im kommenden Jahr am 5. und 6. Mai
2020 beim 51. AMNT in Berlin unter Beweis stellen.
Unsere hochkarätige Liste an Rednern des Plenartages zeugt mit
Thomas Bareiß MdB (BMWi), Prof. Dr. Martin Neumann MdB (FDP),
Prof. Dr. Renate Köcher (Allensbach), Steffen Kanitz (BGE) und
Matthias Horx (Zukunftsinstitut) von der thematischen Breite
unserer Jahrestagung und von der Bedeutung als Netzwerktreffen
unserer Branche. Trotz des politischen Wandels bleiben die kerntechnische
Industrie und Forschung bedeutende Säulen des wirtschaftlichen
Erfolgs Deutschlands.
Auch hinsichtlich der Fachvorträge dürfen Sie sich auf spannende
Präsentationen und Diskussionen freuen. Wir diskutieren mit
Ihnen die technischen Neuerungen und Herausforderungen in den
Bereichen Neubau, Forschung und Entwicklung. Wir tauschen uns
über Innovationen und Optimierungsmöglichkeiten beim KKW-
Rückbau und der Entsorgung von radioaktiven Reststoffen aus. Und
wir möchten der Frage nachgehen, welche Rolle SMR bei der
Nutzung der Kernenergie künftig spielen können. Wie schon vor
50 Jahren werden wir gemeinsam einen wichtigen Beitrag leisten,
die Kernenergie und Kerntechnik noch sicherer und effizienter zu
machen.
Die Jubiläumstagung in diesem Jahr bietet Ihnen inmitten der
traditionellen Leistungsschau der Unternehmen und Organisationen
unserer Ausstellung eine Foto- und Exponatenausstellung. Die
Industrieausstellung mit ihren zahlreichen nationalen und internationalen
Ausstellern sowie den Länderpavillions aus dem
Vereinigten Königreich und Tschechien bietet so nicht nur die
Gelegenheit, neue Kontakte zu knüpfen und vorhandene zu pflegen,
sondern lässt Sie die Geschichte und Gegenwart der Kernenergie in
Deutschland hautnah erleben.
Es sind Ihre Fachkenntnisse und Ihre aktive Beteiligung, die den
Erfolg unserer Jahrestagung seit 50 Jahren sichern. Gerne möchte
ich dafür allen Rednern und Teilnehmern sowie allen Ausstellern
und Sponsoren von ganzem Herzen danken.
Dr. Ralf Güldner
Frank Apel
Editorial
Grußworte zum 50. Annual Meeting on Nuclear Technology (AMNT 2019)
Kommunikation und
Training für Kerntechnik
Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?
Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort
3 Atom-, Vertrags- und Exportrecht
Export kerntechnischer Produkte und Dienstleistungen –
Chancen und Regularien
RA Kay Höft M. A.
O. L. Kreuzer
Dr.-Ing. Wolfgang Steinwarz
Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019
10.03.2020
Atomrecht – Ihr Weg durch Genehmigungs- und
Aufsichtsverfahren
Atomrecht – Was Sie wissen müssen
3 Kommunikation und Politik
RA Dr. Christian Raetzke 22.10.2019
18.02.2020
RA Dr. Christian Raetzke
Akos Frank LL. M.
12.06. - 13.06.2019 Berlin
Berlin
Berlin
07.11.2019 Berlin
Public Hearing Workshop –
Öffentliche Anhörungen erfolgreich meistern
Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –
Themen und Formate
Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin
November 2019
3 Rückbau und Strahlenschutz
In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:
3 Nuclear English
Das neue Strahlenschutzgesetz –
Folgen für Recht und Praxis
Stilllegung und Rückbau in Recht und Praxis
Dr. Maria Poetsch
RA Dr. Christian Raetzke
Dr. Matthias Bauerfeind
RA Dr. Christian Raetzke
25.06. - 26.06.2019
10.09. - 11.09.2019
15.10. - 16.10.2019
13.11. - 14.11.2019
Berlin
24.09. - 25.09.2019 Berlin
Enhancing Your Nuclear English Angela Lloyd 22.05. - 23.05.2019 Berlin
Advancing Your Nuclear English (Aufbaukurs) Angela Lloyd 18.09. - 19.09.2019 Berlin
3 Wissenstransfer und Veränderungsmanagement
Veränderungsprozesse gestalten – Heraus forderungen
meistern, Beteiligte gewinnen
Erfolgreicher Wissenstransfer in der Kerntechnik –
Methoden und praktische Anwendung
Dr. Tanja-Vera Herking
Dr. Christien Zedler
Dr. Tanja-Vera Herking
Dr. Christien Zedler
26.11. - 27.11.2019 Berlin
24.03. - 25.03.2020 Berlin
Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30
Kontakt
INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin
Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de
Die INFORUM-Seminare können je nach
Inhalt ggf. als Beitrag zur Aktualisierung
der Fachkunde geeignet sein.
atw Vol. 64 (2019) | Issue 5 ı May
246
Issue 5 | 2019
May
CONTENTS
Contents
Welcome To AMNT 2019
Welcome Addresses for the 50 th Annual Meeting
on Nuclear Technology (AMNT 2019) E/G 243
DAtF Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Inside Nuclear with NucNet
Why Europe Should Put More Focus on Nuclear R&D
and Fast Breeder Reactors 249
Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Feature | 60 Years DAtF
Nuclear Power: “No Thanks.” “Yes, Please.” G 251
Spotlight on Nuclear Law
Atomic Energy Law Amendment
for Nuclear Plant Safety Planned G 260
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning & Transmutation and
How to Develop a Vision for Nuclear Waste Management 261
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’:
The Nuclear Waste Management Strategy: Russia | Part 2 267
Guideline to Prepare a Preliminary Decommissioning Plan
for Nuclear Facilities in Republic of Korea 270
Research and Innovation . . . . . . . . . . . . . . . . . . . . . . 275
PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling
for High Fidelity PWR Reactor Core Simulation:
Preliminary Results 275
Special Topic | A Journey Through 50 Years AMNT
Yes to the Use of Nuclear Power
in International Security Partnership G 280
KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Statistics
Nuclear Power Plants: 2018 atw Compact Statistics 284
News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Report
Operating Results 2018 294
Cover:
NPP Grohnde. Courtesy: PreussenElektra GmbH
Nuclear Today
Proposals to ‘Evolve’ Euratom Treaty
Should Be Handled with Care 310
G
E/G
= German
= English/German
Imprint 248
Contents
atw Vol. 64 (2019) | Issue 5 ı May
247
Feature
60 Years DAtF
251 Nuclear Power: “No Thanks.” “Yes, Please.”
Atomkraft: „Nein danke.“ „Ja bitte.“
CONTENTS
Friedrich Schröder
Serial | Major Trends in Energy Policy and Nuclear Power
261 The Current Status of Partitioning & Transmutation and
How to Develop a Vision for Nuclear Waste Management
Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
Decommissioning and Waste Management
267 A World’s Dilemma ‘Upon Which the Sun Never Sets’:
The Nuclear Waste Management Strategy: Russia Part 2
Mark Callis Sanders and Charlotta E. Sanders
Special Topic | A Journey Through 50 Years AMNT
280 Yes to the Use of Nuclear Power in International Security Partnership
Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft
Klaus Töpfer
Report
294 Operating Results 2018
Contents
atw Vol. 64 (2019) | Issue 5 ı May
248
DATF NOTES
For further details
please contact:
Nicolas Wendler
DAtF
Robert-Koch-Platz 4
10115 Berlin
Germany
E-mail: presse@
kernenergie.de
www.kernenergie.de
Notes
The Countries Most Ready for
the Global Energy Transition
The recent insight report “Fostering Effective Energy
Transition” of the World Economic Forum gives a
comparative analysis of the state and prospects of
energy transition in over 100 countries summarizing its
findings in an Energy Transition Index (ETI) ranking the
countries. The World Ecomomic forum defines, “effective
energy transition is the timely transition towards a more
inclusive, sustainable, affordable and secure global
energy system. That system provides solutions to global
energy-related challenges while creating value for
society, without compromising the balance of the energy
triangle.”
The ETI score is composed of a System Performance
Index that considers the energy triangle (energy security
and access, economic development and growth,
environmental sustain ability) and the Transition Readiness
Score summarizing six factors: energy system
structure, regulation and political commitment,
institutions and governance, infrastructure and innovative
business environment, capital and investment,
human capital and consumer participation.
Energy Transition Index 2019¹ results
Country
name
2019
ETI Score 2
System
Performance
Transition
Readiness
1 Sweden 75 % 81 % 69 %
2 Switzerland 74 % 78 % 71 %
3 Norway 73 % 82 % 65 %
4 Finland 73 % 72 % 74 %
5 Denmark 72 % 72 % 73 %
6 Austria 71 % 71 % 71 %
7 United Kingdom 70 % 74 % 66 %
8 France 69 % 77 % 60 %
9 Netherlands 69 % 71 % 66 %
10 Iceland 69 % 75 % 62 %
17 Germany 65 % 66 % 64 %
1
The Energy Transition Index benchmarks countries on the performance of their energy system,
as well as their readiness for transition to a secure, sustainable, aordable, and reliable
energy future. ETI 2019 score on a scale from 0 to 100 %.
2
ETI 2019 score on a scale from 0 % to 100 %.
Source: World Economic Forum
Imprint
| | Editorial Advisory Board
Frank Apel
Erik Baumann
Dr. Erwin Fischer
Carsten George
Eckehard Göring
Florian Gremme
Dr. Ralf Güldner
Carsten Haferkamp
Christian Jurianz
Dr. Guido Knott
Prof. Dr. Marco K. Koch
Ulf Kutscher
Herbert Lenz
Jan-Christan Lewitz
Andreas Loeb
Dr. Thomas Mull
Dr. Ingo Neuhaus
Dr. Joachim Ohnemus
Prof. Dr. Winfried Petry
Dr. Tatiana Salnikova
Dr. Andreas Schaffrath
Dr. Jens Schröder
Norbert Schröder
Prof. Dr. Jörg Starflinger
Prof. Dr. Bruno Thomauske
Dr. Brigitte Trolldenier
Dr. Walter Tromm
Dr. Hans-Georg Willschütz
Dr. Hannes Wimmer
Ernst Michael Züfle
| | Editorial Office
Christopher Weßelmann (Editor in Chief)
Im Tal 121, 45529 Hattingen, Germany
Phone: +49 2324 4397723
Fax: +49 2324 4397724
E-mail: editorial@nucmag.com
Nicole Koch (Editor)
c/o INFORUM, Berlin, Germany
Phone: +49 176 84184604
E-mail: nicole.koch@nucmag.com
| | Official Journal of
Kerntechnische Gesellschaft e. V. (KTG)
| | Publisher
INFORUM Verlags- und
Verwaltungsgesellschaft mbH
Robert-Koch-Platz 4, 10115 Berlin, Germany
Phone: +49 30 498555-30
Fax: +49 30 498555-18
www.nucmag.com
| | General Manager
Christian Wößner
| | Advertising and Subscription
Petra Dinter-Tumtzak
Phone: +49 30 498555-30
Fax: +49 30 498555-18
E-mail: petra.dinter@nucmag.com
| | Layout
zi.zero Kommunikation
Antje Zimmermann
Berlin, Germany
| | Printing
inpuncto:asmuth
druck + medien gmbh
Baunscheidtstraße 11, 53113 Bonn, Germany
| | Price List for Advertisement
Valid as of 1 January 2019
Published monthly, 9 issues per year
Germany:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT and postage) 187.- €
All EU member states without VAT number:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT, excl. postage) 187.- €
EU member states with VAT number
and all other countries:
Per issues/copy (no VAT, excl. postage) 22.43 €
Annual subscription (no VAT, excl. postage) 174.77 €
| | Copyright
The journal and all papers and photos contained in it are protected by
copyright. Any use made thereof outside the Copyright Act without the
consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft
mbH, is prohibited. This applies to reproductions, translations,
micro filming and the input and incorporation into electronic systems.
The individual author is held responsible for the contents of the
respective paper. Please address letters and manuscripts only to the
Editorial Staff and not to individual persons of the association´s staff.
We do not assume any responsibility for unrequested contributions.
Signed articles do not necessarily represent the views of the editorial.
ISSN 1431-5254
DAtF Notes
atw Vol. 64 (2019) | Issue 5 ı May
Why Europe Should Put More Focus on
Nuclear R&D and Fast Breeder Reactors
Research and development in the nuclear sector in Europe should focus on fast breeder reactors that will
be capable of supplying energy needs for thousands of years with existing uranium or thorium resources,
Leon Cizelj, president of the European Nuclear Education Network (ENEN), told NucNet.
Mr Cizelj said Generation IV breeder technology will also
reduce the already small amount of radioactive waste that
conventional reactors produce by a factor of three or more.
A fast breeder reactor is one that generates more fissile
material than it consumes. They have been and are being
explored in Russia, France, India, China, Japan and the
US. They allow a significant increase in the amount of
energy obtained from natural, depleted and recycled
uranium. The technology also enables plutonium and
other actinides to be used and recycled.
Mr Cizelj, warned, however, that most national nuclear
R&D programmes in the EU are decreasing in scope, funds
and the number of researchers. EU nuclear R&D budgets
for member states have been stable through recent years
but modest, and generally national nuclear energy programmes
are in decline, he said.
There are 36 research reactors operational in the EU
with one under construction – Jules Horowitz at Cadarache
in France – and two planned – Myrrha in Belgium and
Pallas in the Netherlands. There are about 150 research
reactors in various stages of decommissioning in the EU.
“This is a clear indication that the retirement [of
research reactors] is taking place at a much faster pace
than the construction of new ones,” Mr Cizelj said. “This
diminishes the opportunities for related research and
competence building.”
“For comparison, Russia alone operates 53 research
reactors. This indicates that their research and development
side of the nuclear cycle is much more alive.”
Europe’s Horizon 2020 research and innovation
programme has a budget of € 80 bn over seven years. Out
of this, nearly € 6 bn is for non-nuclear clean energy
research.
Conventional nuclear fission – the only efficient and
around-the-clock zero-carbon technology – receives about
€ 60 m a year for the seven years, “so it is not a question
of the availability of funds, but a question of priorities”, he
said.
The EU should focus on Generation IV breeder reactor
development and provide R&D support in this field. “The
most important feature of nuclear is its energy density and
if we want to go for its full potential then we have to focus
on breeder reactors,” Mr Cizelj said.
Energy density refers to the amount of heat energy that
can be extracted from a unit of an energy storage material,
such as uranium, coal, or hydrogen to name a few. Thorium
and uranium are among the commonly known sources of
energy with the highest energy densities.
Mr Cizelj said the nuclear industry has overlooked the
importance of the long-term search for future opportunities
and technologies. “They seem to be somehow stuck in the
technological past.”
The nuclear industry in Europe and overseas has
developed excellence in operations and in the “know-how”
of reactor designs. But it has lagged behind when it comes
to the “know-why” of research, which is usually done at
universities and institutes.
“This ‘know-why’ is indispensable for the
development of new technologies, new
approaches, improved safety regulations,” said Mr Cizelj
said. “The long-term success of any technology can only be
achieved by a balanced approach to ‘know-how’ and
‘ know-why’. In other words, through appropriate
cooperation in R&D.”
Mr Cizelj warned that existing nuclear facilities are
ageing and expensive to run and maintain, resulting in
closures, and building new nuclear facilities is a long and
expensive process. There are ambitious plans in many
countries, but few of them will be successfully completed
in the near future, he said.
Another concern for the nuclear industry is the future
of the labour force, Mr Cizelj said. In complex technologies
like nuclear, about 10 years of a 40-year career is an investment
in gaining the education and skills. Both this
“ apprenticeship” time and its costs are not always
appreciated by stakeholders.
He said: “Attracting new blood into the industry is a
challenge. It may require long-term commitment on behalf
of those who are investing in the future of nuclear and in
research, be it industry, government or the European
Commission.
“This commitment will need to give reasonable
assurance to young people that they are investing their
‘ apprenticeship’ time into knowledge and skills of some
value to employers and society at large.”
Mr Cizelj comments echo those in a position paper last
year in which the European Atomic Energy Society said
Europe risks losing much of its nuclear research capacity
because of a “crisis in political vision” on energy issues and
limited public funds.
The paper said investment is needed for advanced
nuclear research and the successful development of new
nuclear technologies can only be achieved by research
laboratories with appropriate infrastructure and with
cooperation and support by the industry. This requires
“stable and dedicated funding programmes from national,
European and private sources”.
Leon Cizelj is president of the European Nuclear Education
Network (ENEN), president of the European Atomic Energy
Society and head of the reactor engineering division at the
Jožef Stefan Institute in Slovenia.
Author
NucNet
The Independent Global Nuclear News Agency
Editor responsible for this story: Kamen Kraev
Avenue des Arts 56
1000 Brussels, Belgium
www.nucnet.org
249
INSIDE NUCLEAR WITH NUCNET
Inside Nuclear with NucNet
Why Europe Should Put More Focus on Nuclear R&D and Fast Breeder Reactors
atw Vol. 64 (2019) | Issue 5 ı May
250
Calendar
2019
CALENDAR
07.05.-08.05.2019
50 th Annual Meeting on Nuclear Technology
AMNT 2019 | 50. Jahrestagung Kerntechnik.
Berlin, Germany, DAtF and KTG,
www.amnt2019.com – Register Now!
15.05.-17.05.2019
1 st International Conference of Materials,
Chemistry and Fitness-For-Service Solutions
for Nuclear Systems. Toronto, Canada, Canadian
Nuclear Society (CNS), www.cns-snc.ca
16.05.-17.05.2019
Emergency Power Systems at Nuclear Power
Plants. Munich, Germany, TÜV SÜD,
www.tuev-sued.de/eps-symposium
24.05.-26.05.2019
International Topical Workshop on Fukushima
Decommissioning Research – FDR2019. Fukushima,
Japan, The University of Tokyo, fdr2019.org
29.05.-31.05.2019
Global Nuclear Power Tech. Seoul, South Korea, Korea
Electric Engineers Association, electrickorea.org/eng
03.06.-05.06.2019
Nuclear Energy Assembly. Washington DC, USA,
Nuclear Energy Institute (NEI), www.nei.org
03.06.-07.06.2019
World Nuclear University Short Course:
The World Nuclear Industry Today.
Rio de Janeiro, Brazil, World Nuclear University,
www.world-nuclear-university.org
25.06.-26.06.2019
ICNDRWM 2019 – 21 st International Conference
on Nuclear Decommissioning and Radioactive
Waste Management. Venice, Italy, World Academy
of Science, Engineering & Technology,
www.waset.org
21.07.-24.07.2019
14 th International Conference on CANDU Fuel.
Mississauga, Ontario, Canada, Canadian Nuclear
Society (CNS), www.cns-snc.ca
28.07.-01.08.2019
Radiation Protection Forum. Memphis TN, USA,
Nuclear Energy Institute (NEI), www.nei.org
29.07.-02.08.2019
27 th International Nuclear Physics Conference
(INPC). Glasgow, Scotland, inpc2019.iopconfs.org
04.08.-09.08.2019
PATRAM 2019 – Packaging and Transportation
of Radioactive Materials Symposium.
New Orleans, LA, USA. www.patram.org
21.08.-30.08.2019
Frédéric Joliot/Otto Hahn (FJOH) Summer School
FJOH-2019 – Innovative Reactors: Matching the
Design to Future Deployment and Energy Needs.
Karlsruhe, Germany, Nuclear Energy Division
of Commissariat à l’énergie atomique et aux
énergies alternatives (CEA) and Karlsruher Institut
für Technologie (KIT), www.fjohss.eu
04.09.-06.09.2019
World Nuclear Association Symposium 2019.
London, UK, World Nuclear Association (WNA),
www.wna-symposium.org
04.09.-05.09.2019
VGB Congress 2019 – Innovation in Power
Generation. Salzburg, Austria, VGB PowerTech e.V.,
www.vgb.org
07.10. – 11.10.2019
International Conference on Climate Change and
the Role of Nuclear Power. Vienna, Austria,
IAEA, www.iaea.org
07.10. – 18.10.2019
ICTP-IAEA Nuclear Energy Management School.
Trieste, Italy, IAEA, www.iaea.org
15.10. – 18.10.2019
Technical Meeting on Siting for Nuclear Power
Plants. Vienna, Austria, IAEA, www.iaea.org
22.10.-25.10.2019
SWINTH-2019 Specialists Workshop on Advanced
Instrumentation and Measurement Techniques
for Experiments Related to Nuclear Reactor
Thermal Hydraulics and Severe Accidents.
Livorno, Italy, www.nineeng.org/swinth2019/
23.10.- 24.10.2019
Chemistry in Power Plants. Würzburg, Germany,
VGB PowerTech e.V., www.vgb.org/en/
chemie_im_kraftwerk_2019.html
27.10.-30.10.2019
FSEP CNS International Meeting on Fire Safety
and Emergency Preparedness for the Nuclear
Industry. Ottawa, Canada, Canadian Nuclear Society
(CNS), www.cns-snc.ca
04.11.-07.11.2019
International Conference on Effective Regulatory
Systems 2019. The Hague, Netherlands,
International Atomic Energy Agency (IAEA),
www.iaea.org/events/conference-on-effectiveregulatory-systems-2019
04.06.-07.06.2019
FISA 2019 and EURADWASTE ‘19. 9 th European
Commission Conferences on Euratom Research
and Training in Safety of Reactor Systems and
Radioactive Waste Management. Pitesti, Romania,
www.nucleu2020.eu
09.06.-11.06.2019
WNFM 46 th Annual Meeting and International
Conference on Nuclear Fuel. Lisbon, Portugal,
World Nuclear Fuel Market, www.wnfm.com
11.06.-12.06.2019
Nuclear New Build 2019. London, UK, Nuclear
Industry Association, www.nuclearnewbuild2019.co
17.06.-21.06.2019
MIT Nuclear Plant Safety Course. Cambridge, MA,
USA, Massachusetts Institute of Technology (MIT),
professional.mit.edu/programs/short-programs/
nuclear-plant-safety
23.06.-27.06.2019
World Nuclear University Summer Institute.
Romania and Switzerland, World Nuclear University,
www.world-nuclear-university.org
24.06.-28.06.2019
2019 International Conference on the Management
of Spent Fuel from Nuclear Power Reactors.
Vienna, Austria, International Atomic Energy Agency
(IAEA), www.iaea.org
08.09.-11.09.2019
4 th Nuclear Waste Management,
Decommissioning and Environmental Restoration
(NWMDER). Ottawa, Canada, Canadian Nuclear
Society (CNS), www.cns-snc.ca
09.09.-12.09.2019
24 th World Energy Congress. Abu Dhabi, UAE,
www.wec24.org
09.09.-12.09.2019
Jahrestagung 2019 – Fachverband für
Strahlenschutz | Strahlenschutz und Medizin.
Würzburg, Germany,
www.fs-ev.org/jahrestagung-2019
15.09.-21.09.2019
13 th International Conference on WWER Fuel
Performance, Modelling and Experimental
Support. Nessebar, Bulgaria, INRNE-BAS in
cooperation with IAEA,
www.inrne.bas.bg/wwerfuel2019
16.09.-20.09.2019
63 rd Annual Conference of the IAEA. Vienna,
Austria, International Atomic Energy Agency (IAEA),
www.iaea.org/about/governance/generalconference
22.09.-27.09.2019
ISFNT-14 – International Symposium on Fusion
Nuclear Technology. Budapest, Hungary, Wigner
Research Centre for Physics, www.isfnt-14.org
12.11.-14.11.2019
International Conference on Nuclear
Decommissioning – ICOND 2019. Eurogress
Aachen, Aachen Institute for Nuclear Training GmbH,
www.icond.de
25.11.-29-11.2019
International Conference on Research Reactors:
Addressing Challenges and Opportunities to
Ensure Effectiveness and Sustainability.
Buenos Aires, Argentina, International Atomic
Energy Agency (IAEA), www.iaea.org/events/
conference-on-research-reactors-2019
2020
05.05.-06.05.2020
51 st Annual Meeting on Nuclear Technology
AMNT 2020 | 51. Jahrestagung Kerntechnik.
Berlin, Germany, DAtF and KTG,
www.amnt2020.com
This is not a full list and may be subject to change.
Calendar
atw Vol. 64 (2019) | Issue 5 ı May
Feature | 60 Years DAtF (German Atomic Forum)
Atomkraft: „Nein danke.“ „Ja bitte.“
Energiepolitik in Deutschland im Wandel der Zeit
Deutsches Atomforum (DAtF) – 60 Jahre im Dienste
der Öffentlichkeitsarbeit
Der Weg der Bundesrepublik in die friedliche Nutzung der Kernenergie war für Industrie und Politik gleichsam eine
schwierige Geburt. Zu dicht folgte dieser Schritt auf den verlorenen zweiten Weltkrieg und auf die Atombombenabwürfe
auf zwei Städte in Japan. Gleichwohl sahen Energiepolitik und Wirtschaft in der Nutzung der Kernkraft und
Kernforschung einen guten Weg, die Energiewirtschaft zum Wohle der Bevölkerung in der Bundesrepublik
voranzubringen. Doch was waren das für mächtige Kräfte, die zuverlässig zu bündeln und zu kontrollieren waren?
Was verstanden die Menschen im Lande davon? Und, brauchten wir die Kernenergie überhaupt? Und falls ja, war sie
verantwortbar und sicher?
Wir brauchten also in Deutschland eine Institution, die als
Sprachrohr allen Bereichen und Anwendungsfeldern der
Kerntechnik eine Stimme mit den Instrumentarien der
Öffentlichkeitsarbeit gab. Das DAtF (Deutsches Atomforum
e. V.) wurde mit diesem Auftrag im Jahr 1959
gegründet. Zu seinen Mitgliedern zählten Unternehmen
und Organisationen aus Energieversorgungsunternehmen,
Herstellern, Zulieferern, Dienstleistern, Hochschulen und
Forschungsinstitute, Wirtschaftsvereinigungen etc.
251
FEATURE | 60 YEARS DATF
Erinnern, nicht verdrängen
Nie vergessen! Hiroshima, Nagasaki 1945. Auch wenn
US-Präsident „Ike“ Eisenhower 1953 das Schlagwort
„Atoms for peace“ prägte, die Atombombenabwürfe und
die zerstörerischen Folgen begleiten uns noch heute.
Gleichwohl und vor dem Hintergrund des wachsenden
Energiebedarfs, begann in den 50er-Jahren in vielen
Ländern die Förderung der friedlichen Nutzung der Kernenergie.
Doch Deutschland war als Folge des verlorenen
zweiten Weltkrieges zunächst außen vor.
Im Dezember 1954 stimmte die Französische Natio nalversammlung
der Ratifizierung der Pariser Verträge
zu. Damit stand der Wiederherstellung der deutschen
Souveränität nichts mehr im Wege. Mit Erlangung
der Souveränität bemühte sich die Bundesrepublik
Deutschland im Rahmen der europäischen Einigung auch
um eine eigenständige Atompolitik. Man war bestrebt
Kern forschung zu betreiben und an der Entwicklung zur
friedlichen Nutzung der Kernenergie teilzuhaben.
Die USA waren unbestritten Vorreiter der Nutzung der
„Atomkraft“ zur zivilen Nutzung als Energiequelle. Im
Dezember 1951 wurde mit dem „Experimental Breeder
Reactor Number 1 (EBR-1)“ in Idaho erstmals Strom
erzeugt. Mitte der fünfziger Jahre war man überzeugt,
mit der Atomkraft alle Energieprobleme der Menschheit
lösen zu können. Das überzeugte auch Politik und
Industrie der jungen Bundesrepublik Deutschland. Im
Oktober 1955 rief Adenauer das „Bundesministerium für
Atomfragen“ ins Leben. Es hagelte Kritik aus den eigenen
Reihen, da es dafür kein Vorbild im Ausland gab. Ludwig
Erhard soll sich sogar darüber lustig gemacht haben,
indem er ein zusätzliches „Dampfkesselministerium“
forderte.
Erster Atomminister wurde Franz Josef Strauß. Gegenüber
dem NWDR (Nordwestdeutscher Rundfunk)
erläuterte Strauß am 21. Oktober 1955 seine Aufgaben als
Minister für Atomfragen. Unter anderem stellte er heraus,
| | Kernkraftwerk Grohnde.
dass es auch darum gehe, den Rückstand, den die Bundesrepublik
Deutschland in der Ausnutzung der Atom- Energie
für friedliche Zwecke habe, in möglichst geringer Zeit
einzuholen. Strauß erarbeitete in seiner kurzen Amtszeit
bis 1956 den sogenannten Drei-Stufen-Plan für ein eigenes
deutsches Atomprogramm.
Stufe 1 galt den durch Kriegsfolgen entstandenen
Mangel an qualifizierten Wissenschaftlern und Technikern
auszugleichen. Stufe 2 dem Erwerb von fünf Forschungsreaktoren
von den USA und Großbritannien, die in
München, Frankfurt, Königsforst bei Köln, Berlin und
Hamburg aufgestellt werden sollten. Stufe 3 beinhaltete
den Bau eines Kernreaktors deutscher Konstruktion und
Fabrikation durch das Reaktorzentrum Karlsruhe.
Strauß setzte auf US-Technologie
Am 26. Januar 1956 wurde die „Deutsche Atomkommission
(DAtK)“ nach dem Vorbild der US-amerikanischen
„Atomic Energy Commission“ gegründet. Unter dem
Vorsitz von Strauß, gehörten der Kommission 27 Personen
aus Wissenschaft, Technik, Wirtschaft und den Gewerkschaften
an. In der Eröffnungsrede stellte Strauß u. a.
heraus: „Es ist ohne Zweifel eine Tragik in der Geschichte
der Menschheit, dass der Begriff Atom nicht als heilende
und helfende Kraft, sondern zuerst als Faktor von unvorstellbarer
Zerstörungswirkung zum Bewusstsein der Allgemeinheit
gekommen ist.“
Feature | 60 Years DAtF
atw Vol. 64 (2019) | Issue 5 ı May
252
FEATURE | 60 YEARS DATF
„Es ist ohne Zweifel eine
Tragik in der Geschichte
der Menschheit, dass der
Begriff Atom nicht als
heilende und helfende
Kraft, sondern zuerst als
Faktor von unvorstellbarer
Zerstörungswirkung zum
Bewusstsein der Allgemeinheit
gekommen ist.“
Es ist belegt, dass Strauß einem schnellen Einstieg
in die Nutzung der Atomkraft zur Energieerzeugung
eher zurückhaltend gegenüber stand. Er lehnte den
Bau von in Deutschland entwickelten Reaktoren nicht
zuletzt wegen hoher Entwicklungskosten
ab. Stattdessen
bevorzugte er die Übernahme
amerikanischer Technologien.
Anders sein Nachfolger im
Amt, Siegfried Baalke, der am
16. Oktober 1956 das Ministerium
von Strauß übernahm.
Er unterstützte mehr die technologische
Eigenständigkeit
Deutschlands. 1957 war die
Bundesrepublik Gründungsmitglied
der Internationalen
Atomenergie-Organisation
(IAEO).
Die DAtK erarbeitete 1957 das erste deutsche Atomprogramm.
Es wurde auch „Eltviller Programm“ oder auch
„500-MW-Programm“ genannt. Es sah den Bau von fünf
Atomkraftwerken vor, von denen jedes eine Leistung von
100 MW haben sollte. Das Programm verfolgte auch das
Ziel der Brennstoff-Autarkie, die man mit der Entwicklung
von Schnellen Brütern und Hochtemperaturreaktoren
erreichen wollte.
Wissenschaftler: Nein zur atomaren
Aufrüstung der Bundeswehr
1957 wurde öffentlich bekannt, dass die Bundesregierung
unter Konrad Adenauer beabsichtigte, die Bundeswehr
atomar zu bewaffnen. Umgehend formierte sich Widerstand.
18 deutsche Atomforscher und Kernphysiker um
Carl Friedrich von Weizsäcker, darunter die Nobelpreisträger
Otto Hahn, Werner Heisenberg, Max von Laue und
Max Born, verurteilten die Pläne der Adenauer-Regierung.
In ihrer „Göttinger Erklärung“ lehnten sie jegliche
Mitarbeit an der Herstellung atomarer Waffen ab. Die
Ablehnung der Wissenschaftler war nicht unbegründet.
Denn einige von ihnen, unter anderem von Weizsäcker
und Heisenberg, hatten in den vierziger Jahren freiwillig
und engagiert, so „Welt.de/Geschichte“, im Uranverein,
dem Atomprojekt des deutschen Heereswaffenamtes,
mitgearbeitet.
Für Adenauer war die atomare Bewaffnung der Bundeswehr
eine Frage der Souveränität, der Ebenbürtigkeit, der
Gleichberechtigung mit anderen europäischen Großmächten.
Um die Bedeutung der Nuklearwaffen vor den
ängstlichen Deutschen herunterzuspielen, definierte er in
einer Pressekonferenz am 5. April 1957: „…. Die taktischen
atomaren Waffen sind im Grunde genommen nichts
anderes als die Weiterentwicklung der Artillerie.“
Das brachte das Fass der Göttinger 18 zum Überlaufen.
Am 12. April 1957 veröffentlichten die Atomphysiker die
„Göttinger Erklärung“ in allen überregionalen deutschen
Zeitungen. Trotz der überwältigenden Resonanz in der
Öffentlichkeit auf diese Erklärung gewannen CDU und
CSU im September 1957 die Wahlen zum 3. Bundestag mit
50,2 Prozent. Adenauer war es dem Deutschlandfunk
zufolge offensichtlich gelungen „… die Angst vor Atomwaffen
durch die Angst vor der Sowjetunion zu überlagern.“
Die politische Euphorie verflog Ende der 1950er Jahre
als klar wurde, dass die deutschen Stromversorger nicht
in die Entwicklung von Atomkraftwerken investieren
wollten. Überdies war mit einer marktwirtschaftlichen
Rentabilität der geplanten Nuklearanlagen nicht zu
rechnen. Auch die Verdoppelung staatlicher Verlustbürgschaften
und Investitionshilfen waren für die
Stromversorger kein besonderer Anreiz. Das erste Atomprogramm
erwies sich als Flop.
Von den fünf geplanten Atomkraftwerken wurden
nur Kahl und Niederaichbach mit geringer Leistung
umgesetzt. Für die Realisierung des Atomkraftwerks
Gundremmingen Block A musste der Staat zwei Drittel der
Kosten vorschießen. Die Anlage ging 1966 – Eigentümer:
Bayernwerk, RWE – als erstes kommerzielles Kraftwerk
Deutschlands mit Siedewasserreaktor und einer elektrischen
Leistung von 237 MW in Betrieb. Durch Eislast
auf den Leiterseilen des Hochspannungsnetzes, in das
das Kraftwerk einspeiste, wurde die Fortleitung des Stroms
am 13. Januar 1977 unterbrochen. Dabei kam es zu
einer folgenreichen Reaktorschnellabschaltung; der TÜV
forderte nach Analyse ein neues Sicherheitskonzept.
Wegen der hohen Kosten für die Umsetzung des Konzepts
wurde im Januar 1980 beschlossen, Block A stillzulegen.
Nicht zuletzt dieser Störfall – 1975 gab es in der Anlage
einen Störfall mit Austritt von radioaktivem Dampf, bei
dem zwei Mitarbeiter getötet wurden - bewirkte, dass die
Atomskepsis in der deutschen Bevölkerung zunahm. Seit
1983 wird die Anlage zurückgebaut.
| | Kernkraftwerk Kahl.
Die zwei Gesichter des Atoms
Kernwaffengegner in Großbritannien initiierten 1957 den
ersten „Ostermarsch“. Sie beschworen die Angst vor dem
gefährlichen und zerstörerischen Atom. Am 7. April zogen
rund 10.000 Demonstranten vom Londoner Trafalgar
Square zum britischen Atomforschungszentrum Aldermaston.
Seither gibt es die Ostermarschierer auch bei uns.
In der Bunderepublik wuchs die Teilnehmerzahl von
anfangs 1.000 auf etwa 300.000 im Jahr der Studentenrevolte
1968.
Für die gute Seite der Radioaktivität gingen damals
wie heute keine Menschen auf die Straße. Als selbstverständlich
wird beispielsweise die Nuklearmedizin hingenommen.
Etwa die Strahlentherapie bei Krebserkrankungen
oder die Radiojodtherapie bei Schilddrüsenerkrankungen
wird von Erkrankten widerstandslos
hingenommen. Kein noch so entschiedener Gegner der
Atomenergie würde sich bei Bedarf gegen solch eine
Therapie wehren.
Feature | 60 Years DAtF
atw Vol. 64 (2019) | Issue 5 ı May
Unterdessen verfolgte die Bundesregierung den von
Franz Josef Strauß vorgezeichneten Weg zur friedlichen
Nutzung der Kernenergie. Als beratende Institutionen
gingen aus der Atomkommission die Strahlenschutz- und
Reaktorsicherheitskommission sowie der Kerntechnische
Ausschuss hervor. Ihre Aufgabe war nicht zuletzt, das
Bundesamt für Strahlenschutz als Aufsichtsbehörde zu
unterstützen.
1959: Gründungsjahr des DAtF
Der Ausbau der Atomenergie nahm Fahrt auf. Mit dem
Ausbau wuchs auch das öffentliche Interesse an der
Atomenergie. In diese Zeit des Aufbruchs gründeten die
Arbeitsgemeinschaft für Kerntechnik in Düsseldorf, die
Deutsche Gesellschaft für Atomenergie (DGA) in Bonn,
der Verein „Atom für den Frieden“ in München und die
Physikalische Studiengesellschaft (PSG) in Düsseldorf am
26. Mai 1959 das Deutsche Atomforum e. V. (DAtF). Dass
das DAtF in Bonn angesiedelt wurde, war nur folgerichtig,
da es als Interessensvertretung und Informationsdrehscheibe
insbesondere für Politik, Presse, Öffentlichkeit
und seine Mitglieder tätig werden sollte.
Auf Initiative einiger Einzelmitglieder des DAtF wurde
1969 – zunächst unter dem Dach des DAtF – die Kerntechnische
Gesellschaft e. V. (KTG) gegründet. Die KTG
wurde 1979 als eigenständiger wissenschaftlicher Verein
ausgegliedert. DAtF und KTG kooperieren seitdem fachlich
und organisatorisch sowie beispielsweise bei Ausrichtung
der gemeinsamen Jahrestagung, dem späteren Annual
Meeting on Nuclear Technology (AMNT).
Auch die Führungsspitzen der Unternehmen, die
sich für die Stromproduktion mittels Kernenergie entschieden
hatten, lernten, dass sie aus dem Schatten
ihres Handelns heraustreten mussten, um der Öffentlichkeit
zu erklären, warum sie auf diese Technologie setzten.
Es wurden Stabsstellen für Presse- und Öffentlichkeitsarbeit
implementiert; Journalisten als Pressesprecher
eingestellt. Ingenieure und Techniker, die besonders für
die Öffentlichkeitsarbeit geeignet erschienen, wurden
geschult. Eigens hierfür wurden spezielle Seminare von
DAtF und VDEW konzipiert. Im Fortbildungszentrum
der VDEW, Neu-Kranichstein bei Darmstadt, wurden
diese Mit arbeiter unter wissenschaftlicher Betreuung
auf ihre verant wortungs volle Kommunikationsaufgabe
vorbereitet.
War damit alles gut? Die atomare Bewaffnung vergessen?
Weit gefehlt! Denn nach wie vor wurde alles, was
sich mit dem Begriff Atom verbinden ließ, als gefährlich
gedeutet, machte Angst.
Wen wundert es, dass die positive Seite der friedlichen
Nutzung der Kernenergie frei nach dem Eisenhower-Motto
„Atoms for peace“ in der Öffentlichkeit schlechte Karten
hatte. Jetzt Konrad Adenauer dafür die Schuld zu geben,
dürfte zu kurz greifen. Aber sein Vorstoß, die Bundeswehr
atomar aufzurüsten, machte fortan einen vorurteilsfreien
Dialog in der Öffentlichkeit fast unmöglich. Der Begriff
„Atompolitik“ war negativ belegt.
Man verwendete sehr viel Energie darauf, die politischen
Schlagworte mit der Vorsilbe „Atom-“ ins positive
zu verkehren. Kernenergiebefürworter bevorzugten die
Vorsilbe „Kern-„: Kernkraftwerk, Kernenergie oder kerntechnische
Anlage, Kernforschungszentrum etc. Diese
semantische Optimierung führte allerdings nicht zu mehr
Akzeptanz der Kernenergie, sondern artikulierte lediglich
gegensätzliche Positionen. Das DAtF ließ sich durch solche
Diskussionen nicht beeindrucken; das Deutsche Atomforum
blieb das Deutsche Atomforum.
| | THTR Thorium-Hochtemperatur-Reaktor bei Hamm-Uentrop.
