03.09.2019 Views

atw - International Journal for Nuclear Power | 08/09.2019

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information. It covers in particular the following topics: Energy policies, economic and legal issues Research and innovation Environment and safety Operation and new construction Decommissioning and waste disposal Fuel

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.
It covers in particular the following topics:
Energy policies, economic and legal issues
Research and innovation
Environment and safety
Operation and new construction
Decommissioning and waste disposal
Fuel

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

nucmag.com<br />

2019<br />

8/9<br />

Prospects <strong>for</strong><br />

Develop ment<br />

of <strong>Power</strong> Generation<br />

in Europe<br />

Key Decision <strong>for</strong> Dismantling<br />

Analytical Methods Used<br />

in <strong>Nuclear</strong> Decommissioning<br />

Chemotoxic Safety<br />

in the <strong>Nuclear</strong> Industry<br />

ISSN · 1431-5254<br />

24.– €<br />

Call <strong>for</strong> Papers inside!


#KT51<br />

www.kerntechnik.com<br />

Medienpartner<br />

Aus<br />

wird<br />

5. – 6. Mai 2020<br />

Berlin


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Make <strong>Nuclear</strong> Great Again?<br />

Dear reader, an inventory of future technical developments in the field of nuclear power and <strong>for</strong> the use of<br />

nuclear energy as a whole is already almost regularly on the agenda of this editorial of <strong>atw</strong>. Due to some – remarkable<br />

– developments in the field of energy supply and nuclear energy, this has been included here and now.<br />

The annual publication “<strong>Nuclear</strong> Technology Review” of<br />

the <strong>International</strong> Atomic Energy Agency (IAEA), which is<br />

updated at the same interval, certainly provides a first<br />

impression as an overview as well as detailed technical<br />

developments.<br />

The recently published “<strong>Nuclear</strong> Technology Review<br />

2019”* highlights remarkable developments in the world<br />

in 2018 and outlines the following selected areas: Energy<br />

applications, basic data on atomic and nuclear physics,<br />

accelerators and research reactors, nuclear technologies in<br />

food supply, land management and agriculture, cancer<br />

diagnosis and therapy, isotope behaviour in atmospheric<br />

precipitation <strong>for</strong>mation, nuclear technologies <strong>for</strong> analysis<br />

and identification of contributions to ocean acidification<br />

and protection of heritage assets.<br />

The introduction of the summary, and this certainly at a<br />

time when the importance of nuclear energy is being<br />

underestimated in some quarters, is the statement that at<br />

the end of 2018 450 nuclear power plants with a net<br />

capacity of 396,400 MW were in operation worldwide.<br />

This is the highest capacity since the commissioning of the<br />

first commercial nuclear power plant in Calder Hall, UK, in<br />

1956 and the first nuclear power generation in the EBR 1<br />

fast breeder reactor in the USA in 1951. The increase in<br />

output in 2018 was around 5,000 megawatts. The nine<br />

nuclear power plants taken into commercial operation in<br />

2018 made a major contribution to this growth. On the<br />

other hand, there were seven decommissioned plants,<br />

which, however, contributed less to the balance sheet total<br />

with significantly lower plant capacities. The IAEA also<br />

refers to 55 nuclear power plants under construction and<br />

to the fact that the current and future focus of development<br />

will be on Asia; 58 of the 68 new nuclear power<br />

plants commissioned since 2005 are operated in Asian<br />

countries.<br />

In its expansion scenario, the IAEA expects a capacity<br />

increase of 30 % by 2030 and a doubling of capacity by<br />

2050 <strong>for</strong> the expansions in the coming decades. The<br />

pessimistic scenario predicts a decrease in capacity by<br />

2030 and a subsequent increase to today's level by 2050.<br />

With reference to the ambitions to reduce CO 2 emissions in<br />

a number of countries and the paths taken in the<br />

publications of the Intergovernmental Panel on Climate<br />

Change, the expansion approach reflects the need <strong>for</strong><br />

nuclear energy to make its contribution to the reduction<br />

targets. Editorial note: Today, and over the past two<br />

decades, global nuclear energy use has avoided CO 2<br />

emissions of around 2 billion tonnes a year – more<br />

than agreed in the Kyoto Protocol of 1997. Together with<br />

hydroelectric power, nuclear energy is thus the lowemission<br />

energy source with all the flexibility options<br />

and round-the-clock availability as well as stability of the<br />

grid and balance between production and demand.<br />

The topics mentioned in the introduction, including<br />

references to progress in nuclear disposal and the<br />

commissioning of repositories, not only round off the topic<br />

on progress in nuclear technologies, but also provide<br />

insights into applications far beyond energy production:<br />

more and safer yields in agriculture, the fight against<br />

tropical diseases affecting millions of people are two of<br />

them.<br />

Despite all these optimistic assessments, which are first<br />

and <strong>for</strong>emost technical in nature and given the current<br />

intensive discussion of civil society mostly in social media,<br />

also the question must be asked whether the two and<br />

ultimately decisive parameters <strong>for</strong> the expansion of nuclear<br />

energy, i.e. new nuclear power plants, have been met: their<br />

economic viability and their public acceptance. It is<br />

interesting to note here on the second point that the public<br />

discussions in social media do not lead to a strengthening<br />

of the anti-nuclear trend; rather, supporters of nuclear<br />

energy have finally found an opportunity to engage in and<br />

position themselves in the discussions. An option that<br />

mostly was not possible in earlier times of selected and<br />

limited channels <strong>for</strong> the dissemination of in<strong>for</strong>mation with<br />

only a few media with pre- selection. The success of the<br />

“pro- nuclear grassroots movement” in Taiwan in the<br />

November 2018 pro-nuclear referendum is a clear sign of<br />

this.<br />

The question of economic efficiency is certainly worth<br />

its own editorial, its own specialist contributions and has<br />

been and is being discussed in some very detailed studies<br />

with different objectives. The current general impression<br />

may convey an ambivalent situation: e.g. highest cost<br />

pressure with shut-down announcements <strong>for</strong> individual<br />

nuclear power plants in parts of the USA due to the low<br />

natural gas prices due to the fracking technologies or also<br />

the cost developments <strong>for</strong> newly designed first-of-a-kind<br />

plants in an additionally difficult regulatory environment.<br />

Ultimately, however, it is not decided on the basis of<br />

repeated academic discourses with ever new approaches<br />

in order to arrive at the result of non- competitive nuclear<br />

energy use. The decisive factors will be correctly considered<br />

boundary conditions and suitable non-discriminatory<br />

market conditions, such as operating times<br />

of at least 80 years and flexibility options, but also the<br />

a<strong>for</strong>ementioned round-the-clock operation: nuclear<br />

energy “bounces” not only on a Friday, but with its<br />

reliable power generation throughout the whole week<br />

and far beyond!<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

* Download under<br />

www.iaea.org/<br />

publications/reports<br />

383<br />

EDITORIAL<br />

Editorial<br />

Make <strong>Nuclear</strong> Great Again?


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

384<br />

EDITORIAL<br />

* Download unter<br />

www.iaea.org/<br />

publications/reports<br />

Make <strong>Nuclear</strong> Great Again?<br />

Liebe Leserin, lieber Leser, eine Bestandsaufnahme zu den zukünftigen technischen Entwicklungen auf dem<br />

Gebiet der Kernenergie sowie für die Kernenergienutzung insgesamt steht schon fast regelmäßig auf der Agenda dieses<br />

Editorials der <strong>atw</strong>. Aufgrund einiger – bemerkenswerter – Entwicklungen rund um die Energieversorgung und die<br />

Kernenergie sei dies hier und jetzt aufgenommen.<br />

Einen ersten Eindruck als Übersicht sowie zu technischen<br />

Detailentwicklungen vermittelt sicherlich die jährlich<br />

erscheinende und im gleichen Intervall aktualisierte<br />

Veröffentlichung „<strong>Nuclear</strong> Technology Review“ der <strong>International</strong>en<br />

Atomenergie-Organisation (IAEO; englisch<br />

<strong>International</strong> Atomic Energy Agency, IAEA).<br />

Im kürzlich veröffentlichten „<strong>Nuclear</strong> Technology<br />

Review 2019“* werden bemerkenswerte Entwicklungen in<br />

der Welt im Jahr 2018 aufgezeigt und folgende ausgewählte<br />

Bereiche näher skizziert: Energieanwendungen, grundlegende<br />

Daten zu Atom- und Kernphysik, Beschleuniger<br />

und Forschungsreaktoren, Nukleartechnologien in der<br />

Lebensmittelversorgung, Bodenwirtschaft und Landwirtschaft,<br />

Krebsdiagnose und -therapie, Isotopenverhalten bei<br />

der Bildung von Niederschlag in der Atmosphäre, Nukleartechnologien<br />

für die Analyse und Ermittlung von Beiträgen<br />

zur Versauerung der Ozeane und Schutz von Kulturgütern.<br />

Den Einstieg der Zusammenfassung, und dies sicherlich<br />

in Zeiten, in denen mancherorts die Bedeutung der Kernenergie<br />

klein geredet wird, bildet die nüchterne Feststellung,<br />

dass Ende des Jahres 2018 weltweit 450 Kernkraftwerke<br />

mit 396.400 MW Nettoleistung in Betrieb waren.<br />

Dies ist die höchste Leistung seit Inbetriebnahme des ersten<br />

kommerziellen Kernkraftwerks im britischen Calder Hall im<br />

Jahr 1956 bzw. der ersten Kernenergiestromerzeugung<br />

1951 im Schnellbrutreaktor EBR 1 in den USA. Der Leistungszuwachs<br />

im Jahr 2018 betrug rund 5.000 Megawatt.<br />

Dazu trugen die neun in 2018 in den kommerziellen Betrieb<br />

übernommenen Kernkraftwerke maßgeblich bei. Dem<br />

gegenüber standen sieben stillgelegte Anlagen, die allerdings<br />

vergleichsweise mit deutlich geringeren Anlagenkapazitäten<br />

weniger zur Bilanz der Gesamtleistung beitrugen.<br />

Die IAEA verweist zudem auf 55 Kernkraftwerke in<br />

Bau und darauf, dass aktuell und auch zukünftig der<br />

Schwerpunkt der Entwicklung in Asien liegen wird; 58 der<br />

68 seit dem Jahr 2005 neu in Betrieb genommenen Kernkraftwerke<br />

werden in Staaten Asiens betrieben.<br />

Bei den Zubauten in den kommenden Jahrzehnten<br />

erwartet die IAEO in ihrem Zubauszenario einen Kapazitätszuwachs<br />

von 30 % bis zum Jahr 2030 und eine<br />

Kapazitätsverdoppelung bis 2050. Das pessimistische<br />

Szenario prognostiziert einen Kapazitätsrückgang bis 2030<br />

und folgend eine Zunahme auf das heutige Niveau bis<br />

2050. Mit Verweis auf die Ambitionen zur Minderung von<br />

CO 2 - Emissionen in einer Reihe von Staaten und die Pfade<br />

in den Publikationen des Intergovernmental Panel on<br />

Climate Change dazu, reflektiert der Zubauansatz die<br />

Notwendigkeiten, damit die Kernenergie ihren Beitrag zu<br />

den Reduktionszielen leistet. Redaktionelle Anmerkung:<br />

Heute und in den vergangenen zwei Jahrzehnten hat die<br />

weltweite Kernenergienutzung Jahr für Jahr CO 2 -Emissionen<br />

von rund 2 Milliarden Tonnen vermieden – mehr als<br />

im Kyoto- Protokoll von 1997 vereinbart. Gemeinsam mit<br />

der Wasserkraft ist die Kernenergie damit die emissionsarme<br />

Energiequelle mit allen Flexibilitätsoptionen und<br />

einer Verfügbarkeit Rund-um-die-Uhr sowie für die<br />

Gewährleistung von Netzstabilität und Balance zwischen<br />

Erzeugung und Verbrauch.<br />

Die darüber hinaus einleitend genannten Themen, so<br />

auch Verweise auf Fortschritte bei der nuklearen Entsorgung<br />

bis hin zur Inbetriebnahme von Endlagern runden<br />

das Thema zu Fortschritten bei Nukleartechnologien nicht<br />

nur ab, sondern geben auch Einblicke in Anwendungen<br />

weit über die Energieerzeugung hinaus: mehr und sichere<br />

Erträge in der Landwirtschaft, die Bekämpfung tropischer<br />

Krankheiten, die Millionen von Menschen betreffen, sind<br />

zwei davon.<br />

Bei all diesen optimistischen Einschätzungen, die erst<br />

einmal technisch geprägt sind, ist vor dem Hintergrund der<br />

aktuellen intensiv geführten gesellschaftlichen Diskussion,<br />

meist in den sozialen Medien, aber auch zu hinterfragen, ob<br />

die zwei und schlussendlich entscheidenden Parameter für<br />

einen Kernenergieausbau, also neue Kernkraftwerke, erfüllt<br />

sind: ihre Wirtschaftlichkeit und ihre gesellschaftliche<br />

Akzeptanz. Interessant ist hier zum zweiten Punkt festzustellen,<br />

dass die Diskussionen in sozialen Medien nicht<br />

dazu führen, dass sich der Anti-Nuklear-Trend verstärkt,<br />

vielmehr haben Kernenergiebefürworter endlich eine<br />

Möglichkeit gefunden, sich in die Diskussionen einzubringen<br />

und sich zu positionieren. Eine Option, die in<br />

früheren Zeiten ausgewählter und beschränkter Kanäle<br />

zur In<strong>for</strong>mationsverbreitung mit nur wenigen Medien<br />

mit Vorauswahl eher nicht möglich war. Der Erfolg der<br />

„ Pro- Nuklearen Gras wurzelbewegung“ in Taiwan beim<br />

Pro-Kernenergie- Referendum im November 2018 ist dafür<br />

ein klares Zeichen.<br />

Die Frage der Wirtschaftlichkeit ist sicherlich ein eigenes<br />

Editorial und eigene Fachbeiträge wert und wurde und wird<br />

in teils sehr ausführlichen Studien unterschiedlicher Zielrichtung<br />

erörtert. Der aktuelle allgemeine Eindruck mag<br />

eine zwiespältige Situation vermitteln: so z. B. höchster<br />

Kostendruck mit Stilllegungsankündigungen für einzelne<br />

Kernkraftwerke in Teilen der USA infolge der günstigen<br />

Erdgaspreise durch die Fracking-Technologien oder auch<br />

die Kostenentwicklungen bei neu konzipierten Erstanlagen<br />

in einem zudem schwierigen regulatorischen Umfeld.<br />

Letztendlich entschieden wird sie aber nicht anhand immer<br />

wieder neu aufgelegter akademischer Diskurse mit immer<br />

neuen Ansätzen, um meist zum Ergebnis einer nicht<br />

wettbewerbsfähigen Kernenergienutzung zu kommen.<br />

Dabei entscheidend werden korrekt berücksichtige Randbedingungen<br />

und geeignete diskriminierungsfreie Marktbedingungen<br />

sein, so Betriebszeiten von mindestens<br />

80 Jahren sowie Flexibilitätsoptionen, aber auch der schon<br />

erwähnte Rund-um-die-Uhr-Betrieb: Die Kernenergie<br />

„hüpft“ halt nicht nur an einem Freitag, sondern mit ihrer<br />

verlässlichen Stromerzeugung über die ganze Woche und<br />

weit darüber hinaus!<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

Make <strong>Nuclear</strong> Great Again?


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.<strong>09.2019</strong><br />

10.03.2020<br />

Berlin<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

Atomrecht – Was Sie wissen müssen<br />

RA Dr. Christian Raetzke 22.10.2019<br />

18.02.2020<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

Berlin<br />

07.11.2019 Berlin<br />

3 Kommunikation und Politik<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –<br />

Themen und Formate<br />

Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin<br />

13.11. - 14.11.2019 Salzgitter<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 <strong>Nuclear</strong> English<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Dr. Stefan Kirsch<br />

RA Dr. Christian Raetzke<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

24.09. - 25.<strong>09.2019</strong> Berlin<br />

15.10. - 16.10.2019<br />

13.11. - 14.11.2019<br />

28.01. - 29.01.2020<br />

Berlin<br />

English <strong>for</strong> <strong>Nuclear</strong> Business Angela Lloyd 01.04. - 02.04.2020 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Veränderungsprozesse gestalten – Heraus <strong>for</strong>derungen<br />

meistern, Beteiligte gewinnen<br />

Erfolgreicher Wissenstransfer in der Kerntechnik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

26.11. - 27.11.2019 Berlin<br />

24.03. - 25.03.2020 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

386<br />

Issue 8/9 | 2019<br />

August/September<br />

CONTENTS<br />

Contents<br />

Editorial<br />

Make <strong>Nuclear</strong> Great Again? E/G . . . . . . . . . . . . . . . . . . . . . 383<br />

Inside <strong>Nuclear</strong> with NucNet<br />

UK Consultation:<br />

Is RAB Financing Model Right <strong>for</strong> New <strong>Nuclear</strong>? . . . . . . . . . . . 388<br />

Did you know...? . . . . . . . . . . . . . . . . . . . . . . . . . . . 389<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe . . . . 391<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Key Decision <strong>for</strong> Dismantling G . . . . . . . . . . . . . . . . . . . . . 398<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods<br />

Used in <strong>Nuclear</strong> Decommissioning . . . . . . . . . . . . . . . . . . . . 400<br />

A Pragmatic Approach to Chemotoxic Safety<br />

in the <strong>Nuclear</strong> Industry . . . . . . . . . . . . . . . . . . . . . . . . . . .409<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />

The <strong>Nuclear</strong> Waste Management Strategy:<br />

The Southern Hemisphere | Part 4. . . . . . . . . . . . . . . . . .414<br />

Special Topic | A Journey Through 50 Years AMNT<br />

CO 2 -Reduction Without <strong>Nuclear</strong> a Fanciful Utopia G . . . . . . . . 422<br />

Communication Promotes Peaceful Use of <strong>Nuclear</strong> Energy G . . .423<br />

AMNT 2019<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology<br />

Young Scientists Workshop . . . . . . . . . . . . . . . . . . . . . . . . 425<br />

Atmospheric Spent Fuel Pool Cooling<br />

by Passive Two-Phase Closed Thermo syphons . . . . . . . . . . . . .427<br />

Analytical Model <strong>for</strong> the Investigation of the Out-of-Plane<br />

Behavior of Unrein<strong>for</strong>ced Masonry Walls. . . . . . . . . . . . . . . .431<br />

Cover:<br />

<strong>Nuclear</strong> power new build. One option<br />

<strong>for</strong> a reliable electricity supply. The focus is<br />

shifting to the Middle-East and East.<br />

View of the Emirates <strong>Nuclear</strong> Energy<br />

Corporation project under construction in the<br />

United Arab Emirates. Four units of about<br />

1000 MW will be comissioned in the next<br />

years.<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437<br />

<strong>Nuclear</strong> Today<br />

A Century of Wisdom Underlines <strong>Nuclear</strong>’s Green Credentials . . 442<br />

Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<strong>08</strong><br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Insert: AiNT – Programm<br />

KERNTECHNIK 2020 (<strong>for</strong>merly AMNT) – Call <strong>for</strong> Papers<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Feature<br />

Major Trends in Energy<br />

Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

387<br />

CONTENTS<br />

391 Prospects <strong>for</strong> Development of <strong>Power</strong> Generation<br />

in Europe<br />

Stefan Ulreich and Hans-Wilhelm Schiffer<br />

Spotlight on <strong>Nuclear</strong> Law<br />

398 Key Decision <strong>for</strong> Dismantling<br />

Leitentscheidung zum KKW-Rückbau:<br />

VGH München weist Weg zur „grünen Wiese“<br />

Tobias Leidinger<br />

Decommissioning and Waste Management<br />

400 Review of the Analytical Methods Used<br />

in <strong>Nuclear</strong> Decommissioning<br />

Alexandra K. Nothstein, Ursula Hoeppener-Kramar,<br />

Laura Aldave de las Heras and Benjamin C. Russell<br />

409 A Pragmatic Approach to Chemotoxic Safety<br />

in the <strong>Nuclear</strong> Industry<br />

Howard Chapman, Marc Thoma and Stephen Lawton<br />

414 A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />

The <strong>Nuclear</strong> Waste Management Strategy: The Southern Hemisphere<br />

| Part 4<br />

Mark Callis Sanders and Charlotta E. Sanders<br />

AMNT 2019<br />

425 Annual Meeting on <strong>Nuclear</strong> Technology 2019<br />

Young Scientists Workshop<br />

Jörg Starflinger<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

388<br />

INSIDE NUCLEAR WITH NUCNET<br />

UK Consultation: Is RAB Financing Model<br />

Right <strong>for</strong> New <strong>Nuclear</strong>?<br />

The UK government has announced it wants to prepare to support further new nuclear projects, but only if<br />

they can be delivered at a competitive price and each individual project represents value <strong>for</strong> money.<br />

The government plans were contained in a<br />

consultation document on a possible new<br />

funding model <strong>for</strong> new nuclear in the UK.<br />

In the document the government says that by providing<br />

regulated returns to investors, a regulated asset-based, or<br />

RAB model, can reduce the cost of raising private finance<br />

<strong>for</strong> new nuclear projects, which are notorious <strong>for</strong> their<br />

up-front capital requirements. According to the document<br />

the RAB model will reduce consumer bills and maximise<br />

value <strong>for</strong> money <strong>for</strong> consumers and taxpayers.<br />

The RAB model, typically used <strong>for</strong> funding UK monopoly<br />

infrastructure, involves an economic regulator who grants<br />

a licence to a company to charge a regulated price to users<br />

of the infrastructure.<br />

The model essentially aims to lower overall costs by<br />

having consumers fund future nuclear projects be<strong>for</strong>e they<br />

are built.<br />

According to the Department <strong>for</strong> Business, Energy and<br />

Industrial Strategy (BEIS), RAB-funded infrastructure has<br />

attracted significant investment from private sector capital<br />

over the last 20-30 years, with total value of RAB assets in<br />

2018 of about £160bn.<br />

After months of rumours that the government might<br />

consider the RAB model, the BEIS has launched the<br />

consultation to seek views on it, including arrangements<br />

<strong>for</strong> risk sharing.<br />

In the consultation document the BEIS says any RAB<br />

model would need to come with guarantees including<br />

government protection <strong>for</strong> investors and consumers<br />

against “specific remote, low probability but high impact<br />

risk events”.<br />

There would need to be a fair sharing of costs and risks<br />

between consumers and investors set out in an economic<br />

regulatory regime, an economic regulator to operate the<br />

regime and a route <strong>for</strong> funds to be raised from energy<br />

suppliers to support new nuclear projects.<br />

The document says the UK recently became the first<br />

major economy to legislate <strong>for</strong> a target of net zero<br />

greenhouse gas emissions by 2050, but reaching this target<br />

will require ambitious action to reduce emissions while<br />

keeping energy costs low and supplies secure.<br />

To meet increasing energy demand, whilst reducing<br />

emissions to low levels, there will need to be a substantial<br />

increase in low-carbon generation. The government<br />

committee on climate change estimates a four-fold increase<br />

may be needed. This at a time when seven out of eight of<br />

the UK’s existing nuclear power stations – important<br />

contributors to the country’s low-carbon generation – are<br />

due to come offline by 2030 as they reach the end of their<br />

operational lives.<br />

As the cost of renewable technologies such as offshore<br />

wind and solar continues to fall, it is becoming clear that<br />

they are likely to provide most of the UK’s low-carbon<br />

generating capacity in 2050. However, there will still be a<br />

crucial role <strong>for</strong> low-carbon “firm” – or always available –<br />

power. The committee on climate change says 38 % firm<br />

low- carbon energy might be needed to meet net zero while<br />

maintaining security of supply and keeping costs low.<br />

The consultation document says nuclear, which today<br />

provides about 20 % of the UK’s electricity, is a low-carbon<br />

option and the government “should be prepared to support<br />

further new nuclear projects in the years ahead, if they can<br />

be delivered at a competitive price and each individual<br />

project represents value <strong>for</strong> money”.<br />

The first step in driving down costs was the signing of<br />

an ambitious policy deal –known as the nuclear sector deal<br />

– with the nuclear industry which focuses on lowering the<br />

cost of new nuclear projects by 30 % to ensure nuclear<br />

remains competitive with other technologies.<br />

The nuclear industry – as part of the implementation of<br />

the nuclear sector deal – is leading work to establish how<br />

that 30 % target can be achieved by 2030.<br />

This will involve thinking about how, <strong>for</strong> example,<br />

innovative approaches to advanced manufacturing,<br />

construction and materials can reduce costs in a range<br />

of products and services across the nuclear industry,<br />

including <strong>for</strong> future nuclear technologies.<br />

The deal will also see the government provide up to<br />

£56m <strong>for</strong> R&D <strong>for</strong> advanced modular reactors and increase<br />

its support the development and deployment of small<br />

modular reactors and the innovative technologies that<br />

support them<br />

The new RAB funding model could be used <strong>for</strong> EDF<br />

Energy’s plans <strong>for</strong> a new EPR plant at Sizewell C in Suffolk,<br />

which was left in doubt after criticism of the costs<br />

surrounding the Hinkley Point C project in Somerset.<br />

It could also resurrect plans to build two UK Advanced<br />

Boiling Water Reactors at the Wylfa project in North Wales,<br />

which were shelved last year because of rising construction<br />

costs and a failure to reach an agreement on financing with<br />

the UK government.<br />

France’s state-backed EDF Energy has been a vocal<br />

champion <strong>for</strong> the proposed RAB model after the cost of its<br />

twin-EPR Hinkley Point C project in Somerset was heavily<br />

criticised <strong>for</strong> its cost to consumers.<br />

BEIS said using an RAB model <strong>for</strong> future projects was<br />

suitable as companies such as EDF would look to replicate<br />

the Hinkley Point design in future plants. EDF said its<br />

proposed Sizewell C plant would be a “near replica” and<br />

there<strong>for</strong>e “cheaper to construct and finance”.<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency<br />

Editor responsible <strong>for</strong> this story: David Dalton<br />

Editor in Chief, NucNet<br />

Avenue des Arts 56<br />

1000 Brussels, Belgium<br />

www.nucnet.org<br />

Inside <strong>Nuclear</strong> with NucNet<br />

UK Consultation: Is RAB Financing Model Right <strong>for</strong> New <strong>Nuclear</strong>?


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Did you know...?<br />

Energy policy challenges from the<br />

general public’s point of view<br />

The Allensbach Institute <strong>for</strong> Public Opinion Research conducted a<br />

representative survey on behalf of KernD. Among other things,<br />

the study examined the general public’s energy policy priorities,<br />

assessment of the energy policy challenges and the allocation<br />

of responsibilities <strong>for</strong> energy policy decisions.<br />

The study is based on a total of 1,713 face-to-face interviews with<br />

a representative cross-section of the general public aged 16 and<br />

over. The interviews were conducted between 1 and 15 April 2019.<br />

Results expressed as percentages.<br />

1 Highest energy policy priority:<br />

security of supply<br />

Security of supply is the top priority: In the energy policy<br />

priorities chosen by members of the public, security of supply very<br />

clearly ranks first. 81 percent consider it most important that the<br />

energy supply is assured at all times, ahead of the rapid expansion<br />

of renewable energies (72 percent) and the use of energy sources<br />

that protect the climate (70 percent).<br />

In contrast, generating energy in the region (45 percent) and<br />

phasing out nuclear energy by 2022 (41 percent) are much less<br />

important. Even further down the list are higher prices <strong>for</strong> energy<br />

types that have a greater impact on the environment (32 percent)<br />

and, in particular, a policy that encourages homeowners to<br />

renovate their homes <strong>for</strong> energy efficiency (24 percent).<br />

2 Challenges of the energy supply<br />

Costs are an important challenge alongside security of<br />

supply and climate protection: As expected, the changeover to<br />

renewable energies (68 percent), the reduction of CO 2 emissions<br />

(59 percent) and security of supply at all times (58 percent) play<br />

an important role in the challenges facing energy policy. Here,<br />

however, the aspect of energy costs comes more strongly to the<br />

<strong>for</strong>e: 71 percent of respondents see it as a challenge that prices<br />

do not rise too much, and 57 percent see it as a challenge that the<br />

energy requirements <strong>for</strong> buildings do not place too heavy a<br />

burden on tenants and homeowners.<br />

Question: “When it comes to the energy supply<br />

and energy policy in Germany: what do you see<br />

as the biggest challenges at present?”<br />

71<br />

69<br />

68<br />

59<br />

58<br />

That energy prices do not rise too much<br />

That a solution will be found to the final<br />

disposal of nuclear waste<br />

That changing over the power supply<br />

to renewable energies will succeed<br />

That CO 2 emissions in Germany will be<br />

significantly reduced <strong>for</strong> climate protection<br />

That the energy supply is guaranteed at all times<br />

Source:<br />

Allensbach Institute<br />

<strong>for</strong> Public Opinion<br />

Research. Survey on<br />

behalf of Kerntechnik<br />

Deutschland e.V.<br />

(KernD) (<strong>for</strong>merly<br />

DAtF) April 2019<br />

DID YOU EDITORIAL KNOW...?<br />

389<br />

Question: “In your opinion, what should energy<br />

policy pay particular attention to?”<br />

57<br />

56<br />

That the energy requirements <strong>for</strong> houses do<br />

not drive up costs <strong>for</strong> tenants and home owners<br />

That the power grid is also expanded to distribute the<br />

electricity from renewable energies over longer distances<br />

81<br />

That the energy supply is assured at all times<br />

55<br />

That Germany becomes less dependent<br />

on energy supplies from abroad<br />

72<br />

That the expansion of renewable energies<br />

is driven <strong>for</strong>ward rapidly<br />

50<br />

That Germany as a seat of industry is not at risk<br />

70<br />

That primarily we use energy sources<br />

that protect the climate<br />

49<br />

That consumers are more strongly encouraged<br />

to save energy<br />

60<br />

55<br />

54<br />

54<br />

48<br />

45<br />

45<br />

That different energy sources are used so that<br />

we are not dependent on a single energy source alone<br />

That there are as few risks as possible<br />

when generating energy<br />

That people are encouraged to save energy<br />

That energy prices are low<br />

That our energy supply is as independent<br />

as possible from abroad<br />

That energy is increasingly generated locally<br />

or in the region<br />

That European countries should coordinate their energy<br />

policies more closely and cooperate more closely<br />

3 Allocation of responsibility<br />

<strong>for</strong> decisions in energy policy<br />

A clear majority sees responsibility <strong>for</strong> energy policy in the<br />

hands of politicians and experts: A clear majority of 54 percent<br />

of respondents see the responsibility <strong>for</strong> energy policy decisions<br />

in the hands of politicians in consultation with experts. Only<br />

20 percent see the general public as being responsible <strong>for</strong> making<br />

decisions in this policy area. The majority there<strong>for</strong>e assume<br />

that the complex task of ensuring a sustainable and reliable energy<br />

supply must be the responsibility of politicians and experts<br />

and cannot be transferred to the general public.<br />

41<br />

38<br />

35<br />

33<br />

32<br />

24<br />

That Germany will phase out nuclear energy<br />

by 2022 as planned<br />

That Germany should abandon coal as an energy<br />

source as quickly as possible<br />

That more power lines are built so that wind power<br />

generated in Northern Germany can also be transported<br />

to Southern Germany<br />

That new technologies in the energy sector<br />

are promoted more strongly, e.g. electric drives <strong>for</strong> cars<br />

Higher prices <strong>for</strong> energy types<br />

that have a greater impact on the environment<br />

That homeowners are encouraged to renovate<br />

their houses <strong>for</strong> energy efficiency<br />

Question: “A great deal depends on the decisions<br />

on energy policy <strong>for</strong> the economy and society.<br />

How do you see this: Should decisions in the field<br />

of energy policy be taken primarily by politicians<br />

in consultation with experts, or should it be the<br />

general public itself that makes the decisions?”<br />

54 Politicians in consultation<br />

with experts<br />

20 General<br />

public<br />

26 Undecided<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

KernD<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

KernD.de<br />

www.KernD.de<br />

Did you know...?


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Calendar<br />

390<br />

2019<br />

CALENDAR<br />

04.09.-06.<strong>09.2019</strong><br />

World <strong>Nuclear</strong> Association Symposium 2019.<br />

London, UK, World <strong>Nuclear</strong> Association (WNA),<br />

www.wna-symposium.org<br />

04.09.-05.<strong>09.2019</strong><br />

VGB Congress 2019 – Innovation in <strong>Power</strong><br />

Generation. Salzburg, Austria, VGB <strong>Power</strong>Tech e.V.,<br />

www.vgb.org<br />

<strong>08</strong>.09.-11.<strong>09.2019</strong><br />

4 th <strong>Nuclear</strong> Waste Management, Decommissioning<br />

and Environmental Restoration<br />

(NWMDER). Ottawa, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

09.09.-12.<strong>09.2019</strong><br />

24 th World Energy Congress. Abu Dhabi, UAE,<br />

www.wec24.org<br />

09.09.-12.<strong>09.2019</strong><br />

Jahrestagung 2019 – Fachverband<br />

für Strahlenschutz | Strahlenschutz und Medizin.<br />

Würzburg, Germany,<br />

www.fs-ev.org/jahrestagung-2019<br />

15.09.-21.<strong>09.2019</strong><br />

13 th <strong>International</strong> Conference on WWER Fuel<br />

Per<strong>for</strong>mance, Modelling and Experimental<br />

Support. Nessebar, Bulgaria, INRNE-BAS<br />

in cooperation with IAEA,<br />

www.inrne.bas.bg/wwerfuel2019<br />

16.09.-20.<strong>09.2019</strong><br />

63 rd Annual Conference of the IAEA. Vienna,<br />

Austria, <strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/about/governance/generalconference<br />

22.09.-27.<strong>09.2019</strong><br />

ISFNT-14 – <strong>International</strong> Symposium on Fusion<br />

<strong>Nuclear</strong> Technology. Budapest, Hungary, Wigner<br />

Research Centre <strong>for</strong> Physics, www.isfnt-14.org<br />

25.09.-26.<strong>09.2019</strong><br />

6 th World <strong>Nuclear</strong> Industry Congress. London, UK,<br />

IYNC, www.szwgroup.com<br />

07.10.-11.10.2019<br />

<strong>International</strong> Conference on Climate Change and<br />

the Role of <strong>Nuclear</strong> <strong>Power</strong>. Vienna, Austria,<br />

IAEA, www.iaea.org<br />

07.10.-18.10.2019<br />

ICTP-IAEA <strong>Nuclear</strong> Energy Management School.<br />

Trieste, Italy, IAEA, www.iaea.org<br />

15.10.-16.10.2019<br />

Africa <strong>Nuclear</strong> Business Plat<strong>for</strong>m. Nairobi, Kenya,<br />

<strong>Nuclear</strong> Business Plat<strong>for</strong>m,<br />

www.nuclearbusiness-plat<strong>for</strong>m.com<br />

22.10.-25.10.2019<br />

SWINTH-2019 Specialists Workshop on Advanced<br />

Instrumentation and Measurement Techniques<br />

<strong>for</strong> Experiments Related to <strong>Nuclear</strong> Reactor<br />

Thermal Hydraulics and Severe Accidents.<br />

Livorno, Italy, www.nineeng.org/swinth2019/<br />

23.10.-24.10.2019<br />

Chemistry in <strong>Power</strong> Plants. Würzburg, Germany,<br />

VGB <strong>Power</strong>Tech e.V., www.vgb.org/en/<br />

chemie_im_kraftwerk_2019.html<br />

27.10.-30.10.2019<br />

FSEP CNS <strong>International</strong> Meeting on Fire Safety<br />

and Emergency Preparedness <strong>for</strong> the <strong>Nuclear</strong><br />

Industry. Ottawa, Canada, Canadian <strong>Nuclear</strong> Society<br />

(CNS), www.cns-snc.ca<br />

04.11.-06.11.2019<br />

11. Freigabesymposium: Entlassung von<br />

radio aktiven Stoffen aus dem Geltungsbereich<br />

des StrlSchG. Hamburg, Germany, TÜV Nord<br />

Akademie, www.tuev-nord.de<br />

04.11.-07.11.2019<br />

<strong>International</strong> Conference on Effective Regulatory<br />

Systems 2019. The Hague, Netherlands,<br />

<strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/events/conference-on-effectiveregulatory-systems-2019<br />

12.11.-14.11.2019<br />

<strong>International</strong> Conference on <strong>Nuclear</strong><br />

Decommissioning – ICOND 2019. Eurogress<br />

Aachen, Aachen Institute <strong>for</strong> <strong>Nuclear</strong> Training GmbH,<br />

www.icond.de<br />

13.11.-14.11.2019<br />

India <strong>Nuclear</strong> Business Plat<strong>for</strong>m. Mumbai, India,<br />

<strong>Nuclear</strong> Business Plat<strong>for</strong>m,<br />

www.nuclearbusiness-plat<strong>for</strong>m.com<br />

25.11.-29.11.2019<br />

<strong>International</strong> Conference on Research Reactors:<br />

Addressing Challenges and Opportunities to<br />

Ensure Effectiveness<br />

and Sustainability. Buenos Aires, Argentina,<br />

<strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/events/conference-on-researchreactors-2019<br />

2020<br />

12.01.-16.01.2020<br />

<strong>Power</strong> Plant Simulation Conference. Chattanooga,<br />

Tennessee United States, Society <strong>for</strong> Modeling &<br />

Simulation <strong>International</strong>, www.scs.org<br />

10.02.-14.02.2020<br />

ICONS2020: <strong>International</strong> Conference on <strong>Nuclear</strong><br />

Security. Vienna, Austria,<br />

The <strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org<br />

19.02.-21.02.2020<br />

<strong>International</strong> <strong>Power</strong> Summit. Hamburg, Germany,<br />

ARENA <strong>International</strong> Events Group,<br />

www.arena-international.com<br />

04.03.-05.03.2020<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants I Expo & Summit. Istanbul,<br />

Turkey, NPPS, www.nuclearpowerplantsexpo.com<br />

<strong>08</strong>.03.-12.03.2020<br />

WM Symposia – WM2019. Phoenix, AZ, USA,<br />

www.wmsym.org<br />

<strong>08</strong>.03.-13.03.2020<br />

IYNC2020 – The <strong>International</strong> Youth <strong>Nuclear</strong><br />

Congress. Sydney, Australia, IYNC,<br />

www.iync2020.org<br />

18.03.-20.03.2020<br />

12. Expertentreffen Strahlenschutz. Bayreuth,<br />

Germany, TÜV SÜD, www.tuev-sued.de<br />

31.03.-03.04.2020<br />

ATH'2020 – <strong>International</strong> Topical Meeting on<br />

Advances in Thermal Hydraulics. Paris, France,<br />

Société Francaise d’Energie Nucléaire (SFEN),<br />

www.sfen-ath2020.org<br />

KERNTECHNIK 2020.<br />

Berlin, Germany, KernD and KTG,<br />

www.kerntechnik.com<br />

05.05.-06.05.2020<br />

09.2020<br />

Jahrestagung 2020 – Fachverband für<br />

Strahlenschutz I Strahlenschutz und Medizin.<br />

Aachen, Germany,<br />

www.fs-ev.org/jahrestagung-2020<br />

27.09.-02.10.2020<br />

NPC 2020 – <strong>International</strong> Conference on Water<br />

Chemistry in <strong>Nuclear</strong> Reactor Systems. Antibes,<br />

France, Société Francaise d’Energie Nucléaire (SFEN),<br />

www.sfen-npc2020.org<br />

15.10.-18.10.2019<br />

10.02.-14.02.2020<br />

Technical Meeting on Siting <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong><br />

Plants. Vienna, Austria, IAEA, www.iaea.org<br />

37 th Short Courses on Multiphase Flow. Zurich,<br />

Switzerland, Swiss Federal Institute of Technology<br />

ETH, www.lke.mavt.ethz.ch<br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Prospects <strong>for</strong> Development of <strong>Power</strong><br />

Generation in Europe<br />

Stefan Ulreich and Hans-Wilhelm Schiffer<br />

The European power plant fleet will experience a paradigm shift between 2025 and 2030 due to the technical lifetime<br />

of conventional plants. The <strong>for</strong>eseeable change will be intensified by the increasing ef<strong>for</strong>ts, in recent years, to shut down<br />

nuclear and coal-fired power plants be<strong>for</strong>e they reach the end of their technical and economic life. The declining volume<br />

generated from conventional power plants can be compensated by the added capacity of renewable energies. However,<br />

to maintain the grid’s stability, there is a need to ensure that the necessary assured capacity is available at all times.<br />

Conventional power plants, which have so far provided most of the assured capacity, will only be available to a<br />

significantly reduced extent in the future. For this reason, renewable energies and flexibility options, such as storage<br />

and demand response, will have to make rapidly increasing contributions to the assured capacity from the period<br />

mentioned above in order to achieve the usual level of security of supply. To illustrate the challenges ahead, this article<br />

looks at the capacity retirement curve of the EU-28’s conventional power plant fleet – only as a first approximation<br />

of course, since a sound energy economic calculation must also take into account the availability and transport of<br />

electricity. European solutions can reduce the necessary increase in flexibility by exploiting portfolio effects.<br />

1 <strong>Power</strong> supply structures in Europe and<br />

the EU<br />

Energy consumption in Europe and the European Union<br />

EU-28 is still largely covered by the use of fossil resources.<br />

In 2018, oil, natural gas and coal accounted <strong>for</strong> 75 % of the<br />

EU’s primary energy consumption. The contribution made<br />

by renewable energies and nuclear energy was 14 % and<br />

11 % respectively. A similar picture can be seen <strong>for</strong> Europe 1<br />

with 74 % of primary energy consumption being fossil<br />

fuels, 15 % renewable and 10 % nuclear energy. The EU-28<br />

accounts <strong>for</strong> 82 % of European energy consumption.<br />

(Fig. 1).<br />

| | Fig. 1.<br />

Primary energy consumption 2018 in Europe and the EU-28. (Source: BP<br />

Statistical Review of World Energy (June 2019), Workbook).<br />

Oil is used mainly in the transport sector and the chemical<br />

industry. Natural gas is used primarily in the heat market<br />

and also in electricity generation, with very different<br />

weightings in the member states. Renewable energies are<br />

used both in the heating market and in electricity<br />

generation, and also to a lesser extent in the transport<br />

sector. In contrast, the power plant sector is the most<br />

important area of use <strong>for</strong> coal. This applies even more so to<br />

nuclear energy.<br />

Correspondingly, there are large variations in the<br />

composition of primary energy consumption and power<br />

generation by energy source (Figs. 1 and 2). In 2018, coal<br />

accounted <strong>for</strong> 20 % (21 %), natural gas <strong>for</strong> 19 % (18 %), oil<br />

<strong>for</strong> 2 % (1 %), nuclear energy <strong>for</strong> 25 % (23 %), renewable<br />

energies <strong>for</strong> 32 % (35 %) and other energies <strong>for</strong> 2 % (1 %)<br />

of power generation in the EU-28 (Europe). The share<br />

of fossil energies is thus significantly lower and the contribution<br />

of nuclear energy and renewable energies considerably<br />

higher than in primary energy consumption. The<br />

EU accounts <strong>for</strong> 89 % of Europe’s electricity con sumption.<br />

2 Determining factors <strong>for</strong> the energy mix<br />

Within Europe, the EU <strong>for</strong>ms a bloc with a certain<br />

coordinating function with regard to the energy policy of<br />

the member states. Nevertheless, the energy mix in the EU<br />

member states presents a differentiated picture. There are<br />

two decisive factors <strong>for</strong> this:<br />

pp<br />

the resource situation of the states in each case and<br />

pp<br />

the orientation of their energy policy.<br />

Article 194 of the Treaty on the Functioning of the<br />

European Union lays down the basis <strong>for</strong> objectives relating<br />

to energy policy and the method <strong>for</strong> achieving those<br />

objectives. They include:<br />

pp<br />

ensuring the functioning of the energy market<br />

pp<br />

ensuring the security of the energy supply in the Union<br />

pp<br />

promoting energy efficiency and energy saving and<br />

developing new and renewable energy sources; and<br />

pp<br />

improving the energy infrastructure, e.g. by promoting<br />

the interconnection of energy networks.<br />

It also stipulates that measures must be enacted by the<br />

European Parliament and the Council in order to achieve<br />

these objectives.<br />

| | Fig. 2.<br />

Electricity mix of Europe and the EU-28. (Source: BP Statistical Review of<br />

World Energy (June 2019), Workbook).<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 391<br />

1 In addition to the EU-28, BP also includes Bosnia-Herzegovina, Iceland, Northern Macedonia, Montenegro, Norway, Switzerland, Serbia, Turkey<br />

and Ukraine under Europe.<br />

Feature<br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe ı Stefan Ulreich and Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 392<br />

However, the measures do not affect the right of<br />

member states to determine the conditions <strong>for</strong> use of<br />

its energy resources, its choice between different<br />

energy sources and the general structure of its energy<br />

supply.<br />

| | Fig. 3.<br />

EU countries with power generation based on nuclear energy. (Source: BP Statistical Review of World<br />

Energy (June 2019), Workbook).<br />

| | Fig. 4.<br />

<strong>Power</strong> generation mix of ten selected EU countries 2018 in %. (Source: BP Statistical Review of World<br />

Energy (June 2019), Workbook).<br />

Energy source 2010* 2014* 2017* 2030 2040<br />

Coal<br />

Oil<br />

Gas<br />

<strong>Nuclear</strong> energy<br />

Renewables<br />

including:<br />

• Hydro<br />

• Bioenergy<br />

• Wind<br />

• Geothermal energy<br />

• Solar PV<br />

• CSP<br />

• Marine energy<br />

202<br />

65<br />

216<br />

138<br />

290<br />

145<br />

28<br />

85<br />

1<br />

30<br />

1<br />

0<br />

177<br />

58<br />

212<br />

129<br />

410<br />

151<br />

40<br />

129<br />

1<br />

87<br />

2<br />

0<br />

170<br />

50<br />

217<br />

125<br />

478<br />

155<br />

44<br />

169<br />

1<br />

107<br />

2<br />

0<br />

84<br />

20<br />

272<br />

90<br />

794<br />

165<br />

60<br />

329<br />

1<br />

232<br />

4<br />

2<br />

| | Tab. 1.<br />

<strong>Power</strong> generation capacity in the EU-28 in GW.<br />

*at the end of each year<br />

Source: <strong>International</strong> Energy Agency, World Energy Outlook 2012, 2016 and 2018, Paris,<br />