Wyhl? „Nai hämmer gsait!“
Die sechziger Jahre standen im Zeichen des Aufbruchs in
die großtechnische Nutzung der Kernenergie. Die Nordwestdeutschen
Kraftwerke (NWK) beantragten den Bau
des Kernkraftwerks Stade (Druckwasserreaktor) am
niedersächsischen Ufer der Elbe, Baubeginn 1967. Die
damalige Preußenelektra zog nach und beantragte das
Kernkraftwerk Würgassen (Siedewasserreaktor) mit
Standort an der Weser bei Beverungen in Nordrhein
Westfalen, Baubeginn 1968. Stade mit einer Brutto leistung
von 662 MW nahm seinen kommerziellen Betrieb im
Mai 1972 auf. Würgassen mit 670 MW Brutto ging 1971
ans Netz. Beide Anlagen wurden im Vergleich zu späteren
Bauvorhaben nahezu ungestört gebaut.
Entscheidungen fielen auch zum Bau eines THTR
Thorium-Hochtemperatur-Reaktor bei Hamm-Uentrop,
Baubeginn 1971, und zum Bau des SNR-300 – Schneller
Natriumgekühlter Brutreaktor bei Kalkar, Baubeginn 1973.
Der THTR wurde 1983 testweise in Betrieb ge nommen und
1989 aus technischen, sicherheits technischen und wirtschaftlichen
Gründen stillgelegt. Der SNR-300 wurde 1985
zwar fertiggestellt, ging aber vor allem wegen sicherheitstechnischer
und politischer Bedenken nie in Betrieb.
An einer Stelle jedoch, in Baden-Württemberg, geriet
der Ausbau ins Stocken: 1973 gab die Landesregierung
den Standort eines geplanten Kernkraftwerks in Wyhl
am nördlichen Kaiserstuhl bekannt. Ministerpräsident
Filbinger hatte dem „swr.de/geschichte“ zufolge die Vision
eines „Ruhrgebiets am Rhein“ mit tausenden von Arbeitsplätzen
zwischen Basel und Frankfurt. Die saubere Energie
der Atomkraft sollte das möglich machen.
Filbinger hatte die Rechnung ohne die Wyhler gemacht.
Der Widerstand gegen die Pläne der Landesregierung
formierte sich. Zum ersten Mal in der kurzen Geschichte
der Kernenergie entlud sich der Zorn der Bürger. Sie
artikulierten nicht nur die Angst vor den Gefahren durch
Strahlung, sondern die Winzer befürchteten auch klimatische
Veränderungen durch den Betrieb von Kühltürmen.
Bürgerinitiativen wurden gegründet, Demonstrationen
organisiert, Flugblätter verteilt und Info-Veranstaltungen
fanden in wachsender Zahl Zuhörer. Schließlich wurde
daraus ein perfekt organisierter Widerstand gegen das
Vorhaben.
Ein Bürgerentscheid in Wyhl brachte im Januar 1975
zunächst einen Sieg für die Befürworter; die Gegner gaben
jedoch nicht auf. Als im Folgemonat mit dem Bau
des Kernkraftwerks begonnen wurde, besetzten sie den
Bauplatz.
253
FEATURE | 60 YEARS DATF
Feature | 60 Years DAtF
atw Vol. 64 (2019) | Issue 5 ı May
254
FEATURE | 60 YEARS DATF
Es waren Winzer, Bauern, Hausfrauen Rentner und
Handwerker. Viele von ihnen waren bis dato mit der Politik
der regierenden CDU einverstanden. Die Landesregierung
setzte Polizei in Bewegung, die mit Hunden und Wasserwerfern
gegen die gewaltfreien Besetzer vorgingen, so
„swr.de/geschichte“. Die Räumung der Baustelle sorgte
bundesweit für Aufsehen. Wenig später demonstrierten
28.000 Menschen in Wyhl. Als Folge der massiven Proteste
und eines vom Verwaltungsgericht Freiburg veranlassten
Baustopps wurden die Bauarbeiten 1977 eingestellt.
Komponenten für das Wyhler Kraftwerk wurden später in
Philippsburg am Rhein verbaut.
Nicht zuletzt Wyhl offenbarte einen gesteigerten
öffentlichen Aufklärungs- und Informationsbedarf. Auch
vor diesem Hintergrund wurde 1975 der Informationskreis
Kernenergie (IK) innerhalb des DAtF gegründet. Es
galt die Öffentlichkeit effizient, sachlich und umfassend
über die friedliche Nutzung der Kernenergie auch über alle
Parteigrenzen hinweg zu informieren.
„Atomkraft?“ Nein danke. Ja bitte.
Die Gemeinde Wyhl wurde nicht nur in Deutschland zum
Symbol des bürgerlichen Widerstands gegen die Politik.
Die „Atomkraft-Nein-Danke-Bewegung“ entstand hier.
Dass der organisierte Bürgerprotest für weitere Bauvorhaben
Konsequenzen haben würde, war absehbar. Das
DAtF veranlasste turnusmäßig Meinungsforschungen zur
Akzeptanz der Kernenergie. Die Befragungen zeichneten
mitnichten begeisterte Zustimmung zur Kernenergie, aber
auch keine krasse Ablehnung.
Es lag in der Natur der Sache, dass beim weiteren
Ausbau der Kernkraftwerke öffentliche Kontroversen und
Demonstrationen nicht ausblieben. Besonders im niedersächsischen
Grohnde und im schleswig-holsteinischen
Brokdorf eskalierte der Widerstand gegen die Bauvorhaben.
Geschätzte 30.000 Demonstranten reisten im
November 1976 aus der ganzen Bundesrepublik nach
Brokdorf. Militante mischten sich unter die Demonstranten
und schürten Gewalt.
Wenig später in Emmerthal an der Weser: Rund 20.000
Demonstranten versammelten sich am 19. März 1977,
um gegen den Bau des Kernkraftwerks Grohnde zu
demonstrieren. Es sollte ein friedlicher Protest werden,
der von Militanten genutzt wurde, die Konfrontation mit
der Polizei zu provozieren.
Im Oktober 1977 verfügte das OVG Lüneburg den
unbefristeten Baustopp für das Kernkraftwerk Brokdorf,
weil die Entsorgung nicht geklärt sei. Ältere Fernsehzuschauer
werden sich vielleicht erinnern, wie der
Aufsichtsrats vorsitzende der NWK, Erhard Keltsch, in
einer Talkrunde engagiert darauf bestand, dass ohne
Brokdorf bald die Lichter ausgehen würden. Gut drei Jahre
später, im Januar 1981, hob das Gericht den Baustopp auf.
Information: Kärrnerarbeit vor Ort
Weniger spektakulär und oft verkannt stellten sich
währenddessen die Mitarbeiterinnen und Mitarbeiter in
den Informationszentren den Fragen der Öffentlichkeit.
Sie standen den Besuchern Rede und Antwort. Sie
erklärten unermüdlich die Funktion eines Kernkraftwerks,
die Barrieren der Sicherheit, die hohen Sicherheitsstandards,
verwiesen auf sorgfältig ausgesuchtes und
bestens ausgebildetes Personal in den Anlagen und zeigten
die Wege der Entsorgung radioaktiver Rückstände auf, bis
hin zum Rückbau der Kernkraftwerke am Ende ihrer
Laufzeit. Sie machten Vertrauenswerbung im besten Sinne
des Wortes.
Es waren aber nicht nur „Hausfrauenvereine“, Feuerwehren
oder Kegelklubs, die die Informationszentren
besuchten, sondern es kamen auch gut vorbereitete
Schüler und Studenten, von denen viele vorurteilsbelastet
waren. Für sie gab es nicht den hypothetischen GAU. Sie
argumentierten mit ihrer Angst vor einem großen Reaktorunfall
und dessen Folgen.
Dann geschah das schier Unmögliche: Am 28. März
1979 kam es im Kernkraftwerk Three Mile Island in USA zu
einem Reaktorunfall mit einer partiellen Kernschmelze.
Das hatte auch bei uns Konsequenzen. Die Pressestelle des
DAtF, örtlich nahe an der Bonner Politik, stand vor der
Herausforderung, den Unfall interpretieren zu müssen.
Denn die Öffentlichkeit wollte von den Fachleuten im DAtF
immer „sofort“ wissen, welche Konsequenzen ein solcher
Unfall für die Sicherheit unserer Kernkraftwerke haben
würde.
Nach umfassenden Analysen des Unfallhergangs waren
Politik, Industrie, und Reaktorsicherheitskommission
(RSK) sich einig, dass die Vorsorge das Handeln bestimmen
müsse. Zur Sicherheitserhöhung schlug die RSK ein Reihe
von Nachrüstmaßnamen vor, darunter RDB-Füllstandsmessung,
Rekombinatoren zum Abbau von Wasserstoff
im Containment und Systeme zur gefilterten Druckentlastung.
Die Wiederaufnahme der Bauarbeiten in Brokdorf rief
die Gegner erneut auf den Plan. Sie kündigten für den
28. Februar 1981 eine Groß-Demo an. Der Landrat des
Kreises Steinburg ließ die Demo für die gesamte Wilster
Marsch verbieten. Das Verwaltungsgericht Schleswig hingegen
hob dieses Verbot teilweise auf. Nur wenige Stunden
später, unterdessen waren schon zahlreiche Gegner
angereist, verhängte das OVG Lüneburg ein Demonstrationsverbot
für die gesamte Region.
Nichtsdestotrotz strömten geschätzte 100.000 Demonstranten
aus allen Richtungen in die Wilster Marsch. Zwar
hatte die Polizei weiträumig kontrolliert und Zufahrtstraßen
zum Kraftwerksgelände gesperrt, doch viele
umgingen die Sperren und suchten zu Fuß ihren Weg zur
Baustelle über Felder und Wiesen und zugefrorene Gräben.
Alles verlief zunächst friedlich, bis es nachmittags
eskalierte. Etwa 3.000 militante Demonstranten warfen
Steine, Brandflaschen, Wurfgeschosse und auch mit
Schwarzpulver gefüllte Beutel mit Pyrotechnik als Zünder
auf und zwischen die Polizisten. Die Ordnungskräfte versuchten
die Demonstration der Gewalt aufzulösen. Dabei
brach ein Polizist in einem vereisten Graben ein. Der
wehrlose Beamte wurde von einem Chaoten mit einem
Klappspaten traktiert. Es hieß andersherum, die Atomlobby
wolle die „Atomkraft“ ja auch mit Brachialgewalt
durchsetzen.
Dem Hamburger Bürgermeister Hans-Ulrich Klose
(SPD) war diese Entwicklung nicht geheuer. Er wünschte
sich den Ausstieg aus dem Kraftwerksprojekt, an dem die
Hamburgische Electricitäts-Werke AG (HEW) beteiligt
war. Allerdings konnte er sich gegen Teile der Hamburger
SPD-Führung nicht durchsetzen und trat schließlich von
seinem Amt zurück.
WAA Gorleben kippt
Kernenergienutzung, Wiederaufarbeitung und Endlagerung
aller radioaktiven Rückstände – ein geschlossener
Brennstoffkreislauf war das Ziel. Am 22. Februar
1977 verkündete der niedersächsische Ministerpräsident
Ernst Albrecht, dass in Gorleben ein „Nukleares Entsorgungszentrum“
entstehen soll. Eine Wiederaufarbeitungsanlage
und ein Endlager für die radioaktiven
Feature | 60 Years DAtF
atw Vol. 64 (2019) | Issue 5 ı May
Rückstände in unserem Salzstock? Einen Monat später
gingen mehrere tausend Atomkraftgegner in Gorleben auf
die Barrikaden. Andreas Graf von Bernstorff aus Gartow,
dem das Land über dem Salzstock gehörte, wollte trotz des
Angebots von über 26 Millionen DM nicht verkaufen.
Vom 25. bis 31. März 1979 zogen Atomkraftgegner aus
dem Wendland in einem einwöchigen Treck in die Landeshauptstadt
Hannover. Die Abschlusskundgebung zählte
fast 100.000 Demonstranten. Kurz darauf, am 16. Mai
1979, gab die Landesregierung bekannt, dass auf die
Wiederaufarbeitungsanlage in Gorleben verzichtet werden
soll. „Die politischen Voraussetzungen sind zurzeit nicht
gegeben“, so die Begründung Albrechts. Die Pläne für
die Einrichtung eines Endlagers im Salzstock Gorleben
wurden allerdings nicht aufgegeben.
Der Salzstock Gorleben wurde in mehr als drei
Jahrzehnten mit Unterbrechungen auf seine Eignung hin
erkundet. 2013 wurden die Erkundungsarbeiten auf
der Grundlage des Standortauswahlgesetzes eingestellt;
wenig später auch die Öffentlichkeitsarbeit vor Ort.
Die Abklingbecken in den Kernkraftwerken stießen
unterdessen an die Grenzen ihrer Aufnahmekapazität. So
wurde 1982 mit dem Bau eines Zwischenlagers in Gorleben
begonnen. Hier sollten Brennelemente, die nicht für die
Aufarbeitung in Frankreich oder Großbritannien vorgesehen
waren, in sogenannten Castor-Behältern sicher
zwischengelagert werden. Am 25. April 1995, als „Tag X“
deklariert, gab es den ersten Castor-Transport
nach Gorleben. Wie zu erwarten kam es
zu massiven Ausein andersetzungen. Das
Medieninteresse war enorm, wie auch bei
den folgenden Transporten. Das übergroße
gelbe „X“, das in der Region Straßen und
Häuser kennzeichnet, wurde zum zentralen
Symbol des wend ländischen Widerstands.
Nachdem die Pläne für die Wiederaufarbeitung in
Gorleben gescheitert waren, erklärte sich die bayerische
Landesregierung unter Franz Josef Strauß 1980 bereit,
einen geeigneten Standort mit einer „industriegewohnten“
Bevölkerung für solch eine Anlage in Bayern zu suchen. Das
oberpfälzische Wackersdorf schien geeignet zu sein. Doch
eine große Mehrheit der Bevölkerung sowie der Landrat
waren gegen das Projekt. Trotzdem wurde im Dezember
1985 mit den Bauarbeiten begonnen. Unterdessen bewertete
die Betreibergesellschaft die Planungen der Anlage
hinsichtlich ihrer Kapazität neu. Sodann wurden aus politischen
Gründen und wegen des anhaltenden öffentlichen
Widerstands die Bauarbeiten im Mai 1989 eingestellt.
Mit dem Baubeginn der Kernkraftwerke Isar/Ohu 2,
Bayern, Emsland/Lingen in Niedersachsen und Neckarwestheim
2 im Jahr 1982 sollte das Ausbauprogramm
Kernenergie zunächst abgeschlossen sein. Bis hierhin
hatte die Bonner Politik, die von 1949 bis 1963 von Konrad
Adenauer, 1963 bis 1966 von Ludwig Erhard, von 1966 bis
1969 von Kurt Georg Kiesinger, von 1969 bis 1974 von Willi
Brandt und von 1974 bis 1982 von Helmut Schmidt als
Bundeskanzler geleitet wurde, die Kernenergie politisch
unterstützt. Die Ölkrise im Jahr 1973 forderte ein
Umdenken. Willy Brandt und Helmut Schmidt erwogen,
der Ölkrise mit dem Neubau von 40 Kernkraftwerken zu
begegnen.
Eiserner Vorhang weg – „Aus“ für DDR-KKW
Helmut Kohl löste 1982 Helmut Schmidt ab und wurde
Bundeskanzler des 10. Deutschen Bundestages. Die
Grünen hatten Grund zu „strahlen“. Ihnen gelang zum
ersten Mal der Sprung in den Bundestag. Nichts sollte
„Die politischen
Voraussetzungen
sind zurzeit nicht
gegeben“
| | Gelände Erkundungsbergwerk Gorleben.
auf der politischen Bühne Bonns so bleiben, wie es war.
Entscheidungen zur Kernenergie wurden schwieriger,
denn die Grünen hatten nun eine supermediale Plattform
für ihre Anti-Atom-Politik. Das blieb auch in einigen
Bundesländern nicht ohne Wirkung: Seit 1985 sitzen die
Grünen, Bündnis 90 bzw. Bündnis 90/Die
Grünen mit an den Kabinettstischen von
Landesregierungen. Seit dem 12. Mai 2011
ist Winfried Kretschmann, Bündnis 90/
Die Grünen, Ministerpräsident in Baden-
Württemberg.
Die Nuklearkatastrophe von Tschernobyl
im April 1986 mit schwerwiegenden Folgen für Menschen
und Umwelt erschütterte die Welt. Die Rufe nach dem Ausstieg
aus der „Atomenergie“ wurden in Deutschland immer
lauter, die Grünen sahen sich bestätigt. In der SPD
zeichnete sich bei seinerzeitigen Befürwortern ein Meinungswandel
ab. Mit dem Beschluss der SPD im August
1986 gegen die perspektivische Nutzung der Kernenergie
war der Grundstein für den Ausstiegsbeschluss der rot-grünen
Bundes regierung im Jahre 2000 gelegt. Es war nicht
mehr zu übersehen, dass Kernenergiebranche und DAtF
sich künftig auf stimmungsanfällige politische Entscheidungen
einstellen musste.
Nach dem Zusammenbruch der DDR und dem Fall
der Berliner Mauer am 9. November 1989 stand die
DDR- Kernenergie zur Disposition. Seit 1974 wurde am
Atomkraftwerk Stendal gebaut. Gleich nach der Wiedervereinigung
wurde die Großbaustelle Stendal wegen
Anwohnerprotesten und unzureichender Sicherheitsvorkehrungen
aufgelöst. Die vier Blöcke des Atomkraftwerks
Lubmin, etwa 20 km von Greifswald entfernt, und in
Rheinsberg nördlich von Berlin wurden 1990 stillgelegt.
Die DDR-Entsorgung? Ausgediente Brennelemente
wurden bis zum Fall des „Eisernen Vorhangs“ in getarnten
Waggons in die UDSSR gebracht. Für schwach- und mittelradioaktive
Abfälle gab es das Endlager Morsleben in
Sachsen-Anhalt. Die Verantwortung für diesen Betrieb hat
die Bundesgesellschaft für Endlagerung (BGE).
Der 3. Oktober 1990 wird zum Tag der Einheit erklärt.
Als Kanzler der Einheit ist Kohl schon damals in die
Geschichte eingegangen. Bei den Bundestagswahlen im
Dezember 1990 kam es zu einer Neuauflage der Koalition
CDU/CSU/FDP. Die Grünen scheiterten an der Fünf-
Prozent-Klausel.
255
FEATURE | 60 YEARS DATF
Feature | 60 Years DAtF
atw Vol. 64 (2019) | Issue 5 ı May
256
FEATURE | 60 YEARS DATF
| | Baustelle des Kernkraftwerks Stendal an der Elbe.
Stromwettbewerb: Aufbruch ins Ungewisse
Ein wichtiges Ziel der Kohl-Politik nach der Wiedervereinigung
war die Liberalisierung der Energiewirtschaft
in Europa. Außerdem sollten verlässliche Rahmenbedingungen
für die Einspeisung von Strom aus regenerativen
Energien geschaffen werden. Mit dem Stromeinspeisungsgesetz
(StromEinspG) vom 7. Dezember 1990
(BGBl. I S. 2633), im Langtitel „Gesetz über die Einspeisung
von Strom aus erneuerbaren Energien in das
öffentliche Netz“, wurden die Stromversorger verpflichtet,
den in ihrem Versorgungsgebiet erzeugten Strom aus
erneuerbaren Energien abzunehmen und entsprechend zu
vergüten.
Der nächste Zug wurde vorbereitet: Mit Blick auf
die EG-Richtlinie zum Energiebinnenmarkt wurde das
Energie wirtschaftsgesetz, das Jahrzehnte Gültigkeit hatte,
umgekrempelt. Es wurde 1998 durch das „Gesetz zur
Neuregelung des Energiewirtschaftsrechts“ ersetzt. Das
war das Ende der Strommonopole. Die Unternehmen der
Elektrizitätswirtschaft mussten sich neu ausrichten und
sich dem Wettbewerb stellen. Dieser Paradigmenwechsel
war für die Stromversorger ein Aufbruch ins Ungewisse.
Die Folge: Verwaltungen wurden umstrukturiert.
Kraftwerke und Netze in eigene Gesellschaften überführt.
Neue Abteilungen entstanden mit Hilfe von Unternehmensberatern.
Marketingspezialisten und Stromhändler
wurden als Absatzstrategen eingekauft, Marktstudien
veranlasst. Werbeagenturen hatten Hochkonjunktur.
Man erfand „sympathische“ Produkte, die
dem Wunschbild der Verbraucher entsprachen, etwa
Ökostromprodukte. Kernstrom war aus Marketingsicht ein
„No-go“, das man aus der Produktwerbung raushalten
sollte.
Der Anzeigenmarkt boomte. „Also ich weiß, mein
Strom ist blau.“, so RWE in Anzeigen. EnBW konterte mit
Yello Strom: „Ich kauf doch keinen Strom von einem, der
blau ist.“ Die medialen Verbrauchertipps ließen auch nicht
lange auf sich warten. Auf der Titelseite des FOCUS vom
29. September 1999 leuchtete aus der Mitte eine gelbe
Steckdose. Darunter stand in dicken Lettern: „30 % sparen!
So senken Sie Ihre Stromrechnung“. Der Stern zeigte ein
skizziertes Sparschein auf dem Cover. Darunter stand:
„BILLIGER STROM: Der Stern erklärt, wie das geht.“ Das
Produkt Strom, das bis dahin eine Dienstleistung unter
staatlicher Preisaufsicht mit Liefergarantie war, wurde zur
Ware, für die man beispielsweise auch in einem „Kaufhaus“
einen Liefervertrag abschließen konnte.
Die Kernenergie stand also nicht mehr im Mittelpunkt
unternehmerischen Interesses. Sie lieferte nach wie vor
und mit hoher Verlässlichkeit Strom rund um die Uhr.
Durch sie wurde gutes Geld verdient, das war’s. Es wäre
aber sicherlich zu kühn gewesen, ein industriefreundliches
und kostengünstiges Kernstromprodukt auf den Markt zu
bringen, und dafür auch zu werben. Nicht zuletzt vor
diesen Hintergründen stellte sich auch für das DAtF die
Sinnfrage nach seiner Existenz.
Zeitenwende – eine Kurz-Chronik
Im Oktober 1998 löste Gerhard Schröder Helmut Kohl als
Kanzler ab. Zu seinem Minister für Umwelt, Naturschutz
und Reaktorsicherheit ernannte er Jürgen Trittin. Es
wurde nicht lange gefackelt, der Ausstieg aus der
Kernenergie wurde Programm. Nun ging es Schlag auf
Schlag: Die wichtigsten Entscheidungen:
Januar 1999: Rot-grüne Koalition verständigt sich auf
Eckpunkte eines Atomgesetzentwurfes. Die Nutzung der
Kernenergie soll „geordnet und sicher“ beendet werden.
1. April 2000: Der Ausbau der erneuerbaren Energien
ist zentrales Anliegen der rot-grünen Koalition; das
Erneuerbare-Energien-Gesetz (EEG), tritt im Jahr 2000 in
Kraft. Es löst das Stromeinspeisungsgesetz (StrEG) von
1990 ab. Mit der EEG-Umlage wird der Ausbau der
Erneuerbaren Energien finanziert; sie verteuert die
Strompreise.
Juni 2000: Schröder einigt sich mit Strommanagern auf
den „Atomkonsens“, der Laufzeiten und Reststrommengen
der Kernkraftwerke beinhaltet.
Um den Zeitraum bis zur Inbetriebnahme des von der
Bundesregierung bis 2030 geplanten Endlagers zu überbrücken,
entstehen standortnahe, dezentrale Zwischenlager
an den Kernkraftwerken.
1. Oktober 2000: Im Salzstock Gorleben tritt ein
Moratorium in Kraft. Die Erkundungsarbeiten werden
vorläufig gestoppt. Das zwischen Regierung und Energieversorgern
vereinbarte Ende des Moratoriums ist 2010.
April 2002: Mit der Novelle des Atomgesetzes macht die
rot-grüne Koalition ernst: Das “Gesetz zur geordneten
Beendigung der Kernenergienutzung zur gewerblichen
Erzeugung von Elektrizität” änderte die seit 1959 geltende
Rechtslage grundlegend. Das Atomförderungsgesetz
wurde vom Atomausstiegsgesetz ersetzt. Danach sollten
bis etwa 2021 alle 19 deutschen Kernkraftwerke abgeschaltet
sein. Der Bau neuer gewerblicher Atomkraftwerke
und Wiederaufbereitungsanlagen war nicht mehr erlaubt.
Das Atomausstiegsgesetz trat am 27. April 2002 in Kraft.
Mit dem Reaktor Stade wurde 2003 das erste Kernkraftwerk
dauerhaft abgeschaltet.
November 2005: Regierungswechsel. CDU und SPD
bilden Große Koalition. Eventuelle Rücknahme des Atomausstiegs
wird in der Großen Koalition nicht erwogen.
Oktober 2009: Im Koalitionsvertrag von Union und FDP
heißt es: “Die Kernenergie ist eine Brückentechnologie, bis
sie durch erneuerbare Energien verlässlich ersetzt werden
kann.” Man sei dazu sei bereit, die Laufzeiten der Kernkraftwerke
zu verlängern.
5. September 2010: Die Regierungskoalition setzt
die Laufzeitverlängerung der Kernkraftwerke um 8 bzw.
14 Jahre durch. An den Erlösen aus den erzeugten Mehrmengen
sollte der Staat etwa hälftig beteiligt werden.
9. September 2010: Konzerne lassen sich Schutzklauseln
zusichern. Kosten für Sicherheitsnachrüstungen werden
danach auf jeweils 500 Millionen Euro pro AKW begrenzt.
18. September 2010: Großdemonstration in Berlin gegen
schwarz-gelbe Atompolitik.
Feature | 60 Years DAtF
atw Vol. 64 (2019) | Issue 5 ı May
1. Oktober 2010: Das Erkundungsmoratorium ist offiziell
beendet. Die Wiederaufnahme der Erkundungsarbeiten
am Salzstock Gorleben wird vorbereitet.
28. Oktober 2010: Der Bundestag verabschiedet gegen
den Widerstand der Opposition längere Laufzeiten für die
Kernkraftwerke.
28. Februar 2011: Fünf SPD-regierte Bundesländer
klagen vor dem Bundesverfassungsgericht gegen die
Laufzeitverlängerung.
11. März 2011: Atomunfall Fukushima. Laufzeitverlängerung
wird für drei Monate ausgesetzt. Kanzlerin
Merkel kündigt Sicherheitschecks in allen deutschen
Kernkraftwerken an.
15. März 2011: Kurz vor wichtigen Landtagswahlen
ändert die Kanzlerin ihren Kurs: Sieben ältere AKW sollen
vorübergehend abgeschaltet werden. Auch das nach
Pannen stillstehende AKW Krümmel soll abge schaltet
bleiben.
22. März 2011: Die Reaktorsicherheitskommission (RSK)
wird beauftragt, alle Kernkraftwerke technisch zu überprüfen.
Eine neue Ethikkommission soll eine Risikoabschätzung
vornehmen.
17. Mai 2011: Aus dem Prüfbericht der RSK lässt sich kein
klares Urteil ableiten. Es wird aber darauf hingewiesen,
dass die ältesten Anlagen besonders schlecht gegen
Flugzeugabstürze geschützt seien.
28. Mai 2011: Die Ethikkommission empfiehlt Atomausstieg
binnen zehn Jahren.
30. Mai 2011: Die schwarz-gelbe Koalition will das letzte
Kernkraftwerk bis 2022 abschalten. Die sieben ältesten
Kernkraftwerke sowie das Kernkraftwerk Krümmel sollen
sofort stillgelegt werden.
3. Juni 2011: Die Bundesländer verlangen eine stufenweise
Abschaltung der verbleibenden neun AKW. Merkel
verkündet nach einem Treffen mit den Ministerpräsidenten
einen Fünf-Stufen-Plan: 2015, 2017 und 2019 je ein
Kernkraftwerk, 2021 und 2022 jeweils drei Anlagen.
Juni 2011: Der Ausstieg aus der Kernenergie und sieben
weitere Gesetze zur Energiewende werden im Bundestag
beschlossen. Überdies werden Regelungen zum Netzausbau
und zur Ökostrom-Förderung verabschiedet.
Trotz des Ausstiegsbeschlusses werden die Themen
rund um die Kerntechnik und die Entsorgung in den
nächsten Jahren Politik, Forschung, Industrie und Öffentlichkeit
beschäftigen. Die stillgelegten und noch in Betrieb
befindlichen Kernkraftwerke, ihr Rückbau und die Entsorgung
sowie der Strahlenschutz haben aber nach wie
vor öffentliche Relevanz. Auch die Fragen zum Industrieund
Forschungsstandort Deutschland und speziell auch
zur Reaktorsicherheitsforschung, zum Transportwesen
und zur Kerntechnik im Alltag müssen beantwortet
werden. Mit dem Abschluss des Rückbaus ist frühestens
2040 zu rechnen.
1979 beschrieb. Seine Thesen haben damals wie heute
Gültigkeit.
Deutschland leistet sich den Luxus bis 2022 aus der
friedlichen Nutzung der Kernenergie auszusteigen. Bis
2038 soll bei uns der Ausstieg aus der Kohleverstromung
vollzogen sein. Vor dem Hintergrund, dass in 59 Ländern,
allen voran China und Indien, in den nächsten Jahren
rund 1.400 Kohlekraftwerke (Handelsblatt v. 4.10.2018)
geplant bzw. gebaut werden, mutet der deutsche Alleingang
abenteuerlich an.
Die Frage muss erlaubt sein, ob wir mit der Energiewende
auf dem richtigen Weg sind. Auch wenn der Ausbau
der Photovoltaik und der Windenergie mit großen finanziellen
und technischen Anstrengungen voran getrieben
wird – wo soll der Strom bei Dunkelheit und Flaute
herkommen? In Deutschland sind rd. 30.000 Windräder
mit einer Kapazität von gut 60.000 Megawatt und
rd. 1,5 Millionen PV-Anlagen mit gut 42.000 Megawatt
Leistung installiert. Im Januar 2019 hat sich gezeigt, wozu
Wind und Sonne fähig sind. Laut Agora herrschte zwischen
dem 18. und 26. Januar tagelange Dunkelflaute. Am
25. Januar, 02.00 Uhr morgens beispielsweise, lieferte
Wind an Land Null; Sonne Null und Wind auf See
rd. 400 Megawatt. Wasserkraft und Biomasse lieferten
zusammen rd. 6.000 Megawatt in der Grundlast. Der
Strombedarf lag um diese Zeit bei rd. 59.000 Megawatt.
Es bestand also eine Deckungslücke von rd. 53.000 Megawatt,
die mittels Gas-, Kohle- und Kernkraftwerken
geschlossen werden musste.
Deutschland, das ist Fakt, ist also noch weit davon
entfernt seinen Strombedarf ausschließlich über Erneuerbare
Energien decken zu können. Der Bau dringend
notwendiger Leitungen für den Windstromtransport von
Nord nach Süd stockt. Noch fehlen großtechnische
Technologien, etwa Pumpspeicherkraftwerke, um Windoder
Sonnenenergie in großen Mengen speichern zu
können. Auf „Power to Gas“ mit Umwandlung in Strom
setzen Politiker große Hoffnungen.
Es ist jedoch zweifelhaft, ob solche Systeme zeitnah zu
den „Shut downs“ der Kern- bzw. Kohlekraftwerke zur
Verfügung stehen werden. Also werden wir verstärkt auf
Stromimporte angewiesen sein, etwa auf französischen
Atomstrom oder auf Kohlestrom aus Polen.
Kernenergie-Know-how wird gebraucht
In vielen Ländern ist und bleibt die Kernenergie Stütze der
Stromversorgung. Selbst Japan setzt nach Fukushima auf
die friedliche Nutzung der Kernenergie. Mit Stand Januar
257
FEATURE | 60 YEARS DATF
Nicht allein auf der Welt
Es wäre indes gefährlich, sich rückwärts zu orientieren.
Wir müssen nach vorn blicken und der Realität ins Auge
sehen. Die Weltbevölkerung wächst mit ungeahnt hoher
Geschwindigkeit. 2018 bevölkerten rund 7,63 Milliarden
Menschen den Globus. Die UNO errechnete, das zwischen
2015 bis 2020 die Weltbevölkerung jährlich um
78 Millionen Menschen wachsen würde. Bis 2050,
also in nur einunddreißig Jahren, wird erwartet, dass
die Welt bevölkerung auf knapp 10 Milliarden Menschen
anwächst. Der Hunger nach Energie wird immens sein.
Und alle Menschen haben ein Recht auf Energie, wie
Anton Zischka in seinem Buch „Kampf ums Überleben“
| | Kernkraftwerk Krümmel.
Feature | 60 Years DAtF
atw Vol. 64 (2019) | Issue 5 ı May
258
FEATURE | 60 YEARS DATF
| | Zwischenlager Ahaus der BGZ Gesellschaft für Zwischenlagerung mbH
2019 planen laut Statista China 43, Russland 25, USA 14,
Indien 14, Japan 9, Großbritannien 7, Polen 8, Vietnam 4,
Iran 4, Türkei 3, Argentinien und Kanada jeweils 2 Kernkraftwerke,
die innerhalb der nächsten acht bis zehn Jahre
in Betrieb gehen sollen.
In der Kernenergieforschung werden international
Akzente gesetzt. Mit Hochdruck wird an fortschrittlichen
Reaktorlinien gearbeitet. Auch an der Fusionsforschung.
Über die EU ist die Bundesrepublik Deutschland an
ITER, dem „International Thermonuklear Experimental
Reaktor“, beteiligt. Dieser Kernfusionsreaktor ist im
südfranzösischen Kernforschungszentrum Cadarache im
Bau. Nach den Planungen soll in der Anlage 2025 erstmals
Wasserstoffplasma erzeugt werden. Das Max-Plank-
Institut für Plasmaforschung forscht an verschiedenen
Standorten in Deutschland im Bereich der Kernfusion.
In den Bereichen der Nuklearmedizin, medizinischen
Diagnostik und Krebstherapie oder etwa bei der zerstörungsfreien
Prüfung von Materialien ist die Kernforschung
nicht mehr wegzudenken.
Die Erfahrungen aus über 50 Jahren sicheren Betriebs
unserer Kernkraftwerke mit ihren hochqualifizierten
Mannschaften bilden heute das Know-how-Rückgrat für
die anstehenden Aufgaben. Für den Rückbau und die
Zwischen- und Endlagerung, hat sich seit 2016 eine
Arbeitsteilung ergeben: Zuständig für die Stilllegung, den
Rückbau sowie der fachgerechten Verpackung der Rückbaumaterialien
sind die Kernkraftwerksbetreiber. Für die
Zwischenlagerung sind die beiden bundeseigenen Gesellschaften
BGZ Gesellschaft für Zwischenlagerung mbH, für
die Endlagerung der radioaktiven Rückstände ist die BGE
Bundesgesellschaft für Endlagerung mbH gegründet
worden. Die Bundesrepublik Deutschland ist Alleineigentümerin
beider Gesellschaften. Die finanziellen Lasten der
Zwischen- und Endlagerung müssen die Betreiber der
Kernkraftwerke tragen. Hochqualifizierte Mitarbeiter aus
den kerntechnischen Anlagen der Betreiber sind von den
beiden Bundesgesellschaften übernommen worden.
weiteren Nutzung der Kernenergie wurde zwischen 1979
und 2016 in repräsentativen Umfragen ermittelt. 1979 und
2016 sollen näher betrachtet werden:
Während 1979 nach einer repräsentativen Umfrage des
Instituts Allensbach lediglich 12 % der Befragten sich für
den schnellstmöglichen Ausstieg aus der Kernenergie aussprachen,
meinten 39 % das man die bestehenden Kernkraftwerke
bis zum Ende ihrer Laufzeit nutzen sollte und
37 % plädierten dafür, die Kernenergie langfristig zu
nutzen und bei Bedarf Ersatzreaktoren zu bauen.
Aktuell hat sich auch ein Vergleichsportal im Internet
mit der Einschätzung der Bevölkerung zur Kernenergie
beschäftigt. Demnach sprachen sich im Mai 2018 20 % der
Befragten für ein Festhalten an der Kernenergie aus, sollte
dies zu Senkungen beim Strompreis führen. Im März 2019
hielten es fast die Hälfte für einen klimapolitischen Fehler,
aus der Kernenergie zeitlich vor dem Ende der Kohleverstromung
auszusteigen.
Doch welchen Wert haben solche Meinungstrends und
was können sie bewirken? Tatsache ist, dass die Kernenergiewirtschaft
im Gespräch mit der Öffentlichkeit
bleiben muss. Es gibt noch viel zu tun. Und die Fragen von
gestern sind auch die Fragen von heute und morgen. So
wird die institutionelle Presse- und Öffentlichkeitsarbeit
auch weiterhin für die Kernenergie nötig sein. Sowohl der
Rückbau als auch die Zwischen- und Endlagerung und
die Kernforschung erfordern Kommunikation mit Knowhow.
Seit 1959 hat das DAtF diese oft nicht leichte
Kommunikationsaufgabe bewältigt. Es versorgte ihre
Mitglieder und die Öffentlichkeit stets mit aktuellem
Informationsmaterial. Lehrfilme über den Brennstoffkreislauf
wurden produziert. DAtF und IK unterhielten den
Kontakt zu den Mitarbeitern in den Informationszentren
der Kernkraftwerke. Sie pflegten überdies umfassende
Schulkontakte und versorgten Lehrer mit didaktisch
aufbereitetem Lehr- und Lernmaterial. Das DAtF leistete
Zielgruppenarbeit im besten Sinne des Wortes.
Internationalen Ruf erwarb sich das DAtF mit der
Organisation der Jahrestagung Kernenergie, einem Forum
für Kernenergieexperten aus Wirtschaft, Forschung sowie
aus Politik und Verwaltung aus aller Welt. Diese Tagungen
finden seit nunmehr 50 Jahren in Deutschland statt.
Die umfassenden Erfahrungen des DAtF dürften
auch in Zukunft ein wichtiger Baustein der Presse- und
Öffentlichkeitsarbeit für die Beteiligten in Rückbau,
Zwischen- und Endlagerung und Kernforschung sein.
Author
Friedrich Schröder
Presse & Öffentlichkeitsarbeit NWK, PreussenElektra, E.ON,
IZE, Treuhandanstalt Berlin
Institutionelle Presse- und Öffentlichkeitsarbeit
ist Zukunftsarbeit
Meinungsforschung zur Kernenergie gehörte zum „Alltag“
des DAtF. Es liegt auf der Hand, dass die Akzeptanz der
Kernenergie sich über die Jahre je nach Ereignis als
Wechselbad zwischen dagegen, eher dafür oder dafür
darstellte. Speziell die Grundhaltung der Bevölkerung zur
Feature | 60 Years DAtF
Competence for
Nuclear Services
Visit us at the
Waste Management
Spent Fuel Management
Nuclear Casks
Calculation Services and Consulting
Waste Processing Systems and Engineering
7 – 8 May 2019 in Berlin
amnt2019.com
AMNT2019_Visitv1.indd 1 14.03.19 09:
GNS Gesellschaft für Nuklear-Service mbH
Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de
atw Vol. 64 (2019) | Issue 5 ı May
260
SPOTLIGHT ON NUCLEAR LAW
Atomgesetz-Novelle zur nuklearen
Anlagensicherung geplant
Tobias Leidinger
Der erforderliche Schutz gegen Störmaßnahmen oder sonstige Einwirkungen Dritter (SEWD) muss gewährleistet
sein, damit eine atomrechtliche Genehmigung erteilt werden kann. Diese Voraussetzung ist gleichlautend für alle
relevanten Tätigkeiten im Atomgesetz – Anlagenbetrieb, Transport, Zwischen- und Endlagerung – vorgesehen. Beim
SEWD-Schutz geht es um die Anlagensicherung, also um diejenigen Einwirkungen, die auf die Anlage oder Tätigkeit
von außen einwirken oder abzielen. Der Gesetzgeber plant aktuell eine Novelle des Atomgesetzes, mit der die Vorgaben
für den SEWD-Schutz von Anlagen nun erstmals auf gesetzlicher Ebene weiter konkretisiert werden sollen.
I Das Grundproblem
Die Genehmigungsbehörde steht bei der Beurteilung des
erforderlichen SEWD-Schutzes vor einem grundsätzlichen
Problem: Während sich die erforderliche Anlagensicherheit
(Schadensvorsorge) anhand rationaler Kriterien wie
der Eintrittshäufigkeit bestimmter Ereignisse und der
Versagenshäufigkeit der dagegen ergriffenen Schutzmaßnahmen
heranziehen lässt, ist dies für den SEWD-Bereich
so einfach nicht möglich. Im SEWD-Bereich fehlt es
an technisch-naturwissenschaftlichen Deduktionen und
berechenbaren Eintrittswahrscheinlichkeiten, um die
Schutzanforderungen bestimmen zu können.
II Geltende Rechtslage
Nach der geltenden Rechtslage werden – ausgehend von
dem im Atomgesetz abstrakt bestimmten SEWD-Schutzanspruch
– die für seine Konkretisierung erforderlichen
Maßgaben durch behördliche Festlegungen getroffen. Die
Behörden legen in (vertraulichen) Richtlinien zur SEWD
zunächst die Lastannahmen und Szenarien fest, die zu
unterstellen und zu beherrschen sind. Dabei greifen sie auf
Erkenntnisse der Sicherheitsbehörden (u. a. des Bundesamts
für Verfassungsschutz, des Bundeskriminalamts und
des Bundesnachrichtendienstes) zurück. Auf diese Weise
werden Täterbilder und Tatszenarien ebenso wie die
einzuhaltenden Schutzziele und Sicherungsgrundsätze
bestimmt. Der atomrechtlichen Genehmigungsbehörde
steht dabei eine sog. Einschätzungsprärogative zu, d. h. IV
ein gerichtlich nur beschränkt überprüfbarer Beurteilungsspielraum.
Denn es ist objektiv keinem Beweis
zugänglich, ob beispielsweise bestimmte Tatmittel in einer
bestimmten Anzahl und Qualität in einem angenommenen
Szenario verfügbar sind oder ein bestimmtes Täterverhalten
als Einzelperson oder aus einer Gruppe heraus zu
unterstellen ist. Die relevanten Tatsachen einerseits und
ihre Bewertung andererseits sind untrennbar miteinander
verbunden. Deshalb dürfen die Gerichte nicht – auf Grund
von z. B. im Internet zugänglichen Informationen – die
behördliche Beurteilung durch eine von ihnen selbst
vorgenommene Einschätzung ersetzen. Die bloße Denkmöglichkeit
anderer Konstellationen löst noch keine
weiter gehende Ermittlungspflicht des Gerichts aus.
Gleichwohl ist in der gerichtlichen Praxis die Tendenz
festzustellen, die Überprüfung sicherungsrelevanter
Sachverhalte weiter zu vertiefen und auszudehnen. Damit
wächst indes die Gefahr, dass der behördliche Funktionsvorbehalt
eingeschränkt wird, mit der Folge, dass
Genehmigungen am Ende wegen angeblicher Ermittlungsdefizite
in Bezug auf den SEWD-Schutz aufgehoben Autor
werden.
III Atomgesetznovelle zur Konkretisierung
von Sicherungsgrundsätzen
Ein Anliegen der geplanten AtG-Novelle zur nuklearen
Sicherung von Anlagen ist es, die rechtlichen „Leit planken“
für den SEWD-Schutz – und damit auch für seine gerichtliche
Überprüfung – bereits auf Gesetzesebene verbindlich
zu regeln. Damit bestünde zukünftig ein durch den
Gesetzgeber selbst vorgegebener Maßstab, der auch
von den Gerichten im Rahmen ihrer Kontrolle strikt zu
beachten ist.
Im Übrigen soll die Novelle der Umsetzung von
Empfehlungen zur Anlagensicherung dienen, die aus der
sog. IPPAS-Mission 2017 resultieren. Der „International
Physical Protection Advisory Service (IPPAS)“ ist ein 1995
gegründeter Beratungsservice der IAEO zur Stärkung
des weltweiten Erfahrungsaustausches zur Stärkung
der nationalen Sicherungssysteme. Das Expertenteam
vergleicht die nukleare Sicherung des jeweiligen Staates
mit internationalen Empfehlungen und bewährten Verfahren.
Auf dieser Grundlage macht es Vorschläge. Die
AtG- Novelle will die Umsetzung der Empfehlungen der
IPPAS- Mission in Deutschland 2017, u. a. durch Erstellung
von Aktionsplänen zur Sicherung, fördern.
Schließlich soll eine Rechtsgrundlage für die sog.
deterministische Sicherungsanalyse (DSA) für sonstige
kerntechnische Anlagen geschaffen werden. In der DSA
wird untersucht, ob die administrativen und technischen
Einrichtungen der jeweiligen Anlage zur Sicherung ausreichen,
um Einwirkungen Dritter sicher abwehren zu
können.
Rechtssicherheit und Funktionsvorbehalt
der Exekutive stärken
Eine Atomgesetzesnovelle zur nuklearen Anlagensicherung
ist zu begrüßen, wenn sie klare und operable
Vor gaben für den SEWD-Schutz bereithält. Ziel der
Novelle sollte es sein, dadurch nicht nur die Umsetzung
von Sicherungsmaßnahmen in der Praxis zu erleichtern,
sondern – soweit es um die gerichtliche Kontrolle von
Genehmigungsvoraussetzungen zum SEWD-Schutz geht –
den Funktionsvorbehalt der Exekutive zu stärken. Das
setzt tatbestandlich genau normierte Regelungen voraus.
Der Grundsatz, dass die Abschätzung von Risiken im
Atomrecht – auch soweit es um den SEWD-Schutz geht –
der Exekutive zugewiesen ist, verdient Beachtung und
Stärkung. Wenn die Novelle zur nuklearen Sicherung dazu
einen Beitrag leistet, indem sie verbindliche und klare
„Leitplanken“ auch für die gerichtliche Kontrolle von
behördlichen Entscheidungen zu SEWD-Risiken vorgibt,
wäre das ein Schritt in die richtige Richtung.
Prof. Dr. Tobias Leidinger
Rechtsanwalt und Fachanwalt für Verwaltungsrecht
Luther Rechtsanwaltsgesellschaft
Graf-Adolf-Platz 15
40213 Düsseldorf
Spotlight on Nuclear Law
Atomic Energy Law Amendment for Nuclear Plant Safety Planned ı Tobias Leidinger
atw Vol. 64 (2019) | Issue 5 ı May
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning &
Transmutation and How to Develop a
Vision for Nuclear Waste Management
Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
Introduction The waste management strategy of partitioning and transmutation is currently the cutting edge
development of nuclear technologies, which has been intensively researched over the last several decades, as it is
highlighted in the following two excerpts on the history of partitioning and transmutation given below.
“Nuclear Partitioning and Transmutation is one of the
most promising fields of nuclear technology. We expect that
partitioning and transmutation technology would contribute
to the enhancement of the efficiency of high- level waste
disposal and the utilization of resources in the spent fuel. We
believe that the basic research and development effort in this
field would be beneficial for the future generations although
it is not quite an alternative to the present back-end policy”
[1]. These are the words of T. Yamamoto of the Atomic
Energy Bureau Science and Technology Agency, taken
from the welcome address at the First International
Information Exchange Meeting on Actinide and Fission
Product Separation and Transmutation (IEM P&T) 1990 in
Mito, Japan. This meeting initiated a series of exchange
meetings organized by the Nuclear Energy Agency (NEA),
with the 15 th Information Exchange Meeting recently held
in Manchester, UK. The NEA is an agency, specialized in
the support of the development of nuclear systems, within
the Organization for Economic Co-operation and Development
(OECD).
“One of the greatest challenges in the use of nuclear energy
is the highly radioactive waste which is generated during
power production. It must be dealt with safely and effectively.
While technical solutions exist, including deep geological
repositories, progress in the disposal of radioactive waste
has been influenced, and in many cases delayed, by public
perceptions about the safety of the technology. One of the
primary reasons for this is the long life of many of the
radioisotopes generated from fission, with half-lives on the
order of 100,000 to a million years. Problems of perception
could be reduced to an essential degree if there were a way to
burn or destroy the most toxic long-lived radioactive wastes
during the production of energy” [2]. These are the words of
Victor Arkhipov a consultant in the IAEA division of nuclear
power and the fuel cycle, in the nuclear power technology
development section which highlights the importance of
the topic for the future acceptance of nuclear technologies,
published in the IAEA Bulletin number 39 in 1997.
History of Partitioning & Transmutation
The discussion of partitioning & transmutation of nuclear
waste, mainly concerning transuranic nuclides, is a
phenomenon which received a large amount of attention
in the late 1980’s and early 1990’s. The increasing
importance of the topic is reflected by the creation of the
Information Exchange Meeting on P&T organized by the
NEA every second year, as outlined in the previous section.
The title of the meeting ‘Exchange Meeting on Actinide
and Fission Product Separation and Transmutation’
already points out that the vision of P&T is much larger
than just recycling and burning Plutonium. However, the
first experiments to insert minor actinides containing fuel
into nuclear reactors to burn these isotopes are much
older. “In the 70’s, minor actinide (Np, Am) containing
mixed oxide fuels were designed and successfully irradiated in
fast reactors: KNK II and PHENIX. The composition of the fuel
covered the homogeneous as well as the heterogeneous recycle
of minor actinides” [4].
The first strong push to the technology of partitioning &
transmutation (P&T) of transuranium isotopes has been
given by two important international projects: the OMEGA
program in Japan and the CAPRA/CADRA project in
France. The OMEGA program, launched in 1988: “In
addition, the Japan’s Atomic Energy Commission submitted
in October 1988 a report entitled “Long-Term Program for
Research and Development on Nuclide Partitioning and
Transmutation (P&T)”, from the viewpoints of conversion of
HLW into useful resources and its disposal efficiency. The
program plots a course for technological development up to
the year 2000 and is called “OMEGA” which is the acronym
derived from Options for Making Extra Gains from Actinides
and fission products” [5] is the first major project related to
P&T. Shortly after the OMEGA program, the CAPRA/
CADRA project started in France in the begin of the 1990’s:
“CAPRA/CADRA was created in response to the 1991 French
law which mandated a 15-year research programme to
investigate the technical options available for the nuclear fuel
cycle in France” [6] with the aim to investigate future
opportunities to apply fast reactors for the burning of
excess plutonium. In contrast to the Japanese OMEGA project
focused on partitioning as well as on transmutation,
the French CAPRA/CADRA project was only dedicated to
transmutation, with a major focus on the reuse and incineration
of Plutonium in Superphenix. “The potential of fast
reactor systems to burn plutonium and minor actinides
(MAs) (Np, Am, Cm) is studied within the CAPRA/CADRA
program (Barré, 1998) 1 . CAPRA mainly deals with managing
the plutonium stockpile and CADRA is related to the burning/
transmutation of MAs and long-lived fission products” [7].
The next major step in Europe was the launch of the
Integrated Project EUROTRANS as a part of the 6 th EU
Framework Program (FP). “Among the prior research and
development topics of EURATOM 6 th Framework Programme
is the management of high-level nuclear wastes. In particular,
the development of technical solutions of nuclear waste
management is considered important” [8]. IP EUROTRANS
has been followed by a large number of smaller projects in
FP 7 and now in HORIZON 2020. The focus is on specific
problems related to partitioning and transmutation or
integrated into projects with a wider focus like fast reactor
development.
A very specific project has been undertaken in Germany
following the nuclear phase out decision taken in 2011.
The Federal Ministry for Economic Affairs and Energy
1) Barré, B., 1998.
The Future of
CAPRA. 5 th Int.
CAPRA Seminar,
Karlsruhe
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 261
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
atw Vol. 64 (2019) | Issue 5 ı May
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 262
| | Fig. 1.
Process steps of Partitioning & Transmutation as applied for the demonstration of the technology.
(BMWi) and the Federal Ministry of Education and
Research (BMBF) launched a comprehensive study
managed by the National Academy of Science and
Engineering (acatech) to create a robust scientific basis for
an evidence based approach on the future of the P&T research
under the boundary conditions of the nuclear phase
out. The study consists of two parts: the first part
is concerned with technological issues („Studie zur
Partitionierung und Transmutation (P&T) hochradioaktiver
Abfälle“ [9]) while the second part is concerned
with an evaluation of chances and risks of the technology
to the society (“Gesellschaftliche Implikationen der Partitionierungs-
und Transmutationsforschung” [9]). The
information collected in the German study on P&T [10]
created the basis for the acatech POSITION “Partitioning
and Transmutation of Nuclear Waste. Chances and Risks
in Research and Application“ (“Partitionierung und
Transmutation nuklearer Abfälle. Chancen und Risiken in
Forschung und Anwendung” [11]). The results of this
study, as well as the acatech POSITION have been
presented at both national [12] and international levels
[13].
At the last International Information Exchange Meeting
on Actinide and Fission Product Separation and Transmutation
(IEM P&T) in Manchester in 2018, Russia
announced its commitment to P&T [23]. Their approach
will be based on aqueous reprocessing with downstream
minor actinide separation in the Mayak facility and transmutation
in homogeneous or heterogeneous mode in the
sodium cooled fast reactor BN-800. This will incorporate
investments into scaling of BN-800 spent nuclear fuel
(SNF) management process (transportation, storage and
reprocessing) in the first approach, complemented with
the Brest-OD three stage development: 1) the construction
and commis sioning of a nitride fuel production facility; 2)
the construction and commissioning of the reactor itself;
and 3) the spent nuclear fuel reprocessing facility. In the
same time, the long-term research will focus on minor
actinide burning in molten salt reactors.
State of the Art
Partitioning & Transmutation cannot be seen as a single
process. In fact, it is a whole chain of interlinked processes
which have to be worked through in a cyclic way, see
Figure 1. The whole chain of the process has been followed
for the successful lab scale demonstration of the feasibility
of Partitioning & Transmutation using French facilities
for reprocessing, fuel production and the sodium cooled
fast reactor Phenix [14]. However, it has to be kept in mind
that almost each of the steps of demonstration is based on
technologies which have been available at this time, even if
developed for another purpose – the production and the
separation of Plutonium.
The introductory step into the technology is what is
currently known as aqueous reprocessing amended with
some downstream processes to recover Americium. The
discussion about reinsertion of Curium into the reactor has
been at least postponed due to the challenges in the
radiation protection during fuel production. The opening
step: classical aqueous reprocessing of LWR fuel, is
currently commercially performed on industrial level in at
least three facilities, in France at La Hague, in Russia in
Mayak, and in the THORP facility at the Sellafield site in
the UK which has just been finished operation. There have
been several downstream processes and advanced
reprocessing flow sheets developed on lab scale. The down
selection of possible processes for a future industrial
application is currently part of the GENOIRS Horizon
2020 project [20]. Different styles of trans mutation fuels
have been produced, irradiated, and examined in IP
EUROTRANS and several follow up projects [21, 22]. However,
all these processes have only been demonstrated in
laboratory scale and even the production of mixed oxide
fuels (MOX) with plutonium loadings required for fast
reactor operation has never been brought from the preindustrial
level used for the fuel production of Superphenix
to the industrial level. New Russian studies [19] on
the expected cost and the cost structure of closing the fuel
cycle point out that the production of high loaded MOX
will be a major cost driver. The study indicates that the
front-end cost (fuel production) versus back end cost
( reprocessing) will be shared ~75% to 25% based on the
application of currently available technologies in Russia.
The cost of Americium bearing fuels will be even higher
due to the lack of experience. However, cost is only one
of the challenges. Another important point is addressing
the high radiation exposure [23] associated with the
production of Americium targets (i.e. fuel rods with a high
Americium content). It will require fully remote (automated)
fuel fabrication and handling technologies due to
an increase of the radiation exposure from the fuel
assembly by a factor of ~100 compared to standard fast
reactor MOX fuel, based on data given in [23].
Transmutation of transuranic (TRU) isotopes like
Plutonium, Americium or Curium could theoretically be
achieved in any kind of nuclear reactor where a high
enough neutron flux is available for efficient burning.
However, studies have shown that the efficiency of
the transmutation process depends significantly on the
amount of fast neutrons available in the specific reactor.
“The fission/absorption ratios are consistently higher for
the fast spectrum SFR. Thus, in a fast spectrum, actinides
are preferentially fissioned, not transmuted into higher
actinides” [26]. This is due to the strong energy dependence
of the relation between the fission and the absorption cross
sections. This relation thus depends strongly on the
average neutron spectrum available in a specific nuclear
reactor. The mentioned fission-to-absorption ratio
describes the probability of a desired fission event – which
will destroy the TRU isotope, compared to an undesirable
absorption event – which will only lead to breeding of a
heavier TRU isotope. Studies have shown a significant
difference between the PWR and the SFR, with regard to
trans mutation efficiency [26]. In the PWR the main
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
atw Vol. 64 (2019) | Issue 5 ı May
isotopes which have a high fission-to-absorption ratio are
U-235, Pu-239, and Pu-241. Thus these isotopes have a
high probability to undergo a fission reaction. Typical
other isotopes (Np-237, Pu-238, Pu-240, Pu-242, Am and
Cm) indicate a low or very low fission-to-absorption ratio,
thus these isotopes have a high probability to undergo an
absorption reaction leading to a breeding process. In the
fast neutron spectrum, almost all transuranium isotopes
show a significantly higher fission-to-absorption ratio than
in thermal reactors. This demonstrates that a fast neutron
spectrum reactor, is essential to achieve reasonable
transmutation rates for TRU isotopes.
Different kinds of fast reactors can be dedicated for the
transmutation of TRU isotopes. Up to now only sodium
cooled fast reactors have been envisaged and used for the
demonstration of closing the nuclear fuel cycle as well as
for the demonstration of transmutation, due to their
availability - mainly the Phenix reactor in France – and due
to the experience in the operation of this reactor type [14].
However, two problems have to be highlighted: 1) It would
be necessary to demonstrate an industrial level of fast
reactor operation, employing a closed fuel cycle whilst
applying transmutation, but these efforts have received a
significant setback due to the decision to delay the
industrial demonstration of SFR technology to 2080 in the
ASTRID project [25]; and 2) The insertion of transmutation
fuel, mainly a high amount of Americium, will
have a significant effect on reactor stability and thus
operability. “Increasing the minor actinide content [in a SFR
core] enforces the positive coolant temperature and sodium
void effect. Additionally, the absolute value of the negative
Doppler effect and the delayed neutron fraction are decreased
as well as the melting temperature of the MOX fuel. These
changes degrade system safety, making the enhancement of
the feedback effects mandatory for a transmutation system to
enable it to attain the safety characteristics comparable to
those of a classical SFR” [14].
The first step which would be required to demonstrate
P&T technology at an industrial level by completing
the cycle for Pu, thus demonstrating closed fuel cycle
operation, since plutonium forms more than 90% of the
transuranic nuclides which are produced during LWR
operation. However, due the reconfiguration of the
ASTRID project, the objective of industrial demonstration
pertaining to closed fuel cycle operation, has been postponed
until 2080. This will create uncertainties related to
deployment due to the unavailability of any fast reactor
irradiation facility for future steps related to the demonstration
of Americium incineration in Europe. This delay
will impact on the reprocessing of Americium bearing
fuel/targets, too. There are two limitations, firstly there is
no driver for the development and the manufacturing of
Americium bearing fuel when it cannot be irradiated, and
secondly there will be no irradiated fuel available for hot
lab tests to develop the technology required for the specific
fuel form which is not yet decided for.
To summarise, it becomes clear that the demonstration
of P&T technology at the lab-scale has been deployed
successfully. However, most of the steps have been based
on technologies which have not been designed for the
purpose. The demonstrations have been based on alternative
application and extension of existing equipment
like aqueous reprocessing and the sodium cooled fast
reactor PHENIX. A major question for the future is how
to proceed with the application of P&T technology at the
pre-industrial and later industrial level. One should
recognise the enormous challenges moving from small
scale to large scale particularly in applications where the
uncertainties and the required investments are high. In
this case we cannot predict accurately enough how the
performance at scale will be influenced by small imperfections
in the technological solution at the lower scale.
Here the lack of a credible demonstrator at scale is laid
bare. This leads directly to the major question for the
future: Is it the right way to base the future development
on existing technologies and solve the massive challenges
or should cutting edge research in nuclear be focused on
developing a system specially dedicated to the requirements
of P&T?
To answer this question, we need to have a more holistic
view of the socio-economic costs of each proposed solution.
This is a much greater problem than a business deciding
what product to bring to market. Here we have to pose the
question – how much society is willing to ‘loose’ (in the
form of an unattractive investment) to make a problem
safe or to avoid another ‘imperfect’ solution which is seen
as a worse choice by the society. P&T needs to beat the next
best option for the problem to be viable.
Key Challenges
The following Figure 2 is used to collate the key challenges
of P&T based on the current technologies, which are:
pp
The challenge in partitioning relates to the demand for
very high recovery rates for the TRUs requiring multistage
processes. However, these recovery rates are
essential to avoid a carryover and accumulation of
TRUs in the waste stream which would reduce the
effects of P&T on the final disposal. In addition, reprocessing
and especially the downstream processes form
a costly challenge both for the development as well as
for the application.
pp
The challenge in solid fuel production is due to the very
high cost and significant increase in radiation levels
during fuel production and handling. The high
radiation levels will require remote handling and
manufacturing technologies [23].
pp
The challenge in transmutation is the requirement for a
solid fuelled fast reactor where the right balance
between efficiency (requiring a high Pu and minor
actinide content in the core) and the effect of the TRUs
on reactor stability [27]. In addition, the currently high
cost of fast reactor technology and the relatively limited
experience in operating these reactors at demonstrator
level also create further uncertainties.
| | Fig. 2.
The reverse quadrature of the circle or P&T between today and tomorrow.
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 263
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
atw Vol. 64 (2019) | Issue 5 ı May
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 264
pp
The challenge of the whole cycles lies in the request for
a multiple recycling scheme since only a part of the
TRUs or minor actinides can be transmuted during one
operational cycle of a fuel assembly. The multi- recycling
requirement will demand to run through the whole
costly system in a multiple way accumulating cost and
time while creating a huge number of handovers with
each handover creating a proliferation risk. However,
there is another limiting factor which has a consequence
for the whole system, this is the accumulation of
losses which depends on the one hand on the losses in
the partitioning and the fuel production and on the
other hand on the efficiency of the transmutation [24].
Thus the multi-recycling request poses high challenges
onto the separation chemistry and fuel production as
well as on the reactor design. In addition, multirecycling
will lead to a significant mass of fuel being
resident in the fuel cycle due to the requested times for
cooling, reprocessing, and fuel manu facturing.
Based on the mentioned challenges, it is important to at
least consider other advanced technologies and proposals
relating to how P&T technology could be made accessible
without requiring a costly engineering solution for the
above challenges. Recently, two different approaches have
been proposed in the acatech POSITION [11] which has
been developed in the aftermath of the acatech P&T Study
[10]. The proposed solutions are either the application of
accelerator driven systems (ADS) for transmutation or the
application of molten salt reactor technologies for the
whole P&T process.
In our view the application of ADS systems for transmutation
has the potential to improve the transmutation of
TRUs since due to the promised enhanced neutron physical
reactor stability and the external neutron supply, a
higher load of TRUs is possible which has the potential
to improve the efficiency of the transmutation as well
as to reduce the number of multi-recycling cycles.
However, this approach tackles only the reactor part of
the quadrangle and effects slightly the multi-recycling. A
more comprehensive view onto the problem with the focus
of avoiding most of the challenges leads to the application
of molten salt reactors for P&T [15, 16, 17] since a liquid
fuelled reactor offers the opportunity to integrate major
parts of the fuel cycle into the reactor while avoiding
some of the major challenges associated with solid fuel
production. Taking into account all advantages of a liquid
fuel technology associated with molten salt reactors, leads
to the recognition that the molten salt fast reactor approach
has the potential to eliminate some of the most costly steps
of the P&T tech nology. If a molten salt reactor would be
used, solid fuel production, one of the major cost drivers as
well as one of the major time consuming research
challenges would be eliminated and replaced by another
process. The approach focuses research into another technology
that may offer a superior solution based on current
research priorities in nuclear technology. One of the
keys to making of MSR technology available would be to
produce nuclear fuel in the salt phase like, as is already
required for the advanced reprocessing relying on pyro
processes. Pyro processes are already under research in
several countries, including in the UK as part of the REFINE
project [28].
The challenges in the reactor are partly reduced since a
homogeneous system is employed with the fuel dissolved
within the coolant. These systems provide much stronger
feedback effects than solid fuelled fast reactors since in
the case of an appropriate design, the amount of fissile
material in the core is reduced when the density is reduced
due to temperature increase which will allow a significantly
higher loading of transuranic nuclides as long as the solubility
of the transuranics in the carrier salt can be assured.
In
addition, there is neither an inhomogeneous core composition
like it would be the case in heterogeneous
Americium burning using targets nor a problem
with the fission gas accumulation in the fuel pellets and
rods which limits the burnup of minor actinides due
to the pressure increase in the fuel rods. However,
due to the release of the fission gas directly in the
liquid fuel most probably a reliable off-gas treatment
with the demands on a safety grade system will have
to be operated.
The challenges of the multi-recycling will be eliminated
completely in a molten salt reactor, since in these kinds of
reactors, the salt has to be cleaned in an online process.
This means a small share of the salt will be continuously
withdrawn from the operating reactor. This stream will be
cleaned from the fission products which prevent the
reactor from achieving long term operability and the
cleaned stream will be fed back into the reactor. This
reduces the proliferation risk significantly if the processes
are designed in an appropriate way since the fissile
material will stay in the solution, the plutonium quality
will always be reduced due to the mixing of all materials
and the handovers of fissile material are eliminated.
However, it has to be mentioned that the required clean-up
processes have to be developed following a completely
new approach, instead of the separation of fissile materials
like in the conventional reprocessing, the new processes
have to be designed to separate specific isotopes like
Neodymium and Caesium which cause almost 50% of the
effect on criticality, with Zirconium and Samarium causing
further 30% of the fission product effect on criticality [29].
Nevertheless, a successful design of the salt clean-up system
will eliminate the step of partitioning of fast reactor
fuel completely since there is no demand to separate fissile
material to produce new, clean fuel. In contrast, all material
which is foreseen for transmutation will stay in the reactor
until the nuclei have undergone a fission process.
The manuscript has been opened with the remark
that P&T is the cutting-edge research topic of nuclear
technology and that the lab scale demonstration of the
technology has been accomplished successfully. In general,
if we intend to get the technology into an industrial
application, which will be required if we intend to reduce
the long term challenges in final disposal, a significant
amount of research and development work will be required
[11]. It is now on the community to define the ideal
strategic approach which will in our view require a careful
evaluation of the available approaches to identify the ideal
approach. All approaches require a strong development
demand to achieve industrial application and the research
community will have to face a wide set of new challenges.
However, it will be more promising to invest into tailored
approaches to solve existing problems with innovative
approaches which are ideally based on the application
of already existing skill sets (e. g. nuclear chemistry,
advanced fluid dynamics) taking advantage of technological
approaches which are already available or under
development in other technologies (e. g. pyro-repro cessing
for fuel production, or off-gas cleaning like in reprocessing
facilities).
Before entering into the next step of development
the community should undergo a strategic development
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
atw Vol. 64 (2019) | Issue 5 ı May
process for demand driven research planning [31] with
an unbiased analysis of different options before taking
major investments into R&D. Getting P&T into industrial
application is a very long, time consuming mission
requiring a massive investment even when we would rely
on existing technologies. Why not focus on an improved
solution to direct the future R&D into a more innovative
dimension which promises some clear benefits. The focus
should lie on creating innovative, demand driven solutions
which on the one hand have the potential to provide new
IP and market opportunities while promising the
elimination of some major challenges which would require
very costly engineering solutions. The focus on disruptive
solutions has the potential to bring more innovation
into nuclear technologies which have suffered from a
lack of ground breaking innovation in the last several
decades. The proposed application of molten salt reactors
for transmutation is not a singular view of the authors,
see MA burning in molten salt reactors proposed by
Russia [29] and early proposals to use molten salt reactors
for the burning of weapon grade plutonium in the 1990’s
[33].
A Possible Outlook
All thoughts mentioned up to now have focused on the
issue of developing the P&T technology as a waste
treatment technology separate from the development of
power reactor technology. There are currently clear
reasons for this approach since the current reactor fleets
worldwide are based on light water reactor technology
while P&T will require fast reactor technology. However, a
slight change in the approach to the problem has the
potential to create a new way of thinking. We currently
tend to look at the spent nuclear fuel (SNF) of light water
reactors as waste to be stored safely instead of the common
approach of other industries when developing production
chains – ‘up to now, this is a material we haven’t found the
ideal use for’. On this basis, we have to see SNF as a
resource, a potential energy source for the future. The
same approach can change the recognition of the fission
products, a resource we have to find a better solution or
use. Taking this alternative view and looking into the
future of nuclear hopefully based on closed fuel cycle
operation creates the opportunity to bring the major
nuclear technologies – power production and waste
management – closer together. The last consequences
could be the recently proposed operation of molten salt
reactors directly on spent nuclear fuel originating from
light water reactors without prior reprocessing [30, 31,
32]. This approach has the potential to eliminate the very
costly pre-step into closing the fuel cycle which has all the
time been accepted as unavoidable – the reprocessing of
the LWR fuel – thus eliminating on of the most challenging
and costly hurdles to get closed fuel cycle operation into
future application. Thus, this new approach can ideally
provide society with the advantages of closed fuel cycle
operation without the massive pre- investments into
chemical separation of Plutonium and the related
production of mixed oxide fuel with high plutonium
content. The approach would allow society to solve P&T as
a side effect of a new and disruptive, highly efficient and
sustainable nuclear energy system which could serve as a
reliable low carbon energy source for the world. The
strategic thinking leading to this development and the
process which would have to be established will be
described in another article in the next edition of this
journal [34].
Conclusions
The waste management strategy of partitioning and
transmutation (P&T), encompassing reprocessing and
reactor technology, is currently the cutting-edge development
of nuclear technologies. It has been intensively
researched over the last few decades with most effort
spent in the IP EUROTRANS program and several follow
up projects. Almost all required technological steps have
been demonstrated at least at laboratory scale based on
existing technologies like aqueous reprocessing with
added downstream processes, mixed oxide fuel production
and sodium cooled fat reactor operation. However, putting
a deep look into the described challenges faced during
these demonstrations as well as taking an outlook to the
much larger challenges which will appear during upscaling
of the technology to industrial scale gives rise to the
question, ‘Is the chosen way for the demonstration the
right, most efficient way forward or do we need to adopt a
much more disruptive approach?? A detailed discussion of
the key challenges as well as the evaluation of possible
innovative approaches has been given working out
approaches which would be required to make P&T an
attractive choice for real industrial application.
The discussion leads the way to an innovative, demand
driven re-thinking of the whole technological process
typical for solid fuelled reactor systems and their related
fuel cycle. The outcome of this discussion delivers an
approach that avoids the most costly and challenging
process steps associated with the solid transmutation fuel
production by applying a demand driven technology
development using a liquid fuel operated system like a
molten salt reactor specially designed for the challenges of
P&T.
Finally, overcoming frames of the historic separation of
power production and waste management is proposed
by applying wider out of the box thinking to improve
the attractiveness of nuclear technologies. A disruptive
approach of developing a molten salt reactor system with
demand driven salt clean-up directly operating on spent
nuclear fuel is worked out which will offer the potential to
operate a nuclear reactor in closed fuel cycle mode without
requiring prior reprocessing as initial step. Applying this
approach would allow, to make the large energy amount
available which is still contained in spent nuclear fuel,
while the requests of waste management using P&T are
fulfilled as a side effect. Both points together have the
potential to make nuclear one of the most promising
answers to the rapidly rising demand for low carbon
technologies.
References
[1] Yamamoto T (1990) WELCOME ADDRESS. Proceedings of the First International Information
Exchange Meeting on Actinide and Fission Product Separation and Transmutation 1990,
Mito, Japan https://www.oecd-nea.org/pt/docs/iem/mito90/mit-1-00.pdf, accessed
10.06.2013
[2] Arkhipov V (1997) Future nuclear energy systems: Generating electricity, burning wastes. IAEA
BULLETIN, 39/2/1997 https://www.iaea.org/sites/default/files/publications/magazines/
bulletin/bull39-2/39204783033.pdf, accessed 27.02.2015
[3] Oi N (1998) PLUTONIUM CHALLENGES - Changing Dimensions of Global Cooperation,
IAEA Bulletin 40-1,Comparing Energy Options, Available http://www.iaea.org/
Publications/Magazines/Bulletin/Bull401/article3.html,
Accessed March 26, 2015
[4] Koch L (1990) System-immanent Long-lived Radioisotope Transmutation. First International
Information Exchange Meeting on Actinide and Fission Product Separation and Transmutation
1990, Mito, Japan, https://www.oecd-nea.org/pt/docs/iem/mito90/mit-4-01.pdf, accessed
10.06.2013
[5] Nakamura M et al. (1992) Present Status of the Omega Program in Japan. Second International
Information Exchange Meeting on Actinide and Fission Product Separation and Transmutation
Argonne, USA, 1992, https://www.oecd-nea.org/pt/docs/iem/argonne92/arg02.pdf, accessed
10.06.2013
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 265
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
atw Vol. 64 (2019) | Issue 5 ı May
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 266
[6] Plutonium Management in the Medium Term A Review by the OECD/NEA Working Party on the
Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR), Nuclear Science ISBN 92-64-
02151-5, OECD 2003, http://www.oecd-nea.org/science/docs/pubs/nea4451-plutonium.pdf,
accessed 10.06.2013
[7] Vasile A et al. (2001)The Capra – Cadra Programme”,Proc. ICONE 8, 8th conference on Nuclear
Engineering, April 2–6 2000, Baltimore,US, Professional Engineering Publishing, Suffolk, UK.
[8] Knebel J et al. (2004) IP EUROTRANS: A European Research Programme for the Transmutation
of High Level Nuclear Waste in an Accelerator Driven System. Actinide and Fission Product
Partitioning & Transmutation Eighth Information Exchange Meeting Las Vegas, Nevada, USA
9-11 November 2004, http://www.oecd-nea.org/pt/docs/iem/lasvegas04/11_Session_V/
S5_01.pdf, accessed 10.06.2013
[9] Studie zur Partitionierung und Transmutation (P&T) hochradioaktiver Abfälle http://doku.uba.
de, accessed 10.06.2013
[10] Renn, Ortwin (Hrsg.): Partitionierung und Transmutation. Forschung – Entwicklung –
Gesellschaftliche Implikationen (acatech STUDIE), München: Herbert Utz Verlag 2014
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/
de/Projekte/Laufende_Projekte/Transmutation/PuT_Studie_komplett_2013-10-22.pdf,
acsessed 27.11.2014
[11] acatech (Hrsg.): Partitionierung und Transmutation nuklearer Abfälle. Chancen und Risiken in
Forschung und Anwendung (acatech POSITION), München: Herbert Utz Verlag 2014 http://
www.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/partitionierungund-transmutation-nuklearer-abfaelle-chancen-und-risiken-in-forschung-und-anwend.html,
acsessed 06.03.2015
[12] Merk B, Geist A, Modolo G, Knebel J (2015) Results and Conclusions from the German P&T Study
– A View of the Contributing Helmholtz Research Centres, 46th Annual Meeting on Nuclear
Technology, Berlin
[13] Merk B, Geist A, Modolo G, Knebel J (2014) The German P&T study – results and conclusions
in the view of the contributing Helmholtz research centers, Actinide and Fission Product
Partitioning and Transmutation 13th Information Exchange Meeting, 23.-26.09.2014, Seoul,
Republic of Korea
[14] Merk B, Stanculescu A, Chellapandi P, Hill R (2015) Progress in reliability of fast reactor operation
and new trends to increased inherent safety, Applied Energy 147, 1 June 2015, Pages 104–116
[15] Merk B, Rohde U, Glivici-Cotruta V, Litskevich D, Scholl S (2014) On the Molten Salt Fast Reactor
for Applying an Idealized Transmutation Scenario for the Nuclear Phase Out”, PLoS ONE 9(4):
e92776. doi: 10.1371/journal.pone.0092776 (2014). PMID: 24690768
[16] B. Merk, D. Litskevich: “Transmutation of All German Transuranium under Nuclear Phase Out
Conditions – Is This Feasible from Neutronic Point of View?”, PLOS ONE, DOI: 10.1371/journal.
pone.0145652
[17] B. Merk, D. Litskevich: ”On the Burning of Plutonium Originating from Light Water Reactor Use in
a Fast Molten Salt Reactor—A Neutron Physical Study”, Energies 2015, 8, 12557–12572;
doi:10.3390/en81112328
[18] acatech (Ed.): Partitioning and Transmutation of Nuclear Waste. Opportunities and Risks in
Research and Application (acatech POSITION PAPER), Munich 2014. http://www.acatech.de/
fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/
Stellungnahmen/acatech_EN__POS_Transmutationsforschung.pdf
[19] V. Dekusar , V. Usanov , A. Yegorov: “Comparative Analysis of Electricity Generation Fuel Cost
Component at NPPs with WWER and BN-type Reactor Facilities, International Conference on
Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable
Development (FR17) Yekaterinburg, Russian Federation, 26 – 29 June 2017, available:
https://www-legacy.iaea.org/NuclearPower/Downloadable/Meetings/2017/2017-12-12-12-
12-NPTDS-test/FR17_WebSite/papers/FR17-435.pdf, accessed 26/02/2019
[20] GENIORS - GEN IV integrated oxide fuels recycling strategies, available: http://www.geniors.eu/,
accessed 26/02/2019
[21] Somers, J.: „Fabrication of Fuel and Recycling of Minor Actinides in Fast Reactors“.In: Science and
Technology, Volume 73, 2010, S. 97-103.
[22] Delage, F./Arai, Y./Belin, R./Chen, X.-N./ D’Agata, E./ Hania, R./Klaassen, F./Maschek, W./
Oigawa, H./Ottaviani, J. P./Rineiski, A./ Sobolev, V./Somers, J./Staicu, D./Thetford, R./Wallenius,
J./Wernli, B.: Minor-Actinides Transmutation in an Accelerator Driven System Prototype: Results
from Fuel Developments within the European Program EUROTRANS, IEMPT11, San Francisco, CA,
1.-4. November 2010.
[23] A. Khaperskaya, Khomyakov Yu , Shadrin A, Feinberg O.,Conceptual approaches and the main
directions of R & D on partitioning and transmutation of minor actinides and long-lived fission
products in the Russian Federation State atomic energy corporation “Rosatom”, Manchester ,
15th International Exchange Meeting on Partitioning and Transmutation 2 October 2018
Manchester
[24] Magill, J & Berthou, V & Haas, D & Galy, J & Schenkel, R & Wiese, H.-W & Heusener, G &
Tommasi, J & Youinou, G. (2003). Impact Limits of Partitioning and Transmutation Scenarios on
Radiotoxicity of Actinides in Radioactive Waste. Nuclear Energy-journal of The British Nuclear
Energy Society - NUCL ENERG-J BRIT NUCL ENERG. 42. 263-277. 10.1680/nuen.42.5.263.37622.
[25] E. Abonneau: Astrid Project Overview, 3rd ASTRID Fast Reactor Seminar – Civil Engineering and
Construction plus ZEPHYR – CEA’s Zero power Experimental PHYsics Reactor, Birmingham
University, Wednesday 31st January 2018
[26] Massimo Salvatores: Neutronics for critical fission reactors and sub-critical fission in hybrids,
WORKSHOP ONFUSION FOR NEUTRONS ANDSUB-CRITICAL NUCLEAR FISSIONFUNFIVilla
Monastero, Varenna, Italy, September , 2011
[27] B. Merk: Moderating Material to Compensate the Drawback of High Minor Actinide Containing
Transmutation Fuel on the Feedback Effects in SFR Cores, Science and Technology of Nuclear
Installations, Volume 2013, Article ID 172518, http://dx.doi.org/10.1155/2013/172518
[28] REFINE: A coordinated materials programme for the sustainable REduction of spent
Fuel vital In a closed loop Nuclear Energy cycle, UKRI, avaialble: https://gtr.ukri.org/
projects?ref=EP%2FJ000779%2F1, accessed 02/04/2019
[29] Merk B, Litskevich D, Gregg R, Mount AR (2018) Demand driven salt clean-up in a molten salt
fast reactor – Defining a priority list. PLoS ONE 13(3): e0192020. https://doi.org/10.1371/
journal.pone.0192020
[30] Merk B., Litskevich D., Whittle K. R., Bankhead M., Taylor R., Mathers D.:”On a Long Term
Strategy for the Success of Nuclear Power”, ENERGIES, 8(11), 12557–12572.