November 2012, 2016 and 2018, respectively<br />

43<br />

12<br />

284<br />

89<br />

877<br />

171<br />

64<br />

367<br />

2<br />

252<br />

7<br />

13<br />

Total 910 985 1,040 1,266 1,320<br />

Accordingly, fourteen of the 28 EU member states had<br />

decided to use nuclear energy. This applies in particular to<br />

countries such as France, Belgium, the Czech Republic,<br />

Slovakia, Hungary, Slovenia, Romania, Bulgaria, Sweden,<br />

Finland, Spain and the United Kingdom. In 2011, Germany<br />

decided to completely phase out the peaceful use of<br />

nuclear energy by the end of 2022. In the Netherlands, the<br />

share of nuclear energy is low at 3 % (Fig. 3).<br />

While political decisions were decisive <strong>for</strong> using nuclear<br />

energy or <strong>for</strong> abandoning this energy source, the availability<br />

of coal and natural gas in their own countries is a<br />

determining factor above all <strong>for</strong> the availability of these<br />

resources in each case. In the case of coal, this applies in<br />

particular to Germany, a number of Eastern European<br />

countries and Greece. Natural gas plays a major role<br />

in power generation, especially in the UK and the Netherlands,<br />

where both countries can draw on their own natural<br />

gas reserves. Sweden, Austria, Italy and France are rich in<br />

water resources <strong>for</strong> electricity generation. Denmark has<br />

particularly favourable conditions <strong>for</strong> the use of wind power.<br />

This explains – in addition to state support <strong>for</strong> this energy<br />

source – its high share of electricity generation there. In<br />

Germany, support through the Renewable Energy Sources<br />

Act has led to a six-fold increase in the con tribution of renewable<br />

energies to the electricity supply, especially wind<br />

and solar energy, since 2000 (Fig. 4).<br />

However, the advance of renewable energies was not<br />

limited to Germany. On the contrary, there has been strong<br />

expansion of electricity generation based on renewable<br />

energies in all the EU countries. This was favoured by<br />

corresponding political decisions but since the beginning<br />

of the current decade also by the sharp decline in costs,<br />

especially <strong>for</strong> PV systems and also – albeit to a lesser extent<br />

– <strong>for</strong> wind turbines. The share of renewable energy in<br />

electricity generation in the EU-28 increased from 13.8 %<br />

in 2005 to 32.0 % in 2018.<br />

The capacity of power generation plants based on<br />

renewables in the EU-28 increased by 65 % from<br />

290 gigawatts (GW) in 2010 to 478 GW at the end of 2017.<br />

By contrast, the capacity of conventional capacities fell by<br />

59 GW from 621 GW to 562 GW in the period from 2010 to<br />

2017. As a result, the share of renewable energies in the<br />

total power generation capacity had increased from 32 %<br />

in 2010 to 46 % by the end of 2017. 2 Most of the decline in<br />

conventional capacity related to coal-fired power plants.<br />

In addition, there was a decrease in nuclear power plant<br />

output and the output of oil-based plants. The capacity of<br />

the gas-fired power plants has remained practically stable<br />

(Table 1).<br />

So far, the decline in conventional capacity has not<br />

been a problem <strong>for</strong> the stability of the power supply. The<br />

convergence of member states’ systems has reduced the<br />

requirements <strong>for</strong> the level of reserve capacity. In addition,<br />

excess capacities had been built up in the past which have<br />

now been drastically reduced by decommissioning.<br />

3 Prospects of the power generation<br />

landscape<br />

Three factors are particularly important. These are the<br />

continued impetus <strong>for</strong> expansion in renewable energy<br />

plants, implementation of the coal phase-out plans of a<br />

large number of member states (Fig. 5) and the future of<br />

nuclear energy in the EU.<br />

2 <strong>International</strong> Energy Agency, World Energy Outlook 2012 and 2018, Paris, November 2012 and 2018 respectively.<br />

Feature<br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe ı Stefan Ulreich and Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Of the total US$ 57 billion investment in power<br />

generation plants in the EU in 2018, a good 80 %<br />

(US$ 46 billion) went to renewable energy plants. The<br />

remaining US$ 11 billion was divided between nuclear<br />

energy (US$ 5 billion) and coal/gas/oil (US$ 6 billion). 3<br />

A comparable situation is also to be expected in the<br />

coming years – with the consequence that the capacity<br />

of renew able energy plants in the EU-28 should<br />

increase compared to the end of 2017 by around two<br />

thirds to just under 800 GW by 2030. According to<br />

the New Policies Scenario, the main scenario of<br />

the World Energy Outlook 2018 of the <strong>International</strong><br />

Energy Agency (IEA), a further increase to 877 GW is expected<br />

by 2040. 4<br />

By contrast, fossil-fired power plants are expected to<br />

reduce capacity by around 100 GW, from 437 GW at the<br />

end of 2017 to 339 GW in 2040. This particularly affects<br />

coal, whose output is estimated by the IEA to fall by<br />

127 GW from 170 GW to 43 GW by 2040 (Fig. 6).<br />

A similar development is also expected in a study<br />

by the EU Joint Research Centre. According to this<br />

analysis, presented in September 2018, the majority of<br />

coal-fired power plants in Europe were commissioned<br />

more than 30 years ago. On average, these plants are<br />

now 35 years old. A first wave of decommissioning is<br />

expected <strong>for</strong> the period 2020 to 2025, concentrated<br />

in the United Kingdom, Germany, Poland, the Czech<br />

Republic and Spain – with the consequence that EU-wide<br />

output will fall to 105 GW by 2025. A second wave of<br />

decommissioning between 2025 and 2030 will affect<br />

coal-fired power plants, particularly in Germany, Poland,<br />

Great Britain, Bulgaria and Romania. The capacity of<br />

coal-fired power plants in the EU will fall accordingly to<br />

55 GW by 2030. 5<br />

The IEA also estimates that 38 GW of oil-based capacity<br />

will be decommissioned. The assumptions <strong>for</strong> natural<br />

gas are different. The capacity mechanisms agreed <strong>for</strong><br />

the EU favour the construction of new natural gas-based<br />

facilities (Fig. 7). Perhaps somewhat too optimistically,<br />

the IEA anticipates an increase in output of around one<br />

third compared to the end of 2017 to 284 GW in 2040.<br />

In the case of nuclear energy, the age-related closures<br />

clearly exceed the expected new construction capacity<br />

(Fig. 7). Accordingly, EU-wide nuclear power plant<br />

capacity is expected to decline by almost 30 % compared to<br />

the end of 2017 to 89 GW in 2040.<br />

| | Fig. 5.<br />

Coal phase-out plans in the EU. (Source: IEA (2018), Coal 2018, Analysis and <strong>for</strong>ecasts to 2023).<br />

| | Fig. 6.<br />

Development of coal-fired power plant capacity in the EU-28 from 2017 to 2040. (Source: IEA World<br />

Energy Outlook 2018, New Policies Scenario; in<strong>for</strong>mation provided by the IEA Secretariat).<br />

4 The “capacity retirement curve”<br />

of the power plant fleet<br />

In recent years, Europe has seen a preference <strong>for</strong> investment<br />

in renewable power generation compared to conventional<br />

technologies. This becomes particularly clear when<br />

looking at the installed capacity in the ENTSO-E area<br />

(Fig. 8). The share of renewable energies in installed<br />

capacity (including hydropower) increased from 34 %<br />

(2010) to 48 % (2018). For availability reasons, the<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 393<br />

| | Fig. 7.<br />

Decommissioning and expansion of capacities <strong>for</strong> power generation in the EU-28,<br />

2018 – 2040. (Source: IEA World Energy Outlook 2018).<br />

| | Fig. 8.<br />

Share of renewable and non-renewable power generation capacity in the ENTSO-E area<br />

(2018). (Source: ENTSO-E, Statistical Factsheets).<br />

3 <strong>International</strong> Energy Agency, World Energy Investment 2019, Paris, May 2019.<br />

4 <strong>International</strong> Energy Agency, World Energy Outlook 2018, Paris, November 2018.<br />

5 Joint Research Centre (JRC), EU Coal Regions 2018: Opportunities and Challenges Ahead, Brussels, September 2018<br />

Feature<br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe ı Stefan Ulreich and Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 394<br />

renewable share of the electricity generated in the<br />

ENTSO-E 6 region was 36 % in 2018.<br />

There is currently little doubt that this trend will<br />

continue and that the share of conventional generation,<br />

whether based on fossil fuels or nuclear power, will<br />

decrease. This development is rein<strong>for</strong>ced by decisions and<br />

plans to abandon existing conventional technologies,<br />

albeit with very different developments in the European<br />

countries.<br />

For system stability, conventional generation has the<br />

pleasant characteristic of being very easy to plan. This does<br />

not apply to a comparable extent given the dependence of<br />

wind and solar power on weather conditions. Further<br />

technological solutions, e.g. network expansion, storage or<br />

load management, are there<strong>for</strong>e necessary in order to<br />

maintain the assured capacity (Fig. 9).<br />

The technical lifetime of power plants can be estimated<br />

empirically. There is a certain bandwidth here. Measures<br />

to extend the technical lifetime (known as retrofit) play an<br />

important role, so that in individual cases operation<br />

beyond the technical lifetime is certainly possible.<br />

Technical difficulties can also lead to a shorter lifetime.<br />

For an estimation of an entire power plant fleet, however,<br />

it is perfectly legitimate to use an approach with a fixed set<br />

of technical lifetimes. The following technical lifetimes<br />

were used to estimate the capacity retirement curve in the<br />

power plant fleet (see Table 2).<br />

The list of power plants used comprises around 14,500<br />

power plant units (hydropower, natural gas, hard coal,<br />

brown coal, oil, nuclear power, biomass, other) from the<br />

| | Fig. 9.<br />

Installed and assured capacity in Germany (2018). (Source: BDEW and ENTSO-E 2019).<br />

| | Fig. 10.<br />

Capacity retirement curve in the EU-28 power plant fleet (fossil fuels, nuclear power, hydropower).<br />

(Source: Energy Economics Institute at the University of Cologne (EWI) gGmbH, Europe Beyond Coal).<br />

Energy source<br />

Technical lifetime in years<br />

Brown coal 55<br />

Hard coal 55<br />

Natural gas 45<br />

Oil 50<br />

Hydropower<br />

Unlimited<br />

<strong>Nuclear</strong> energy 40<br />

Biomass 40<br />

Other 40<br />

| | Tab. 2.<br />

Assumptions used <strong>for</strong> the technical lifetime of power plants.<br />

28 EU member states. In addition to the technical lifetimes<br />

on which Table 2 is based, Fig. 10 also shows the impact of<br />

early decommissioning, whether <strong>for</strong> economic reasons or<br />

due to regulatory decisions. Only the controllable types of<br />

generation (coal, gas, oil, biomass, nuclear power, hydropower)<br />

were taken into account <strong>for</strong> the illustration.<br />

The minimum and maximum load <strong>for</strong> the EU-28 can be<br />

calculated from the ENTSO-E data <strong>for</strong> the hourly load; the<br />

grey band in the graph shows this range, i.e. the load<br />

requested by consumers. The peak load can be covered<br />

with the conventional power plants mentioned until 2030,<br />

and until 2026 if plants are decommissioned be<strong>for</strong>e the<br />

end of their technical lifetime. Additional, albeit limited,<br />

contributions to the assured capacity can be expected from<br />

renewable energies.<br />

Essentially, the capacity retirement curve shows three<br />

phases based on the technical lifetime:<br />

1. 2020-2030: relatively rapid reduction in capacity<br />

(around 20 GW per year)<br />

2. 2030-2060: relatively slow reduction in capacity<br />

(around 10 GW per year)<br />

3. From 2060: remaining on an even keel<br />

Discontinuation of power plant operation be<strong>for</strong>e the<br />

end of the technical lifetime, whether <strong>for</strong> economic reasons<br />

or <strong>for</strong> technology phase-out reasons, has essentially the<br />

same phases with a slightly steeper decrease.<br />

In this case, the capacity retirement curve follows the<br />

expansion phases <strong>for</strong> generation capacities in Europe<br />

(Fig. 11). Different types of power plants were preferred in<br />

the various decades: the 1960s into the 1970s were the<br />

strongest commissioning periods <strong>for</strong> coal-fired power<br />

plants. In the second half of the 1960s and in the first half<br />

of the 1970s, there was also a significant increase in oil and<br />

gas capacities. The focus of commissioning <strong>for</strong> nuclear<br />

power was in the 1980s, followed by a period of dominant<br />

expansion based on natural gas and the current phase of<br />

strong growth in renewable energy plants.<br />

The linear reduction of around 20 or 10 GW per year<br />

mentioned above goes hand in hand with a reduction<br />

in the assured capacity. It is possible to counteract<br />

this development by various means and to achieve the<br />

accustomed level of security of supply.<br />

On the one hand, renewable energy sources such as<br />

wind and sun will also make a contribution to the assured<br />

capacity, albeit to a much lesser extent compared to the<br />

installed capacity. However, with the application of new<br />

technologies, such as storage systems and smart grids, it<br />

will be possible to significantly increase the assured<br />

capacity of wind and PV. In addition, non-EU countries,<br />

6 ENTSO-E is an association of European transmission system operators from 36 European countries (EU-28 excluding Malta; Albania, Bosnia and<br />

Herzegovina, Iceland, Montenegro, Norway, Northern Macedonia, Serbia, Switzerland and Turkey as observers) (https://www.entsoe.eu)<br />

Feature<br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe ı Stefan Ulreich and Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

such as Switzerland and Norway, also contribute to the<br />

assured capacity, as do any new plants constructed in the<br />

EU. Overall, it can be said that the system is undergoing a<br />

period of upheaval in which the intermittent energy<br />

sources wind and PV are increasingly having to make their<br />

contribution to system stability in order to ensure a secure<br />

supply around the clock. And this task will become<br />

increasingly important as the number of controllable<br />

power plants shrinks.<br />

5 New construction<br />

The power plant fleet in the EU-28 will continue to be<br />

rejuvenated in the future by the construction of new plants<br />

– primarily based on renewable energies; on the conventional<br />

side, gas-fired power plants are expected to be the<br />

most important (see Fig. 7). This will increase the assured<br />

capacity but not necessarily at the same rate as that to<br />

which it is being reduced. New plants will thus only be part<br />

of the solution; other technologies <strong>for</strong> maintaining the<br />

output margin will have to make a greater contribution<br />

than in the past.<br />

The probability of implementation depends on the<br />

expected profitability of the projects, the political framework<br />

conditions and, of course, acceptance locally. Exit<br />

plans from a technology in one country provide a more<br />

favourable economic environment <strong>for</strong> other types of<br />

production, but also improve the prospects <strong>for</strong> the same<br />

technology in neighbouring countries. Under certain<br />

circumstances, there<strong>for</strong>e, a phase-out in one country can<br />

lead to new construction in neighbouring countries.<br />

Likewise, the probability of implementing new builds<br />

depends on the options in the existing power plant fleet. If<br />

retrofit measures pay off, older power plants will be upgraded<br />

and there will be less need <strong>for</strong> new construction. If<br />

necessary, existing plants can also be mothballed if the<br />

operator assumes that there will again be demand <strong>for</strong><br />

electricity from its plant in a few years time. However, this<br />

certainly involves costs; you cannot simply park a power<br />

plant like a car in a garage, but must maintain its operational<br />

readiness by means of maintenance and by retaining staff.<br />

What all these options have in common, however, is<br />

that they are associated with long lead times and there<strong>for</strong>e<br />

require planning over several years.<br />

6 Grid expansion<br />

Electricity has been traded across borders <strong>for</strong> decades. This<br />

is made possible by the interconnected European supply<br />

system. The electricity grids of the European countries are<br />

connected to each other over large distances via so-called<br />

cross-border interconnectors. The cross-border exchange<br />

| | Fig. 11.<br />

Capacity additions in the EU-28 power plant fleet (fossil fuels, nuclear power, hydropower).<br />

(Source: Energy Economics Institute at the University of Cologne (EWI) gGmbH, Europe Beyond Coal).<br />

of electricity made possible in this way has a number of<br />

advantages <strong>for</strong> national electricity markets. “We can only<br />

think about security of supply in a European context ...<br />

Germany would hardly be able to manage its phase-out of<br />

nuclear and coal without being integrated into a European<br />

system.” 7<br />

The differences in production and consumption<br />

between European countries can be better compensated.<br />

This applies particularly to a large proportion of renewable<br />

energies, such as hydropower, wind and solar power. For<br />

example, the wind and sun conditions in Europe differ<br />

from each other, and the supply of hydropower also differs<br />

greatly from region to region. Moreover, peaks in demand<br />

in Europe are often not simultaneous (see Table 3). The<br />

supra-regional compensation thus possible in the internal<br />

market means that less capacity has to be maintained than<br />

in a purely national system.<br />

Security of the supply can there<strong>for</strong>e be increased by<br />

developing and expanding the cross-border interconnectors.<br />

In addition, supply costs tend to fall and prices<br />

on wholesale markets align themselves between the linked<br />

markets. The joint Price Coupling of Regions (PCR) system<br />

now integrates 19 European countries into a comprehensive<br />

market coupling system. These include Belgium,<br />

France, the Netherlands, Germany, Luxembourg, Austria,<br />

the Scandinavian countries, the Baltic states, the United<br />

Kingdom, Poland, Slovenia, Italy, Portugal and Spain.<br />

The transmission capacities available <strong>for</strong> trade between<br />

member states are limited. For this reason, the right to use<br />

the transmission capacities is auctioned off at the borders<br />

or the electricity markets of the countries included are<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 395<br />

Country Highest load Time Lowest load Time<br />

Belgium 13,453 MW 19.11., 18:00-19:00 6,067 MW 20.5., 14:00-15:00<br />

Germany 79,074 MW 28.2., 19:00-20:00 35,718 MW 20.5., 5:00-6:00<br />

France 96,328 MW 28.2., 18:00-19:00 30,448 MW 12.8., 6:00-7:00<br />

Greece 9,062 MW 17.7., 12:00-13:00 3,437 MW 9.4., 4:00-5:00<br />

Italy 57,572 MW 1.8., 15:00-16:00 19,511 MW 26.12., 3:00-4:00<br />

Austria 12,073 MW 13.12., 16:00-17:00 4,844 MW 1.7., 4:00-5:00<br />

Hungary 6,572 MW 2.3., 11:00-12:00 2,914 MW 21.5., 5:00-6:00<br />

ENTSO-E 589,716 MW 28.2., 18:00-19:00 264,157 MW 17.6., 5:00-6:00<br />

| | Tab. 3.<br />

Illustration of the level and timing of the maximum and minimum loads in selected EU member states in 2018. Source: ENTSO-E, Statistical Factsheet 2018.<br />

7 Leonhard Birnbaum, Der Tagesspiegel, 24 June 2019, “The energy transition has brought about a massive redistribution”.<br />

Feature<br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe ı Stefan Ulreich and Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 396<br />

automatically linked via market coupling. This procedure,<br />

which is controlled via the electricity exchanges, leads to a<br />

harmonization of the wholesale prices <strong>for</strong> electricity in the<br />

European countries.<br />

Germany is currently connected to neighbouring countries<br />

via so-called interconnectors to the extent of around<br />

30 GW. By 2030, this figure will rise to around 35 GW. 8<br />

However, network bottlenecks frequently do not occur at<br />

borders and are purely national, and in this case do not<br />

allow full accessibility to assured capacity from neighbouring<br />

countries. In addition, peak loads also occur in<br />

several countries at the same time, so that mutual help is<br />

not possible.<br />

A third driver <strong>for</strong> convergence of the markets in Europe<br />

has become increasingly relevant: integration of the<br />

increasing share of fluctuating renewable energies which<br />

is facilitated by expansion of the supply system’s geographical<br />

spread.<br />

In addition to the advantages outlined above, enlargement<br />

of the integrated supply area also poses challenges.<br />

Security of supply no longer depends solely on conditions<br />

within national borders. On the contrary, it gives rise to<br />

dependencies on systems outside one’s own borders. Furthermore,<br />

the close cross-border coupling increases the<br />

risk of a major blackout. For example, a supply disruption<br />

occurring in one country can cause blackouts in countries<br />

which are connected to that country by transmission grids.<br />

And finally, synchronised systems have to deal with<br />

unexpected cross-border electricity flows, so-called<br />

loop-flows. This point gains in importance as electricity<br />

generation from fluctuating renewable energies increases.<br />

Poland and the Czech Republic, <strong>for</strong> example, are affected<br />

by electricity flows into their supply areas due to the strong<br />

growth in wind and solar power generation in Germany.<br />

They have installed phase shifters at the borders so that<br />

they can to counteract supply disruptions in their own<br />

systems. 9<br />

In order to coordinate tasks in the converging European<br />

internal market, the European Network of Transmission<br />

System Operators <strong>for</strong> Electricity (ENTSO-E) has been given<br />

the responsibility <strong>for</strong> regularly drawing up (every two<br />

years) a Europe-wide 10-year network development<br />

plan. 10 This infrastructure plan is based on the existing<br />

generation capacities and peak load of the countries in the<br />

ENTSO-E region (Western and Central Europe). According<br />

to the latest 10-year plan, net generation capacity at the<br />

end of 2017 was 1,060 gigawatts (GW). Fossil energies<br />

accounted <strong>for</strong> 418 GW, nuclear <strong>for</strong> 122 GW, hydropower<br />

<strong>for</strong> 2<strong>08</strong> GW and other renewable energies, especially<br />

fluctuating ones, <strong>for</strong> 312 GW. While output based on<br />

renewable energies has risen sharply in recent years,<br />

fossil- fired capacities have declined by 43 GW since 2013.<br />

From the security of supply point of view, it is relevant that<br />

the additional wind and solar power plants installed make<br />

only a small contribution to the assured capacity and that<br />

hydropower also offers only limited guaranteed output at<br />

all times (Fig. 9).<br />

From the security of supply point of view, it should also<br />

be borne in mind that the possibility of un<strong>for</strong>eseen outages<br />

of conventional power plant capacities and unavailability<br />

due, among other things, to inspections must be taken into<br />

account. These points must be considered when comparing<br />

existing generation capacity and peak load. The<br />

peak load in the ENTSO-E region, indicated <strong>for</strong> 18 January<br />

2017, amounted to 542 GW in 2017 and, on 28 February<br />

2018, 590 GW in 2018.<br />

Although a certain balance is created on the demand<br />

side by the fact that the peak load does not occur<br />

simultaneously in all countries integrated into the<br />

European market, peak load situations in the countries of<br />

Central and Western Europe are nevertheless parallel.<br />

According to the cited IEA study Integrating <strong>Power</strong> Systems<br />

across Borders, the total peak demand of 17 Western<br />

European countries in 2011 – i.e. the peak load of these<br />

countries added together – amounted to 465 GW, while<br />

the simultaneous load determined in the hour with the<br />

highest demand in these European countries was 440 GW.<br />

That is a variation of 5 %. This shows that in a cross-border<br />

linked supply system the level of taxable generation output<br />

may be lower than in isolated national systems. At the<br />

same time, however, it becomes clear that this effect must<br />

not be overestimated. “The mutual availability of assured<br />

capacity from abroad is there<strong>for</strong>e relatively small.” 11<br />

7 Storage<br />

At present, only pumped-storage power plants are available<br />

<strong>for</strong> the economic storage of electricity. A pumped-storage<br />

capacity of 5.5 GW is installed in Germany. If the plants<br />

outside the German national territory are also included,<br />

insofar as they feed into a German control area and are<br />

there<strong>for</strong>e to be assigned electrically to the German power<br />

grid which applies to pumped-storage power plants in<br />

Luxembourg, Austria and Switzerland, then the figure is<br />

9.8 GW. At the end of 2018, the figure was 25.2 GW<br />

EU-wide. 12<br />

Due to existing location restrictions, the<br />

expansion possibilities <strong>for</strong> this mature technology are<br />

limited. There are opportunities to expand capacity when<br />

modernizing existing plants. However, pumped-storage<br />

power plants can only be considered as short-term storage<br />

facilities. They cannot compensate <strong>for</strong> several days of<br />

restrictions in electricity generation from wind and sun,<br />

i.e. a longer dark doldrums. This also applies to batteries.<br />

Compressed air energy storage plants offer a further<br />

option <strong>for</strong> mechanical storage. They are just as flexible as<br />

pumped-storage power plants and can be used as a reserve.<br />

In times of excess electricity, they are loaded with air using<br />

compressors. They thus store electrical energy in the <strong>for</strong>m<br />

of potential energy from the pressurized gases. So far,<br />

however, there are only two examples of this type of plant<br />

worldwide, one in Huntorf in Lower Saxony and the<br />

second in Alabama. Large-scale use of this technology on a<br />

significant level is not (yet) to be expected in the coming<br />

years.<br />

In the long term, the production of synthetic fuels from<br />

renewable electricity, the <strong>Power</strong>-to-X (PtX) technology,<br />

offers an option <strong>for</strong> long-term storage. 13 PtX technology<br />

converts electricity from renewable energies into gaseous<br />

substances such as hydrogen or methane (<strong>Power</strong>-to-Gas),<br />

8 Federal Ministry of Economic Affairs and Energy, Monitoring report on security of supply in the area of cable-bound supply with electricity, Berlin,<br />

June 2019<br />

9 <strong>International</strong> Energy Agency, Integrating <strong>Power</strong> Systems across Borders, Paris, June 2019.<br />

10 ENTSO-E, Ten Year Network Development Plan, Brussels, November 2018.<br />

11 BDEW, Availability of <strong>for</strong>eign power plant capacities <strong>for</strong> supply in Germany, Berlin, August 2018.<br />

12 <strong>International</strong> Renewable Energy Agency (IRENA), Renewable Capacity Statistics, Abu Dhabi, March 2019.<br />

13 World Energy Council – Germany/frontier economics, <strong>International</strong> Aspects of a <strong>Power</strong>-to-X Roadmap, Berlin, October 2018.<br />

Feature<br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe ı Stefan Ulreich and Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

liquid substances such as fuels (<strong>Power</strong>-to-Liquids) <strong>for</strong><br />

mobility, or basic chemicals <strong>for</strong> industry (power-tochemicals).<br />

In the <strong>Power</strong>-to-Gas application, electricity is<br />

used to convert water into hydrogen and, further into<br />

methane, if required. The advantage here is that hydrogen<br />

(within certain limits) and methane (without restriction)<br />

can be fed into the existing natural gas network and stored<br />

there. The gases fed in can then be injected back into the<br />

system or used <strong>for</strong> other applications (e.g. heating, gas<br />

vehicles). The technology is currently still expensive, and<br />

the efficiencies are low. It is nevertheless regarded as a<br />

promising technology <strong>for</strong> the realization of sector coupling.<br />

8 Demand response<br />

In addition to storage, a system <strong>for</strong> controlling power<br />

consumption can be used as a further buffer. Electricity is<br />

then consumed in a targeted manner with load management<br />

when a high supply of electricity is available, e.g.<br />

during periods of strong wind. Variable tariffs can make<br />

such “load shifting” financially viable <strong>for</strong> the final consumer.<br />

By controlling the consumption side, the maximum<br />

load and thus the need <strong>for</strong> assured capacity can be reduced.<br />

New technologies, such as smart meters, and the use of the<br />

possibilities offered by digitalization can help to improve<br />

the conditions <strong>for</strong> keeping production and consumption in<br />

balance. Such balancing, which guarantees the nominal<br />

frequency of 50 Hz, is indispensable <strong>for</strong> maintaining<br />

system safety.<br />

Furthermore, along with the complete local freedom<br />

from emissions of all-electric vehicles, the expansion<br />

of e-mobility offers the advantage of contributing to<br />

balancing the fluctuating supply of electricity from wind<br />

and sun with the demand <strong>for</strong> electricity. Intelligent control<br />

of the battery charging process makes it possible to charge<br />

the vehicles with electricity from renewable generation<br />

plants during periods of low load, when the electricity is<br />

already available anyway. Electric vehicles there<strong>for</strong>e<br />

provide the energy industry with the chance to make an<br />

appreciable contribution to integrating renewable energies<br />

into the energy system. This, however, means achieving a<br />

critical mass of vehicles and a well-developed charging<br />

infrastructure so that as many vehicles as possible can be<br />

charged in a controlled manner during idle time.<br />

To estimate the potential, a Tesla S is used as an<br />

example: the charging capacity with the Supercharger V3<br />

is 250 kW; the battery can absorb up to 100 kWh of energy.<br />

With one million cars and charging units, the maximum<br />

power requirement is 250 GW, i.e. a relevant order of<br />

magnitude compared to the installed generation capacity<br />

in the EU. The energy content of 100 GWh corresponds<br />

to the amount of energy consumed in a quarter of an<br />

hour in the EU-28. There may there<strong>for</strong>e be interesting<br />

opportunities <strong>for</strong> short-term optimization.<br />

9 Flexibilities in generation<br />

A generally more cost-effective option than storage <strong>for</strong><br />

ensuring supply during periods when the wind is not<br />

blowing and the sun is not shining is to maintain<br />

conventional power plant capacity, which can be used<br />

flexibly to cover the load. Gas-fired, hard-coal-fired and<br />

brown- coal-fired power plants in Germany are equally<br />

suitable technically <strong>for</strong> this purpose due to the retrofitting<br />

of control technology. At present, with a share of more<br />

than 90 %, this is by far the most important lever <strong>for</strong><br />

creating system flexibility in most electricity supply<br />

systems, followed by the opportunities offered by<br />

cross-border line expansion, load management and storage<br />

systems. 14<br />

Wind and solar are also increasingly being used more<br />

flexibly. The shift from fixed remuneration systems to<br />

systems close to the market or the emergence of Green<br />

<strong>Power</strong> Purchase Agreements (PPAs) are enabling operators<br />

of renewable plants to discover the opportunities <strong>for</strong> shortterm<br />

optimization. This means that electricity from wind<br />

and solar power can be fed into the system more efficiently.<br />

10 Conclusion<br />

The 2030 EU targets <strong>for</strong> climate protection and the<br />

expansion of renewable energies must be reconciled with<br />

the objectives of security and economic efficiency of the<br />

energy supply. With the current state of the art, it is<br />

possible to expand assured capacity based on renewable<br />

energies from wind and sun with additional infrastructure<br />

(grid) and new technologies (smart grids, storage, demand<br />

response). In strict compliance with existing climate policy<br />

guidelines, to ensure the best possible security of the<br />

power supply, it is necessary to develop and use new<br />

technologies and it is not <strong>for</strong>eseeable when these will be<br />

sufficiently available. It there<strong>for</strong>e appears essential to<br />

maintain sufficient conventional reserve capacities. The<br />

early closure of coal-fired power plants in Germany – even<br />

beyond what the Commission “Growth, Structural Change<br />

and Employment” has recommended 15<br />

– may further<br />

jeopardize the security of supply.<br />

Political decisions must increasingly be taken in the<br />

European context, as markets continue to grow closer<br />

together. Nevertheless, Germany cannot rely on <strong>for</strong>eign<br />

countries to secure its supply, since there, too, the assured<br />

capacity based on conventional capacity is declining<br />

massively and peak loads in Europe often occur relatively<br />

simultaneously. It is there<strong>for</strong>e necessary to make sufficient<br />

flexibility options available at national level.<br />

Against this background, it should be noted that in<br />

future renewable energies, as an increasingly dominant<br />

source of electricity, will also have to make important<br />

contributions to the system stability of the electricity grid.<br />

Network expansion, storage and load sequence management<br />

on the customer side are indispensable <strong>for</strong><br />

implementation. The coupling of electricity to the heating<br />

and transport sector will provide additional opportunities.<br />

Authors<br />

Dr. Stefan Ulreich<br />

World Energy Council – Germany<br />

stefan-ulreich@t-online.de<br />

Dr. Hans-Wilhelm Schiffer<br />

World Energy Council – Germany<br />

hwschiffer@t-online.de<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 397<br />

14 <strong>International</strong> Energy Agency, Status of <strong>Power</strong> System Trans<strong>for</strong>mation - Advanced <strong>Power</strong> Plant Flexibility, Paris 2018.<br />

15 Commission Growth, Structural Change and Employment, Final Report, Berlin, January 2019.<br />

Feature<br />

Prospects <strong>for</strong> Development of <strong>Power</strong> Generation in Europe ı Stefan Ulreich and Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

398<br />

Leitentscheidung zum KKW-Rückbau:<br />

VGH München weist Weg zur „grünen Wiese“<br />

Tobias Leidinger<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Die Stilllegung und der Abbau eines Kernkraftwerks stellt eine beachtliche Heraus<strong>for</strong>derung dar: Technisch bedarf es<br />

dafür detaillierter Planung und spezifischen Know-Hows. Rechtlich ist das Abbaugeschehen in eine (oder mehrere)<br />

atomrechtliche Genehmigungen „gekleidet“, die den gesamten Abbauprozess strukturiert erfassen und dafür Rahmenbedingungen<br />

definieren. Aktuell sind Rückbauaktivitäten – technisch und genehmigungsrechtlich – für die infolge des<br />

gesetzlichen Atomausstiegs stillgelegten Anlagen in vollem Gange. Der VGH München hat nun in einer bemerkenswerten<br />

Entscheidung Klarheit in Bezug auf eine ganze Reihe von Streitfragen betreffend die Stilllegung und den Abbau<br />

kerntechnischer Anlagen geschaffen.<br />

1 Der Fall und die wesentlichen<br />

Streitpunkte<br />

In dem vom VGH München entschiedenen Fall (Urteil v.<br />

20.12.2018 – Az. 22 A 17.400004) hatte der Kläger – ein<br />

Umweltverband – eine ganze Reihe von Streitpunkten<br />

gegen die dem Betreiber erteilte 1. Stilllegungs- und<br />

Abbaugenehmigung (SAG) für ein KKW erhoben. Der<br />

Umweltverband verlangte die Aufhebung der SAG. Das<br />

Gericht setzte sich ausführlich mit den vorgebrachten<br />

Argumenten auseinander. Sie blieben im Ergebnis sämtlich<br />

ohne Erfolg: Die Klage wurde abgewiesen. Die Begründung<br />

enthält beachtenswerte Ausführungen, die über den entschiedenen<br />

Fall hinaus von Bedeutung sind: Umstritten war<br />

u.a. das grundsätzliche Verhältnis der Betriebs- zur Stilllegungsgenehmigung,<br />

die Frage, ob eine bestimmte<br />

Abbaureihenfolge in der Genehmigung festgelegt sein muss<br />

und was im Hinblick auf das er<strong>for</strong>derliche, vom Betreiber zu<br />

gewährleistende Schutzniveau während des Abbaus gilt.<br />

Schließlich ging es um die – viel diskutierte – Frage, wie das<br />

SEWD-Szenario eines gezielten Flugzeugabsturzes in der<br />

Abbauphase zu bewerten ist. Im Einzelnen:<br />

2 Verhältnis von Betriebs- und<br />

Stilllegungsgenehmigung<br />

Das Gericht bestätigt die Auffassung, dass die nach § 7<br />

Abs. 1 AtG erteilte Betriebsgenehmigung neben dem<br />

ursprünglichen Leistungsbetrieb auch den sog. Nach- und<br />

Restbetrieb erfasst. Das bedeutet, dass eine SAG nach § 7<br />

Abs. 3 AtG nicht er<strong>for</strong>derlich ist, soweit geplante Maßnahmen<br />

bereits Gegenstand der Betriebsgenehmigung<br />

nach § 7 Abs. 1 S. 1 AtG sind. Dass es zu einer Überlagerung<br />

von Betriebs- und Stilllegungsgenehmigung kommen<br />

kann, die SAG also nicht anstelle der Betriebs genehmigung,<br />

sondern neben ihr gilt, entspricht den gesetzlichen Vorgaben<br />

und den zu ihrer Konkretisierung erlassenen<br />

Regelungen im Stilllegungsleitfaden des BMU. Der Abbau<br />

kann also bereits beginnen, bevor die SAG erteilt ist, soweit<br />

es sich um bereits durch die Betriebsgenehmigung erfasste<br />

Maßnahmen handelt. Beide Genehmigungen ergänzen<br />

sich.<br />

3 Vorgaben für die Abbaureihenfolge<br />

Die Festlegung einer bestimmten Abbau-Reihenfolge<br />

einzelner Maßnahmen in der Genehmigung kann der<br />

Kläger nicht verlangen. Denn sie findet im Gesetz keine<br />

Grundlage und ist auch sonst nicht geboten: Welche<br />

Systeme, Komponenten und Anlagenteile zeitgleich<br />

abgebaut werden dürfen oder nacheinander, ergibt sich in<br />

erster Linie unter Zweckmäßigkeitsgesichtspunkten. Eine<br />

Raum- bzw. abschnittsweise Stilllegung und Demontage<br />

ist dabei als sinnvoll zu bewerten. Von Rechts wegen<br />

bedarf es jedenfalls keiner detaillierten Festlegungen in<br />

der Genehmigung zur Abbaureihenfolge oder für einzelne<br />

Abbauschritte. Damit bestätigt das Gericht die Möglichkeit<br />

für ein sachgerechtes, pragmatisches Vorgehen, ohne dass<br />

der Aufwand in Bezug auf die Genehmigung steigen muss.<br />

4 Er<strong>for</strong>derliche Schadensvorsorge<br />

Die Genehmigungsvoraussetzung „Gewährleistung der<br />

er<strong>for</strong>derlichen Schadensvorsorge“ i.S.v. § 7 Abs. 2 AtG gilt<br />

auch für die Abbaugenehmigung nach § 7 Abs. 3 AtG. Das<br />

Gesetz macht keinen Unterschied beim Schutzniveau, egal<br />

ob eine Anlage betrieben oder abgebaut wird. Trotz der<br />

Gleichartigkeit des Schutzniveaus darf beim Abbau aber –<br />

im Rahmen von schutzzielbezogenen Prüfungen – das<br />

ganz erheblich verminderte Risiko und Gefährdungspotential<br />

der Anlage berücksichtigt werden. Insoweit gilt<br />

ein spezifischer Bewertungsmaßstab, der das veränderte<br />

Gefährdungspotential in der Abbauphase einbezieht.<br />

Daher ist ein „statisches“ Gleichsetzen von Betriebs- und<br />

Abbauphase weder sachgerecht noch kann es rechtlich<br />

einge<strong>for</strong>dert werden. Dementsprechend gibt es auch<br />

keinen Grundsatz, der einen Abbau der Anlage, in der sich<br />

noch Brennelemente befinden, von vornherein ausschlösse.<br />

Das wurde von Klägerseite bestritten. Jetzt ist<br />

geklärt, dass ein solches Vorgehen zulässig ist.<br />

5 An<strong>for</strong>derung in Bezug auf den gezielten<br />

Flugzeugabsturz<br />

Bemerkenswert ist das Urteil schließlich im Hinblick auf<br />

die Bewertung des Szenarios eines gezielten Flugzeugabsturzes.<br />

Der Streitpunkt, wie dieses SEWD-Thema atomrechtlich<br />

zu behandeln ist, zieht sich durch alle atomrechtlichen<br />

Verfahren. Hier hatte sich die Behörde auf den<br />

Standpunkt gestellt, dass dieses Szenario in Bezug auf ein<br />

stillgelegtes Kernkraftwerk – in Ausübung ihres verwaltungsbehördlichen<br />

Beurteilungsspielraums – dem<br />

sog. Restrisiko zuzuordnen ist. Daher sind insofern<br />

keine besonderen An<strong>for</strong>derungen während des Abbaugeschehens<br />

zu erfüllen. Diese Rechtsauffassung wird<br />

durch Gericht „im Rahmen des gerichtlich nur eingeschränkt<br />

überprüfbaren Spielraums“ ausdrücklich bestätigt.<br />

Das ist in zweifacher Hinsicht hervorzuheben: Zum<br />

einen bestätigt das Gericht damit klar den der Behörde<br />

im Rahmen der Bewertung von SEWD-Ereignissen zustehenden,<br />

gerichtlich nur eingeschränkt kontrollierbaren<br />

Beurteilungsspielraum. Diese sog. „Einschätzungsprärogative<br />

der Exekutive“ wurde zuletzt – in anderen<br />

Gerichtsentscheidungen – durch überzogene gerichtliche<br />

An<strong>for</strong>derungen praktisch „entwertet“. Das Gericht darf<br />

sich aber nicht an die Stelle der Behörde setzen. Zum<br />

anderen bestätigt das Gericht die Bewertung in der Sache<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Key Decision <strong>for</strong> Dismantling ı Tobias Leidinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Advertisement<br />

selbst: Es betont, „dass für den terroristischen Zweck,<br />

möglichst großen Schaden und großes Leid hervorzurufen<br />

… ein seit mehr als fünf Jahren stillgelegtes Kernkraftwerk<br />

„kein gutes Anschlagsziel“ sei. Kurzum: Es ist in der Sache<br />

vertretbar und von Rechts wegen nicht zu beanstanden,<br />

wenn eine solches Ereignis atomrechtlich als „Restrisiko“<br />

eingestuft wird.<br />

6 Fazit<br />

Die Entscheidung des VGH München ist durchweg zu<br />

begrüßen: Sie setzt sich dezidiert und überzeugend mit<br />

grundsätzlichen Streitpunkten und einer Vielzahl von<br />

Klägerseite aufgeworfenen Fragen auseinander, weshalb<br />

sie deutlich über den entschiedenen Fall hinausweist. Der<br />

Weg zur „grünen Wiese“ ist dadurch rechtlich betrachtet<br />

berechenbarer geworden. Es bleibt zu hoffen, dass das<br />

BVerwG als Revisionsinstanz der vom VGH München vorgegebenen<br />

Linie folgt und damit weitere Streitverfahren,<br />

die die Stilllegung und den Abbau von kerntechnischen<br />

Anlagen betreffen, abgekürzt oder vermieden werden<br />

können. Für einen zügigen Rückbau in Deutschland – der<br />

nach dem gesetzlich angeordneten Atomausstieg allseits<br />

ge<strong>for</strong>dert wird – wäre das ein konstruktiver Beitrag.<br />

TÜV NORD Akademie<br />

SPOTLIGHT ON NUCLEAR LAW 399<br />

Author<br />

Prof. Dr. Tobias Leidinger<br />

Rechtsanwalt und Fachanwalt für Verwaltungsrecht<br />

Luther Rechtsanwaltsgesellschaft<br />

Graf-Adolf-Platz 15<br />

40213 Düsseldorf<br />

tobias.leidinger@luther-lawfirm.com<br />

11. Freigabesymposium<br />

Entlassung<br />

von radioaktiven<br />

Stoffen aus dem<br />

Geltungs bereich<br />

des Strahlenschutzgesetzes<br />

Nur noch wenige<br />

freie Plätze<br />

04. – 06.11.2019<br />

Hamburgg<br />

Spotlight on <strong>Nuclear</strong> Law<br />

 Key Decision <strong>for</strong> Dismantling ı Tobias Leidinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

400<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

Review of the Analytical Methods Used<br />

in <strong>Nuclear</strong> Decommissioning<br />

Application vs. aspiration – an EU-wide survey of methods<br />

in radioanalytical chemistry<br />

Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell<br />

The wave of decommissioning of nuclear facilities that Europe is facing now and in the near future requires a solid<br />

basis of efficient chemical and radiochemical analytical methods and capabilities. This study presents the results of a<br />

survey among European laboratories to summarize current practices, covering radionuclides, activity levels, sample<br />

types, and analytical instrumentation to create a clearer picture of the present status and future challenges. The results<br />

reflect the particularity of decommissioning, which requires analysis of a wide range of sample matrices. As a result, a<br />

wide variety of radioanalytical methods are deployed. However, gamma spectrometry, liquid scintillation counting and<br />

alpha spectrometry remain by far the dominant analytical methods. Despite the need <strong>for</strong> novel methods <strong>for</strong> specific<br />

nuclides, laboratories did not consider specialization or miniaturization of instruments as a focus <strong>for</strong> future developments.<br />

Rather, two types of challenges emerged most prominently: firstly, process optimization, such as improved and<br />

more integrated communication with customers and regulatory bodies and secondly, methodical improvements, such<br />

as the more widespread application of new technologies and enhanced availability of reference materials.<br />