[31] Merk B., Litskevich D., Bankhead M., Taylor R.:”An innovative way of thinking Nuclear Waste
Management–Neutron physics of a reactor directly operating on SNF”, PLOS ONE July 27,
2017, https://doi.org/10.1371/journal.pone.0180703
[32] Bruno Merk and Ulrich Rohde; Transmutation von Transuranen unter den Randbedingungen des
Kernenergieausstiegs – Technisch machbar?, ATW 259 (4) 2016
[33] URI GAT and J. R., ENGEL, H. L. DODDS MOLTEN SALT REACTORS FOR BURNING DISMANTLED
WEAPONS FUEL, TECHNICAL NOTE, Nuclear Technoloy Vol. 100, Dec. 1992, available:
http://moltensalt.org.s3-website-us-east-1.amazonaws.com/references/static/
home.earthlink.net/bhoglund/uri_MSR_WPu.html, accessed July 15th, 2015
[34] B. Merk et al: iMAGINE - A disruptive change to nuclear or how can we make more out of the
existing spent nuclear fuel and what has to be done to make it possible in the UK?,
to be published in atw 6/7-2019
Authors
Bruno Merk
Dzianis Litskevich
University of Liverpool,
School of Engineering,
L69 3GH,
United Kingdom
National Nuclear Laboratory,
Chadwick House,
Warrington,
WA3 6AE,
United Kingdom
Aiden Peakman
Mark Bankhead
National Nuclear Laboratory,
Chadwick House,
Warrington,
WA3 6AE,
United Kingdom
Serial | Major Trends in Energy Policy and Nuclear Power
The Current Status of Partitioning & Transmutation and How to Develop a Vision for Nuclear Waste Management ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead
atw Vol. 64 (2019) | Issue 5 ı May
A World’s Dilemma ‘Upon Which
the Sun Never Sets’: The Nuclear Waste
Management Strategy: Russia
Part 2
Mark Callis Sanders and Charlotta E. Sanders
4 Eurasia
4.1 Russian Federation or
Российская Федерация
(Russia)
4.1.1 Historical Overview & Law
Russia’s 1
economy and government
financial structure is over reliant on
the monies it obtains through its oil
and natural gas production. Swings
in global commodity prices have
been known to create unrealistic and
unsustainable economic bubbles in
the Russian economy, which then lead
to severe economic downturns. In
1954, Russia developed and operated
the world’s first nuclear power plant.
By the mid-1980s, the Union of Soviet
Socialist Republic (USSR) had an
expanding civilian nuclear power
program, when the world’s worst
nuclear accident occurred in 1986 at
Chernobyl. 2
Throughout the 1990’s,
Russia’s economy experienced a
steady downward trajectory, resulting
in a tightening of funding available
for its nuclear power programs.
Toward the end of the 1990’s,
Russia began to export its reactors to
Iran, China and India, which saw the
revival of its domestic nuclear power
program [27]. Russia is expanding its
civilian nuclear power program
having in 2014 initiated the “Development
of the Russian Nuclear Power
Generation Complex” policy which
provides for the country to construct
and/or commission at “least 10 new
nuclear power units [through] 2020” 3
[28].
It is now just over a hundred years
since the Russian revolution, which
resulted in the overthrow of Tsar
Nikolai II. From this period of history,
Russia has travelled through various
| | Nuclear power in Russia: electricity generation.
political systems, but with each
focused on one dynamic: centralized
state power and control. In June of
1941, the USSR was attacked by Nazi
Germany in Hitler’s quest for ‘lebensraum’
and Russia entered into an
alliance with both major allied
powers, the United Kingdom in the
summer of 1941, and later with the
United States (US) following its entry
into the war. However, following the
conclusion of World War II, and with
Soviet dominance of Eastern Europe,
these previous allies entered into a
stalemate of attrition as each side
sought for geopolitical influence in
various corners of the globe. 4
Democracy came to Russia in the
early 1990’s as the USSR splintered
into Russia and 14 other independent
republics. President Boris Yeltsin’s
term as president (1991-99), was a
bitter time of corruption and economic
stagnation/decline for the
Russian people. To overcome these
economic hardships, the Russian
people sought new leadership electing
President Vladimir Putin. Under
Putin, Russia’s foreign policy has been
marked by aggression towards its
neighbors, as it seeks to regain its
former influence.
4.1.2 Government & Legislative
Regime
A study of Russian culture provides an
insight into the abrupt changes of
Russia’s political systems during the
course of history as one charts the
exodus of its cultural riches from 1917
through “the catastrophic losses due
to Nazi atrocities during World War
II,” and during the past couple of
decades, “the diffusion and disbandment
of Soviet collections” [29].
Though the pendulum of Russia’s
political system appears to have
violent swings throughout its long
history, it is a zeal for centralized
power and control, by the State, that
affords the Russian political system
and cultural heritage with a continuity
of stability.
Russia is considered a “ democracy,”
with “democratically” elected members
of government. However, given
State control of the media and
elections, Russian democracy may
generally not be viewed in a similar
vein of ‘democracy’ as applied in the
US or Western Europe. That being
said, given Russians’ experiences
throughout its Tsarist and Communist
history, Russian democracy today is
certainly democratic in comparison to
those standards.
The Russian federal government
retains and exercises exclusive
powers. Its executive branch of
government is led by the prime
minister. The Constitution of the
Russian Federation and the federal
constitutional law “On the Government
of the Russian Federation” establishes
the mechanisms for the
Federal government to legislate by
way of acts. The executive must
exercise power in a manner which is
not in contrast to the con stitution or
267
DECOMMISSIONING AND WASTE MANAGEMENT
1 Throughout the paper, the Union of Soviet Socialist Republic (USSR) or The Soviet Union is used interchangeable with the word Russia dependent
on the historical point of reference being discussed.
2 The world’s worst nuclear disaster occurred on 25–26 April 1986 near the now-abandoned town of Pripyat, located in the Ukrainian Soviet
Socialist Republic, now the Ukraine.
3 Resolution of the Government of the Russian Federation No. 516-12.
4 This period of world history is referred to as the Cold War, lasting from 1947-1991.
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia Part 2 ı Mark Callis Sanders and Charlotta E. Sanders
atw Vol. 64 (2019) | Issue 5 ı May
DECOMMISSIONING AND WASTE MANAGEMENT 268
| | Nuclear fuel cycle.
the laws of the state and/or Presidential
decrees [30].
Russia’s legislature is bicameral,
divided between the Federal Assembly
with 170 seats and the State Duma
with 450 seats. In the 2016 federal
election, one-half of the members
were directly elected through a simple
majority vote, while the other half
is directly elected by proportional
representation. Its judicial branch
contains various courts of jurisdiction
with the Supreme Court of the Russian
Federation sitting at the top of the
structure [31].
4.1.2.1 Corruption
The Russian constitution establishes
that “man and his rights and freedoms
shall have the highest value” and that
it is the “responsibility of the state
to recognize, observe and protect
the rights and freedoms of man
and citizen” [32]. A major potential
challenge in the fulfillment of this
noble ideal is with issues surrounding
corruption. It is readily acknowledged
that corruption does exist and is
practiced in all political systems and
cultures. Corruption, certainly, is not
something that is unique to Russia.
However, in the latest Transparency
International Corruption Perceptions
Index (CPI), Russia ranked an abysmal
135 out of 180 countries in 2017. 5
Before the nineteenth century, the
word ‘corruption’ was not commonly
used but colloquially became more
commonplace “in the post-Soviet
period” [33]. In the decades since the
collapse of communism, Russia has
experienced a development of an
oligarchy that controls the nation’s
industry and mineral reserves. This
has given rise to the view among the
Russian people “[that] government
officials [are] wealth-grabbers and
[that there is a need for] personal
contacts and relationships to get
| | Handling of nuclear waste.
things done” [34]. The past century
has brought about dramatic shifts of
political power in Russia. Despite
these changes, Russia is known for,
and continues to experience, relatively
high rates of corruption [35]. At the
end of 2017, it was estimated that the
overall economic cost of corruption
for the preceding two years was more
than $2.5 billion. 6
4.1.2.2 Legislative Framework
The Federal Atomic Energy Agency
(Rosatom 7 ) is the duly authorized
federal executive body. It functions
to implement state policy, to provide
applicable regulations, and exercise
regulatory competencies authorized
by the Federal government. Additionally,
it is the state designated actor
responsible for atomic energy, including
the development and safe
functioning of nuclear power plants,
aspects of the nuclear fuel cycle,
advancement of nuclear science and
technology, and other matters involving
international corroboration
[28].
In 2011, Federal Law on the Management
of Radioactive Wastes and
amendments to certain legislative acts
of the Russian Federation 8 (2011 Law)
was adopted as the first Federal Law
for the management of radioactive
waste. Other applicable laws, which
function concurrently with the 2011
Law, 9
include: (1) Federal Law No.
170-FZ “On the Use of Atomic Energy”
5 See: Transparency International Corruption Perceptions Index, https://www.transparency.org/news/feature/corruption_perceptions_index_2017,
viewed April 19, 2018.
6 For a recent discussion on corruption in Russia, see: Abuse of office, bribes & embezzlement: Top 5 Russian corruption scandals,
https://www.rt.com/politics/413538-top-5-recent-russian-corruption/, viewed June 13, 2018. Recommended: the Council of Europe website,
‘Action against Economic Crime and Corruption’ at https://www.coe.int/en/web/corruption/anti-corruption-digest/russian-federation, viewed
June 13, 2018, which provides an updated expansive list on the topic of corruption in Russia.
7 The Federal Law “On the State Atomic Energy Corporation – Rosatom” 317-FZ, Amended by Federal Law No. 305-FZ amending Federal Law No.
317-FZ on the State Atomic Energy Corporation Rosatom (2010) and Federal Law No. 188-FZ amending Federal Law No. 317-FZ on the State
Atomic Energy Corporation Rosatom (2014) establishes the procedure to provide for adequate financial resources for the creation of any needed
radioactive waste and spent fuel management facilities. See: https://www.ecolex.org/details/legislation/federal-law-no-317-fz-on-the-stateatomic-energy-corporation-rosatom-lex-faoc079146/,
viewed July 12, 2018.
8 See: 'Federal Law on the Management of Radioactive Wastes and amendments to certain legislative acts of the Russian Federation' 2011, Nuclear
Law Bulletin, 88, pp. 181-200, Academic Search Premier, EBSCOhost, viewed 25 July 2018.
9 Additionally, Russia has undertaken a number of crucial initiatives toward the development of an appropriate legal framework in establishing a
Unified State System for radioactive waste management. These decrees and resolutions may be found in § A.4.4, “Near-term initiatives to improve
the safety of SNF and RW management.” Go to: The Fourth National Report of the Russian Federation, http://www.rosatom.ru/upload/
iblock/8c0/8c0b6fba95869e6673962ee96f467da2.pdf, viewed April 09, 2018.
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia Part 2
ı Mark Callis Sanders and Charlotta E. Sanders
atw Vol. 64 (2019) | Issue 5 ı May
| | More than electricity and heat generation: Nuclear powered ice breaker.
of November 21, 1995; Federal Law
No. 3-FZ “On the Radiation Safety of
Population” of January 9, 1996; and,
(3) Federal Law No. 7-FZ “On the
Environmental Protection” of January
10, 2002 [28].
4.1.3 Nuclear Waste
Management
The 2011 Law requires the final
disposal 10 of all legacy 11 and newly
generated domestic radioactive waste.
Additionally, the 2011 Law provides
for creating a state controlled
unified system of radioactive waste
management by establishing a
national operator. The 2011 Law
creates two distinct groups of radioactive
wastes: remov able and special
radioactive wastes, 12
which receive
their classifica tion demarcation by
the federal government taking into
account the technical and operational
limitations involved with nuclear
waste management.
The ‘National Operator for Radioactive
Waste Management’, a federal
entity, has sole responsibility as the
duly authorized agent by the Russian
Federation to carry out activities
relating to final isolation of radioactive
waste and arrangement of
any relevant infrastructure [36].
According to Rosatom, design work is References
complete for a deep waste repository,
with activities in progress for the
implementation of a project that will
“enable [the] final disposal of all
radioactive waste accumulated” [36].
Previously, nuclear waste management
activities involved the injecting
of these low and intermediate level
wastes “into deep-seated reservoir
beds (deep well injection facilities)
located at three sites” [28].
4.1.3.1 Permanent Disposal
Each nuclear power plant has a spent
fuel storage pool. Spent fuel is kept in
the pool for a period of three years.
If necessary, storage time can be
increased to reduce heat generation.
Reprocessing of spent nuclear fuel is
performed at RT-1 (Mayak). Additionally,
various nuclear power plants
have multifunctional complexes providing
radioactive waste treatment
and pre-treatment. The most probable
media for the final storage and disposal
of high-level waste within Russia
is in crystalline rocks. These
planned repositories “[should] be
sited in seismically stable blocks” and
also areas containing no or limited
mineral resources [37]. Within Russia,
vitrified high-level waste is “stored in
steel containers 60 cm in diameter,
80 cm in height, and 3 cm in thickness”
[37]. Each cask is able to accommodate
three containers.
[27] Nuclear Power in Russia, World Nuclear Association,
http://www.world-nuclear.org/information-library/countryprofiles/countries-o-s/russia-nuclear-power.aspx,
viewed January 31, 2018.
[28] The Fourth National Report of the Russian Federation,
http://www.rosatom.ru/upload/iblock/8c0/
8c0b6fba95869e6673962ee96f467da2.pdf, viewed April 09, 2018.
[29] Dianina, K 2015, ‘Russian Cultural History Lost and Found’,
Russian Studies In History, 54, 4, pp. 279-285, Academic Search
Premier, EBSCOhost, viewed 31 January 2018.
[30] Government of the Russian Federation,
http://www.russianembassy.org/page/government-of-therussian-federation,
viewed April 05, 2018.
[31] ‘Russia,’ CIA Fact book, Central Intelligence Agency,
https://www.cia.gov/library/publications/the-world-factbook/
geos/print_rs.html, viewed April 19, 2018.
[32] Lomovtseva, M, & Henderson, J 2009, ‘Constitutional Justice
in Russia’, Review Of Central & East European Law, 34, 1,
pp. 37-69, Academic Search Premier, EBSCOhost,
viewed 31 January 2018.
[33] Berdy, MA 2016, ‘On the Take’, Russian Life, 59, 2, p. 26,
Academic Search Premier, EBSCOhost, viewed 19 April 2018.
[34] Ledeneva, AV 2013, ‘Russia’s Practical Norms and Informal
Governance: The Origins of Endemic Corruption’, Social Research,
80, 4, pp. 1135-1162, Academic Search Premier, EBSCOhost,
viewed 19 April 2018.
[35] Fein, E 2017, ‘Cognition, cultural practices, and the working
of political institutions: An adult developmental perspective on
corruption in Russian history’, Behavioral Development Bulletin,
22, 2, pp. 279-297, Academic Search Premier, EBSCOhost, viewed
31 January 2018.
[36] About Rosatom, http://www.rosatom.ru/en/rosatom-group/
back-end/national-operator-for-radioactive-waste-management/,
viewed April 05, 2018.
[37] Laverov, N, Omel’yanenko, B, & Yudintsev, S 2011,
‘ Crystalline rocks as a medium for nuclear waste disposal’, Russian
Journal Of General Chemistry, 81, 9, pp. 1980-1993, Academic
Search Premier, EBSCOhost, viewed 5 April 2018.
Authors
Mark Callis Sanders
Sanders Engineering
1350 E. Flamingo Road Ste. 13B
#290
Las Vegas NV 89119
USA
Charlotta E. Sanders
Department of Mechanical
Engineering
University of Nevada
Las Vegas (UNLV)
4505 S. Maryland Pwky
Las Vegas, NV 89154
USA
DECOMMISSIONING AND WASTE MANAGEMENT 269
10 Interestingly, the 2011 Law considers and makes final determination on issues surrounding retrievability of spent nuclear fuel and radioactive
waste. Per Article 3.1. (8) “disposal” is defined as: “the safe holding of radioactive wastes in a radioactive waste disposal site not requiring any
subsequent removal.”
11 Legacy waste is defined per Article 3.1 (1), and consists of such waste created before the promulgation of the 2011 law.
12 The waste categorization description is provided in Article 4 of the 2011 Law.
Decommissioning and Waste Management
A World’s Dilemma ‘Upon Which the Sun Never Sets’: The Nuclear Waste Management Strategy: Russia Part 2 ı Mark Callis Sanders and Charlotta E. Sanders
atw Vol. 64 (2019) | Issue 5 ı May
DECOMMISSIONING AND WASTE MANAGEMENT 270
Guideline to Prepare a Preliminary
Decommissioning Plan for Nuclear
Facilities in Republic of Korea
Byung-Sik Lee and Kyung-Woo Choi
1 Introduction The legal framework of decommissioning in Korea was enhanced through the revision of
Nuclear Safety Act (NSA) and its subordinate status in 2015. According to the revised NSA, the nuclear power plant
licensee should prepare the decommissioning plan (DP), i.e. preliminary DP, at the construction/operation stage of
NPP. Additionally, the licensee should submit the DP, i.e. final DP, for approval of NPP decommissioning in Korea. In
particular, the preliminary DP includes comprehensive implementation plans, maintenance of facility records, and
physical and procedural methods to limit contamination and activation [1]. Therefore it is clear that the nuclear facility
is considered for decommissioning in site selection, design, construction, commissioning and operation phases.
The DP generally includes the decommissioning
strategy including a relevant
technical review report, to provide a
justification for selecting a decommissioning
strategy. The decom missioning
cost is included in the DP, which is estimated
based on the decommissioning
activities of the nuclear facilities to be
dismantled, and if necessary, a decommissioning
cost estimate report should
be attached. The DP also includes
decommissioning schedules, decommissioning
techniques, and manpower/
training programs. Most importantly,
provisions on safety and radiation protection
for population and workers are
systema tically and deeply described [2].
To this end, the DP is divided into a
preliminary DP and a final DP in
accordance with the construction/
operation phase and decommissioning
phase of the nuclear facility,
respectively [1]. The details of the DP
from the preliminary to the final plan
are progressively described in detail.
The most important factor in preparing
the DP is to make full use of the
design/construction/operation data
of the nuclear facilities.
The new nuclear facilities are subjected
to a background survey of the
site including the acquisition of
environ mental information necessary
for environmental impact assessment
from the site selection stage. These data
will be periodically revised until the
decommissioning process, when practical,
it should be helpful. Indeed, such
site-related environmental information
is used as a basis for defining the
surrounding natural radiation of nuclear
facilities and is used as a comparison
to assess the environmental impact
of dismantling nuclear facilities.
However, if there is no background
survey on the sur rounding environment
at the nuclear facility construction
stage, the site environmental survey
is conducted during the operation
of the facility. But, if there is not
enough time to investigate further,
similar area surveys are avail able. In
the case of a new nuclear facility, a
preliminary DP has to be prepared
from its construction license stage and
periodically revised until the final
shutdown of the nuclear facility. The
decommissioning operators include
the appropriateness of decommissioning
method, the appropriateness of
decommissioning cost, the appropriateness
of decommis sioning resources,
the method of decommissioning
safety evaluation, and the decommissioning
waste management plan [3].
The preliminary DP can clearly
show that important records related
to decommissioning, such as facility
design data, design data change
history, and operation records, are
maintained in accordance with the
procedure throughout the life of the
nuclear facility. According to the NSA,
the preliminary DP should be revised
periodically every 10 years in consideration
of operation experience,
lessons of decommissioning similar
facilities, new safety requirements or
revised safety requirements related
with decommissioning, development
trends of selected decommissioning
strategies and related decommissioning
technologies, and so on.
The purpose of this paper is to provide
the guideline how to prepare the
preliminary DP in view of safety considerations
based on the experience of
nuclear facility decommissioning in
major foreign countries.
2 Considerations to
prepare a preliminary
decommissioning plan
The preliminary DP must be sub mitted
at the time of applying for the operating
license of the new nuclear facilities.
Therefore, there is a limit to the depth
of the technical contents of each item
in comparison of the final DP. However,
the preliminary DP should include
the expected decommissioning strategy,
appropriateness of decommissioning
method, calculation of decommissioning
cost, assurance of decommissioning
finance, decom missioning
safety and radiation protection plan,
and decommis sioning waste management
plan. Also, since the most important
inputs to the DP are the design/
construction/operation data, the plan
should describe how these records are
maintained in accordance with relevant
quality assurance programs for
important records related to decommissioning
over the life span. That is,
design data of nuclear facilities, design
data change history, operating records,
etc. should be described in the preliminary
DP [3, 4].
In the preliminary DP, considerations
are given to the following items by
referring to the results of the decommissioning
pre-feasibility study at the
engineering stage of nuclear facilities,
the design specification of facilities,
and the previous decommissioning
experience data at home and abroad.
pp
Final goal of the decommissioning
and application criteria and standards.
pp
Management of spent fuel and
decommissioning waste.
pp
Analysis of critical path activities in
disassembly scenario.
pp
Disclosure important factors in the
decommissioning project management.
3 Identification of
contents in a preliminary
decommissioning plan
3.1 Management of design,
construction and operation
record
Data on design, construction and
operation experience necessary for
Decommissioning and Waste Management
Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi
atw Vol. 64 (2019) | Issue 5 ı May
decommissioning activities should be
systematically managed and used as
basic data for DP [3]. The list of necessary
data for each step of the facility
life span is as follows.
pp
Design/construction data management
pp
Management of changes to all
structures, systems and components
(SSCs) using Configuration
Management System
(CMS)
pp
Track design considerations to
increase easy decommissioning
activity
pp
Information on underground
pipes and components in the
site
pp
Startup/operation record management
pp
Modification data management
of SSCs during the facility operation
using CMS
pp
Management of incident/accident
data during the facility
operation
pp
Knowledge management related
with operation experience
pp
Basic site characteristics data
through sampling
pp
Operational waste information
pp
Information on spent fuel
pp
Location and characteristics of
contaminated material release
pp
Existing internal/external
stake holders communication
related materials
Therefore, the decommissioning
operator should provide the details of
how to document and manage the
contents of the preliminary DP during
the operation of nuclear facilities.
Documentation and management
measures should be in place for
nuclear facilities to comply with
existing QA/QC systems.
3.2 Decommissioning organization
and manpower
In general, decommissioning manpower
and organization are important
not only for safe decommissioning
of nuclear facilities but also for
estimate of the decommissioning
cost, because labor cost due to the
manpower and organization is the
important fixed cost in the decommissioning
of nuclear facilities. Therefore,
the preliminary DP should
describe a potential organization and
estimated manpower to perform
decommis sioning activities of the
facility in the decommissioning phase
[5, 6].
In addition, the facility licensee
should describe a decommissioning
support team in the operating
orga nization including the main
duties of its decommissioning workforce
in the operation phase, which
can prepare pre-decommissioning
tasks during the operation period.
And it is also required to describe the
expertise required to perform the
related service, and the qualification
requirements and training requirements
for maintaining its expertise in
the preliminary DP.
3.3 Preliminary decommissioning
cost estimate and
finance assurance
The decommissioning operator shall
estimate the preliminary decommissioning
cost considering the decommissioning
strategy, facility/site characteristics,
applied decommissioning
technique, etc., which are determined
at the design stage of the nuclear facilities
and present the appropriateness
of the estimated results [3]. The main
factors affecting the preliminary cost
are as follows.
pp
Characteristic data of nuclear facility/site
and its decommissioning
scenario.
pp
Experience/knowledge data of the
decommissioning of the facility
and overall decommissioning
market environment (demand and
supply).
pp
Decommissioning waste management:
release criteria, availability
of disposal facilities and acquisition
of waste acceptance criteria.
pp
Schedule of spent fuel transfer
campaign and availability of spent
fuel transport/storage cask.
pp
Site release criteria and site reuse.
pp
Availability of manpower and
decommissioning techniques.
pp
Asset recovery after decommissioning
(asset valuation, asset
recovery method, etc.).
The assumptions and the strategic
decisions for each of above factors
should be clearly indicated in the
preliminary DP, and they should be
continuously managed so that they
can be used to calculate the revised
decommissioning cost for the amendment
DP. The method of securing the
decommissioning resources differs
depending on the country. In Korea,
based on its operating decommissioning
cost funding system, the following
items should be described in
the preliminary DP.
pp
Disbursement fund accumulation
according to result of decommissioning
cost estimate every 2 years.
pp
The decommissioning cost items
and the cost management plan is
precisely specified.
It is also necessary to conduct surveillance
activities to maintain the
security of decommissioning cost, such
as the availability of the cost funding
system, the suitability of the cost
estimation, and the appropriateness of
the cost utilization. For this, the
decommissioning cost execution plan
should be regularly checked step by
step.
3.4 Site and environmental
survey
3.4.1 Status of site and
environment
The site and environmental characteristic
survey are conducted to
obtain the construction permit and
the operation license of the nuclear
facility in the construction phase [5].
Therefore, using these characteristic
data, the preliminary DP should
describe the following site and
environmental status data for the
decommissioning of the facility, which
is used as the basic input data of the
decommis sioning environmental impact
assessment and safety assessment.
pp
Meteorological and topographical
characteristics to predict the
spread of radioactive materials.
pp
Population data for environmental
impact assessment.
pp
Provisions of equipment access to a
decommissioning site and transportation
of decommissioning
waste.
pp
Assessing the social and economic
impact due to the decommissioning
business.
The main items of site and environmental
data to be used in the decommissioning
of the nuclear facility will
be selected from the site and environment
reports prepared for the construction/operation
license of the
nuclear facility. The decommissioning
operator needs to present the management
plan for these important data
related to the decommissioning it in
the preliminary DP.
3.4.2 Radiological status of the
facility, the site and the
environment
Radiological characteristic data
are the basic inputs to all radiation
safety assessment including radiation
environmental impact assessment,
worker exposure dose prediction.
And it can also be used for the selection
of the decommissioning tools/
method, the necessity of the shielding
or iso lation facility, and the waste
management policy [3].
DECOMMISSIONING AND WASTE MANAGEMENT 271
Decommissioning and Waste Management
Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi
atw Vol. 64 (2019) | Issue 5 ı May
DECOMMISSIONING AND WASTE MANAGEMENT 272
Therefore, in the preliminary DP it
is necessary to identify all construction
and operation data that are
important to evaluate the radiological
characteristics of facility and site, and
describe the method of systematically
managing these data in operation
stages. These data are used as the
important input for radiological
characterization during the decommissioning
phase. According to experience
of decommissioning at home
and abroad, the following data are
expected to be necessary for the
evalu ation of radiological characteristics
[5, 6].
pp
Radiation distribution inside and
out side the decommissioning facility.
pp
Contamination degree and contamination
distribution.
pp
Nuclide inventory.
pp
Radionuclide type, radioactivity
and distribution.
pp
Justification of measurement point
through prior sampling.
In particular, the design provisions
should be reflected in the reduction of
radiation exposure of workers and the
ease of sampling when performing
these radiological characterization
works.
3.5 Decommissioning strategy
and method
3.5.1 Decommissioning strategy
The decommissioning strategy is
a general plan to achieve the successful
decommissioning, and is set
con sidering the decommissioning
policy, the decommissioning method
and the final goal of the decommissioning
[3]. The decommissioning
operator may determine ‘immediate
decommis sioning’ or ‘delayed decommissioning’
as the decommissioning
strategy through a review of
the adequacy evaluation considering
the following factors or may decide
a third alter native that combines
‘ immediate’ and ‘delayed decommissioning’.
National decommissioning policy.
pp
Laws, regulations and standards to
be applied to the decommissioning
activity.
pp
Facility characteristics, operation
history, radioactivity inventory and
its change with time.
pp
Radiological and conventional
safety assessment.
pp
Spent fuel and decommissioning
waste management.
pp
Change of facility physical conditions
during the decommissioning
period.
pp
Appropriateness and availability of
decommissioning resources.
pp
Availability of experienced personnel
and proven technologies.
pp
Lessons learned from past decommissioning
projects.
pp
Residents’ concerns, including
their social and economic impact
on the community.
pp
Influence of several units within
the site.
pp
Plan of reuse of site or facility (part
of facility) after completion of
decommissioning.
pp
Stakeholder interaction.
The decommissioning operator
should show in the preliminary DP
that the strategy has been established
by appropriately reflecting all above
factors necessary for the strategy
establishment.
3.5.2 Decommissioning method
and schedule
The decommissioning method and
the schedule should be described
roughly in accordance with the
selected decommissioning strategy in
the preliminary DP. It is necessary to
define the decommissioning activities
for each decommissioning step based
on the decommissioning method, and
the decommissioning schedule should
be provided as the project milestone
level [5].
The comprehensive decommissioning
schedule as the milestone level
can show the optimal timetable for decommissioning
sequences considering
the decommissioning stra tegy, the
execution of major activities, and legal
requirements. This should enable us to
understand the overall decommissioning
activities to be carried out during
the entire decommissioning period.
The schedule development helps to
efficiently utilize decommissioning
resources and is also useful for estimating
decommissioning cost. Therefore,
the following key factors should
be considered when establishing the
schedule.
pp
Decommissioning strategies and
methods, experience/knowledge
data.
pp
Decommissioning waste management.
pp
Decommissioning scenario.
pp
Spent fuel transportation schedule
and availability of transport/storage
casks.
pp
Availability of domestic decommissioning
technology/manpower.
pp
Availability of decommissioning
supply chains.
pp
Financial constraints.
pp
Political and social environment.
3.6 Design characteristics and
measures for the decommissioning
facilitation
3.6.1 Design characteristics
The preliminary DP should describe
the information related to the “design
characteristics for the decommissioning
facilitation” as follows [3].
pp
Access way for equipment maintenance
and laydown space for
equipment replacement, which
can be used as a decommissioning
work space in the decommissioning
phase.
pp
Design characteristics to minimize
the radioactive contamination and
the leakage of radioactive materials
from the radioactive systems.
pp
Minimization of concrete buried
pipes and ducts.
pp
Minimization of underground
radioactive waste tanks, sumps
and pipes.
pp
Impurities management in steel
and concrete materials to prevent
the generation of activation products
that affect decommissioning
work.
pp
Equipment layout considering
ALARA guideline when replacing
equipment.
Therefore, the preliminary DP should
also outline the following management
plans and explain how to maintain
its design characteristics.
pp
Management plan of the facility
configuration management system
(CMS) and their records during
the operation phase.
pp
Management plan of the radioactive
material leakage management
system and their records
during operation phase.
pp
Management plan of the design
characteristics for the decommissioning
facilitation during the
operation phase.
3.6.2 Design measures to minimize
radioactive material
leakage, radioactive contamination
and radioactive
waste generation during
the operation
Actions to be performed at the construction
and operation phase of a
nuclear facility should be provided to
confirm the minimization of radioactive
material leakage, radioactive
contamination and radioactive waste
generation, which can be prepared
for the future decommissioning as
follows [5, 6];
pp
Design information on on-site
surveillance systems that can
detect leakage and contamination
Decommissioning and Waste Management
Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi
atw Vol. 64 (2019) | Issue 5 ı May
from underground and concrete
buried pipes early.
pp
Design information on separation
and collection of radioactive waste
and non-radioactive waste.
Such information is used as input data
such as “safety assessment” and
“ radioactive protection plan” establishment.
Therefore, it is needed to
describe the information such as
incidents and accidents that contaminated
a facility and a site during
the operation period of nuclear facility,
which can affect decommissioning
activities.
3.7 Safety assessment
Existing safety related systems and
engineered safety features are dismantled
and altered through the
decommissioning of a nuclear facility.
Therefore, the safety assessment of the
decommissioning phase is limited to
the effects of dismantling equipment,
installing new systems, or changing
existing systems. According to the
overseas decommissioning experience,
the decommissioning stage generally
carries out a safety assessment of the
following events [3, 7]:
pp
Fire in facility.
pp
Leaks from container or system.
pp
Heavy material drop.
pp
Supply system failure.
pp
Criticality accident.
pp
Intrusion of water into a facility
with delayed decommissioning.
pp
External accidents (that is earthquakes,
storms, floods etc.).
Radioactive material leakage prevention
and mitigation systems, which
are operating at the operational stage
of a nuclear facility, are not operated
any more due to power supply interruption
or demolition at the disassembly
stage. Therefore, it is necessary
to partially localize the contaminated
area during dismantling
work or to install an additional mobile
exhaust system.
Especially when the exhaust
system fails due to fire, “fire” will
become a radiological representative
design basis accident. It is necessary
to describe the development of
scenarios for these various accidents,
the evaluation methodology for
them, and describe the methods
of preventing and mitigating accidents.
3.8 Radiation protection
A radiation protection plan during the
decommissioning phase should be
established to identify major issues
affecting worker exposure by decommissioning
activities. In general, the
radiation protection plan should
include the following [3, 4]:
pp
Prediction and minimization of
radiation exposure of workers.
pp
Radiation safety management plan
during decommissioning work.
pp
For the various decommissioning
options, prediction of the expected
dose and measures to comply with
the ALARA guidelines through
decommissioning radiation management.
When establishing the preliminary
DP, the radiation protection plan is
described as follows by establishing a
radiation safety management plan
that minimizes the workers’ exposure.
pp
Establishment of radiation protection
policy and application of
ALARA guidelines.
pp
Radiation Safety Plan during
decommissioning activities.
pp
Monitoring plan of special radiation
dose and air contamination in
the workplace.
pp
Plan for entry and exit of workers
and equipment.
pp
Evaluation and selection of radiation
protection tools.
3.9 Decommissioning activity
There are many decontamination,
dismantling and demolition techniques
necessary for the decommissioning
of nuclear facilities, which
depends on the type of facilities (types
of radioactive contaminations, degree
of contamination), regulatory clearance
and removal of radionuclides.
Therefore, proper decommissioning
techniques should be selected considering
the characteristics of decommissioning
activities and contents of
each decommissioning stage [4].
When decommissioning techniques
(or potential decommissioning techniques)
are selected, consider the
following points.
pp
Safety,
pp
Efficiency,
pp
Cost-effectiveness,
pp
Waste minimization,
pp
Feasibility of industrialization.
The decommissioning operator
should identify the status of proven
decommissioning technologies and
potential decommissioning technologies,
and periodically review these
decommissioning technologies from
the viewpoint of technology availability.
Therefore, it is necessary to investigate
the optimal decommissioning
techniques from the above five
perspectives based on the time of
preparation of the preliminary DP,
and describe them in the preliminary
DP. And it is necessary to outline the
decommissioning execution plan
using these techniques.
3.10 Radioactive waste
management
In Korea, the decommissioning waste
management cost accounts for about
40% of total decommissioning cost.
Therefore, it is necessary to establish a
decommissioning waste management
plan and make every effort to minimize
the amount of radioactive waste
generated during the decommissioning
phase. To this end, decommissioning
waste management in the preliminary
DP is considered for the as
following points, and they should be
outlined in the preliminary DP [3]:
pp
Management plan of radioactive
waste generated during operation
of nuclear facilities including spent
fuel before entering decommissioning
activity.
pp
Review of decommissioning waste
management plan including sorting/disposal
method, recycling
method, volume reduction method
by cost/benefit analysis.
pp
Operation plan review of decommissioning
waste comprehensive
treatment facility.
pp
Estimation and confirmation of
total decommissioning wastes.
pp
Comprehensive plan for removal
and disposal of large-sized equipment.
The decommissioning waste management
plan is closely related to the
national waste management policy
and should therefore be taken into
account. The preliminary DP outlines
the radioactive waste management
based on the following technical
review:
pp
Waste classification.
pp
Evaluation of liquid/solid waste
treatment technology.
pp
Evaluation of waste characteristics
technology.
pp
Utilization and disposal plan of
clearance wastes.
pp
Management plan of non-radioactive
waste in the decommissioning
of nuclear facilities.
3.11 Environmental impact
assessment
The population exposure is assessed
in the radiological environmental
impact assessment due to the release
of radioactive materials to the environment
during the decommissioning
phase. In the assessment, it is necessary
to evaluate the environmental
impacts of decommissioning period
by using survey data of environmental
characteristics such as terrain and
DECOMMISSIONING AND WASTE MANAGEMENT 273
Decommissioning and Waste Management
Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi
atw Vol. 64 (2019) | Issue 5 ı May
DECOMMISSIONING AND WASTE MANAGEMENT 274
climate, radioactive material release
data etc., and then to establish countermeasures
to minimize the impact.
Even if counter measures are properly
established, the radiation surveillance
of the surrounding area should be
continuously carried out to confirm
the validity and sustainability of the
impact assessment to be performed
[3, 4].
The radiological impact assessment
plan for population needs a rough
description of the following points:
pp
Exposure scenarios with potential
exposure pathways.
pp
Population exposure evaluation
method during the normal operation.
pp
Population exposure evaluation
method during the accident.
pp
Plan to minimize radiological
impacts.
3.12 Fire protection
Since there are combustible materials
such as electric wires and PVC pipes in
nuclear facilities, there is a possibility
of a potential fire accident when
decommissioning as follows [6, 7];
pp
Fire risk due to electric short
circuit.
pp
Fire hazard when cutting with
oxygen-acetylene torch.
To minimize the likelihood of fire
accident during the decommissioning
phase, flammable materials should
not be stored in decommissioning
facilities unless stored in a refractory
installation. In order to prevent the
possibility of fire accident due to short
circuit, all existing power supply is cut
off and a separate external power
supply is used. Since additional
flammable and ignitable materials
can be used in the decommissioning
of nuclear facilities, the fire protection
plan applied to the operating nuclear
facility must be modified in consideration
of decommissioning
charac teristics.
Therefore, the preliminary DP
should outline the fire protection
plan for prevention, detection, and
evolution of fires that may occur during
the decommissioning process, taking
into consideration the characteristics
of the expected decommissioning
activities.
4 Conclusion remarks
The decommissioning plan (DP) is
divided into the preliminary DP
and the final DP according to the construction/operation
phase of the nuclear
facility in Korea. It is described in
detail from the preliminary DP to the
final DP. The most important factor in
preparing the DP is to make full use of
the design/construction/operation
data of the nuclear facilities.
Therefore, in this study, it is
reviewed the major safety considerations
such as safe dismantling activities
of nuclear facilities, dismantling
procedures and dismantling methods,
which is necessary for the preparation
of the DP through the review of local
and oversea decommissioning lessons
learned experience.
Since the preliminary DP must be
submitted at the time of applying for
the construction phase of the new
nuclear facilities, there is a limit to the
depth of the technical contents of each
item in comparison with the final DP.
Nonetheless, the preliminary DP
should include the expected decommissioning
strategy, the appropriateness
of decommissioning, securing
decommissioning resources, decommissioning
safety and radiation protection
plans, and the amount of
decommissioning waste generation.
Since the most important input to
prepare the DP is the design/construction/
operation data, these data are
carefully maintained over their lifetime
in accordance with the relevant
quality assurance procedures. Therefore,
it is necessary to describe the
management programs of these data
in the preliminary DP.
The safety consideration for the
preparation of the preliminary DP is
reviewed and its preparation guideline
is established. However, in order to
prepare a preliminary DP for existing
nuclear facilities in Korea, it is necessary
to draw up important factors for
enhancing decommis sioning safety
and efficiency by conducting a conceptual
decommis sioning design, when
prepare the DP. And it needs to know in
advance what the key design and operational
data related to these factors are.
For example, the database showing
the contamination information inside
the nuclear facility is a basic data for
evaluating the facility characteristics,
managing the radiation of the workers,
and evaluating the amount of
waste disposal. Therefore, it is necessary
to understand and supplement
the current status on the database in
the nuclear facilities. For all important
factors it is necessary to construct and
operate related database system to
manage them for decommissioning
activity from the design stage of
nuclear facilities.
Acknowledgments
This work was supported by the
Nuclear Safety Research Program
through the Korea Foundation of
Nuclear Safety (KoFONS), granted
financial resource from the Nuclear
Safety and Security Commission
( NSSC) (No. 1605008-0318-SB110),
and by the National Research Foundation
of Korea (NRF), granted financial
resource from the Ministry of
Science, ICT and Future Planning
(No. 2017M2A8A5015148 and No.
2016M2B2B1945086), Republic of
Korea.
References
1. NSSC Notice 2015-8 (2015), Standard Format and Content of
Decommissioning Plan for Nuclear Facilities, Korea Nuclear
Safety and Security Commission.
2. IAEA (2005), Standard Format and Content for Safety Related
Decommissioning Documents. IAEA Safety Reports Series No.
45
3. IAEA (2014), Decommissioning of Facilities “General Safety
Requirements”. IAEA Safety Standard Series No. GSR Part 6
4. IAEA (1999), Safety Guide on Decommissioning of Nuclear
Power and Research Reactors. Safety Standard Series No.