Introduction<br />

Decommissioning of the first nuclear<br />

reactors is progressing and Europe is<br />

currently facing a decommissioning<br />

wave, which will continue into the<br />

future due to the planned shutdown<br />

of the first and second generation<br />

nuclear power plants (NPPs) and<br />

facilities in the next 5 to 50 years<br />

[ European Commission, 2016]. With<br />

about a third of the EU’s 186 reactors<br />

requiring decommissioning at an<br />

estimated cost of 4 to 5 billon € each,<br />

this adds up to a total of 200 to<br />

300 billion € <strong>for</strong> near future decommissioning<br />

projects within the EU<br />

[OECD, 2016]. Thus, processes that<br />

improve the efficiency of decommissioning,<br />

analytical methods <strong>for</strong> radionuclide<br />

determination, and availability<br />

of Europe-wide standards are<br />

all becoming increasingly relevant<br />

[Judge & Regan, 2017].<br />

Decommissioning is a strongly<br />

regulated process [McIntyre, 2012],<br />

in which a range of radionuclides<br />

must be analyzed using approved<br />

methods that reach specified limits of<br />

detection and accuracy. Decommissioning<br />

also requires a spectrum of<br />

analytical methods because of the<br />

multitude of radionuclides, matrices<br />

and sample preparation procedures,<br />

all of which span a vast range of<br />

activity levels [Hou, 2007]. The choice<br />

of methods <strong>for</strong> each radionuclide<br />

depends on the sample, i.e. sample<br />

matrix, activity level and amount,<br />

which, in turn, is dependent on legal<br />

requirements and regulatory statutes<br />

<strong>for</strong> sampling at nuclear facilities and<br />

power plants during decommissioning.<br />

Detection limits <strong>for</strong> specific nuclides<br />

are then determined by<br />

declaration criteria. Analysis of radionuclides<br />

is there<strong>for</strong>e strongly dependent<br />

on a number of parameters<br />

and requires a variety of analytical<br />

methods [Hou et al. 2016], which, to<br />

some extent is contradictory to the<br />

need <strong>for</strong> a highly efficient, routinebased<br />

approach to radioanalytics with<br />

high-output capacity required to meet<br />

the challenge of the current wave of<br />

decommissioning.<br />

Moreover, an overview of the<br />

analytical methods and the scope with<br />

which they are employed throughout<br />

Europe, is currently lacking. Meanwhile,<br />

standardized measurement<br />

procedures that rely on suitable<br />

reference materials are absent or still<br />

being developed [Larijani et al. 2017].<br />

There<strong>for</strong>e, it is difficult to determine<br />

whether the available analytical<br />

methods are sufficient and valid when<br />

compared with requirements.<br />

To improve the understanding of<br />

current capabilities and future needs<br />

and challenges, a survey was conducted<br />

<strong>for</strong> end users of European<br />

laboratories, as part of the Horizon<br />

2020 INSIDER project. The survey<br />

covered radionuclides measured,<br />

their activity levels, analytical instrumentation<br />

and sample matrices.<br />

Materials and Methods<br />

The survey was composed of open and<br />

closed style questions. A total of 18<br />

questions were posed to the participants.<br />

Ten questions indicated the use<br />

of several options (i.e. multiple<br />

nuclides with multiple analytical options)<br />

and a free text option to cover<br />

all possibilities. The aim was to collect<br />

in<strong>for</strong>mation on the type of laboratories<br />

working on decommissioning, the<br />

sample types analyzed, the activity<br />

levels measured, the sample preparation<br />

techniques utilized, the radionuclides<br />

determined, and the analytical<br />

methods used. The final two open<br />

style questions asked the participants<br />

to provide their view of the future and<br />

in particular the analytical challenges<br />

<strong>for</strong> both their laboratory and decommissioning<br />

in general.<br />

The survey was created using<br />

the online tool SurveyMonkey (ref:<br />

https://www.surveymonkey.com/).<br />

Laboratory managers from the<br />

INSIDER consortium, as well as others<br />

contacted through personal networks,<br />

were initially contacted and asked to<br />

collect European-wide data with the<br />

intention to reach a representative<br />

sample of laboratories working in<br />

the field. A total of approximately<br />

140 persons were contacted, of which<br />

80 agreed to participate. Out of<br />

75 personalized survey links that were<br />

sent out, 34 surveys were completed<br />

from 16 countries (10 from Germany,<br />

5 from France, 2 from Belgium,<br />

Hungary, Romania, Sweden and<br />

Switzerland. Austria, Croatia, Denmark,<br />

Finland, Italy, and one from<br />

each of the Netherlands, Slovakia,<br />

Spain and the United Kingdom). Five<br />

additional surveys were begun, but<br />

not completed. Only completed<br />

surveys were analyzed. The survey<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

responses were analyzed by exporting<br />

the raw data as a Microsoft Excel® file<br />

Results<br />

In<strong>for</strong>mation on the participating<br />

laboratories (Questions 1 – 5)<br />

The answers to the first three questions<br />

confirmed in<strong>for</strong>mation on the<br />

institutions and countries of the participating<br />

laboratories. In answer to<br />

the question of the final purpose of the<br />

analytical measurements of decommissioning<br />

samples (question 4), 74 %<br />

answered “research”, 53 % “declaration<br />

according to waste criteria / final<br />

disposal”, 50 % “clearance of decommissioning<br />

material”, 50 % “monitoring<br />

environment”, 44 % “monitoring<br />

facility processes” and 32 % answered<br />

“environment remediation”. 27 %<br />

of the responses checked “other” purposes,<br />

such as organization of proficiency<br />

tests, samples with unknown<br />

purposes, general analytical support<br />

(determining scaling factors or high<br />

precision isotope analysis) and monitoring<br />

workers.<br />

Regarding sampling (question 5),<br />

47 % of the 34 laboratories replied<br />

that they take samples themselves,<br />

while 53 % replied they did not.<br />

Free-text responses about the types of<br />

samples taken by these 16 laboratories<br />

showed that 8 laboratories took<br />

environmental samples or samples <strong>for</strong><br />

monitoring purposes, 7 laboratories<br />

took samples <strong>for</strong> decommissioning or<br />

waste characterization, and 3 laboratories<br />

took samples <strong>for</strong> purposes of<br />

research or upon client request. Two<br />

answers, in particular, stood out, one<br />

saying their laboratory provided “the<br />

whole service from sampling, analyses<br />

to assessments” and the other saying<br />

they take samples of “soil, water, aerosols,<br />

vegetation, [and] sediment […]<br />

<strong>for</strong> preservation of evidence”.<br />

Sample characteristics &<br />

preparation (Questions 6 – 10)<br />

Of the sample matrices analyzed<br />

<strong>for</strong> decommissioning (Figure 1,<br />

­Figure 2, Figure 3, Figure 4), the<br />

greatest share of samples analyzed<br />

were waste water (analyzed by 30 out<br />

of 34), sludge (analyzed by 29 laboratories),<br />

aqueous samples (27 laboratories),<br />

metals, concrete / construction<br />

materials and soil (26 laboratories).<br />

Gaseous samples were less common,<br />

and analyzed by 12 out of 34 laboratories,<br />

as were animal products (12 laboratories)<br />

and nuclear fuel or nuclear<br />

rod components (14 laboratories).<br />

The results given in the following<br />

paragraphs were calculated as relative<br />

percentages of those that gave a reply<br />

| | Fig. 1.<br />

Responses regarding the activity levels of decommissioning samples (question was mandatory,<br />

response options were given and multiple answers were possible).<br />

| | Fig. 2.<br />

Responses regarding the sample mass or volume required <strong>for</strong> decommissioning (question was<br />

mandatory, response options were given and multiple answers were possible).<br />

other than ‘not analyzed in our lab /<br />

none’; absolute numbers can be found<br />

in the respective figures.<br />

The question on activity levels of<br />

samples (Figure 1), revealed that low<br />

(< 0.5 Bq/g) and medium (0.5 to<br />

102 Bq/g) activities were the main<br />

sample levels measured by the laboratories.<br />

The highest activity levels (102<br />

to 105 Bq/g) were analyzed in all samples<br />

(exception <strong>for</strong> animal products)<br />

with a limited number of high activity<br />

plant material and soils measurements<br />

(4 & 8 % respectively). High<br />

activity measurements were most<br />

common in nuclear fuel or nuclear rod<br />

components (48 %). Medium activity<br />

was reported as being 35 to 44 % of<br />

most sample materials, with only gaseous<br />

samples (29 %), meat / animal<br />

products (24 %) and plant material<br />

(19 %) lower. Samples with a high<br />

relative proportion of low activity<br />

levels (< 0.5 Bq/g) were plant material<br />

(77 %), soil (76 %) and gaseous<br />

samples (52 %).<br />

The results from question 7 on<br />

sample mass/volume required <strong>for</strong><br />

analysis (Figure 2) illustrated that<br />

sample mass or sample volume had<br />

the strongest variation (10 kg) <strong>for</strong> gaseous and filter samples.<br />

Organic liquids, sludge and resin<br />

samples spanned the lowest range<br />

DECOMMISSIONING AND WASTE MANAGEMENT 401<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 402<br />

| | Fig. 3.<br />

Responses regarding the sample numbers per batch analysed <strong>for</strong> decommissioning (question<br />

was mandatory, response options were given and multiple answers were possible).<br />

with 4 orders of magnitude (0.1 mg to<br />

1 kg).<br />

Concerning the number of samples<br />

per batch (question 8, Figure 3),<br />

94 % contained 1 – 25 samples, and<br />

53 % of sample batches contained<br />

5 samples or less. Batches of more<br />

than 50 samples were rare (1 % of the<br />

all sample batches) and were only<br />

found <strong>for</strong> waste water or soil samples.<br />

Figure 4 showed the most frequently<br />

analyzed samples (question<br />

9) were waste water, <strong>for</strong> which<br />

28 % of laboratories reported daily or<br />

weekly intervals, and only 2 laboratories<br />

answered they didn’t analyze<br />

them at all. In general, all sample<br />

types showed a variety of analysis<br />

frequencies and each sample type was<br />

analyzed non-recurrently.<br />

| | Fig. 4.<br />

Responses regarding the frequency of samples analysed <strong>for</strong> decommissioning (question<br />

was mandatory, response options were given and multiple answers were possible).<br />

All laboratories applied some <strong>for</strong>m<br />

of sample preparation (Figure 5,<br />

question 10). The most commonly<br />

used methods were drying (< 110 °C)<br />

/ evaporation to dryness and “classic<br />

radiochemistry” / radionuclide separation<br />

(both reported to be 94 %<br />

applicable). The sample preparation<br />

methods used by the fewest laboratories<br />

were gas expelling (68 % not<br />

applicable), low pressure closed<br />

( acid) digestion (62 % not applicable)<br />

and (alkaline) melt digestion /<br />

fusion beads (53 % not applicable).<br />

Mechanical sample preparation (i.e.<br />

shredding / grinding / milling) was<br />

reported by 81 % of laboratories.<br />

When comparing methods, Figure<br />

5 suggests that multiple methods<br />

were used in the same laboratories<br />

and were complimentary rather<br />

than exclusionary. While open acid<br />

leaching and digestion were both<br />

reported in most laboratories (88 %<br />

and 82 %, respectively) medium<br />

pressure closed (acid) microwave<br />

digestion (71 %) was widely used as<br />

well. Classic radiochemistry / radionuclide<br />

separation (94 %) was applied<br />

by more laboratories than extraction<br />

chromatography of radionuclides<br />

using columns from Eichrom® Technologies<br />

or Triskem <strong>International</strong><br />

(88 %).<br />

Regarding the frequency of sample<br />

preparation methods, Figure 5 shows<br />

that <strong>for</strong> 15 % of the laboratories,<br />

the three main sample preparation<br />

methods (classic radiochemistry /<br />

radio nuclide separation, extraction<br />

chromatography of radionuclides<br />

( Eichrom Technologies, Triskem<br />

<strong>International</strong>) and electro-deposition<br />

/ electro-precipitation were per<strong>for</strong>med<br />

on a minute-to-hourly basis.<br />

This number rose to 55 %, 50 % and<br />

40 %, respectively, when the frequency<br />

was extended to 5 days. The<br />

only other preparation method that<br />

reached that frequency was drying<br />

(< 110 °C) / evaporation to dryness,<br />

with 47 % of laboratories per<strong>for</strong>ming<br />

this sample preparation at a frequency<br />

of minutes to 5 days.<br />

| | Fig. 5.<br />

Responses regarding the frequency of sample preparation types <strong>for</strong> decommissioning (question was<br />

mandatory, response options were given and multiple answers were possible)<br />

Nuclide Analysis<br />

(Questions 11 – 13)<br />

Figure 6 shows the responses to<br />

question 11, demonstrating that more<br />

than 60 % of all laboratories used<br />

gamma spectrometry <strong>for</strong> Cs-137,<br />

Co-60, Am-241 and Eu-152 while less<br />

than 20 % used gamma spectrometry<br />

to analyze Np-237, Na-24, Cm-243,<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Am-243, Pu-241, Pu-239, Pu-238,<br />

Pu-240 and Gd-153. Some laboratories<br />

also reported analyzing other<br />

nuclides with gamma spectrometry<br />

than were presented as options in<br />

the survey: Cd-109, Pb-210, I-131,<br />

I-123, In-111, Re-186, Co-58,<br />

Tc-99, Cm-244, Ag-1<strong>08</strong>m, Ag-110m,<br />

Sn-121m, Sb-124. One laboratory<br />

did not consider Ru-106, I-129, Pu<br />

and Cm to be suitable <strong>for</strong> gamma<br />

measurement.<br />

As shown in Figure 7 (question<br />

12), alpha-spectrometry, liquid scintillation<br />

counting (LSC) and in ductivelycoupled-mass-spectrometry<br />

(ICP- MS)<br />

measurements were the most frequently<br />

used methods and all of the<br />

laboratories reported using them.<br />

More than 70 % of the laboratories<br />

reported using alpha spectrometry <strong>for</strong><br />

Am-241 and Pu-239+240; between<br />

50 % and 70 % of all laboratories<br />

reported using it <strong>for</strong> U-234, U-235,<br />

U-238, Pu-238, Pu-242, Am-243, Cm,<br />

242 and Cm-244. Alpha spectrometry<br />

was also reported <strong>for</strong> Pu-241 (26 %)<br />

and Th-234 (62 %).<br />

LSC was mainly used <strong>for</strong> betaemitting<br />

radionuclides with atomic<br />

masses below 100, as well as <strong>for</strong><br />

Ra-isotopes and Pu-241. The most<br />

| | Fig. 6.<br />

Responses regarding the nuclides measured with gamma spectrometry (question was mandatory and<br />

response options were given).<br />

commonly measured nuclides were<br />

C-14 (71 %), Sr-90 (71 %) and H-3<br />

(68 %). More than 50 % of laboratories<br />

reported using LSC <strong>for</strong> Ni-63,<br />

Cl-36, Fe-55 and Sr-89.<br />

ICP-MS measurements covered a<br />

range of radionuclides. Nuclides most<br />

frequently analyzed with ICP-MS<br />

were U-238 (50 %), U-235 (47 %) and<br />

U-234 (44 %). Less than a third of the<br />

laboratories also analyzed Tc-99<br />

(32 %), Pu-239 (32 %), Pu-240<br />

(32 %), Pu-241 (29 %), Pu-242<br />

(29 %), Np-137 (29 %), Th-232<br />

(26 %) and Zr-93 (21 %) using ICP-<br />

MS.<br />

Alpha-beta proportional counting<br />

was mainly used <strong>for</strong> Sr-90 (26 %) and<br />

Sr-89 (12 %). Some laboratories (6 to<br />

9 %) used this method to measure Co-<br />

60, Tc-99, I-129, C-14, Cl-36, Cs-137,<br />

Ra-226 and U-238. Grid ionization<br />

chamber (GIC) was the least used<br />

method and was deployed by only 3 %<br />

of the laboratories.<br />

The free text option (“other”) revealed<br />

that methods not included<br />

were acceleration mass spectrometry<br />

(AMS), named 3 times, total alpha,<br />

low energy germanium detector<br />

(LEGe), and thermal ionization mass<br />

spectrometry (TIMS).<br />

In answer to the equipment used in<br />

laboratories (Figure 8, question 13),<br />

nuclear radiation measuring techniques<br />

were highly prevalent. 97 %<br />

of laboratories reported using some<br />

<strong>for</strong>m of gamma spectrometry, 74 %<br />

using some <strong>for</strong>m of LSC, 62 %<br />

using alpha spectrometry and 56 %<br />

reported using alpha-beta counters.<br />

With regards to other methods, 71 %<br />

of the laboratories reported using<br />

spectrometry methods (AAS, UV/VIS,<br />

OES, MS), 65 % using chromatography<br />

methods (IC, HPLC), 26 %<br />

using X-ray fluorescence methods<br />

(ED-XRF, WD-XRF, XPS) and 12 %<br />

reported using synchrotron X-ray<br />

methods (XANES, EXAFS).<br />

In all cases, the most prevalent<br />

options were ‘standard’ lab-size instruments.<br />

Portable or miniaturized<br />

instruments were used in 15 % of<br />

gamma spectrometry, 8 % of LSC,<br />

22 % of X-ray fluorescence and 5 % of<br />

chromatography methods. Custommade<br />

equipment was more prevalent<br />

than miniaturized instrumentation:<br />

12 % of gamma spectrometry, 25 % of<br />

synchrotron, 14 % of chromatography<br />

and 11 % of x-ray fluorescence<br />

methods were reported to be in some<br />

way specialized or custom-made. At<br />

least 4 to 5 % of any method was<br />

reported to be specialized or custommade.<br />

DECOMMISSIONING AND WASTE MANAGEMENT 403<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 404<br />

| | Fig. 7.<br />

Responses regarding the nuclides measured with non-gamma spectrometry methods (question was mandatory, response options were given and multiple answers were possible).<br />

| | Fig. 8.<br />

Responses regarding the use of methods or specialized equipment (question was mandatory, response<br />

options were given and multiple answers were possible).<br />

Future challenges and<br />

influences (Questions 14 – 17)<br />

When asked about the factors influencing<br />

the development of radioanalytical<br />

methods <strong>for</strong> decommissioning<br />

(question 14), laboratories rated the<br />

7 proposed influencing factors as<br />

being of almost equal importance<br />

(Figure 9).<br />

Improving accuracy was reported<br />

to be “very important” or “important”<br />

by 79 % of laboratories. “Optimizing<br />

money spent on analyses” and “optimizing<br />

time spent on analyses” were<br />

rated “very important” or “important”<br />

by 76 % and 74 % of the laboratories,<br />

respectively. By comparison, “Scientific<br />

findings” were only considered<br />

“very important” or “important” by<br />

62 % of the laboratories, but was also<br />

only deemed “entirely unimportant by<br />

3 % of the laboratories. The option<br />

“changes in laws and regulations” was<br />

reported most frequently to be<br />

“ entirely unimportant” (9 %) or<br />

“not really important” (18 %). Among<br />

the laboratories, 15 % also responded<br />

that “improving detection limits”<br />

was “not really important”, but no<br />

laboratories considered it “entirely<br />

unimportant”.<br />

When evaluating the future analytical<br />

challenges in decommissioning<br />

(question 15), the answers were more<br />

diverse (Figure 10). “Optimizing<br />

radionuclide separation”, “retaining<br />

analytical know-how”, “availability of<br />

more standard material” and “improving<br />

matrix-related sample preparation”<br />

were the challenges deemed most<br />

important with 82 %, 79 %, 79 % and<br />

68 %, of the labora tories, respectively,<br />

considering them “very important” or<br />

“important” challenges <strong>for</strong> the future.<br />

The two challenges deemed least important<br />

were “developing miniaturized<br />

methods” and “developing more<br />

portable, on-site methods” with 36 %<br />

and 30 % of the labs considering this<br />

challenge “entirely unimportant” or<br />

“not really important” and only 25 %<br />

and 31 % considering it “very important”<br />

or “important”.<br />

The open style question on the<br />

greatest analytical challenges in the<br />

future specific to the participant’s laboratory<br />

(question 16) was not mandatory<br />

and was completed by 22 of the<br />

34 (65 %) participants. The answers<br />

reflected a range of future challenges<br />

(Figure 11), which can be loosely<br />

summarized into 8 groups:<br />

| | Fig. 9.<br />

Responses regarding the influence of various parameters on radioanalytical method development<br />

(question was mandatory and response options were given to be rated).<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

| | Fig. 10.<br />

Responses regarding the importance of different analytical challenges <strong>for</strong> decommissioning (question<br />

was mandatory and response options were given to be rated).<br />

Four participants cited organizational<br />

or process-related challenges,<br />

such as “dealing with legacy waste<br />

from nuclear research”, challenges<br />

regarding “sample storage and preservation”,<br />

“transportation of radioactive<br />

samples” and “dealing with high level<br />

waste”. Four laboratories named<br />

acquiring new analytical instruments<br />

as their greatest analytical challenge,<br />

such as “acquirement of alpha spectrometry,<br />

XRF (X-ray fluorescence)”,<br />

“availability of mass spectrometric<br />

techniques”, “availability of AMS<br />

( acceleration mass spectrometry)” and<br />

“direct coupling of techniques, e.g.<br />

separation techniques with ICP-MS<br />

(inductively coupled mass spectrometry),<br />

and automation of the procedures”.<br />

Three laboratories stated<br />

that retaining staff numbers, skill or<br />

know-how was their greatest challenge,<br />

while another three laboratories<br />

named optimizing existing methods,<br />

such as “adapting radiochemistry<br />

protocols to regulatory changes”,<br />

“ improving the reliability of results”<br />

and “completely eliminating the use of<br />

hydrofluoric acids” as their greatest<br />

challenge. Another three laboratories<br />

cited developing new methods as their<br />

greatest challenge, such as the “development<br />

of Se-79 and Pa-107 separation<br />

and measurement methods”,<br />

“ usage of mass spectrometry <strong>for</strong> more<br />

short-lived radionuclides” and “developing<br />

new methods <strong>for</strong> certain nuclides<br />

and availability of more reference materials”.<br />

Two laboratories stated that<br />

updating existing instruments, such as<br />

“ensuring that we have the relevant,<br />

up-to-date equipment” and “AMS in<br />

unattended mode” was their greatest<br />

challenge, while another two laboratories<br />

cited declaration demands as<br />

their greatest challenge saying that<br />

“ increased demands in the declaration<br />

of nuclear and release material and<br />

per<strong>for</strong>ming analyses <strong>for</strong> customers<br />

whose know-how is continuously<br />

decreasing” and “gaining consensus<br />

what radio nuclides and which sample<br />

matrix should be analysed in decommissioning<br />

samples”. One laboratory<br />

cited a specific decommissioning project<br />

as their greatest challenge.<br />

The open style question on the<br />

greatest analytical challenges in the<br />

future <strong>for</strong> decommissioning in general<br />

(question 17) was not mandatory and<br />

was completed by 21 of 34 (62 %)<br />

participants, and reflected an even<br />

larger range of future challenges<br />

(Figure 12), which can be loosely<br />

summarized into 5 groups and 5<br />

non- group-able single answers.<br />

Eight laboratories cited new<br />

methods as a general future challenge<br />

<strong>for</strong> decommissioning, answering<br />

“learning new techniques”, “accepting<br />

new analytical techniques like AMS<br />

as more reasonable methods <strong>for</strong><br />

radionuclide detection”, “specific<br />

analytical techniques <strong>for</strong> pure<br />

alpha and beta emitting nuclides”,<br />

“development of Ca-41 measurement”,<br />

“techniques <strong>for</strong> radionuclides<br />

difficult to detect”, “establishing good<br />

measurement systems” “developing<br />

preparation techniques <strong>for</strong> challenging<br />

sample matrices” and “minimization<br />

of radiochemistry needs”.<br />

Topics related to improved sampling<br />

or in- situ measurements were named<br />

by six participants as the greatest<br />

challenges <strong>for</strong> decommissioning,<br />

citing “make robust equipment <strong>for</strong><br />

on-site measurements that would help<br />

optimizing the sampling”, “enlarging<br />

means <strong>for</strong> in- situ characterization in<br />

order to limit the number of laboratory<br />

analysis”, “representative<br />

sampling <strong>for</strong> technical constructions”,<br />

“use the actual equipment from the<br />

Horizon 2020 project” and “improving<br />

represen tative sample taking”.<br />

Three Labora tories named the range<br />

of nuclides as a future challenge,<br />

saying “the range of radio nuclides<br />

that need to be accurately measured”,<br />

DECOMMISSIONING AND WASTE MANAGEMENT 405<br />

| | Fig. 11.<br />

Responses regarding analytical challenges specific to the participating<br />

laboratory (Grouped responses after analysis of free-text answers, question<br />

not mandatory).<br />

| | Fig. 12.<br />

Responses regarding analytical challenges <strong>for</strong> decommissioning in general<br />

(Grouped responses after analysis of free-text answers, question not<br />

mandatory).<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 406<br />

“techniques <strong>for</strong> hard to detect radionuclides”<br />

and “to extend the number<br />

of radionuclides that can be analyzed<br />

in the lab”. The improvement of<br />

legislation or political choices was<br />

mentioned by three laboratories, who<br />

commented “have clear legislation<br />

in place <strong>for</strong> compliance”, “different<br />

regulations across EU need of standardization<br />

practices across EU” and<br />

“the lack of political and social<br />

decisions regarding the use of new<br />

technologies (transmutation, separation<br />

techniques on an industrial scale)<br />

and the definition of an end- repository<br />

– with the definition of corresponding<br />

disposal conditions”. Two laboratories<br />

considered a lack of suitable reference<br />

materials to be the greatest future<br />

challenge in decommissioning and<br />

responded with “no suitable standard<br />

available <strong>for</strong> some radionuclides”<br />

and wished “to get good certified<br />

reference materials from suppliers<br />

like the IAEA in order to validate new<br />

methods”. There were also 5 other<br />

topics that were con sidered to be<br />

the greatest challenges: “analysis of<br />

middle active waste samples”, “avoiding<br />

cross-contamination of samples<br />

and contamination of equipment<br />

with highly contaminated samples”,<br />

streamlining the “data communication<br />

chain from customer to analysis<br />

to reach conclusions from analysis<br />

results; digital integration with clients<br />

and project partners”, “improving<br />

nuclide vector reliability” and “improve<br />

nuclear waste minimization<br />

(clearance, recycling...)”.<br />

Discussion<br />

The survey process and<br />

participants<br />

The number of responses and nature<br />

of laboratories that replied means<br />

that this survey alone cannot be considered<br />

as fully representative of the<br />

entire radioanalytical landscape <strong>for</strong><br />

decommissioning in Europe. Not only<br />

was it not possible to reach a representative<br />

sample of all types of laboratories<br />

that per<strong>for</strong>m radioanalytical<br />

methods <strong>for</strong> decommissioning (i.e.<br />

laboratories of power plant operators),<br />

it was also not possible to reach<br />

a representative number of participants<br />

per country. Un<strong>for</strong>tunately, this<br />

situation cannot be improved by<br />

simply conducting another survey<br />

that relies on personal networks and<br />

voluntary participation.<br />

Consequently, this survey mainly<br />

suffers from a certain bias due to the<br />

participants that did answer. Findings<br />

in this survey may be considered more<br />

strongly in favor of research, method<br />

development and focused on acquiring<br />

new fields of research as well as<br />

retaining the respective laboratory<br />

client base than would be representative<br />

of the general radioanalytical<br />

landscape in decommissioning. From<br />

this perspective, a survey on views,<br />

expectations and needs of the respective<br />

clients in decommissioning would<br />

complement this work.<br />

Concerning future challenges,<br />

however, the bias towards research<br />

facilities within this study can be<br />

considered positive, as these are best<br />

suited <strong>for</strong> acquiring and testing novel<br />

developments, particularly when cooperating<br />

with power plant operators<br />

and other end users.<br />

A second limitation with an optionbased<br />

survey is that misunderstandings<br />

are possible; particularly concerning<br />

the option “none” <strong>for</strong> the<br />

applicability of a variety of methods /<br />

materials as well as the measurement<br />

methods of total alpha vs. alpha-beta<br />

proportional counting. In contrast,<br />

limiting or eliminating option-based<br />

responses could lead to a wider range<br />

of responses, making it challenging to<br />

draw meaningful conclusions.<br />

Sample characteristics and<br />

sample preparation<br />

The results on sample characteristics<br />

and preparation indicate and confirm<br />

that in decommissioning a vast spectrum<br />

of sample types, activity levels,<br />

sample mass/volume and sample<br />

number per batch is covered (which is<br />

to be expected). Obviously, the laboratories<br />

utilize a large selection of<br />

sample preparation methods to deal<br />

with these multitudes of sample types<br />

and radionuclides to be measured.<br />

The type of method used is related to<br />

the type of radionuclide to be determined<br />

and the detection limit required.<br />

This includes the entire spectrum<br />

of nuclides, such as nuclides<br />

from nuclear fuel material, fission<br />

products, activation products and<br />

naturally occurring radionuclides in<br />

the environment.<br />

It was surprising to note that nearly<br />

half of the laboratories responded that<br />

they took their own samples. While<br />

this was to be expected to be prominent<br />

among laboratories that do<br />

environmental monitoring, it was<br />

surprising that nearly as many labs<br />

did this <strong>for</strong> decommissioning samples.<br />

This speaks <strong>for</strong> a very close interaction<br />

between analytical laboratory and<br />

clients.<br />

Of the samples matrices that were<br />

analyzed, it was surprising to find that<br />

so many laboratories reported not<br />

measuring gaseous samples, nuclear<br />

fuel / rod components and animal<br />

products. This may have to do with<br />

the difficulties of sampling or sample<br />

preparation rather than the necessity<br />

of the measurements, or perhaps this<br />

is due to the biased selection of laboratories<br />

in the survey. As expected,<br />

however, filters, concrete & construction<br />

waste, waste water and other<br />

aqueous samples were analyzed by<br />

the majority of laboratories. These are<br />

considered more ‘routine’ matrices<br />

with comparatively well-known<br />

sampling and sample preparation<br />

pro cedures.<br />

It was also not surprising to find<br />

that most sample sizes are between<br />

0.1 kg to 1 kg. These can be routinely<br />

handled <strong>for</strong> analytical purposes; there<strong>for</strong>e,<br />

the finding that a large range of<br />

sample sizes were handled per laboratory<br />

was also to be expected. However,<br />

it is notable that amounts of 1 kg –<br />

10 kg were also reported by most<br />

laboratories – including <strong>for</strong> matrices<br />

that are more difficult to handle than<br />

liquids, such as concrete, soil and plant<br />

material. This, of course, poses a major<br />

challenge <strong>for</strong> the preparation of<br />

suitable reference materials.<br />

The majority of batch sizes ranged<br />

from 1 to 10 samples, but the<br />

frequency of the samples showed a<br />

large variation <strong>for</strong> nearly all matrices.<br />

There was no sample matrix that was<br />

sampled with the same frequency<br />

across all laboratories.<br />

Concerning the activity levels of<br />

samples, as expected, the relative<br />

activity was highest <strong>for</strong> nuclear fuel or<br />

rod component samples. It was, however,<br />

surprising to find that some<br />

laboratories analyzed plant material<br />

and soil samples with activity levels<br />

>10 2 Bq/g.<br />

The different types of sample<br />

preparation methods showed that<br />

the participating laboratories were<br />

well-rounded and used complementary<br />

methods <strong>for</strong> digestion and<br />

separation. This correlated with the<br />

high variability of sample matrices<br />

and sample numbers, volumes and<br />

measurement frequencies.<br />

Radionuclides and analytical<br />

methods<br />

While the survey shows that the<br />

number of analytical instruments<br />

available in Europe is large, the three<br />

main methods <strong>for</strong> nuclide analysis in<br />

decommissioning are still gamma<br />

spectrometry, liquid scintillation<br />

counting and alpha spectrometry.<br />

While gamma spectrometry is the<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

simplest method in terms of sample<br />

preparation, significant knowledge<br />

is required to interpret the spectra<br />

correctly. This is also true <strong>for</strong> LSC<br />

measurements <strong>for</strong> beta emitters. However,<br />

alpha spectrometry is still widely<br />

used <strong>for</strong> the classic decommissioning<br />

nuclides that are alpha emitters.<br />

This method requires a great deal of<br />

sample preparation, which is also<br />

reflected in the wide variety and complimentary<br />

procedures used <strong>for</strong> sample<br />

preparation by most laboratories.<br />

Development of further methods,<br />

such as ICP-MS and AMS, generally<br />

aims at replacing the labor-intensive<br />

and time-consuming methods, such as<br />

alpha spectrometry, or nuclides that<br />

are difficult to detect with any of the<br />

three methods mentioned, particularly<br />

at low concentrations. As demon strated<br />

by the use of GIC, which is not particularly<br />

wide-spread, however, research<br />

funding does play an important role in<br />

procurement and, there<strong>for</strong>e, method<br />

application.<br />

Regarding specialization or miniaturization<br />

of methods, the survey<br />

indicates limited need <strong>for</strong> miniaturization,<br />

apart from hand-held/port able<br />

gamma detectors, which can help<br />

reduce the ef<strong>for</strong>t of sampling. While<br />

certain specializations were requested<br />

by some laboratories, there were at<br />

least as many other laboratories who<br />

requested a more widespread application<br />

of more variable instruments,<br />

which translates into less specialization<br />

and more complex, but standardized<br />

instruments, such as ICP-MS, TIMS,<br />

AMS and coupling techniques. Standardization<br />

notwithstanding, such instruments<br />

require know-how and high<br />

acquisition and maintenance costs,<br />

which may pose an obstacle <strong>for</strong> their<br />

widespread application.<br />

Current and future challenges<br />

The creator of the survey stems from a<br />

radioanalytical laboratory, there<strong>for</strong>e all<br />

proposed factors influencing method<br />

development in radioana lytics were regarded<br />

as relatively important. It<br />

remains somewhat surprising, however,<br />

that changes in regulation and<br />

laws were considered unimportant by a<br />

significant number of laboratories.<br />

Moreover, there was a significant<br />

number stating that improving detection<br />

limits was not important. This can<br />

either mean that these laboratories had<br />

state-of-the-art instrumentation available,<br />

or that the types of sample they<br />

were analyzing <strong>for</strong> their types of clients<br />

were not influenced by increasingly<br />

demanding regulations. This is particularly<br />

interesting since the greatest number<br />

of “very important” answers was<br />

given to the factor “changes in regulations<br />

& laws.”<br />

There was also a general agreement<br />

on the fact that across Europe<br />

international legislation required<br />

improvements in standardization, and<br />

that improving legal frameworks<br />

was considered important, as the<br />

questions concerning final repositories<br />

and defining declaration procedures<br />

was considered an unresolved issue,<br />

heavily affecting decommissioning. In<br />

this context, it would also have been<br />

interesting to know how many laboratories<br />

were certified and accredited<br />

and how standardized those requirements<br />

were implemented.<br />

Despite the bias in favor of research<br />

in the survey conducted, it remains an<br />

integral part of radioanalytics in decommissioning.<br />

Research is required<br />

<strong>for</strong> specific sampling strategies,<br />

particularly <strong>for</strong> high activities and<br />

preventing of cross contamination or<br />

more robust on-site equipment as well<br />

as <strong>for</strong> new analytical methods, <strong>for</strong><br />

example regarding specific nuclides.<br />

All of this research, however, must be<br />

Advertisement<br />

DECOMMISSIONING AND WASTE MANAGEMENT 407<br />

VERTIEFUNGSKURS<br />

ARBEITEN MIT DIGITALEN SYSTEMEN IN KERNANLAGEN:<br />

BRENNPUNKTE UND LÖSUNGSANSÄTZE –<br />

MÖGLICHKEITEN UND GRENZEN<br />

4. / 5. Dezember 2019, Kongresshotel Arte, Olten<br />

INTERESSANTE VORTRÄGE, SPANNENDE WORKSHOPS UND NETWORKING-APÉRO<br />

- Die Landkarte des Digitalen – digitale Hotspots in Kernanlagen<br />

- Workshops zu digitalen Hotspots in der Praxis – Erfahrungen innerhalb und ausserhalb der Branche<br />

- Lösungsansätze für künftige digitale Anwendungen<br />

- Workshops zu Lösungsansätzen für künftige Anwendungen in der Praxis – Ausblick in die Zukunft<br />

Der Vertiefungskurs richtet sich an Mitarbeitende in Kernanlagen und Zulieferfirmen, an Vertreter von<br />

Behörden sowie an Studierende und Assistierende von technischen Universitäten und Fachhochschulen.<br />

WEITERE INFORMATIONEN UNTER WWW.NUKLEARFORUM.CH/VERTIEFUNGSKURS-2019<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 4<strong>08</strong><br />

done in collaboration with power<br />

plant operators, which was shown by<br />

the survey answers to be the case<br />

<strong>for</strong> many laboratories. In contrast,<br />

increased regulations require more<br />

and more measurements, which also<br />

bring <strong>for</strong>merly uninvolved clients into<br />

the field of radioanalytics, which<br />

results in difficulties, when these<br />

clients have limited radioanalytical<br />

knowledge and valuable resources are<br />

lost in educating clients.<br />

Conclusion<br />

The purpose of this survey was to<br />

assess the status of radioanalytics <strong>for</strong><br />

decommissioning in Europe. The<br />

survey reflected the wide variety of<br />

sample materials and there<strong>for</strong>e,<br />

methods that were being used,<br />

although gamma spectrometry, liquid<br />

scintillation and alpha spectrometry<br />

remain the dominant measurement<br />

techniques. Specialization and miniaturization<br />

of methods was much less<br />

requested than initially anti cipated,<br />

even though almost half of the laboratories<br />

also per<strong>for</strong>m their own sampling.<br />

Instead, future challenges were<br />

most strongly identified in two areas:<br />

1. In the context of process optimization,<br />

such as better integrated<br />

communication with clients, more<br />

definitive legal actions regarding<br />

the decision of final repositories<br />

and standardization as well as<br />

inter national guidelines <strong>for</strong> the<br />

process of decommissioning.<br />

2. Methodical improvements, such as<br />

more widespread application of<br />

mass spectrometric techniques,<br />

such as ICP-MS, AMS, TIMS, and<br />

hyphenated techniques, better<br />

availability of reference material<br />

and new methods <strong>for</strong> specific<br />

nuclides [e.g. Russell et al. 2014].<br />

Acknowledgements<br />

This project has received funding from<br />

the Euratom research and training<br />

program 2014-2018 under the grant<br />

agreement n°755554.<br />

References<br />

| | European Commission (2016). <strong>Nuclear</strong> Illustrative Programme<br />

Presented Under Article 40 of the Euratom Treaty <strong>for</strong> the opinion<br />

of the European Economic and Social Committee {COM(2016)<br />

177}.<br />

| | Judge S.M. & Regan P.H. (2017). Radionuclide metrology<br />

research <strong>for</strong> nuclear site decommissioning, Radiation Physics<br />

and Chemistry, 140, 463-465<br />

| | McIntyre P.J. (2012). <strong>Nuclear</strong> decommissioning policy, infrastructure,<br />

strategies and project planning, in Laraia (ed): <strong>Nuclear</strong><br />

Decommissioning: Planning, Execution and <strong>International</strong><br />

Experience, Woodhead Publishing, Cornwall<br />

| | Hou, X. (2007). Radiochemical analysis of radionuclides difficult<br />

to measure <strong>for</strong> waste characterization in decommissioning of<br />

nuclear facilities, <strong>Journal</strong> of Radioanalytical and <strong>Nuclear</strong><br />

Chemistry, 273 (1), 43–48<br />

| | OECD (2016). Costs of Decommissioning nuclear power plants,<br />

NEA No. 7201<br />

| | Larijani C. et al. (2017). Reference materials produced <strong>for</strong> a<br />

European metrological research project focusing on measurements<br />

of NORM, Applied Radiation and Isotopes, 126, 279-284<br />

| | Hou X. et al. (2016). Present status and perspective of radiochemical<br />

analysis of radionuclides in Nordic countries. <strong>Journal</strong> of<br />

<strong>Nuclear</strong> Chemistry, 309, 1283-1319.<br />

| | Russel B.C, Croudace I.W, Warwick P.E., Milton J.A (2014)<br />

Determination of Precise 135Cs/137Cs Ratio in Environmental<br />

Samples Using Sector Field Inductively Coupled Plasma Mass<br />

Spectrometry<br />

| | Amgarou K. et all. (2018) Inventory of existing methodologies<br />

<strong>for</strong> constrained environments. D5.1 INSIDER project agreement<br />

n° 755554<br />

| | Peerani P. et all (2017) Identification of needs <strong>for</strong> innovative<br />

technologies. D2.4 INSIDER Project, agreement n° 755554<br />

Authors<br />

Dr. Alexandra K. Nothstein<br />

Deputy head of radiochemical<br />

laboratory<br />

Institute <strong>for</strong> Safety and<br />

Environment (SUM)<br />

Dr. Ursula Hoeppener-Kramar<br />

Head of radiochemical laboratory<br />

Institute <strong>for</strong> Safety and<br />

Environment (SUM), Karlsruhe<br />

Institute of Technology (KIT)<br />

Herrmann-von-Helmholtz-Platz 1<br />

76344 Eggenstein-Leopoldshafen,<br />

Germany<br />

Dr. Laura Aldave de las Heras<br />

Deputy Head of waste<br />

management unit<br />

European Commission Joint<br />

Research Centre – JRC<br />

Directorate G – <strong>Nuclear</strong> Safety &<br />

Security<br />

Herrmann-von-Helmholtz-Platz 1<br />

76344 Eggenstein-Leopoldshafen,<br />

Germany<br />

Dr. Benjamin C. Russell<br />

Senior Research Scientist<br />

National Physical Laboratory (NPL)<br />

Hampton Road,<br />

Teddington TW11 0LW, Middlesex,<br />

United Kingdom<br />

Imprint<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Dr. Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Anton Kastenmüller<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Joachim Ohnemus<br />

Olaf Oldiges<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

| | Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Nicole Koch (Editor)<br />

c/o INFORUM, Berlin, Germany<br />

Phone: +49 176 84184604<br />

E-mail: nicole.koch@nucmag.com<br />

| | Official <strong>Journal</strong> of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Dr. Thomas Behringer<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| | Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

| | Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2019<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

Decommissioning and Waste Management<br />

Review of the Analytical Methods Used in <strong>Nuclear</strong> Decommissioning ı Alexandra K. Nothstein, Ursula Hoeppener-Kramar, Laura Aldave de las Heras and Benjamin C. Russell


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

A Pragmatic Approach to Chemotoxic<br />

Safety in the <strong>Nuclear</strong> Industry<br />

Howard Chapman, Marc Thoma and Stephen Lawton<br />

Little is known, understood, or published outside the nuclear sector about chemotoxic safety within the industry.<br />

Chemotoxic safety in the nuclear industry is a broad topic area which primarily examines the risks posed to human<br />

health by substances and mixtures from their chemical and physical properties. This includes hazards which can cause<br />

harm to health, physical harm, or asphyxiation.<br />

<strong>Nuclear</strong> sites with their background in<br />

radiological substances and hazards<br />

have created the need <strong>for</strong> extensive<br />

safety measures involving the requirement<br />

<strong>for</strong> high integrity instrumentation<br />

and control measures <strong>for</strong> protection<br />

to stringent nuclear standards<br />

and this approach has historically<br />

been replicated <strong>for</strong> chemotoxic assessments.<br />

This paper examines the underpinning<br />

regulations and explores the<br />

philosophy behind more recent developments<br />

in chemotoxic assessments to<br />

meet the challenge of producing pragmatic<br />

safety cases within the nuclear<br />

industry. It provides a unique resource<br />

to the nuclear sector and can be used<br />

<strong>for</strong> benchmarking against the wider<br />

process industry, as well as <strong>for</strong> training<br />

and developing staff.<br />

Introduction<br />

The National <strong>Nuclear</strong> Laboratory<br />

(NNL) has a fully developed toolbox of<br />

chemotoxic technical guides and<br />

methodologies, with a proven track<br />

record of meeting regulatory requirements<br />

across a diverse range of facilities,<br />

such as nuclear chemical facilities<br />

and reprocessing facilities, in the<br />

United Kingdom (UK) and internationally.<br />

In the nuclear sector, facilities need<br />

to comply with both nuclear legislation<br />

and chemical legislation.<br />

The chemotoxic safety assessment<br />

methodo logy developed by NNL<br />

recognises the need <strong>for</strong> significant<br />

harmonisation with nuclear safety<br />

assessment methodology.<br />

This paper explores the Regulation<br />

and Legal Requirements relevant to<br />

the umbrella term of ‘chemotoxic’<br />

assessment. The origin of the term<br />

‘chemotoxic’ in the nuclear industry<br />

was explicitly associated with substances<br />

presenting a combined radiological<br />

and chemical hazard, <strong>for</strong><br />

example that presented by uranium<br />

hexafluoride. Nowadays, chemotoxic<br />

assessment has a wider scope of interest<br />

which covers substances and<br />

mixtures presenting Harm to Health,<br />

Physical Harm and Asphyxiation from<br />

their chemical or physical properties.<br />

The fundamental requirement in<br />

chemotoxic assessments is to demonstrate<br />

that these hazards can be safely<br />

managed and the risks are As Low As<br />

Reasonably Practicable (ALARP). This<br />

paper examines how this is achieved<br />

using NNL’s toolbox of chemotoxic<br />

technical guides and methodologies<br />

to ensure all potential hazards are<br />

identified and prevented, with all<br />

key safety measures recognised, implemented<br />

and maintained in an<br />

appropriate and pragmatic manner<br />

benefitting from experience from the<br />

wider process industry.<br />

Regulation and<br />

Legal Requirements<br />

The civil nuclear industry worldwide<br />

is regulated to ensure that activities<br />

related to nuclear energy and ionising<br />

radiation are conducted in a manner<br />

which adequately protects people,<br />

property and the environment.<br />

In the UK, the Office <strong>for</strong> <strong>Nuclear</strong><br />

Regulation (ONR) is the agency<br />

responsible <strong>for</strong> the licensing and regulation<br />

of nuclear installations and<br />

the legal framework <strong>for</strong> the nuclear<br />

industry is based around the Health<br />

and Safety at Work Act (HSWA) [1],<br />

the Energy Act [2] and the <strong>Nuclear</strong><br />

Installations Act (NIA) [3].<br />

| | Fig. 1.<br />

Regulations and Legislation relevant to chemotoxic safety assessment.<br />

A fundamental requirement cited<br />

in UK legislation is that risks be<br />

reduced to ALARP. This principle<br />

provides a requirement to implement<br />

proportionate measures to reduce risk<br />

where doing so is reasonable. The<br />

ALARP principle is applied by adhering<br />

to established good practice, or in<br />

cases where this is unavailable, it is<br />

applied to demonstrate that measures<br />

have been implemented up to the<br />

point where the cost of additional risk<br />

reduction is disproportionate to the<br />

benefit gained. This concept, which<br />

determines the ‘tolerability of risk’<br />

is underpinned in Health & Safety<br />

Executive’s (HSE) publication Reducing<br />

Risks, Protecting People<br />

(R2P2) [4] and subsequently the<br />

ONR’s risk in<strong>for</strong>med regulatory decision<br />

making framework [5].<br />

Figure 1 provides an overview of<br />

the relevant regulations and legislation<br />

and crucially their inter-relationship<br />

which drives the requirement<br />

<strong>for</strong> chemotoxic safety assessment in<br />

the nuclear sector.<br />

Health and Safety at Work Act<br />

(HSWA) [1]<br />

As described above, the HSWA underpins<br />

all industries within the UK.<br />

The HSWA starts from the position<br />

that every hazard requires a suitable<br />

and sufficient risk assessment to be<br />

DECOMMISSIONING AND WASTE MANAGEMENT 409<br />

Decommissioning and Waste Management<br />

A Pragmatic Approach to Chemotoxic Safety in the <strong>Nuclear</strong> Industry ı Howard Chapman, Marc Thoma and Stephen Lawton