WS-G-2.1
5. EPRI (2001), Decommissioning Pre-Planning Manual.
1003025, Final Report
6. EPRI (2006), Decommissioning Planning, Experiences from
U.S. Utilities. 1013510, Final Report
7. GRS (2009), Guide to the Decommissioning, the Safe Enclosure
and the Dismantling of facilities or parts thereof as defined
in Section 7 of the Atomic Energy Act.
Authors
Byung-Sik Lee
1 Dankook University
119, Dandae-ro, Dongnam-gu,
Cheonan-si
Chungnam, 31116
Republic of Korea
Kyung-Woo Choi
2 Korea Institute of Nuclear Safety
62 Gwahak-ro, Yuseong-gu
Daejeon, 34142
Republic of Korea
Decommissioning and Waste Management
Guideline to Prepare a Preliminary Decommissioning Plan for Nuclear Facilities in Republic of Korea ı Byung-Sik Lee and Kyung-Woo Choi
atw Vol. 64 (2019) | Issue 5 ı May
PARCS-Subchanflow-TRANSURANUS
Multiphysics Coupling for High Fidelity
PWR Reactor Core Simulation:
Preliminary Results
Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan
1 Introduction Traditionally, reactor core simulators use simplified models to predict the fuel temperature
and thermal-hydraulic conditions in the core. To achieve better accuracy detailed models should be used to describe all
different physical processes (Multiphysics approach).
Simplified solvers for the fuel temperature
don’t capture the material
behavior under irradiation such as,
swelling, cracking, pellet-clad interaction,
etc. These phenomena affect
properties such as fuel thermal
conductivity, the fuel rod gap conductance
which has an impact in the
calculation of the fuel temperature. It
is known that the gap conductance
during reactor lifetime, depends
strongly on the irradiation and power
history as shown for instance in [Bielen
2015] thermal-hydraulic, and fuel
thermo-mechanical behavior of the
core components. Typically in current
generation reactor physics analysis
these three component areas are given
separate consideration or are at best
loosely coupled. Within this work, a
methodology for tightly coupling the
core neutronics code PARCS, thermalhydraulics
code PATHS, and fuel
rod simulator code FRAPCON was developed.
This coupled code package,
referred to as FRAPARCS, was applied
to two fuel depletion problems: a pin
cell and a 5x5 assembly mini-core.
The results of the depletion calculations
indicate that standalone PARCS
does not adequately capture the
evolution of fuel rod behavior which
influences the Doppler fuel temperature
used in cross section evaluation,
and as a result significant differences
in computed core performance can be
seen. In particular, the behavior of
the fuel-cladding gap and associated
temperature drop was found to be important.
FRAPARCS was then applied
to the pin cell calculation to evaluate
the uncertainty and sensitivity of the
nuclear performance of the core due
to the influence of fuel thermo-mechanical
models available for manipulation
in FRAPCON. A sensitivity study
was conducted to determine which
fuel models were influential on the
neutronics outputs; we determined
that fuel thermal conductivity, fuel
thermal expansion, cladding creep,
and fuel swelling had an important
influence on the core Doppler temperature
and reactivity. Additionally,
the heat transfer coefficient was found
to be important. Then, FRAPARCS
was integrated within the DAKOTA
uncertainty package. Two varieties
of sampling-based methods (Random
and Latin Hypercube Sampling).
There are only few publications about
mutiphysics simulations in the area of
fuel behavior studies [e.g. Magedanz
et al. 2015; Hales et al. 2014] and,
even less containing studies of reactor
core simulations [Holt et al. 2016; Holt
et al. 2014].
In an evolutionary approach, at the
Karlsruhe Institute for Technology
(KIT), the NRC’s neutronics core
simulator PARCS [Downar et al. 2012]
is being integrated with KIT’s subchannel
code SUBCHANFLOW (SCF)
[Imke, Sanchez, and Gomez-Torres
2010] and ITU’s fuel behavior code
TRANSURANUS (TU) [Lassman et al.
1992] into a single code, PARCS- SCF-
TU. For the SCF model, each fuel
assembly is represented as a single
channel and, analogously, a fuel
assembly in the TU model is represented
as an average fuel rod. One of
the objectives of this coupling is to
study the impact that high fidelity
solvers have on reactor core simulations.
Moreover, a main objective of
this coupling is the modeling of
the RIA transient scenario for high
burnup conditions. For this scenario,
the fuel properties and fuel temperature
modeling are of great importance
since current simulations don’t
account for details of the fuel rod
thermos-mechanics and subchannel
thermal hydraulics. The need of this
kind of calculations is an issue brought
up in recent years by the CSNI
( Committee on the Safety of Nuclear
Installations) Working Group on Fuel
Safety [OECD/NEA 2010] and a topic
under discussion for regulatory
authorities in many countries in
Europe.
In this paper, results for the OECD/
NEA and U.S. NRC PWR MOX/UO2
core transient benchmark core are
used to compare PARCS-SCF and
PARCS-SCF-TU with the PARCS
standalone solution. Preliminary results
are given, which show the impact
of modeling the fuel temperature
with a fuel behavior code considering
burnup.
2 Methodology
The neutronics core simulator PARCS,
the sub-channel solver SCF and the
fuel behavior solver TU have been
merged together into a single executable
PARCS-SCF-TU. In this Multiphysics
coupling, SCF replaces the
simple thermal hydraulic solver of
PARCS and TU replaces the fuel rod
solver of SCF to compute the fuel and
cladding temperature distributions.
The involved codes are written
in FORTRAN using different programming
styles and FORTRAN versions.
The internal coupling has been
developed in Microsoft Visual Studio
following its convention for solutions
and projects management. To maintain
an organized coding and avoid
undesired callings to duplicate subroutines
or variable names a modularized
approach is used. The original
codes are encapsulated in projects and
they only interact with each other via
a main project. Only in special circumstances
this rule isn’t followed.
New coding necessary for the communication
of the codes is modularized
in a project dedicated to the
coupling. All modifications to the
original source code were implemented
with pre-compiler directives.
This allows the user to compile either
only PARCS, or only PARCS-SCF or
PARCS-SCF-TU depending on the
used keywords.
275
RESEARCH AND INNOVATION
Research and Innovation
PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan
atw Vol. 64 (2019) | Issue 5 ı May
RESEARCH AND INNOVATION 276
In this coupling approach, the
activation of the different solvers e.g.
SCF’s TH model or TU’s fuel solver
can be activated by the analyst
independently. If SCF is activated, the
options belonging to SCF can be used
for the simulation. If the TU solver is
invoked, then the SCF solver must be
also used. In the reactor core model
for PARCS-SCF-TU, each fuel assembly
is represented by one neutronic node
in PARCS, by one average thermal
hydraulic channel in SCF and by one
average fuel rod in TU. The three
codes share the same axial discretization.
The original PARCS input deck
has been extended to control the
coupled simulation and the mapping
between the three different computational
domains.
PARCS and SCF are coupled for
steady state and transient simulations,
whereas TU is coupled to PARCS-SCF
for steady state simulations and the
transient coupling is under development.
The coupling was implemented
in such a way that the original inputs
of each code can be used with minimal
or no modifications. Only the PARCS’
input includes new key commands to
indicate that a coupled simulation will
be performed, to choose the parameters
for the coupling and to define
information about the mapping.
2.1 Coupling description
A loose, nodal level coupling using
the Operator-Splitting (OS) method
[Faragó 2008] was implemented. The
operator split method has the advantage
of allowing the use of legacy
codes with minor modifications to the
original source. This is a valuable
point since the validation of individual
code requires big effort, making
the reuse of validated tools a common
practice in the nuclear field.
The PARCS-SCF-TU’s iteration
scheme for the steady state coupling
is represented in Figure 1 and the
iteration process is described hereafter:
Initialization:
1) PARCS assumes flat TH conditions,
and predicts 3D power distribution
à pass information to TU.
2) SCF assumes initial flat power
distribution and compute TH
distribution à pass TH conditions
to TU.
3) TU compute fuel temperature
distribution (fuel and clad) for all
fuel assemblies à pass information
to SCF.
4) SCF computes TH conditions with
given clad temperature as B.C. à
pass TH information to TU.
5) Iteration loop consisting of step 3
and 4 until convergence of fuel
temperature and TH conditions is
achieved.
6) SCF/TU Converges à pass fuel and
coolant temperature and coolant
density to PARCS.
Then, the process continues with the
iteration loop after initialization:
1) PARCS computes power with updated
TH conditions: k pass power
to TU.
2) TU Computes fuel assemblies k
pass fuel temperature fields to SCF.
3) SCF computes TH conditions k
pass information to TU.
4) Iteration loop from step 2 to 3 until
convergence k when convergence
criteria is achieved, information is
passed to PARCS.
5) Finally, the iterative process iterates
from 1) until convergence criteria
are met.
The coupling scheme for PARC-SCF
transient calculation is shown in
Figure 2. An explicit coupling is used
in these calculations and its convergence
is achieved with small time
steps [Mylonakis et al. 2014] various
physical phenomena of different
nature are interrelated. Multi- physics
calculations that account for the interrelated
nature of the neu tronic and
thermal-hydraulic pheno mena are of
major importance in reactor safety and
design and as a result a special effort is
developed within the nuclear engineering
scientific community to improve
their efficiency and accuracy. In
addition, the strongly hetero geneous
nature of reactor cores involves phenomena
of different scales. The interaction
between different scales is a
specificity of these systems, since a
local per turbation might influence
the be havior of the whole core, or a
global perturbation can influence the
properties of the media on all scales.
As a consequence, multi- scale calculations
are required in order to take
the reactor core multi- scale nature
into account. It should be mentioned
that the multi-physics nature of a
nuclear reactor cannot be separated
from the multi-scale one in the
framework of computational nuclear
engineering as reactor design and
safety require computational tools
which are able to examine globally the
com plicated nature of a nuclear reactor
in various scales. In this work a
global overview of the current status
of two- physics (neutronic/thermalhydraulic.
The transient coupling has been
implemented for PARCS with SCF.
The coupling with TU is under development.
3 Verification
of the coupled tool
PARCS-SCF-TU is compiled into one
single executable and certain options
in PARCS input are enabled or disabled
to run either PARCS standalone,
PARCS-SCF or PARCS-SCF-TU.
During the verification, several
small tests cases were performed in a 3
by 3 fuel assemblies PWR minicore for
steady state (PARCS-SCF and PARCS-
SCF-TU) and transient (PARCS- SCF)
situations observing good agreement
between the codes. For the sake of
brevity only results for a more complex
reactor will be presented here. The
OECD/NEA and U.S. NRC PWR MOX/
UO2 core transient benchmark
[ Kozlowski, T and Downar 2003] was
used for verification purposes. The
cross sections used for the simulation
are directly taken from the benchmark.
Input models for SCF, PARCS
| | Fig. 1.
PARCS-SCF-TU coupling scheme for steady
state simulations.
| | Fig. 2.
Time flow scheme for PARCS-SCF coupling.
Research and Innovation
PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan
atw Vol. 64 (2019) | Issue 5 ı May
PARCS-SCF
PARCS- internal TH
Number of outer iterations 28 28
Time (sec) 124.1 18.8
Critical Boron concentration (ppm) 1693 1681
Tcenterline-max (°C) [local] 1406 1560
Tcool-outlet (°C) 325.81 325.84
Tcool-inlet (°C) 286.85
| | Tab. 1.
Results for HFP conditions with al CR out.
and TU are derived from the benchmark
specifications.
The purpose is to test the correctness
of the implementation by
comparing the results obtained with
PARCS standalone, PARCS-SCF and
PARCS-SCF-TU. The SCF model is as
similar as possible to the PARCS internal
thermal-hydraulics. The model of
TU corresponds to a fresh UO 2 fuel pin
with the geometry derived from the
benchmark specifications, being the
purpose of this to match the simplified
model of PARCS’ internal solver.
3.1 OECD/NEA and U.S. NRC
PWR MOX/UO2 Core
Transient Benchmark
description
The benchmark PWR reactor core
consist of 193 fuel assemblies
arranged in a Cartesian geometry. It’s
composed by UO 2 and MOX fuel types
with dif ferent enrichments, and seven
different burnup points. The necessary
specifications to generate the input
models are described in the
benchmark [Kozlowski, T and Downar
2003].
In the benchmark, burnup is
considered in the cross-section
generation but not in the material
properties of the fuel.
thermal-hydraulics to check the correct
implementation of SCF in the coupling.
When comparing local differences for
the power distribution, the maximum
local difference (node to node comparison)
is
atw Vol. 64 (2019) | Issue 5 ı May
RESEARCH AND INNOVATION 278
| | Fig. 4.
Power evolution for the OECD/NEA and U.S. NRC PWR MOX/UO2 core transient benchmark computed
with PARCS-SCF and compared against other benchmark participants.
The calls to TU’s solver increase
greatly the computational time. There
are 2 main reasons for this, the first is
that TU’s solver must read TU’s input
every time the solver is called which
generates a big overhead for TU’s
calculations. The second is that TU’s
solver is more time consuming than
the simplified solver of SCF for the
fuel temperature since it describes the
thermo-mechanics including fission
gas release in a more accurate manner
than SCF. TU solvers one FA at a time,
so a parallel implementation for TU
is being considered to speed up the
calculations.
3.3.1 PARCS-SCF-TU:
Burnup consideration
in fuel properties
One of the advantages of having
coupled TU with PARCS-SCF is the
possibility to simulate the burnup
dependent fuel material properties
and the behavior of irradiated fuel. In
the benchmark PWR core, the fuels
have 7 defined burnup points. These
burnups are considered in the crosssection
generation process, but they
are not considered in the material
properties (such as the gap conductance)
when computing the radial
fuel temperature (in an average pin).
A steady state calculation for the
benchmark PWR core was performed
with PARCS-SCF-TU for 2 cases: The
first case considering fresh uranium
in the TU model, the second case considering
the corresponding burnup
condition of each fuel in the TU
model. The rest of the parameters in
the model of PARCS, SCF and TU
remain the same.
Figure 6 shows a comparison of
the fuel centerline temperature for
calculations with PARCS-SCF-TU for
three different fuels with different
burnup. As it is expected the difference
between both solutions (with
and without BU considerations in
TU’s input model) grow higher as the
burnup goes up.
4 Discussion
In the comparison for the PARCS-SCF-
TU calculation with burnup considerations,
it is observed that there
is a considerable influence of the
burnup in the fuel temperature
distribution. Figure 6 shows that
the higher the burnup, the higher the
differences in the fuel temperature
when comparing to cases w/o burnup.
Differences for the fuel centerline
temperature rising up to 130 ºC when
comparing results considering the
burnup history of the fuels or not
doing so in TU input. These differences
show that there is a considerably
impact when having taken
into account fuel BU history in
material properties and suggest that
further analyses should be done in
this direction.
A good agreement has been found
in the steady state and transient
comparisons of PARCS-SCF against
PARCS standalone solution showing
a correct implementation of the
coupling. The comparison of the
PARCS- SCF results against the ones of
the benchmark participants shows a
good agreement.
Regarding the comparison of
PARCS-SCF against PARCS standalone
for the transient simulation a small
over peak can be observed in PARCS-
SCF which can be explained because
of the different models for fuel rod
properties. Whereas the peak time
and the width of the peak are the
same as expected since (as explained
by the adiabatic Nordheim-Fuchs
model) they depend on the inserted
a) PARCS-SCF axially integrated power at power peak time. b) PARCS-SCF vs PARCS standalone relative power
difference at power peak time.
| | Fig. 5.
UO2/MOX PWR Benchmark axially integrated power distribution - Comparison of PARCS-SCF vs PARCS standalone solutions.
Research and Innovation
PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan
atw Vol. 64 (2019) | Issue 5 ı May
| | Fig. 6.
Centerline fuel temperature. Results considering No Burnup (blue) vs considering Burnup (red)
at different burnup points.
| | Magedanz, J., M. Avramova, Y. Perin, and A.K. Velkov. 2015.
High-Fidelity Multi-Physics System TORT-TD/CTF/FRAPTRAN for
Light Water Reactor Analysis. Annals of Nuclear Energy 84.
Elsevier Ltd: 234–43. doi:10.1016/j.anucene.2015.01.033.
| | Mylonakis, A. G., M. Varvayanni, N. Catsaros, P. Savva, and D. G
E Grigoriadis. 2014. Multi-Physics and Multi-Scale Methods Used
in Nuclear Reactor Analysis. Annals of Nuclear Energy 72. Elsevier
Ltd: 104–19. doi:10.1016/j.anucene.2014.05.002.
| | OECD/NEA. 2010. Nuclear Fuel Behaviour during Reactivity
Initiated Accidents. Paris, France.
Authors
Joaquín R. Basualdo
Victor H. Sánchez
Robert Stieglitz
Karlsruhe Institute of Technology
Institute of Neutron Physics and
Reactor Technology
Herman-vom-Helmholtz-Platz-1
76344 Eggenstein-Leopoldshafen
Germany
Rafael Macián-Juan
Technische Universität München
Lehrstuhl für Nukleartechnik
Boltzmannstraße 15
85747 Garching bei München
Germany
RESEARCH AND INNOVATION 279
reactivity and the precursors constant
which are the same in both cases.
PARCS-SCF-TU results have been
compared against PARCS-SCF and
PARCS standalone using fresh fuel
condition in TU model. Local comparisons
for the fuel average, and fuel
centerline temperature, show a good
agreement between the solutions
confirming the correct implementation
of the coupling approach.
Finally, it should be noted that the
calculation time of PARCS-SCF-TU increased
considerably since the TUsolver
must be called as many time as
the number of fuel assemblies during
each SOR-iteration of SCF. This is
approximately 193 calls to the TUsolver
times approximately 10 to 15
SOR iterations per PARCS inner
iterations (~30). So far, no optimization
of the numerical methods
to accelerate convergence have been
implemented and implementations
like the predictor-corrector method
is in the plans for future improvements.
5 Conclusions and Outlook
The consideration of burnup history
in fuel properties in PARCS-SCF-
TU has shown significant differences
in fuel temperature prediction as
expected. The code-to-code comparison
demonstrated the correct implementation
of the coupling.
The implementation of a predictorcorrector
method to accelerate the
convergence on the fuel temperature,
along with a parallel implementation
are planned to be implemented for the
PARCS-SCF-TU code to speed up the
calculation. The development of
PARCS-SCF-TU for transient simulations
is underway and it will pave the
way for the analysis of RIA-scenarios
and high burnup fuels.
Acknowledgments
The authors acknowledge the support
of the Nuclear Safety Program of the
Karlsruhe Institute of Technology and
the support of the DAAD for the
founding on the PhD research of J.
Basualdo.
References
| | Bielen, Andrew Scott. 2015. Sensitivity and Uncertainty Analysis
of Multiphysics Nuclear Reactor Core Depletion. University of
Michigan.
| | Downar, Thomas, Yunlin Xu, Volkan Seker, and Nathan Hudson.
2012. PARCS v3.0 U.S. NRC Core Neutronics Simulator: Theory
Manual. Ann Arbor.
| | Faragó, István. 2008. A Modified Iterated Operator Splitting
Method. Applied Mathematical Modelling 32 (8): 1542–51.
doi:10.1016/j.apm.2007.04.018.
| | Hales, J.D., M.R. Tonks, F.N. Gleicher, B.W. Spencer, S.R.
Novascone, R.L. Williamson, G. Pastore, and D.M. Perez. 2014. Advanced
Multiphysics Coupling for LWR Fuel Performance Analysis.
Annals of Nuclear Energy 84. Elsevier Ltd: 98–110. doi:10.1016/j.
anucene.2014.11.003.
| | Holt, L., U. Rohde, S. Kliem, S. Baier, M. Seidl, P. Van Uffelen, and
R. Macián-Juan. 2016. Investigation of Feedback on Neutron
Kinetics and Thermal Hydraulics from Detailed Online Fuel
Behavior Modeling during a Boron Dilution Transient in a PWR
with the Two-Way Coupled Code System DYN3D-TRANSURANUS.
Nuclear Engineering and Design 297 (December 2015). Elsevier
B.V.: 32–43. doi:10.1016/j.nucengdes.2015.11.005.
| | Holt, L., U. Rohde, M. Seidl, A. Schubert, P. Van Uffelen, and R.
Macián-Juan. 2014. Development of a General Coupling Interface
for the Fuel Performance Code TRANSURANUS - Tested with the
Reactor Dynamics Code DYN3D. Annals of Nuclear Energy 84.
Elsevier Ltd: 73–85. doi:10.1016/j.anucene.2014.10.040.
| | Imke, Uwe, Victor Sanchez, and Armando Miguel Gomez-Torres.
2010. SUBCHANFLOW: A New Empirical Knowledge Based
Subchannel Code. In KTG. Berlin.
| | Kozlowski, T, and T.J. Downar. 2003. OECD/NEA and US NRC
PWR MOX/UO2 Core Transient Benchmark. Working Party of the
Physics of Plutonium Fuels and Innovative Fuel Cycles, OECD/NEA
Nuclear Science Committee, no. December: 1–18. http://scholar.
google.com/scholar?hl=en&btnG=Search&q=intitle:OECD/
NEA+AND+U.S.+NRC+PWR+MOX/UO2+CORE+TRANSIENT+
BENCHMARK#0.
| | Lassman, K., C. O. Carroll, J. van de Laar, and C. Ott. 1992.
TRANSURANUS: A Fuel Analysis Code Ready for Use. Journal of
Nuclear Materials, 295–302.
Research and Innovation
PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results ı Joaquín R. Basualdo, Victor H. Sánchez, Robert Stieglitz and Rafael Macián-Juan
atw Vol. 64 (2019) | Issue 5 ı May
Special Topic | A Journey Through 50 Years AMNT
280
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT
Am 7. und 8. Mai
2019 begehen wir
das 50. Jubiläum
unserer Jahrestagung
Kerntechnik. Zu
diesem Anlass öffnen
wir unser atw-Archiv
für Sie und präsentieren
Ihnen in jeder
Ausgabe einen
historischen Artikel.
Aus der Ansprache
des Bundesministers
für Umwelt,
Naturschutz und
Reaktorsicherheit,
Prof. Dr. K. Töpfer,
an die Teilnehmer
der JK’88 am 17. Mai
1988 in Travemünde.
Ja zur Kernenergienutzung in
internationaler Sicherheitspartnerschaft
Klaus Töpfer
| | Eröffnungsveranstaltung 1988.
Auch und gerade unter dem Eindruck der Unzulänglichkeiten und Verfehlungen, die die öffentliche Diskussion um
die Kernenergie bei uns in den vergangenen Monaten bestimmt haben, ist es meine feste Überzeugung, daß auch der
Sachverstand der Unternehmen, ihr Eigeninteresse und ihre hohe Verantwortung für einen sicheren und umweltverträglichen
Betrieb wesentlicher Teil des Kontrollgefüges in einer hochtechnisierten, modernen Industrie ist. Dieses
Interesse und die Verantwortlichkeit müssen allerdings nachdrücklich wahrgenommenund kontinuierlich unter Beweis
gestellt werden. In der internationalen Diskussion nach Tschernobyl ist für dieses ständige Bemühen um die verantwortliche
Gewährleistung von Sicherheit, für die Selbstverpflichtung auf exzellente Leistung und auf eine dynamische
Weiterentwicklung von Sicherheit und Risikovorsorge der Begriff Sicherheitskultur als Ethos für die in der Kerntechnik
Tätigen geprägt worden. Ich glaube, daß dies sehr genau das trifft, was wir für jeden sichtbar zukünftig unter Beweis
stellen müssen.
Eine Technologie mit dem Anspruch Zukunftstechnologie
kann und darf nicht gegen die Bevölkerung durchgesetzt
werden. Wenn Vertrauen und Zuversicht in eine erfolgreiche
Kerntechnik zum Nutzen von Mensch und Umwelt
wiederhergestellt werden sollen, dann muß rückhaltlos
aufgeklärt und offen informiert werden, dann muß die
Gegenwart neu geordnet und der Weg in die Zukunft neu
bestimmt werden und überall wo nötig, muß auch tief
geschnitten werden. Genau das hat die Bundesregierung
in den zurückliegenden zwei Jahren klar und unmißverständlich
getan, und sie wird es auch weiterhin tun.
Mit der Neustrukturierung der Kernenergiewirtschaft
verbinde ich folgende Zielsetzungen:
pp
Schaffung klar abgegrenzter Aufgabenbereiche;
pp
eindeutige Zuordnung wirtschaftlicher Verantwortlichkeiten;
pp
nachhaltige Verbesserung der Kontrollmöglichkeiten
für die Exekutive;
pp
Transparenz und Nachvollziehbarkeit des Aufgabenverständnisses
und der Aufgabenwahrnehmung für
Politik und Öffentlichkeit.
Um dies zu erreichen, werden die Verflechtungen in der
deutschen Kernenergiewirtschaft deutlich verringert.
Querverbindungen in sensiblen Bereichen müssen ausgeschlossen
werden, damit sich ähnliche Vorfälle in Zukunft
nicht wiederholen können.
Im Mittelpunkt des Konzeptes, das ich mit den Verantwortlichen
der deutschen Wirtschaft abgestimmt habe
und das auch von den Genehmigungs- und Aufsichtsbehörden
der Länder mitgetragen wird, steht eine klare
Trennung der unternehmerischen Verantwortung in
folgenden Bereichen:
1. Transport von radioaktiven Abfällen und Brennelementen;
2. Konditionierung und Zwischenlagerung schwach- und
mittelradioaktiver Abfälle;
3. Herstellung von Kernbrennstoffen;
4. Betrieb von Kernkraftwerken und Wiederaufarbeitung
von Kernbrennstoffen.
Für die Beförderung radioaktiver Abfälle und Brennelemente
ist die Zusammenfassung der Dienstleistungen
unter der unternehmerischen Führung der Deutschen
Bundesbahn vorgesehen.
Der Bereich der Konditionierung schwach- und mittelradioaktiver
Abfälle wird einem Unternehmen übertragen.
Die Verantwortung jedes einzelnen Kernkraftwerksbetreibers
nach § 9 a AtG als Abfallverursacher und
Ablieferungspflichtiger ans Endlager und die Gesamtverantwortung
aller Betreiber bleibt bei dieser Lösung
unberührt.
Auch der Bereich der Zwischenlagerung radioaktiver
Abfälle wird- wie die Konditionierung-einem Unter nehmen
zugeordnet.
Die Antwort auf erkannte Schwachstellen und Risiken
und möglichen negativen Folgewirkungen von Technik ist
nicht der Verzicht auf den technologischen Fortschritt, sondern
ist die ständige Suche nach der besseren, sichereren
Technik, ist eine ständige weitere Optimierung von Umweltvorsorge,
durch Risikovorsorge und durch Zukunftsvorsorge.
Die Pflicht zur bestmöglichen Vorsorge für Bevölkerung
und Umwelt bedeutet aber, daß man sich auf dieses
Präventivkonzept allein nicht beschränken darf. Solange
schwere Reaktorunfälle, wie Kernschmelzen, mit einer Freisetzung
größerer Mengen radioaktiver Stoffe in die Umwelt
nicht völlig ausgeschlossen werden können, muß auch für
Special Topic | A Journey Through 50 Years AMNT
Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft ı Klaus Töpfer
atw Vol. 64 (2019) | Issue 5 ı May
281
| | Blick ins Auditorium in Travemünde. | | Ansprache des Bundesministers für Umwelt, Naturschutz
und Reaktorsicherheit, Prof. Dr. K. Töpfer.
diesen Fall Vorsorge getroffen werden. Staatlich geförderte
Forschung und Entwicklung hat in diesem Bereich zahlreiche
Möglichkeiten eröffnet. Mir geht es darum, bei den
heutigen Kernkraftwerken über die getroffene Schadensvorsorge
hinaus zu erreichen, daß die letzte entscheidende
Barriere für die Zurückhaltung radioaktiver Stoffe von der
Umwelt, nämlich der Sicherheitsbehälter, auch bei Belastungen
infolge schwerer Reaktorstörfälle, insbesondere
Kernschmelzen, in seiner Wirksamkeit weitgehend erhalten
werden kann. Unsere Kernkraftwerke verfügen hier über
technische Potentiale, die erschlossen werden können, wie
es z. B. mit der kontrollierten, gefilterten Druckentlastung
bereits geschehen ist. Die Vorsorge ist hier noch weiter zu
optimieren, z. B. was die Kontrolle des Wasserstoff problems
angeht, das durch den Bericht des Senators Rausch für das
französische Parlament besondere Aktualität bekommen
hat. Durch die Inertisierung bei Siedewasserreaktoren wird
diesem Problem dort Rechnung getragen; das Prüfprogramm
der RSK vom 21. Oktober 1986 sieht hierzu auch
die Prüfung von Maßnahmen bei Druckwasserreaktoren
vor. Mit Vor schlägen für Maßnahmen des anlageninternen
Notfallschutzes ist in absehbarer Zeit zu rechnen. Anerkennung
gebührt der Kernenergiewirtschaft, die sich – in
bisher nicht gekannter Offenheit – dieser Herausforderung
gestellt hat und in eigenen Arbeiten und Veröffent lichungen
ihre Vorstellungen dargelegt hat und Maß nahmen durchgeführt
hat.
Harrisburg und Tschernobyl haben gezeigt, daß die
kernenergienutzenden Staaten in eine Risikogemeinschaft
eingebunden sind. Der sicherheitstechnische Mißerfolg
des einen ist zugleich auch Rückschlag für alle anderen.
Dies gilt selbst dann, wenn bei einem Reaktorunfall
gravierende Auswirkungen auf die Umgebung verhindert
werden können. Daher brauchen wir eine internationale
Sicherheitspartnerschaft.
Die Bundesrepublik Deutschland hat sich an dem
Prozeß verstärkter internationaler Kooperation maßgeblich
beteiligt. Ausgehend von der lAEO-Sonderkonferenz
im September 1986 wurde viel erreicht. Für
unser grundlegendes Ziel, international eine Gewährleistung
der kerntechnischen Sicherheit auf möglichst
einheitlichem hohen Niveau zu erreichen, wurden wichtige
erste Schritte geleistet. Die sicherheitstech nischen Regeln
der internationalen Atomenergieagentur (NUSSAG) sind
in ihren grundlegenden Anforderungen überarbeitet worden.
Die Bundesregierung erwartet nun, daß sie vom
IAEO-Gouverneursrat verabschiedet und dann auch von
allen IAEO-Mitgliedsstaaten voll berücksichtigt werden.
Die Bundesregierung wird in Fortführung ihrer
Anstrengungen auf diesem Gebiet und gemeinsam mit
OECD und IAEO im November 1988 in München ein internationales
Symposium über die regulatorische Praxis und
über die sicherheitstechnischen Regeln veranstalten.
Zentrale Aufgabe für unsere gegenwärtige und
zukünftige Energiepolitik ist es, einen breitgetragenen
Konsens wiederzugewinnen. Energiepolitik muß schon
aus Gründen der Entwicklungs- und Einführungszeiten
und auch der Kosten auf größere Zeiträume angelegt sein.
Auf grundlegende Entscheidungen muß dauerhaft Verlaß
sein. Daher brauchen wir für die weitere Um strukturierung
unserer Energieversorgung zu einem ver sorgungssicheren,
umweltverträglichen und risikoarmen System wieder
einen breitgetragenen energiepolitischen Grundkonsens.
Die gemeinsame Verantwortung für die Kernenergieentscheidungen
in den 60er und 70er Jahren verpflichtet
alle Beteiligten auch heute noch. Das Denken in Pro und
Contra muß einer differenzierten Betrachtungsweise Platz
machen. Kernenergie wird auf absehbare Zeit weltweit
weiter genutzt werden. Eine Verständigung über konkret
zu stellende Anforderungen an Sicherheit und Risikovorsorge
und über das Vorgehen bei ihren praktischen
Verwirklichungen ist unerläßlicher Bestandteil verantwortungsvoller
Politik.
Ich bin überzeugt, daß wir immer wieder versuchen
müssen, auch mit denjenigen, die der Kerntechnik distanziert
oder ablehnend gegenüberstehen, ein gemeinsames
Gespräch zu führen. Mit dem, was ich Ihnen heute darlegen
konnte, haben wir in wichtigen Bereichen der Kernenergie
nutzung ein Vorsorgeniveau erreicht, das deutlich
über dem liegt, was in den 70er Jahren von damals
politischen Verantwortlichen als ausreichend betrachtet
wurde. Auch dies ist Anlaß und Grundlage genug, um sich
um eine Erneuerung des Grundkonsenses zu bemühen.
Auch wer die Kernenergie nur für eine vorübergehende
Zeit nutzen will, ist in der Pflicht, sich zur Sicherheitsgewährleistung
und zur Entsorgung zu erklären.
Ein weiteres Ergebnis der Bemühungen der Bundesregierung
um mehr internationale Sicherheitszusammenarbeit
in der Kerntechnik sind die „grundlegenden Sicherheitsprinzipien
für Kernkraftwerke“, die jetzt von einem
Expertenteam der Internationalen Atomenergie Organisation
vorgelegt worden sind. Mit diesen Grundsätzen wird
aus Sicht führender Experten der kerntechnischen Sicherheit
über das Regelwerk hinausgehend dargelegt, wie
Schadensvorsorge erfolgreich praktiziert werden kann.
Diese Sicherheitsprinzipien sollten zum Ausgangspunkt
einer rückhaltlosen Diskussion um die Zukunft
der Sicherheit der Kernkraftwerke in unserem Lande
werden, in die wir auch unbeschadet früherer Erfahrungen
diejenigen einbeziehen sollten, die der Kernenergie aus
konkreten sicherheitstechnischen oder Risikogründen
ablehnend gegenüberstehen. Ich bin überzeugt, daß wir
mit dieser Diskussion und der praktischen Umsetzung
ihrer Ergebnisse nicht nur in unserem Lande, sondern
generell einen wichtigen Beitrag zur Sicherung unserer
zukünftigen Entwicklung leisten können.
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT
Special Topic | A Journey Through 50 Years AMNT
Ja zur Kernenergienutzung in internationaler Sicherheitspartnerschaft ı Klaus Töpfer
atw Vol. 64 (2019) | Issue 5 ı May
282
KTG INSIDE
Inside
| | „Studierenden und Absolventen zuhören und deren Wünsche, Ziele und
Zukunftsvisionen stärker hörbar zu machen, sind für mich zentrale
Anliegen.“ Prof. Dr.-Ing. Jörg Starflinger, Mitglied im Vorstand der KTG und
Ansprechpartner für die Junge Generation.
Liebe Mitgliederinnen und Mitglieder der KTG,
als neues Vorstandsmitglied möchte ich in der Rubrik
„KTG inside“ über meine Motivation für die Kerntechnik
berichten. Als Universitätsprofessor liegen mir die Ausbildung
und die Entwicklung der Karriere junger Menschen
sehr am Herzen. Ich bin daher sehr gerne Ansprechpartner
für die „Junge Generation“ im KTG-Vorstand. Studierenden
und Absolventen zuhören und deren Wünsche, Ziele
und Zukunftsvisionen stärker hörbar zu machen, sind für
mich zentrale Anliegen. Schließlich gehört den jungen
Menschen die Zukunft – auch in der Kerntechnik … oder
vielleicht doch nicht?
Vor knapp vier Jahren landete eine E-Mail mit einer
Umfrage in meinem Postfach. Mal wieder eine dieser
Spam-Emails, von denen täglich Dutzende das Postfach
zumüllen. Diese war jedoch anders: eine Umfrage im
Rahmen eines BMBF geförderten Projektes zur Erfassung
sogenannter „kleiner Fächer“ an Universitäten. Kleine
Fächer haben einen eigenen Studiengang, ein eigenes
Curriculum, aber wenig Doktoranden, wenig Studierende,
wenig Professorinnen und Professoren. Ich fragte mich:
„Sind wir in der Kerntechnik bereits so weit, dass wir als
‚kleines Fach‘ gelten? Warum werde ich angeschrieben?“
Nach meinen Studierendenzahlen gelte ich sicher als
„ kleines Fach“. Die Zahl der Bachelor-Studierenden sinkt
derzeit massiv. Influencer auf Instagram scheint attraktiver
zu sein als ein Maschinenbaustudium. Die Anzahl
der absolvierten Prüfungen in meiner Kern technik vertiefungsrichtung
im Masterstudium sinkt kontinuierlich.
Die Doktorandenzahlen sind hingegen erfreulicherweise
nicht so stark zurückgegangen, dank erfolgreicher Einwerbung
von Projekten bei der EU und bei nationalen
Förderinstitutionen; hier sind besonders das BMWi
und BMBF genannt. Professorenstellen werden derzeit
gestrichen, ganze Fachbereiche fallen weg: Typischer
Universitätskannibalismus. Vor diesem Hintergrund habe
ich mich damals entschlossen, bei der Umfrage mitzumachen
und habe meine Daten eingegeben.
Ich engagiere mich im European Nuclear Education
Network (ENEN), in dem sich über 50 europäische
Universitäten, Forschungszentren und auch einige Unternehmen
im Bereich „Education & Training“ zusammengeschlossen
haben. Ich habe das Thema „sinkende
Studierendenzahlen“ dort thematisiert und erfahren, dass
dies kein rein deutscher Trend ist. Auch in anderen
Ländern, die nicht einmal einen Kernenergieausstieg
vollziehen, sondern Laufzeitverlängerungen genehmigt
bekommen haben, sinkt die Zahl der Studierenden. ENEN
hat deshalb Programme aufgelegt, um das kerntechnische
Studium international attraktiver zu gestalten. ENEN
unterstützt beispielsweise die Mobilität von Studierenden
und Doktoranden zu Konferenzen oder übernimmt Reisekosten
bei Auslandsaufenthalten. Die Zusammenarbeit
mit Schulen soll intensiviert werden, um dort Themen wie
Strahlung und Kerntechnik zu vermitteln.
Wie könnte diesem negativen Trend der Studierendenzahlen
an den Universitäten entgegengewirkt werden?
Zum einen könnten nationale Programme im Bereich
der Ausbildung und Studierendenförderung aufgelegt
werden. Zu diesen Bottom-up-Ansätzen, die bereits
bei ENEN einige Vorbilder haben, ist aber auch ein Top-
Down-Ansatz erforderlich. Wir sollten eine „Strategie
zur Kompetenzentwicklung in der Kerntechnik 2050“ erarbeiten.
In diesem Prozess sollten nicht nur Univer sitäten,
sondern auch Unternehmen, die sich proaktiv der Entwicklung
neuer Technologien in der Kerntechnik widmen,
beteiligt sein. Weitere „Stakeholder“, wie Vertreter von
Bund und Ländern, letztere sind bekanntlich für Universitäten
zuständig, sind unbedingt einzubinden. Auch Behörden,
die sich zukünftig mit Zwischenlagerung und Endlagerung
beschäftigen, gehören an einen runden Tisch, der
diesen Top-Dow-Ansatz erarbeitet. Ein Endlager haben
wir erst 2070 – vielleicht. Was müssen wir dann noch
wissen (Education) und können (Training)? Von diesem
Top-Down-Ansatz muss das klare zukunfts gerichtete
Signal ausgehen, dass wir auch weiterhin junge motivierte
Menschen brauchen, die von der Kerntechnik fasziniert
sind und in unserer Branche arbeiten wollen.
Was passiert, wenn uns das nicht gelingt? Es entsteht
eine demographische Lücke. Mit etwa 2 bis 2,5 Jahren
zeitlicher Verzögerung (durchschnittliche Dauer eines
Masterstudiums) werden dann Unternehmen, Gutachter
und auch Behörden feststellen, dass der Markt leer ist. Das
aktuellste Beispiel scheint gerade der Strahlenschutz zu
sein, wo es kaum geeignet qualifizierte Personen auf dem
Arbeitsmarkt gibt. Unter der Annahme, dass ohne Verzögerung
gehandelt wird, werden dann wiederum 2 bis
2,5 Jahre vergehen, bis neue hochqualifizierte Personen
auf den Arbeitsmarkt kommen. Die entstehende Lücke
ist vier bis fünf Jahre lang. Wenn nun noch Lehrstühle
wegfallen, entsteht eine noch längere Lücke (bestimmt 15
Jahre). Hinzu kommt, dass im europäischen Umfeld
Kraftwerke gebaut (Finnland, Ungarn, Frankreich …) und
bei einer Nichtbesetzung der Lehrstühle und bei zu
geringem Nachwuchs auch hier die Expertise verloren
geht. Gerade vor dem Hintergrund der Langfristigkeit
der Aufgaben in unserer Branche muss auch die strategisch
ausgerichtete Langfristigkeit der kerntechnischen
Ausbildung sicher gestellt werden. Dieses gilt selbstverständlich
auch für die berufliche Ausbildung, die
nicht minder wichtig ist, für die ich allerdings keine
Zahlen habe.
Ich halte die KTG und ihre Mitglieder, die Unternehmen,
Forschungseinrichtungen und Universitäten
repräsentieren, für das richtige Forum, von dem Impulse
zu einer „Strategie zur Kompetenzentwicklung in der
Kerntechnik 2050“ ausgehen kann. Nutzen wir doch diese
Chance durch Gespräche, beispielsweise auf dem 50 th
AMNT in Berlin.
KTG Inside
atw Vol. 64 (2019) | Issue 5 ı May
Übrigens habe ich noch einmal auf die Webseite der
„kleinen Fächer“ geschaut. Die Kerntechnik hat es nicht
geschafft, dort erwähnt zu werden. Lassen Sie uns
bitte zielgerichtet daran arbeiten, dass dies auch nicht
geschieht.
Ihr Jörg Starflinger
Mitglied im Vorstand der KTG
Professor an der Universität Stuttgart,
Institut für Kernenergetik und Energiesysteme (IKE)
283
Sektion NORD
Vortragsankündigung
Windenergie in Deutschland und Europa
Status, Potenziale und Herausforderungen in der Grund versorgung mit Strom
KTG INSIDE
Thomas Linnemann
am Dienstag, den 14. Mai 2019 um 17:30 Uhr,
PreussenElektra GmbH,
Tresckowstraße 5, Hannover
Die kumulierte Nennleistung der Windenergieanlagen in
Deutschland hat sich in den letzten 18 Jahren bis Ende
2017 auf 56.000 Megawatt (MW) mehr als verzwölffacht.
Zusammen mit weiteren europäischen 17 Ländern erhöhte
sich die kumulierte Nennleistung in Europa zeitgleich
sogar um das 18-fache auf fast 170.000 MW. Damit verfügt
allein Deutschland über gut ein Drittel der europaweiten
Windenergieanlagenleistung.
Für eine zuverlässige Stromversorgung sind Leistung
und Energie bedarfsgerecht bereitzustellen, eine Fähigkeit,
über die vom Windangebot abhängige Windenergieanlagen
eingeschränkt verfügen. Der Vortrag
fasst Betriebserfahrungen zur Windstromproduktion in
Deutschland seit dem Jahr 2010 und in weiteren 17
Ländern Europas seit 2015 zusammen und geht unter
anderem der Frage nach, ob in einem deutschland- oder
europaweit verstärkten Netzverbund gemäß dem Motto
„irgendwo weht immer Wind“ ausreichende gegenseitige
Ausgleichsmöglichkeiten bestehen.
Thomas Linnemann studierte Maschinenbau mit der
Vertiefungsrichtung Energie-, Anlagen- und Umwelttechnik
an der Ruhr-Universität Bochum und war dort
nach Abschluss seines Diploms bis 2000 als Projektingenieur
in der europäischen Reaktorsicherheitsforschung
bei Prof. Herrmann Unger tätig. Anschließend
arbeitete er bis 2011 als Redakteur für das Energie-
Fachmagazin BWK des Springer-VDI-Verlags in Düsseldorf
und ist seit März 2011 als Referent des VGB PowerTech e.V.
in Essen tätig.
Im Anschluss an den etwa einstündigen Vortrag wird es
ausreichend Gelegenheit für weitere Diskussionen geben.
Interessierte KTG-Mitglieder sowie Freunde und
Bekannte sind herzlich eingeladen.
Dr.-Ing. Hans-Georg Willschütz
Sprecher KTG-Sektion NORD
Thomas Fröhmel
Stellv. Sprecher der KTG-Sektion NORD
pp
PS: Wir bitten um eine namentliche Anmeldung
der Teilnehmer unter 0511 439-2184 oder
an thomas.froehmel@preussenelektra.de
KTG Inside
Verantwortlich
für den Inhalt:
Die Autoren.
Lektorat:
Natalija Cobanov,
Kerntechnische
Gesellschaft e. V.
(KTG)
Robert-Koch-Platz 4
10115 Berlin
T: +49 30 498555-50
F: +49 30 498555-51
E-Mail:
natalija.cobanov@
ktg.org
www.ktg.org
Herzlichen Glückwunsch!
Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag
und wünscht ihnen weiterhin alles Gute!
Juni 2019
40 Jahre | 1979
19. Dr. Gerben Dirksen, Zirndorf
60 Jahre | 1959
6. Gabriele Bertram, Bonn
70 Jahre | 1949
28. Wolfgang Schwarz, Brackenheim
75 Jahre | 1944
8. Jürgen Fabian, Büsingen am Hochrhein
24. Hans-Jürgen Schlesinger, Essen
77 Jahre | 1942
10. Ing. Wolfgang Feltes,
Bergisch Gladbach
78 Jahre | 1941
15. Dr. Frank Depisch, Erlangen
79 Jahre | 1940
4. Dipl.-Phys. Hans-Peter Dyck, Forchheim
13. Dr. Heinz Hoffmann, Einhausen
80 Jahre | 1939
6. Dr. Peter Drehmann, Kornwestheim
10. Dipl.-Ing. Reinhard Seepolt, Hamburg
14. Dr. Gustav Meyer-Kretschmer, Jülich
23. Dr. Rolf Krieg, Karlsruhe
81 Jahre |1938
25. Dipl.-Ing. Horst Roepenack, Bruchköbel
82 Jahre | 1937
10. Dipl.-Phys. Reinhard Wolf,
Grosskrotzenburg
83 Jahre | 1936
12. Dipl.-Ing. Heinz Malmström, Ahaus
30. Kai-Michael Pülschen, Erlangen
84 Jahre | 1935
8. Ing. Karl Rudolph, Wettingen/CH
8. Dr. Ing. Heinrich Löffler, Wennigsen
22. Dipl.-Ing. Johann Pisecker, Tulln/AU
23. Dipl.-Ing. Werner Schultz, Hirschberg
87 Jahre | 1932
28. Hans Schuster, Aachen
93 Jahre | 1926
27. Dipl.-Ing. Heinz-Arnold Leising,
Bergisch Gladbach
Wenn Sie künftig eine
Erwähnung Ihres
Geburtstages in der
atw wünschen, teilen
Sie dies bitte der KTG-
Geschäftsstelle mit.
12. März 2019 ı
Prof. Dr.
Albert Ziegler
Karlsbad
Die KTG verliert in
ihm ein langjähriges
aktives Mitglied,
dem sie ein ehrendes
Andenken bewahren
wird. Seiner Familie
gilt unsere Anteilnahme
KTG Inside
atw Vol. 64 (2019) | Issue 5 ı May
284
STATISTICS
Nuclear Power Plants:
2018 atw Compact Statistics
Editorial
At the end of the last year 2018 (key date: 31 December 2018), nuclear power plants were operating in 31 countries
worldwide (cf. Table 1). In total, 451 nuclear power plants were operating on the key date. This means that the number
increased by 2 units compared to the previous year’s number on 31 December 2017 (449), which means the highest
number of units since the first start of an commercial nuclear power plant in 1956, due to first criticalities on the one
hand and shut-downs on the other. The gross power output of these nuclear power plant units amounted to around
425 GWe*, the net power output was approximately 401 GWe. This means that the available gross capacity and the
available net capacity also increased by about 4 GW compared with the previous year's numbers. Additionally this is
also the highest capacity since the first grid connection of a commercial nuclear power plant.
Eight (8) nuclear power plants started (nuclear) operation 1
in two countries in 2018. These units reached initial
criticality (C), were synchronized with the grid (G) and
started commercial operation (O) for the first time in
2018 (cf. Table 1): China: Haiyang 1 (1250 MW, PWR),
Sanmen 1 (1251 MW, PWR), Sanmen 2 (1251 MW, PWR),
Taishan 1 (1750 MW, PWR), Tianwan 4 (1060 MW, PWR),
Yangjiang 5 (1086 MW, PWR); Russia: Leningrad 2-1
(1187 MW, PWR). One unit, Haiyang 2 (1250 MW, PWR),
reached first criticality and was synchronized with the grid
in 2018 (CG), commercial operation (O) started for the
first time in 2019.
For the fourth time since the accidents in Fukushima
( Japan) four (4)units in Japan, Genkai 3 (1180 MW,
PWR); Genkai 4 (1180 MW, PWR); Ohi 3 (1180 MW,
PWR); Ohi 4 (1180 MW, PWR) resumed operation in 2018
in Japan after a long-term shut-down.
Six (6) nuclear power plant units were definitively
per manently shut-down worldwide in four (4) countries in
2018. In Japan the Ikata 2 (566 MW, PWR) and the Ohi 1
(1175 MW, PWR) and Ohi 2 (1175 MW, PWR) plant ceased
operation. In Russia the RBMK-type unit Leningrad 1
(1000 MW, LWGR) was shut-down. There are ten units of
this reactor type remaining in operation. In Taiwan, China
the Chin Shan 1 (636 MW, BWR) plant and in the USA the
Oyster Creek (595 MW, BWR) reactor were shut down.
Five new projects (two more than in the previous year
2017) started with the first concrete and further build
activities. In Bangladesh one additional new build project
started with Rooppur 2 (1200 MW), Korea started the new
build of the sixth unit at Shin Kori (1400 MW) and in
Russia one additional project started with the Kursk II-1
project (1255 MW). At the Kursk site four RMBK reactors
are in operation which should be replaced by modern
GEN III+ PWR technology units. The first nuclear power
project of Turkey started at the Akkuyu site. Two 1200 MW
(gross) VVER-PWR are planned. The first unit should start
operation in 2023. After more than 10 years of preparation
the British nuclear new build programme started with
the official project start of Hinkley Point C-1 (1720 MW,
PWR).
In total 53 reactors are under construction worldwide
in 18 countries. The total gross capacity of this projects is
about 58 GW*, the net capacity 55 GW, in other words the
number was lower (3 untis) compared to the previous year
number due to the eight (8) operation starts and five (5)
new build projects. Compared with the millennium change
1999/2000 this means that the number of projects under
construction has risen, when 30 nuclear power plants were
under construction worldwide.
Active construction projects (numbers in brackets)
listed are: Argentina (1), Bangladesh (2), Belarus (2),
Brazil (1), China (11), Finland (1), France (1), India (7),
Japan (2), Republic of Korea (5), Pakistan (2), Russia (6),
Slovak Republic (2), Taiwan (2), Turkey (1), the USA (2),
the United Arab Emirates (4) and the United Kingdom (1).
In addition, there are about 150 nuclear power plant
units in 25 countries worldwide that are in an advanced
planning stage, others are in the pre-planning phase
( status: 31 December 2018).
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Argentina
Atucha 1 p D2O-PWR 357 341 1974
Embalse p Candu 648 600 1983
Atucha 2 p D2O-PWR 745 692 2014
CAREM25 P PWR 29 25 (2020)
Armenia
Metsamor 2 p VVER-PWR 408 376 1980
Belarus
Belarusian 1 P VVER-PWR 1 194 1 109 (2019)
Belarusian 2 P VVER-PWR 1 194 1 109 (2021)
Bangladesh
Rooppur 1 P VVER-PWR 1 200 1 080 (2022)
Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2023)
Belgium
Doel 1 p PWR 454 433 1975
Doel 2 p PWR 454 433 1975
Doel 3 p PWR 1 056 1 006 1982
Doel 4 p PWR 1 090 1 039 1985
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Tihange 1 p PWR 1 009 962 1975
Tihange 2 p PWR 1 055 1 008 1983
Tihange 3 p PWR 1 094 1 046 1985
Brazil
Angra 1 p PWR 640 609 1984
Angra 2 p PWR 1 350 1 275 1999
Angra 3 P PWR 1 300 1 245 (2021)
Bulgarien
Kozloduj 5 p VVER-PWR 1 000 953 1987
Kozloduj 6 p VVER-PWR 1 000 953 1989
Canada
Bruce 1 p Candu 824 772 1977
Bruce 2 p Candu 786 734 1977
Bruce 3 p Candu 805 730 1977
Bruce 4 p Candu 805 750 1979
Bruce 5 p Candu 872 817 1985
Bruce 6 p Candu 891 822 1984
Bruce 7 p Candu 872 817 1986
Statistics
Nuclear Power Plants: 2018 atw Compact Statistics
atw Vol. 64 (2019) | Issue 5 ı May
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Bruce 8 p Candu 845 817 1987
Darlington 1 p Candu 934 878 1993
Darlington 2 p Candu 934 878 1990
Darlington 3 p Candu 934 878 1993
Darlington 4 p Candu 934 878 1993
Pickering 1 p Candu 542 515 1971
Pickering 4 p Candu 542 515 1973
Pickering 5 p Candu 540 516 1983
Pickering 6 p Candu 540 516 1984
Pickering 7 p Candu 540 516 1985
Pickering 8 p Candu 540 516 1986
Point Lepreau p Candu 705 660 1983
China
CEFR p SNR 25 20 2011
Changjiang 1 p PWR 650 610 2015
Changjiang 2 p PWR 650 601 2016
Fangchenggang 1 p PWR 1 080 1 000 2015
Fangchenggang 2 p PWR 1 088 1 000 2016
Fangjiashan 1 p PWR 1 080 1 000 2014
Fangjiashan 2 p PWR 1 080 1 000 2014
Fuqing 1 p PWR 1 087 1 000 2014
Fuqing 2 p PWR 1 087 1 000 2015
Fuqing 3 p PWR 1 089 1 000 2016
Fuqing 4 p PWR 1 089 1 089 2017
Guandong 1 p PWR 984 944 1993
Guandong 2 p PWR 984 944 1994
Haiyang 1 [1] p PWR 1 180 1 100 2018
Haiyang 2 [1] p PWR 1 180 1 100 2018
Hongyanhe 1 p PWR 1 080 1 000 2013
Hongyanhe 2 p PWR 1 080 1 000 2013
Hongyanhe 3 p PWR 1 080 1 000 2014
Hongyanhe 4 p PWR 1 119 1 000 2016
Lingao 1 p PWR 990 938 2002
Lingao 2 p PWR 990 938 2002
Lingao II-1 p PWR 1 087 1 000 2010
Lingao II-2 p PWR 1 087 1 000 2011
Ningde 1 p PWR 1 087 1 000 2012
Ningde 2 p PWR 1 080 1 000 2014
Ningde 3 p PWR 1 080 1 000 2015
Ningde 4 p PWR 1 089 1 018 2016
Qinshan 1 p PWR 310 288 1992
Qinshan II-1 p PWR 650 610 2002
Qinshan II-2 p PWR 650 610 2004
Qinshan II-3 p PWR 642 610 2010
Qinshan II-4 p PWR 642 610 2011
Qinshan III-1 p Candu 728 665 2002
Qinshan III-2 p Candu 728 665 2003
Sanmen 1 [1] p PWR 1 180 1 100 2018
Sanmen 2 [1] p PWR 1 180 1 100 2018
Taishan 1 [1] p PWR 1 750 1 660 2018
Tianwan 1 p VVER-PWR 1 060 990 2005
Tianwan 2 p VVER-PWR 1 060 990 2007
Tianwan 3 p VVER-PWR 1 126 1 060 2017
Tianwan 4 [1] p VVER-PWR 1 126 1 060 2018
Yangjiang 1 p PWR 1 080 1 000 2013
Yangjiang 2 p PWR 1 080 1 000 2015
Yangjiang 3 p PWR 1 080 1 000 2015
Yangjiang 4 p PWR 1 086 1 000 2016
Yangjiang 5 [1] p PWR 1 080 1 000 2018
Fangchenggang 3 P PWR 1 080 1 000 (2020)
Fangchenggang 4 P PWR 1 080 1 000 (2022)
Fuqing 5 P PWR 1 087 1 000 (2020)
Fuqing 6 P PWR 1 087 1 000 (2020)
Hongyanhe 5 P PWR 1 080 1 000 (2020)
Hongyanhe 6 P PWR 1 080 1 000 (2021)
Shidaowan 1 P HTGR 211 200 (2020)
Taishan 2 P PWR 1 750 1 660 (2019)
Tianwan 5 P VVER-PWR 1 118 1 000 (2020)
Tianwan 6 P VVER-PWR 1 118 1 000 (2022)
Yangjiang 6 P PWR 1 080 1 000 (2019)
Czech Republic
Dukovany 1 p VVER-PWR 500 473 1985
Dukovany 2 p VVER-PWR 500 473 1986
Dukovany 3 p VVER-PWR 500 473 1987
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Dukovany 4 p VVER-PWR 500 473 1987
Temelín 1 p VVER-PWR 1 077 1 027 1999
Temelín 2 p VVER-PWR 1 056 1 006 2002
Finland
Loviisa 1 p VVER-PWR 520 496 1977
Loviisa 2 p VVER-PWR 520 496 1981
Olkiluoto 1 p BWR 890 860 1979
Olkiluoto 2 p BWR 890 860 1982
Olkiluoto 3 P PWR 1 600 1 510 (2019)
France
Belleville 1 p PWR 1 363 1 310 1987
Belleville 2 p PWR 1 363 1 310 1988
Blayais 1 p PWR 951 910 1981
Blayais 2 p PWR 951 910 1982
Blayais 3 p PWR 951 910 1983
Blayais 4 p PWR 951 910 1983
Bugey 2 p PWR 945 910 1978
Bugey 3 p PWR 945 910 1978
Bugey 4 p PWR 917 880 1979
Bugey 5 p PWR 917 880 1979
Cattenom 1 p PWR 1 362 1 300 1986
Cattenom 2 p PWR 1 362 1 300 1987
Cattenom 3 p PWR 1 362 1 300 1990
Cattenom 4 p PWR 1 362 1 300 1991
Chinon B-1 p PWR 954 905 1982
Chinon B-2 p PWR 954 905 1983
Chinon B-3 p PWR 954 905 1986
Chinon B-4 p PWR 954 905 1987
Chooz B-1 p PWR 1 560 1 500 1996
Chooz B-2 p PWR 1 560 1 500 1997
Civaux 1 p PWR 1 561 1 495 1997
Civaux 2 p PWR 1 561 1 495 1999
Cruas Meysse 1 p PWR 956 915 1983
Cruas Meysse 2 p PWR 956 915 1984
Cruas Meysse 3 p PWR 956 915 1984
Cruas Meysse 4 p PWR 956 915 1984
Dampierre 1 p PWR 937 890 1980
Dampierre 2 p PWR 937 890 1980
Dampierre 3 p PWR 937 890 1981
Dampierre 4 p PWR 937 890 1981
Fessenheim 1 p PWR 920 880 1977
Fessenheim 2 p PWR 920 880 1977
Flamanville 1 p PWR 1 382 1 330 1985
Flamanville 2 p PWR 1 382 1 330 1986
Golfech 1 p PWR 1 363 1 310 1990
Golfech 2 p PWR 1 363 1 310 1993
Gravelines B-1 p PWR 951 910 1980
Gravelines B-2 p PWR 951 910 1980
Gravelines B-3 p PWR 951 910 1980
Gravelines B-4 p PWR 951 910 1981
Gravelines C-5 p PWR 951 910 1984
Gravelines C-6 p PWR 951 910 1985
Nogent 1 p PWR 1 363 1 310 1987
Nogent 2 p PWR 1 363 1 310 1988
Paluel 1 p PWR 1 382 1 330 1984
Paluel 2 p PWR 1 382 1 330 1984
Paluel 3 p PWR 1 382 1 330 1985
Paluel 4 p PWR 1 382 1 330 1986
Penly 1 p PWR 1 382 1 330 1990
Penly 2 p PWR 1 382 1 330 1992
St. Alban 1 p PWR 1 381 1 335 1986
St. Alban 2 p PWR 1 381 1 335 1987
St. Laurent B-1 p PWR 956 915 1981
St. Laurent B-2 p PWR 956 915 1981
Tricastin 1 p PWR 955 915 1980
Tricastin 2 p PWR 955 915 1980
Tricastin 3 p PWR 955 915 1980
Tricastin 4 p PWR 955 915 1981
Flamanville 3 P PWR 1 600 1 510 (2020)
Germany
Brokdorf p PWR 1 480 1 410 1986
Emsland p PWR 1 406 1 335 1988
Grohnde p PWR 1 430 1 360 1985
Gundremmingen C p BWR 1 344 1 288 1985
285
STATISTICS
Statistics
Nuclear Power Plants: 2018 atw Compact Statistics
atw Vol. 64 (2019) | Issue 5 ı May
286
STATISTICS
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Isar 2 p PWR 1 485 1 410 1988
Neckarwestheim II p PWR 1 400 1 310 1989
Philippsburg 2 p PWR 1 468 1 402 1985
Hungary
Paks 1 p VVER-PWR 500 470 1983
Paks 2 p VVER-PWR 500 473 1984
Paks 3 p VVER-PWR 500 473 1986
Paks 4 p VVER-PWR 500 473 1987
India
Kaiga 1 p Candu (IND) 220 202 2001
Kaiga 2 p Candu (IND) 220 202 1999
Kaiga 3 p Candu (IND) 220 202 2007
Kaiga 4 p Candu (IND) 220 202 2010
Kakrapar 1 p Candu (IND) 220 202 1993
Kakrapar 2 p Candu (IND) 220 202 1995
Kudankulam 1 p VVER-PWR 1 000 917 2013
Kudankulam 2 p VVER-PWR 1 000 917 2016
Madras Kalpakkam 1 p Candu (IND) 220 205 1984
Madras Kalpakkam 2 p Candu (IND) 220 205 1986
Narora 1 p Candu (IND) 220 202 1992
Narora 2 p Candu (IND) 220 202 1991
Rajasthan 1 p Candu 100 90 1973
Rajasthan 2 p Candu 200 187 1981
Rajasthan 3 p Candu (IND) 220 202 1999
Rajasthan 4 p Candu (IND) 220 202 2000
Rajasthan 5 p Candu (IND) 220 202 2009
Rajasthan 6 p Candu (IND) 220 202 2010
Tarapur 1 p BWR 160 150 1969
Tarapur 2 p BWR 160 150 1969
Tarapur 3 p Candu (IND) 540 490 2006
Tarapur 4 p Candu (IND) 540 490 2005
Kakrapar 3 P Candu (IND) 700 640 (2019)
Kakrapar 4 P Candu (IND) 700 640 (2020)
PFBR (Kalpakkam) P SNR 500 470 (2020)
Kudankulam 3 P VVER-PWR 1 000 917 (2023)
Kudankulam 4 P VVER-PWR 1 000 917 (2023)
Rajasthan 7 P Candu (IND) 700 630 (2020)
Rajasthan 8 P Candu (IND) 700 630 (2021)
Iran
Bushehr 1 p VVER-PWR 1 000 953 2011
Japan
Fukushima Daini 1 p BWR 1 100 1 067 1982
Fukushima Daini 2 p BWR 1 100 1 067 1984
Fukushima Daini 3 p BWR 1 100 1 067 1985
Fukushima Daini 4 p BWR 1 100 1 067 1987
Genkai 2 p PWR 559 529 1981
Genkai 3 [4] p PWR 1 180 1 127 1994
Genkai 4 [4] p PWR 1 180 1 127 1997
Hamaoka 3 p BWR 1 100 1 056 1987
Hamaoka 4 p BWR 1 137 1 092 1993
Hamaoka 5 p BWR 1 267 1 216 2004
Higashidori 1 p BWR 1 100 1 067 2005
Ikata 3 p PWR 890 846 1994
Kashiwazaki Kariwa 1 p BWR 1 100 1 067 1985
Kashiwazaki Kariwa 2 p BWR 1 100 1 067 1990
Kashiwazaki Kariwa 3 p BWR 1 100 1 067 1993
Kashiwazaki Kariwa 4 p BWR 1 100 1 067 1994
Kashiwazaki Kariwa 5 p BWR 1 100 1 067 1990
Kashiwazaki Kariwa 6 p BWR 1 356 1 315 1996
Kashiwazaki Kariwa 7 p BWR 1 356 1 315 1997
Mihama 3 p PWR 826 781 1976
Ohi 3 [4] p PWR 1 180 1 127 1991
Ohi 4 [4] p PWR 1 180 1 127 1993
Onagawa 1 p BWR 524 496 1984
Onagawa 2 p BWR 825 796 1995
Onagawa 3 p BWR 825 798 2002
Sendai 1 p PWR 890 846 1984
Sendai 2 p PWR 890 846 1985
Shika 1 p BWR 540 505 1993
Shika 2 p BWR 1 358 1 304 2005
Shimane 2 p BWR 820 791 1989
Takahama 1 p PWR 826 780 1974
Takahama 2 p PWR 826 780 1975
Takahama 3 p PWR 870 830 1985
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Takahama 4 p PWR 870 830 1985
Tokai 2 p BWR 1 100 1 067 1978
Tomari 1 p PWR 579 550 1989
Tomari 2 p PWR 579 550 1991
Tomari 3 p PWR 912 866 2009
Tsuruga 2 p PWR 1 160 1 115 1986
Shimane 3 P BWR 1 375 1 325 (2022)
Ohma P BWR 1 385 1 325 (2023)
Ikata 2 j PWR 566 538 1981
Ohi 1 j PWR 1 175 1 120 1979
Ohi 2 j PWR 1 175 1 120 1979
Korea (Republic)
Kori 2 p PWR 676 639 1983
Kori 3 p PWR 1 042 1 003 1985
Kori 4 p PWR 1 041 1 001 1986
Shin Kori 1 p PWR 1 048 996 2010
Shin Kori 2 p PWR 1 045 993 2011
Shin Kori 3 p PWR 1 400 1 340 2016
Hanul 1 p PWR 1 003 960 1988
Hanul 2 p PWR 1 008 962 1989
Hanul 3 p PWR 1 050 994 1998
Hanul 4 p PWR 1 053 998 1998
Hanul 5 p PWR 1 051 996 2003
Hanul 6 p PWR 1 051 996 2004
Wolsong 1 p Candu 687 645 1983
Wolsong 2 p Candu 678 653 1997
Wolsong 3 p Candu 698 675 1999
Wolsong 4 p Candu 703 679 1999
Shin Wolsong 1 p PWR 1 043 991 2012
Shin Wolsong 2 p PWR 1 000 960 2015
Hanbit 1 p PWR 996 953 1986
Hanbit 2 p PWR 993 945 1987
Hanbit 3 p PWR 1 050 997 1995
Hanbit 4 p PWR 1 049 997 1996
Hanbit 5 p PWR 1 053 997 2001
Hanbit 6 p PWR 1 052 995 2002
Shin Kori 4 P PWR 1 400 1 340 (2019)
Shin Kori 5 P PWR 1 400 1 340 (2022)
Shin Kori 6 [2] P PWR 1 400 1 340 (2024)
Shin Hanul 1 P PWR 1 400 1 340 (2020)
Shin Hanul 2 P PWR 1 400 1 340 (2022)
Mexico
Laguna Verde 1 p BWR 820 765 1990
Laguna Verde 2 p BWR 820 765 1995
Netherlands
Borssele p PWR 515 482 1973
Pakistan
Kanupp 1 p Candu 137 909 1972
Chasnupp 1 p PWR 325 300 2000
Chasnupp 2 p PWR 325 300 2011
Chasnupp 3 p PWR 340 315 2016
Chasnupp 4 p PWR 340 315 2017
Kanupp 2 P PWR 1 100 1 014 (2021)
Kanupp 3 P PWR 1 100 1 014 (2022)
Romania
Cernavoda 1 p Candu 706 650 1996
Cernavoda 2 p Candu 706 655 2007
Russia
Balakovo 1 p VVER-PWR 1 000 953 1986
Balakovo 2 p VVER-PWR 1 000 953 1988
Balakovo 3 p VVER-PWR 1 000 953 1990
Balakovo 4 p VVER-PWR 1 000 953 1993
Beloyarsky 3 p FBR 600 560 1981
Beloyarsky 4 p FBR 800 750 2014
Bilibino 1 p LWGR 12 11 1974
Bilibino 2 p LWGR 12 11 1975
Bilibino 3 p LWGR 12 11 1976
Bilibino 4 p LWGR 12 11 1977
Kalinin 1 p VVER-PWR 1 000 953 1985
Kalinin 2 p VVER-PWR 1 000 953 1987
Kalinin 3 p VVER-PWR 1 000 953 2004
Kalinin 4 p VVER-PWR 1 000 953 2011
Kola 1 p VVER-PWR 440 411 1973
Kola 2 p VVER-PWR 440 411 1975
Statistics
Nuclear Power Plants: 2018 atw Compact Statistics
atw Vol. 64 (2019) | Issue 5 ı May
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Kola 3 p VVER-PWR 440 411 1982
Kola 4 p VVER-PWR 440 411 1984
Kursk 1 p LWGR 1 000 925 1977
Kursk 2 p LWGR 1 000 925 1979
Kursk 3 p LWGR 1 000 925 1984
Kursk 4 p LWGR 1 000 925 1986
Leningrad 2 p LWGR 1 000 925 1976
Leningrad 3 p LWGR 1 000 925 1980
Leningrad 4 p LWGR 1 000 925 1981
Leningrad II-1 [1] p VVER-PWR 1 187 1 085 2018
Novovoronezh 4 p VVER-PWR 417 385 1973
Novovoronezh 5 p VVER-PWR 1 000 953 1981
Novovoronezh II-1 p VVER-PWR 1 000 955 2016
Rostov 1 p VVER-PWR 1 000 953 2001
Rostov 2 p VVER-PWR 1 000 953 2010
Rostov 3 p VVER-PWR 1 000 950 2014
Rostov 4 p VVER-PWR 1 030 980 2017
Smolensk 1 p LWGR 1 000 925 1983
Smolensk 2 p LWGR 1 000 925 1985
Smolensk 3 p LWGR 1 000 925 1990
Akademik Lomonosov I P PWR 40 35 (2019)
Akademik Lomonosov I P PWR 40 35 (2019)
Baltic 1 (Kaliningrad) P VVER-PWR 1 170 1 080 (2020)
Kursk II-1 [2] P VVER-PWR 1 255 1 175 (2024)
Leningrad II-2 P VVER-PWR 1 170 1 085 (2021)
Novovoronezh II-2 P VVER-PWR 1 000 955 (2019)
Leningrad 1 [6] j LWGR 1 000 925 1974
Slovakia
Bohunice 3 p VVER-PWR 505 472 1985
Bohunice 4 p VVER-PWR 505 472 1985
Mochovce 1 p VVER-PWR 470 436 1998
Mochovce 2 p VVER-PWR 470 436 1999
Mochovce 3 P VVER-PWR 440 408 (2020)
Mochovce 4 P VVER-PWR 440 408 (2020)
Slovenia
Krsko p PWR 727 696 1983
South Africa
Koeberg 1 p PWR 970 930 1984
Koeberg 2 p PWR 970 930 1985
Spain
Almaraz 1 p PWR 1 049 1 011 1981
Almaraz 2 p PWR 1 044 1 006 1983
Ascó 1 p PWR 1 033 995 1984
Ascó 2 p PWR 1 027 997 1985
Cofrentes p BWR 1 092 1 064 1985
Trillo 1 p PWR 1 066 1 002 1988
Vandellos 2 p PWR 1 087 1 045 1987
Sweden
Forsmark 1 p BWR 1 022 984 1980
Forsmark 2 p BWR 1 158 1 120 1981
Forsmark 3 p BWR 1 212 1 170 1985
Oskarshamn 2 p BWR 661 638 1975
Oskarshamn 3 p BWR 1 450 1 400 1985
Ringhals 1 p BWR 910 878 1976
Ringhals 2 p PWR 847 807 1975
Ringhals 3 p PWR 1 117 1 064 1981
Ringhals 4 p PWR 990 940 1983
Switzerland
Beznau 1 p PWR 380 365 1969
Beznau 2 p PWR 380 365 1972
Gösgen p PWR 1 060 1 010 1979
Leibstadt p BWR 1 275 1 220 1984
Mühleberg p BWR 390 373 1973
Taiwan, China
Chin Shan 2 p BWR 636 604 1979
Kuosheng 1 p BWR 985 948 1981
Kuosheng 2 p BWR 985 948 1983
Maanshan 1 p PWR 951 890 1984
Maanshan 2 p PWR 951 890 1985
Lungmen 1 P BWR 1 356 1 315 (2020)
Lungmen 2 P BWR 1 356 1 315 (2021)
Chin Shan 1 [6] j BWR 636 604 1978
Turkey
Akkuyu 1 [2] P VVER-PWR 1 200 1 114 (2023)
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
United Arab Emirates
Barakah 1 P PWR 1 400 1 340 (2018)
Barakah 2 P PWR 1 400 1 340 (2019)
Barakah 3 P PWR 1 400 1 340 (2020)
Barakah 4 P PWR 1 400 1 340 (2021)
United Kingdom
Dungeness B-1 p AGR 615 520 1985
Dungeness B-2 p AGR 615 520 1986
Hartlepool-1 p AGR 655 595 1984
Hartlepool-2 p AGR 655 585 1985
Heysham I-1 p AGR 625 585 1984
Heysham I-2 p AGR 625 575 1985
Heysham II-1 p AGR 682 595 1988
Heysham II-2 p AGR 682 595 1989
Hinkley Point B-1 p AGR 655 610 1976
Hinkley Point B-2 p AGR 655 610 1977
Hunterston B-1 p AGR 644 460 1976
Hunterston B-2 p AGR 644 430 1977
Sizewell B p PWR 1 250 1 191 1995
Torness Point 1 p AGR 682 595 1988
Torness Point 2 p AGR 682 595 1989
Hinkley Point C-1 [2] P PWR 1 720 1 630 (2025)
Ukraine
Khmelnitski 1 p VVER-PWR 1 000 950 1985
Khmelnitski 2 p VVER-PWR 1 000 950 2004
Rovno 1 p VVER-PWR 402 363 1981
Rovno 2 p VVER-PWR 416 377 1982
Rovno 3 p VVER-PWR 1 000 950 1987
Rovno 4 p VVER-PWR 1 000 950 2004
Zaporozhe 1 p VVER-PWR 1 000 950 1985
Zaporozhe 2 p VVER-PWR 1 000 950 1985
Zaporozhe 3 p VVER-PWR 1 000 950 1987
Zaporozhe 4 p VVER-PWR 1 000 950 1988
Zaporozhe 5 p VVER-PWR 1 000 950 1988
Zaporozhe 6 p VVER-PWR 1 000 950 1989
South Ukraine 1 p VVER-PWR 1 000 950 1983
South Ukraine 2 p VVER-PWR 1 000 950 1985
South Ukraine 3 p VVER-PWR 1 000 950 1989
USA
Arkansas Nuclear One 1 p PWR 969 903 1974
Arkansas Nuclear One 2 p PWR 1 006 943 1980
Beaver Valley 1 p PWR 955 923 1976
Beaver Valley 2 p PWR 957 923 1987
Braidwood 1 p PWR 1 289 1 225 1988
Braidwood 2 p PWR 1 289 1 225 1988
Browns Ferry 1 p BWR 1 200 1 152 1974
Browns Ferry 2 p BWR 1 193 1 152 1975
Browns Ferry 3 p BWR 1 232 1 190 1977
Brunswick 1 p BWR 1 074 1 002 1977
Brunswick 2 p BWR 1 075 1 002 1975
Byron 1 p PWR 1 307 1 225 1985
Byron 2 p PWR 1 304 1 225 1987
Callaway p PWR 1 316 1 236 1985
Calvert Cliffs 1 p PWR 935 918 1975
Calvert Cliffs 2 p PWR 939 911 1977
Catawba 1 p PWR 1 286 1 205 1985
Catawba 2 p PWR 1 286 1 205 1986
Clinton 1 p BWR 1 175 1 138 1987
Comanche Peak 1 p PWR 1 283 1 215 1990
Comanche Peak 2 p PWR 1 283 1 215 1993
Donald Cook 1 p PWR 1 266 1 152 1975
Donald Cook 2 p PWR 1 210 1 133 1978
Columbia (WNP 2) p BWR 1 244 1 200 1984
Cooper p BWR 844 801 1974
Davis Besse 1 p PWR 971 925 1978
Diablo Canyon 1 p PWR 1 236 1 159 1985
Diablo Canyon 2 p PWR 1 246 1 164 1985
Dresden 2 p BWR 1 057 1 009 1970
Dresden 3 p BWR 1 057 1 009 1971
Duane Arnold p BWR 737 680 1975
Farley 1 p PWR 933 888 1977
Farley 2 p PWR 934 888 1981
Fermi 2 p BWR 1 317 1 217 1988
FitzPatrick p BWR 918 882 1975
287
STATISTICS
Statistics
Nuclear Power Plants: 2018 atw Compact Statistics
atw Vol. 64 (2019) | Issue 5 ı May
288
NEWS
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
Ginna p PWR 713 614 1970
Grand Gulf 1 p BWR 1 516 1 440 1985
Hatch 1 p BWR 891 857 1974
Hatch 2 p BWR 905 865 1979
Hope Creek 1 p BWR 1 360 1 291 1986
Indian Point 2 p PWR 1 348 1 299 1974
Indian Point 3 p PWR 1 051 1 012 1976
La Salle 1 p BWR 1 242 1 170 1984
La Salle 2 p BWR 1 238 1 170 1984
Limerick 1 p BWR 1 203 1 139 1986
Limerick 2 p BWR 1 199 1 139 1990
McGuire 1 p PWR 1 358 1 220 1981
McGuire 2 p PWR 1 358 1 220 1984
Millstone 2 p PWR 946 91 0 1975
Millstone 3 p PWR 1 308 1 253 1986
Monticello p BWR 734 685 1971
Nine Mile Point 1 p BWR 671 642 1969
Nine Mile Point 2 p BWR 1 302 1 259 1988
North Anna 1 p PWR 1 035 980 1978
North Anna 2 p PWR 1 033 980 1980
Oconee 1 p PWR 955 887 1973
Oconee 2 p PWR 955 887 1974
Oconee 3 p PWR 961 893 1974
Palisades p PWR 870 81 2 1971
Palo Verde 1 p PWR 1 528 1 403 1986
Palo Verde 2 p PWR 1 524 1 403 1988
Palo Verde 3 p PWR 1 524 1 403 1986
Peach Bottom 2 p BWR 1 233 1 1 60 1974
Peach Bottom 3 p BWR 1 233 1 1 60 1974
Perry 1 p BWR 1 397 1 31 2 1987
Pilgrim p BWR 71 2 670 1972
Point Beach 1 p PWR 696 643 1970
Point Beach 2 p PWR 696 643 1972
Prairie Island 1 p PWR 642 593 1973
Prairie Island 2 p PWR 641 593 1974
Quad Cities 1 p BWR 1 061 1 009 1973
Quad Cities 2 p BWR 1 061 1 009 1973
RiverBend 1 p BWR 1 073 1 036 1986
Robinson 2 p PWR 855 769 1971
Salem 1 p PWR 1 276 1 1 70 1977
Salem 2 p PWR 1 303 1 1 70 1981
Seabrook 1 p PWR 1 330 1 242 1990
Sequoyah 1 p PWR 1 259 1 221 1981
Sequoyah 2 p PWR 1 279 1 221 1982
Shearon Harris 1 p PWR 983 951 1987
South Texas 1 p PWR 1 41 0 1 354 1988
Country Location/
Station name
Status Reactor
type
Capacity
gross
[MW]
Capacity
net
[MW]
1 st
Criticality
[Year]
South Texas 2 p PWR 1 41 0 1 354 1989
St. Lucie 1 p PWR 1 1 22 1 080 1976
St. Lucie 2 p PWR 1 1 35 1 080 1983
Virgil C. Summer p PWR 1 071 1 030 1984
Surry 1 p PWR 900 848 1972
Surry 2 p PWR 900 848 1973
Susquehanna 1 p BWR 1 374 1 298 1983
Susquehanna 2 p BWR 1 374 1 298 1985
Three Mile Island 1 p PWR 1 021 976 1974
Turkey Point 3 p PWR 906 877 1972
Turkey Point 4 p PWR 800 760 1973
Vogtle 1 p PWR 1 223 1 1 60 1987
Vogtle 2 p PWR 1 226 1 1 60 1989
Waterford 3 p PWR 1 250 1 200 1985
Watts Bar 1 p PWR 1 370 1 270 1996
Watts Bar 2 p PWR 1 240 1 180 2016
Wolf Creek p PWR 1 351 1 268 1984
Vogtle 3 P PWR 1 080 1 000 (2021)
Vogtle 4 P PWR 1 080 1 000 (2022)
Oyster Creek [6] j BWR 595 550 1969
1) Start of nuclear operation (first criticality: C, first grid connection: G, commercial
operation: O): 8 units in 2 countries in 2018: China Haiyang 1 (1250 MW, PWR,
CGO), Haiyang 2 (1250 MW, PWR, CG, O in 2019), Sanmen 1 (1251 MW, PWR,
CGO), Sanmen 2 (1251 MW, PWR, CGO), Taishan 1 (1750 MW, PWR, CGO),
Tianwan 4 (1060 MW, PWR, CGO), Yangjiang 5 (1086 MW, PWR, CGO), Russia:
Leningrad 2-1 (1187 MW, PWR, CGO), Rostov 4 (1030 MW, PWR, CGO). Tianwan 3
(1060 MW, PWR, O in 2019).