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 410<br />

undertaken to determine the consequences<br />

of hazardous events and the<br />

measures needed to ensure that risks<br />

from the hazard are adequately controlled.<br />

The risks are then determined<br />

to be tolerable in line with R2P2 [4].<br />

Classification and Labelling<br />

(CLP) Regulations [6]<br />

The CLP Regulation is used as a set of<br />

criteria and rules to determine if a<br />

substance or mixture can cause Health<br />

Hazards or Physical Hazards from<br />

their chemical, physical, or biological<br />

properties. Gases are identified as an<br />

Asphyxiation Hazard in their Safety<br />

Data Sheets (SDS) required by the<br />

REACH (Registration, Evaluation,<br />

Authorisation and restriction of<br />

Chemicals) Regulation [7].<br />

Control of Substances<br />

Hazardous to Health<br />

(COSHH) Regulations [8]<br />

COSHH Regulations covers substances<br />

with the potential to cause Health<br />

Hazards from chemicals fumes, dusts,<br />

vapours, mists, nanotechnology, gases<br />

and asphyxiating gases and biological<br />

agents and germs that cause diseases<br />

such as leptospirosis or legionnaires<br />

disease. Substances and mixtures such<br />

as Lead and Asbestos are addressed<br />

under their own specific Regulations.<br />

Chemotoxic assessments ensure<br />

that suitable and sufficient risk assessments<br />

are undertaken to determine<br />

the consequences of hazardous events<br />

and the required safety measures to<br />

confirm the risks from hazards are<br />

adequately controlled. The main focus<br />

of chemotoxic assessments is on sudden<br />

accidental releases of substances<br />

from engineered systems and the risk<br />

of acute hazards. This is in contrast to<br />

routine or low level emissions of a<br />

substance, dealt with by basic tabular<br />

risk assessments, typically covered by<br />

COSHH assessments.<br />

The Dangerous Substances<br />

and Explosive Atmospheres<br />

Regulations (DSEAR) [9]<br />

DSEAR is primarily concerned with<br />

substances or mixtures with the<br />

potential to cause Physical Hazards<br />

from a fire or explosion such as thermal<br />

radiation (burns), overpressure<br />

effects (blast injuries) and oxygendepletion<br />

effects.<br />

Chemotoxic assessments determine<br />

appropriate safety measures to<br />

protect against unmitigated consequences<br />

taking into account both the<br />

potential health and physical hazards.<br />

This is in contrast to typical DSEAR<br />

assessments which specifically assess<br />

physical hazards and take credit <strong>for</strong><br />

ventilation <strong>for</strong> the purposes of explosive<br />

atmosphere zoning calculations.<br />

Confined Space Regulations [10]<br />

A “confined space” means any place,<br />

which, by virtue of its enclosed nature,<br />

there arises a reasonably <strong>for</strong>eseeable<br />

specified risk. A specified risk includes<br />

amongst many things, the loss of consciousness<br />

or asphyxiation of any<br />

person at work arising from gas, fume,<br />

vapour or the lack of oxygen.<br />

Sources of asphyxiant gases can<br />

be identified by the inter-relationship<br />

of COSHH and DSEAR, as shown<br />

in Figure 1. Asphyxiation hazards<br />

arising outside of confined spaces are<br />

deemed to be within the scope of<br />

chemotoxic assessment.<br />

The Control of Major Accident<br />

Hazards (COMAH) Regulations<br />

[11]<br />

The purpose of the COMAH Regulations<br />

is to prevent major accidents<br />

involving dangerous substances and<br />

limit the consequences to people and<br />

the environment of any accidents<br />

which do occur. There are two<br />

thresholds, known as lower tier and<br />

upper tier. The Regulations define<br />

dangerous substances using the CLP<br />

regulations. They include substances<br />

which are: toxic; explosive; flammable;<br />

or, hazardous to the environment.<br />

The application of this regulation<br />

is dependent on the qualifying<br />

quantity of dangerous substances<br />

present or likely to be present.<br />

The focus of a chemotoxic assessment<br />

is the potential to cause serious<br />

harm or fatality of an individual or a<br />

member of public. This is in contrast<br />

to COMAH which is mainly concerned<br />

with societal consequences arising<br />

from significant quantities of hazardous<br />

material.<br />

Chemotoxic Hazards<br />

Chemotoxic assessment covers the<br />

assessment of health, physical and<br />

asphyxiation hazards arising from<br />

internally and externally initiated<br />

events with the potential to cause<br />

fatality or serious harm (i.e. requiring<br />

prolonged medical treatment) to<br />

persons on or off the site. The key<br />

hazards they assess are:<br />

pp<br />

Toxic Inhalation – can occur from<br />

chemicals, which if inhaled, could<br />

result in a significant harm to the<br />

operator / member of public (e.g.<br />

inhalation of hydrogen fluoride).<br />

pp<br />

Skin Contact – can occur from<br />

chemicals, which if exposed to the<br />

skin, could result in significant<br />

harm to the operator (e.g. skin<br />

contact with highly concentrated<br />

nitric acid).<br />

pp<br />

Explosion – can occur from<br />

chemicals (explosive or flammable<br />

atmospheres), which if ignited,<br />

could result in a deflagration or<br />

detonation and result in significant<br />

harm to the operator / member of<br />

public (e.g. hydrogen explosion).<br />

pp<br />

Asphyxiation – These are inert<br />

gases, which if released could<br />

result in an oxygen depleted<br />

atmosphere (e.g. inhalation of<br />

argon).<br />

It should be noted that ingestion<br />

hazards are generally discounted as<br />

there is no eating and drinking<br />

allowed in areas of nuclear facilities<br />

where chemicals are present.<br />

The CLP Regulations and Safety<br />

Data Sheets are used as a set of criteria<br />

and rules to determine if a substance<br />

or mixture can cause Harm to Health,<br />

Physical Harm or Asphyxiation from<br />

their chemical or physical properties.<br />

Assessment of Hazards<br />

The fundamental requirement in<br />

chemotoxic assessment is to demonstrate<br />

that hazards presenting Harm<br />

to Health, Physical Harm or Asphyxiation<br />

can be safely managed and<br />

the risks are ALARP, with a clear link<br />

of how the assessment is physically<br />

implemented within the facility,<br />

known as the ‘Golden Thread’. This<br />

can be illustrated through a Claims<br />

Arguments Evidence (CAE) approach<br />

as shown in Figure 2.<br />

From a chemotoxic CAE perspective,<br />

there is top level claim<br />

requirement to ensure all chemotoxic<br />

hazards can be safely managed and<br />

the risks are ALARP. This is supported<br />

by a series of sub-claims listed below:<br />

pp<br />

All chemotoxic hazards can be<br />

identified, with inherent material<br />

hazards understood.<br />

pp<br />

All chemotoxic hazards can be<br />

adequately prevented or managed,<br />

by determining the unmitigated<br />

consequences such that appropriate<br />

safety measures can be identified<br />

and the risks can be shown to<br />

be ALARP.<br />

pp<br />

All key operational and engineering<br />

measures can be identified,<br />

implemented and maintained.<br />

Hazard Identification<br />

The focus of chemotoxic assessment is<br />

<strong>for</strong> complex processes or engineered<br />

process systems which require a<br />

structured review to determine the<br />

potential fault scenarios, hazard<br />

severity and safety measures.<br />

Decommissioning and Waste Management<br />

A Pragmatic Approach to Chemotoxic Safety in the <strong>Nuclear</strong> Industry ı Howard Chapman, Marc Thoma and Stephen Lawton


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

| | Fig. 2.<br />

Claims Arguments Evidence Approach.<br />

The inherent material ‘chemotoxic’<br />

hazards are identified through CLP<br />

Regulations and Safety Data Sheets. A<br />

structured and systematic approach<br />

such as HAZard and OPerability<br />

( HAZOP) studies are utilised to<br />

identify faults which could result in<br />

chemotoxic hazards.<br />

Hazard Prevention and<br />

Management<br />

Chemotoxic hazards are adequately<br />

prevented or managed by determining<br />

the potential severity of the hazard<br />

based on unmitigated consequences<br />

and identifying safety measures which<br />

are proportional to the risk.<br />

NNL has developed a toolbox<br />

which has well-defined thresholds <strong>for</strong><br />

serious harm and fatality based on<br />

established sources of published<br />

in<strong>for</strong>mation such as the HSE Dangerous<br />

Toxic Loads (DTL) [12], NIOSH<br />

pocket guide [13] and HSE<br />

EH40/2005 Workplace exposure<br />

limits [14]. The NNL chemotoxic toolbox<br />

employs the use of well- recognised<br />

codes, including Computational Fluid<br />

Dynamics (CFD), Process hazard<br />

analysis software (Phast), or Areal<br />

Locations of Hazardous Atmospheres<br />

(ALHOA) to support consequence<br />

modelling.<br />

The foundation of chemotoxic<br />

assessment is based upon defining a<br />

Hazard Management Strategy (HMS)<br />

which identifies a hierarchical<br />

approach to safety measures (i.e.<br />

ERIC PD) to minimise or eliminate the<br />

exposure to hazards:<br />

pp<br />

Elimination of the hazards<br />

wherever possible,<br />

pp<br />

Reduction of the hazard by<br />

substitution with a less hazardous<br />

<strong>for</strong>m if possible,<br />

pp<br />

Isolation and Control of the hazard<br />

with Passive / Engineering controls<br />

to prevent / mitigate the<br />

hazard where appropriate,<br />

pp<br />

Reliance upon Personal protective<br />

control to mitigate the hazard, and<br />

Discipline with procedural controls<br />

is the ‘last line’ of defence.<br />

The HMS also takes into consideration<br />

potential conflicts in safety management<br />

between different radiological<br />

and chemotoxic hazards to ensure an<br />

appropriate balance of safety is<br />

achieved.<br />

Chemotoxic hazards will have the<br />

potential to give rise to a range of consequences<br />

depending on the success<br />

or failure of the mitigation ‘layers’,<br />

including key operational and engineered<br />

features. These layers serve to<br />

either prevent an initiating event from<br />

developing, or to mitigate the consequences<br />

of an event once it occurs.<br />

Assurance of the layers will be undertaken<br />

on a tolerability of risk based<br />

approach against criteria stated in<br />

HSE’s Reducing Risk Protecting<br />

People R2P2 guide.<br />

Review of Safety Measure<br />

Designation Techniques<br />

The individual hazards identified by<br />

HAZOP studies are presented in the<br />

<strong>for</strong>m of fault sequences. Each fault<br />

sequence starts with an initiating<br />

event that could lead to unwanted<br />

consequences and place a demand on<br />

a set of safety measures. The assessment<br />

of the fault sequence includes<br />

failure of some or all of these safety<br />

measures to determine their degree of<br />

importance.<br />

There are various techniques available<br />

to determine the importance of<br />

safety measures in the wider process<br />

industry, two commonly used are;<br />

Layers of Protection Analysis (LOPA)<br />

and Bowtie Diagrams. These techniques<br />

are briefly described below and<br />

compared with the NNL Graded<br />

Approach <strong>for</strong> chemotoxic safety<br />

assessment.<br />

Layers of Protection Analysis<br />

(LOPA)<br />

LOPA is an established hazard assessment<br />

method which provides a<br />

balanced evaluation technique<br />

between detailed and costly quantitative<br />

risk analysis and qualitative<br />

Process Hazard Analysis (PHA).<br />

The LOPA method provides order<br />

of magnitude risk estimates derived<br />

from analysis of the initiating event<br />

frequency and independent layers of<br />

protection. Evaluation of the identified<br />

accident scenarios is based upon<br />

some simplified rules, including the<br />

use of Conditional Modifiers that take<br />

into consideration factors such as the<br />

period of time that an operator is<br />

exposed to a hazard.<br />

Inclusion of conditional modifiers<br />

in the LOPA method can allow <strong>for</strong> a<br />

more accurate modelling of the risk of<br />

a given scenario from a safety perspective.<br />

However, the use of these factors<br />

can in some instances be subject to<br />

potential pitfalls. The improper use of<br />

these important factors may sometimes<br />

result in a gross underestimate<br />

of the risk of events and if they are too<br />

optimistic during the design stage can<br />

result in lack of provision of safety<br />

measures being identified. As illustrated<br />

in Figure 3, this can sometimes<br />

mean there is a need <strong>for</strong> costly redesign<br />

or retro-engineering of safety<br />

measures at a later stage to ensure<br />

safe design and operation of facilities.<br />

DECOMMISSIONING AND WASTE MANAGEMENT 411<br />

Decommissioning and Waste Management<br />

A Pragmatic Approach to Chemotoxic Safety in the <strong>Nuclear</strong> Industry ı Howard Chapman, Marc Thoma and Stephen Lawton


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 412<br />

| | Fig. 3.<br />

LOPA Approach.<br />

Bowtie Diagrams<br />

The use of ‘Bowtie’ diagrams (Figure<br />

4) in the process industry is so-called<br />

because it visualises the management<br />

of risk in the shape of a bow-tie graphical<br />

representation of the relationship<br />

between the initiating event and consequences<br />

with emphasis on the link<br />

between the safety measures and the<br />

management system in one, easy to<br />

understand picture. This can be used<br />

in conjunction with other analytical<br />

techniques.<br />

Based on NNL’s experience,<br />

chemotoxic assessments often require<br />

consideration of complex engineered<br />

systems which demand detailed<br />

analysis to determine faults sequence<br />

and safety measures.<br />

The use of Bowtie diagrams as an<br />

analytical tool alone does have limitations<br />

<strong>for</strong> some risk management<br />

problems, in particular if there is a<br />

| | Fig. 4.<br />

Bowtie Diagram Approach.<br />

| | Fig. 5.<br />

NNL Tool box Graded Approach.<br />

requirement to quantify the level of<br />

risk in absolute terms. It is considered<br />

that there are better ways of modelling<br />

complex systems and their relationship<br />

between the hazard, safety measures<br />

and overall risk, if this is required.<br />

NNL Graded Approach<br />

The NNL toolbox of chemotoxic<br />

technical guides and methodologies<br />

recommends the use of a proportionate<br />

graded approach to safety designations<br />

(Figure 5). In general, the<br />

risk from chemotoxic, asphyxiation or<br />

explosive accidents must: be demonstrated<br />

to be limited by robust qualitative<br />

arguments using engineering<br />

judgement; be the subject of a probabilistic<br />

safety assessment to meet the<br />

risk target defined by R2P2; or be<br />

demonstrated to be in alignment with<br />

best practice. If a sufficiently robust<br />

deterministic argument can be made,<br />

these are used in preference to a probabilistic<br />

safety assessment.<br />

If a probabilistic assessment is<br />

required, the NNL chemotoxic toolbox<br />

includes the provision of fault tree<br />

analysis codes to support frequency<br />

calculations and the modelling of<br />

inter-relationships between the<br />

initiating event and safety measures<br />

themselves.<br />

The challenge is to identify a proportionate<br />

number of safety designations<br />

<strong>for</strong> implementation. Over-designation<br />

can have a negative effect on safety.<br />

If too many items of equipment or procedures<br />

are safety-designated, their importance<br />

to safety can be ‘ diluted’. This<br />

is in addition to the separate effect of<br />

over-designation resulting in significant<br />

cost implications.<br />

There is a clear link between the<br />

NNL chemotoxic toolbox graded<br />

approach to safety which underpins<br />

the R2P2 broadly acceptable risk<br />

criteria. It is argued that this approach<br />

there<strong>for</strong>e demonstrates that the risks<br />

are ALARP under the HSE regulations<br />

and this understanding has been used<br />

to produce numerous chemotoxic<br />

safety cases in the nuclear sector,<br />

which meet Regulatory expectations<br />

at a number of different sites within<br />

the UK.<br />

The general approach applied to<br />

significant faults, which have the<br />

potential <strong>for</strong> fatality, is that they<br />

require the designation of a passive<br />

safety measure such as a vessel, or two<br />

independent engineered safety<br />

measures such as Control, Electrical<br />

and Instrumentation Equipment<br />

(CE&I) or mechanical devices. The<br />

engineered safety measures require<br />

a predefined action on outage or<br />

substitution arrangement. Alternatively,<br />

it is possible <strong>for</strong> Operational<br />

Safety Measures to be claimed in line<br />

with the ERIC PD principle. The<br />

number of independent measures can<br />

be reduced, such as in the case of low<br />

initiating event frequencies, or highly<br />

reliable safety measures, or where it<br />

can be demonstrated to be in alignment<br />

with good practice guides. It<br />

should be noted that good practice<br />

guides, should be used carefully as<br />

these are often generic and may not<br />

reflect the exact fault scenario or<br />

environment. These should there<strong>for</strong>e<br />

be interpreted in alignment with a<br />

degree of risk assurance.<br />

The general approach <strong>for</strong> lesser<br />

significant faults, which have the<br />

potential <strong>for</strong> serious harm, is that they<br />

require the designation of a single<br />

safety measure, which can either be<br />

passive, engineering or an operational<br />

Decommissioning and Waste Management<br />

A Pragmatic Approach to Chemotoxic Safety in the <strong>Nuclear</strong> Industry ı Howard Chapman, Marc Thoma and Stephen Lawton


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

| | Fig. 6.<br />

Factors Influencing Overall Risk.<br />

safety in line with the ERIC PD<br />

principle.<br />

Chemotoxic hazards which fall<br />

below the serious harm chemotoxic<br />

thresholds are adequately assessed by<br />

the basic (tabular style) COSHH risk<br />

assessment.<br />

One key difference between the<br />

NNL chemotoxic graded approach<br />

and the LOPA process is in the use of<br />

Conditional Modifiers. The graded<br />

approach takes a conservative stance<br />

to the assessment of the initiating<br />

event frequency, with no allowance<br />

being made <strong>for</strong> Conditional Modifiers.<br />

Although it is a cautious stance, it is<br />

argued it minimises the potential <strong>for</strong><br />

expensive retro-engineering work.<br />

It is NNL’s view that chemotoxic<br />

risks are shown to be ALARP through<br />

the qualitative graded approach to<br />

safety, probabilistic safety assessment,<br />

or, demonstration of assurance with<br />

good practice.<br />

Implementation<br />

All key engineered and operation<br />

safety measures that provide protection<br />

against chemotoxic hazards are<br />

identified with suitable and appropriate<br />

nomenclature to highlight their<br />

importance to safety within the<br />

facility. This in<strong>for</strong>mation usually feeds<br />

into a category management process<br />

to ensure engineered measures are<br />

substantiated (i.e. can per<strong>for</strong>m what<br />

is required) and are maintained<br />

throughout the life cycle of the facility<br />

and operational measures can be<br />

per<strong>for</strong>med (i.e. through underpinning<br />

instructions and training). It also<br />

enables suitable and where appropriate,<br />

substitution arrangements to<br />

be put in place and safe operating<br />

methods to allow operations to proceed<br />

safely.<br />

The Safety Assessment<br />

Equilibrium<br />

The NNL proportionate graded<br />

approach provides a robust assessment<br />

method to ensure the<br />

appro priate amount of risk reduction<br />

is provided to achieve the risk target.<br />

The overall risk frequency is a function<br />

of the magnitude of the Initiating<br />

Event Frequency, Integrity ( reliability)<br />

of the safety measure and the Layers<br />

of Safety (number of independent<br />

safety measures) as illustrated in<br />

Figure 6.<br />

The chemotoxic safety assessment<br />

has very little influence on the Initiating<br />

Event Frequency which drives<br />

the risk reduction required from the<br />

safety measure(s). For example, frequent<br />

initiating events will demand a<br />

greater degree of risk reduction than<br />

less frequent initiating events to<br />

achieve the R2P2 broadly acceptable<br />

risk target.<br />

For a typical initiating event, the<br />

dilemma is often a choice of placing<br />

reliance upon a single but complex<br />

safety measure, versus multiple layers<br />

of safety measures. Complex systems<br />

typically demand significant ef<strong>for</strong>t<br />

and there<strong>for</strong>e cost to substantiate and<br />

maintain, compared with multiple<br />

simpler systems.<br />

All of the various analytical techniques<br />

described above enable a<br />

demonstration of managing risk.<br />

More specifically, the NNL graded<br />

approach is based on an appreciation<br />

of understandings about the practicalities<br />

of providing and substantiating<br />

one single very high level of integrity<br />

safety measure versus the provision<br />

of multiple lower level integrity measures.<br />

For the majority of faults which<br />

have the potential to result in fatality,<br />

the general approach of identifying<br />

two independent safety measures<br />

would ensure that the risks are<br />

broadly acceptable.<br />

In summary, the NNL approach<br />

adopted involves finding the equilibrium<br />

between the required number<br />

of protection layer(s) of safety<br />

measures to achieve the most cost effective<br />

and pragmatic degree of risk<br />

reduction. In addition, the NNL<br />

approach has the flexibility to<br />

accommodate unique scenarios and<br />

demonstrate an acceptable risk<br />

through probabilistic safety assessment,<br />

or assurance with good practice<br />

guides.<br />

References<br />

[1] United Kingdom Government, “Health and Safety at Work<br />

Act,” 1974.<br />

[2] United Kingdom Government, “Energy Act,” 2013.<br />

[3] United Kingdom Government, “<strong>Nuclear</strong> Installations Act,”<br />

1965.<br />

[4] Health & Safety Executive, “Reducing Risks, Protecting<br />

People,” 2001.<br />

[5] Office <strong>for</strong> <strong>Nuclear</strong> Regulation, “Risk in<strong>for</strong>med regulatory<br />

decision making,” 2017.<br />

[6] Statutory Instruments, “The Classification, Labelling and<br />

Packaging of Chemicals Regulations 2015,” 2015.<br />

[7] European Council, “Registration, Evaluation, Authorisation<br />

and Restriction of Chemicals (REACH), Regulation<br />

No. 1907/2006,” 2006.<br />

[8] Statutory Instruments, “The Control of Substances<br />

Hazardous to Health, 2002, No.2677,” 2002.<br />

[9] Statutory Instruments, “The Dangerous Substances and<br />

Explosive Atmospheres Regulations 2002, No. 2776,” 2002.<br />

[10] Statutory Instruments, “Confined Space Regulations 1997,<br />

No 1713,” 1997.<br />

[11] Statutory Instruments, “The Control of Major Accident<br />

Hazards Regulations 2015, No. 483,” 2015.<br />

[12] HSE, “Toxicity Levels of Chemicals,” [Online]. Available:<br />

http://www.hse.gov.uk/chemicals/haztox.htm.<br />

[13] National Institute <strong>for</strong> Occupational Safety and Health,<br />

“ NIOSH Pocket Guide to Chemical Hazards, No. 2005-149,”<br />

2005.<br />

[14] HSE, “Workplace Exposure Limits, EH40/2005,” Third Edition<br />

2018.<br />

[15] Health & Safety Executive, “Toxicity Levels of Chemicals,”<br />

[Online]. Available: http://www.hse.gov.uk/chemicals/<br />

haztox.htm.<br />

[16] Health & Safety Executive, “Workplace Exposure Limits,<br />

EH40/2005,” Third Edition 2018.<br />

Authors<br />

Howard Chapman<br />

Marc Thoma<br />

Stephen Lawton<br />

Chadwick House<br />

Birchwood Park<br />

Warrington, Cheshire WA3 6AE<br />

United Kingdom<br />

DECOMMISSIONING AND WASTE MANAGEMENT 413<br />

Decommissioning and Waste Management<br />

A Pragmatic Approach to Chemotoxic Safety in the <strong>Nuclear</strong> Industry ı Howard Chapman, Marc Thoma and Stephen Lawton


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 414<br />

Due to the length<br />

of the article it is<br />

published in some<br />

different parts. The<br />

authors and editor<br />

hope you will enjoy<br />

and look <strong>for</strong>ward to<br />

reading the entire<br />

article, as each<br />

portion is published.<br />

This republication is a<br />

shortened version of<br />

an article originally<br />

published in the<br />

journal Progress in<br />

<strong>Nuclear</strong> Energy. The<br />

full-length version of<br />

the article may be<br />

found at: Sanders, M,<br />

& Sanders, C 2019<br />

“A world’s dilemma<br />

‘upon which the sun<br />

never sets’ – The<br />

nuclear waste<br />

management strategy<br />

(part II): Russia, Asia<br />

and the Southern<br />

Hemisphere”, Progress<br />

in <strong>Nuclear</strong> Energy<br />

110, 148-169.<br />

A World’s Dilemma ‘Upon Which<br />

the Sun Never Sets’: The <strong>Nuclear</strong> Waste<br />

Management Strategy: The Southern<br />

Hemisphere<br />

Part 4<br />

Mark Callis Sanders and Charlotta E. Sanders<br />

6 Southern Hemisphere<br />

6.1 Argentine Republic or<br />

República Argentina<br />

(Argentina)<br />

6.1.1 Historical Overview & Law<br />

Argentina, the world’s eighth largest<br />

country, covers most of the southern<br />

portion of South America. Argentina<br />

boasts an extremely varied topography,<br />

from immense plains to high<br />

mountains and deserts to miles of<br />

ocean shoreline [103]. Not only is<br />

Argentina able to boast a varied<br />

topography, but is able to claim various<br />

political systems that have governed<br />

the country, as from 1930 to 1980,<br />

Argentina’s political system has “vacillated<br />

between civilian-led democracy<br />

[to] military-led authoritarian government”<br />

[104]. In the early 1980’s,<br />

Argentina’s most recent military dictatorship<br />

ended after ruling <strong>for</strong> a period<br />

of seven years. Argentina is not a<br />

hydrocarbon-rich nation, but oil was<br />

discovered in the first decade of the<br />

twentieth century, “when Argentine<br />

geologists accidentally struck crude<br />

while digging an exploratory waterwell<br />

in the arid Patagonian town of<br />

Comodoro Rivadavia” [105].<br />

In 1950, Argentina’s initial <strong>for</strong>ay in<br />

to the realm of nuclear developed<br />

through the founding of the National<br />

Atomic Energy Commission (CNEA)<br />

and the construction of a number of<br />

research reactors. Currently, five<br />

research reactors are in operation<br />

operated by CNEA and others, with<br />

two further research reactors under<br />

construction. Beginning in 1964,<br />

attention turned to nuclear power<br />

generation in the country. The country’s<br />

nuclear power program was<br />

realized with the construction of the<br />

362 MWe (gross) Atucha plant built<br />

100 km northwest of the capital,<br />

Buenos Aires. By the mid-1970’s the<br />

Atucha-1 began commercial operation<br />

(1974), and construction of a second<br />

unit, Atucha-2, began in 1981, but<br />

was repeatedly delayed due to lack of<br />

funds until work resumed on it in<br />

2006 [106]. Atucha-2 achieved<br />

criticality in June 2014 (Patel, 2014),<br />

and in May 2016 was granted a full<br />

operating license by the Argentine<br />

nuclear regulator, Autoridad Regulatoria<br />

<strong>Nuclear</strong> (ARN) [107].<br />

Argentina’s third nuclear power<br />

plant, The Embalse plant, went online<br />

in 1984. However, due to needed<br />

maintenance and upgrade work on<br />

the reactor, it was taken offline in<br />

January 2016. The plant upgrade is<br />

expected to be completed in the<br />

second half of 2018 [1<strong>08</strong>]. In May<br />

2017, Argentina and China signed a<br />

contract <strong>for</strong> the building of Atucha-3.<br />

As part of the contract, China guarantees<br />

financing at “4.5 percent 20-year<br />

plus eight-year loan covering the<br />

$12.5 billion estimated cost of the<br />

project” [109]. Work is expected to<br />

begin in 2018, and additional nuclear<br />

power plants within the country are<br />

envisioned.<br />

6.1.2 Government and<br />

Legislative Regime<br />

Argentina, a federal republic, consists<br />

of 23 provinces and one semi-autonomous<br />

city, the national capital Buenos<br />

Aires. Its president, who is both chief<br />

of state and head of government, is<br />

directly elected by popular vote,<br />

serving <strong>for</strong> a 4-year term. The president<br />

appoints members to the cabinet<br />

[110]. The legislature is bicameral,<br />

with a Chamber of Deputies and a<br />

Senate. There are 257 Deputies,<br />

whom serve <strong>for</strong> a term of four-years<br />

and are chosen through proportional<br />

representation from a closed list, in<br />

“which voters can neither change the<br />

order of candidates nor remove them<br />

from the list” [1<strong>08</strong>].<br />

The Senate’s 72 members are<br />

directly elected to serve <strong>for</strong> a term of<br />

six years through majority vote, where<br />

one-third of the Senators are up <strong>for</strong><br />

reelection every two years. The Senate<br />

reviews and approves the appointments<br />

of the upper ranks of the armed<br />

<strong>for</strong>ces, as proposed by the President<br />

[111]. Argentina’s judicial branch<br />

constitutes the Supreme Court or Code<br />

Suprema, which consists of the court<br />

president, vice-president, and five<br />

judges, and also other subordinate<br />

courts. Judges to the Supreme Court<br />

are nominated by the president, which<br />

must then be approved by the Senate.<br />

Judges to the Supreme Court have a<br />

mandatory retirement age of 75 [110].<br />

In the early twentieth century,<br />

Argentina was known as one of the<br />

world’s richest countries, benefiting<br />

from rich natural resources, a welleducated<br />

population, and its massive<br />

amount of agricultural exports (chiefly<br />

beef), but in this time has fallen<br />

from one of the world’s wealthiest<br />

countries to a country constantly<br />

plagued with recurring economic<br />

crises, fiscal debt, and high inflation.<br />

Argentina has always “[fluctuated]<br />

between two models of economic<br />

organization of either state intervention<br />

or classical liberalism” [112],<br />

and has consistently struggled <strong>for</strong><br />

“ decades [under] a political system<br />

that cannot maintain credible progrowth,<br />

noninflationary policies”<br />

[113]. Within the last four to five<br />

years, Argentina has made ef<strong>for</strong>ts to<br />

rejoin its standing in the international<br />

financial community agreeing payment<br />

in the amount of $9.7 billion<br />

owed to Paris Club 1 investors over a<br />

period of five years. Argentina has<br />

further agreed to make payments on<br />

debts owed to US investors in an<br />

1 For more in<strong>for</strong>mation on the Paris Club, see: http://www.clubdeparis.org/, viewed April 17, 2018.<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

| | Argentina, nuclear power, view of the Atucha site with two Pressurized Heavy Water Reactor (PHWR)<br />

in operation.<br />

amount of $606 million. Argentina<br />

made the first payment on this debt<br />

owed <strong>for</strong> almost 14 years to Paris Club<br />

creditors in 2014. 2<br />

6.1.2.1 Corruption<br />

Despite Argentina having a strong legal<br />

and institutional framework <strong>for</strong> combatting<br />

bribery, corruption has, and<br />

continues, to remain a serious problem<br />

affecting both the public and private<br />

sectors. Here, one is reminded of the<br />

response given by Sir Humphrey<br />

Appleby to Minister Jim Hacker in the<br />

British Broadcasting Corporation<br />

fictional comedy show ‘Yes, Minister’ 3<br />

regarding government corruption:<br />

“No, no, Minister! It could never be<br />

government policy. That is unthink able!<br />

Only government practice.” Corruption<br />

has been rife in Argentina throughout<br />

its history, and especially over the<br />

past few decades. Recently, one of<br />

Argentina’s most corrupt Presidents<br />

was probably Carlos Saúl Menem, who<br />

ran the country from 1989 to 1999. He<br />

unabashedly drove a brand-new red<br />

Ferrari given to him as a gift while<br />

holding office and when questioned<br />

about it, “Menem exclaimed, “It’s<br />

mine, mine, mine!” [114].<br />

In the latest Transparency <strong>International</strong><br />

Corruption Perceptions Index<br />

(CPI), Argentina ranked 85 out of 180<br />

countries in 2017. Former President<br />

Cristina Fernández de Kirchner, who<br />

was recently elected to the Senate,<br />

currently faces five sets of corruption<br />

charges. Argentina’s current President<br />

Macri’s administration is trying to<br />

lead the fight against corruption. 4<br />

Under its guidance, Argentina’s<br />

congress has passed three important<br />

anti- corruption laws: (1) limit the<br />

budgetary reallocations that the chief<br />

of the cabinet of ministers can make;<br />

(2) establish penalties against companies<br />

that engage in the corruption<br />

of public officials; and, (3) offers a<br />

reduction in prison terms <strong>for</strong> those<br />

individuals who have engaged in public<br />

corruption (if they provide specific<br />

and verifiable in<strong>for</strong>mation to the<br />

authorities) 5<br />

[115]. Such ef<strong>for</strong>ts by<br />

the Argentine President are critical <strong>for</strong><br />

the stability of the country, as<br />

Manzetti illustrates:<br />

“The price that [any] country will<br />

pay in the long run, from an economic<br />

and political standpoint, is severe.<br />

Corruption and lack of rule of law<br />

discourage investments and set in<br />

motion a pernicious cycle of political<br />

alienation and distrust” [116].<br />

6.1.2.2 Legislative Framework<br />

Since its creation by Decree<br />

No.10936/50 in 1950, the CNEA has<br />

responsibilities <strong>for</strong> the control of all<br />

public and private nuclear activities<br />

within Argentina. The legislative<br />

framework in Argentina consists of<br />

the National Constitution, applicable<br />

treaties and conventions, as well as<br />

other laws and decrees. The Argentine<br />

Constitution declares:<br />

“All inhabitants are entitled to the<br />

right to a healthy and balanced environment<br />

fit <strong>for</strong> human development<br />

and that productive activities may<br />

meet present needs without endangering<br />

those of future generations; and<br />

they have the duty to preserve it.” 6<br />

| | Argentina: nuclear power, view of the Embalse site with one Pressurized Heavy Water Reactor (PHWR)<br />

in operation.<br />

DECOMMISSIONING AND WASTE MANAGEMENT 415<br />

2 See: L. Thomas and S Marsh, Argentina clinches landmark debt repayment deal with Paris Club, Reuters News Service, https://www.reuters.<br />

com/article/us-argentina-debt-parisclub-idUSKBN0E90JI20140529, viewed July 25, 2018; A. Brown, Argentina pays US$922mn to Paris Club,<br />

BN America, https://www.bnamericas.com/en/news/banking/argentina-pays-us922mn-to-paris-club, viewed July 25, 2018; D. Francis, After 15<br />

Years, Argentina Agrees To Pay Back U.S. Creditors, Foreign Policy.com, https://<strong>for</strong>eignpolicy.com/2016/03/31/after-15-years-argentina-agreesto-pay-back-u-s-creditors/,<br />

viewed July 25, 2018.<br />

3 A BBC comedy program broadcast from 1980 – 1983. See: http://www.bbc.co.uk/comedy/yesminister/, viewed April 17, 2018.<br />

4 See http://fcpamericas.com/english/anti-corruption-compliance/argentina-introduces-corporate-liability-compliance-standards-anti-corruptionlaw/#,<br />

viewed April 17, 2018. In Spanish, RESPONSABILIDAD PENAL Ley 27401, https://www.boletinoficial.gob.ar/#!DetalleNorma/175501/<br />

20171201, viewed April 17, 2018.<br />

5 The provided in<strong>for</strong>mation must make a significant contribution to the investigation, and the in<strong>for</strong>mation must be provided be<strong>for</strong>e the case is<br />

heard by the court tribunal, and to the extent that it allows <strong>for</strong> charges to be brought to other co-participants with the same or more criminal<br />

responsibility.<br />

6 Argentina's Constitution of 1853, Reinstated in 1983, with Amendments through 1994; see Article 41, https://www.constituteproject.org/<br />

constitution/Argentina_1994.pdf?lang=en, viewed April 17, 2018.<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 416<br />

Act 24804 7 regulates nuclear<br />

activity and determines that the<br />

National State will establish Argentina’s<br />

nuclear policy, per<strong>for</strong>m research<br />

and development activities through the<br />

CNEA, with regulatory and surveillance<br />

actions undertaken through the<br />

<strong>Nuclear</strong> Regulatory Authority (ARN). 8<br />

Act 25018 provides the framework <strong>for</strong><br />

Argentina’s Radioactive Waste Management<br />

regime. The Argentine Government<br />

is solely responsible <strong>for</strong> radioactive<br />

waste management and the<br />

CNEA is the organization responsible<br />

<strong>for</strong> its implementation. Producers of<br />

radioactive wastes are responsible <strong>for</strong><br />

the conditioning and safe storage of<br />

the waste generated in the facilities<br />

operated by them, until such time that<br />

waste is transferred to the CNEA. Act<br />

25018 creates a fund “<strong>for</strong> the Management<br />

and Final Disposal of Radioactive<br />

Waste… and whose exclusive destiny<br />

will be the financing of the National<br />

Programme of Radioactive Waste<br />

Management under the responsibility<br />

of the ARGENTINE ATOMIC ENERGY<br />

COMMISSION.” 9<br />

6.1.3 <strong>Nuclear</strong> Waste<br />

Management<br />

The CNEA was appointed through<br />

Law No. 25018 as the competent<br />

authority <strong>for</strong> matters related to radioactive<br />

waste management. Furthermore,<br />

it was obligated to develop a<br />

Radioactive Waste Management<br />

Strategic Plan (PEGRR), subject to the<br />

approval of the National Congress.<br />

A decision regarding the reprocessing<br />

of spent fuel is postponed until 2030.<br />

The Strategic Plan (Law No. 25018) is<br />

to be reviewed every three years,<br />

so modifications may be made, as<br />

needed, inline with any technological<br />

advances. It mandates that a deep<br />

geological repository be designed,<br />

constructed, and operational by 2060.<br />

The final disposal of low-level solid<br />

radioactive waste was initially accomplished<br />

using conditioned waste<br />

packages in engineering enhanced<br />

surface semi-containment systems<br />

located in the Ezeiza Radioactive<br />

Waste Management Area (AGE). However,<br />

in the early 2000’s, these<br />

activities were discontinued. Currently,<br />

it is envisioned that construction<br />

of a final disposal system near the<br />

surface is planned. It is anticipated the<br />

repository will consist of multiple and<br />

redundant barriers, with approximately<br />

300 years of institutional<br />

post-closure control. These wastes<br />

will be immobilized “in cement<br />

matrixes and packed in 200L drums<br />

and/or in special concrete containers”<br />

[117].<br />

6.1.3.1 Permanent Disposal<br />

Argentina’s current strategy is to build<br />

a deep geologic repository <strong>for</strong> the<br />

storage of intermediate-level and<br />

high-level wastes. As previously mentioned,<br />

the Strategic Plan (Law No.<br />

25018) mandates a repository to be<br />

operation by 2060, with a determination<br />

on the reprocessing of spent nuclear<br />

fuel by 2030. Should Argentina<br />

choose to adopt the reprocessing of<br />

fuel, then high-level waste separated<br />

during this process will be conditioned<br />

in specially designed glass<br />

matrixes and containers be<strong>for</strong>e final<br />

disposal. In the event that reprocessing<br />

is not an acceptable option, the<br />

spent fuel shall be conditioned and<br />

directly disposed of in the geological<br />

repository. Until such a time this a<br />

reality, radioactive waste and spent<br />

fuel awaiting final disposal are stored<br />

in facilities especially designed <strong>for</strong><br />

their purpose at the nuclear power<br />

plant site in a spent fuel pool, dry cask<br />

storage, or other purpose-built facility<br />

[117]. 10<br />

6.2 Federative Republic of<br />

Brazil or República<br />

Federativa do Brasil (Brazil)<br />

6.2.1 Historical Overview & Law<br />

Brazil is an up and coming nation,<br />

with an expanding economy that is<br />

growing the size of its middle class. Its<br />

economy outweighs that of all other<br />

South American countries and helps<br />

to ensure that Brazil is a relatively<br />

stable country among a plethora of<br />

unstable nation states. Interestingly,<br />

though Brazil holds a spot among the<br />

top five largest countries in the world,<br />

and covers half of South America’s<br />

land surface “encompass[ing] a wide<br />

range of tropical and subtropical landscapes,<br />

including wetlands, savannas,<br />

plateaus, and low mountains… [yet]<br />

the country contains no desert,<br />

high-mountain, or arctic environments”<br />

[118]. Brazil gained independence<br />

in 1822, after more than three<br />

centuries under Portuguese rule, to<br />

become South America’s largest<br />

economy and a regional leader [119].<br />

From the late 1990s, Brazil’s burgeoning<br />

economy has brought it to the<br />

<strong>for</strong>efront as an increasingly powerful<br />

state in international affairs, among<br />

the BRIC family of nations.<br />

Brazil’s politics were generally<br />

dominated by its coffee-exporting<br />

titans until the 1930’s, when populist<br />

| | Brazil: The Angra power plant site with the two units currently in operation in Brazil, Angra 1 and Angra<br />

2; both pressurized water reactors.<br />

7 See: SECTION L – ANNEXES: República Argentina, JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF<br />

RADIOACTIVE WASTE MANAGEMENT FIFTH NATIONAL REPORT 2014, http://www.arn.gov.ar/images/stories/in<strong>for</strong>mes_y_documentos/<br />

in<strong>for</strong>me_nacional_de_seguridad/5_National_Report_Joint_Convention_2014.pdf, viewed April 18, 2018.<br />

8 The ARN was created by Law No. 24804 and is the organization responsible <strong>for</strong> the regulation and control of nuclear activities.<br />

9 See Article 13. An English version of Law No. 25018/98, National Law on Radioactive Waste Management Regime, is provided in Section L.1.2<br />

of: República Argentina, JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE<br />

MANAGEMENT FIFTH NATIONAL REPORT 2014, http://www.arn.gov.ar/images/stories/in<strong>for</strong>mes_y_documentos/in<strong>for</strong>me_nacional_de_<br />

seguridad/5_National_Report_Joint_Convention_2014.pdf, viewed April 18, 2018.<br />

10 Also see: Spent Fuel Management of NPPs Argentina, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/44/096/44096776.pdf,<br />

viewed April 17, 2018.<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Getúlio Vargas rose to power. Brazil<br />

experienced more than a half century<br />

of populist and military government<br />

until 1985, with a dictatorship in power<br />

from 1964 to 1985. During 1970’s,<br />

this dictatorship continued to lose<br />

legitimacy and validity among the<br />

Brazilian citizenry, which precipitated<br />

the beginning of the end of military<br />

rule. Brazil experienced a number of<br />

initial setbacks during the first 15<br />

years of democracy, but today enjoys a<br />

status as “a vibrant democracy in the<br />

eyes of the world” [120].<br />

Brazil’s nuclear power program has<br />

its origins in the establishment of the<br />

National Research Council in 1951. In<br />

the early 1970’s, construction began<br />

on Brazil’s first nuclear power plant,<br />

Angra-1. Additional units were<br />

planned (Angra 2 & 3), but were put<br />

on hold due to economic problems in<br />

the country. The construction of<br />

Angra-2 was finally resumed in 1995,<br />

and was completed in 2000 [121].<br />

In May 2015, Brazil’s government<br />

announced that “Angra-3 would be<br />

the last nuclear power plant built as a<br />

public works project” which has now<br />

allowed <strong>for</strong> the ability that any<br />

additional nuclear new-build projects<br />

be undertaken through private<br />

equity 11 [122]. The Angra-3 “project is<br />

estimated to cost $5.6bn and is<br />

scheduled <strong>for</strong> completion in 2018”<br />

[121].<br />

6.2.2 Government and<br />

Legislative Regime<br />

Brazil is a Federal Republic consisting<br />

of 26 states and one federal district. It<br />

is a civil law system, and its most<br />

recent constitution was ratified in<br />

1988. Its Executive branch is headed<br />

by a president who is both chief and<br />

head of state, and whom appoints<br />

members to the cabinet. The president<br />

is directly elected by an absolute<br />

majority popular vote <strong>for</strong> a single<br />

four-year term. Brazil’s legislature is<br />

bicameral comprising both the Federal<br />

Senate and the Chamber of Deputies.<br />

The 81 members to the Federal Senate<br />

are directly elected in multi-seat<br />

constituencies by simple majority vote<br />

to serve <strong>for</strong> a term of eight years.<br />

There are 513 members elected to the<br />

Chamber of Deputies, whom are<br />

elected in multi-seat constituencies<br />

by proportional representation vote to<br />

serve <strong>for</strong> a term of four years [119].<br />

Brazil’s judicial branch constitutes<br />

the Supreme Federal Court consisting<br />

of 11 justices whom are appointed by<br />

the president and approved by the<br />

Federal Senate, and other subordinate<br />

courts. Appointed justices to the<br />

Supreme Court serve until the<br />

mandatory retirement age of 75. Each<br />

Brazilian state has its own judiciary<br />

system, with locally appointed judges.<br />

These local judicial courts are<br />

responsible <strong>for</strong> “adjudicating matters<br />

of subnational jurisdiction.” [123].<br />

6.2.2.1 Corruption<br />

In the latest 2017 Transparency <strong>International</strong><br />

Corruption Perceptions<br />

Index (CPI), Brazil ranked 96 out of<br />

180 countries (alongside Columbia,<br />

Indonesia, Panama, Peru, Thailand,<br />

and Zambia). Brazil has routinely<br />

been plagued by corruption scandals<br />

since the early twentieth century. In<br />

1951, following his return to power,<br />

President Getúlio Vargas soon found<br />

himself and his administration embroiled<br />

in scandal. It was alleged at<br />

the time that Brazil’s state-run bank<br />

(Bank of Brazil) had granted favorable<br />

loans to a pro-government journalist,<br />

and “after a late-night cabinet meeting<br />

on August 24, 1954… Vargas withdrew<br />

to his bedroom, grabbed a Colt<br />

pistol, and shot himself through the<br />

heart” [124].<br />

Recently, Brazil has seen its politics<br />

upended, and is once again gripped by<br />

an all-consuming scandal, whose tentacles<br />

are reaching farther and deeper<br />

than ever be<strong>for</strong>e. The scandal began in<br />

2014 with allegations involving the<br />

state-owned oil company (Petrobas),<br />

and has grown to touch people at the<br />

top of Brazil’s business elites and<br />

politicians. 12<br />

This investigation was<br />

codenamed Lava Jato or Car Wash. A<br />

seemingly typical corruption scandal<br />

at first, what started as a purely<br />

Brazilian scandal soon caught <strong>for</strong>eign<br />

nations and firms in its net. The discovery<br />

of unlawful payments totaling<br />

“$5bn to company executives and political<br />

parties, put billionaires in jail,<br />

drag[ged] a president into court and<br />

[has] cause[d] irreparable damage to<br />

the finances and reputations of some<br />

of the world’s biggest companies”<br />

[125]. Operation Car Wash has exposed<br />

a permissive culture of systemic<br />

corruption in Brazilian politics, which<br />

includes:<br />

“Seven of the ministers in the new<br />

Temer government… while more than<br />

half of Brazil’s 513 deputies are<br />

currently facing criminal proceedings<br />

<strong>for</strong> everything from corruption and<br />

attempted homicide to the use of<br />

modern- day slave labor… [with] <strong>for</strong>mer<br />

president of the Brazilian House,<br />

Eduardo Cunha, [facing] eleven<br />

separate corruption charges…, [while<br />

in the Senate] one-third of [the] senators<br />

[are] currently fac[ing] criminal<br />

investigations” [126].<br />

6.2.2.2 Legislative Framework<br />

Brazil’s Constitution establishes in its<br />

articles 21 13 and 177 14 the competencies<br />

of the State to exert exclusive control<br />

to operate nuclear energy services<br />

and facilities, including the operation<br />

of nuclear power plants. 15 Thus, the<br />

constitution provides the relevant<br />

powers to the State to exercise these<br />

sole competencies maintaining a<br />

monopoly over all aspects of the<br />

nuclear fuel cycle, from the mining of<br />

uranium to the final disposal of highlevel<br />

nuclear waste and spent nuclear<br />

fuel. The National Commission <strong>for</strong><br />

<strong>Nuclear</strong> Energy (CNEN) was created<br />

in 1956 (Decree 40110 of 10/10/1956)<br />

and maintains custody <strong>for</strong> all nuclear<br />

activities in the country. Later, CNEN<br />

was reorganized and its responsibilities<br />

were established by Law 4118/62<br />

with alterations established by Laws<br />

6189/74 and 7781/89. Thereafter,<br />

CNEN through its Directorate <strong>for</strong><br />

Radiation Protection and <strong>Nuclear</strong><br />

Safety (DRS) has assumed Regulatory<br />

Body roles and is accountable <strong>for</strong> the<br />

regulation, licensing, and control of<br />

nuclear activities in Brazil as it relates<br />

to nuclear safety and security of these<br />

activities, as well as any required<br />

safeguard measures [127].<br />

Law 103<strong>08</strong> promulgated on November<br />

20, 2001 expanded the legal<br />

framework encompassing the areas of<br />

DECOMMISSIONING AND WASTE MANAGEMENT 417<br />

11 Recently, Eletrobras Termonuclear SA indicated that it would not be able to honor its debt payments without a renegotiation of the terms of the<br />

agreement. See: Eletronuclear head says may not honor Angra three debts, Reuters Staff, https://www.reuters.com/article/us-eletrobrasnuclear/eletronuclear-head-says-may-not-honor-angra-three-debts-paper-idUSKBN1K61GK,<br />

viewed July 25, 2018. Also see: Brazil's<br />

Eletronuclear woes may lead to supply interruption, Reuters Staff, https://www.reuters.com/article/eletronuclear-outlook/brazils- eletronuclearwoes-may-lead-to-supply-interruption-paper-idUSL1N1OC0O8,<br />

viewed July 25, 2018.<br />

12 http://www.bbc.com/news/world-latin-america-35810578, viewed April 19, 2018.<br />

13 § XXIII, Constitution of Brazil, http://english.tse.jus.br/arquivos/federal-constitution, viewed April 19, 2018.<br />

14 § V, Constitution of Brazil, http://english.tse.jus.br/arquivos/federal-constitution, viewed April 19, 2018.<br />

15 See: Article 225 §VII, 6, Constitution of Brazil, http://english.tse.jus.br/arquivos/federal-constitution, viewed April 19, 2018.<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 418<br />

the storage and disposal of radioactive<br />

waste in Brazil. This law reconfirms<br />

that it is the State’s duty to account <strong>for</strong><br />

the final storage and disposal of such<br />

radioactive wastes within the country.<br />

Additionally, Law 103<strong>08</strong> defines four<br />

types of storage facilities: (1) initial<br />

(operated by the waste generator);<br />

(2) intermediate; (3) final; and (4)<br />

temporary (which may be established<br />

in case of accidents with contamination).<br />

It establishes rules <strong>for</strong> site<br />

selection, construction, operation,<br />

licensing and control, financing, civil<br />

liabilities related to the storage and<br />

disposal of radioactive waste in Brazil.<br />

In 2014, CNEN issued a new safety<br />

regulation CNEN-NN-8.02 (Licensing<br />

of storage and disposal facilities <strong>for</strong><br />

low and intermediate-level radioactive<br />

waste). It lays <strong>for</strong>th the general<br />

criteria and basic requirements of<br />

safety and radiological protection<br />

related to the licensing of radioactive<br />

waste storage and disposal facilities<br />

<strong>for</strong> low and intermediate-level waste<br />

[127].<br />

6.2.3 <strong>Nuclear</strong> Waste<br />

Management<br />

Brazil’s radioactive waste policy is to<br />

keep wastes safely isolated from the<br />

environment until a permanent solution<br />

is settled at the national level. In<br />

November 20<strong>08</strong>, Brazil initiated a project<br />

towards having a licensed and<br />

commissioned repository <strong>for</strong> the disposal<br />

of low and intermediate-level<br />

wastes, the “RBMN Project.” It is<br />

expected that disposal activities at this<br />

proposed site will included low-level<br />

and intermediate-level wastes “from<br />

[nuclear power plant operation], from<br />

nuclear fuel cycle installations, their<br />

decommissioning and from the use of<br />

radionuclides in medicine, industry<br />

and [research & development] activities”<br />

[127].<br />

At Angra-1, intermediate and<br />

low-level waste is currently stored<br />

on-site in a separate storage facility.<br />

Concentrates from liquid waste treatment<br />

“are solidified in cement and<br />

conditioned in 200-liter drums<br />

( be<strong>for</strong>e 1998) and 1 m3 steel containers<br />

(after 1998)” [127]. At Angra-2,<br />

liquid waste is collected in storage<br />

tanks, while the concentrate resulting<br />

from treatment of the liquid waste is<br />

further processed reducing the water<br />

content prior to being “immobilized in<br />

bitumen and conditioned in 200-liter<br />

drums. Spent resins and filter elements<br />

are also immobilized in bitumen<br />

and conditioned in 200-liter<br />

drums.” [127].<br />

In September 1987, Brazil suffered<br />

a radiological accident when “a<br />

shielded, strongly radioactive<br />

caesium-137 source (50.9 TBq, or<br />

1375 Ci, at the time) was removed<br />

from its protective housing in a teletherapy<br />

machine in an abandoned<br />

clinic in Goiania, Brazil, and subsequently<br />

ruptured” [128]. As a result of<br />

the accident, a part of the city was<br />

contaminated requiring the demolition<br />

of seven residences and various<br />

other buildings, in addition to the<br />

removal of the topsoil from large<br />

areas. Following the 1987 accident,<br />

two near surface repositories with a<br />

total volume of 3,134 m3 of radioactive<br />

waste were constructed in<br />

Abadia de Goiás in 1995.<br />

6.2.3.1 Permanent Disposal<br />

The current Brazilian policy <strong>for</strong> spent<br />

fuel from nuclear power plants is<br />

keeping the fuel in temporary safe<br />

storage until a technical, economic,<br />

and political decisions are reached<br />

about reprocessing, or direct permanent<br />

disposal. Spent fuel is currently<br />

stored at the reactor site in spent fuel<br />

pools [127]. At Angra-1, spent fuel<br />

pool capacity has been expanded<br />

by the installation of compact racks<br />

to accommodate the spent fuel<br />

generated <strong>for</strong> the expected operational<br />

life of the unit. Angra-2’s 16<br />

spent fuel pool has two types of racks,<br />

which is divided into two regions:<br />

Region 1:<br />

Region 2:<br />

Contains normal racks<br />

with a capacity <strong>for</strong> 264<br />

fuel assemblies. This is<br />

equivalent to one full core<br />

plus one reload of fuel of<br />

any burnup with enrichments<br />

up to 4.3%.<br />

Contains high-density<br />

racks with a capacity <strong>for</strong><br />

820 assemblies. Assemblies<br />

stored in region 2 have a<br />

given minimum burnup.<br />

The capacity <strong>for</strong> region 2<br />

is deemed sufficient <strong>for</strong><br />

about 15 years (14 cycles)<br />

of operation [127].<br />

6.3 Republic of South Africa<br />

(South Africa)<br />

6.3.1 Historical Overview & Law<br />

A place of renowned beauty, South<br />

Africa is the southernmost country on<br />

the continent of Africa. It claims a<br />

varied topography, cultural diversity,<br />

and is home to some of the world’s<br />

oldest human fossils. In 1652, Dutch<br />

traders established a stopover point<br />

on the spice route between the<br />

Netherlands and the Far East. However,<br />

it was the discovery of diamonds<br />

(1867) and gold (1886) that spurred<br />

wealth and immigration during the<br />

Victorian era and intensified the subjugation<br />

of the native inhabitants<br />

[129]. For centuries, South Africa<br />

suffered under the yoke of colonialism<br />

and following the defeat of the Dutch<br />

in the Boer War of 1899–1902, “the<br />

British established the Union of South<br />

Africa, a dominion of the British<br />

Empire. In 1913, its all-white government<br />

passed the Natives Land Act,<br />

confining Africans to ownership of<br />

land in only seven percent of the<br />

country” [130].<br />

In the early 1990’s, F.W. de Klerk’s<br />

administration repealed the Population<br />

Registration Act, as well as<br />

legislative acts that helped to provide<br />

legal support <strong>for</strong> the continuation of<br />

Apartheid. 17<br />

In 1994, South Africa’s<br />

new adopted constitution came into<br />

<strong>for</strong>ce, with new elections that year<br />

paving the way to <strong>for</strong>m a coalition government<br />

<strong>for</strong> the first time entailing a<br />

nonwhite majority, marking the<br />

official end of the apartheid system<br />

[131]. Over the past couple of decades,<br />

South Africa has struggled to fulfill the<br />

promises and blessings brought about<br />

by the change of the political imbalances<br />

of the <strong>for</strong>mer era to provide all a<br />

piece of the economic pie.<br />

South Africa began to develop its<br />

nuclear power program in the mid-<br />

1970s. Its first, and only, nuclear<br />

power plant was built in Koeberg, near<br />

Capetown. Construction at the site began<br />

in 1976, and Unit 1 was<br />

synchronized to the grid on April 4,<br />

1984. Unit 2 followed suit on July 25,<br />

1985. Koeberg is the only nuclear<br />

power station on the Continent of<br />

Africa, and is a pressurized water<br />

reactor (PWR) design. Additionally,<br />

16 Spent fuel at the Angra-3 nuclear power plant is to be stored similarly to Angra-2. Additionally, radioactive wastes created at Angra-3 are to be<br />

treated and initially stored within the plant, similarly to Angra-2, until such time it may be <strong>for</strong>warded to a final waste repository.<br />

17 Apartheid is a translation from the Afrikaans meaning 'apartness.’ Apartheid was an ideology supported by the National Party (NP) government<br />

and was introduced in South Africa in 1948. Apartheid called <strong>for</strong> the separate development of the different racial groups in South Africa. See:<br />

http://www.sahistory.org.za/article/history-apartheid-south-africa, viewed April 20, 2018. Also see: ELLMANN, S 2015, 'The Struggle <strong>for</strong> the<br />

Rule of Law in South Africa', New York Law School Law Review, 60, 1, pp. 57-104, Academic Search Premier, EBSCOhost, viewed 20 April 2018<br />

<strong>for</strong> a discussion on apartheid. Ellmann explains that apartheid is being “ruled by law… [being not a] law of limits but of powers.”<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Koeberg <strong>Nuclear</strong> <strong>Power</strong> Station<br />

(KNPS) has the distinction “of having<br />

the largest turbine generators in the<br />

Southern Hemisphere and [being] the<br />

most southerly-situated nuclear<br />

power station in the world” [132].<br />

Koeberg’s reactors provide ~ 6 % of<br />

the electric power generation <strong>for</strong> the<br />

country, using seven and a half tons of<br />

uranium since 1984 [133].<br />

6.3.2 Government and<br />

Legislative Regime<br />

South Africa, a parliamentary republic,<br />

has a mixed legal system of Roman-<br />

Dutch civil law, English common law,<br />

and customary law. Its latest constitution<br />

was approved by the Constitutional<br />

Court on December 4, 1996.The<br />

president of South Africa is both chief<br />

of state and head of government, and<br />

is indirectly elected by the National<br />

Assembly <strong>for</strong> a five-year term. The<br />

President appoints members to the<br />

cabinet. South Africa has a bicameral<br />

Parliament which consists of the<br />

National Council of Provinces (90<br />

seats) and the National Assembly (400<br />

seats). Members to the National council<br />

are appointed to office by the provincial<br />

legislatures, while members of<br />

the National Assembly are directly<br />

elected in multi-seat constituencies by<br />

proportional representation <strong>for</strong> a term<br />

of five years. It highest courts are the<br />

Supreme Court of Appeals and the<br />

Constitutional Court, in addition 18 to<br />

other subordinate courts (High Courts,<br />

Magistrates’ Courts, labor courts, and<br />

land claims courts) [129].<br />

For decades, until the early 1990’s,<br />

Apartheid was a serious impediment<br />

to South Africa, not only <strong>for</strong> sociopolitical<br />

reasons, but also socioeconomic.<br />

In the 1980’s, social unrest<br />

in South Africa due to Apartheid “led<br />

to the imposition of financial and economic<br />

sanctions by the United States<br />

of America and the European Community”<br />

[134]. Furthermore, during<br />

its Apartheid era, South Africa was<br />

routinely isolated from the international<br />

community, including its<br />

| | South Africa: View of the Koeberg site with two pressurized water reactors in operation.<br />

suspension from many international<br />

organizations. Despite its being a<br />

“founder member of the [ <strong>International</strong><br />

Atomic Energy Agency] 19<br />

on 6 June<br />

1957, and obtain[ing] a seat on the<br />

agency’s Board of Directors” [135],<br />

South Africa lost this position in 1976,<br />

be<strong>for</strong>e taking it up again in 1995.<br />

6.3.2.1 Corruption<br />

Un<strong>for</strong>tunately, South Africa does<br />

suffer from, and experience, widespread<br />

corruption. Despite a robust<br />

anti-corruption framework, 20 its laws<br />

are inadequately en<strong>for</strong>ced. In 2004,<br />

the Prevention and Combating of<br />

Corruption Activities Act 12 of 2004<br />

was promulgated in recognition that<br />

“corruption and related corrupt<br />

activities [is] undermin[ing]… the<br />

stability and security of [the] society,<br />

[its] institutions… the rule of law and<br />

the credibility of [the] government” 21<br />

[136]. In the latest Transparency<br />

<strong>International</strong> Corruption Perceptions<br />

Index (CPI), South Africa ranked 71<br />

out of 180 countries in 2017. 22<br />

This pervasive corruption in South<br />

Africa “has seriously constrained<br />

development of the national economy<br />

and has significantly inhibited good<br />

governance in the country” [137].<br />

Though political corruption is found in<br />

every country, the problem of<br />

corruption exacerbates the socioeconomic<br />

dynamic in Africa because<br />

the “infiltration of corruption in the<br />

civil service, is leading to vast continental<br />

poverty” [138]. In a 2005<br />

article, Hyslop pondered on the corruption<br />

dynamic in the post-apartheid<br />

era with South Africa experiencing the<br />

“embezzlement of paltry pension payments<br />

by civil service clerks, to allegations<br />

of cabinet members’ involvement<br />

in shady practices surrounding the<br />

procurement of multi- million-dollar<br />

arms systems” [139].<br />

Just in the first few months of 2018,<br />

a top corruption inspector in South<br />

Africa announced an investigation on<br />

two high-ranking African National<br />

Congress politicians in a case related<br />

to the abuse of public funds <strong>for</strong> a dairy<br />

farm. 23 Another more high-profile case<br />

that is capturing the attention of the<br />

public is that of <strong>for</strong>mer South African<br />

president Jacob Zuma. He is facing<br />

corruption charges over a $2.5 billion<br />

1990’s arms deal. Zuma was <strong>for</strong>ced to<br />

resign by his ruling African National<br />

Congress (ANC) in February 2018,<br />

over a scandal that has dimmed politics<br />

in South Africa <strong>for</strong> years. 24<br />

6.3.2.2 Legislative Framework<br />

In the mid-2000’s, South Africa published<br />

its policy approach addressing<br />

radioactive waste management issues.<br />

The Radioactive Waste Management<br />

Policy and Strategy <strong>for</strong> the Republic<br />

of South Africa outlines the strategic<br />

policy and strategy framework to<br />

ensure a comprehensive radioactive<br />

waste governance system. 25<br />

South<br />

Africa’s nuclear energy legislative<br />

framework goes back to 1948, when<br />

the predecessor of the present South<br />

DECOMMISSIONING AND WASTE MANAGEMENT 419<br />

18 See: Hausman, D 2012, 'WHEN AND WHY THE SOUTH AFRICAN GOVERNMENT DISOBEYS CONSTITUTIONAL COURT ORDERS', Stan<strong>for</strong>d <strong>Journal</strong><br />

Of <strong>International</strong> Law, 48, 2, pp. 437-455, Academic Search Premier, EBSCOhost, viewed 20 April 2018 <strong>for</strong> a detailed discussion on conflicts<br />

between the judicial and executive/legislative branches of government in South Africa.<br />

19 The agency is the world's central intergovernmental <strong>for</strong>um <strong>for</strong> scientific and technical co-operation in the nuclear field.<br />

See: https://www.iaea.org/about/overview, viewed April 20, 2018.<br />

20 http://www.justice.gov.za/legislation/acts/2004-012.pdf, viewed April 21, 2018.<br />

21 Preamble at para. 3.<br />

22 Alongside Bulgaria and Vanuatu.<br />

23 See: The New York Times, South Africa to Investigate 2 A.N.C. Officials in Farm Corruption Case, https://www.nytimes.com/2018/04/18/world/<br />

africa/south-africa-anc-corruption.html, viewed April 20, 2018.<br />

24 See: Reuters, South Africa hits fallen Zuma with arms deal corruption charges, https://www.reuters.com/article/us-safrica-politics/south-africahits-fallen-zuma-with-arms-deal-corruption-charges-idUSKCN1GS11X,<br />

viewed April 20, 2018. Also see: BBC, Jacob Zuma - the survivor whose<br />

nine lives ran out, http://www.bbc.com/news/world-africa-17450447, viewed April 20, 2018.<br />

25 See: http://www.energy.gov.za/files/policies/policy_nuclear_energy_20<strong>08</strong>.pdf, viewed April 21, 2018.<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

DECOMMISSIONING AND WASTE MANAGEMENT 420<br />

African <strong>Nuclear</strong> Energy Corporation<br />

(Necsa) 26 was established under the<br />

terms of the provisions of the Atomic<br />

Energy Act. The South African Constitution<br />

declares the right of the<br />

individual to “have the environment<br />

protected, <strong>for</strong> the benefit of present<br />

and future generations.” 27<br />

<strong>Nuclear</strong> related activities in South<br />

Africa are currently administered by<br />

the <strong>Nuclear</strong> Energy Act, 1999 (Act No.<br />

46 of 1999) (NEA), which among<br />

other matters, “provides <strong>for</strong> the establishment<br />

of the South African <strong>Nuclear</strong><br />

Energy Corporation Limited… defin[ing]<br />

the Corporation’s functions<br />

and powers and its financial and operational<br />

accountability,” and “to prescribe<br />

measures regarding the<br />

discarding of radioactive waste and<br />

the storage of irradiated nuclear<br />

fuel.” 28 The National Radioactive<br />

Waste Disposal Institute Act, 20<strong>08</strong><br />

(No. 53 of 20<strong>08</strong>) provides <strong>for</strong> “the<br />

establishment of a National Radioactive<br />

Waste Disposal Institute in<br />

order to manage radioactive waste<br />

disposal on a national basis.” 29 Other<br />

acts 30<br />

applicable to waste management<br />

in South Africa are the National<br />

<strong>Nuclear</strong> Regulatory Act, 1999 (Act<br />

No. 47 of 1999) (NNRA), 31<br />

and the<br />

Hazardous Substances Act, 1973 (Act<br />

No. 15 of 1973) (HSA), related to<br />

Group III and Group IV hazardous<br />

substances [140].<br />

6.3.3 <strong>Nuclear</strong> Waste<br />

Management<br />

South Africa’s policy <strong>for</strong> waste management<br />

follows the principle that no<br />

undue burden should be placed on the<br />

shoulders of future generations. The<br />

National Radioactive Waste Disposal<br />

Institute (NRWDI) currently considers<br />

various options <strong>for</strong> the safe management<br />

of radioactive wastes and used<br />

fuel: (1) Long-term above ground<br />

storage in an off-site facility licensed<br />

<strong>for</strong> its purpose; (2) the reprocessing,<br />

conditioning and recycling of used<br />

fuel; and, (3) final disposal in a deep<br />

geological repository having been<br />

specifically licensed <strong>for</strong> its purpose.<br />

Presently, that are two disposal<br />

options implemented in South Africa:<br />

(1) above ground disposal in engineered<br />

facilities <strong>for</strong> the bulk of mining<br />

waste, and (2) near surface disposal<br />

of low-level and intermediate-level<br />

waste (LILW) at the Vaalputs National<br />

Radioactive Waste Disposal Facility 32<br />

in the Northern Cape Province [140].<br />

The low-level waste is prepared <strong>for</strong><br />

storage by sealing such waste inside<br />

drums with distinct markings. This<br />

waste may contain contaminants of<br />

minuscule proportions of radioactive<br />

material. This low-level waste usually<br />

consists of such ordinary items as<br />

clothing, plastics, insulation material,<br />

paper, and coveralls. These low-level<br />

waste storage containers are first<br />

stored at the reactor site until shipped<br />

to the Vaalputs facility. KNPS general<br />

ships ~ 475 steel drums and 158 concrete<br />

drums <strong>for</strong> final disposal at the<br />

Vaalputs facility on a yearly basis.<br />

Intermediate-level waste 33<br />

“is mixed<br />

with concrete and sealed into appropriately<br />

marked concrete drums”, and<br />

then also shipped to the Vaalputs<br />

facility <strong>for</strong> final storage [141].<br />

6.3.3.1 Permanent Disposal<br />

In South Africa, nuclear fuel irradiated<br />

in the nuclear reactor is<br />

referred to as “used fuel” instead of<br />

“spent fuel.” This is an important distinction,<br />

as South Africa is continuing<br />

with investigating the possibility of<br />

reprocessing, and there<strong>for</strong>e does not<br />

classify the used fuel as radioactive<br />

waste. Rather than being in its final<br />

<strong>for</strong>m <strong>for</strong> disposal, used fuel is considered<br />

to still contain useful material.<br />

Used fuel is currently stored at<br />

authorized facilities at the generator’s<br />

site. There are two mechanisms available<br />

<strong>for</strong> the storage of used fuel,<br />

namely dry and wet storage. The longterm<br />

management strategy <strong>for</strong> used<br />

fuel and other high-level waste is proposed<br />

to include: “(1) Long-term<br />

above-ground storage in an off-site<br />

facility licensed <strong>for</strong> its purpose; (2)<br />

reprocessing, conditioning and<br />

recycling; (3) deep geological disposal;<br />

and, (4) transmutation” [140].<br />

KNPS currently stores its used fuel<br />

on site. It only handles and stores used<br />

fuel generated from its reactor units.<br />

The used fuel assemblies and control<br />

rods are stored in specially selected<br />

racks in the used fuel storage pool. The<br />

racks consist of high- and low-density<br />

storage racks “<strong>for</strong> standard and<br />

cropped fuel assemblies, the control<br />

rod rack <strong>for</strong> burned control rods, and<br />

the high-density racks, which are lined<br />

with boron carbide” [140]. The boron<br />

concentration in the spent fuel pool is<br />

maintained between 2,440 and 2,700<br />

mg B/kg). The storage pools at KNPS<br />

have been fitted with new racks in two<br />

separate regions. Region I provide <strong>for</strong> a<br />

possible 210 positions in three racks allowing<br />

<strong>for</strong> the storage of the reactors<br />

most reactive fuel. In Region I, the fuel<br />

assemblies are given additional<br />

spacing, so that it will not be feasible to<br />

reach a critical state. These racks are<br />

produced using stainless steel with<br />

plates of borated steel attached to the<br />

outside surface of each stainless- steel<br />

storage channel, containing 1.7 %<br />

boron. The majority of the fuel at the<br />

reactor site will be stored within Region<br />

II. In Region 2, the fuel the<br />

assemblies will be placed in a closer<br />

proximity given that this fuel has<br />

enjoyed a greater time period in the<br />

reactor. The racks in this region are<br />

constructed of the same materials as<br />

those in region one [142].<br />

As a result of delays in the reracking<br />

project at KNPS, interim<br />

measures were decided upon using<br />

dry cask storage. Four casks, bought in<br />

1996, will each temporarily store 28<br />

spent fuel assemblies. The casks weigh<br />

97,740 kg and are made of Ductile<br />

Cast Iron, with the walls being<br />

358 mm thick. Additionally, a layer of<br />

poly ethylene rods is built into the<br />

inside wall of the cask to provide a<br />

shield against the neutrons emitted by<br />

the fuel. The cask is designed to allow<br />

<strong>for</strong> the remaining thermal heat in the<br />

26 Formerly, the Atomic Energy Board (AEB).<br />

27 See: §24 (b), https://www.gov.za/sites/www.gov.za/files/images/a1<strong>08</strong>-96.pdf, viewed April 21, 2018.<br />

28 See: <strong>Nuclear</strong> Energy Act Preamble at http://www.nnr.co.za/wp-content/uploads/2015/02/RSA-<strong>Nuclear</strong>-Energy-Act-46-of-1999.pdf, viewed<br />

April 21, 2018.<br />

29 National Radioactive Waste Disposal Institute Act, 20<strong>08</strong> (No. 53 of 20<strong>08</strong>), http://www.nnr.co.za/wp-content/uploads/2015/02/<br />

NatRadioActWaste- Disposal-Inst-Act-53-of-20<strong>08</strong>.pdf, viewed April 21, 2018.<br />

30 Additional acts of important to the nuclear power program and nuclear waste disposal in the country are: the Hazardous Substances Act; the<br />

Non-Proliferation of Weapons of Mass Destruction Act; the Patent Act; the National Strategic Intelligence Act; the National Key Points Act; the<br />

Protection of Constitutional Democracy Against Terrorist and Related Activities Act; the Mine Health and Safety Act; the Mineral and Petroleum<br />

Resources Development Act; the National Environmental Management Act; the National Water Act; and, the Dumping at Sea Control Act.<br />

31 Supersedes the previous <strong>Nuclear</strong> Energy Act 1993 (Act No. 131 of 1993); The <strong>Nuclear</strong> Regulator Act may be viewed at: http://www.nnr.co.za/<br />

wp-content/uploads/2015/02/National-<strong>Nuclear</strong>-Regulator-Act-No-47-of-1999.pdf, viewed April 21, 2018.<br />

32 See: https://www.nrwdi.org.za/vaalputs.html, viewed April 21, 2018.<br />

33 Generally consists of purification sludges, spent resins, filter cartridges, and irradiated scrap metal.<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

fuel assemblies to dissipate naturally.<br />

Finally, used fuel from the SAFARI-1<br />

Research Reactor, at the Necsa<br />

Pelindaba site, is first stored in the<br />

reactor pool <strong>for</strong> at least two years<br />

prior to its being transferred to the<br />

Thabana Pipe Store, which is an<br />

authorized dry storage facility on the<br />

Pelindaba site [140].<br />

7 Discussion and<br />

Conclusions<br />

Decisions regarding a nation state’s<br />

nuclear waste management program<br />

are a dichotomy of politics and<br />

science, with politics usually the dominating<br />

factor. However, though these<br />

political processes bring risk of instability<br />

in the decision-making process<br />

<strong>for</strong> the final disposal of radioactive<br />

waste, these decisions should be<br />

decided upon now, or in the near term<br />

(if not already done so). Of course,<br />

policymaking comes with risk, as one<br />

picks ‘winners’ and ‘losers,’ leaving<br />

some groups happy and others disappointed.<br />

This is the moral dimension<br />

incumbent upon any policymaker.<br />

Indeed, no matter how well planned a<br />

nuclear waste management program<br />

is, or how great the design of a final<br />

geological disposal facility, a burden<br />

of sorts is thrust onto future generations<br />

to manage.<br />

Japan and South Korea demonstrate<br />

that political perils exist when<br />

engaging in a nuclear power program,<br />

given societal concerns surrounding<br />

the management of high-level wastes<br />

involving a significant time frame into<br />

the future. Brazil, Russia, India,<br />

China, and South Africa, as the BRICS<br />

family of nations, have other similar<br />

challenges and opportunities including<br />

planned and/or expanding<br />

nuclear power programs, growing<br />

economies, but large domestic inequalities<br />

and high levels of poverty.<br />

One cause of concern is the quantity of<br />

pervasive government corruption<br />

occurring in these particular nation<br />

states, though empirical evidence to<br />

date does not demonstrate that<br />

corruption is having a direct effect on<br />

the legitimacy of these nations’<br />

nuclear power and waste management<br />

programs. However, one should<br />

be mindful that corruption in one area<br />

of government could theoretically<br />

result in a lack of legitimacy across the<br />

board – or, “one rotten apple can spoil<br />

the whole barrel.”<br />

Each nation state only has certain<br />

space <strong>for</strong> allowed change within a<br />

nuclear power and waste management<br />

program once it begins to evolve<br />

through its various milestones. The<br />

manner in which a nation state is able<br />

to successfully process legitimate<br />

change between and within each<br />

milestone, determines the ability to<br />

carry the aura of legitimacy from the<br />

inception of a nuclear power program<br />

through to the closure of long-term<br />

high-level waste geologic disposal<br />

facility.<br />

References<br />

[103] Encyclopedia Britannica - Argentina, https://www.<br />

britannica.com/place/Argentina, viewed July 25, 2018.<br />

[104] Johnson, DE 20<strong>08</strong>, ‘Continuity and change in Argentine<br />

interest group activity and lobbying practices’, <strong>Journal</strong> Of<br />

Public Affairs (14723891), 8, 1/2, pp. 83-97, Academic<br />

Search Premier, EBSCOhost, viewed 16 April 2018.<br />

[105] Walcher, D 2013, ‘Petroleum Pitfalls: The United States,<br />

Argentine Nationalism, and the 1963 Oil Crisis*’,<br />

Diplomatic History, 37, 1, pp. 24-57, Academic Search<br />

Premier, EBSCOhost, viewed 16 April 2018.<br />

[106] Atucha Argentina, https://www.britannica.com/place/<br />

Atucha#ref1184869, viewed April 17, 2018.<br />

[107] Atucha-2 Receives Full Operating Licence, World <strong>Nuclear</strong><br />

News, http://www.world-nuclear-news.org/RS-Atucha-2-<br />

receives-full-operating-licence-3105165.html, viewed April<br />

17, 2018.<br />

[1<strong>08</strong>] <strong>Nuclear</strong> <strong>Power</strong> in Argentina, World <strong>Nuclear</strong> Association,<br />

http://www.world-nuclear.org/in<strong>for</strong>mation-library/countryprofiles/countries-a-f/argentina.aspx,<br />

viewed April 16, 2018.<br />

[109] Argentina, China, Close To Signing Contract For Atucha III,<br />

https://nuclearstreet.com/nuclear_power_industry_news/b/<br />

nuclear_power_news/archive/2017/05/<strong>08</strong>/argentina_<br />

2c00_-china_2c00_-close-to-signing-contract-<strong>for</strong>-atuchaiii-05<strong>08</strong>02#.WtXm1YjwaUk,<br />

viewed April 17, 2018.<br />

[110] ‘Argentina’ 2016, 53, pp. 36-40, Academic Search Premier,<br />

EBSCOhost, viewed 16 April 2018.<br />

[111] ‘Argentina’ 2013, Military Technology, 37, 1, pp. 53-56,<br />

Academic Search Premier, EBSCOhost, viewed 16 April 2018.<br />

[112] Resico, M, & Campbell, W 2010, ‘SHOULD WE CRY FOR<br />

ARGENTINA?’, Intercollegiate Review, 45, 1/2, pp. 12-21,<br />

Academic Search Premier, EBSCOhost, viewed 16 April 2018.<br />

[113] Meltzer, AH 2003, ‘ARGENTINA 2002: A CASE OF GOVERN-<br />

MENT FAILURE’, CATO <strong>Journal</strong>, 23, 1, pp. 29-31, Academic<br />

Search Premier, EBSCOhost, viewed 16 April 2018.<br />

[114] Anderson, JL 2016, Argentina’s Culture of Corruption,<br />

https://www.newyorker.com/news/news-desk/argentinasculture-of-corruption,<br />

viewed April 18, 2018.<br />

[115] Flannery, N. 2018, Is Argentina Finally Cracking Down On<br />

Corruption?, https://www.<strong>for</strong>bes.com/sites/<br />

nathanielparishflannery/2018/03/27/is-argentina-finallygetting-serious-about-cracking-down-oncorruption/#7ce852ec2b7c,<br />

viewed April 17, 2018.<br />

[116] Manzetti, L 2014, ‘ACCOUNTABILITY AND CORRUPTION IN<br />

ARGENTINA DURING THE KIRCHNERS’ ERA’, Latin American<br />

Research Review, 49, 2, pp. 173-195, Academic Search<br />

Premier, EBSCOhost, viewed 16 April 2018.<br />

[117] República Argentina, JOINT CONVENTION ON THE SAFETY<br />

OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF<br />

RADIOACTIVE WASTE MANAGEMENT FIFTH NATIONAL<br />

REPORT 2014, http://www.arn.gov.ar/images/stories/<br />

in<strong>for</strong>mes_y_documentos/in<strong>for</strong>me_nacional_de_s<br />

eguridad/5_National_Report_Joint_Convention_2014.pdf,<br />

viewed April 18, 2018.<br />

[118] Country of Brazil, https://www.britannica.com/place/Brazil,<br />

viewed April 18, 2018.<br />

[119] ‘Brazil’ 2016, 53, pp. 105-109, Academic Search Premier,<br />

EBSCOhost, viewed 18 April 2018.<br />

[120] Garcia, D 2014, ‘Not yet a democracy: establishing civilian<br />

authority over the security sector in Brazil – lessons <strong>for</strong><br />

other countries in transition’, Third World Quarterly, 35, 3,<br />

pp. 487-504, Academic Search Premier, EBSCOhost, viewed<br />

18 April 2018.<br />

[121] Angra-3 PWR <strong>Nuclear</strong> Reactor Project, Brazil, https://<br />

www.power-technology.com/projects/angranuclear/,<br />

viewed April 18, 2018.<br />

[122] <strong>Nuclear</strong> <strong>Power</strong> in Brazil, World <strong>Nuclear</strong> Association, http://<br />

www.world-nuclear.org/info/Country-Profiles/Countries-<br />

A-F/Brazil/, viewed April 21, 2018.<br />

[123] Herrmann, JD 2014, ‘REFLECTIONS ON REGIME CHANGE<br />

AND DEMOCRACY IN BAHIA, BRAZIL’, Latin American<br />

Research Review, 49, 3, pp. 23-44, Academic Search<br />

Premier, EBSCOhost, viewed 18 April 2018.<br />

[124] Winter, B 2017, ‘Brazil’s Never-Ending Corruption Crisis’,<br />

Foreign Affairs, 96, 3, pp. 87-94, Academic Search Premier,<br />

EBSCOhost, viewed 18 April 2018.<br />

[125] Watts, J, 2017, https://www.theguardian.com/<br />

world/2017/jun/01/brazil-operation-car-wash-is-this-thebiggest-corruption-scandal-in-history,<br />

viewed April 19,<br />

2018.<br />

[126] Purdy, S 2016, ‘Brazil at the Precipice’, NACLA Report On<br />

The Americas, 48, 2, pp. 107-110, Academic Search<br />

Premier, EBSCOhost, viewed 18 April 2018.<br />

[127] NATIONAL REPORT OF BRAZIL 2014 FOR THE FIFTH REVIEW<br />

MEETING OF THE JOINT CONVENTION ON THE SAFETY OF<br />

SPENT FUEL MANAGEMENT AND ON THE SAFETY OF<br />

RADIOACTIVE WASTE MANAGEMENT, http://www.cnen.<br />

gov.br/images/cnen/documentos/drs/relatorios-deconvencao/Waste_final_14.pdf,<br />

viewed April 18, 2018.<br />

[128] THE RADIOLOGICAL ACCIDENT IN GOIANIA,<br />

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1988,<br />

https://www-pub.iaea.org/mtcd/publications/pdf/<br />

pub815_web.pdf, viewed April 19, 2018.<br />

[129] ‘South Africa,’ CIA Fact book, https://www.cia.gov/library/<br />

publications/the-world-factbook/geos/sf.html, viewed April<br />

20, 2018.<br />

[130] Msimang, S 2018, ‘All Is Not Forgiven: South Africa and the<br />

Scars of Apartheid’, Foreign Affairs, 97, 1, pp. 28-34,<br />

Academic Search Premier, EBSCOhost, viewed 20 April 2018.<br />

[131] Apartheid, History.com Staff, History.com, 2010, http://<br />

www.history.com/topics/apartheid, viewed April 20, 2018.<br />

[132] Koeberg <strong>Power</strong> Station, http://www.eskom.co.za/<br />

Wh<strong>atw</strong>eredoing/ElectricityGeneration/<br />

Koeberg<strong>Nuclear</strong><strong>Power</strong>Station/Pages/Koeberg_<br />

<strong>Power</strong>_Station.aspx, viewed April 20, 2018.<br />

[133] The Koeberg Experience, http://www.eskom.co.za/<br />

Wh<strong>atw</strong>eredoing/ElectricityGeneration/<br />

Koeberg<strong>Nuclear</strong><strong>Power</strong>Station/TheKoebergExperience/<br />

Pages/The_Koeberg_Experience.aspx, viewed April 20, 2018.<br />

[134] Chirwa, T, & Odhiambo, N 2015, ‘Growth Dynamics in South<br />

Africa: Key Macroeconomic Drivers and Policy Challenges’,<br />

<strong>Journal</strong> Of Global Analysis, 5, 1/2, pp. 9-31, Academic<br />

Search Premier, EBSCOhost, viewed 20 April 2018.<br />

[135] van Wyk, J 2015, ‘Atoms, apartheid, and the agency: South<br />

Africa’s relations with the IAEA, 1957–1995’, Cold War<br />

History, 15, 3, pp. 395-416, Academic Search Premier,<br />

EBSCOhost, viewed 20 April 2018.<br />

[136] PREVENTION AND COMBATING OF CORRUPT ACTIVITIES<br />

ACT 12 OF 2004, http://www.justice.gov.za/legislation/<br />

acts/2004-012.pdf, viewed April 20, 2018.<br />

[137] Soma Pillay, (2004) “Corruption – the challenge to good<br />

governance: a South African perspective”, <strong>International</strong><br />

<strong>Journal</strong> of Public Sector Management, Vol. 17 Issue: 7,<br />

pp.586-605, https://doi.org/10.11<strong>08</strong>/09513550410562266.<br />

[138] Uneke, O 2010, ‘Corruption in Africa South of the Sahara:<br />

Bureaucratic Facilitator or Handicap to Development?’,<br />

<strong>Journal</strong> Of Pan African Studies, 3, 6, pp. 111-128, Academic<br />

Search Premier, EBSCOhost, viewed 20 April 2018.<br />

[139] Hyslop, J 2005, ‘Political Corruption: Be<strong>for</strong>e and After<br />

Apartheid’, <strong>Journal</strong> Of Southern African Studies, 31, 4,<br />

pp. 773-789, Academic Search Premier, EBSCOhost, viewed<br />

20 April 2018.<br />

[140] SOUTH AFRICAN NATIONAL REPORT ON THE COMPLIANCE<br />

TO OBLIGATIONS UNDER THE JOINT CONVENTION ON<br />

SAFETY OF SPENT FUEL MANAGEMENT AND ON THE<br />

SAFETY OF RADIOACTIVE WASTE MANAGEMENT, Third<br />

Report September 2014, http://www.nnr.co.za/wpcontent/uploads/2015/02/NNR%20Joint%20Report_2014.<br />

pdf, viewed April 20, 2018.<br />

[141] Waste at Koeberg, http://www.eskom.co.za/<br />

Wh<strong>atw</strong>eredoing/ElectricityGeneration/<br />

Koeberg<strong>Nuclear</strong><strong>Power</strong>Station/Pages/Waste_<br />

Reracking.aspx, viewed April 21, 2018.<br />

[142] Re-racking Koeberg, http://www.eskom.co.za/<br />

Wh<strong>atw</strong>eredoing/ElectricityGeneration/<br />

Koeberg<strong>Nuclear</strong><strong>Power</strong>Station/Pages/Waste_<br />

Reracking.aspx, viewed April 21, 2018.<br />

Authors<br />

Mark Callis Sanders<br />

Sanders Engineering<br />

1350 E. Flamingo Road Ste. 13B<br />

#290<br />

Las Vegas NV 89119<br />

USA<br />

Charlotta E. Sanders<br />

Department of Mechanical<br />

Engineering<br />

University of Nevada<br />

Las Vegas (UNLV)<br />

4505 S. Maryland Pwky<br />

Las Vegas, NV 89154<br />

USA<br />

DECOMMISSIONING AND WASTE MANAGEMENT 421<br />

Decommissioning and Waste Management<br />

Part 4 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Special Topic | A Journey Through 50 Years AMNT<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

422<br />

Am 7. und 8. Mai<br />

2019 begingen wir<br />

das 50. Jubiläum<br />

unserer Jahrestagung<br />

Kerntechnik. Aus<br />

diesem Anlass öffnen<br />

wir unser <strong>atw</strong>-Archiv<br />

für Sie und präsentieren<br />

Ihnen in jeder<br />

Ausgabe einen<br />

historischen Beitrag.<br />

Aus Ansprachen zur<br />

Jahrestagung Kerntechnik<br />

1992 des<br />

Präsidenten des<br />

Deutschen Atom<strong>for</strong>ums<br />

e.V., Dr. Claus<br />

Berke, und Hans Peter<br />

Edel, Schweizerische<br />

Vereinigung für<br />

Atomenergie (SVA),<br />

am 5. Mai 1992 in<br />

Karlsruhe.<br />

Claus Berke<br />

CO 2 -Reduktion ohne Kernenergie<br />

wirklichkeitsfremde Utopie<br />

Karlsruhe ist nicht nur die „Hauptstadt des Rechts“, man kann sie auch als „Geburtsstadt der Kernenergie“ in der<br />

Bundesrepublik bezeichnen. Es war nach Karlsruhe, wohin die Pioniere der Kernenergie in den 50er Jahren zogen, um<br />

hier den selbstentwickelten FR2 zu bauen. Vom Kem<strong>for</strong>schungszentrum in Karlsruhe gingen in der Folgezeit ganz<br />

wesentliche Entwicklungsimpulse für die Kernenergie aus. Von allen, die sich dabei große Verdienste erworben haben,<br />

möchte ich Karl Wirtz erwähnen, der in diesen Tagen in Karlsruhe seinen 82. Geburtstag feierte, wozu wir ihm herzliche<br />

Glückwünsche senden. Prof. Wirtz war als Chef des Instituts für Reaktorentwicklung im Kem<strong>for</strong>schungszentrum<br />

lange Jahre der Vorsitzende des für die Kernenergiepolitik der frühen Jahre besonders wichtigen Arbeitskreises<br />

„ Kernreaktoren“ des Atom<strong>for</strong>ums.<br />

Kern<strong>for</strong>schung und Kerntechnik in Deutschland sind heute<br />

immer stärker in internationale, vor allem europäische<br />

Kooperationen eingebunden. Auf die Dauer kann gleichberechtigter<br />

Partner solcher Kooperationen nur bleiben,<br />

wer in seinem Lande aktiv Kern<strong>for</strong>schung betreibt. Hier<br />

sind wir im Augenblick wegen der Kosten, die für die<br />

Bewältigung der deutschen Einheit aufgebracht werden<br />

müssen, mit erheblichen Problemen konfrontiert. Langfristige<br />

Sicherung der Energieversorgung wird überall in<br />

der Industriewelt auch als staatliche Aufgabe verstanden.<br />

Zur langfristigen Energieversorgung gehört auch die<br />

Kernenergie vor allem in ihren Sicherheitsaspekten und<br />

ihren <strong>for</strong>tschrittlichen Varianten, wie Brüter, HTR und<br />

Fusion. Es wäre ein verhängnisvoller Fehler, wenn sich der<br />

Staat in Deutschland aus der Forschung und Entwicklung<br />

der Kerntechnik endgültig abmelden würde.<br />

Die Kernenergie ist heute in Deutschland die stärkste<br />

Säule der öffentlichen Stromversorgung. Praktisch ein<br />

Drittel des gesamtdeutschen öffentlichen Stroms stammte<br />

1991 aus den 20 Kernkraftwerken, die gegenwärtig bei uns<br />

in Betrieb sind. Der Kernenergie folgten die Braunkohle<br />

mit 31 %, die Steinkohle mit 26 % und die Wasserkraft mit<br />

3 %. Die in der Öffentlichkeit mit so viel Optimismus<br />

behandelten anderen erneuerbaren Energiequellen<br />

steuerten 1 % unseres Stroms bei. Im ersten Quartal 1992<br />

hat sich der Beitrag der Kernenergie nochmals gesteigert:<br />

Es wurde 8 % mehr Kernenergie-Strom erzeugt als vor<br />

einem Jahr. Unter diesen Umständen mutet es schon<br />

verwegen an, daß Politiker, die ernst genommen werden<br />

wollen, glauben, diesen Beitrag ohne Schaden für die<br />

Volkswirtschaft auf „0“ fahren zu können.<br />

| | 1992: Jahrestagung Kerntechnik – JK ´92 in der Stadthalle Karlsruhe. | | 1992: Jahrestagung Kerntechnik - JK ´92<br />

in Karlsruhe, Eröffnungsrede des Präsidenten<br />

des Deutschen Atom<strong>for</strong>ums e.V.,<br />

Dr. Claus Berke<br />

Die deutschen Kernkraftwerke haben ihre Leistungen mit<br />

großer Regelmäßigkeit und weitgehend störungsfrei<br />

erbracht. Gefährdungen, geschweige denn Schädigungen,<br />

der Umgebung hat es auch 1991, wie in all den Jahren zuvor,<br />

in Deutschland nicht gegeben. Im Gegenteil: die Kernkraftwerke<br />

leisten seit vielen Jahren einen sehr positiven Beitrag<br />

zum Umweltschutz. 1991 haben sie der Atmosphäre rund<br />

150 Mio. t CO 2 , das ist rund ein Sechstel unseres gegenwärtigen<br />

Gesamtausstoßes, erspart. Die Bundesregierung<br />

hat sich verpflichtet, bis zum Jahre 2005 den Beitrag<br />

Deutschlands zum anthropogenen Kohlen dioxid ausstoß um<br />

25 % bis 30 % zu reduzieren. Allein die Inbetriebnahme des<br />

Kernkraftwerks Mülheim-Kärlich würde uns in Richtung auf<br />

dieses Ziel einen großen Schritt näher bringen. Wir freuen<br />

uns darüber, daß durch einen kürz lichen Beschluß des<br />

Bundesgerichts die Möglichkeit einer Wiederinbetriebnahme<br />

von Mülheim-Kärlich wieder gegeben ist.<br />

Gegen Ende dieses Jahrzehnts müssen in Deutschland<br />

neue Kraftwerke in Betrieb gehen zur Deckung des<br />

Ersatzbedarfs und zur Deckung der zusätzlichen Nachfrage<br />

nach Strom – und diese wird, wie in der Vergangenheit,<br />

so auch in der Zukunft, unablässig weiter steigen, und<br />

dabei keine Rücksicht auf entgegenstehende Koalitionsvereinbarungen<br />

auf Länderebene nehmen. Die Bau-<br />

Entscheidungen stehen Mitte dieses Jahrzehnts an. Bis<br />

dahin muß es wieder möglich werden, in Deutschland<br />

auch Kernkraftwerke zu errichten. Denn mit Auslastungsund<br />

Effizienzverbesserungen sowie Sparerfolgen können<br />

wir den CO 2 -Ausstoß höchstens auf dem jetzigen<br />

Niveau halten. Dem Bundes<strong>for</strong>schungsminister ist voll<br />

zuzustimmen: Die von der Bundes regierung angestrebte<br />

Reduktion um 25 % bis 30 % bis<br />

zum Jahre 2005 bleibt ohne<br />

Kernenergie eine wirklichkeitsfremde<br />

Utopie.<br />

Entscheidend für die Frage<br />

eines zukünftigen Kernkraftwerkbaus<br />

bleibt die Haltung der<br />

SPD. Wenn sie auf ihrer starren<br />

Ausstieg<strong>for</strong>derung beharrt, wird<br />

es auch weiterhin keine neuen<br />

Kernkraftwerke auf deutschem<br />

Boden geben. Wir haben im<br />

Sommer und Herbst 1991<br />

Special Topic | A Journey Through 50 Years AMNT<br />

CO 2 -Reduction Without <strong>Nuclear</strong> a Fanciful Utopia ı Claus Berke


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

erstmals in ganz Deutschland eine Meinungsumfrage<br />

durch geführt. Diese hat gezeigt, daß wir es inzwischen in<br />

der öffentlichen Meinung bei der Einstellung zur Kernenergie<br />

mit drei ungefähr gleich starken Lagern zu tun<br />

haben. Ungefähr ein Drittel der Deutschen akzeptiert den<br />

Status quo ohne Zubau, ein weiteres Drittel setzt auf neue<br />

Kernkraftwerke; das dritte Drittel will den baldigen Ausstieg.<br />

Die Zahl der Ausstiegswilligen ist in den letzten Jahren<br />

deutlich zurückgegangen. Diese Tendenz entspricht der<br />

Entwicklung in den USA. Dort halten inzwischen 73 % der<br />

Bevölkerung den weiteren Ausbau der Kernenergie für<br />

notwendig, um die Stromversorgung der Zukunft sicherzustellen.<br />

Selbst in Italien dreht sich der Wind: Ministerpräsident<br />

Andreotti will dort vom nächsten Jahr an, wenn<br />

das Moratorium endet, wieder Kernkraftwerke bauen<br />

lassen.<br />

Auch bei uns gibt es ermutigende Signale, zuletzt den<br />

Beschluß der beiden großen Gewerkschaften IG Bergbau<br />

und Energie und IG Chemie, die einen mittelfristigen<br />

Ausstieg aus der Kernenergie in Anbetracht der veränderten<br />

Gegebenheiten nicht mehr für verantwortbar halten.<br />

Die SPD muß sich deshalb fragen lassen, ob ihre Verweigerungshaltung<br />

ein Beitrag zur Lösung der wirklichen<br />

Probleme des Umweltschutzes und der Sicherheit leistet<br />

oder ob hier nicht eine Beschlußlage dabei ist, zum Selbstzweck<br />

zu werden.<br />

Ein brennendes Problem ist die Sicherheit der im Osten<br />

unseres Kontinents betriebenen Kernkraftwerke. Hier<br />

trifft uns eine besondere Verantwortung – im Interesse<br />

unserer Mitbürger, im Interesse der Nachbarn im Osten,<br />

die von Störfällen in erster Linie betroffen wären. Sanieren<br />

können wird man wohl nur die jüngeren Druckwasserreaktoren.<br />

Für alle anderen Kernkraftwerke wird man<br />

besser Ersatzstrom bereitstellen, vor allem für die halbmilitärischen<br />

Anlagen vom Tschernobyl-Typ. Überall<br />

fehlen noch langfristig angelegte Konzepte. Insgesamt<br />

ist in diesem Zusammenhang auf westlicher Seite seit<br />

zwei Jahren außer Papier und guten Worten praktisch<br />

nichts passiert. Das kann so nicht weitergehen. Wir<br />

brauchen jetzt das Anlaufen konkreter Nach besserungsmaßnahmen.<br />

Ich appelliere an die Bundes regierung<br />

und an die Partner des kommenden Weltwirtschaftsgipfels<br />

in München. Sorgen Sie dafür, daß die notwendigen<br />

und sinnvollen Sanierungsarbeiten umgehend beginnen<br />

können, indem Sie die er<strong>for</strong>derlichen Devisen bereitstellen.<br />

Wir kennen die Größenordnung, etwa 15 Mrd. DM<br />

(ca. 7,6 Mrd. €). Aber ein knappes Drittel davon<br />

wird zum Einkauf von Lieferungen und Leistungen<br />

in den westlichen Industriestaaten benötigt. Vergleichsweise<br />

wenig Geld für eine erhebliche Erhöhung der<br />

Sicherheit der Europäer und zugleich ein entscheidender<br />

Beitrag für die zukünftige Strom versorgung in Europas<br />

Osten.<br />

In einigen Wochen sollen in Rio auf der Weltkonferenz<br />

für Umwelt und Entwicklung die Weichen für einen<br />

weltweiten Klimaschutz gestellt werden. Die Kernenergie<br />

ist nicht das Allheilmittel für die Lösung des Klima-<br />

Problems. Aber sie kann dazu einen wesentlichen<br />

Beitrag leisten. Angesichts der drängenden Umweltprobleme,<br />

die aus der Belastung der Atmosphäre mit<br />

Schadstoffen herrühren, bringt die Fähigkeit zur<br />

sicheren Beherrschung und Nutzung der Kernenergie<br />

heute für die Industrieländer auch die Pflicht zu ihrer<br />

Nutzung mit sich. Dieser Pflicht darf sich keiner der<br />

großen Industriestaaten entziehen, auch Deutschland<br />

nicht. Aufgabe der Politiker ist es, sicherzustellen, daß<br />

der Einsatz der Kernenergie wieder möglich wird.<br />

Unsere Aufgabe ist es, sicherzustellen, daß dieser Einsatz<br />

sicherheitstechnisch verantwortbar und wissenschaftlich<br />

konkurrenzfähig bleibt.<br />

| | 1992: Pressekonferenz mit Vortragenden der Eröffnungssitzung: A. V. Sidorenko, Erster Stellvertretender<br />

Minister für Atomenergie der Russischen Föderation Russija, Dr. Claus Berke, Präsident des Deutschen<br />

Atom<strong>for</strong>ums (DAtF), Dipl.-Math. Manfred Petroll, Pressesprecher DAtF, Dipl.-Ing. Wulf Bürkle, Direktor<br />

der Siemens AG/KWU und Peter S. Van Nort, President ABB <strong>Nuclear</strong> <strong>Power</strong>.<br />

Öffentlichkeitsarbeit<br />

Kommunikation fördert friedliche Nutzung<br />

der Kernenergie<br />

Hans Peter Edel<br />

In der Schweiz erkannten Persönlichkeiten aus der<br />

Industrie, der Wissenschaft und Wirtschaft in Übereinstimmung<br />

mit der Landesregierung schon in den<br />

fünfziger Jahren die außerordentliche Wichtigkeit einer<br />

umfassenden Unterrichtung der Bevölkerung über Kernenergiefragen.<br />

1958 kam es deshalb zur Gründung der<br />

Schweizerischen Vereinigung für Atomenergie (S VA), in<br />

der sich all diejenigen Kreise zusammenfanden, die der<br />

Überzeugung waren, daß das Land die Atomenergie im<br />

Interesse einer gesicherten Elektrizitätsversorgung und<br />

zum Schutze der Umwelt nutzen sollte. Dabei ist „Atomenergie“<br />

in umfassendem Sinne zu verstehen: Die<br />

Interessen und die Tätigkeiten der SVA bezogen sich von<br />

allem Anfang an nicht allein auf die Energiegewinnung aus<br />

Atomkernreaktionen für die Elektrizitäts- und Fernwärmeversorgung,<br />

sondern auch auf die Anwendungen<br />

ionisierender Strahlen und radioaktiver Stoffe in Forschung,<br />

Medizin, Industrie, Technik, Landwirtschaft und<br />

Umweltschutz sowie auf den Strahlenschutz.<br />

Vereinsziele<br />

„Der Verein fördert die friedliche Nutzbarmachung der<br />

Atomenergie in der Schweiz und die Koordination aller<br />

Bestrebungen auf diesem Gebiet.“ So lautet der Zweckartikel<br />

in den Statuten der Schweizerischen Vereinigung<br />

für Atomenergie (SVA), die am 19. 11. 58 als gemeinnützige<br />

Organisation gegründet wurde und ihren Sitz in<br />

der Bundesstadt Bern hat. Als hauptsächliche Mittel zur<br />

Erreichung dieses Vereinszwecks führen die Statuten auf:<br />

pp<br />

Förderung des In<strong>for</strong>mations- und Erfahrungsaustausches.<br />

pp<br />

Orientierung der Bevölkerung.<br />

pp<br />

Studium einschlägiger Fragen, namentlich ethischer,<br />

gesundheitlicher, technischer, wirtschaftlicher und<br />

rechtlicher Natur.<br />

pp<br />

Vertretung gemeinsamer Interessen bei den Behörden.<br />

pp<br />

Unterstützung der Bestrebungen zur Förderung eines<br />

qualifizierten wissenschaftlichen und technischen<br />

Nachwuchses.<br />

pp<br />

Mitwirkung bei der Aufstellung von Normen.<br />

pp<br />

Pflege der Zusammenarbeit mit ausländischen und<br />

internationalen Organisationen.<br />

Wachsendes In<strong>for</strong>mationsbedürfnis<br />

In der zweiten Hälfte der fünfziger Jahre wurden die<br />

rechtlichen Grundlagen für eine schweizerische Atomenergiepolitik<br />

geschaffen. 1957 genehmigten Volk und<br />

Kantone hierzu einen Zusatz zur Bundesverfassung, der<br />

die Gesetzgebung auf dem Gebiet der Atomenergie und<br />

423<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Special Topic | A Journey Through 50 Years AMNT<br />

CO 2 -Reduction Without <strong>Nuclear</strong> a Fanciful Utopia ı Claus Berke


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

424<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

den Erlaß von Vorschriften über den Schutz vor<br />

ionisierender Strahlung zur Bundessache erklärte. Zwei<br />

Jahre später lag das darauf abgestützte Bundesgesetz über<br />

die friedliche Verwendung der Atomenergie und den<br />

Strahlenschutz vor. In der Öffentlichkeit weckten diese<br />

politischen Entscheidungen, aber auch die Berichte über<br />

die Tätigkeit unterschiedlicher industrieller Reaktorgesellschaften<br />

und eine sich anbahnende Kontroverse um<br />

die atomare Bewaffnung der Schweizer Armee ein<br />

zunehmendes Bedürfnis nach In<strong>for</strong>mationen über die<br />

neue Technologie der nuklearen Energie.<br />

Ein breites Forum<br />

Die 1958 gegründete Schweizerische Vereinigung für<br />

Atomenergie (SVA) hatte von Beginn an den Charakter<br />

eines breiten Forums. Praktisch alle Zweige der Wirtschaft<br />

und Bereiche von Forschung, Wissenschaft und Technik<br />

traten der neuen Organisation bei. Dazu gesellten sich<br />

Universitäten und Lehranstalten, Amtsstellen sowie<br />

Standes- und Berufsorganisationen. Weil sie seit jeher die<br />

Ansicht vertritt, die Kernenergie diene dem öffentlichen<br />

Interesse und sollte nicht zum Spielball politischer Auseinandersetzungen<br />

werden, war und ist die SVA als wissenschaftlich-technisch<br />

orientierte Fachvereinigung politisch<br />

neutral. Entsprechend fand auch der Staat in ihr den gesuchten<br />

Gesprächspartner.<br />

Gegenwärtig umfaßt die SVA rund 700 Mitglieder. Die<br />

Kollektivmitglieder rekrutieren sich aus Elektrizitätswirtschaft,<br />

Industrie, Baugewerbe, Banken, Versicherungen,<br />

Ingenieur- und Beratungsunternehmen, Lehr- und Forschungsanstalten<br />

sowie öffentlichen Diensten und Amtsstellen.<br />

Die Einzelmitglieder entstammen vor allem den<br />

Kreisen, die in der Schweiz auf den Gebieten der Kernenergie,<br />

der Strahlen<strong>for</strong>schung und -anwendung sowie des<br />

Strahlenschutzes tätig sind und Verantwortung tragen.<br />

Aber auch freischaffende Anwälte, Ärzte, Wissenschaftler,<br />

Lehrer und <strong>Journal</strong>isten, die sich regelmäßig über<br />

Kernenergie in<strong>for</strong>mieren wollen, zählen zu den Einzelmitgliedern.<br />

Die Schweizerische Gesellschaft der Kernfachleute<br />

(SGK) gehört der SVA als Sektion an und stellt<br />

mehr als die Hälfte der Einzelmitglieder.<br />

In Kenntnis der Tatsachen<br />

In der Energiediskussion setzt sich die SVA dafür ein, daß<br />

die Bedeutung der Kernenergie für Gesellschaft, Umwelt<br />

und Wirtschaft nicht isoliert, sondern unter Einbezug der<br />

anderen Energien gesamtheitlich – von der Versorgung<br />

bis zur Entsorgung – und in Kenntnis der wesentlichen<br />

Tatsachen beurteilt wird. Zur Erfüllung ihrer Aufgabe<br />

verfolgt die SVA systematisch die internationale Entwicklung<br />

auf allen Gebieten der Kernenergie. Sie sammelt<br />

Nachrichten, Programme, Studien und Berichte und<br />

dient den interessierten Kreisen als In<strong>for</strong>mations- und<br />

Dokumentationszentrale. Zur Beschaffung der benötigten<br />

Unterlagen pflegt die SVA intensive Kontakte zu inund<br />

ausländischen Firmen, Verbänden, Verwaltungsstellen<br />

und Hochschulen sowie zu internationalen<br />

Organisationen. Zudem vertritt die Vereinigung die<br />

Schweiz im Foratom, der europäischen Dachorganisation<br />

der nationalen Atom<strong>for</strong>en, sowie beim NucNet, dem<br />

Kernenergie-Nachrichtensystem der European <strong>Nuclear</strong><br />

Society (ENS).<br />

Vielfältige Dienstleistungen<br />

Die solcherart zur Verfügung stehenden In<strong>for</strong>mationen<br />

und Beziehungen ermöglichen der SVA eine Vielzahl von<br />

Dienstleistungen für ihre Mitglieder, für Kernfachleute,<br />

Politiker und Meinungsbildner sowie ein weiteres<br />

interessiertes Publikum. So berichtet das offizielle Organ<br />

der Vereinigung, das „SVA-Bulletin“, laufend über die<br />

wichtigsten Geschehnisse und Entwicklungen auf dem<br />

Nukleargebiet. Das Bulletin erreicht mit seinen getrennt<br />

deutsch und französisch erscheinenden 21 Ausgaben pro<br />

Jahr Leser in der ganzen Welt. Dem Bulletin beigelegt wird<br />

der „Monatsbericht über den Betrieb der schweizerischen<br />

Kernkraftwerke“. Er enthält Betriebsdaten und Angaben<br />

über den Betriebs verlauf in den fünf Reaktorblöcken des<br />

Landes. Diese Publikation wird von den Kernkraftwerksbetreibem<br />

in Zusammenarbeit mit der SVA erstellt und<br />

trägt dem Wunsch von Politikern, Verwaltung und<br />

Medienschaffenden nach einer transparenten, regelmäßigen<br />

Berichterstattung Rechnung. Als weitere SVA-<br />

Periodika erscheinen jeden Monat die „Kernpunkte“, die in<br />

Flugblatt-Form aktuelle nukleare Kurzin<strong>for</strong>mationen<br />

vermitteln. Die „Kernpunkte“ richten sich in deutscher und<br />

in französischer Sprache speziell an Politiker und<br />

Meinungsbildner. Die Gesamtauflage beträgt rund 7000<br />

Exemplare.<br />

Zu Themen von besonderer Bedeutung bedient die SVA<br />

ihre Mitglieder und die Medien mit Faktenblättern und<br />

einschlägigen Dokumentationen (Media-Backgrounds),<br />

und in jährlich nachgeführten Ausgaben wird die Reaktortabelle<br />

„Kernkraftwerke der Welt“ herausgebracht. Unter<br />

den regelmäßigen Publikationen der SVA ebenfalls zu<br />

nennen sind die Sammelbände mit den an In<strong>for</strong>mationstagungen<br />

und Vertiefungskursen der Vereinigung<br />

gehaltenen Fachbeiträgen. Diese mit internationaler<br />

Beteiligung durchgeführten Veranstaltungen behandelten<br />

beispielsweise im Jahr 1991 die Themen „Wie alt werden<br />

Kernkraftwerke?“, „Brennstoffversorgung und -einsatz im<br />

Kernkraftwerk“ und „Fortgeschrittene Sicherheitsanalyse“.<br />

Zusätzlich zu den Tagungen und Vertiefungskursen<br />

organisiert die SVA Seminaren, Besichtigungsreisen<br />

und ähnliche Anlässe für Kernfachleute, wozu nach<br />

Möglichkeit auch Politiker und Meinungsbildner geladen<br />

werden.<br />

In<strong>for</strong>mationen aus erster Hand<br />

Einen wichtigen Teil der SVA-Dienstleistungen stellt<br />

sodann die Pflege der Beziehungen zu bestimmten Zielpublika<br />

dar. Auf die Öffentlichkeitsarbeit im engeren Sinne<br />

ausgerichtet sind die Pressemitteilungen, Stellungnahmen<br />

und Spezialbeiträge der SVA sowie die Konferenzen,<br />

Seminaren und Reisen für die Vertreter der Medien.<br />

Ebenfalls großes Gewicht kommt der Erteilung von Auskünften<br />

und der Vermittlung von Kontakten zum Zwecke<br />

journalistischer Recherchen zu. Dank ihres ausgebauten<br />

Beziehungsnetzes, einschließlich ihrer Zusammenarbeit<br />

mit dem internationalen Kernenergie-Nachrichtendienst<br />

NucNet, verfügt die SVA hierbei über den Vorteil des<br />

direkten Zugangs zu raschen In<strong>for</strong>mationen aus erster<br />

Hand.<br />

Bindeglied zwischen Fachwelt und Öffentlichkeit<br />

Bei allen diesen Tätigkeiten wird die SVA vom Willen<br />

geleitet, zu einer besseren Akzeptanz der Kernenergie<br />

beizutragen. Sie ist sich zugleich klar darüber, daß dieses<br />

Ziel nur mit völlig offener, sachlich richtiger Fachin<strong>for</strong>mation<br />

erreicht werden kann. Wenn die Schweiz heute<br />

rund 40 % ihrer elektrischen Arbeit in eigenen Kernkraftwerken<br />

erzeugt, ist dies nicht zuletzt mit ein Verdienst der<br />

In<strong>for</strong>mationsanstrengungen der SVA. Und die Tatsache,<br />

daß sich das Schweizervolk in drei Abstimmungen für die<br />

Nutzung der Kernenergie und gegen einen Ausstieg ausgesprochen<br />

hat, ist ebenfalls mit ein Erfolg der breit<br />

angelegten, kontinuierlichen und langfristig konzipierten<br />

Öffentlichkeitsarbeit der Vereinigung.<br />

Special Topic | A Journey Through 50 Years AMNT<br />

CO 2 -Reduction Without <strong>Nuclear</strong> a Fanciful Utopia ı Claus Berke


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology<br />

Young Scientists Workshop<br />

Jörg Starflinger<br />

During the “Young Scientists Workshop” 18 young scientists presented results of their scientific research as part of their<br />

Master or Doctorate theses covering a broad spectrum of technical areas. This demonstrated again the strong engagement<br />

of the younger generation <strong>for</strong> nuclear technology and the significant support of German institutions involved.<br />

Dr. Katharina Stummeyer (Gesellschaft für Anlagen- und<br />

Reaktorsicherheit gGmbH), Dr.-Ing. Wolfgang Steinwarz<br />

(Founder and <strong>for</strong>mer jury chairman of the Workshop<br />

“ Preserving Competence in <strong>Nuclear</strong> Technology”), Prof.<br />

Dr.-Ing. Marco K. Koch (Ruhr-Universität Bochum), and<br />

Prof. Dr.-Ing. Jörg Starflinger (Universität Stuttgart) as<br />

members of the jury assessed the written compacts and the<br />

oral presentations to award the prices gifted by GNS<br />

Nuklear Service GmbH, Essen and Forschungsinstitut für<br />

Kerntechnik und Energiewandlung e.V., Stuttgart.<br />

Dr. Pape, Federal Ministry of Economic Affairs and Energy,<br />

welcomed the partcipants and gave a short overview of the<br />

7 th Energy Research Programme of the Federal Government.<br />

Eduard Diaz Pescador (Helmholtzzentrum Dresden-<br />

Rossendorf, mentoring: Prof. Hampel) reported about<br />

“Multidimensional fluid mixing study during an<br />

asymmetric injection of cold water in the primary side<br />

of a generic PWR KONVOI with ATHLET 3.1A”.<br />

The presented work covered the investigation of the<br />

multidimensional fluid mixing in the RPV of a generic<br />

KONVOI reactor starting from the selection of a SBLOCA<br />

and MSLB scenarios based on a developed database of<br />

accidents scenarios in order to proceed with the study.<br />

Based on the thermal-hydraulic features of each accident<br />

scenario a generic PWR KONVOI with a pseudo multidimensional<br />

RPV was developed. Comparing the numerical data<br />

with ROCOM experimental data showed good agreement.<br />

Pascal Distler (Technische Universität Kaiserslautern,<br />

mentoring: Prof. Sadegh-Azar) reported on the present<br />

status on “Development of Analytical Methods <strong>for</strong><br />

Simulation of Soft and Hard Projectile Impact”. A<br />

numerical model to describe the impact of projectiles on<br />

concrete walls has been developed. Comparison with<br />

experimental results shows good agreement. The model<br />

allows a quick estimation of impact damaged and will be<br />

validated by means of experiments in the future.<br />

The presentation by Cenk Evrim (Universität Stuttgart,<br />

mentoring: Prof. Laurien) described “Numerical investigation<br />

of thermal mixing processes in a T-junction<br />

piping system”. Near wall temperature fluctuations<br />

caused my mixing of cold and warm water jets in a T-junction<br />

of two pipes have been simulated using Large-Eddy<br />

Simulation (LES) method. A grid study shows good agreement<br />

with experimental data <strong>for</strong> the finest grid (about 20<br />

Mio cells). A dominant fluctuation frequency at 6 Hz could<br />

have been identified, which lies in the High Cycle Thermal<br />

Fatigue range (0.1 – 10 Hz).<br />

Arthur Feldbusch (Technische Universität Kaiserslautern,<br />

mentoring: Prof. Sadegh-Azar) in<strong>for</strong>med about “Numerical<br />

investigations of structural behavior considering<br />

dynamic soil-structure interaction using PML-<br />

Elements”. A “Perfectly Matched Layers” (PML) method<br />

has been developed to describe the interaction of large<br />

structures like reactor building and the surrounding soil.<br />

As a results of several numerical simulations, PML seems to<br />

be the method of choice <strong>for</strong> nonlinear calculations considering<br />

Soil-Structure Interaction.<br />

Claudia Graß (Universität Stuttgart, mentoring: Prof.<br />

Starflinger) reported on “Atmospheric spent fuel pool<br />

cooling by passive two-phase closed thermosyphons”.<br />

Heat transfer capability of closed two-phase thermosiphons<br />

have been experimentally obtained in large-scale<br />

laboratory experiments. A per<strong>for</strong>mance map has been<br />

set-up describing the transferred heat as a function of<br />

driving temperature differences. The data are used to<br />

derive and validate thermosiphon models in ATHLET.<br />

Florian Gremme (Ruhr-Universität Bochum, mentoring:<br />

Prof. Koch) described “Analysis of the Impact of Severe<br />

Accident Management Measures on the Core Coolability<br />

during Beyond-Design-Basis Accidents in a<br />

generic Pressurized Water Reactor”. In his work, several<br />

ASTEC simulations have been carried out to assess, which<br />

minimum mass flow has to be provided in case of beyond<br />

design base accident with delayed reflood. For combined<br />

Station Blackout and Small-Break LOCA of a generic PWR<br />

different minimum mass flows have been identified to<br />

avoid further core degradation or keep the water inventory<br />

under saturation conditions. These data can be used to<br />

assess severe accident management strategies.<br />

Tobias Hanisch (Technische Universität Dresden, mentoring:<br />

Prof. Fröhlich) introduced the “Numerical simulation of<br />

flow and heat transfer in a fuel assembly mock-up with<br />

horizontal overflow”. Assuming uncover of fuel assemblies<br />

in a spent fuel pool, the surface temperatures have been<br />

determined numerically using CFX. The simulations showed<br />

the development of air vortices in the upper part of the<br />

bundle. For the boundary conditions assumed, the fuel rod<br />

surface temperature does not exceed 300 °C. Comparison<br />

with experimental data of a mock-up experiment with<br />

electrical heating show very good reproduction capabilities<br />

of the code.<br />

“Preliminary Analysis of the Design and Operation<br />

Conditions of a sCO2 Heat Removal System” was the subject<br />

of the presentation given Markus Hofer, ( Universität<br />

Stuttgart, mentoring: Prof. Starflinger). The Brayton-cycle of<br />

an innovative heat removal system operation with<br />

supercritical Carbon Dioxide has been numerically simulated.<br />

Several parametric studies were carried out to derive the<br />

design point and assess the heat removal capabilities under<br />

off-design (part-load) conditions. The same simulations will<br />

be repeated with ATHLET and compared with each other.<br />

Moritz Lönhoff (Technische Universität Kaiserslautern,<br />

mentoring: Prof. Sadegh-Azar) reported about “Analytical<br />

Model <strong>for</strong> the Investigation of the out-of-plane<br />

behavior of unrein<strong>for</strong>ced masonry walls”. In the<br />

comparison of commonly used simplified analytical<br />

methods from codes, guidelines and literature with<br />

numerical simulations, a significant underestimation of<br />

the load-bearing capacity in the simplified methods is<br />

shown when a vertical stiffness is present at the top<br />

boundary. The results are confirmed in experimental<br />

425<br />

AMNT 2019<br />

AMNT 2019<br />

Young Scientists Workshop ı Jörg Starflinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

426<br />

AMNT 2019<br />

| | Award Ceremony at AMNT 2019 (from left to right: Prof. Dr. Marco K. Koch, Prof. Dr. Jörg Starflinger,<br />

Bianca Schacherl, Claudia Graß, Dr. Jürgen Skrzypek, Dr. Wolfgang Steinwarz, Dr. Katharina Stummeyer<br />

shaking table tests with heat insulating clay brick and<br />

autoclaved aerated concrete block masonry walls.<br />

Martin Neumann (Technische Universität Dresden,<br />

mentoring: Prof. Hampel) gave an overview on “Investigation<br />

of three-dimensional two-phase flow using<br />

­combined ultrafast X-ray tomography and hot-film<br />

anemometry”. An experimental study on a generic<br />

three-dimensional two-phase flow around a flow<br />

obstruction has been carried out as a benchmark<br />

experiment <strong>for</strong> validation of two-phase CFD models.<br />

Comparing the numerical results with ultrafast electron<br />

beam X-ray tomography, a stagnation point develops<br />

upstream the obstacle and a recirculation zone is <strong>for</strong>med<br />

downstream of it. These zones of special interest were well<br />

covered by both numerics and experimental set-up.<br />

The presentation of Bianca Schacherl (Karlsruhe Institute<br />

of Technology (KIT), mentoring: Prof. Geckeis) described<br />

“Structural investigations of Np sorbed on illite by M5-<br />

edge HR-XANES and L3-edge EXAFS spectroscopy”. The<br />

sensitive Np M5-edge HR-XANES method is <strong>for</strong> the first time<br />

applied to study Np redox reactions at mineral surfaces at low<br />

metal ion concentrations, demonstrating that by the complementary<br />

application of advanced spectroscopic methods<br />

mechanistic insight into complex geochemical actinide<br />

reactions can be achieved at even low concen trations.<br />

The presentation by Sibel Tas (Helmholtzzentrum<br />

Dresden- Rossendorf, mentoring: Prof. Hampel) contains<br />

“ Numerical Investigation on the effects of vortex generators<br />

on sub-channel flow in a rod bundle”. As result<br />

from a mesh resolution study using CFX, turbulent kinetic<br />

energy is much more sensitive parameters than pressure.<br />

Among the tested models, the RNG k-ε model predicts the<br />

heat transfer characteristics with minimum deviation.<br />

Vanes increase the heat transfer considerably. A higher vane<br />

angle provides a better heat transfer.<br />

Song Meiqui (Karlsruhe Institut für Technologie, mentoring:<br />

Prof. Cheng) reported about “Heat transfer analysis<br />

<strong>for</strong> trans-critical pressure transient”. To ensure the heat<br />

transfer of the transcritical transient could be predicted<br />

well and the safety analysis of SCWR reliable, the film<br />

boiling correlations at high pressure are evaluated. Based<br />

on current film boiling database, existing correlations<br />

could not provide a high accuracy. Hence, a new heat<br />

transfer correlation is proposed. The average error of the<br />

modified correlation could be reduced allowing a better<br />

prediction of wall surface temperatures.<br />

The presentation entitled “First Experimental Results<br />

on the Heat Transfer Characteristics of Supercritical<br />

CO2 in Single Circular Tubes with Direct Electrical<br />

Heating” was given by Konstantinos Theologou ( Universität<br />

Stuttgart, mentoring: Prof. Starflinger). A new test rig is<br />

presented <strong>for</strong> investigation on the heat transfer characteristics<br />

of sCO2 build at IKE. First results of measured wall<br />

temperatures of the two test sections with an inner diameter<br />

of 4 and 8 mm are shown and verified by comparison with<br />

other authors. The next step is to produce more data according<br />

to the experimental matrix. These data are used to<br />

assess the validity pressure drop and heat transfer correlations<br />

in ATHLET <strong>for</strong> heating near the critical point of CO2.<br />

Sebastian Unger (Helmholtzzentrum Dresden Rossendorf,<br />

mentoring: Prof. Hampel) gave a presentation about “CFDbased<br />

optimization of heat exchanger tube bundle<br />

arrangement <strong>for</strong> passive spent fuel pool cooling to<br />

ambient air”. In his numerical study, the impact of tube<br />

bundle arrangement on the heat transfer per<strong>for</strong>mance of a<br />

heat exchanger <strong>for</strong> a passive cooling system was assessed.<br />

For the inline configuration, circular tube shapes with<br />

minimum longitudinal and transversal tube pitch are<br />

recommended to use. The staggered configuration<br />

per<strong>for</strong>ms best <strong>for</strong> oval shaped tubes. However, as the<br />

chimney structure enhances the buoyancy induced flow<br />

velocity may different fin designs are of advantage.<br />

Andreas Wahl (Universität Stuttgart, mentoring: Prof.<br />

Starflinger) gave an overview on “Experimental investigation<br />

of heat transfer and pressure drop in tubes to<br />

cool CO2 near the critical point”.<br />

A test section has been build up to investigate the heat<br />

transfer and pressure drop in CO2 close to the critical point.<br />

The first experiments under horizontal orientation were<br />

compared to experiments from literature showing reasonable<br />

agreement but also deviations. In the future, the test<br />

section will be operated in up- and downward flow orientation<br />

to investigate buoyancy effects on the flow. Additionally<br />

the influence of the cooling media flowrate and temperature<br />

will be investigated. These data are used to assess the<br />

validity pressure drop and heat transfer correlations in<br />

ATHLET <strong>for</strong> cooling near the critical point of CO 2 .<br />

The presentation entitled “Modeling approach of<br />

condensate coverage on inclined wall <strong>for</strong> Aerosol Wash<br />

down” was given by Fangnian Wang (Karlsruhe Institut für<br />

Technoligie, mentoring: Prof. Cheng). The flowing condensate<br />

coverage on inclined wall is a significant factor <strong>for</strong><br />

evaluating the aerosol wash down efficiency. A modelling<br />

approach of the flowing condensate coverage is proposed,<br />

which contains a microscopic treatment and a macroscopic<br />

treatment. The modelling approach is validated by means<br />

of existing experiments. A good agreement with experiment<br />

data was obtained. In the future, in order to implementing<br />

the present model in COCOSYS <strong>for</strong> the aerosol<br />

wash down calculation, some sensitivity analysis on<br />

volume flow rate, contact angle, inclination and temperature<br />

will be carried out to make an empirical correlation.<br />

Summarizing, the scientific quality of papers presented<br />

by the young scientists in this year reached again a very<br />

high level. There<strong>for</strong>e, all participants of the workshop<br />

should get honourable recognition.<br />

The jury awarded Claudia Graß (Universität Stuttgart)<br />

the 1 st price of the 2019 competition. 2 nd ranked author<br />

was Bianca Schacherl (Karlruhe Institut für Technologie)<br />

and the 3 rd ranked author Moritz Lönhoff (Technische<br />

Universität Kaiserslautern).<br />

Author<br />

Prof. Dr.-Ing. Jörg Starflinger<br />

Institute of <strong>Nuclear</strong> Technology and Energy Systems (IKE)<br />

University of Stuttgart<br />

Pfaffenwaldring 31<br />

70569 Stuttgart, Germany<br />

AMNT 2019<br />

Young Scientists Workshop ı Jörg Starflinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Atmospheric Spent Fuel Pool Cooling<br />

by Passive Two-Phase Closed Thermosyphons<br />

Claudia Graß, Rudi Kulenovic and Jörg Starflinger<br />

In a two-step approach the applicability of 10 m long two-phase closed thermosyphons (TPCT) is investigated <strong>for</strong> a<br />

passive heat removal system <strong>for</strong> spent fuel pools. The basic operational behavior of TPCT is measured <strong>for</strong> predefined<br />

thermal conditions at various pipe diameters (20, 32 and 45 mm) and pipe filling ratios in a laboratory setup. The<br />

influence on the thermal operation and the heat flux in dependency on the inner pipe diameter is measured and<br />

presented. First, the experiments are per<strong>for</strong>med with direct electric heating and then with indirect water-heating. In the<br />

second step, the demonstration facility ATHOS (Atmospheric THermosyphon cOoling System) with water tank heating<br />

and ambient air cooling is built, in order to investigate in a small-scale model experiment the heat transfer per<strong>for</strong>mance<br />

of TPCTs towards application-oriented thermal conditions of a spent fuel pool (SFP). First results of the ATHOS<br />

experiments are presented, demonstrating the applicability of a TPCT bundle using the ambient air as ultimate heat sink.<br />

Young Scientists<br />

Workshop<br />

WINNER<br />

Claudia Graß<br />

was awarded with<br />

the 1 st price of the<br />

50 th Annual Meeting<br />

on <strong>Nuclear</strong> Technology<br />

(AMNT 2019) Young<br />

Scientists Workshop.<br />

427<br />

AMNT 2019<br />

Introduction<br />

New concepts are currently getting in focus of nuclear<br />

safety research considering passive safety systems to<br />

maintain the removal of residual heat from spent fuel<br />

pools. The removal of decay heat is presently achieved by<br />

active cooling systems. In case of station blackout passive<br />

cooling systems could maintain adequate removal of decay<br />

heat. Heat pipes and TPCT are well established as efficient<br />

and cost-effective passive heat transfer devices. The<br />

operation principle of heat pipes and TPCT is based on a<br />

thermodynamic cycle of evaporation and condensation of<br />

a working fluid in a sealed tube. The transport of the<br />

fluid relies on buoyancy driven by temperature and<br />

pressure gradients and the backflow of the condensate<br />

is depending on gravitational <strong>for</strong>ces <strong>for</strong> TPCT without<br />

wick structure. A comprehensive description of the<br />

operation principles is <strong>for</strong> example given by Faghri [1],<br />

Reay and Kew [2] or Groll and Rösler [3]. These days TPCT<br />

are common in geo thermal infrastructure and solar heat<br />

pump systems.<br />

Numerous investigations over the last decades point<br />

out that the operation principle of heat pipes and<br />

thermosyphons is well understood, but in spite of their<br />

simple composition the thermodynamic behavior is<br />

complex and has to be investigated especially <strong>for</strong> the new<br />

application in SFP cooling.<br />

First attempts are in progress to investigate the<br />

applicability of a TPCT heat removal system in nuclear<br />

technology <strong>for</strong> spent fuel cooling. Xiong et al.[4] published<br />

a concept of passive spent fuel pool cooling by large-scale<br />

sub-atmospheric loop heat pipes removing approximately<br />

10 kW by a single d=65 mm loop at 80 °C heating.<br />

The investigation on the operational behavior of the<br />

TPCT is proceeded in a two-step approach. In the first step,<br />

a laboratory setup was built up to investigate single TPCT<br />

operation <strong>for</strong> direct electric heating (heat flux driven operation)<br />

and indirect water heating ( temperature driven<br />

operation) under predefined boundary conditions. In the<br />

second step, a bundle of TCPTs is operated by natural<br />

convection flow, heated by a water tank (heat source) and<br />

cooled by ambient air (heat sink). The ATHOS facility<br />

should demonstrate the applicability of TPCTs <strong>for</strong> a passive<br />

spent fuel pool cooling system.<br />

Laboratory Test Setup and Experiments<br />

A laboratory setup (Figure 1) was built up to investigate<br />

vertical 10-m-long single TPCT pipes with inner pipe<br />

diameters d=20 mm, 32 mm and 45 mm. The filling ratio<br />

<strong>for</strong> each pipe configuration was varied between 100 %,<br />

70 % and 50 %. The filling ratio is defined as the volume<br />

ratio of fluid inventory in the TPCT’s evaporation section<br />

to the total volume of the evaporation section, which is<br />

heated.<br />

A double-pipe cooler on the top end of the test pipes<br />

connected to process thermostats condensates the working<br />

fluid inside the TPCT and the transferred heat is calorimetrically<br />

determined by the temperature difference between<br />

in- and outlet of the cooler and the mass flow rate of the<br />

coolant. The test pipes are made of seamless drawn stainless<br />

steel (1.4301) tubes. A detailed specification of the<br />

laboratory test setup including all components and<br />

measurement points is given by Graß et al. [5].<br />

| | Fig. 1.<br />

Design sketch of the laboratory test setup.<br />

Heat flux driven operation<br />

In a first experimental campaign the TPCT is directly<br />

heated by tubular cartridge heaters. The outer pipe wall<br />

temperature along the TPCT is measured as well as the<br />

AMNT 2019<br />

Atmospheric Spent Fuel Pool Cooling by Passive Two-Phase Closed Thermo syphons ı Claudia Graß, Rudi Kulenovic and Jörg Starflinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

428<br />

AMNT 2019<br />

30 % more heat is transferred by the d=20 mm TPCT<br />

(q=30 kW/m 2 ) than by the d=45 mm TPCT (q=22.5 kW/<br />

m 2 ). Although the filling ratio is 70 % <strong>for</strong> all measurements<br />

in Figure 2, the mass of the fluid inventory of the d=45 mm<br />

TPCT is 4.5 times higher compared to the d=20 mm TPCT<br />

and thus the thermal inertia is increased <strong>for</strong> the larger diameter.<br />

There<strong>for</strong>e, it takes higher heat input and increased<br />

operating temperatures to stabilize the heat transfer. The<br />

smaller cross section (d=20 mm) also promotes a better<br />

mixing of the working fluid in the evaporation section with<br />

the cooled backflow from the condenser section, which<br />

results in lower temperatures measured in the evaporation<br />

section.<br />

| | Fig. 2.<br />

Boiling temperature measured inside the TPCT’s evaporation section vs. calorimetrically determined<br />

heat flux <strong>for</strong> pipe diameters d=20 mm, 32 mm and 45 mm at heat sink temperature 20 °C and filling<br />

ratio 70 %.<br />

| | Fig. 3.<br />

Temperature difference between heat source and heat sink vs. calorimetrically determined transferred<br />

heat <strong>for</strong> indirect water-heated experiments with various filling ratios of TPCTs.<br />

pressure in both pipe ends. The TPCT operates in a heat<br />

flux driven operation with significant wall overheating in<br />

the evaporation section. The heat sink temperatures were<br />

set to 10 °C, 20 °C and 30 °C. Previous results reveal the<br />

70 % filling ratio with the highest experimental heat<br />

transfer coefficient in the evaporation section [6].<br />

Figure 2 gives the results of the direct electric heating<br />

experiments <strong>for</strong> different inner pipe diameters (20, 32 and<br />

45 mm). 70 % of the evaporator section volume was filled<br />

with water as working fluid and the experiments were<br />

per<strong>for</strong>med with a predefined heat sink temperature of<br />

20 °C. The points in Figure 2 give the average temperatures<br />

measured in the evaporation section vs. the calorimetrically<br />

transferred heat flux in different colors <strong>for</strong> each<br />

pipe diameter. The corresponding colored dashed lines<br />

above and below the average points visualize the temperature<br />

fluctuations during the measurements. It is known<br />

from previous results [5, 6], that the experiments with<br />

water as working fluid tend to unstable operation with<br />

pulsating temperature fluctuations <strong>for</strong> low heat flux and<br />

low driving temperature difference. These fluctuations<br />

stabilize into isothermal operation with increasing heat<br />

input in dependency on the heat sink temperature and<br />

pipe diameter. At similar boiling temperatures, the heat<br />

flux is increasing with decreasing pipe diameter. For<br />

example, at 55 °C evaporator temperature approximately<br />

Temperature driven operation<br />

In the next step of investigations on a passive TPCT cooling<br />

system <strong>for</strong> spent fuel pools, the heating of the laboratory<br />

test pipe is converted to an indirect temperature driven<br />

operation. There<strong>for</strong>e, the tubular cartridge heaters are<br />

replaced by a double-pipe arrangement connected to a<br />

process thermostat in a secondary heating circuit. The<br />

inlet and outlet heat flux is determined calorimetrically by<br />

the mass flow and the inlet and outlet temperatures of the<br />

water jacket heater and cooler. The charged working fluid<br />

in the TPCTs is water in all presented experiments.<br />

Figure 3 shows the results of the indirect water- heating<br />

experiments <strong>for</strong> heat source temperatures of 45 °C (green),<br />

55 °C (yellow) and 60 °C (red). The filling ratios 100 %,<br />

70 %, 50 % and 30 % were measured <strong>for</strong> each heating<br />

temperature. The experiments are per<strong>for</strong>med with a<br />

temperature ramp of the heat sink between 0 °C and 30 °C.<br />

At a defined heat source temperature the heat sink is<br />

adjusted at start temperature and increased by 10 K<br />

approximately every hour. The investigated temperature<br />

ramps are per<strong>for</strong>med both ways, upwards with increasing<br />

and downwards with decreasing heat sink temperature to<br />

observe possible effects depending on the operation mode.<br />

In fact, the heat sink temperature direction had no influence<br />

on the results <strong>for</strong> water-charged TPCT. The blue-colored<br />

area in Figure 3, which mainly covers the experiments at<br />

45 °C heat source temperature, presents single-phase heat<br />

transfer region. The transferred heat is in the range of<br />

measurement uncertainties and most likely, the heat is<br />

transferred only by natural convection inside the test pipe.<br />

The results covered by the yellow- colored area represent a<br />

meta-stable operation mode of the TPCT. The experiments<br />

are not always reproducible and the operation is in a<br />

transition between single-phase convection and irregular<br />

nucleate boiling. With increasing heat source temperature<br />

the two-phase heat transfer stabilizes (non-colored area)<br />

and the operation temperature pulsates regularly as already<br />

known from the electric heating experiments. The blue<br />

lines present the isothermal heat sink temperatures <strong>for</strong> a<br />

better comparability between the different heat source<br />

temperature ramps. The influence of the filling ratio<br />

increases with increasing heat sink temperature and<br />

increasing temperature difference. For temperature<br />

differences below 35 K, the influence of the filling ratio is<br />

negligible. At 60 °C heat source temperature and 0 °C heat<br />

sink temperature the heat flux <strong>for</strong> 50 % and 30 % filling<br />

ratio is similar and approximately 30 % improved compared<br />

to 100 % filling ratio. A stabilization of the pulsating<br />

operation temperature with increasing heat flux like in the<br />

results of the electrically heated experiments is not<br />

observed yet. Overall, the temperature driven experiments<br />

result in lower heat transfer coefficients and without wall<br />

overheating due to thermal inertia of the water- heating.<br />

AMNT 2019<br />

Atmospheric Spent Fuel Pool Cooling by Passive Two-Phase Closed Thermo syphons ı Claudia Graß, Rudi Kulenovic and Jörg Starflinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

ATHOS – Atmospheric THermosyphon cOoling<br />

System<br />

For the experimental demonstration of an operating<br />

passive TPCT-SFP cooling system, the ATHOS facility was<br />

set up. Two water tanks, both with a base area of 1 m 2 and<br />

3 m height are established in a bunker facility and heated<br />

by screw-in-heaters from the bottom to represent spent fuel<br />

pools. The concrete ceiling of the bunker facility was<br />

opened and an 8 m height chimney was built on top. 9 TPCT<br />

with an inner diameter d=32 mm are installed in the chimney<br />

in a 3 x 3 aligned bundle hanging 1.5 m deep in the<br />

water tank pool. The filling ratio is nearly 70 % due to the<br />

results from the laboratory experiments. In practice, each<br />

test pipe is filled with 890 g distilled, degassed water, which<br />

corresponds approximately 1 m hydrostatic column inside<br />

the pipes. The TPCT evaporation section in the ATHOS<br />

facility is 1.5 m and hence 0.5 m longer than in the laboratory<br />

setup. There<strong>for</strong>e, a filling ratio of 1 m water column in<br />

the pipes corresponds to the mass inventory of 100 % filling<br />

ratio in the laboratory setup.<br />

Considering the arrangement of the bundle there are<br />

three different geometric pipe positions. At the corners<br />

with a 90° bundle surrounding, on the sides with 180°<br />

bundle surrounding and the TPCT positioned in the<br />

middle, which is encircled in 360° by the other pipes. For<br />

one pipe in each position, the temperature and pressure is<br />

measured inside the pipe to observe possible bundle effects<br />

or variations of the operation temperature depending on<br />

the pipe position in the bundle. The other pipes are<br />

pinched and sealed and temperature measurements are<br />

carried out solely on the outer pipe wall.<br />

The limiting parameter <strong>for</strong> the heat transfer<br />

per <strong>for</strong>mance is hereby the ambient air flow through the<br />

chimney. There<strong>for</strong>e, additional fans were installed in the<br />

air inlet on the bottom of the chimney. At the same time,<br />

the ambient air temperature depends on the environmental<br />

atmospheric conditions and is self- sufficient in the<br />

measurements. There<strong>for</strong>e, long-term experiments are<br />

scheduled to cover a wide spectrum of heat sink temperature<br />

configurations. Compared to the laboratory setup the<br />

segmentation of the TPCT evaporation, adiabatic and<br />

condenser section is changed. The condenser section takes<br />

approximately half of the pipe length in the ATHOS facility<br />

whilst the adiabatic section is almost 60 % reduced<br />

compared to the laboratory setup. In Figure 4 the basic<br />

setup of the ATHOS facility and the segmentation of<br />

evaporation, adiabatic and condenser section are depicted.<br />

As mentioned be<strong>for</strong>e, the ATHOS facility consists of two<br />

water tanks. One tank in Figure 4, which is not in operation<br />

yet, is mobile and provides the opportunity to install<br />

inclined pipe bundles with bends and longer adiabatic<br />

sections.<br />

In contrast to the water-heated laboratory experiments<br />

with <strong>for</strong>ced convection flow, the water in the tanks is heated<br />

by screw-in heaters from the side at the tank bottom to<br />

simulate a heat source from the low level with natural convection<br />

flow like in SFPs. The <strong>for</strong>ced convection flow<br />

through the double-pipe jacket in the laboratory leads to an<br />

increase of the heat transfer coefficient and thus an<br />

increased heat input in the TPCT. The water temperature in<br />

the tanks is measured at different tank heights to observe<br />

potential temperature layering during the experiments.<br />

429<br />

AMNT 2019<br />

Advertisement<br />

Urenco Deutschland GmbH ist ein High-Tech-Unternehmen der Urenco-Gruppe,<br />

die in Großbritannien, Deutschland, Niederlanden und den USA Anlagen zur<br />

Urananreicherung für die Brennstoffversorgung von Kernkraftwerken betreibt.<br />

Für unseren Bereich „Überwachung“, Leistungseinheit „Genehmigung“<br />

suchen wir zum nächstmöglichen Zeitpunkt<br />

Mitarbeiter Compliance/Licence (m/w/d)<br />

Das Hauptaufgabengebiet umfasst u. a. folgende Tätigkeiten:<br />

• Erstellung bzw. Fortschreibung von fachgebietsübergreifenden<br />

technischen und organisatorischen Unterlagen<br />

• Prüfung von Dokumenten auf Übereinstimmung mit den<br />

Genehmigungsbescheiden bzw. -unterlagen sowie den<br />

Festlegungen der Aufsichtsbehörde<br />

• Koordination und Verfolgung der Bearbeitung von Auflagen<br />

und sonstigen Festlegungen aus Genehmigungsbescheiden<br />

und -unterlagen<br />

• Unterstützung von Errichtungsmaßnahmen im Hinblick<br />

auf die Einhaltungen von Festlegungen aus Genehmigungen<br />

und der Aufsichtsbehörde<br />

• Koordination und Durchführung von Fachgesprächen<br />

mit Behörden<br />

• Aktualisierung der zugehörigen Dokumentation<br />

Sie besitzen ein abgeschlossenes (Fach-) Hochschulstudium sowie ein ausgeprägtes<br />

technisches Verständnis. Idealerweise verfügen Sie bereits über Kenntnisse auf dem Gebiet<br />

der Kerntechnik, des Strahlenschutzes, des kerntechnischen Regelwerkes sowie des Bauund<br />

Atomrechts. Darüber hinaus gehören eine hohe Kommunikations- und Teamfähigkeit,<br />

sowie ausgeprägte Englischkenntnisse in Wort- und Schrift zu Ihren Stärken und Sie sind<br />

sicher im Umgang mit den gängigen MS-Office Anwendungen.<br />

Unser Angebot:<br />

• Basis ist der Tarifvertrag der chemischen Industrie, Zusatzleistungen<br />

wie betriebliche Altersversorgung, Weihnachtsgeld, Urlaubsgeld, Sonderzahlungen<br />

und Erfolgsbeteiligung sind für uns selbstverständlich<br />

• Flexible Arbeitszeitmodelle bringen Projekte und Privatleben in Einklang<br />

• Ihre Gesundheit liegt uns am Herzen: zusätzliche Unfall- und Berufsunfähigkeitsversicherungen<br />

sind für uns Standard<br />

• Unser Unternehmens-Spirit – ein sehr gutes Betriebsklima, das erlebbar ist.<br />

Management<br />

System<br />

Ausgezeichneter<br />

Arbeitgeber<br />

www.tuv.com<br />

ID 0091004215<br />

Ihre aussagekräftigen Bewerbungsunterlagen inkl. Angabe Ihres frühestmöglichen<br />

Eintrittstermins und Ihrem Gehaltswunsch senden Sie bitte an:<br />

Urenco Deutschland GmbH ı Postfach 19 61 ı 48599 Gronau<br />

Email: bewerbung@urenco.com<br />

AMNT 2019<br />

Atmospheric Spent Fuel Pool Cooling by Passive Two-Phase Closed Thermo syphons ı Claudia Graß, Rudi Kulenovic and Jörg Starflinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

430<br />

AMNT 2019<br />

| | Fig. 4.<br />

Technical sketch of ATHOS facility (left) and picture of 3 x 3 TPCT bundle condenser section installed<br />

in ATHOS chimney (right).<br />

The major modification to laboratory experiments is<br />

the shift to an atmospheric ultimate heat sink. The heat<br />

transfer coefficient at ambient air flow conditions is<br />

expected between 5 to 45 W/(m 2 K), depending on the air<br />

flow velocity in the chimney. The laboratory measurements<br />

result in heat transfer coefficients 100 times higher using<br />

water as heat sink. Hence, the per<strong>for</strong>mance of TPCT is<br />

determined by the heat sink, the heat transfer of the pipe<br />

bundle is estimated by one order of magnitude below the<br />

laboratory measurements so far.<br />

In Figure 5 the thermal operation of one cornerpositioned<br />

TPCT in the ATHOS facility is compared to<br />

previous water-heated laboratory experiments. Both<br />

experiments are per<strong>for</strong>med at 60 °C heating temperature<br />

and about 10 °C heat sink temperature. The shown temperatures<br />

in the graphs are measured nearly at the same TPCT<br />

heights. As mentioned be<strong>for</strong>e, it has to be considered that<br />

the segmentation of evaporation, adiabatic and condenser<br />

section is different <strong>for</strong> both configurations. The beginning<br />

and end of the TPCTs adiabatic section in ATHOS is<br />

measured at 2000 mm and 5000 mm from the lower pipe<br />

end. Whereas the ATHOS temperatures are measured<br />

mainly along the condenser section, the measurements at<br />

the same heights in the laboratory setup are along the<br />

adiabatic section. The shown temperatures at 9500 mm<br />

and 10000 mm in the right graph envelop the double-pipe<br />

cooler condenser section of the laboratory setup.<br />

It is noticeable, that the temperatures in the ATHOS<br />

pipe are stable over the measurement time. The water<br />

temperature at the evaporator end is approximately 60 °C<br />

in the TPCT and enters with nearly 50 °C the adiabatic<br />

section (2000 mm). The temperature at the condenser end<br />

(10000 mm) is still around 45 °C. The laboratory measurements<br />

shows a pulsating TPCT operation. Especially the<br />

temperature measured in the condenser section fluctuates<br />

between the heat sink temperature (10 °C) and the average<br />

adiabatic temperature (30 °C). In general, the ATHOS pipe<br />

operates at higher temperatures. On the one hand, the<br />

heat transfer coefficient of the heat source and there<strong>for</strong>e<br />

the heat input is lower due to the natural convection flow<br />

in the ATHOS water tank by contrast with the <strong>for</strong>ced<br />

convection flow through the double-pipe heater in the<br />

laboratory setup. Otherwise, the heat transfer coefficient<br />

of the heat sink and thus the heat output is magnitudes less<br />

with ambient air and the condensate temperature is 25 K<br />

higher in ATHOS although the heat sink temperature is<br />

nearly the same. The average temperatures of the experiments<br />

shown in Figure 5 are listed in Table 1.<br />

The heat flow rate of TPCT in the laboratory experiment<br />

is 1350 W, calculated from the mass flow and the<br />

temperatures in the secondary cooling circuit. The<br />

determination of the TPCT heat transfer per<strong>for</strong>mance in<br />

the ATHOS facility is quite complex and a comprehensive<br />

energy balance is presently elaborated but not finished yet.<br />

Nevertheless, a first rough estimate based on the heating<br />

power of the water tank and considering heat losses to the<br />

environment and a heat transfer distribution over the 3 x 3<br />

TPCT bundle yields to a transferred heat of about 350 W<br />

per TPCT, which is only 26 % compared to the water-cooled<br />

laboratory experiment.<br />

| | Fig. 5.<br />

Temperature sequence <strong>for</strong> one hour measurement time in ATHOS facility, pipe in corner position (left) and in water-heated laboratory setup (right).<br />

Position Evap. 2000 mm 5000 mm 7500 mm 9500 mm 10000 mm Cond. Sink<br />

ATHOS 60.1 52.4 51.6 48.4 49.1 43.7 47.1 7.5<br />

Laboratory 54.1 34.2 33.8 33.4 33.3 17.3 19.6 10.2<br />

| | Tab. 1.<br />

Average temperatures [°C] of ATHOS and laboratory setup <strong>for</strong> TPCT d=32 mm, 70 % filling ratio, 60 °C heat source and 10 °C heat sink.<br />

AMNT 2019<br />

Atmospheric Spent Fuel Pool Cooling by Passive Two-Phase Closed Thermo syphons ı Claudia Graß, Rudi Kulenovic and Jörg Starflinger


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Conclusions<br />

The functionality and thermal operation of TPCTs <strong>for</strong><br />

various boundary conditions were experimentally investigated.<br />

The direct electric heating experiments show that<br />

with increasing heat input the thermal pulsating operation<br />

of TPCTs stabilizes and minor pipe diameters operate at<br />

lower evaporation temperatures. In the water-heated experiments,<br />

a heat transfer up to 2 kW by a single TPCT was<br />

reached at 60 °C heat source temperature depending on<br />

the heat sink temperature.<br />

Experiments in the ATHOS facility proved successfully<br />

the functionality and applicability of long-length TPCTs <strong>for</strong><br />

passive spent fuel pool cooling at 60 °C pool temperature.<br />

Although the removed heat is with approximately 350 W per<br />

TPCT quite low, it has to be considered that these experiments<br />

are per<strong>for</strong>med <strong>for</strong> conservative basic con figuration. The<br />

optimization of the condenser section <strong>for</strong> example by enlargement<br />

of the condenser area by fins or airflow arrangements<br />

in the chimney is essential <strong>for</strong> a final application.<br />

References<br />

| | A. Faghri, Heat Pipes Science and Technology, Taylor&Francis, London, 1995, ISBN 1560323833<br />

| | D.A. Reay, P.A. Kew, Heat pipes: theory, design and applications, 2006, ISBN 9780<strong>08</strong>0982663<br />

| | M. Groll, S. Rösler, Operation Principles and Per<strong>for</strong>mance of Heat Pipes and Closed Two-Phase<br />

Thermosyphons, J. Non-Equilib. Thermosyn. (17), 91-151, 1992<br />

| | Z. Xiong, C. Ye, M. Wang, H. Gu, “Experimental study on the sub-atmospheric loop heat pipe passive<br />

cooling system <strong>for</strong> spent fuel pool”, Progress in <strong>Nuclear</strong> Energy, 2015, 79, pp. 40-47<br />

| | C. Graß, R. Kulenovic, J. Starflinger, “Experimental Investigation on Passive Heat Transfer by Long<br />

Closed Two-Phase Thermosiphons”, Int. J. <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong>, Vol. 62, 2017, Issue 7, pp. 481-485<br />

| | C. Graß, R. Kulenovic, J. Starflinger, Experimental study on heat transfer characteristics of long twophase<br />

closed thermosiphons related to passive spent fuel pool cooling, Proceedings of Joint 19 th<br />

<strong>International</strong> Heat Pipe Conference and 13 th <strong>International</strong> Heat Pipe Symposium, Pisa, 2018<br />

Author<br />

Claudia Graß<br />

Rudi Kulenovic<br />

Prof. Jörg Starflinger<br />

Universität Stuttgart<br />

Institut für Kernenergetik und Energiesysteme<br />

Abteilung Energiewandlung und Wärmetechnik<br />

Pfaffenwaldring 31<br />

70569 Stuttgart<br />

431<br />

AMNT 2019<br />

Acknowledgement<br />

The presented work is funded by the German Federal<br />

Ministry of Economic Affairs and Energy (BMWi, project<br />

no. 1501515) on the basis of a decision by the German<br />

Bundestag.<br />

Analytical Model <strong>for</strong> the Investigation<br />

of the Out-of-Plane Behavior<br />

of Unrein<strong>for</strong>ced Masonry Walls<br />

Moritz Lönhoff, Lukas Helm and Hamid Sadegh-Azar<br />

Introduction & Objective Load-bearing and non-load-bearing unrein<strong>for</strong>ced masonry (URM) is used <strong>for</strong> many<br />

types of buildings in Europe and all over the world. In nuclear power plants (NPP), non-load-bearing partition walls are<br />

often built as URM. While <strong>for</strong> ordinary building structures, static load-bearing capacity verification is sufficient in many<br />

cases, <strong>for</strong> NPP’s there are high requirements on the earthquake-resistant design. The building structure itself as well as<br />

substructures and secondary structures need to be stable in case of an earthquake. Although, in most cases, only<br />

secondary non-safety relevant elements or structures (e.g. cable trays or piping systems) are anchored or fixed to<br />

partition walls, their collapse however can be a risk <strong>for</strong> safety relevant structures and components, due to falling debris<br />

or sequential effects (Class IIa structures/components according to KTA 2201.1 [1]). There<strong>for</strong>e, it must be verified that<br />

there is no risk of collapsing walls or falling debris. For this purpose, in-plane and out-of-plane (Figure 1) load-bearing<br />

capacities are required to be determined. Since the out-of-plane capacity (stability transverse to the plane) often is<br />

decisive in an earthquake scenario, it is investigated here.<br />

Young Scientists<br />

Workshop<br />

WINNER<br />

Moritz Lönhoff<br />

was awarded with<br />

the 3 rd price of the<br />

50 th Annual Meeting<br />

on <strong>Nuclear</strong> Technology<br />

(AMNT 2019) Young<br />

Scientists Workshop.<br />

According to the German code DIN EN 1996 [2] and guideline<br />

KTA 2201.3 [1], simple <strong>for</strong>ce-based quasi-static methods,<br />

using the peak ground acceleration (PGA) as an input<br />

| | Fig. 1.<br />

URM in-plane and out-of-plane failure modes.<br />

parameter are recommended <strong>for</strong> the seismic design and<br />

evaluation of masonry walls. More advanced energy- and<br />

displacement-based models are available in the literature.<br />

Investigations [3, 4] have already shown that the actual<br />

seismic load-bearing capacity of URM walls can be higher<br />

than the one predicted using simplified models. However,<br />

disregarding important influencing parameters can lead to<br />

unnecessary and uneconomical rehabilitation of existing<br />

masonry or replacement by other construction types.<br />

For this purpose, based on the findings from analytical,<br />

numerical and experimental investigations on the out- ofplane<br />

behavior of URM walls conducted at the TU<br />

Kaiserslautern (TUK), an analytical model to determine<br />

the <strong>for</strong>ce-displacement- relationship considering key<br />

influencing factors is developed. The state of the art,<br />

conducted investigations and the developed analytical<br />

model are briefly presented in this paper.<br />

Analytical Model <strong>for</strong> the Investigation of the Out-of-Plane Behavior of Unrein<strong>for</strong>ced Masonry Walls<br />

AMNT 2019<br />

ı Moritz Lönhoff, Lukas Helm and Hamid Sadegh-Azar


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

432<br />

AMNT 2019<br />

State of the art in science and technology<br />

The out-of-plane behavior of URM walls has been the<br />

subject of various research studies over recent decades in<br />

several countries (e.g. [5–10]). Different influencing<br />

parameters as well as construction and brick types were<br />

studied. The experimental investigations of Dafnis et al.<br />

[11], Meisl et al. [12] and Dazio [13] focused, in particular,<br />

on the effect of the boundary conditions on the<br />

out-of-plane behavior of URM walls. One of the conclusions<br />

of their research was that the connection at the top of<br />

the wall should be considered as one of the most important<br />

boundary conditions.<br />

In practical applications, the models of Paulay and<br />

Priestley [14] and Griffith et al. [15–17] as well as the<br />

models from KTA 2201.3 [1] and DIN EN 1996 [2] are<br />

often used.<br />

In analytical and numerical investigations conducted at<br />

the TUK, those simplified analytical models have been<br />

evaluated. For this purpose, the dimensions of the wall as<br />

well as the properties of masonry and mortar from [11]<br />

were used while the height as well as vertical load has been<br />

varied. Additionally, a numerical model to investigate the<br />

behavior of a URM wall under earthquake loads was<br />

developed. For the numerical model, a rein<strong>for</strong>ced concrete<br />

ceiling was considered at the top of the wall in the nonlinear<br />

dynamic time-history analyses. The results of the<br />

considered simplified analytical models and the numerical<br />

model showed a wide range of estimations of the loadbearing<br />

capacity, especially in case of very low vertical<br />

loads. In all cases, the numerical analyses led to higher<br />

| | Fig. 2.<br />

Experimental dynamic seismic testing of the AAC block wall on the shaking table<br />

at the TUK / analytical and experimental capacity acceleration.<br />

| | Fig. 3.<br />

Geometric dependencies / Pivot point at the bottom.<br />

capacities than the simplified analytical models. In case<br />

of a vertically loaded wall, the factor was 2-3. In case of<br />

vertically unloaded walls up to 8.<br />

As one of the reasons <strong>for</strong> the higher capacities in the<br />

numerical simulation, the vertical stiffness due to the<br />

concrete ceiling was identified. During the rocking process,<br />

the wall center moves horizontally, leading to a rotation of<br />

the bricks. This results in an axial elongation of the wall,<br />

which increases the axial load acting on the wall and has a<br />

stabilizing effect. For more details on the analytical and<br />

numerical models and the conducted investigations, see<br />

[18].<br />

To verify the results obtained from analytical and<br />

numerical analyses, shaking table tests have been conducted<br />

at the TUK with URM walls from heat insulating<br />

clay bricks [19] and autoclaved aerated concrete (AAC)<br />

blocks [20]. The investigations confirmed the large<br />

influence of the vertical stiffness of the upper boundary on<br />

the out-of-plane capacity. While the analytical model of<br />

Griffith et al. led to good estimations of the capacity in case<br />

of no vertical stiffness, all models underestimate the<br />

capacity in case of vertical stiffness present at the upper<br />

support, since this stiffness is neglected in those methods<br />

(Figure 2).<br />

Development of analytical model<br />

The rocking of masonry walls under earthquake loads<br />

represents a non-linear time-dependent process. It is<br />

there<strong>for</strong>e ideally represented by a non-linear, dynamic<br />

time-history simulation. However, a discrete modelling of<br />

complete wall systems including bricks, mortar joints,<br />

boundary conditions etc. is usually not feasible in practice.<br />

To determine the out-of-plane capacity more precise than<br />

simplified analytical methods without using complex<br />

models, an idealization to an equivalent single-degree- offreedom<br />

(SDOF) system can be used. Since the vertical<br />

stiffness at the upper support was identified as a significant<br />

influencing factor in the described investigations and it is<br />

not considered in existing models, an analytical model to<br />

determine the out-of-plane <strong>for</strong>ce-displacement relationship<br />

of URM walls is developed. For this purpose, the wall<br />

is simplified similar to the models of Griffith and Paulay<br />

and Priestley by two rigid slabs. The support conditions,<br />

the crack height, vertical loads and the vertical stiffness at<br />

the top boundary are considered.<br />

From the geometric relations, the de<strong>for</strong>mations of the<br />

wall can be determined and the work can be determined<br />

using the principle of virtual work. The external work d A a<br />

consists of the external load and the inertia of mass. The<br />

earthquake load at the base causes the displacement of the<br />

mass in horizontal and vertical direction. The inner work<br />

d A i consists of the vertical displacement of the mass<br />

against gravity acceleration, the axial load and the vertical<br />

stiffness of the top support.<br />

By incrementally increasing the displacement of the<br />

wall and determining the associated work, the <strong>for</strong>cedisplacement<br />

relationship can be determined. Since the<br />

real de<strong>for</strong>mation of the wall is not an infinitesimal small<br />

de<strong>for</strong>mation, the actual geometric relations have to be<br />

considered (Figure 3).<br />

Instead of the simplified assumption of a crack at half<br />

the height of the wall as in the models by Paulay and<br />

Priestley and Griffith et al., the crack height is determined<br />

by means of elastic beam theory. It is assumed that the wall<br />

bends at the point where the first cracks <strong>for</strong>m.<br />

After the wall cracked, rocking of the wall around<br />

its resting position is generated by the constant change of<br />

AMNT 2019<br />

Analytical Model <strong>for</strong> the Investigation of the Out-of-Plane Behavior of Unrein<strong>for</strong>ced Masonry Walls<br />

ı Moritz Lönhoff, Lukas Helm and Hamid Sadegh-Azar


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

direction of the load during earthquake excitation.<br />

The varying strength and frequency of the excitation leads<br />

to horizontal deflections of the wall. The rotation of<br />

the two wall slabs results in a strongly concentrated load<br />

on the pivot point at the bottom and crack height.<br />

This causes a rounding of the edges of the bricks and thus<br />

to an inward shift of the pivot point. Even be<strong>for</strong>e an<br />

earthquake event, the joints are often not completely<br />

intact up to the outermost edge of the bricks, as the joint is<br />

already damaged during construction or the joint has<br />

not been made up to the edge. The effective thickness of<br />

the masonry is reduced by shifting the pivot point inwards.<br />

With the change of the pivot point, the displacement at<br />

which the wall fails geometrically also changes. In the<br />

analytical models described, the pivot point is assumed to<br />

be at the outermost edge of the brick in a simplified<br />

manner. Since a model as realistic as possible is developed<br />

here the position of the pivot point is also considered.<br />

For this purpose, contact joints at the base of the wall<br />

and in the cracked joint are applied using springs. The<br />

position of the pivot point can thus be controlled by the<br />

stiffness of the springs. The triangular compression of the<br />

springs over the contact length leads to a corresponding<br />

stress distribution (­Figure 3). The pivot point of the slabs<br />

<strong>for</strong>ms at the resultant point of this distribution. The parameter<br />

a 1 is introduced to define the position of the pivot<br />

point:<br />

Where Mg is the dead weight of the wall, O is the axial<br />

load, E is the Young’s modulus, b is the width of the wall,<br />

c is the stiffness of the springs and ϕ is the current rotation<br />

angle of the slab. The position of the pivot point at crack<br />

height a 2 is determined in the same way.<br />

After determining the crack height and the pivot points,<br />

all geometric relationships can be calculated and the<br />

internal and external work can be determined. For this purpose,<br />

the system is deflected by the angle ϕ min and the pivot<br />

point as well as displacements are calculated. The system is<br />

then deflected by an additional small angle Δϕ and all<br />

displacements are determined again. From the difference<br />

of the two calculated displacements, the distance each<br />

point moved due to the additional rotation Δϕ is calculated:<br />

Herein d i (ϕ)describes the displacement of point i as a<br />

function of the rotation angle ϕ. Using the distance Δ i , the<br />

principle of work and energy can be <strong>for</strong>med. The dead<br />

weight of the lower slab Mgb is de<strong>for</strong>med by Δv M,bottom , the<br />

dead weight of the upper slab Mg(1–b) by Δv M,top , where b<br />

is the calculated relative crack height. The axial load O is<br />

de<strong>for</strong>med by Δv e . To consider the influence of the vertical<br />

stiffness at the upper support, the <strong>for</strong>ce that is generated in<br />

the spring must first be calculated using the stiffness of the<br />

springs K and the absolute compression of the spring d v e .<br />

The work is then calculated by multiplying the <strong>for</strong>ce with<br />

the current de<strong>for</strong>mation Δv e . The <strong>for</strong>ce applied to the lower<br />

slab Fb is de<strong>for</strong>med by Δh M,bottom and the <strong>for</strong>ce applied to<br />

the upper slab F(1–b) is de<strong>for</strong>med by Δh M,top . From this,<br />

433<br />

AMNT 2019<br />

Advertisement<br />

Wir suchen Sie zum nächstmöglichen Termin unbefristet<br />

Ingenieur für Entwicklung von Sondermaschinen (m/w/d)<br />

Kennziffer: TEC 2019/04<br />

Die BGE TECHNOLOGY GmbH ist ein national und international führendes Ingenieur- und Beratungsunternehmen mit den<br />

Schwerpunkten Bergbau und Spezialmaschinenbau sowie Geotechnik, Geowissenschaften und Kerntechnik mit Sitz in Peine.<br />

Ihr abwechslungsreiches Aufgabengebiet:<br />

Grundlagen<strong>for</strong>schung zur Endlagerung radioaktiver Abfälle<br />

Entwicklung von Maschinen zur Handhabung radioaktiver Abfälle<br />

unter Tage<br />

Mitarbeit in Genehmigungsverfahren<br />

Unser Angebot:<br />

Eine interessante und heraus<strong>for</strong>dernde Tätigkeit<br />

Ein modernes und von Respekt geprägtes Arbeitsumfeld<br />

Außergewöhnliche Heraus<strong>for</strong>derungen an den Schnittstellen von<br />

Sondermaschinenbau, Kerntechnik und Bergbau<br />

Ein motiviertes, interdisziplinär arbeitendes Team<br />

Eine zielgerichtete Fort- und Weiterbildung<br />

Eine gute Vereinbarkeit von Beruf und Familie<br />

Das bringen Sie mit:<br />

Erfolgreich abgeschlossenes Studium des Maschinenbaus, der Kerntechnik<br />

o. ä. (M.Sc. / Diplom)<br />

Erfahrung in der Kerntechnik und im Strahlenschutz oder<br />

Erfahrung in Entwicklung und Konstruktion im Sondermaschinenbau<br />

Damit überzeugen Sie uns:<br />

Teamfähigkeit, selbstständige Arbeitsweise und Eigeninitiative sind<br />

uns wichtig<br />

Außerdem sind folgende Eigenschaften wünschenswert:<br />

Sie konzentrieren sich auf das Wesentliche<br />

Sie sind ein guter Netzwerker und suchen Chancen und Kontakte<br />

Sie suchen kreativ nach neuen Ideen und Lösungen<br />

Sie haben ein gutes Urteilsvermögen und denken analytisch<br />

Sie sehen sich als Spezialisten und sind an den fachlichen Details<br />

interessiert<br />

Bei Interesse senden Sie uns bitte Ihre vollständigen Bewerbungsunterlagen unter Angabe der Kennziffer und Ihres frühestmöglichen<br />

Eintrittsdatums per E-Mail als pdf-Datei mit max. 15 MB an personal@bge.de oder an<br />

BGE TECHNOLOGY GmbH, Personalabteilung, Eschenstraße 55, 31224 Peine<br />

BGE Anzeige <strong>atw</strong> 179x124.indd 1 AMNT 2019<br />

15.<strong>08</strong>.19 19:37<br />

<strong>atw</strong> Stellenanzeige BGE TECHNOLOGY GmbH A5.pdf 1 02.<strong>08</strong>.19 11:57<br />

Analytical Model <strong>for</strong> the Investigation of the Out-of-Plane Behavior of Unrein<strong>for</strong>ced Masonry Walls ı Moritz Lönhoff, Lukas Helm and Hamid Sadegh-Azar


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

434<br />

AMNT 2019<br />

the <strong>for</strong>ce F can now be determined as a function of the<br />

horizontal displacement at crack height d h:<br />

The rotation Δϕ and thus of the displacement at crack<br />

height d h is increased until the corresponding <strong>for</strong>ce F<br />

becomes negative and thus the geometric stability limit of<br />

the wall is found.<br />

For a generic example, a 2.50 m high and 0.20 m thick<br />

wall is considered. The crack height is set to half the wall<br />

height in order to obtain results that are comparable with<br />

the model of Griffith. Figure 4 shows the <strong>for</strong>ce-displacement-curve<br />

according to Griffith <strong>for</strong> different degrees of<br />

joint degradation (new, moderate and severe).<br />

The introduced parameter c, which describes the contact<br />

stiffness between the joints at the bottom and crack<br />

height, must be chosen here, as it is not known. In Figure 4,<br />

it can be seen that different values <strong>for</strong> c strongly influence<br />

the stiffness of the wall. If a high value is assumed, the<br />

curve is close to the ideal de<strong>for</strong>mation of rigid slabs. For<br />

lower values, the stiffness decreases significantly. The<br />

parameter is comparable to the experimentally determined<br />

degradation of the joint described by Griffith, but<br />

has the significant advantage that it does not require two<br />

points to define a plateau. Instead, the model inevitably<br />

leads to a continuous <strong>for</strong>ce-displacement-curve by taking<br />

into account the change in position of the pivot point. In<br />

addition, the parameter can be selected arbitrarily and<br />

thus all states of the joint and other factors influencing the<br />

position of the pivot point can be considered. Furthermore,<br />

it can be observed that the failure displacement<br />

decreases due to lower contact stiffness. This is also due to<br />

the shift of the pivot point from the edge point of the bricks<br />

to the inside.<br />

| | Fig. 4.<br />

Comparison of the <strong>for</strong>ce-displacement-relationship from the new model<br />

with varying stiffness c and the method of Griffith<br />

based on the division of the wall into two rigid slabs. From<br />

this, the geometric dependencies are calculated and the<br />

internal and external work is calculated. This leads to a<br />

continuous <strong>for</strong>ce-displacement curve that comparable to<br />

curves from Griffith’s model.<br />

In the further course of the project, the determined<br />

curve will be verified with experimental pushover tests.<br />

After verification and calibration, the model will be used to<br />

simulate the conducted shaking table tests using nonlinear<br />

single-degree-of-freedom systems.<br />

Acknowledgement<br />

The ongoing project is supported by the Federal Ministry<br />

<strong>for</strong> Economic Affairs and Energy by resolution of the<br />

German Bundestag.<br />

References<br />

[1] <strong>Nuclear</strong> Safety Standards Commission KTA 2201, Parts 1-6: Design of <strong>Nuclear</strong> <strong>Power</strong> Plants<br />

against Seismic Events, 2011-2015<br />

[2] DIN EN 1996-1-1: Eurocode 6: Design of masonry structures - Part 1-1: General rules <strong>for</strong> rein<strong>for</strong>ced<br />

and unrein<strong>for</strong>ced masonry structures; German version EN 1996-1-1:2005+A1:2012, Feb. 2013<br />

[3] Doherty, K.; Griffith, M. C.; Lam, N.; Wilson, J.: Displacement-based seismic analysis <strong>for</strong> out-ofplane<br />

bending of unrein<strong>for</strong>ced masonry wall, Earthquake Engng Struct. Dyn., 2002.<br />

[4] Lönhoff, M.; Sadegh-Azar, H.; Meyer, U.: Investigation of the seismic out-of-plane behaviour of<br />

unrein<strong>for</strong>ced masonry walls, Mauerwerk, Vol. 21 No. 6, pp. 385-390, 2018.<br />

[5] Kariotis et al.: Methodology <strong>for</strong> mitigation of seismic hazards in existing unrein<strong>for</strong>ced masonry<br />

buildings: wall testing, out-of-plane. Technical Report ABK-TR-04, ABK, A Joint Venture, USA, 1981.<br />

[6] Dawe, J. L.; Seah, C. K.: Out-of-plane resistance of concrete masonry infilled panels, University of<br />

New Brunswick, 1989.<br />

[7] Angel, R.; Abrams, Daniel P.; Shapiro, D.; Uzarski, J.; Webster, M.: Behavior of Rein-<strong>for</strong>ced<br />

Concrete Frames with Masonry Infills, University of Illinois at Urbana-Champaign, Civil<br />

Engineering Studies, Structural Research Series 589, 1994.<br />

[8] Flanagan, R. D.; Bennett, R. M.: Arching of Masonry Infilled Frames: Comparison of Analytical<br />

Methods, Practice Periodical on Structural Design and Construction, Bd. 4, pp. 105-110, August 1999.<br />

[9] Penner, O. and Elwood, K. J.: Out-of-Plane Dynamic Stability of Unrein<strong>for</strong>ced Masonry Walls in<br />

One-Way, Earthquake Spectra, Vol. 32 No. 3, pp. 1675–1697, 2016.<br />

[10] Tondelli, M.; Beyer, K.; DeJong, M.: Influence of Boundary Conditions on the Out-of-Plane<br />

Response of Brick Masonry Walls in Buildings with RC Slabs, Earthquake Engng Struct. Dyn.,<br />

pp. 1337-1356, 2016.<br />

[11] Dafnis, A; Kolsch, H.; Reimerdes, H.-G.: Arching in Masonry Walls Subjected to Earthquake<br />

Motions, <strong>Journal</strong> of Structural Engineering, 2002.<br />

[12] Meisl et al.: Shake table tests on the out-of-plane response of unrein<strong>for</strong>ced masonry,<br />

10 th Canadian Masonry Symposium, 2005.<br />

[13] Dazio, A.: The Effect of the Boundary Conditions on the Out-Of-Plane Behavior of Un-rein<strong>for</strong>ced<br />

Masonry Walls, 14WCEE, 20<strong>08</strong>.<br />

[14] Paulay, T.; Priestley, M. J. N.: Seismic Design of Rein<strong>for</strong>ced Concrete and Masonry Buildings,<br />

Wiley & Sons, 1992.<br />

[15] Doherty, K. T.; Rodolico, K. T.; Lam, N.; Wilson, J.; Griffith, M. O.: The Modeling of Earthquake<br />

induced Collapse of Unrein<strong>for</strong>ced Masonry Walls Combining Force and Dis-placement Principals,<br />

12WCEE, 2000.<br />

[16] Doherty, K.; Griffith, M.; Lam, N.; Wilson, J.: Displacement-based seismic analysis <strong>for</strong> out-of-plane<br />

bending of unrein<strong>for</strong>ced masonry walls, Earthquake Engineering and Structural Dynamics,<br />

Vol. 31, pp. 833-850, 2002.<br />

[17] Griffith, M. C.; Lam, N.; Wilson, J.: Experimental Investigation of Unrein<strong>for</strong>ced Brick Masonry<br />

Walls in Flexure, <strong>Journal</strong> of Structural Engineering, March 2004.<br />

[18] Lönhoff, M.; Dobrowolski, C.; Sadegh-Azar, H.: Analyse des out-of-plane-Verhaltens von<br />

unbewehrten Mauerwerkswänden, Proceedings of the 15 th D-A-CH-Conference: Earthquake<br />

Engineering and Dynamics, S. 419-427, 2017.<br />

[19] Lönhoff, M.; Sadegh-Azar, H.: Numerical and Experimental Analysis of the Out-Of-Plane Capacity<br />

of Unrein<strong>for</strong>ced Masonry Walls, Proceedings of the 16th European Conference on Earthquake Engineering,<br />

Thessaloniki, Greece, 2018.<br />

[20] Lönhoff, M.; Sadegh-Azar, H.: Seismic out-of-plane behavior of unrein<strong>for</strong>ced masonry walls, Proceedings<br />

of the 6th <strong>International</strong> Conference on Autoclaved Aerated Concrete, Potsdam, Germany, 2018.<br />

Conclusion and Outlook<br />

In the comparison of commonly used simplified analytical<br />

methods from codes, guidelines and literature with<br />

numerical simulations, a significant underestimation of<br />

the load-bearing capacity in the simplified methods is<br />

shown when a vertical stiffness is present at the top<br />

boundary. The results are confirmed in experimental<br />

shaking table tests with heat insulating clay brick and<br />

autoclaved aerated concrete block masonry walls.<br />

Since the vertical stiffness is not considered in existing<br />

models a new analytical method is developed that considers<br />

this important parameter. In addition, the crack<br />

height and pivot point is taken into account. The model is<br />

Author<br />

Moritz Lönhoff<br />

Lukas Helm<br />

Hamid Sadegh-Azar<br />

Institute of Structural Analysis and Dynamics<br />

Department of Civil Engineering<br />

TU Kaiserslautern (TUK)<br />

67663 Kaiserslautern, Germany<br />

AMNT 2019<br />

Analytical Model <strong>for</strong> the Investigation of the Out-of-Plane Behavior of Unrein<strong>for</strong>ced Masonry Walls<br />

ı Moritz Lönhoff, Lukas Helm and Hamid Sadegh-Azar


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Inside<br />

Liebe KTG-Mitglieder,<br />

beim Blick in die Nachrichten kann man sich des Eindrucks nicht erwehren, dass wir in einer Zeit des Umbruchs<br />

leben: im Automobilbereich, in der In<strong>for</strong>mationstechnik, im Bankenwesen, bald wohl auch in der Tourismusbranche<br />

und noch ganz frisch: der Kohleausstieg. Wir als kerntechnische Branche können das „mit Erfahrung“ betrachten, denn<br />

wir haben eine derart gewaltige – um nicht zu sagen historische – Veränderung bereits hinter uns.<br />

Mittlerweile liegt der Ausstiegsbeschluss<br />

acht Jahre zurück und<br />

seitdem ist in der deutschen Kerntechnik<br />

kaum ein Stein auf dem<br />

anderen geblieben. Die Energieversorger<br />

haben sich – nicht nur<br />

aufgrund des Kernenergie- Ausstiegs<br />

– neu sortiert und aufgestellt.<br />

Aktuell sind noch sieben<br />

Anlagen am Netz, aber die weniger<br />

als drei einhalb Jahre bis zur gesetzlich festgelegten<br />

Abschaltung der letzten Kraftwerke sind schon jetzt durchgeplant.<br />

Der nostalgische Rückblick „auf bessere Zeiten“<br />

lässt sich zwar nie ganz vermeiden, bringt uns aber nicht<br />

weiter.<br />

Für die Kerntechnik in Deutschland sind die Weichen<br />

weitgehend gestellt und die Verantwortungen verteilt. Mit<br />

dem Endlagersuchprozess und der Neuordnung der Verantwortung<br />

für die kerntechnische Entsorgung ist der<br />

Fahrplan in Deutschland definiert: Der Staat ist weiterhin<br />

verantwortlich für Errichtung und Betrieb der Endlagerung<br />

sowie nun auch für die notwendige Zwischenlagerung<br />

bis zu Verfügbarkeit der Endlager. Die Kraftwerksbetreiber<br />

und Abfallverursacher müssen ihre<br />

Anlagen zurückbauen und ihre Abfälle fachgerecht verpacken.<br />

Der jahrzehntelange Zankapfel der „ungelösten<br />

Entsorgung“ ist damit – zumindest theoretisch – vom<br />

Tisch.<br />

Mit den staatlichen Unternehmen BGZ für die<br />

Zwischen lagerung und BGE für die Endlagerung wird<br />

dieser neuen Verantwortungsverteilung auch strukturell<br />

Rechnung getragen und es sind zwei schlagkräftige<br />

Organisationen etabliert worden. Der BGZ gehören schon<br />

heute die zentralen Zwischenlager in Ahaus und Gorleben,<br />

die Brennelementläger an den Kraftwerksstandorten und<br />

zum kommenden Jahreswechsel wird sie auch die dortigen<br />

Läger für schwach- und mittelaktive Abfälle übernehmen.<br />

Hier sind bei weitem nicht nur Immobilien und Behälter<br />

übergegangen, sondern vor allem auch sachkundige<br />

Mitarbeiter, die künftig für den Staat die sichere Zwischenlagerung<br />

und Entsorgung gewährleisten werden. Und mit<br />

der Zusammenlegung und Umbenennung der bisherigen<br />

Branchenverbände WKK und DAtF zu KernD hat sich auch<br />

die Industrieseite neu aufgestellt.<br />

Diese in wenigen Jahren von Grund auf neugeschaffene<br />

Struktur wird nun über viele Jahre und wohl auch Jahrzehnte<br />

Bestand haben. Das schafft Planungssicherheit für<br />

Unternehmen ebenso wie für die Mitarbeiter. Aufgrund<br />

der langfristigen Projekte, an denen Betreiber, Lieferanten<br />

und Dienstleister ebenso wie Gutachter und Behörden<br />

gemeinschaftlich beteiligt sind, herrscht schon jetzt ein<br />

immenser Bedarf an Fachkräften. Und dieser Bedarf wird<br />

weit über die letzten Abschaltungen noch für Jahrzehnte<br />

bestehen. In Deutschland ist unsere Branche damit zwar<br />

eindeutig „endlich“, aber noch längst nicht „tot“. Das<br />

macht auch für junge Menschen den Einstieg in die Kerntechnik<br />

attraktiv.<br />

Wichtig für diese Attraktivität ist aber auch, dass wir<br />

die alten Grabenkämpfe hinter uns lassen. Wir sind schon<br />

jetzt auf einem guten Weg, eine „normale Branche“ zu<br />

werden. Den Ausstiegsbeschluss müssen wir nicht mehr<br />

diskutieren. Wer heute sein Studium abschließt, hat es in<br />

der Regel „nach Fukushima“ und dem Ausstiegsbeschluss<br />

in Deutschland begonnen! Und wer sich heute nach dem<br />

Abitur einen Studiengang aussucht, war 2011 wohl gerade<br />

10 Jahre alt.<br />

Für viele „alte Hasen“ mag so manche Umstrukturierung<br />

noch immer befremdlich wirken. Aber genau diese<br />

neuen Strukturen sind die Basis für ein konstruktives<br />

Zusammenarbeiten aller Beteiligten von EVU bis BGE.<br />

Denn ohne Zweifel gilt, dass die noch vor uns liegenden<br />

großen Aufgaben von Stilllegung, Rückbau, Zwischenlagerung<br />

bis hin zur Endlagerung nur gemeinsam bewältigt<br />

werden können: Betreiber, Lieferanten, Behörden, Sachverständige,<br />

BGZ und BGE müssen lösungsorientiert<br />

zusammenwirken, um unter Einhaltung der hohen Sicherheitsstandards<br />

effektive und effiziente Entsorgungslösungen<br />

umzusetzen.<br />

Unsere Branche samt der unverändert sehr leistungsfähigen<br />

Forschungseinrichtungen hat in Deutschland über<br />

lange Zeit nicht nur genug zu tun, sondern auch attraktive<br />

Aufgaben zu lösen. Dies bildet im Übrigen auch eine<br />

hervorragende Basis, um die eigenen Kompetenzen und<br />

Leistungen auch im Ausland erfolgreich zu vermarkten.<br />

Jetzt<br />

Mitglied<br />

werden.<br />

Dr. Jens Schröder<br />

Vorstandsmitglied<br />

www.ktg.org<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

435<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Herzlichen Glückwunsch!<br />

436<br />

KTG INSIDE<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

September 2019<br />

55 Jahre | 1964<br />

16. Mathias Bräsel. Preetz<br />

65 Jahre | 1954<br />

6. Alfons Braun, Geeste<br />

16. MinDirig Dr. Gerhard Feige, Hannover<br />

70 Jahre | 1949<br />

6. Manfred Erve, Oberasbach<br />

21. Otto Zach, Erlangen<br />

28. Matthias Holl, Essen<br />

78 Jahre | 1941<br />

5. Prof. Dr. Manfred Popp, Karlsruhe<br />

14. Dr. José Lopez-Jimenez, Majadahonda/ES<br />

82 Jahre | 1937<br />

22. Dr. Uwe Schmidt, Obertshausen<br />

83 Jahre | 1936<br />

7. Dr. Harald Stöber, Eggenstein-Leopoldsh.<br />

84 Jahre |1935<br />

27. Dipl.-Ing. Klaus Kleefeldt,<br />

Karlsdorf-Neuthard<br />

85 Jahre | 1934<br />

13. Dipl.-Phys. Veit Ringel, Dresden<br />

30. Dr. Klaus Ebel, Ingersleben OT Morsleben<br />

86 Jahre | 1933<br />

17. Dr. Ing.Manfred Mach, Breitenfelde<br />

88 Jahre | 1931<br />

22. Dipl.-Ing. Ludwig Seyfferth, Egelsbach<br />

Oktober 2019<br />

40 Jahre | 1979<br />

19. Tobias Schmidt, Essen<br />

55 Jahre | 1964<br />

7. Albert Ali Schaftner, Landshut<br />

60 Jahre | 1959<br />

9. Dr.-Ing. Bernd Klüver, Hemmingen<br />

65 Jahre | 1954<br />

30. Prof. Dr. Hans-Dieter Berger, Marlofstein<br />

70 Jahre | 1949<br />

14. Ludwig Loehr, Neunkirchen<br />

75 Jahre | 1944<br />

2. Arnulf Renner, Sprendlingen<br />

7. Siegfried Bantle, Dietenhofen<br />

76 Jahre | 1943<br />

4. Klaus Günther, Bergisch Gladbach<br />

79 Jahre | 1940<br />

24. Dr. Peter Wirtz, Eggenstein-Leopoldsh.<br />

80 Jahre | 1939<br />

5. Dipl.-Ing. Günter Langetepe, Karlsruhe<br />

82 Jahre | 1937<br />

21. Dipl.-Ing. Gerhard Hendl, Freigericht<br />

83 Jahre | 1936<br />

10. Hans-Jürgen Rokita, Schnakenbek<br />

91 Jahre | 1928<br />

8. Dipl.-Ing. Rainer Rothe, Möhrendorf<br />

92 Jahre | 1927<br />

23. Dr. Helmut Krause, Bad Herrenalb<br />

<br />

2. Mai 2019 ı<br />

Dr. Roland Beeselt<br />

Körten<br />

1. Juli 2019 ı<br />

Dr. Heinz-Günther Sonnenburg<br />

Erding<br />

6. Juli 2019 ı<br />

Dr. Ludwig Lindner<br />

Marl<br />

Die KTG verliert in ihnen langjährige<br />

aktive Mitglieder, denen sie ein<br />

ehrendes Andenken bewahren wird.<br />

Ihren Familien gilt unsere Anteilnahme.<br />

<br />

Die Kerntechnische Gesellschaft e. V. (KTG)<br />

trauert um sein Vereinsmitglied<br />

Herrn Dr. Ludwig Lindner<br />

der uns seit 1997 mit seiner Treue und Interesse am Verein<br />

seine Unterstützung erwiesen hat.<br />

Hierfür gebührt ihm unser Dank und unsere Anerkennung.<br />

Wir werden sein Gedenken stets in Ehren halten.<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

Der Vorstand<br />

<br />

Nichts bleibt wie es ist.<br />

Wir, die Fachgruppe Nutzen der Kerntechnik und Energiesysteme in der<br />

KTG e.V. trauern um unser Ehrenmitglied und langjährigen Sprecher<br />

Dr. Ludwig Lindner<br />

Kämpferisch trat er für die friedliche Nutzung der Kernenergie und eine sinnvolle<br />

Energienutzung ein, <strong>for</strong>derte von sich und seinen Mitstreitern Exaktheit<br />

und die direkte Auseinander setzung mit den „Argumenten“ der Gegner.<br />

Am 6. Juli 2019 ist er im Kreise seiner Familie<br />

nach langer, schwerer Krankheit von uns gegangen.<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

Der Vorstand der Fachgruppe<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Top<br />

FORATOM highlights importance<br />

of long-term operation<br />

of existing nuclear fleet<br />

(<strong>for</strong>atom) Ensuring the long-term<br />

operation (LTO) of the European<br />

nuclear fleet will help Europe achieve<br />

its climate goals at an af<strong>for</strong>dable cost,<br />

according to a position paper issued<br />

today by FORATOM.<br />

“The intermediate decarbonisation<br />

targets in the transition towards 2050<br />

cannot be achieved without the LTO<br />

of existing nuclear power plants”, says<br />

Yves Desbazeille, FORATOM Director<br />

General. “In fact, if the EU were to<br />

invest in maintaining a fully operational<br />

nuclear fleet over this period,<br />

58 % of its electricity would come<br />

from low-carbon sources by 2030 –<br />

making it the global leader on climate<br />

change policy. If not, the share would<br />

drop to 38 %, increasing the cumulative<br />

emissions by around 1,500 million<br />

tonnes of CO 2 by 2030”.<br />

Meeting the EU’s ambition to<br />

decarbonize its economy will require<br />

using all low-carbon sources and the<br />

LTO of the existing nuclear fleet will<br />

have a significant impact on this<br />

transition. An increasing number of<br />

experts recognise that nuclear will<br />

have to play an important role if the<br />

world is to reach its CO 2 reduction<br />

targets by mid-century. This means<br />

investing in Europe in both LTO and<br />

the construction of substantial new<br />

nuclear capacity (around 100 GW of<br />

nuclear new build). Both are achievable<br />

if EU institutions, Member States<br />

and the European nuclear industry<br />

work together in partnership.<br />

LTO offers numerous benefits.<br />

For example, it is economically advantageous<br />

compared to other power<br />

sources. This is because it requires a<br />

much lower capital investment cost,<br />

leading to low investment risks <strong>for</strong><br />

investors and capital markets, and<br />

lower consumer costs. Furthermore,<br />

it reduces the EU’s energy import<br />

dependency on, primarily, fossil fuels<br />

and provides reliability to the grid. In<br />

addition, LTO helps the industry<br />

maintain and upgrade the competences<br />

of operators and suppliers,<br />

which will allow it to prepare <strong>for</strong> the<br />

renewal of the fleet in the future.<br />

In order to ensure that Europe can<br />

make the most of the benefits offered<br />

by the LTO of existing nuclear reactors,<br />

FORATOM has put <strong>for</strong>ward the<br />

following policy recommendations:<br />

pp<br />

Ensure a coherent, consistent<br />

and stable EU policy framework<br />

(including Euratom).<br />

pp<br />

Agree an ambitious net-zero CO 2<br />

emissions target <strong>for</strong> the EU in<br />

2050, in line with the European<br />

Commission’s long-term vision <strong>for</strong><br />

a climate neutral economy.<br />

pp<br />

Develop and implement a strong<br />

industrial strategy to ensure that<br />

Europe maintains its technological<br />

leadership.<br />

pp<br />

Support human competences<br />

development.<br />

The position paper is available <strong>for</strong><br />

download.<br />

| | www.<strong>for</strong>atom.org<br />

World<br />

IAEA highlights the role of<br />

nuclear applications in<br />

support of climate adaptation<br />

and mitigation<br />

(iaea) The IAEA highlighted the<br />

contributions made by nuclear science<br />

and technology at a major United<br />

Nations Forum in New York and<br />

outlined how it supports countries in<br />

combatting the effects of climate<br />

change.<br />

The 2019 UN High Level Political<br />

Forum is the United Nations’ central<br />

plat<strong>for</strong>m <strong>for</strong> following up and reviewing<br />

the 2030 Agenda <strong>for</strong> Sustainable<br />

Development, which includes the<br />

Sustainable Development Goals<br />

(SDGs). The annual event provides<br />

Member States, UN organizations and<br />

stakeholders with an opportunity to assess<br />

achievements, share experiences<br />

and increase global cooperation <strong>for</strong> the<br />

universal call to action.<br />

Focusing this year on “Empowering<br />

people and ensuring inclusiveness<br />

and equality”, the eight day event<br />

reviewed six of the 17 SDGs over 33<br />

meetings, 156 side-events, eight<br />

special events, 36 exhibitions and 17<br />

Voluntary National Review laboratories.<br />

The event brought together more<br />

than 2000 participants, including<br />

more than 125 Heads and Deputy<br />

Heads of States and ministerial level<br />

officials, and 130 speakers in panels.<br />

The review of SDG 13 to combat<br />

climate change highlighted the critical<br />

challenge to meeting the Global Goals<br />

posed by global warming. “Climate<br />

change is perhaps the greatest challenge<br />

to sustainable development,”<br />

said Wei Huang of the IAEA’s Department<br />

of <strong>Nuclear</strong> Energy. “To help<br />

mitigate the impact of climate change,<br />

the IAEA is supporting around 150<br />

Member States, those with or without<br />

nuclear power, to build and maintain<br />

local capacity to develop and<br />

implement sustainable energy and<br />

mitigation policies.”<br />

The IAEA’s technical cooperation<br />

programme provides expert assistance<br />

to monitor and help Member<br />

States adapt to the effects of climate<br />

change on their environment and<br />

habitats. The IAEA also provides<br />

capacity building in the application of<br />

nuclear technology to improve food<br />

security and manage water resources<br />

as well as to protect biodiversity in a<br />

changing environment.<br />

Recent examples included the<br />

management of freshwater and<br />

agricultural systems, advice on developing<br />

climate-smart agricultural<br />

methods, and support to monitor<br />

ocean pollutants and acidification.<br />

The Forum acknowledged the<br />

essential importance of planning,<br />

funding and managing gender issues<br />

across all aspects of the SDGs when<br />

working towards individual targets.<br />

In addition, Forum participants<br />

highlighted the importance of working<br />

together <strong>for</strong> the achievements<br />

of the Goals, and of avoiding a ‘silo<br />

mentality’.<br />

“In this regard, partnerships are<br />

essential to the work of the IAEA, by<br />

further amplifying the reach of<br />

nuclear science and technology,” said<br />

Laura Vai, from the IAEA’s Department<br />

of Technical Cooperation.<br />

“ Partnerships allow us to build on<br />

each other’s strengths, to work with a<br />

greater focus in a complementary<br />

manner. Ultimately we can support<br />

Member States to achieve a bigger impact<br />

with more sustainable results.”<br />

In connection to the ongoing<br />

campaign to understand and address<br />

climate change, the IAEA will host the<br />

first <strong>International</strong> Conference on<br />

Climate Change and the Role of<br />

<strong>Nuclear</strong> <strong>Power</strong> in October 2019 in<br />

Vienna. The Conference will provide a<br />

plat<strong>for</strong>m to discuss the scientific and<br />

technical aspects of the role of nuclear<br />

power, including both opportunities<br />

and challenges in combating climate<br />

change.<br />

| | www.iaea.org<br />

Reactors<br />

UK Government to provide<br />

£18 million <strong>for</strong> innovative<br />

Mini <strong>Nuclear</strong> Plants<br />

(nucnet) In a further boost to the<br />

nuclear sector, the British government<br />

has announced that it proposing to<br />

invest up to £ 18 m of government<br />

money in the creation of innovative<br />

437<br />

NEWS<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Operating Results March 2019<br />

438<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 743 681 152 1 983 493 263 638 701 100.00 100.00 99.05 99.27 99.65 99.86<br />

OL2 Olkiluoto BWR FI 910 880 743 684 858 1 992 173 253 888 716 100.00 100.00 99.79 99.90 100.19 100.30<br />

KCB Borssele PWR NL 512 484 743 379 224 3 370 923 165 092 612 99.72 92.14 99.44 91.99 99.93 92.61<br />

KKB 1 Beznau 7) PWR CH 380 365 743 286 176 832 <strong>08</strong>5 128 166 195 100.00 100.00 100.00 100.00 101.43 101.48<br />

KKB 2 Beznau 7) PWR CH 380 365 743 284 557 827 318 135 177 725 100.00 100.00 100.00 100.00 100.83 100.85<br />

KKG Gösgen 7) PWR CH 1060 1010 743 790 874 2 245 995 316 121 523 100.00 98.05 99.99 97.49 100.42 98.14<br />

KKM Mühleberg BWR CH 390 373 743 286 890 831 110 128 235 425 100.00 100.00 99.95 99.66 99.01 98.71<br />

CNT-I Trillo PWR ES 1066 1003 743 787 753 2 290 520 249 582 189 100.00 100.00 99.92 99.97 99.03 99.04<br />

Dukovany B1 PWR CZ 500 473 743 366 612 1 056 915 113 286 4<strong>08</strong> 100.00 99.68 100.00 99.68 98.68 97.91<br />

Dukovany B2 PWR CZ 500 473 743 365 263 1 066 7<strong>08</strong> 109 300 879 100.00 100.00 100.00 100.00 98.32 98.82<br />

Dukovany B3 PWR CZ 500 473 743 371 350 540 224 107 038 265 100.00 51.13 100.00 50.07 99.96 50.04<br />

Dukovany B4 PWR CZ 500 473 743 373 753 1 <strong>08</strong>4 468 107 527 737 100.00 100.00 100.00 99.80 100.61 100.46<br />

Temelin B1 1) PWR CZ 1<strong>08</strong>0 1030 21 18 720 1 536 109 115 897 151 2.69 66.51 2.63 66.49 2.33 65.76<br />

Temelin B2 PWR CZ 1<strong>08</strong>0 1030 733 800 101 2 350 744 111 623 261 98.65 99.54 98.43 99.46 99.52 100.63<br />

Doel 1 2) PWR BE 454 433 484 211 011 211 011 135 655 473 65.25 22.46 59.36 20.80 60.75 21.28<br />

Doel 2 PWR BE 454 433 743 342 563 581 650 134 383 589 100.00 62.04 99.98 58.40 101.16 58.98<br />

Doel 3 PWR BE 1056 1006 743 792 766 2 175 268 257 307 753 100.00 93.98 99.98 93.69 100.38 94.79<br />

Doel 4 2) PWR BE 1<strong>08</strong>4 1033 743 807 273 2 288 343 262 661 753 100.00 100.00 99.00 96.28 99.00 96.35<br />

Tihange 1 PWR BE 1009 962 743 757 265 2 2<strong>08</strong> 145 301 039 002 100.00 100.00 99.98 99.99 101.22 101.59<br />

Tihange 2 2) PWR BE 1055 10<strong>08</strong> 0 0 0 254 651 930 0 0 0 0 0 0<br />

Tihange 3 PWR BE 1<strong>08</strong>9 1038 743 803 6<strong>08</strong> 2 286 663 273 513 936 100.00 99.90 99.93 97.70 99.93 97.73<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 743 958 769 2 795 603 353 363 413 100.00 100.00 94.28 94.25 86.82 87.12<br />

KKE Emsland DWR 1406 1335 743 1 017 217 2 989 680 349 8<strong>08</strong> 649 100.00 100.00 100.00 100.00 97.34 98.50<br />

KWG Grohnde DWR 1430 1360 743 1 007 351 2 943 996 380 518 210 100.00 100.00 99.86 99.91 94.25 94.81<br />

KRB C Gundremmingen SWR 1344 1288 743 1 000 478 2 912 931 333 854 685 100.00 100.00 100.00 99.82 99.54 99.78<br />

KKI-2 Isar DWR 1485 1410 743 1 050 124 3 131 599 356 857 412 100.00 100.00 100.00 99.99 94.77 97.37<br />

GKN-II Neckarwestheim DWR 1400 1310 743 998 300 2 952 200 332 779 034 100.00 100.00 100.00 99.98 96.14 97.93<br />

KKP-2 Philippsburg DWR 1468 1402 743 1 064 885 3 119 674 369 280 829 100.00 100.00 100.00 99.98 96.22 96.96<br />

mini nuclear power plants which are<br />

smaller and less expensive to build<br />

than traditional nuclear plants.<br />

A statement said that a consortium<br />

led by Rolls-Royce has proposed a<br />

significant joint investment of more<br />

than £500m focused on designing a<br />

first-of-a-kind small modular reactor.<br />

“The consortium expects to more<br />

than match any government funding<br />

both by direct investment and by<br />

raising funds from third-party organisations,”<br />

the statement said.<br />

Rolls-Royce welcomed the announcement,<br />

saying funding from the<br />

government will be matched in part<br />

by contributions from the consortium<br />

and by attracting third party investment.<br />

“The investment is needed to<br />

mature the design, address the considerable<br />

manufacturing technology<br />

requirements and to progress the<br />

regulatory licensing process,” the<br />

company said.<br />

The consortium comprises Rolls-<br />

Royce, Assystem, SNC Lavalin/Atkins,<br />

Wood, Arup, Laing O’Rourke, BAM<br />

Nuttall, Siemens, National <strong>Nuclear</strong><br />

Laboratory and <strong>Nuclear</strong> AMRC.<br />

The government said a working<br />

model of a new plant is expected to be<br />

up and running in the early 2030s,<br />

creating 40,000 jobs at its peak, with<br />

each power station producing enough<br />

clean energy to power 750,000 homes.<br />

Additionally, the government is<br />

providing up to £40m through its<br />

advanced modular reactor (AMR)<br />

programme and is currently considering<br />

project bids.<br />

Up to £ 5 m will also be provided to<br />

the Office <strong>for</strong> <strong>Nuclear</strong> Regulation and<br />

the Environment Agency to prepare<br />

<strong>for</strong> SMRs and AMRs.<br />

| | www.gov.uk<br />

Company News<br />

GNS, the eleventh company<br />

worldwide to hold ASME N3<br />

certification<br />

pp<br />

Certified <strong>for</strong> compliance with<br />

Class ISS requirements <strong>for</strong> cask<br />

internals <strong>for</strong> the first time ever<br />

(gns) GNS has earned the “Certificate<br />

of Authorisation N3” from the<br />

American Society of Mechanical<br />

Engineers (ASME) after successfully<br />

undergoing a rigorous survey. A<br />

team of about fifty GNS employees<br />

has been involved with the preparations<br />

<strong>for</strong> the audit in the<br />

eighteen months leading up to it.<br />

This certificate of authorization<br />

enables GNS, as one of only eleven<br />

companies worldwide, to design,<br />

test, fabricate, inspect and deliver<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Operating Results April 2019<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 720 657 951 2 641 443 264 296 651 100.00 100.00 99.24 99.26 99.33 99.73<br />

OL2 Olkiluoto 4) BWR FI 910 880 720 644 097 2 636 270 254 532 813 100.00 100.00 97.09 99.20 97.24 99.53<br />

KCB Borssele PWR NL 512 484 720 366 440 3 737 363 165 459 052 99.48 93.97 99.47 93.86 99.60 94.36<br />

KKB 1 Beznau 7) PWR CH 380 365 720 276 529 1 1<strong>08</strong> 614 128 442 724 100.00 100.00 100.00 100.00 101.10 101.39<br />

KKB 2 Beznau 7) PWR CH 380 365 720 275 164 1 102 482 135 452 889 100.00 100.00 100.00 100.00 100.59 100.79<br />

KKG Gösgen 7) PWR CH 1060 1010 720 764 609 3 010 604 316 886 132 100.00 98.54 99.99 98.11 100.19 98.65<br />

KKM Mühleberg BWR CH 390 373 720 276 750 1 107 860 128 512 175 100.00 100.00 99.62 99.65 98.56 98.67<br />

CNT-I Trillo PWR ES 1066 1003 720 762 920 3 053 440 250 345 109 100.00 100.00 100.00 99.98 98.98 99.03<br />

Dukovany B1 PWR CZ 500 473 720 351 817 1 4<strong>08</strong> 731 113 638 225 100.00 99.76 100.00 99.76 97.73 97.86<br />

Dukovany B2 PWR CZ 500 473 720 350 872 1 417 581 109 651 752 100.00 100.00 100.00 100.00 97.46 98.48<br />

Dukovany B3 PWR CZ 500 473 720 357 662 897 886 107 395 927 100.00 63.36 100.00 62.55 99.35 62.37<br />

Dukovany B4 PWR CZ 500 473 720 360 950 1 445 419 107 888 687 100.00 100.00 100.00 99.85 100.26 100.41<br />

Temelin B1 1) PWR CZ 1<strong>08</strong>0 1030 33 24 890 1 560 999 115 922 041 4.58 51.02 3.19 50.66 3.19 50.11<br />

Temelin B2 PWR CZ 1<strong>08</strong>0 1030 720 782 635 3 133 379 112 405 896 100.00 99.65 99.97 99.59 100.46 100.59<br />

Doel 1 PWR BE 454 433 720 342 894 553 904 135 998 366 100.00 41.85 99.96 40.86 102.13 41.77<br />

Doel 2 PWR BE 454 433 720 331 403 913 054 134 714 993 100.00 71.54 99.99 68.80 101.06 69.51<br />

Doel 3 PWR BE 1056 1006 720 771 275 2 946 542 258 079 027 100.00 95.48 99.87 95.23 100.83 96.30<br />

Doel 4 PWR BE 1<strong>08</strong>4 1033 720 778 522 3 066 865 263 440 275 100.00 100.00 98.59 96.86 98.39 96.86<br />

Tihange 1 PWR BE 1009 962 720 727 993 2 936 138 301 766 995 100.00 100.00 100.00 99.99 100.39 101.29<br />

Tihange 2 2) PWR BE 1055 10<strong>08</strong> 0 0 0 254 651 930 0 0 0 0 0 0<br />

Tihange 3 PWR BE 1<strong>08</strong>9 1038 720 780 147 3 066 810 274 294 <strong>08</strong>3 100.00 99.93 100.00 98.28 100.13 98.33<br />

439<br />

NEWS<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf 3) DWR 1480 1410 506 665 970 3 461 573 354 029 383 70.24 92.56 65.05 86.94 62.32 80.92<br />

KKE Emsland 4) DWR 1406 1335 720 1 000 458 3 990 138 350 809 107 100.00 100.00 100.00 100.00 98.86 98.59<br />

KWG Grohnde 1,2) DWR 1430 1360 482 667 491 3 611 488 381 185 701 66.93 91.73 66.38 91.53 64.45 87.22<br />

KRB C Gundremmingen 1,2,4) SWR 1344 1288 489 634 970 3 547 901 334 489 655 67.86 91.96 67.26 91.68 65.11 91.11<br />

KKI-2 Isar DWR 1485 1410 720 1 041 003 4 172 602 357 898 415 100.00 100.00 99.98 99.99 97.04 97.29<br />

GKN-II Neckarwestheim DWR 1400 1310 720 982 700 3 934 900 333 761 734 100.00 100.00 99.21 99.79 97.72 97.88<br />

KKP-2 Philippsburg DWR 1468 1402 720 1 019 935 4 139 609 370 300 764 100.00 100.00 100.00 99.98 95.04 96.48<br />

“Class TC” transport casks and “Class<br />

SC” storage casks using the certification<br />

mark. GNS is the first<br />

company ever to have earned<br />

certification <strong>for</strong> compliance with<br />

Class ISS (Internal Support Structures)<br />

requirements <strong>for</strong> internals<br />

(such as baskets and quivers) in<br />

accordance with the ASME Boiler<br />

and Pressure Vessel Code (BPVC).<br />

GNS having attained certification<br />

from ASME confirms that the quality<br />

management systems in place at GNS<br />

have helped effectively implement<br />

measures to meet the requirements<br />

set out in Section III (Construction of<br />

<strong>Nuclear</strong> Facility Components) pursuant<br />

to the ASME BPVC and the Quality<br />

Assurance Requirements <strong>for</strong> <strong>Nuclear</strong><br />

Facility Applications (NQA-1). There<br />

are many countries where quality<br />

assurance requirements are based on<br />

the NQA-1 quality management<br />

system and in several Asian countries,<br />

such as Taiwan, Korea and Japan, this<br />

quality assurance system has been<br />

fully incorporated.<br />

“While our German and numerous<br />

European customers have adopted a<br />

quality management system that<br />

complies with ISO 9001:2015, other<br />

international customers increasingly<br />

rely on rules and regulations that are<br />

based on US standards,” explains<br />

Dr. Jens Schröder, Managing Director<br />

and CTO at GNS. “As an ASME N3-type<br />

certificate holder we are now in a<br />

position to further explore other<br />

international markets where this type<br />

of certified compliance enables us to<br />

meet the product requirements of new<br />

customers.”.<br />

| | www.gns.de<br />

Science & Research<br />

Netherlands: Government<br />

announces progress on Pallas<br />

Reactor<br />

(nucnet) The Dutch government has<br />

given greenlight to the further development<br />

of the new Pallas research reactor,<br />

according to a statement by the<br />

ministry of health, welfare and sport.<br />

The statement said that “several<br />

private investors” have expressed<br />

their interest in the project and negotiations<br />

are expected to start in the<br />

“<strong>for</strong>thcoming period”.<br />

The ministry said a final agreement<br />

on the project’s financing must be<br />

reached in 2020 so construction can<br />

begin in 2021, subject to the relevant<br />

licencing process.<br />

Health minister Bruno Bruins said<br />

a “lot of work” remains to be done, but<br />

the Pallas reactor is of “utmost<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Operating Results May 2019<br />

440<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto 4) BWR FI 910 880 744 670 370 3 311 813 264 967 021 100.00 100.00 98.11 99.02 97.94 99.36<br />

OL2 Olkiluoto 1) BWR FI 910 880 147 120 347 2 756 617 254 653 160 19.72 83.51 18.25 82.57 17.58 82.70<br />

KCB Borssele 1,4) PWR NL 512 484 690 348 237 4 <strong>08</strong>5 600 165 807 289 91.97 93.56 91.66 93.41 66.56 88.65<br />

KKB 1 Beznau 1,2,7) PWR CH 380 365 59 21 938 1 130 552 128 464 662 7.93 81.09 7.71 81.05 7.22 82.05<br />

KKB 2 Beznau 6,7) PWR CH 380 365 744 284 184 1 386 666 135 737 073 100.00 100.00 100.00 100.00 100.53 100.74<br />

KKG Gösgen 7) PWR CH 1060 1010 744 779 685 3 790 289 317 665 817 100.00 98.84 100.00 98.50 98.87 98.70<br />

KKM Mühleberg 1,2) BWR CH 390 373 744 286 450 1 394 310 128 798 625 100.00 100.00 99.93 99.71 98.72 98.68<br />

CNT-I Trillo 1) PWR ES 1066 1003 224 230 759 3 284 199 250 575 868 30.16 85.66 29.79 85.56 28.85 84.62<br />

Dukovany B1 PWR CZ 500 473 744 364 735 1 773 466 114 002 959 100.00 99.81 99.80 99.77 98.05 97.90<br />

Dukovany B2 PWR CZ 500 473 401 187 029 1 604 609 109 838 780 53.90 90.53 53.50 90.45 50.28 88.58<br />

Dukovany B3 PWR CZ 500 473 744 367 103 1 264 989 107 763 030 100.00 70.88 100.00 70.24 98.68 69.83<br />

Dukovany B4 PWR CZ 500 473 744 371 589 1 817 0<strong>08</strong> 1<strong>08</strong> 260 276 100.00 100.00 100.00 99.88 99.89 100.30<br />

Temelin B1 PWR CZ 1<strong>08</strong>0 1030 744 803 031 2 364 030 116 725 072 100.00 61.<strong>08</strong> 99.38 60.67 99.75 60.31<br />

Temelin B2 PWR CZ 1<strong>08</strong>0 1030 744 8<strong>08</strong> 736 3 942 115 113 214 632 100.00 99.72 100.00 99.67 100.46 100.56<br />

Doel 1 PWR BE 454 433 744 352 683 906 587 136 351 049 100.00 53.79 99.98 53.13 101.61 54.19<br />

Doel 2 PWR BE 454 433 744 341 283 1 254 337 135 056 276 100.00 77.38 99.99 75.20 100.66 75.90<br />

Doel 3 PWR BE 1056 1006 744 800 465 3 747 0<strong>08</strong> 258 879 492 100.00 96.41 100.00 96.21 101.30 97.33<br />

Doel 4 PWR BE 1<strong>08</strong>4 1033 744 806 592 3 873 457 264 246 867 100.00 100.00 98.71 97.24 98.71 97.24<br />

Tihange 1 PWR BE 1009 962 744 749 278 3 685 416 302 516 274 100.00 100.00 99.97 99.99 99.98 101.02<br />

Tihange 2 2) PWR BE 1055 10<strong>08</strong> 0 0 0 254 651 930 0 0 0 0 0 0<br />

Tihange 3 PWR BE 1<strong>08</strong>9 1038 744 801 898 3 868 7<strong>08</strong> 275 095 981 100.00 99.94 99.96 98.62 99.57 98.59<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 744 1 020 515 4 482 <strong>08</strong>8 355 049 898 100.00 94.09 94.30 88.46 92.49 83.29<br />

KKE Emsland 1,2,4) DWR 1406 1335 404 526 668 4 516 806 351 335 775 54.28 90.61 54.02 90.56 50.25 88.66<br />

KWG Grohnde 1,2) DWR 1430 1360 111 145 058 3 756 545 381 330 759 14.92 75.96 13.90 75.58 13.52 72.<strong>08</strong><br />

KRB C Gundremmingen 1,2,3) SWR 1344 1288 25 17 025 3 564 925 334 506 680 3.37 73.77 1.70 73.20 1.67 72.74<br />

KKI-2 Isar DWR 1485 1410 744 1 <strong>08</strong>0 245 5 252 847 358 978 660 100.00 100.00 100.00 99.99 97.45 97.32<br />

GKN-II Neckarwestheim DWR 1400 1310 744 1 037 700 4 972 600 334 799 434 100.00 100.00 100.00 99.83 99.99 98.31<br />

KKP-2 Philippsburg DWR 1468 1402 744 1 057 604 5 197 213 371 358 368 100.00 100.00 100.00 99.99 95.56 96.29<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data <strong>for</strong> the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

importance” <strong>for</strong> the future of “numerous<br />

medical treatments”.<br />

“Moreover, we keep the expertise<br />

in the field of medical isotopes in the<br />

Netherlands, and this is good <strong>for</strong><br />

employment”, he said.<br />

In January 2018, an Argentinian-<br />

Dutch consortium called INVAP-TBI<br />

was chosen to design and construct the<br />

Pallas research reactor.<br />

Pallas will replace the existing<br />

High Flux Reactor (HFR) in Petten,<br />

50 km north of Amsterdam in the<br />

Netherlands. The HFR is almost 60<br />

years old.<br />

In 2012, to guarantee the longterm<br />

reliable supply of isotopes, the<br />

Dutch government decided to replace<br />

the HFR.<br />

The Pallas organisation was<br />

founded in December 2013 to design<br />

and construct the reactor. Its remit<br />

also included developing a business<br />

case and arranging private financing<br />

<strong>for</strong> the construction and commissioning<br />

phase of the new unit.<br />

The financing of Pallas is being<br />

handled in two phases: a publicly<br />

funded phase followed by a privately<br />

funded phase. For the publicly funded<br />

phase, the Department of Economic<br />

Affairs and Climate and the province<br />

of North Holland have already<br />

pro vided a loan of € 80 m.<br />

The second phase, the construction<br />

and commissioning of the reactor,<br />

will be financed privately, which is<br />

when the business case is needed.<br />

From 2025 onwards, Pallas will<br />

play a crucial role in the supply chain<br />

<strong>for</strong> radiopharmaceutical products<br />

worldwide and in nuclear technology<br />

research. Isotopes produced at the<br />

reactor will be used to treat millions<br />

of people with cancer and cardiovascular<br />

diseases.<br />

In European hospitals, 70 % of<br />

isotopes used <strong>for</strong> diagnostic procedures<br />

and treatment originate from<br />

the HFR. Globally, this percentage is<br />

approximately 30 % and in the<br />

Netherlands it is as high as 80 %.<br />

| | www.government.nl<br />

Market data<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

) 1<br />

Uranium prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

120.00<br />

100.00<br />

441<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

1980<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

1985<br />

1990<br />

1995<br />

2000<br />

2005<br />

2010<br />

2015<br />

2019<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019 * Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

| | Uranium spot market prices from 1980 to 2019 and from 20<strong>08</strong> to 2019. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

180.00<br />

20.00<br />

) 1 ) 1<br />

160.00<br />

NEWS<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Jan. 20<strong>08</strong><br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

) 1 Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

18.00<br />

Jan. 20<strong>08</strong><br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Jan. 20<strong>08</strong><br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

| | Separative work and conversion market price ranges from 20<strong>08</strong> to 2019. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

2015<br />

pp<br />

Uranium: 35.00–39.75<br />

pp<br />

Conversion: 6.25–9.50<br />

pp<br />

Separative work: 58.00–92.00<br />

2016<br />

pp<br />

Uranium: 18.75–35.25<br />

pp<br />

Conversion: 5.50–6.75<br />

pp<br />

Separative work: 47.00–62.00<br />

2017<br />

pp<br />

Uranium: 19.25–26.50<br />

pp<br />

Conversion: 4.50–6.75<br />

pp<br />

Separative work: 39.00–50.00<br />

2018<br />

January to June 2018<br />

pp<br />

Uranium: 21.75–24.00<br />

pp<br />

Conversion: 6.00–9.50<br />

pp<br />

Separative work: 35.00–42.00<br />

February 2018<br />

pp<br />

Uranium: 21.25–22.50<br />

pp<br />

Conversion: 6.25–7.25<br />

pp<br />

Separative work: 37.00–40.00<br />

March 2018<br />

pp<br />

Uranium: 20.50–22.25<br />

pp<br />

Conversion: 6.50–7.50<br />

pp<br />

Separative work: 36.00–39.00<br />

April 2018<br />

pp<br />

Uranium: 20.00–21.75<br />

pp<br />

Conversion: 7.50–8.50<br />

pp<br />

Separative work: 36.00–39.00<br />

May 2018<br />

pp<br />

Uranium: 21.75–22.80<br />

pp<br />

Conversion: 8.00–8.75<br />

pp<br />

Separative work: 36.00–39.00<br />

June 2018<br />

pp<br />

Uranium: 22.50–23.75<br />

pp<br />

Conversion: 8.50–9.50<br />

pp<br />

Separative work: 35.00–38.00<br />

July 2018<br />

pp<br />

Uranium: 23.00–25.90<br />

pp<br />

Conversion: 9.00–10.50<br />

pp<br />

Separative work: 34.00–38.00<br />

August 2018<br />

pp<br />

Uranium: 25.50–26.50<br />

pp<br />

Conversion: 11.00–14.00<br />

pp<br />

Separative work: 34.00–38.00<br />

September 2018<br />

pp<br />

Uranium: 26.50–27.50<br />

pp<br />

Conversion: 12.00–13.00<br />

pp<br />

Separative work: 38.00–40.00<br />

October 2018<br />

pp<br />

Uranium: 27.30–29.00<br />

pp<br />

Conversion: 12.00–15.00<br />

pp<br />

Separative work: 37.00–40.00<br />

November 2018<br />

pp<br />

Uranium: 28.00–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 39.00–40.00<br />

December 2018<br />

pp<br />

Uranium: 28.50–29.20<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 40.00–41.00<br />

2019<br />

January 2019<br />

pp<br />

Uranium: 28.70–29.10<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 41.00–44.00<br />

February 2019<br />

pp<br />

Uranium: 27.50–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 42.00–45.00<br />

March 2019<br />

pp<br />

Uranium: 24.85–28.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 43.00–46.00<br />

April 2019<br />

pp<br />

Uranium: 25.50–25.88<br />

pp<br />

Conversion: 15.00–17.00<br />

pp<br />

Separative work: 44.00–46.00<br />

May 2019<br />

pp<br />

Uranium: 23.90–25.25<br />

pp<br />

Conversion: 17.00–18.00<br />

pp<br />

Separative work: 46.00–48.00<br />

June 2019<br />

pp<br />

Uranium: 24.30–25.00<br />

pp<br />

Conversion: 17.00–18.00<br />

pp<br />

Separative work: 47.00–49.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

<strong>for</strong> Hard Coal<br />

Cross-border price <strong>for</strong> hard coal in<br />

[€/t TCE] and orders in [t TCE] <strong>for</strong><br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

2017: 91.28, 25,739,010<br />

2018<br />

I. quarter: 89.88; 5,838,003<br />

II. quarter: 88.25; 4,341,359<br />

III. quarter: 100.79; 5,135,198<br />

IV. quarter: 100.91; 6,814,244<br />

Year: 95.49; 22,128,804<br />

| | Source: BAFA, some data provisional<br />

www.bafa.de<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 8/9 ı August/September<br />

442<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

journalist who has<br />

covered the nuclear<br />

industry <strong>for</strong> the past<br />

20 years and is<br />

currently editor-in-chief<br />

of UK-based Energy<br />

Storage Publishing.<br />

Sources:<br />

Memorandum on the<br />

Effect of Uranium<br />

Imports on the<br />

National Security and<br />

Establishment of the<br />

United States <strong>Nuclear</strong><br />

Fuel Working Group<br />

https://www.<br />

whitehouse.gov/<br />

presidential-actions/<br />

memorandum-effecturanium-importsnational-securityestablishment-unitedstates-nuclear-fuelworking-group/<br />

James Lovelock’s<br />

articles<br />

https://bit.ly/318tQqd<br />

https://bit.ly/2OplCIH<br />

CNNC’s proposal<br />

nuclear<br />

https://bit.ly/2Gq0Im8<br />

A Century of Wisdom Underlines<br />

<strong>Nuclear</strong>’s Green Credentials<br />

John Shepherd<br />

Probably one of the oldest proponents of nuclear energy celebrated his centenary this summer and his support<br />

continues to be an energising <strong>for</strong>ce to be reckoned with. James Lovelock is probably best known as the creator of the<br />

Gaia hypothesis – which argues that Earth acts like a self-regulating system. He’s also a self-confessed, lifelong ‘green’,<br />

who upset the status quo more than a decade ago when he said those environmentalists who opposed nuclear were<br />

wrong to do so.<br />

In interviews to mark his 100 th birthday in July, Lovelock’s<br />

spirited defence of nuclear was as powerful as ever and he<br />

is, to put it simply, still correct.<br />

To be green and nuclear was always seen as a misnomer<br />

until, in 2004, Lovelock penned an article <strong>for</strong> The<br />

Independent newspaper in the UK that had international<br />

significance.<br />

“By all means, let us use the small input from renewables<br />

sensibly, but only one immediately available source<br />

does not cause global warming and that is nuclear energy,”<br />

Lovelock said.<br />

“Opposition to nuclear energy is based on irrational<br />

fear fed by Hollywood-style fiction, the green lobbies and<br />

the media,” he added. “These fears are unjustified, and<br />

nuclear energy from its start in 1952 has proved to be the<br />

safest of all energy sources. We must stop fretting over the<br />

minute statistical risks of cancer from chemicals or<br />

radiation. Nearly one third of us will die of cancer anyway,<br />

mainly because we breathe air laden with that all- pervasive<br />

carcinogen, oxygen.”<br />

In a separate article published in 2005, Lovelock<br />

warned: “To phase out nuclear energy just when we need it<br />

most to combat global warming is madness.”<br />

Lovelock’s message is as timely today as it has ever<br />

been, and perhaps his centenary year could be used to<br />

generate a revival of interest and confidence in nuclear.<br />

Goodness knows we need it and, indeed, maybe the green<br />

shoots of a new offensive in favour of nuclear energy are<br />

sprouting.<br />

In Australia, the newly appointed chair of the Minerals<br />

Council, Helen Coonan, is the latest industry figure to call<br />

<strong>for</strong> nuclear power to be considered as part of that country’s<br />

future energy mix.<br />

Coonan, a <strong>for</strong>mer federal government minister, said the<br />

nuclear option should be on the table, along with renewables<br />

as countries explore energy options beyond the use<br />

of fossil fuels. She told Australian broadcaster ABC that<br />

Australians were ready <strong>for</strong> a “sensible conversation” about<br />

nuclear power generation, which is currently outlawed in<br />

Australia.<br />

Coonan suggested Australia could consider the introduction<br />

of modular nuclear power plants.<br />

He comments came after the <strong>for</strong>mer leader of the<br />

country’s National Party, Barnaby Joyce, suggested<br />

residents living near a nuclear plant could be offered free<br />

nuclear power.<br />

Security of supply continues to be as important an issue<br />

to companies operating nuclear power plants as those<br />

relying on the raw materials batteries need to power the<br />

electric cars and buses of the future. However, there’s<br />

welcome news on that front too.<br />

In the US, the Trump administration has announced its<br />

decision that imports of uranium do not threaten national<br />

security. There had been fears that quotas could be slapped<br />

on uranium imports. Instead, the announcement, made<br />

during the summer, removes uncertainty affecting the<br />

global uranium market and clears the way <strong>for</strong> buyers and<br />

sellers to discuss long-term supply and demand arrangements.<br />

The US <strong>Nuclear</strong> Energy Institute (NEI) also welcomed<br />

the administration’s backing to <strong>for</strong>m a <strong>Nuclear</strong> Fuel<br />

Working Group, recommended by the NEI, “to support the<br />

front end of the domestic fuel cycle… and address the very<br />

real challenges faced by the US uranium miners and other<br />

fuel cycle suppliers”.<br />

Progress <strong>for</strong> innovative nuclear in Canada too, where<br />

regulators have launched an environmental assessment of<br />

a proposal to build the country’s first small modular<br />

reactor. Global First <strong>Power</strong>, with support from nucleartechnology-innovator<br />

Ultra Safe <strong>Nuclear</strong> Corporation and<br />

Ontario <strong>Power</strong> Generation, are seeking to build and operate<br />

a 15-megawatt thermal (about 5 MW electrical) ‘Micro<br />

Modular Reactor’ plant at the Chalk River Laboratories.<br />

Meanwhile, the China National <strong>Nuclear</strong> Corporation<br />

(CNNC) has signed an agreement with the Emirates <strong>Nuclear</strong><br />

Energy Corporation aimed at cooperating with companies<br />

in the United Arab Emirates in nuclear technology.<br />

China has deep pockets when it comes to investing<br />

overseas and its strategy of supporting projects of strategic<br />

interest, particularly related to nuclear, appears to have<br />

stepped up a gear. In fact, the CNNC is now touting its<br />

“complete nuclear industrial chain” of which it is “willing<br />

to share its expertise with countries that want to develop<br />

nuclear energy”.<br />

Even in the UK, where there has been worse than<br />

lacklustre government support of late <strong>for</strong> nuclear, there is<br />

now a glimmer of a revivalist streak running through the<br />

new administration <strong>for</strong>med by Boris Johnson.<br />

Asked about nuclear energy after delivering his first<br />

speech to the House of Commons as prime minister,<br />

Johnson told legislators: “It is time <strong>for</strong> a nuclear renaissance<br />

and I believe passionately that nuclear must be part of our<br />

energy mix.” He said his government recognised that<br />

nuclear energy would also help the UK meet its carbon<br />

emission reduction targets.<br />

Johnson has hit the nail on the head. Whatever the<br />

naysayers may have us think, Mother Earth would be in a<br />

sorrier state than she is today without nuclear energy.<br />

We would all do well to reflect on James Lovelock’s<br />

century of wisdom.<br />

Author<br />

John Shepherd<br />

<strong>Nuclear</strong> Today<br />

A Century of Wisdom Underlines <strong>Nuclear</strong>’s Green Credentials ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Öffentliche Anhörungen<br />

erfolgreich meistern<br />

Workshop: Public Hearing<br />

Sich oder das eigene Unternehmen in der Öffentlichkeit im richtigen Licht zu präsentieren ist<br />

nicht immer einfach und sollte gut vorbereitet sein. Noch schwieriger wird der Auftritt bei einer<br />

öffentlichen Anhörung – insbesondere im Bereich der Kerntechnik. Es gilt auf Betroffenheit und<br />

Sorgen von Bürgern einzugehen und behördliche oder politische Entscheidungsträger mit den<br />

eigenen Sachargumenten zu überzeugen.<br />

Eine professionelle Vorbereitung mit einem realistischen Training kann hierbei einen wertvollen<br />

Beitrag leisten.<br />

Seminarinhalte<br />

ı<br />

ı<br />

ı<br />

ı<br />

ı<br />

Theoretische Einführung Anhörungen und Statements<br />

Formulierungen und Wordings<br />

Praktische Kommunikationsübungen<br />

Nonverbale Kommunikation<br />

Umgang mit verschiedenen Stakeholdern<br />

Alle Teilnehmerinnen und Teilnehmer erhalten ein individuelles Feedback des Trainers zu den<br />

praktischen Übungen.<br />

Zielgruppe<br />

Das Seminar richtet sich an alle Fach- und Führungskräfte in Organisationen der kerntechnischen<br />

Branche in Deutschland, die in „Public Hearings“ ihr Unternehmen oder Institut repräsentieren<br />

oder für das Briefing der auftretenden Sachverständigen verantwortlich sind.<br />

Die maximale Teilnehmerzahl zu diesem Seminar beträgt 8 Personen.<br />

Referent<br />

Dr. Nikolai A. Behr<br />

Wir freuen uns auf Ihre Teilnahme!<br />

| Deutsches Institut für Kommunikations- und MedienTraining (DIKT)<br />

Termin<br />

2 Tage<br />

5. und 6. November 2019<br />

Tag 1: 10:30 bis 18:00 Uhr<br />

Tag 2: 09:00 bis 16:00 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de<br />

Bei Fragen zur Anmeldung<br />

rufen Sie uns bitte an oder<br />

senden uns eine E-Mail.


Competence <strong>for</strong><br />

<strong>Nuclear</strong> Services<br />

Waste Management<br />

Spent Fuel Management<br />

<strong>Nuclear</strong> Casks<br />

Calculation Services and Consulting<br />

Waste Processing Systems and Engineering<br />

GNS Gesellschaft für Nuklear-Service mbH<br />

Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!