2) Start of construction (first concrete), 5 units 5 countries in 2018: Bangladesh:
Rooppur 2 (1200 MW, VVER-PWR); Korea: Shin Kori 6 (1400 MW, PWR); Russia:
Kursk 2-1 (1255 MW, VVER-PWR); Turkey: Akkuyu 1 (1200 MW, VVER-PWR);
United Kingdom: Hinkley Point C-1 (1720 MW, PWR).
3) Project under construction (finally) cancelled: none.
4) Resumed operation: 4 units in 1 country in 2018: Japan: Genkai 3 (1180 MW,
PWR); Genkai 4 (1180 MW, PWR); Ohi 3 (1180 MW, PWR); Ohi 4 (1180 MW, PWR).
5) Nuclear power plant taken in long-term shutdown: none.
6) Nuclear power plants permanently shutdown: 6 units in 4 countries in 2018: Japan:
Ikata 2 (566 MW, PWR); Ohi 1 (1175 MW, PWR); Ohi 2 (1175 MW, PWR); Russia:
Leningrad 1 (1000 MW, LWGR); Taiwan: China, Chin Shan 1 (636 MW, BWR); USA:
Oyster Creek (595 MW, BWR).
(All capacity data in MWe gross)
AGR: Advanced Gas-cooled Reactor, BWR: Boiling water reactor, Candu: CANada
Deuterium Uranium reactor (IND: Indian type), D2O-PWR: heavy water moderated,
pressurised water reactor, PWR: pressurised water reactor, GGR: gas-graphite
reactor, LWGR/GLWR: light water cooled graphite moderated reactor (Russian type
RBMK), FBWR: advanced boiling water reactor, FBR: fast breeder reactor
| | Tab. 1.
Nuclear power plant units worldwide on 31.12.2018 in operation (p), under construction (P), in lay-up operation/long-term shutdown (s) or permanently shut-down in 2018 (j)
[Sources: Operators, IAEO]. All information and data refer to the year 2018. Data have been updated with reference to the sources
Top
IEA: Nuclear generation
reached Pre-Fukushima levels
in 2018
(nucnet) Global generation from
nuclear energy reached pre- Fukushima
levels in 2018, mainly as a result of new
additions in China and the restart of
four reactors in Japan, the International
Energy Agency has said.
In its Global Energy And CO 2
Status Report, published on 26 March,
the Paris-based agency said nuclear
generation increased by 3.3%, or
90 TWh, and nuclear plants worldwide
met 9% of a 4% global increase
in electricity demand.
Production in Switzerland, Taiwan,
Pakistan and Sweden also increased.
Generation fell in South Korea, because
of new maintenance regulations,
and in Belgium, because of shutdowns
caused by safety-related concerns.
According to statistics in the report
nuclear generated 2,724 TWh of
electricity in 2018 representing a 10%
global share of electricity generation.
In 2000 its global share was 17%, the
report said.
Increased generation from nuclear
power plants also reduced emissions,
averting nearly 60 million tonnes of
CO 2 emissions
Global electricity demand rose by
4% in 2018, nearly twice as fast as
overall energy demand, and at its fastest
pace since 2010, the agency said.
Together, renewables and nuclear
power met most of the increase in
power demand. However, generation
from coal- and gas-fired power plants
increased considerably, driving up CO 2
emissions from the sector by 2.5%.
China and the US, the world’s two
largest power markets, accounted for
70% of global demand growth for
electricity. In China, electricity demand
increased by 8.5%, a notable
increase compared with recent years.
This was led by the industrial sector,
including iron, steel and other metals,
cement and construction, as well as
higher demand for cooling.
News
atw Vol. 64 (2019) | Issue 5 ı May
Energy consumption worldwide
grew by 2.3% in 2018, nearly twice
the average rate of growth since 2010,
driven by a robust global economy
and higher heating and cooling needs
in some parts of the world.
The biggest gains came from natural
gas, which emerged as the fuel of
choice last year, accounting for nearly
45% of the increase in total energy
demand. Demand for all fuels rose,
with fossil fuels meeting nearly 70% of
the growth for the second year running.
The Global Energy And CO 2 Status
Report is online:
https://bit.ly/2GS2NWV
| | www.iea.org
FORATOM highlights need for
investment in all low-carbon
technologies to meet climate
challenges
(foratom) The world is facing a major
challenge – in order to prevent
irreversible climate change, global
warming needs to be kept below
1.5 degrees. For Europe, this means a
full decarbonisation of its economy.
And this, in turn, requires adequate
financing and investment in ALL
low-carbon technologies.
The EIB Energy Lending Policy
consultation came to a close on
29 March 2019. In FORATOM’s opinion
it is important to ensure coherence
across EU legislation and for policy
to be in line with the objective of
achieving a carbon-free Europe by
2050. At the same time, such policy
must ensure that
pp
Europe has access to the energy it
needs when it needs it.
pp
New environmental problems are
not created.
pp
It supports jobs and growth in
Europe.
To achieve this, EU legislation must
support ALL low carbon technologies,
rather than cherry-picking one technology
over another. Basing decisions
on political acceptance rather than
objective criteria will make it much
harder for Europe to achieve its goals,
with the risk of a lock-in effect if it
were to rest too much on CO 2 -emitting
technologies.
Last week, the European Parliament
adopted its text on the European
Commission’s proposal for a sustainable
finance taxonomy[1]. Unfortunately,
MEPs have failed to take an
objective approach on what “sustainable”
actually means, assuming that
only technologies which are renewables-based
should be eligible for such
finance. In this respect, the text
adopted goes against:
The European Commission’s “A
Clean Planet for All” strategic vision
which recognises that, nuclear,
together with renewables, will form
the backbone of a carbon-free power
sector in 2050.
The latest Intergovernmental Panel
on Climate Change (IPCC) report
(Global Warming of 1.5°C, 8 October
2018) according to which nuclear
power is essential if the world is to keep
global warming to below 1.5 degrees.
Also, in its current form, the
adopted text raises two problems:
pp
The exclusion of future potential
low-carbon breakthrough technologies
which are not renewablesbased
– thereby preventing them
from ever coming to market.
pp
The risk of creating new environmental
problems. Whilst renewables
such as wind and solar are
low carbon, they require significant
volumes of raw materials,
critical raw materials and rare
earths. They also come with a significant
land footprint, which can
lead to the loss of biodiversity.
| | www.foratom.org
JET future secure
(euro-fusion) The future of EUROfusion
flagship and the world’s largest
operational fusion research facility,
the Joint European Tours, JET, is now
secure. The European Commission
and the UK have signed a contract
extension that will secure at least
€100m from the EU over the next two
years. This means that JET operations
are guaranteed until the end of 2020
regardless of the Brexit outcome.
EUROfusion Programme Manager
Tony Donné said, “A heavy weight has
been lifted off our shoulders. This is
extraordinarily good news for EUROfusion
and the European fusion
community as a whole. We can now
continue to work on the realisation of
fusion energy together with the
indispensable experience of our
British partner.”
Indeed the news brings reassurance
to the more than 500 staff who
work at the JET site. And as important
is the fact that JET can continue to
provide invaluable experimental results
and nurture scientific expertise
before ITER begins operations in
2025. JET is currently the only
tokamak capable of operation with
Deuterium-Tritium, the fusion fuel of
the future. And with its ITER-like wall,
and other diagnostics, the EUROfusion
flagship serves as a test bed for
future ITER operations.
| | www.euro-fusion.org
World
US and India reaffirm
commitment to build six
nuclear plants
(nei) The US and India have signed an
agreement confirming their commitment
to cooperate on the civilian use
of nuclear energy including a proposed
construction of six US-supplied
nuclear power plants in the Asian
country, a statement by the US Department
of State said.
The statement said that India’s
foreign secretary Vijay Gokhale and
US undersecretary of state Andrea
Thompson signed the agreement in
Washington yesterday, but gave no
further details about the nuclear
power plant project.
Former US president Barack
Obama and Indian prime minister
Narendra Modi announced in 2016
that engineering and design work
would begin for Westinghouse to build
six AP1000s in India in a deal that was
expected to be signed by June 2017.
The agreement was the result of a
decade of diplomatic efforts as part of
a US-India civil nuclear agreement
signed in 2008.
In April 2018, US energy secretary
Rick Perry said that reactor manufacturer
Westinghouse Electric Company
is “ready to get to work” on its
projects to build nuclear reactors in
India.
Westinghouse declared bankruptcy
in 2017 because of cost overruns and
was sold by Japan’s Toshiba Corporation
to Canada’s Brookfield Asset
Management in August 2018.
| | www.usa.gov
Russia signs agreement
to build four new reactors
in China
(rosatom) Russia has signed an agreement
to build four new nuclear power
units in China, with two at the
Xudabao site in Liaoning Province,
northeast China, and two at the
Tianwan nuclear power station in
Jiangsu province in the east of the
country.
State nuclear corporation Rosatom
said in a statement that a contract for
the technical design for the construction
of Units 3 and 4 at Xudabao had
been signed in Beijing on 7 March.
Rosatom also said a general contract
had been signed for the construction
of Units 7 and 8 at Tianwan.
There are four Russia-procured
VVER-1000 nuclear units in commercial
operation at Tianwan and two
domestically developed CNP-1000
289
NEWS
News
atw Vol. 64 (2019) | Issue 5 ı May
Operating Results January 2019
290
NEWS
Plant name Country Nominal
capacity
Type
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated, gross
[MWh]
Month Year Since
commissioning
Time availability
[%]
Energy availability
[%] *) Energy utilisation
[%] *)
Month Year Month Year Month Year
OL1 Olkiluoto BWR FI 910 880 744 680 029 680 029 262 335 237 100.00 100.00 98.83 98.83 99.35 99.35
OL2 Olkiluoto BWR FI 910 880 744 686 443 686 443 252 582 985 100.00 100.00 99.92 99.92 100.29 100.29
KCB Borssele PWR NL 512 484 744 380 469 380 469 162 102 158 99.56 99.56 99.56 99.56 100.19 100.19
KKB 1 Beznau 7) PWR CH 380 365 744 286 846 286 846 127 620 956 100.00 100.00 100.00 100.00 101.52 101.52
KKB 2 Beznau 7) PWR CH 380 365 744 285 135 285 135 134 635 542 100.00 100.00 100.00 100.00 100.86 100.86
KKG Gösgen 7) PWR CH 1060 1010 744 796 643 796 643 314 672 171 100.00 100.00 99.97 99.97 101.02 101.01
KKM Mühleberg 1,2) BWR CH 390 373 744 284 490 284 490 127 688 805 100.00 100.00 99.12 99.12 98.05 98.05
CNT-I Trillo PWR ES 1066 1003 744 789 524 789 524 248 081 193 100.00 100.00 100.00 100.00 98.97 98.97
Dukovany B1 PWR CZ 500 473 744 372 054 372 054 112 601 547 100.00 100.00 100.00 100.00 100.01 100.01
Dukovany B2 2) PWR CZ 500 473 744 369 516 369 516 108 603 687 100.00 100.00 100.00 100.00 99.33 99.33
Dukovany B3 PWR CZ 500 473 0 0 0 106 498 041 0 0 0 0 0 0
Dukovany B4 PWR CZ 500 473 744 373 097 373 097 106 816 366 100.00 100.00 99.50 99.50 100.30 100.29
Temelin B1 PWR CZ 1080 1030 744 810 082 810 082 115 171 124 100.00 100.00 100.00 100.00 100.63 100.63
Temelin B2 PWR CZ 1080 1030 744 814 728 814 728 110 087 245 100.00 100.00 100.00 100.00 101.21 101.21
Doel 1 2) PWR BE 454 433 0 0 0 135 444 462 0 0 0 0 0 0
Doel 2 2) PWR BE 454 433 0 0 0 133 801 939 0 0 0 0 0 0
Doel 3 PWR BE 1056 1006 744 805 717 805 717 255 938 202 100.00 100.00 100.00 100.00 101.91 101.91
Doel 4 2) PWR BE 1084 1033 744 746 557 746 557 261 119 967 100.00 100.00 90.64 90.64 90.81 90.81
Tihange 1 PWR BE 1009 962 744 763 658 763 658 299 594 516 100.00 100.00 100.00 100.00 101.95 101.95
Tihange 2 3) PWR BE 1055 1008 0 0 0 254 651 930 0 0 0 0 0 0
Tihange 3 3) PWR BE 1089 1038 742 757 187 757 187 271 984 460 99.71 99.71 93.63 93.63 93.72 93.72
Plant name
Type
Nominal
capacity
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated, gross
[MWh]
Time availability
[%]
Energy availability
[%] *) Energy utilisation
[%] *)
Month Year Since Month Year Month Year Month Year
commissioning
KBR Brokdorf DWR 1480 1410 744 940 095 940 095 351 507 906 100.00 100.00 94.17 94.17 84.92 84.92
KKE Emsland 4) DWR 1406 1335 744 1 035 811 1 035 811 347 854 780 100.00 100.00 100.00 100.00 99.06 99.06
KWG Grohnde DWR 1430 1360 744 1 018 634 1 018 634 378 592 848 100.00 100.00 99.89 99.89 95.21 95.21
KRB C Gundremmingen SWR 1344 1288 744 1 009 470 1 009 470 331 951 225 100.00 100.00 100.00 100.00 100.39 100.39
KKI-2 Isar DWR 1485 1410 744 1 093 851 1 093 851 354 819 664 100.00 100.00 99.98 99.98 98.76 98.76
GKN-II Neckarwestheim 2) DWR 1400 1310 744 1 025 300 1 025 300 330 852 134 100.00 100.00 100.00 100.00 98.74 98.74
KKP-2 Philippsburg DWR 1468 1402 744 1 081 282 1 081 282 367 242 437 100.00 100.00 99.93 99.93 97.49 97.49
*)
Net-based values
(Czech and Swiss
nuclear power
plants gross-based)
1)
Refueling
2)
Inspection
3)
Repair
4)
Stretch-out-operation
5)
Stretch-in-operation
6)
Hereof traction supply
7)
Incl. steam supply
8)
New nominal
capacity since
January 2016
9)
Data for the Leibstadt
(CH) NPP will
be published in a
further issue of atw
BWR: Boiling
Water Reactor
PWR: Pressurised
Water Reactor
Source: VGB
pressurised water reactors under construction.
Rosatom gave no details in its
statement of the type of plant for the
two sites, but the company’s directorgeneral
Alexei Likhachev was quoted
last year by the state-owned Tass news
agency as saying that all four units will
be Generation III+ VVER-1200 plants.
The two countries signed initial
agreements for the four units in June
2018.
In April 2014, the Xudabao site was
approved for the construction of two
Westinghouse AP1000 nuclear power
units with the option of building four
more units.
According to International Atomic
Energy Agency statistics, construction
of the two AP1000s has not yet begun.
Russian media reports have said work
on the site began in 2010, but was
suspended after the 2011 Fukushima-
Daiichi accident.
In 2016, China Nuclear Industry 22
Construction Company, a subsidiary
of China Nuclear Engineering and
Construction Corporation, said it had
signed an engineering, procurement
and construction contract for the two
AP1000 units.
China has ambitious nuclear plans
with an official target of 58 GW of
installed nuclear capacity by 2020, up
from almost 36 GW produced by 46
operational reactor units today.
According to Shanghai-based
energy consultancy Nicobar, China’s
goal is to have 110 nuclear units
in commercial operation by 2030,
but this target is likely to be
adjusted in the next Five-Year Plan,
the first draft of which will appear
this year.
Nicobar said state-owned China
National Nuclear Corporation has told
the government China should start
building eight new nuclear power
plants a year before 2030 in a bid
to make the sector profitable and
sustainable.
| | www.rosatom.ru
NEI applauds senators for
introduction of Nuclear
Energy Leadership Bill
(nei) The Nuclear Energy Leadership
Act was introduced to the Senate
Committee on Energy and Natural
Resources. The following is a statement
by Maria Korsnick, president
and chief executive officer of the
Nuclear Energy Institute:
“We thank Sens. Lisa Murkowski
and Cory Booker for their bipartisan
sponsorship of the Nuclear Energy
News
atw Vol. 64 (2019) | Issue 5 ı May
Leadership Act (NELA). This legislation
sends an unmistakable signal
that the United States intends to
re-commit itself as a global leader in
clean, advanced nuclear technology.
“State-owned and state-sponsored
developers in rival nations – especially
China and Russia – are developing
next-generation nuclear technology.
For the American nuclear industry
to compete globally, we must have
significant collaboration among the
federal government, our national labs
and private industry to accelerate
innovation.
“NELA provides the means for
America to continue to lead in nuclear
energy technology. We ask Congress
to pass this legislation to help ensure
the success of advanced nuclear technologies
that will play a tremendous
role in reaching a global clean energy
future, while creating jobs and economic
benefits.”
“This legislation sends an unmistakable
signal that the U.S. intends to
re-commit itself as a global leader in
clean, advanced nuclear technology,”
says @NEI’s Korsnick. Read NEI’s
statement to learn why the NELA bill
is critical for the industry’s future.
| | www.nei.org
Nuclear Industry Association
comments on Micro Reactors
Report
(niauk) The Nuclear Industry Association
has issued a statement in relation
to the Government’s publication of an
independent report on Micro Nuclear
Reactors, their key characteristics and
an assessment of the market and
regulatory challenges.
Peter Haslam, Head of Policy at the
Nuclear Industry Association said:
“We believe small and micro reactors
have a role to play alongside large
reactors in increasing the clean energy
contribution from nuclear, while also
improving the UK’s energy security.
“In addition, the inherent flexibility
of micro reactors presents a big
opportunity for the UK as they can be
constructed here and transported
across the world for assembly.
“The industry will continue to
work with government to realise the
potential of this technology.”
The report outlines the key
tech nological characteristics of Micro
Nuclear Reactors (MNRs) and assesses
the associated market and regulatory
challenges. MNRs are a subgroup
of Small Modular Reactors
which are under ~30 MW in size.
https://bit.ly/2YzzrW2
| | www.niauk.org, www.gov.uk
Reactors
Vogtle milestone signals
momentum for future of
U.S. nuclear industry
(nei) Nuclear Energy Institute’s Maria
Korsnick joined Energy Secretary Rick
Perry and Gov. Brian Kemp of Georgia
for the capping of the containment
vessel on Vogtle 3. The following
is a statement from Maria Korsnick,
president and chief executive officer
of NEI.
“Today is an exciting day for the
state of Georgia and our country as we
move closer to completing the nation’s
first new nuclear plant in 30 years.
The progress made today on Vogtle 3
is another reminder that the United
States remains a significant force in
the global nuclear industry.
“We thank the administration and
Secretary Perry for their support of
the Vogtle project, which is a wise
investment for the future of America’s
nuclear power sector and our clean
energy future.
“Building Vogtle 3 and 4 is the
largest job-producing construction
project in Georgia, and when finished
the reactors will employ hundreds of
highly skilled workers for decades to
come. Producing massive amounts of
emission-free electricity around the
clock, the four-reactor Vogtle nuclear
power station will be one of America’s
largest clean energy facilities.”
| | www.nei.org
Company News
Framatome delivers GAIA fuel
assemblies containing the
first complete Enhanced
Accident Tolerant Fuel concept
(framatome) Framatome delivered the
industry’s first full-length Enhanced
Accident Tolerant Fuel (EATF) concept
containing both pellets and claddings
to Georgia Power’s Alvin W. Vogtle
Electric Generating Plant. Southern
Nuclear, operator of Plant Vogtle,
inserted the GAIA lead fuel assemblies
containing EATF during the Unit 2
spring refueling outage. Framatome
delivered the fuel to the plant in
January 2019.
“This is an important milestone
for Framatome and the industry,” said
Lionel Gaiffe, senior executive vice
president, Fuel Business Unit at
Framatome. “We applaud Southern
Nuclear’s consistent support of EATF
initiatives, and we are pleased to
deploy an economical advanced fuel
technology that offers operators
additional response time and greater
operational flexibility.”
Under the umbrella of its PROtect
program, Framatome’s advanced
chromium coating added to the stateof-the-
art M5Framatome zirconium
alloy cladding improves hightemperature
oxidation resistance and
reduces hydrogen generation during
loss of cooling. The chromium coating
also greatly reduces creep to maintain
a coolable geometry and has
mechanical pro perties that allow for
more operator response time. Further,
the innovative coating offers increased
resistance to debris fretting
during normal operations.
In addition to chromium coated
cladding, this integrated fuel solution
includes chromia-enhanced fuel
pellets, which have a higher density,
reduced fission gas release, and
improved behavior during loss of
cooling. Reduced Pellet Clad Interaction
(PCI) also better supports
power maneuvering.
Framatome has worked for several
years with the support of the U.S.
Department of Energy’s Accident
Tolerant Fuel program, which has
allowed the company to significantly
improve on its initial target of 2022 to
deploy this technology. European
partners, like CEA, which initially
explored and identified the suitable
cladding coating process, and also
EDF, Goesgen Nuclear Power Plant in
Switzerland and leaders from across
the nuclear sector have collaborated
for several years on aspects of this fuel
design.
Framatome fabricated the fuel
assemblies at its fuel manufacturing
facility in Richland, Washington, as
part of a 2017 contract with Southern
Nuclear. Southern Nuclear, a subsidiary
of Southern Company, operates
a total of six units for Alabama Power
and Georgia Power.
| | www.framatome.com
GNS: Twelve CASTOR® casks
for PreussenElektra
(gns) GNS supplies twelve transport
and storage casks of the type CASTOR®
V/19 for the spent fuel from the
German NPPs Brokdorf and Grohnde.
GNS Gesellschaft für Nuklear-
Service mbH has received an order to
supply a total of twelve transport and
storage casks of the type CASTOR®
V/19. The casks will be used for the
removal of spent fuel assemblies from
the two pressurized water reactor
NPPs of PreussenElektra in Brokdorf
and Grohnde which are still in
291
NEWS
News
atw Vol. 64 (2019) | Issue 5 ı May
292
NEWS
operation. The order has a volume of
well over EUR 20 million.
The casks are to be delivered from
the GNS plant in Mülheim an der Ruhr
to the two power plants in the fourth
quarter of 2020. After loading in the
reactor building with 19 fuel elements
each, the casks will be taken to the
local interim storage facilities. More
than 30 loaded casks of this type are
already stored at each of the two sites.
„The CASTOR® casks from GNS
have proven to be reliable packaging
for the irradiated fuel elements from
our nuclear power plants”, explains
Lothar Mertens, Head of Fuel Cycle
and Interim Storage at Preussen-
Elektra. “They ensure the smooth
emptying of our storage pools and
thus form an important component in
the disposal of our power plants both
during power operation and until the
reactor is completely fuel-free.”
| | www.gns.de
Science & Research
LENS launches activities to
strengthen European neutron
science
(lens) Members of a strategic consortium
of neutron research facilities
in Europe, the League of advanced
European Neutron Sources (LENS),
officially launched activities to promote
colla boration on neutron usage,
technology development, innovation,
data, education, and strategies. By
aligning policies among its partners,
LENS will advocate for the user
community and strengthen European
neutron science.
The members of LENS held their
first General Assembly and the first
Executive Board meeting on 26 March
2019 in Liblice, the Czech Republic.
The consortium adopted and signed
Statutes detailing the purpose of
LENS, guiding the work of the
statutory bodies, and laying the
framework for Working Groups responsible
for the execution of foreseen
activities. The Director of Institut
Laue-Langevin (ILL) in France, Helmut
Schober, was elected as LENS
Chair, and the Director of the ISIS
Neutron and Muon Source in the
United Kingdom, Robert McGreevy, as
Vice-Chair.
A community event to mark
the launch of LENS
The signing ceremony was followed
by a public event that celebrated the
launch of LENS in the presence of
around 80 government representatives,
national delegates to the
European Strategy Forum on Research
Infrastructures (ESFRI), the European
Commission, and the wider scientific
community.
“Research on materials will provide
the basis for technologies of the
future that are needed to achieve a
sustainable, high standard of living all
around the globe,” said the newly
elected Chair of LENS, Helmut
Schober. “LENS will help to develop
these technologies by optimizing the
use of resources for neutron investigations
through strategic coordination
among neutron facilities.”
The event also featured panel
discussions about the long-term
sustainability of neutron sources, and
the various ways in which neutrons
contribute to excellent science and
advance innovation. As a collaborative
effort that aims to benefit researchers
and address their needs, LENS seeks to
establish good working relations with
the European Neutron Scattering
Association (ENSA). LENS will be in
close dialogue with the League of
European Accelerator-based Photon
Sources (LEAPS), a strategic consortium
that brings together synchrotron
radiation and free electron laser user
facilities in Europe. Representatives of
both ENSA and LEAPS joined the LENS
launch event in Liblice.
The member base of LENS
expands
LENS was established in September
2018 with the primary goal of facilitating
discussions and decision-making
processes that have the potential to
strengthen European neutron science.
The eight founding members include
national and international neutron
facilities from France, Germany,
Hungary, Norway, Sweden, Switzerland,
and the United Kingdom.
The event in Liblice marked the
first expansion of the consortium’s
member base. Forschungszentrum
Jülich from Germany with its Jülich
Centre for Neutron Science (JCNS)
was welcomed as the ninth member.
LENS is open to new members and
other qualifying neutron facilities
which grant international access to
their experimental devices and
research services are invited to join at
any time. In this way, LENS helps to
contribute to the scientific integration
of Europe.
The LENS launch was held on the
eve of the 68 th ESFRI Forum Meeting,
which brought together senior science
policy officials representing Ministers
responsible for research in each of the
participating state. “We welcome the
launch of LENS. Coordinated efforts of
this type support a better use and
development of research infra structures
in Europe. This is well in line
with the vision that ESFRI has for
European science, “ said Jan Hrušák,
ESFRI Chair.
Shaping the future by utilising
members’ capabilities
Solving the grand challenges facing
our societies often requires the development
of new high-performance
materials. Tailor-made materials and
material systems are required for the
advancement of key technologies,
from information technology and
renewable energy concepts, to safer
and more environmentally friendly
transport systems and life-saving
medical applications. Probing materials
with neutrons stands as one of the
pillars of the analytical techniques in
this chain of discovery.
Neutron-based analytical facilities,
therefore, are used in numerous
disciplines across the entire range of
science and technology development,
and generate a high socio-economic
impact. Europe has achieved global
leadership in this field, serving a very
broad scientific community of more
than 5,000 researchers by providing
them with more than 32,000 instrument
days at neutron scattering facilities.
| | www.frm2.tum.de
Market data
(All information is supplied without
guarantee.)
Nuclear Fuel Supply
Market Data
Information in current (nominal)
U.S.-$. No inflation adjustment of
prices on a base year. Separative work
data for the formerly “secondary
market”. Uranium prices [US-$/lb
U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =
0.385 kg U]. Conversion prices [US-$/
kg U], Separative work [US-$/SWU
(Separative work unit)].
2014
pp
Uranium: 28.10–42.00
pp
Conversion: 7.25–11.00
pp
Separative work: 86.00–98.00
2015
pp
Uranium: 35.00–39.75
pp
Conversion: 6.25–9.50
News
atw Vol. 64 (2019) | Issue 5 ı May
Uranium Prize range: Spot market [USD*/lb(US) U 3 O 8 ]
140.00
120.00
) 1
Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]
140.00
) 1
120.00
293
100.00
100.00
80.00
60.00
40.00
Yearly average prices in real USD, base: US prices (1982 to1984) *
80.00
60.00
40.00
NEWS
20.00
20.00
0.00
Year
2015
| | Uranium spot market prices from 1980 to 2018 and from 2008 to 2019. The price range is shown. In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.
2019
0.00
Year
Jan.
2012
2013
2014
2015
2016
2017
2018
2019
Separative work: Spot market price range [USD*/kg UTA]
Conversion: Spot conversion price range [USD*/kgU]
180.00
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
) 1
Year
Jan.
0.00
2012
2013
2014
2015
2016
2017
2018
2019
0.00
Year
Jan.
2012
2013
2014
2015
2016
2017
2018
2019
| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.
)1
In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.
| | * Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bilder/Figures: atw 2019
pp
Separative work: 58.00–92.00
2016
pp
Uranium: 18.75–35.25
pp
Conversion: 5.50–6.75
pp
Separative work: 47.00–62.00
2017
pp
Uranium: 19.25–26.50
pp
Conversion: 4.50–6.75
pp
Separative work: 39.00–50.00
2018
January to June 2018
pp
Uranium: 21.75–24.00
pp
Conversion: 6.00–9.50
pp
Separative work: 35.00–42.00
February 2018
pp
Uranium: 21.25–22.50
pp
Conversion: 6.25–7.25
pp
Separative work: 37.00–40.00
March 2018
pp
Uranium: 20.50–22.25
pp
Conversion: 6.50–7.50
pp
Separative work: 36.00–39.00
April 2018
pp
Uranium: 20.00–21.75
pp
Conversion: 7.50–8.50
pp
Separative work: 36.00–39.00
May 2018
pp
Uranium: 21.75–22.80
pp
Conversion: 8.00–8.75
pp
Separative work: 36.00–39.00
June 2018
pp
Uranium: 22.50–23.75
pp
Conversion: 8.50–9.50
pp
Separative work: 35.00–38.00
July 2018
pp
Uranium: 23.00–25.90
pp
Conversion: 9.00–10.50
pp
Separative work: 34.00–38.00
August 2018
pp
Uranium: 25.50–26.50
pp
Conversion: 11.00–14.00
pp
Separative work: 34.00–38.00
September 2018
pp
Uranium: 26.50–27.50
pp
Conversion: 12.00–13.00
pp
Separative work: 38.00–40.00
October 2018
pp
Uranium: 27.30–29.00
pp
Conversion: 12.00–15.00
pp
Separative work: 37.00–40.00
November 2018
pp
Uranium: 28.00–29.25
pp
Conversion: 13.50–14.50
pp
Separative work: 39.00–40.00
December 2018
pp
Uranium: 28.50–29.20
pp
Conversion: 13.50–14.50
pp
Separative work: 40.00–41.00
2019
January 2019
pp
Uranium: 28.70–29.10
pp
Conversion: 13.50–14.50
pp
Separative work: 41.00–44.00
February 2019
pp
Uranium: 27.50–29.25
pp
Conversion: 13.50–14.50
pp
Separative work: 42.00–45.00
| | Source: Energy Intelligence
www.energyintel.com
Cross-border Price
for Hard Coal
Cross-border price for hard coal in
[€/t TCE] and orders in [t TCE] for
use in power plants (TCE: tonnes of
coal equivalent, German border):
2014: 72.94, 30,591,663
2015: 67.90; 28,919,230
2016: 67.07; 29,787,178
2017: 91.28, 25,739,010
2018
I. quarter: 89.88; 5,838,003
II. quarter: 88.25; 4,341,359
III. quarter: 100.79; 5,135,198
IV. quarter: 100.91; 6,814,244
| | Source: BAFA, some data provisional
www.bafa.de
News
atw Vol. 64 (2019) | Issue 5 ı May
294
Operating Results 2018
REPORT
In 2018 the German nuclear power plants generated
76.00 billion kilowatt hours (kWh) of electricity gross.
No German nuclear power plant ceased operation in
2018 due to the revision of the German Atomic Energy
Act in the political aftermath of the accidents in Fukushima,
Japan, in 2011. Seven nuclear power plants with an
electric gross output of 10,013 MWe were in operation on
31 December 2018.
Six power plants in operation in 2018 achieved results
with a gross production greater than 10 billion kilowatt
hours, one power plants even produced more than 11 billion
kilowatt hours and one more than 12 billion kilowatt
hours.
German nuclear power plants achieved two of the
world’s ten best production results in 2018 (“Top Ten”). At
the end of 2018, 451 reactor units were in operation in 31
countries worldwide and 53 were under construction in 18
countries. The share of nuclear power in world electricity
production was around 11 %. German nuclear power
plants have been occupying top spots in electricity production
for decades thus providing an impressive demonstration
of their efficiency, availability and reliability.
The Chooz B-2 nuclear power plant in France (capacity:
1,560 MWe gross) achieved the world record in electricity
production in 2018 with 12.4 billion kilowatt hours. The
German nuclear power plants Isar 2 (KKI 2, 12.1 billion
kilowatt hours) and Emsland (KKE, 11.3 billion kilowatt
hours) took the second and forth place.
Additionally German nuclear power plants are leading
with their lifetime electricity production. The Brokdorf,
Grohnde, Isar 2 and Philippsburg 2 nuclear power plant
have produced more than 350 billion kilowatt hours since
their first criticality.
D
German nuclear power plant
Top Ten: Electricity production 1981 to 2018
Year
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
Top Ten: Nuclear Power Plants
World's
best
2 3 4 5 6 7 8 9 10
D D D
D D D D
D D D D
D D D D
D D D D D D D
D D D D D D
D D D D D D
D D D D D
D D D D D D D
D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D
D D D D D D D
D D D D D D
D D D D D D D D
D D D D D
D D D D
D D D D D
D D D D D D
D
D
D D D D
D D D
D D D
D
D D D
D
D D D D D
D D D D D D
D
D
D
D
D
D
D D D
D
D D D D
D D D D
2015 D D D D
2016 D D D
2017
D D
2018 D D
D
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
295
Operating results of nuclear power plants in Germany 2017 and 2018
Nuclear power plant Rated power Gross electricity
generation
in MWh
Availability
factor*
in %
Energy availability
factor**
in %
REPORT
gross
in MWe
net
in MWe
2017 2018 2017 2018 2017 2018
Brokdorf KBR 1,480 1,410 5,778,146 10,375,751 51.68 90.60 48.23 84.72
Emsland KKE 1,406 1,335 11,323,704 11,495,686 93.28 94.78 93.13 94.67
Grohnde KWG 1,430 1,360 9,684,880 10,946,635 86.10 92.82 82.40 91.61
Gundremmingen KRB B**** 1,344 1,284 9,689,710 93.10 92.20
Gundremmingen KRB C 1,344 1,288 9,929,820 10,361,862 87.85 90.41 85.93 89.85
Isar KKI 2 1,485 1,410 11,523,513 12,127,490 91.53 95.46 91.15 95.24
Neckarwestheim GKN II 1,400 1,310 10,540,800 9,703,700 88.93 81.29 88.60 81.00
Philippsburg KKP 2 1,468 1,402 7,853,827 10,993,639 63.18 90.63 63.12 90.47
Total (in 2017) 11,357 10,799 76,324,400 81.95 80.47
Total (in 2018) 10,013 9,515 76,004,763 90.85 89.60
* Availability factor (time availability factor) kt = tN/tV: The time availability factor kt is the quotient
of available time of a plant (tV) and the reference period (tN). The time availability factor is a degree
for the deployability of a power plant.
** Energy availability factor kW = WV/WN: The energy availability factor kW is the quotient of available
energy of a plant (WV ) and the nominal energy (WN). The nominal energy WN is the product of nominal
capacity and reference period. This variable is used as a reference variable (100 % value) for availability
considerations. The available energy WV is the energy which can be generated in the reference period
due to the technical and operational condition of the plant. Energy availability factors in excess of 100 %
are thus impossible, as opposed to energy utilisation.
*** Inclusive of round up/down, rated power in 2018.
**** The Gundremmingen nuclear power plant (KRB B) was permanently shutdown on 31 December 2017
due to the revision of the German Atomic Energy Act in 2011.
All data in this report as of 31 March 2019.
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
296
Brokdorf
REPORT
Operating sequence in 2018
100
90
80
70
60
50
40
30
20
10
Electrical output in %
January February March April May June July August September October November December
In the year 2018 nuclear power plant Brokdorf (KBR) was on the grid
with an availability factor of 84.70 % in total 7,937 operating hours.
Gross generation for the year under review amounted to
80 10,376,751 MWh. Also in 2018, the thermal reactor power was limited
to a maximum of 95 % with a coolant temperature reduced by 3 K
60 of nominal power due to the specifications of ME 02/2017 “Increased
oxide layer thickness on fuel rod cladding tubes of fuel assemblies”.
40
Due to high summer temperatures, temporary reductions in output
were necessary in the months of July to September in order to
20
comply with the water law permit.
100
0
Planned shutdowns
On 1 April 2018 the plant was shutdown for the 30 th refuelling and
annual major revision:
The revision included the following priorities:
80
pp
Reactor
Offload of the reactor pressure vessel.
Oxide layer measurement and
60
visual inspection of fuel elements.
40
Inspection of control elements.
Ultrasonic test, reactor pressure vessel,
20
bottom part.
pp
Main coolant pump YD40 Ring exchange of e-motor.
0
Inspection of the axial bearing.
Replacement mechanical shaft seal.
pp
Feed water system Pressure testing.
pp
Coolant
Works on pump stationary head VE30/40.
Works on main coolant water
Positionierung: channel VA10-30.
pp
Turbine Bezug, links, Standard untenservice.
Inspection primary water cooler
of generator.
pp
Transformers VGB: HKS6K Exchange 30 % of transformers
atw: 100 60 CS12, 0 0 CS21, CT31.
pp
Batteries Exchange, redundancy 1
100
X = 20,475 Y = 95,25 B = 173,5 H = 38,2
Unplanned shutdowns and reactor/turbine trip
On 2 May 2018, the generator was disconnected from the grid and
shut down to remove a seal leakage at a non-return flap of the steam
generator blowdown system. On 5 May 2018, after completion of the
repair, a malfunction in the turbine control at one of two electrohydraulic
converters (EHU) occurred during start-up of the plant.
After clearing of the failure the main synchronisation took place on
6 May 2018.
On 12 August 2018 the plant was disconnected from the grid for
repairing the speed monitor selection circuit of the turbine protection
system.
Power reductions above 10 % and longer than for 24 h
In the period from 12 to 13 October 2018, power reduction was carried
out for the inspection and repair of a connecting slide valve between
a force-locking basin and a pump antechamber of the secured
secondary cooling water system as well as for the detection and removal
of a condenser pipe leakage in the turbine condenser.
In addition, load reductions were carried out in order to implement
the grid-supporting power control in accordance with the specifications
of the mission control centre.
Delivery of fuel elements
During the reporting year 28 fuel elements were delivered.
Waste management status
By the end of the year 2018 33 loaded CASTOR © cask were located at
the on-site intermediate storage Brokdorf.
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
297
Operating data
Review period 2018
REPORT
Plant operator: PreussenElektra GmbH
Shareholder/Owner: PreussenElektra GmbH (80 %),
Vattenfall Europe Nuclear Energy GmbH (20 %)
Plant name: Kernkraftwerk Brokdorf (KBR)
Address: PreussenElektra GmbH, Kernkraftwerk Brokdorf,
25576 Brokdorf, Germany
Phone: 04829 752560, Telefax: 04829 511
Web: www.preussenelektra.de
100
90
80
79
Availability factor in %
Capacity factor in %
84
92
93
93
93
90
First synchronisation: 10-14-1986
Date of commercial operation: 12-22-1986
Design electrical rating (gross):
1,480 MW
Design electrical rating (net):
1,410 MW
Reactor type:
PWR
Supplier:
Siemens/KWU
70
60
50
40
44
The following operating results were achieved:
Operating period, reactor:
7,937 h
Gross electrical energy generated in 2018:
10,375,751 MWh
Net electrical energy generated in 2018:
9,838,252 MWh
Gross electrical energy generated since
first synchronisation until 12-31-2018:
350,567,809 MWh
Net electrical energy generated since
first synchronisation until 12-31-2018:
333,249,131 MWh
Availability factor in 2018: 90.60 %
Availability factor since
date of commercial operation: 89.84 %
Capacity factor 2018: 84.72 %
Capacity factor since
date of commercial operation: 86.19 %
Downtime
(schedule and forced) in 2018: 9.40 %
Number of reactor scrams 2018: 0
Licensed annual emission limits in 2018:
Emission of noble gases with plant exhaust air:
Emission of iodine-131 with plant exhaust air:
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
1.0 · 10 15 Bq
6.0 · 10 9 Bq
5.55 · 10 10 Bq
30
20
10
0
10
9
8
7
6
84
2011
84
2012
93
2013
93
2014
93
2015
93
2016
Collective radiation dose of own
and outside personnel in Sv
52
2017
91
2018
Proportion of licensed annual emission limits
for radioactive materials in 2018 for:
Emission of noble gases with plant exhaust air: 0.079 %
Emission of iodine-131 with plant exhaust air: 0.000 %
Emission of nuclear fission and activation products
with plant waste water (excluding tritium): 0.000 %
Collective dose:
0.142 Sv
5
4
3
2
1
0
0.22
2011
0.13
2012
0.22
2013
0.17
2014
0.14
2015
0.14
2016
0.13 0.14
2017 2018
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
298
Emsland
REPORT
Operating sequence in 2018
Electrical output in %
100
90
80
70
60
50
40
30
20
10
0
January February March April May June July August September October November December
100
80
60
40
20
Apart from the 19 days refuelling outage the Emsland nuclear power
plant had been operating uninterrupted and mainly at full load during
the review period 2018. Producing a gross power generation of
11,495,686 MWh with a capacity factor of 94.67 % the power plant
achieved a very good operating result.
Planned shutdowns
31 th refuelling and overall annual maintenance inspection:
The annual outage was scheduled for the period 25 May to 13 June.
The outage took 19.0 days from breaker to breaker. In addition to the
replacement of 40 fuel elements the following major maintenance
and inspection activities were carried out:
pp
Inspection of core and reactor pressure vessel internals.
100
pp
Inspection of a reactor coolant pump.
pp
Inspection of pressurizer valves.
80
pp
Pressure test on different coolers and tanks.
pp
Inspection on main condensate pump.
60
pp
Maintenance works on different transformers.
pp
Different automatic non-destructive examinations.
0
40
Unplanned shutdowns and reactor/turbine trip
Turbine scram due to increased turbine vibrations after the end of the
outage.
Power reductions above 10 % and longer than for 24 h
22 April to 25 May: Stretch-out operation.
Delivery of fuel elements
24 Uranium-fuel elements were delivered.
Waste management status
4 CASTOR © cask loading were carried out during the review period
2018. At the end of the year 47 loaded casks were stored in the local
interim storage facility.
20
0
Positionierung:
Bezug, links, unten
X = 20,475 Y = 95,25 B = 173,5 H = 38,2
VGB: HKS6K 30 %
atw: 100 60 0 0
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
299
Operating data
Review period 2018
REPORT
Plant operator: Kernkraftwerke Lippe-Ems GmbH
Shareholder/Owner: RWE Power AG (87.5 %),
PreussenElektra GmbH (12.5 %)
Plant name: Kernkraftwerk Emsland (KKE)
Address: Kernkraftwerk Emsland,
Am Hilgenberg , 49811 Lingen, Germany
Phone: 0591 806-1612
Web: www.rwe.com
100
90
80
Availability factor in %
Capacity factor in %
95 95
95
95
91
94
93
95
First synchronisation: 04-19-1988
Date of commercial operation: 06-20-1988
Design electrical rating (gross):
1,406 MW
Design electrical rating (net):
1,335 MW
Reactor type:
PWR
Supplier:
Siemens/KWU
70
60
50
40
The following operating results were achieved:
Operating period, reactor:
8,310 h
Gross electrical energy generated in 2018:
11,495,686 MWh
Net electrical energy generated in 2018:
10,951,033 MWh
Gross electrical energy generated since
first synchronisation until 12-31-2018:
346,818,969 MWh
Net electrical energy generated since
first synchronisation until 12-31-2018:
328,829,904 MWh
Availability factor in 2018: 94.78 %
Availability factor since
date of commercial operation: 94.07 %
Capacity factor 2018: 94.67 %
Capacity factor since
date of commercial operation: 93.93 %
Downtime
(schedule and forced) in 2018: 5.22 %
Number of reactor scrams 2018: 0
Licensed annual emission limits in 2018:
Emission of noble gases with plant exhaust air:
Emission of iodine-131 with plant exhaust air:
(incl. H-3 and C-14)
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
1.0 · 10 15 Bq
5.0 · 10 9 Bq
3.7 · 10 10 Bq
Proportion of licensed annual emission limits
for radioactive materials in 2018 for:
Emission of noble gases with plant exhaust air: 0.099 %
Emission of iodine-131 with plant exhaust air: 0.0 %
(incl. H-3 and C-14)
Emission of nuclear fission and activation products
with plant waste water (excluding tritium): 0.00 %
Collective dose:
0.059 Sv
30
20
10
0
10
9
8
7
6
5
4
3
2
1
95 95
2011 2012
95
2013
95
2014
91
2015
94
2016
Collective radiation dose of own
and outside personnel in Sv
93
2017
95
2018
0
0.07 0.09
2011 2012
0.08
2013
0.06
2014
0.10
2015
0.05
2016
0.09 0.06
2017 2018
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
300
Grohnde
REPORT
Operating sequence in 2018
100
90
80
70
60
50
40
30
20
10
Electrical output in %
January February March April May June July August September October November December
100
During the reporting year 2018 the nuclear power plant Grohnde
was put off the grid for a 26-day major revision with refuelling and
achieved an availability factor of 92.8 % The gross production
amounted to 10,946,634 MWh.
Opposite to the scheduled 21-day downtime the revision extended
by 159 hours due to the maintenance of equipment and repair works
of valve RL71 S003.
The plant was additionally taken off the grid for 4.5 hours on
29 July 2018 due to the repair of a speed monitoring device selection
switch. The reactor was in hot-stand-by operation during this work.
80
60
40
20
0
Planned shutdowns
24 February to 22 March: 35 th Refuelling and major annual revision:
100
Nuclear power plant Grohnde was shut down as scheduled after a
3-day stretch-out operation on 24 February 2018 for the revision and
80
35 th refuelling.
The main planned works during this year’s revision were:
60
pp
Unloading and loading with the replacement of 56 fresh fuel
40
elements.
pp
Full inspection of 20 fuel elements.
p20p
Eddy current test of 23 control elements.
pp
Visual inspection of 15 flow restrictor assembly.
p0
p Main coolant pump YD40 D001: Conversion of the motor and axial
bearing revision HKMP YD20 D001.
pp
Inspection of the safety feed water pump TH35 D001.
pp
Cleaning of the nuclear intercooler TF10 B001.
pp
Non-destructive tests of the YB10 and YB40 steam generators and
the Positionierung:
secondary side.
pp
Start-up Bezug, test of links, the fuel unten element centering pins of the UKG.
pp
Work and tests in the redundancies with the focus on the activities
in the main redundancy 1/5 (maintenance work on valves and
actuators VGB: as HKS6K well as tests 30 on % containers, batteries and electrotechnical
atw: branches). 100 60 0 0
Due to a leakage at a blind plug of the valve detected during the startup
process RL71 S003 was triggered by hand on 20 March at 02:10
RESA and was shut down to subcritical cold for repair.
X = 20,475 Y = 95,25 B = 173,5 H = 38,2
Unplanned shutdowns and reactor/turbine trip
29 July: Downtime for repair of the speed monitoring device selection
switch. The plant was taken off the grid for 4.5 hours.
Power reductions above 10 % and longer than for 24 h
22 to 26 June: Due to disturbances of the speed monitoring device
selection switch the reactor power was reduced down to 80 %.
Load sequence operation was carried out in April, October,
November and December due to the requirements of the load
distributor.
WANO Review/Technical Support Mission
A WANO Peer Review took place at the KWG from 16 to 27 April 2018.
This was a so-called “optimised” peer review, which was carried out
for the first time according to a concept specially agreed for this
purpose. A team of 14 peers from six nations scrutinized many areas
of the power plant, identifying areas with potential for improvement.
At the end of the review, the results were communicated to the power
plant management and executives in a workshop.
Delivery of fuel elements
In February 2018 20 U-/U-Gd-fuel elements of Westinghouse were
delivered.
Waste management status
Between September and November 2018, a total of four
CASTOR © -V/19 containers were loaded. Thus 34 CASTOR © -V/19
containers are currently stored in the ZL-KWG.
General points/management systems
In September 2018, the monitoring audit of the quality management
system (ISO 9001) and the recertification of the environmental management
system (ISO 14001) and the occupational health and safety
management system (OHSAS 18001) were successfully carried out.
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
301
Operating data
Review period 2018
REPORT
Plant operator: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG
Shareholder/Owner: PreussenElektra GmbH (83.3 %),
Stadtwerke Bielefeld (16.7 %)
Plant name: Kernkraftwerk Grohnde (KWG)
Address: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG,
P.O. bx 12 30, 31857 Emmerthal, Germany
Phone: 05155 67-1
Web: www.preussenelektra.de
100
90
80
84
Availability factor in %
Capacity factor in %
95
89
84
89
82
92
First synchronisation: 09-05-1984
Date of commercial operation: 02-01-1985
Design electrical rating (gross):
1,430 MW
Design electrical rating (net):
1,360 MW
Reactor type:
PWR
Supplier:
Siemens/KWU
70
60
50
40
73
The following operating results were achieved:
Operating period, reactor:
8,131 h
Gross electrical energy generated in 2018:
10,946,634 MWh
Net electrical energy generated in 2018:
10,339,242 MWh
Gross electrical energy generated since
first synchronisation until 12-31-2018:
377,574,203 MWh
Net electrical energy generated since
first synchronisation until 12-31-2018:
356,969,277 MWh
Availability factor in 2018: 92.80 %
Availability factor since
date of commercial operation: 91.70 %
Capacity factor 2018: 91.70 %
Capacity factor since
date of commercial operation: 91.30 %
Downtime
(schedule and forced) in 2018: 7.20 %
Number of reactor scrams 2018: 0
Licensed annual emission limits in 2018:
Emission of noble gases with plant exhaust air: 9.0 · 10 14 Bq
Emission of iodine-131 with plant exhaust air: 7.5 · 10 9 Bq
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
5.55 · 10 10 Bq
30
20
10
0
10
9
8
7
6
84 95
2011 2012
90
2013
84
2014
89
2015
75
2016
Collective radiation dose of own
and outside personnel in Sv
86
2017
93
2018
Proportion of licensed annual emission limits
for radioactive materials in 2018 for:
Emission of noble gases with plant exhaust air: 0.005 %
Emission of iodine-131 with plant exhaust air: 0.000 %
Emission of nuclear fission and activation products
with plant waste water (excluding tritium): 0.000 %
Collective dose:
0.124 Sv
5
4
3
2
1
0
0.65
0.27
2011 2012
0.54
2013
0.25
2014
0.31
2015
0.52
2016
0.23 0.12
2017 2018
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
302
Gundremmingen C
REPORT
Operating sequence in 2018
Electrical output in %
100
90
80
70
60
50
40
30
20
10
0
January February March April May June July August September October November December
In the review year 2018, unit C of Gundremmingen nuclear power
plant was operated at full load without any major restrictions except
80
for one planned outage for refuelling.
From
60
1 March to 21 April 2018 unit C was in stretch-out operation.
During 40 the shutdown a total of 138 fuel elements were unloaded
and replaced with 120 fresh and 18 (8 MOX) partially spent fuel elements.
20
During the outage all safety relevant workings were monitored by
the relevant 0 nuclear controlling authority, the Bavarian State Ministry
of the Environment and Consumer Protection (StMUV), and consulted
authorized experts. The inspection of the technical systems
with regard to safety and reliability confirmed the excellent condition
of the plant.
100
A gross total of 10,361,862 MWh of electricity was produced.
80
100
Peer Reviews
Between 5 and 16 March, an “optimized” WANO Peer Review for a
period of two instead of three weeks took place at KGG. The following
focus areas were analysed: work safety, fire protection, chemistry,
radiation protection, handling of fuel assemblies, management
of nuclear fuel.
Delivery of fuel elements
In 2018, for Gundremmingen unit C 132 fresh fuel elements were delivered.
Waste management status
At the end of 2018, the local interim storage facility accommodated
60 loaded CASTOR © casks with each 52 spent fuel elements out of
units B and C.
Planned
60
shutdowns
21 April to 26 May 2018: 32 nd refuelling and annual major inspection.
40
The following major activities were carried out:
p20p
Refuelling and sipping of all fuel elements inside the core; result:
two defective fuel elements.
p0
p Works on turbine, generator and auxiliary systems.
pp
Inspection of main isolation valves of feedwater, main steam and
residual heat removal system.
pp
Emptying of redundancy 5 for preventive measures on valves,
torque motors, motors, pumps and tanks.
pp
Inspection Positionierung:
of one emergency diesel generator.
pp
Extensive Bezug, non-destructive links, unten testing of pipes and tanks.
pp
Emptying of main cooling water system, cleaning of cooling tower
pond, exchange of cooling tower installations.
pp
Optimisation
VGB: HKS6K
measures
30
to
%
ensure non-interaction between permanently
atw: shut 100 down 60 unit 0 0B and operating unit C.
X = 20,475 Y = 95,25 B = 173,5 H = 38,2
Unplanned shutdowns and reactor/turbine trip
None.
Power reductions above 10 % and longer than for 24 h
25 and 26 February: Periodic tests.
1 March to 21 April: Stretch-out operation.
11 to 14 November: Period tests, change of the control rod traversing
order, leak detection in turbine condenser.
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
303
Operating data
Review period 2018
REPORT
Plant operator: Kernkraftwerk Gundremmingen GmbH
Shareholder/Owner: RWE Power AG (75 %),
PreussenElektra GmbH (25 %)
Plant name: Kernkraftwerk Gundremmingen C (KRB C)
Address: Kernkraftwerk Gundremmingen GmbH,
Dr.-August-Weckesser-Straße 1, 89355 Gundremmingen, Germany
Phone: 08224 78-1, Telefax: 08224 78-2900
E-mail: kontakt@kkw-gundremmingen.de
Web: www.kkw-gundremmingen.de
First synchronisation: 11-02-1984
Date of commercial operation: 01-18-1985
Design electrical rating (gross):
1,344 MW
Design electrical rating (net):
1,288 MW
Reactor type:
BWR
Supplier:
Siemens/KWU,
Hochtief
100
90
80
70
60
50
40
84
Availability factor in %
Capacity factor in %
91
89
90
90
86
86
90
The following operating results were achieved:
Operating period, reactor:
7,920 h
Gross electrical energy generated in 2018: 10,361,862 MWh
Net electrical energy generated in 2018: 9,874,200 MWh
Gross electrical energy generated since
first synchronisation until 12-31-2018:
330,941,755 MWh
Net electrical energy generated since
first synchronisation until 12-31-2018:
305,182,060 MWh
Availability factor in 2018: 90.40 %
Availability factor since
date of commercial operation: 89.20 %
Capacity factor 2018: 89.90 %
Capacity factor since
date of commercial operation: 87.60 %
Downtime
(schedule and forced) in 2018: 9.60 %
Number of reactor scrams 2018: 0
30
20
10
0
10
9
8
85 92
2011 2012
90
2013
90
2014
90
2015
86
2016
Collective radiation dose of own
and outside personnel in Sv
88
2017
90
2018
Licensed annual emission limits in 2018
(values added up for Units B and C, site emission):
Emission of noble gases with plant exhaust air: 1.85 · 10 15 Bq
Emission of iodine-131 with plant exhaust air: 2.20 · 10 10 Bq
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
1.10 · 10 11 Bq
7
6
5
Proportion of licensed annual emission limits for radioactive
materials in 2018 for (values added up for Units B and C):
Emission of noble gases with plant exhaust air: 0.93 %
Emission of iodine-131 with plant exhaust air: 0.39 %
Emission of nuclear fission and activation products
with plant waste water (excluding tritium): 0.30 %
Collective dose:
0.55 Sv
4
3
2
1
1.59
0.78
1.36
1.14
1.49
0.84
0.89
0.55
0
2011 2012
2013
2014
2015
2016
2017 2018
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
304
Isar 2
REPORT
Operating sequence in 2018
100
90
80
70
60
50
40
30
20
10
Electrical output in %
January February March April May June July August September October November December
100
On 22 January 1988 unit 2 of Isar nuclear power plant (KKI 2) fed for
80
the first time electricity into the grid. 9 April 2018 marked the 30 th
80
anniversary of the start of commercial power operation at the Isar
60
unit 2 nuclear power plant and was the first nuclear power plant in
60
the German generation statistics. With gross electricity generation of
40
12,127,490 MWh and a unit capability of 95.24 %, Unit 2 achieved an
40
excellent operating result in 2018.
20
In the evening hours of 16 September 2018, KKI 2 was the third
20
single block plant worldwide to achieve gross generation of
0
350 billion kWh since its first criticality. In addition, the 250,000
0
generator operating hours were performed on 5 September 2018 at
around 7 pm.
100
100
Planned shutdowns
14 to 29 July: Refuelling and annual major inspection with duration
80
of 15.8 days. During the revision 40 new fuel elements were inserted.
WANO Review/Technical Support Mission
22 January to 9 February: WANO Peer-Review.
Delivery of fuel elements
In the reporting year 32 uranium fuel elements from Westinghouse
were delivered. 24 uranium fuel elements are in stock at the dry
storage.
Waste management status
Currently 59 CASTOR © V-casks (26 units CASTOR © V/19, 26 units
of CASTOR © V/52 (85-type) and 7 TN © 24E-casks) are stored in the
on-site intermediate storage BELLA.
The interim storage facility was taken over by BGZ Gesellschaft
für Zwischenlagerung mbH on 1 January 2019.
The completion of the project “Structural optimisation of the KKI
BELLA warehouse” was in November 2018.
60
Unplanned shutdowns and reactor/turbine trip
340August : On 3 August at 01:29 a.m. the plant had to be taken off the
grid due to a repair of a drainage valve. At 07:32 p.m. the mains was
switched back.
20
Power 0 reductions above 10 % and longer than for 24 h
None.
Safety Reviews
21 February: Management evaluation KKI.
1 March: Positionierung:
Company review.
13 and Bezug, 15 March: links, Inspection unten in accordance with §16 Störfall Verordnung
– Brandschutz und Immissionsschutz (Major Accidents
Ordinance – Fire Protection and Immission Control).
13 to VGB: 16 March: HKS6K 2 nd Periodic 30 % Audit by DNV GL Business Assurance
Zertifizierung atw: 100 & Umweltgutachter 60 0 0 GmbH according to DIN EN ISO
9001:2015 / 14001:2015, BS OHSAS 18001:2007 and EMAS.
12 to 13 June: Internal “Audit Plant Monitoring” at KKI.
7 August: Management system, status discussion.
27 September: 2 nd operational review KKI (half-year review 2018).
4 to 10 October: Management system audit.
7 and 8 November: Internal Audit “Processing and Execution of Projects”.
X = 20,475 Y = 95,25 B = 173,5 H = 38,2
General points
A grid failure on 8 April 2018 (2-pole short-circuit on a 400 kV line)
led to repercussions via the neighbouring Ottenhofen switching
plant to the plant. Numerous consumers were briefly switched off via
undervoltage monitoring. A voltage drop to 9 kV occurred on the
10 kV bus. Many of the consumers switched on again automatically.
The voltage drop had no influence on the system performance and
did not lead to any tripping in the block protection and safety system.
Emergency exercise with expert ESN on 27 November 2018: The
exercise began outside working hours. The scenario assumed was a
“station black out”, fire alarm in the emergency food building and
failure of various emergency measures. The emergency exercise was
completed professionally and purposefully with a highly motivated
team.
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
305
Operating data
Review period 2018
REPORT
Plant operator: PreussenElektra GmbH
Shareholder/Owner: PreussenElektra GmbH (75 %),
Stadtwerke München GmbH (25 %)
Plant name: Kernkraftwerk Isar 2 (KKI 2)
Address: PreussenElektra GmbH, Kernkraftwerk Isar,
Postfach 11 26, 84049 Essenbach, Germany
Phone: 08702 38-2465, Telefax: 08702 38-2466
Web: www.preussenelektra.de
100
90
80
96
Availability factor in %
Capacity factor in %
94
94
90
89
96
91
95
First synchronisation: 01-22-1988
Date of commercial operation: 04-09-1988
Design electrical rating (gross):
1,485 MW
Design electrical rating (net):
1,410 MW
Reactor type:
PWR
Supplier:
Siemens/KWU
70
60
50
40
The following operating results were achieved:
Operating period, reactor:
8,367 h
Gross electrical energy generated in 2018:
12,127,490 MWh
Net electrical energy generated in 2018: 11,477,215 MWh
Gross electrical energy generated since
first synchronisation until 12-31-2018:
353,725,813 MWh
Net electrical energy generated since
first synchronisation until 12-31-2018:
334,444,116 MWh
Availability factor in 2018: 95.46 %
Availability factor since
date of commercial operation: 93.28 %
Capacity factor 2018: 95.24 %
Capacity factor since
date of commercial operation: 92.37 %
Downtime
(schedule and forced) in 2018: 4.54 %
Number of reactor scrams 2018: 0
Licensed annual emission limits in 2018:
Emission of noble gases with plant exhaust air: 1.1 · 10 15 Bq
Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
5.5 · 10 10 Bq
30
20
10
0
10
9
8
7
6
96
2011
94
2012
96
2013
95
2014
89
2015
96
2016
Collective radiation dose of own
and outside personnel in Sv
92
2017
95
2018
Proportion of licensed annual emission limits
for radioactive materials in 2018 for:
Emission of noble gases with plant exhaust air: 0.07 %
Emission of iodine-131 with plant exhaust air: < limit of detection
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
< limit of detection
Collective dose:
0.064 Sv
5
4
3
2
1
0
0.08 0.14
2011 2012
0.08
2013
0.09
2014
0.25
2015
0.06
2016
0.14 0.06
2017 2018
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
306
Neckarwestheim II
REPORT
Operating sequence in 2018
100
90
80
70
60
50
40
30
20
10
Electrical output in %
January February March April May June July August September October November December
100
During the reporting year 2018 the Neckarwestheim II nuclear power
80
plant (GKN II) generated a gross output of 9,703,700 MWh. The net
electrical energy generation amounted 9,099,358 MWh of which
60
8,949,140 MWh were fed into the public three-phase supply and
754,560 MWh into the static conversion unit of the Deutsche
40
Bahn AG. The plant was 7,121 h on the grid. This corresponds to an
availability of 81.29 %. Since the commissioning of the three-phasemachine
329,830,184 MWh gross and 308,416,137 MWh net were
20
generated.
0
Planned shutdowns
1 September to 8 November: 34 rd and annual major inspection:
pp
Refuelling with exchange of 28 new fuel elements.
pp
Eddy current tests of the heating tubes of all 4 steam generators.
80
pp
Major overhaul of four source isolating valves at system JNA.
pp
Complete overhaul of the residual heat removal pump with motor
60
JNA30-AP001.
p40p
Complete overhaul of intercooling pumps KAA30/31-AP001.
pp
Internal inspection of the flood pool JNK30 with submarine
20 (at UK-Loop).
pp
Major overhaul of the stop valve KAA30-AA010 and various KAB
0 flaps in UJB and UKA.
pp
Secondary tube bottom flushing of all 4 steam generators.
pp
Major overhaul of the main feed water pump LAC20-AP001.
pp
Partial overhaul of the main condensate pump LCB30-AP001.
pp
Major overhaul of the main steam safety valve and the blow-off
shut-off Positionierung:
valve for LBA10.
pp
Major Bezug, overhaul links, of live unten steam shut-off valve and shut-off valve before
safety valve on LBA20.
pp
Inspections of the turbo set and generator.
100
X = 20,475 Y = 95,25 B = 173,5 H = 38,2
VGB: HKS6K 30 %
atw: 100 60 0 0
Unplanned shutdowns and reactor/turbine trip
20 September to 8 November: Unplanned extension of the revision.
Power reductions above 10 % and longer than for 24 h
3 to 31 August: Stretch-out operation.
1 to 7 and 24 to 29 January, 17 and 18 March, 29 April, 21 to 24 July,
8 to 11 and 21 to 22 December: Load sequence operation.
Integrated management system (IMS)
EnKK (NPP KKP, GKN, KWO)
The integrated management system (IMS) of the EnBW Kernkraft
GmbH (EnKK) with its partial system for nuclear safety (SMS),
quality management (QMS/QSÜ) as well as environmental and
energy management (UMS, EnMS, Umwelt- und Energiemanagementsystem)
were also in 2018 continuously further developed.
Scope and content of each process descriptions were gradually
adapted to the different internal requirements and related approval
criteria. Besides the confirmation of conformity for the IMS, the recertification
of the EnKK energy management system (EnMS, Energiemanagementsystem)
according to DIN EN ISO 50001 took place
in 2018 to improve energy efficiency. The certificate was thus extended
by three years.
The completeness and effectiveness of the process-oriented IMS,
including the quality management measures, were confirmed by appropriate
internal audits as well as by a several-day inspection by the
expert (ESN) and the supervisory authority at the GKN and KKP
sites.
The modular and demand-oriented structure of the IMS according
to KTA1402 also enables continuous and efficient adaptation to
the site-specific requirements in operation/post-operation in subsequent
years. Another important focus will be the gradual integration
of dismantling aspects into the IMS in order to exploit synergy effects.
Waste management status
In the year 2018 4 CASTOR © V/19 casks from GKN II were delivered
to the on-site intermediate storage Neckarswestheim. Thus by then
End of 2018 61 loaded CASTOR © V/19-casks, 5 loaded TN 24E-casks
and 15 loaded CASTOR © 440/84 mvK-casks were stored at the onsite
intermediate storage Neckarwestheim.
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
307
Operating data
Review period 2018
REPORT
Plant operator: EnBW Kernkraft GmbH (EnKK)
Shareholder/Owner: EnBW Erneuerbare und Konventionelle
Erzeugung AG (98.45 %), ZEAG Energie AG, Deutsche Bahn AG,
Kernkraftwerk Obrigheim GmbH
Plant name: Kernkraftwerk Neckarwestheim II (GKN II)
Address: EnBW Kernkraft GmbH, Kernkraftwerk Neckarwestheim,
Im Steinbruch, 74382 Neckarwestheim, Germany
Phone: 07133 13-0, Telefax: 07133 17645
E-mail: poststelle-gkn@kk.enbw.com
Web: www.enbw.com
100
90
80
70
95
Availability factor in %
Capacity factor in %
92
90
93
93
94
89
81
First synchronisation: 01-03-1989
Date of commercial operation: 04-15-1989
Design electrical rating (gross):
1,400 MW
Design electrical rating (net):
1,310 MW
Reactor type:
PWR
Supplier:
Siemens/KWU
60
50
40
The following operating results were achieved:
Operating period, reactor:
7,127 h
Gross electrical energy generated in 2018: 9,703,700 MWh
Net electrical energy generated in 2018: 9,099,358 MWh
Gross electrical energy generated since
first synchronisation until 12-31-2018:
329,830,184 MWh
Net electrical energy generated since
first synchronisation until 12-31-2018:
308,416,137 MWh
Availability factor in 2018: 81.29 %
Availability factor since
date of commercial operation: 93.09 %
Capacity factor 2018: 81.00 %
Capacity factor since
date of commercial operation: 92.71 %
Downtime
(schedule and forced) in 2018: 18.71 %
Number of reactor scrams 2018: 0
30
20
10
0
10
9
8
95 92
2011 2012
90
2013
93
2014
93
2015
95
2016
Collective radiation dose of own
and outside personnel in Sv
89
2017
81
2018
Licensed annual emission limits in 2018:
Emission of noble gases with plant exhaust air: 1.0 · 10 15 Bq
Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
6.0 · 10 10 Bq
Proportion of licensed annual emission limits
for radioactive materials in 2018 for:
Emission of noble gases with plant exhaust air: 0.06 %
Emission of iodine-131 with plant exhaust air: < limit of detection
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
< limit of detection
Collective dose:
0.118 Sv
7
6
5
4
3
2
1
0
0.10 0.13
2011 2012
0.08
2013
0.10
2014
0.12
2015
0.08
2016
0.15 0.12
2017 2018
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
308
Philippsburg 2
REPORT
Operating sequence in 2018
100
90
80
70
60
50
40
30
20
10
Electrical output in %
January February March April May June July August September October November December
100
In the reporting year 2018 the nuclear power plant block
80
Philippsburg 2 (KKP 2) generated a gross output of 10,993,639 MWh.
The net electrical power generation consisted of 10,323,151 MWh.
60
The plant was 7,939 h on the grid. This corresponds to a availability
factor of 90.63 %.
40
Since the commissioning of the plant 366,161,155 MWh gross and
347,076,473 MWh net were generated.
Planned 0 shutdowns
11 May to 15 June: 33 nd refuelling and annual major inspection.
Major inspection work carried out:
pp100
Inspection of one of the three main feed pumps.
pp
Eddy current testing of two of the four steam generators.
pp
80 Leak test of reactor containment.
pp
Inspection of the main cooling water system.
pp
60 Engine replacement on two of six main cooling water pumps.
pp
Maintenance work on individual emergency power generators.
40
Unplanned shutdowns and reactor/turbine trip
18 20 August: Turbine trip (TUSA) via the criterion “high condenser
pressure”.
0
20
Power reductions above 10 % and longer than for 24 h
15 March to 11 May: Stretch-out operation
26 July to 24 August: Reduction of heat input into the Rhine and
compliance with the permissible outlet temperature.
15 October Positionierung:
to 2 November: Reduction of heat input into the Rhine
and compliance Bezug, with links, the unten permissible outlet temperature.
8 November to 3 December: Reduction of heat input into the Rhine
X = 20,475 Y = 95,25 B = 173,5 H = 38,2
VGB: HKS6K 30 %
atw: 100 60 0 0
and compliance with the permissible outlet temperature.
Integrated management system (IMS) EnKK
(NPP KKP, GKN, KWO)
The integrated management system (IMS) of the EnBW Kernkraft
GmbH (EnKK) with its partial system for nuclear safety (SMS),
quality management (QMS/QSÜ) as well as environmental and
energy management (UMS, EnMS, Umwelt- und Energiemanagementsystem)
were also in 2018 continuously further developed.
Scope and content of each process descriptions were gradually
adapted to the different internal requirements and related approval
criteria. Besides the confirmation of conformity for the IMS, the recertification
of the EnKK energy management system (EnMS, Energiemanagementsystem)
according to DIN EN ISO 50001 took place
in 2018 to improve energy efficiency. The certificate was thus extended
by three years.
The completeness and effectiveness of the process-oriented IMS,
including the quality management measures, were confirmed by appropriate
internal audits as well as by a several-day inspection by the
expert (ESN) and the supervisory authority at the GKN and KKP
sites.
The modular and demand-oriented structure of the IMS according
to KTA1402 also enables continuous and efficient adaptation to
the site-specific requirements in operation/post-operation in subsequent
years. Another important focus will be the gradual integration
of dismantling aspects into the IMS in order to exploit synergy effects.
Waste management status
During the year 2018 in total 2 transportation and storage casks of
type CASTOR © V/19 were stored in the on-site intermediate storage.
Altogether 33 loaded CASTOR © V/19 and 29 loaded CASTOR ©
V/25 casks were at the on-site intermediate storage.
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
309
Operating data
Review period 2018
REPORT
Plant operator: EnBW Kernkraft GmbH (EnKK)
Shareholder/Owner: EnBW Erneuerbare und Konventionelle
Erzeugung AG (98.45 %), ZEAG Energie AG, Deutsche Bahn AG,
Kernkraftwerk Obrigheim GmbH
Plant name: Kernkraftwerk Philippsburg 2 (KKP 2)
Address: EnBW Kernkraft GmbH, Kernkraftwerk Philippsburg,
P.O. box 11 40, 76652 Philippsburg, Germany
Phone: 07256 95-0, Telefax: 07256 95-2029
E-mail: Poststelle-kkp@kk.enbw.com
Web: www.enbw.com
100
90
80
70
90
Availability factor in %
Capacity factor in %
86
73
82
90
82
90
First synchronisation: 12-17-1984
Date of commercial operation: 04-18-1985
Design electrical rating (gross):
1,468 MW
Design electrical rating (net):
1,402 MW
Reactor type:
PWR
Supplier:
Siemens/KWU
60
50
40
63
The following operating results were achieved:
Operating period, reactor:
7,965 h
Gross electrical energy generated in 2018: 10,993,639 MWh
Net electrical energy generated in 2018: 10,323,151 MWh
Gross electrical energy generated since
first synchronisation until 12-31-2018:
366,161,155 MWh
Net electrical energy generated since
first synchronisation until 12-31-2018:
347,076,473 MWh
Availability factor in 2018: 90.63 %
Availability factor since
date of commercial operation: 88.76 %
Capacity factor 2018: 90.47 %
Capacity factor since
date of commercial operation: 88.49 %
Downtime
(schedule and forced) in 2018: 9.37 %
Number of reactor scrams 2018: 0
30
20
10
0
10
9
8
90
2011
86
2012
73
2013
82
2014
91
2015
82
2016
Collective radiation dose of own
and outside personnel in Sv
63
2017
91
2018
Licensed annual emission limits in 2018:
Emission of noble gases with plant exhaust air: 1.1 · 10 15 Bq
Emission of iodine-131 with plant exhaust air: 1.1 · 10 10 Bq
Emission of nuclear fission and activation products
with plant waste water (excluding tritium):
5.5 · 10 10 Bq
Proportion of licensed annual emission limits
for radioactive materials in 2018 for:
Emission of noble gases with plant exhaust air: 0.12 %
Emission of iodine-131 with plant exhaust air: < limit of detection
Emission of nuclear fission and activation products
with plant waste water (excluding tritium): 0.04 %
Collective dose:
0.115 Sv
7
6
5
4
3
2
1
0
0.14
2011
0.22
2012
0.16
2013
0.14
2014
0.15
2015
0.18
2016
0.07 0.12
2017 2018
Report
Operating Results 2018
atw Vol. 64 (2019) | Issue 5 ı May
310
NUCLEAR TODAY
John Shepherd is a
journalist who has
covered the nuclear
industry for the past
20 years and is
currently editor-in-chief
of UK-based Energy
Storage Publishing.
Link to reference
source:
EU Energy Union
report – https://
bit.ly/2UKZQAW
Proposals to ‘Evolve’ Euratom Treaty
Should Be Handled with Care
John Shepherd
Some weeks ago, as I began to cast around for a suitable subject for this column, I received a telephone call from a
contact close to the corridors of power in Brussels who told me to pay particular attention to upcoming announcements
on energy policy from the European Commission.
I was told the plethora of paperwork that would be
produced in the final days of the current Commission’s
term of office deserved close analysis.
And indeed, just as my editor began pressing me to
submit my copy for this issue, the Commission released its
latest ‘State of the Energy Union’. The report effectively
takes stock of the progress made towards building the
‘ Energy Union’ – and highlights “the issues where further
attention is needed”.
At first glance, I spotted the welcoming recognition of
nuclear power “as a reality in today’s European energy
mix”. I’ve been reporting on this sector long enough to
remember when nuclear energy never quite seemed to
benefit from a fond political embrace in Brussels in order
to ‘keep the peace’ between those EU member states who
favour the use of nuclear energy and those who don’t.
Some would argue it still does not today.
The report went on to remind us that half of the (EU)
member states rely on nuclear energy, which represents
nearly 30% of the bloc’s electricity generation.
But then the alarm sounded in my journalistic ears…
The report made reference to the Euratom Treaty and said:
“As part of a forward-looking agenda on energy and
climate policy, there are areas which will need to be further
improved to achieve all the policy objectives.”
The report revealed that, “in the months to come”, the
European Commission will establish “a high level group of
experts whose task will be to assess and report to the
Commission on the state of play of the Euratom Treaty,
with a view to considering how, on the basis of the current
Treaty, its democratic accountability could be improved”.
According to the report, there is “a recognised concern
that the Treaty needs to evolve in line with a more united,
stronger and democratic EU”.
Outgoing Commission president Juncker has said
previously that for “important single market questions”,
decisions in the European Council should be taken more
often by qualified majority – with the equal involvement of
the European Parliament. The energy union report said
this is now “particularly relevant in the nuclear area, where
decisions under the Euratom Treaty do not involve the
European Parliament on the same terms as foreseen in the
ordinary legislative procedure of the Lisbon Treaty”.
When the Euratom Treaty was signed in 1957, nuclear
energy was seen as an energy resource for Europe’s
economic development. As the Commission rightly points
out, the Treaty provides extensive supranational powers
at EU community level. It’s also true to say that the
application of powers under the Treaty have evolved over
time.
According to the Commission, Euratom has also played
an “important role in strengthening nuclear safety in new
member states and in the EU’s neighbourhood”. That
particular comment might still rankle with some states in
eastern Europe, that were forced to close down nuclear
generating plants (and experience hardship as a result) as
a condition of being allowed into the EU years ago.
However, the energy union report now suggests “the
potential cross-border impact of nuclear safety issues
requires – even more today and in the coming years – a
legal framework that goes beyond the borders of the
member states”.
This, I would suggest, deserves extremely close
attention. I don’t mean that to imply anything sinister,
merely to say our industry and its supporters must be
on its guard.
To be fair to EU leaders, the energy union report
acknowledges there is “a clear understanding that the use
of nuclear energy is a national choice to be made by each
member state and this will continue to be the case”. But
the report continues: “There is a recognised concern that
the Euratom Treaty needs to evolve in line with a more
united, stronger and democratic EU.”
In addition, the report suggests that the incoming
European Commission “should also take initiatives to
increase the involvement of civil society in nuclear policymaking.
The report adds: “On some nuclear matters, the
availability of information can be understandably limited,
especially in the field of nuclear security. While this is a
legitimate concern, issues such as nuclear safety, the
management of radioactive waste and emergency planning
deserve to continue to be debated as openly as possible in
line with existing rules.”
The report rightly notes that, in the area of responsible
and safe management of spent fuel and radioactive waste,
it is of “utmost importance that member states continue to
develop comprehensive plans for the management of
nuclear waste and implement these plans”. I also would
not find fault with the report’s conclusion that, “when
cross-border impact is at stake, cross-border consultations
between member states should be promoted as well as
stronger involvement of the European Nuclear Safety
Regulators Group (ENSREG).
Talking and cooperating to maximise the benefits of
clean nuclear energy, and advance nuclear technologies
as part of a wider energy mix for those countries that wish
to, is something that the nuclear energy industry has
championed on the European and world stage.
Problems only arise when attempts are made to
frustrate the use of nuclear energy for purely political
ends. Therefore, we have to take care that, however well
meaning proposals to amend the Euratom Treaty might be,
those intentions are not subverted to dilute the authority
of the governments, regulators and industry leaders in
those EU states that choose to use and advance nuclear.
Author
We need to remain alert!
John Shepherd
Nuclear Today
Proposals to ‘Evolve’ Euratom Treaty Should Be Handled with Care ı John Shepherd
Kommunikation und
Training für Kerntechnik
Atomrecht 360° kompakt
Neuer
Termin
Seminar:
Atomrecht – Was Sie wissen müssen
Seminarinhalte
ı
ı
ı
ı
Einführung: Was muss ich wissen, wenn es um Atomrecht geht?
Atomrecht 360° im Schnelldurchlauf
ı Atomverwaltung
ı Neuorganisation der Entsorgung
ı Genehmigungsverfahren
Vertrags- und Haftungsrecht im Nuklearbereich
Nuklearhaftung
Seminarziel
In dem Seminar werden die wichtigsten Bereiche des deutschen Atomrechts
(mit ausgewählten Verbindungen ins EU- und internationale Atomrecht) im Überblick
behandelt sowie das Vertrags- und Haftungsrecht im Bereich Atomrecht beleuchtet.
Termin
07. November 2019
09:00 bis 17:00 Uhr
Veranstaltungsort
Geschäftsstelle der INFORUM
Robert-Koch-Platz 4
10115 Berlin
Teilnahmegebühr
898,– € ı zzgl. 19 % USt.
Im Preis inbegriffen sind:
ı Seminarunterlagen
ı Teilnahmebescheinigung
ı Pausenverpflegung
inkl. Mittagessen
Zielgruppe
ı
Fach- und Führungskräfte, Projektleiter und -mitarbeiter, Techniker, Energiewirtschaftler,
Öffentlichkeitsarbeiter sowie Juristen anderer Fachbereiche
Maximale Teilnehmerzahl: 12 Personen
Referenten
Dr. Christian Raetzke | Rechtsanwalt Leipzig
Akos Frank LL. M. (SULS Boston) | Experte für Handelsrecht, Group Senior Legal Counsel, NKT A/S;
Referent der OECD NEA International School of Nuclear Law
Wir freuen uns auf Ihre Teilnahme!
Kontakt
INFORUM
Verlags- und Verwaltungsgesellschaft
mbH
Robert-Koch-Platz 4
10115 Berlin
Petra Dinter-Tumtzak
Fon +49 30 498555-30
Fax +49 30 498555-18
seminare@kernenergie.de
Bei Fragen zur Anmeldung
rufen Sie uns bitte an oder
senden uns eine E-Mail.
VPC - EXPANDING INTO NUCLEAR TECHNOLOGY
Repository Documentation Rethought – A comprehensive approach
from untreated waste to packages for final disposal
You can find out more about VPC‘s Nuclear Services if you scan this QR code:
www.vpc-group.biz
Want to keep up with the latest news from our company?
Then follow us on: