Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.
www.nucmag.com
nucmag.com
2020
3
ISSN · 1431-5254
24.– €
The Future of Nuclear:
The Role of Nuclear in
the Upcoming Global
Energy Transition
The Dual Fluid Reactor –
An Innovative Fast Nuclear-
Reactor Concept with High
Efficiency and Total Burnup
Nuclear Power World Report
2018
Preliminary Programme Inside!
Competence for
Nuclear Services
Operational Waste and D&D
Spent Fuel Management
Nuclear Casks
Calculation Services and Consulting
Waste Processing Systems and Engineering
GNS Gesellschaft für Nuklear-Service mbH
Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de
atw Vol. 65 (2020) | Issue 3 ı March
Silver Jubilee, but not even a Second Place at the End:
The UN Climate Change Conference 2019
123
Dear reader, having been ousted from the front headlines of the media in the meantime and hardly noticed by them,
the 25 th UN Climate Change Conference, officially “25 th Conference of the Parties to the Framework Convention on
Climate Change and 15 th Conference of the Parties to the Kyoto Protocol (COP – Conference of the Parties)” as well as
the “4 th Meeting of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement” took place
in the first weeks of December 2019. The COP is the annual conference as the highest body of the United Nations
Framework Convention on Climate Change (UNFCCC). In this international agreement, states have committed
themselves to reducing their emissions of greenhouse gases.
EDITORIAL
This multinational meeting did not augur well for 2019 in
organisational terms: Brazil withdrew its offer to host the
conference because of “financial constraints and a change
of government”. As a result, the President of Chile and his
Minister for the Environment invited to the country's
capital, Santiago de Chile, in December 2019 or January
2020. Due to the political situation in the country, with
protests by citizens against, among other things, economic
and social policies, Chile also had to withdraw its invitation.
As a third option, Spain stepped in with Madrid as
host, with the political leadership remaining with the
Chilean government.
According to official figures, believe it or not, between
25,000 and 26,000 direct participants in the conferences
found their way to Madrid under the motto “Tiempo De
Actura/Time for Action”.
The central theme and goal was the completion of the
supplementary set of rules to the “Paris Convention”. But
what had been ambitiously heralded, at least in terms of its
title, ended up with commentators using terms ranging
from “minimum consensus” to “inconclusive”. The reasons
for this are certainly complex. For one thing, the
increasingly negative attitude towards emission bans, by
countries with high emissions is contributing to this. On
the other hand, there is also the fact that the conference is
becoming more and more like a showcase for individual
political interests or NGO representatives, and that the
focus is less and less on visible issues and more on bans.
Moreover, there seems to be an increasing lack of visions
for the implementation of emission reductions.
The second commitment period of the Kyoto Protocol
ended in the shadow of the conference, as the minimum
number of ratifications had not been reached by the end of
November 2019.
Let us recall that the 1992 Kyoto Protocol had the
objective of reducing emissions of the six gases classified as
particularly climate-affecting – mainly carbon dioxide,
methane and nitrogen oxides – by approximately 5 percent
worldwide in the period 2008–2012, based on the base
year 1990. In terms of carbon dioxide emissions, with
emissions of around 21 billion tonnes in 1990, this meant a
reduction of around 1 billion tonnes of annual emissions.
The indivi dual signatory states have committed themselves
to different emission levels. For example, the EU-15
at the time pro mised to make a contribution of minus
8 percent. In 2012, at the end of the Kyoto period, CO 2
emissions worldwide then stood at around 32 billion
tonnes, which corresponds to an increase of 51 % and not
the targeted 5 % reduction.
If a political goal is not achieved, a new one is agreed. In
view of the “Kyoto I failure”, the struggle for new targets,
then lasted five years, from the UN climate conference in
Bali in 2007 to the one in Doha, Qatar in 2012. It ended
with a so-called second commitment period (“Kyoto II”).
However, while “Kyoto I” still contained figures on
reduction targets, “Kyoto II” is becoming more and more
lost in emissions trading. But ultimately “Kyoto II” is only
historical and without any effect.
All in all, from Kyoto to Santiago de Chile/Madrid, after
25 years of political discussions about emission reductions,
little can be identified that would allow a ranking at all.
Irrespective of the question of whether and to what
extent mankind's influence on the climate is significant,
any use of sustainable forms of energy makes sense.
At this point the question arises whether nuclear energy
is at all capable of significantly contributing to reductions?
After all, nuclear energy is currently increasingly coming into
focus as a building block for future energy supply. In view
of the enormous challenges not only to reduce emissions in
all sectors, but also to supply a growing world population
with sufficient energy, the question arises as to what potential
exists.
So let the facts speak for themselves: In recent years,
nuclear energy has accounted for around 11 percent of the
world's electricity supply. Approximately 2,500 billion
kilowatt hours are generated annually. Nuclear power
plant operation itself is largely free of climate-impacting
emissions. Well-founded, comprehensible studies show
total emissions of 6 to 30 grams of carbon dioxide per
kilowatt hour of electricity generated, taking into account
all process steps for the construction, operation and
decommissioning of nuclear power plants. This means that
hydropower, wind and nuclear energy are virtually on a
par. The annual CO 2 emissions avoided by nuclear power
are around 2.5 billion tonnes and thus higher – more than
twice as high – than the Kyoto I target, but never reached.
These concrete figures shall make it clear that nuclear
technology can be used to achieve a wide range of
structured goals such as reducing emissions and a reliable
energy supply.
All in all, low-emission technologies for, all energy
sources, must be equally important and not via ideologically
influenced “single- track” paths, which for
example, deliberately exclude nuclear energy, as is
unfortunately happening in some places at European level
in particular.
If the global community is serious about truely
implementing the ambitious climate protection targets,
the use of nuclear energy will certainly be unavoidable.
Christopher Weßelmann
– Editor in Chief –
Editorial
Silver Jubilee, but not even a Second Place at the End: The UN Climate Change Conference 2019
atw Vol. 65 (2020) | Issue 3 ı March
EDITORIAL 124
Silbernes Jubiläum, aber im Ergebnis noch nicht einmal
ein zweiter Platz: Die UN-Klimakonferenz 2019
Liebe Leserin, lieber Leser, zwischenzeitlich aus den vorderen Schlagzeilen der Medien verdrängt und kaum
noch von diesen vermerkt, fanden in den ersten Dezemberwochen 2019 die 25. UN-Klimakonferenz, offiziell
„25. Vertragsstaatenkonferenz der Klimarahmenkonvention und 15. Vertragsstaatenkonferenz des Kyoto-Protokolls
(COP – Conference of the Parties)“ sowie das „4. Treffen der Conference of the Parties serving as the meeting of the
Parties to the Paris Agreement” statt. Die COP ist die jährliche Konferenz als höchstes Gremium der Klimarahmenkonvention
UNFCCC (United Nations Framework Convention on Climate Change). In diesem internationalen
Übereinkommen haben sich Staaten zur Reduktion ihres Ausstoßes an Treibhausgasen verpflichtet.
Dieses multinationale Treffen stand schon organisatorisch
für 2019 unter keinem guten Vorzeichen: Brasilien zog
sein Angebot der Ausrichtung wegen „finanzieller Engpässe
und des Regierungswechsels“ zurück. Daraufhin
luden der Präsident von Chile und seine Umweltministerin
für Dezember 2019 oder Januar 2020 in die Hauptstadt
des Landes, Santiago de Chile, ein. Aufgrund der politischen
Lage im Land, mit Protesten von Bürgern u. a. gegen
die Wirtschafts- und Sozialpolitik, musste auch Chile seine
Einladung zurückziehen. Als dritte Option sprang Spanien
mit Madrid als Ausrichter ein, wobei die politische Leitung
bei der chilenischen Regierung verblieb.
Unter dem Leitmotto „Tiempo De Actura/Time for
Action“ – Es ist Zeit zu handeln, fanden nach offiziellen
Angaben zwischen sage und schreibe 25.000 und 26.000
direkte Teil nehmende an den Konferenzen den Weg nach
Madrid.
Zentrales Thema und Ziel war die Fertigstellung des
ergänzenden Regelwerks zum „Übereinkommen von
Paris“. Doch was zumindest vom Titel her ambitioniert
eingeläutet worden war, endete bei Kommentatoren unter
Begriffen wie „Minimalkonsens“ bis hin zu „ergebnislos“.
Die Gründe hierfür sind sicherlich vielschichtig. Zum einen
trägt die zunehmend ablehnende Haltung zu Emissionsverboten
von Ländern mit hohen Emissionen dazu bei.
Aber auch ein immer mehr zum Schaulaufen politischer
Einzelinteressen oder NGO-Vertreter abdriftender Konferenzablauf
und ein immer weniger auf sichtbare Sachthemen,
denn mehr auf Verbote fixiertes Regelwerk tun
ihr übriges. An Visionen zur Umsetzung von Emissionsminderungen
scheint es zudem mehr und mehr zu fehlen.
Ganz im Schatten der Konferenz endete dann auch
noch die zweite Verpflichtungsperiode des Kyoto-
Protokolls, da bis Ende November 2019 die Mindestzahl an
Ratifikationen noch nicht erreicht worden war.
Dabei war man einmal so ambitioniert gestartet:
Erinnern wir uns: Das Kyoto-Protokoll von 1992 hatte die
Zielsetzung, die Emissionen der sechs als besonders
klimawirksam eingestuften Gase – im Wesentlichen
Kohlendioxid, Methan und Stickoxide – in der Periode
2008–2012 bezogen auf das Basisjahr 1990 weltweit um
ca. 5 Prozent zu vermindern. Für die Kohlendioxidemissionen
bedeutete dies bei Emissionen von rund
21 Mrd. T onnen in 1990 eine Reduzierung um ca. 1 Milliarde
Tonnen der jährlichen Emissionen. Die einzelnen Unterzeichnerstaaten
verpflichten sich dabei auf unterschiedliche
Emissionsmengen. So sagte die damalige EU-15 zu,
einen Beitrag von minus 8 Prozent zu leisten. Im Jahr 2012,
am Ende der Kyoto-Periode, lagen die CO 2 -Emissionen dann
bei rund 32 Mrd. Tonnen weltweit, was einem Plus von 51 %
entspricht und nicht dem angestrebten Minus von 5 %.
Erreicht man ein politisches Ziel nicht, vereinbart man
ein neues. Das Ringen um neue Ziele währte angesichts der
„Kyoto-I Verfehlung“ dann fünf Jahre, von der UN-
Klimakonferenz auf Bali 2007 bis zu der in Doha, Katar
2012. Es endete mit einer sogenannten zweiten Verpflichtungsperiode
(„Kyoto II“). Doch während aus „ Kyoto I“
noch Zahlen zu Minderungszielen zu lesen waren, verliert
sich „Kyoto II“ mehr und mehr in einem Emissions-
Ablasshandel. Aber letztendlich ist „Kyoto II“ nur noch
historisch und ohne jegliche Wirkung.
In Summe, von Kyoto bis Santiago de Chile/Madrid ist
nach 25 Jahren politischer Diskussionen über Emissionsminderungen
also wenig zu identifizieren, was überhaupt
ein Ranking erlaubt.
Unabhängig von der Frage des Ob und des Umfangs des
Einflusses des Menschen auf das Klima, ist jegliche Nutzung
nachhaltiger Energieformen an sich schon sinnvoll.
Es stellt sich an diesem Punkt die Frage, ob die Kernenergie
überhaupt in der Lage ist, einen maßgeblichen
Beitrag zu Reduktionen zu leisten? Denn die Kernenergie
wird aktuell immer stärker als ein Baustein für die zukünftige
Energieversorgung in den Fokus gerückt. Angesichts
der gewaltigen Herausforderungen, nicht nur Emissionen in
allen Sektoren zu mindern, sondern auch eine weiter
wachsende Welt bevölkerung mit ausreichend Energie zu
versorgen, stellt sich die Frage, welche diesbezüglichen
Potenziale vorhanden sind.
Lasst also die Fakten sprechen: Kernenergie hat in den
letzten Jahren einen Anteil an der weltweiten Stromversorgung
von rund 11 Prozent. Jährlich werden
ca. 2.500 Mrd. Kilowattstunden erzeugt. Dabei ist der
Kernkraftwerksbetrieb selbst weitgehend frei von klimawirksamen
Emissionen. Fundierte, nachvollziehbare
Studien weisen unter Einbeziehung aller Prozessschritte
für den Bau, Betrieb und Rückbau von Kernkraftwerken zu
Gesamtemissionen von 6 bis 30 Gramm Kohlendioxid pro
erzeugter Kilowattstunde Strom aus. Damit liegen Wasserkraft,
Wind und Kernenergie quasi gleichauf. Die jährlichen
durch Kernenergie vermiedenen CO 2 -Emissionen
liegen bei rund 2,5 Mrd. t und damit höher – mehr als
doppelt so hoch – als gemäß dem Kyoto-I-Ziel zu erreichen
war, aber nie erreicht wurde.
Diese konkreten Zahlen sollen verdeutlichen, dass sich
mit Kerntechnik vielfältig strukturierte Ziele wie Emissionsminderung
und eine verlässliche Energie versorgung
realisieren lassen.
Insgesamt müssen emissionsarme Technologien für
alle Energieträger, zum Tragen kommen und dürfen nicht
via ideologisch geprägter „einspurige“ Pfade, die z. B. die
Kernenergie bewusst ausschließen wollen, wie es sich
leider gerade auch auf europäischer Ebene mancherorts
abzeichnet.
Sollte es die Weltgemeinschaft ernst meinen mit der
tatsächlichen Umsetzung ihrer ambitionierten Klimaschutzziele,
wird sie an der Nutzung der Kernenergie nicht
vorbei kommen.
Christopher Weßelmann
– Chefredakteur –
Editorial
Silver Jubilee, but not even a Second Place at the End: The UN Climate Change Conference 2019
Kommunikation und
Training für Kerntechnik
Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?
Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort
3 Atom-, Vertrags- und Exportrecht
Atomrecht – Das Recht der radioaktiven Reststoffe und Abfälle RA Dr. Christian Raetzke 10.03.2020
20.10.2020
Berlin
Export kerntechnischer Produkte und Dienstleistungen –
Chanchen und Regularien
Atomrecht – Ihr Weg durch Genehmigungs- und
Aufsichtsverfahren
RA Kay Höft M.A. (BWL) 17.06.2020 Berlin
RA Dr. Christian Raetzke 25.06.2020 Berlin
Atomrecht – Was Sie wissen müssen
3 Kommunikation und Politik
RA Dr. Christian Raetzke
Akos Frank LL. M.
11.11.2020 Berlin
Public Hearing Workshop –
Öffentliche Anhörungen erfolgreich meistern
Dr. Nikolai A. Behr 10.11. - 11.11.2020 Berlin
3 Rückbau und Strahlenschutz
In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:
3 Nuclear English
Das Strahlenschutzrecht und
seine praktische Umsetzung
Stilllegung und Rückbau in Recht und Praxis
Dr. Maria Poetsch
RA Dr. Christian Raetzke
Dr. Stefan Kirsch
RA Dr. Christian Raetzke
17.03. - 18.03.2020
16.06. - 17.06.2020
29.10. - 30.10.2020
Berlin
23.09. - 24.09.2020 Berlin
English for the Nuclear Industry Angela Lloyd 01.04. - 02.04.2020 Berlin
3 Wissenstransfer und Veränderungsmanagement
Erfolgreicher Wissenstransfer in der Kerntechnik –
Methoden und praktische Anwendung
Dr. Tanja-Vera Herking
Dr. Christien Zedler
24.03. - 25.03.2020 Berlin
Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30
Kontakt
INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin
Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı Seminare@KernD.de
Die INFORUM-Seminare können je nach
Inhalt ggf. als Beitrag zur Aktualisierung
der Fachkunde geeignet sein.
atw Vol. 65 (2020) | Issue 3 ı March
126
Issue 3 | 2020
March
CONTENTS
Contents
Editorial
Silver Jubilee, but not even a Second Place at the End:
The UN Climate Change Conference 2019 E/G 123
Inside Nuclear with NucNet
Uzbekistan: Why Energy-Rich Nation is Turning
to Nuclear Power 128
Did you know...? . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Feature | Major Trends in Energy Policy and Nuclear Power
The Future of Nuclear: The Role of Nuclear
in the Upcoming Global Energy Transition 131
Spotlight on Nuclear Law
Regulatory Enquiries and About SMRs G 137
Environment and Safety
Toward a New Risk-Informed Approach to Cyber Security 138
Research and Innovation
Improved Metrology of Thermophysical Properties
at Very High Temperatures: The EMPIR Project Hi-TRACE 140
Neutronic Simulation of ALFRED Core Using MCNPX Code 142
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor
Concept with High Efficiency and Total Burnup 145
Operation and New Build
36C3 – More Questions Than Answers G 155
World Report
Nuclear Power World Report 2018 161
Kerntechnik 2020
Preliminary Programme 164
KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
Cover:
Novovoronesh, Russia.
Courtesy of Rosatom.
News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
Nuclear Today
IAEA Chief’s Zeal for Change Signals Era of Nuclear Renewal 178
G
E/G
= German
= English/German
Imprint 170
Contents
atw Vol. 65 (2020) | Issue 3 ı March
Feature
Major Trends in Energy Policy
and Nuclear Power
127
CONTENTS
131 The Future of Nuclear: The Role of Nuclear
in the Upcoming Global Energy Transition
Hans-Wilhelm Schiffer
Environment and Safety
138 Toward a New Risk-Informed Approach to Cyber Security
Chris Warren
Research and Innovation
142 Neutronic Simulation of ALFRED Core Using MCNPX Code
Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi
145 The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept
with High Efficiency and Total Burnup
Jan-Christian Lewitz, Armin Huke, Götz Ruprecht,
Daniel Weißbach, Stephan Gottlieb, Ahmed Hussein and Konrad Czerski
Operation and New Build
155 36C3 – More Questions Than Answers
36C3 – Mehr offene Fragen als Antworten
Stefan Loubichi
World Report
161 Nuclear Power World Report 2018
Editorial office
Contents
atw Vol. 65 (2020) | Issue 3 ı March
128
INSIDE NUCLEAR WITH NUCNET
Uzbekistan: Why Energy-Rich Nation
is Turning to Nuclear Power
Uzbekistan has confirmed it has begun preliminary site work for the construction of its first
commercial nuclear power units, with the preparation of external infrastructure for two
Russia- supplied pressurised water reactor units scheduled to begin next year.
The central Asian country signed an inter-governmental
agreement with Russia in September 2018 for the
development of the its first nuclear power station. The
facility, which will be constructed by Russian state-owned
nuclear corporation Rosatom, will have two blocks with a
combined capacity of 2,400 MW. The first is due to come
on line in 2028 and the second in 2030.
Engineering and geological work has begun at the site,
an area near Lake Tuzkan in Jizzakh province, west of the
capital Tashkent in the east of the country.
First deputy minister of energy Jurabek Mirzamahmudov
told NucNet Uzbekistan is in the process of preparing the
environmental impact assessment and expects to finalise
all the documentation for site approvals this year.
Next year site preparation will be stepped up and the
preparation of external infrastructure will begin.
Mr Mirzamahmudov, who is also head of the Uzatom
state nuclear agency, which was established in July 2018 to
lead national nuclear development, said the units will
provide about 15 % of the country’s electricity generation
and be a “long-term baseload power resource”.
The construction of the station is scheduled to begin in
2022 with a soft loan from the Russian government,
although Mr Mirzamahmudov said exact details of the
financing package and the cost of the units had not yet
been finalised.
Rosatom head Alexei Likhachev told reporters in Russia
recently that further negotiations are planned in the
coming months and no details would be released until they
are complete.
“We want to add nuclear power as well as renewables
to ensure the sustainability of our energy mix,” said
Mr Mirzamahmudov. “With nuclear, you can plan your
energy strategy for the next 60 years – and we are one of
the top countries in the world for uranium production, so
we have the raw material.”
Uzbekistan, the world’s seventh largest uranium
producer, sees the nuclear project as a pass into the “elite
club” of nuclear powers, according to Mr Mirzamakhmudov.
“We will be joining the club of countries with peaceful use
of nuclear energy. That is an elite club. This is a whole new
level, different type of relationships, new technologies,
science and education development.”
A significant role in ensuring the country’s energy
efficiency is given to diversification of energy sources.
To this end Uzbekistan has made “a historic decision” to
begin the development of nuclear energy generation,
Mr Mirzamahmudov said.
The country’s power complex has traditionally struggled
to meet the demands of a rapidly growing population and
developing economy due to outdated infrastructure and
inefficient management. With consumption forecast to
surge over the coming years, as economic reforms spur a
jump in industrial production, the need for change has
become urgent. “We are seeing new industries coming on
line in processing, textiles, agriculture, manufacturing and
metallurgy, as well as a huge expansion in tourism and
other services,” said Mr Mirzamahmudov. “All of these will
need access to a stable and reliable electricity supply.”
The choice was made in favour of nuclear power given
uranium availability and most importantly, economic
benefits to the country. “Today this is one of the cleanest,
ecologically safest sources of power, as well as the cheapest
one after hydropower,” Mr Mirzamakhmudov said.
Meeting this demand will not come cheap. Over the
next five years, officials estimate that more than $ 2.8 bn
will be required to upgrade existing infrastructure, while
adding new power generation, not including nuclear,
could cost as much as $ 14.4 bn.
The International Energy Agency said that despite
being energy self-sufficient thanks to its oil and gas sectors,
Uzbekistan’s ageing electricity infrastructure struggles to
meet growing domestic energy demand. Oil and natural
gas make up about 97 % of the country’s energy mix.
Uzbekistan’s current reliance on coal, gas, oil and
hydropower will not be enough to meet growing demand,
even with plans to double hydropower capacity by 2030.
With nuclear energy expected to account for 15 % of the
country’s power balance and ensure stable energy supply
with expectations of power demand doubling by 2030,
according to Uzatom.
Uzbekistan was also taking steps to develop solar and
wind energy, but would only rely on them for about 3 %
of power generation in a decade as neither was a stable
supply source, Mr Mirzamakhmudov said.
The Uzbekistan nuclear project is of strategic interest to
both Russia and Uzbeks. It will help Uzbekistan generate
economic growth and it will enable the Russians to
re-establish themselves as the primary regional power
in terms of security and economic muscle, according to
Camilla Hagelund, principal analyst at UK-based risk
consultancy, Verisk Maplecroft.
Quoted in the London-based Financial Times newspaper,
Ms Hagelund said: “Central Asia is often described
as the soft underbelly of Russia. You have continued
security issues in Afghanistan. Central Asia is like a buffer
in between that and a potential security threat in its own
right.”
Moreover, China has been expanding its influence in
the region: “There is a level of competition between Russia
and China, and it is very important for Russia to continue
to demonstrate that it is the primary regional power for
central Asia.”
Author
NucNet
The Independent Global Nuclear News Agency
Editor responsible for this story: David Dalton
Avenue des Arts 56 2/C
1000 Bruxelles
www.nucnet.org
Inside Nuclear with NucNet
Uzbekistan: Why Energy-Rich Nation is Turning to Nuclear Power
atw Vol. 65 (2020) | Issue 3 ı March
Did you know...?
Carbon Leakage into the EU ETS
region in the Electricity Market
The electricity markets subject to the EU Emissions Trading
System (ETS; EU member states, Norway, Switzerland) are
connected to electricity markets outside the ETS, namely Russia,
Belarus, Ukraine, Turkey, North Macedonia, Serbia, Bosnia and
Hercegovina, Montenegro, Albania and Morocco. The recent
study by the climate policy think tank Sandbag “The path of least
resistance – How electricity generated from coal is leaking into
the EU” analyses the implications of this situation. It shows that
the ETS region is a net importer of electricity from theses countries
and the net import as well as the associated carbon emissions
increased substantially in the past years (see graph below). In
2019 gross electricity imports totaled 33.3 TWh worth 1.6 billion
Euro. This import was associated with 25.6 million tons of
CO 2 -emissions worth 630 million Euro in the EU ETS. Since the
carbon intensity of the electricity generation in the above
mentioned countries that have no or no significant carbon pricing
is higher than in the respective importing countries connected,
some additional 11 million tons of CO 2 were produced by these
imports as compared to generation inside the importing
ETS-countries. Because the EU plans to increase total
interconnector capacity to outside of the ETS by 31 percent
including connections to additional countries (Egypt, Tunisia,
Libya, Israel, Moldova), the electricity imports from non-ETS
countries are likely to continue to grow. At the same time the
above mentioned countries plan to increase their coal generation
capacity by a total of 37.2 GW (e.g. Turkey: 14.7 GW, Egypt:
10.6 GW, Russia: 5 GW, Bosnia and Hercegovina: 4.1 GW), so that
a considerable carbon leakage effect in the electricity market is to
be feared. To prevent such a development Sandbag proposes a so
called border carbon adjustment (BCA) for gross electricity
imports into the EU ETS region, a policy that in principle is already
supported by the European Commission in its Green Deal
communications.
DID YOU EDITORIAL KNOW...?
129
Net electricity import into the EU ETS region an associated net carbon emissions
p Electricity (TWh) p Carbon (MtCO2)
25
20.7
20.7
20
19.2
19.6
15
13
10
5
0
9.5
3
2015
8.20
2016
9.4
3.10
2017
2018
2019
For further details please
contact:
Nicolas Wendler
KernD
Robert-Koch-Platz 4
10115 Berlin
Germany
E-mail: presse@
KernD.de
www.KernD.de
Did you know...?
atw Vol. 65 (2020) | Issue 3 ı March
130
Calendar
2020
CALENDAR
19.04. – 24.04.2020
International Conference on Individual
Monitoring. Budapest, Hungary, EUROSAFE,
www.eurosafe-forum.org
20.04. – 21.04.2020
The 53 rd JAIF Annual Conference. Tokyo, Japan,
Japan Atomic Industrial Forum (JAIF), www.jaif.or.jp
20.04. – 22.04.2020
World Nuclear Fuel Cycle 2020. Stockholm,
Sweden, WNA World Nuclear Association,
www.world-nuclear.org
05.05. – 06.05.2020
KERNTECHNIK 2020.
Berlin, Germany, KernD and KTG,
www.kerntechnik.com
10.05. – 15.05.2020
ICG-EAC Annual Meeting 2020. Helsinki, Finland,
ICG-EAC, www.icg-eac.org
11.05. – 15.05.2020
International Conference on Operational Safety
of Nuclear Power Plants. Beijing, China, IAEA,
www.iaea.org
11.05. – 15.05.2020
Fusion Energy Conference Programme
Committee Meeting. Vienna, Austria, IAEA,
www.iaea.org
12.05. – 13.05.2020
INSC — International Nuclear Supply Chain
Symposium. Munich, Germany, TÜV SÜD,
www.tuev-sued.de
17.05. – 22.05.2020
BEPU2020– Best Estimate Plus Uncertainty International
Conference, Giardini Naxos. Sicily, Italy,
NINE, www.nineeng.com
18.05. – 22.05.2020
SNA+MC2020 – Joint International Conference on
Supercomputing in Nuclear Applications + Monte
Carlo 2020, Makuhari Messe. Chiba, Japan, Atomic
Energy Society of Japan, www.snamc2020.jpn.org
20.05. – 22.05.2020
Nuclear Energy Assembly. Washington, D.C., USA,
NEI, www.nei.org
31.05. – 03.06.2020
13 th International Conference of the Croatian
Nuclear Society. Zadar, Croatia, Croatian Nuclear
Society, www.nuclear-option.org
31.05. – 03.06.2020
40 th Annual CNS Conference & 44 th CNS-CNA
Student Conference. Saint John, NB, Canada,
Canadian Nuclear Society, www.cns-snc.ca
06.06. – 12.06.2020
ATALANTE 2020. Montpellier, France, CEA,
www.atalante2020.org
07.06. – 12.06.2020
Plutonium Futures. Montpellier, France, CEA,
www.pufutures2020.org
08.06. – 12.06.2020
20 th WCNDT – World Conference on
Non-Destructive Testing. Seoul, Korea, EPRI,
www.wcndt2020.com
10.06. – 12.06.2020
Innovation for the Future of Nuclear Energy –
A Global Forum. Gyeongju, South Korea,
www.globalnuclearinnovation.com
14.06. – 17.06.2020
The Society for Risk Analysis – European
Conference. Espoo, Finland, Aalto University,
www.blogs.aalto.fi
15.06. – 19.06.2020
International Conference on Nuclear Knowledge
Management and Human Resources Development:
Challenges and Opportunities. Moscow,
Russian Federation, IAEA, www.iaea.org
15.06. – 20.07.2020
WNU Summer Institute 2020. Japan, World Nuclear
University, www.world-nuclear-university.org
18.06.2020
NDA Group Supply Chain Event. Telford,
Shropshire, Cvent, www.web-eur.cvent.com
23.06. – 25.06.2020
World Nuclear Exhibition 2020. Paris Nord
Villepinte, France, Gifen,
www.world-nuclear-exhibition.com
25.06. – 26.06.2020
NuclearEurope 2020 – Nuclear for a sustainable
future. Paris, France, Foratom,
www.events.foratom.org
13.07. – 16.07.2020
46 th NITSL Conference - Fusing Power & People.
Baltimore, MD, USA, Aalto University, www.nitsl.org
02.08. – 06.08.2020
ICONE 28 – 28 th International Conference on
Nuclear Engineering. Disneyland Hotel, Anaheim,
CA, ASME, www.event.asme.org
26.08.-04.09.2020
The Frédéric Joliot/Otto Hahn Summer School
on Nuclear Reactors “Physics, Fuels and Systems”.
Aix-en-Provence, France, CEA & KIT, www.fjohss.eu
01.09. – 04.09.2020
IGORR – Standard Cooperation Event in the International
Group on Research Reactors Conference.
Kazan, Russian Federation, IAEA, www.iaea.org
07.09. – 10.09.2020
International Forum on Enhancing a Sustainable
Nuclear Supply Chain. Helsinki, Finland, Foratom,
www.events.foratom.org
09.09. – 10.09.2020
VGB Congress 2020 – 100 Years VGB. Essen,
Germany, VGB PowerTech e.V., www.vgb.org
09.09. – 11.09.2020
World Nuclear Association Symposium 2020.
London, United Kingdom, WNA World Nuclear
Association, www.world-nuclear.org
16.09. – 18.09.2020
3 rd International Conference on Concrete
Sustainability. Prague, Czech Republic, fib,
www.fibiccs.org
16.09. – 18.09.2020
International Nuclear Reactor Materials
Reliability Conference and Exhibition.
New Orleans, Louisiana, USA, EPRI, www.snetp.eu
21.09.-25.09.2020
64 th IAEA General Conference. Vienna, Austria,
International Atomic Energy Agency IAEA,
www.iaea.org
28.09. – 01.10.2020
NPC 2020 International Conference on Nuclear
Plant Chemistry. Antibes, France, SFEN Société Française
d’Energie Nucléaire,
www.sfen-npc2020.org
28.09. – 02.10.2020
Jahrestagung 2020 – Fachverband Strahlenschutz
und Entsorgung. Aachen, Germany, Fachverband
für Strahlenschutz, www.fs-ev.org
30.09. – 03.10.2020
Nuclear Energy: Challenges and Prospects. Sochi,
Russia, Pocatom, www.nsconf2020.ru
12.10. – 17.10.2020
FEC 2020 – 28 th IAEA Fusion Energy Conference.
Nice, France, IAEA, www.iaea.org
19.10. – 23.10.2020
International Conference on the Management
of Naturally Occurring Radioactive Materials
(NORM) in Industry. Vienna, Austria, IAEA,
www.iaea.org
26.10. – 30.10.2020
NuMat 2020 – 6 th Nuclear Materials Conference.
Gent, Belgium, IAEA, www.iaea.org
27.10. – 29.10.2020
enlit (former European Utility Week and
POWERGEN Europe). Milano, Italy,
www.powergeneurope.com
02.11. – 06.11.2020
International Nuclear Reactor Materials
Reliability Conference and Exhibition.
New Orleans, Louisiana, EPRI, www.custom.cvent.com
09.11. – 13.11.2020
International Conference on Radiation Safety:
Improving Radiation Protection in Practice.
Vienna, Austria, IAEA, www.iaea.org
24.11. – 26.11.2020
ICOND 2020 – 9 th International Conference on
Nuclear Decommissioning. Aachen, Germany,
AiNT, www.icond.de
07.12. – 10.12.2020
SAMMI 2020 – Specialist Workshop on Advanced
Measurement Method and Instrumentation
for enhancing Severe Accident Management in
an NPP addressing Emergency, Stabilization and
Long-term Recovery Phases. Fukushima, Japan,
NEA, www.sammi-2020.org
17.12. – 18.12.2020
ICNESPP 2020 – 14. International Conference on
Nuclear Engineering Systems and Power Plants.
Kuala Lumpur, Malaysia, WASET, www.waset.org
This is not a full list and may be subject to change.
Calendar
atw Vol. 65 (2020) | Issue 3 ı March
The Future of Nuclear: The Role of Nuclear
in the Upcoming Global Energy Transition
Hans-Wilhelm Schiffer
1 Introduction The paper presents the main findings, which the World Energy Council (the Council) presented
in a paper on The Future of Nuclear: Diverse Harmonies in the Energy Transition with contributions from the World
Nuclear Association and the Paul Scherrer Institute. In this report, the future of nuclear is described through the lens of
the Council´s World Energy Scenarios archetype framework – Modern Jazz, Unfinished Symphony and Hard Rock – in
three plausible, alternative pathways for the future development of the sector. This report also describes implications
for the role of nuclear energy in the global energy transition. Nuclear energy could take three different pathways within
the upcoming decades. In the main part of this paper – following a brief section on the current role of nuclear in the
global energy supply (Chapter 2) – the characteristics of the three scenarios including the methodology underlying
their quantification (Chapter 3), and the key findings of the identified future pathways (Chapter 4) are explained.
Chapter 5 deals with a comparison of the global results of the EIA´s International Energy Outlook 2019 (U.S. Energy
Information Administration, September 2019) and the IEA´s World Energy Outlook 2019 (International Energy Agency,
November 2019). A conclusion is presented in Chapter 6.
2 Current role of nuclear energy
in global energy supply
Global electricity generation increased fivefold compared
to the level in 1971 to 26,615 TWh in 2018. 63 % of the
growth recorded during this period was covered by fossil
fuels, 25 % by renewable energies and 12 % by nuclear
energy. As a result, the energy mix in global electricity
generation has changed as follows: The share of fossil
energies in total electricity generation has decreased from
74 % in 1971 to 65 % in 2018. This decline was compensated
for by an increase in the share of nuclear energy from
2 % to 10 % and of renewable energies from 24 % to 25 %
(Figure 1).
In the 1970s and 1980s, nuclear power plants were heavily
expanded. The number of plants in operation worldwide
had quintupled from 84 in 1970 to 420 in 1989. Since
then, there has only been a slight increase – to 449 plants
in operation by December 2019 with a capacity of around
400 gigawatts (GW). Correspondingly, electricity generation
based on nuclear energy increased from 1970 to 1990
with annual growth rates of 17.5 %. This was followed by a
significant slowdown in the average growth rates to 2.6 %
per year in the decade from 1990 to 2000. Since 2000,
electricity generation based on nuclear energy has stagnated.
In 2018, it amounted to around 2,700 TWh.
The nuclear power capacities are installed in 31 countries.
The installed capacity is mainly concentrated on
countries in North America (29 %), Western Europe
(28 %), Asia (28 %), Eastern Europe including Russia
(14 %) and to a lesser extent in South America (< 1 %) and
the Middle East / Africa (< 1 %). The United States leads
the ranking of states according to the number of nuclear
power plants with 96 plants, followed by France with
58 plants, China with 48 plants and Russia with 36 plants.
52 nuclear power plants are under construction, including
nine in China, seven in India, six in Russia, and four each in
South Korea and UAE. In addition to Turkey, Belarus and
Bangladesh, the UAE belong to the new nuclear energy
states, i.e. the countries in which nuclear power plants have
not yet been connected to the grid, but are now under
construction.
The contribution of nuclear energy to electricity
generation is very different in the countries that use
nuclear energy. There is a range from 2 % in Iran to 72 % in
France (Figure 2).
| Fig. 1.
World Electricity Production by Energy Source in TWh. Source: IAEA
| Fig. 2.
Share of nuclear power in total electricity generation 2018. Source: H.-W. Schiffer based on World
Nuclear Association, London, August 2019
The age of the existing nuclear power plants extends
over a period of half a century. Corresponding to the focus
of the commissioning of nuclear power plants in the 1970s
and 1980s, the age group 30 to 40 is the most populated.
A good 200 plants and thus almost half of the reactors in
operation can be assigned to this category. Just under 100
plants are younger than 20 years, about 50 plants are
between 20 and 30 years old and almost 100 plants are
older than 40 years (Figure 3).
131
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER
Feature
The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer
atw Vol. 65 (2020) | Issue 3 ı March
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 132
| Fig. 3.
Age of Operating Reactors. Source: IAEA Source: IAEA Power Reactor Information System (PRIS)
| Fig. 4.
Scenarios and projections of various institutions on the development of the global energy supply.
* In addition, the BP study includes “alternative” Scenarios, among others „More Energy,
Less Globalization“
3 The World Energy Council's
global energy scenarios
In 2019, a series of forecasts and scenarios on the development
of global energy supply in the coming decades were
published. These include – among others (Figure 4) – the
scenarios of the World Energy Council, which this organization
presented at the World Energy Congress in Abu
Dhabi in September 2019. (WEC 2019a). The Council's
scenarios selected are exploratory routes through the
Grand Transition. They do not follow a normative approach
that is designed to meet a future goal. Neither are they to
be understood as a forecast. Rather, they span a range of
plausible pathways to the development of the global
energy supply.
3.1 Description of the scenarios
When naming the three scenarios considered, the Council
used Modern Jazz, Unfinished Symphony and Hard Rock
to reflect different music genres, giving an idea of the
mood of each scenario (Figure 5).
p For example, Modern Jazz reflects the notion that
Jazz is the music of boundless individualism where
improvisation and innovation are essential elements.
p Unfinished Symphony: You cannot play a symphony
alone; it takes an orchestra to play it and a conductor to
take the lead.
p And finally, Hard Rock is an expression of the strength
of spirit in facing hard times.
p “While all three scenarios reflect the same predetermined
factors, each individual scenario places a
different emphasis on how four critical uncertainties
might play out.” (WEC 2019b).
p Pre-determined factors are: Lower rates of growth in
population than in the past, a rise in the penetration of
new technologies, an increasing appreciation of the
planet´s environmental boundaries, and a shift in
economic power towards Asia.
p The Council recognizes four critical uncertainties: The
pace of innovation and productivity gains, the evolvement
of international governance and geopolitics, the
priority given to climate change and connected issues
and the preferred mode of managing the energy sector
– via state regulation, market mechanisms or a mixture.
p “These four critical uncertainties interplay and create
the underpinnings of the Council's three unique
scenarios to 2060 – Modern Jazz, Unfinished Symphony
and Hard Rock.” (WEC 2019b).
p Modern Jazz follows a market-driven approach. The
world is highly productive, with fast economic growth
and strong technological development. Digitally
enabled technology innovation and new business
models address sustainability.
p Unfinished Symphony follows a government-driven
approach to achieving sustainability through international
cooperation. An extensive network of fiscal
incentives such as green subsidies and converging and
effective carbon pricing across the different parts of the
world is assumed.
p In Hard Rock, national interests prevent countries from
collaborating effectively on a global level, with limited
attention to addressing climate change. Technologies
are mandated based on the availability of local
resources. Protectionism rather than free trade
dominates the scene.
Probabilities of occurrence are not assigned to the
scenarios. On the contrary, it is conceivable that the actual
development in the individual states and regions of the
world does not follow the same scenario. In fact, different
signals, which can be ascribed to one of the scenarios, are
perceived in reality. If frameworks are set by increased
regulation, the development follows the Unfinished
Symphony scenario. A strong commitment to national
unilateralism is attributable to the Hard Rock scenario. If a
pioneering innovation from the private sector is the driver
of change in a region, the development follows the Modern
Jazz scenario. In addition, over time, the primary direction
of development can change from one scenario to another
scenario. Since 2016, signals from each of the three
scenarios have been recorded in different regions of the
world. And there has been a change in the perception of
the Hard Rock scenario, which – unlike in the past – is no
longer perceived as an outsider scenario.
| Fig. 5.
World Energy Scenarios.
Feature
The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer
atw Vol. 65 (2020) | Issue 3 ı March
3.2 Methodology for quantification
Experts from all over the world participated in a scenario
study group that basically developed the report under the
guidance of the Council´s London office with the support
of Accenture Strategy. The scenario storylines that resulted
from this expert consultation process were quantified by
the Paul Scherrer Institute (PSI) using its Global Multiregional
MARKAL (GMM) model. The model is based on
input assumptions reflecting the scenario storylines and
determines the least-cost configurations of the global
energy system from a social planner’s perspective with
perfect foresight. The GMM model represents the global
energy system disaggregated into 17 world regions
including region-specific characteristics of energy supply
and demand, as well as the corresponding CO 2 emissions.
The evolution of key scenario drivers is expressed in
coherent storylines of future economic and social developments.
The iteration between the development of the
narratives and their quantification provided the foundation
for a powerful set of scenarios.
The GMM model represents in detail the energy system of
a region from resource extraction to energy end uses. GMM
includes more than 400 energy conversion technologies
with their technical, economic and environmental characteristics.
Beyond conventional technologies, the model
also includes zero-carbon technologies and even options to
achieve net negative CO 2 emissions, such as bioenergy
conversion with CO 2 capture and storage. Applying perfect
foresight, GMM optimizes the total discounted energy
system cost over the entire model horizon. Non-cost and
behavioral assumptions are modeled as side-constraints.
In all three scenarios, a slowing population growth is assumed,
with an increase compared to today by one third to
10 billion by 2060. GDP is assumed to develop differently
across the scenarios with the highest average growth rate
between 2015 and 2060 in the Modern Jazz scenario and
the lowest growth in the Hard Rock scenario (Figure 6). In
the scenarios, the different climate policy priorities are
included via different levels of low-carbon technology
support and different CO 2 pricing (Figure 7). The CO 2
prices rise to 110 US$2010 by 2060 in the Unfinished Symphony
scenario – compared to a range of 60-90 US$2010
in Modern Jazz and only 19-45 US$2010 in Hard Rock.
4 Results with the main focus
on nuclear energy
In addition to the study World Energy Scenarios 2019, the
Council published a specific paper on The Future of
Nuclear: Diverse Harmonies in the Energy Transition.
(WEC 2019b). In this report, the World Energy Council,
with contributions from the World Nuclear Association
and the Paul Scherrer Institute, “has developed new
insights into the future role of nuclear. These insights
contributed to the development of the Council's new
nuclear perspectives through the lens of its three global
archetype scenarios – Modern Jazz, Unfinished Symphony
and Hard Rock. A plausible role for nuclear to 2060 is
described in the context of each scenario.” (WEC 2019b). It
is clear that nuclear energy will feature in the global energy
mix for decades to come. However, its share in the mix and
its rate of growth will depend on a number of factors. “Some
of these are largely determined by actions taken within
the sector, e.g. speed of innovation in new nuclear technology
and shaping policies on legacy waste management,
whilst other factors such as energy policies, market design
and financing structures are shaped and influenced by other
stakeholders.” (WEC 2019b).
| Fig. 6.
Main assumptions of the three WEC scenarios. Source: Paul Scherrer Institut
| Fig. 7.
CO 2 prices assumptions by scenario in US$ (2010) per tCO 2 . Source: Paul Scherrer Institute
4.1 Global results by scenario
Nuclear energy will grow in all three scenarios. But the pathways
are very different – depending on the scenario assumptions
and the underlying storyline (Figure 8).
In the consumer-empowered and market driven world
of Modern Jazz, investors prefer smaller projects with low
capital requirements and relatively quick returns compared
to larger projects that require governmental intervention
and support or the build-up of institutional capacity. New
build is largely driven by China, India and Russia in the
period 2020-2030, and developing economies in the
| Fig. 8.
Global power generation by energy sources in TWh. Source: World Energy Council, Paul Scherrer
Institute, Accenture Strategy: World Energy Scenarios/2019, September 2019
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 133
Feature
The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer
atw Vol. 65 (2020) | Issue 3 ı March
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 134
Middle East, like Iran, Turkey, Egypt, as well as Bangladesh
and Indonesia in 2030-2040. These developments firmly
place nuclear energy as a power source for emerging
economies, in which the governmental backing for this
technology can be expected also in the future. The rate of
new nuclear construction in developed countries of Europe
and North America slows down. Many markets do not
value nuclear´s contribution as a dispatchable source in
electricity rooted in large-scale smart grids, decentralized
generation, variability, and effective energy storage.
“Despite the fact that lifetime extension of existing
reactors is one of the best power generation investments
available in the market from a levelised cost of electricity
point of view, a number of EU countries and the US provide
only limited support to nuclear energy. In leading-edge
countries, stability is so reliant on demand-side flexibility
and supply-side optimization that ‘older world’ capacity
reserves no longer seem necessary. Most older generation
reactors in the US and Europe are scheduled for retirement
and decommissioning, which reduces nuclear baseload
available to the grid by 2040. Among the many countries
that opt not to extend the lifetime of their reactor fleet, some
struggle to meet pressing carbon targets.” (WEC
2019b).
Because of the competition from other low-carbon
sources, nuclear´s share in electricity generation accounts
for only 8.5 % by 2060, compared to 11 % in 2015. Nuclear
installed capacity increases by around 52 % from 407 GW
in 2015 to 620 GW in 2060. “In the Modern Jazz scenario,
the nuclear industry has the potential to reinvent itself,
from selling units to providing services, and to remain an
energy source of choice as some of the major existing
nuclear countries and emerging economies expand their
nuclear fleets.” (WEC 2019b).
In Unfinished Symphony, governments support an
acceleration of a net-zero carbon energy transition. Such a
policy also favours nuclear energy and paves the way for a
bright future for nuclear energy. Innovations such as Gen
IV reactors and SMRs are accelerated. Due to high demand
and availability of new investment instruments, these
reactors are commercially introduced by 2035-2040 and
by 2060 they make up 25-30 % of all new orders by
capacity.
“The major share of new nuclear capacity is rolled out
using the fleet approach in China, India, Russia and the
Middle East in 2020-2030. In Africa, major nuclear
construction programmes are started by South Africa,
Nigeria, Tanzania and others to meet rising energy
demand from rapid urbanization. Power plants are
built on time and budget, aided by the enhanced
capability and capacity of the nuclear industry and
facilitated by extensive use of digital technologies in
design, planning, and construction stages. Digital twins
support safe, reliable and efficient plant operations.”
(WEC 2019b).
In the European Union, better coordinated climate
policies supported by new energy regulations and
financing institutions are an encouragement to review the
position on the role of nuclear in tackling climate change.
Digitally enabled nuclear new build is on a roll across the
EU, especially in the nuclear accustomed markets of
Bulgaria, the Czech Republic, Finland, Hungary, Slovakia.
The same is going to take place in the UK.
“Lifetime extension remains high on the nuclear agenda
2020-2030 both in the EU and in the US. Digital tools
become significant for analysis and decision making.
Most ‘old world’ reactors are put on lifetime extension
programmes to keep them operational for another 20 years
or more.” (WEC 2019b).
In Japan, existing reactors are upgraded and restarted.
“Japan also returns to the global nuclear technologies
market as a strong nuclear exporter by 2035, building
power plants in the EU, US, and the Middle East. South
Korea's nuclear projects extend from the Middle East to the
EU and Africa from 2040. There is growing global demand
for nuclear power and competitive global supply chains
from major reactor vendors in Russia, France, Japan,
Korea, and China.” (WEC 2019b).
In this scenario, nuclear accounts for 13.5 % of total
global electricity generation by 2060, compared with 11 %
in 2015. The installed nuclear capacity almost triples to
1002 GW by 2060, compared to 2015. “In addition to
new build and lifetime extension initiatives, new nuclear
technologies – small modular reactor, floating units and
Gen IV reactors – make a significant contribution to the
global nuclear fleet.” (WEC 2019b).
In Hard Rock, which is characterized by a fragmented
world with low economic growth, increasing geopolitical
tensions and low levels of cooperation between nations,
national security, jobs, skills development and local
environmental issues are top of national agendas.
“Nuclear new capacity is driven mainly by the fleet
approach in China, India, Russia between 2020 and 2030
– countries that made a strategic bet on nuclear as a main
source of energy and development. This is followed by new
build programmes in 2030-2040 in the Middle East,
including in Saudi Arabia, the United Arab Emirates, Iran,
Turkey, Egypt and others. In these countries the core
nuclear technology remains large-scale Gen III and Gen
III+ reactors for centralized power systems. Incremental
innovations and the use of digital technologies make Gen
III+ a natural choice for all newcomers as it is a reliable,
well-studied, serially built, and economically efficient
nuclear solution.” (WEC 2019b).
Russia and China remain the dominant players in the
nuclear technology market. “In 2030, Russia and China
successfully debut both commercial Gen IV and SMRs. By
2045 Russian and Chinese Gen IV and SMRs have also
been installed in a number of other locations around the
world. Neither Gen IV nor SMR make any considerable
impact on the overall energy system by 2060.” (WEC
2019b).
In the 2020s the EU and the US generally favour policies
that allowed lifetime extension of existing reactors. The
granted 20-year life extension will keep them operational
beyond 2040-2050. However, between 2035 and 2040,
lifetime extension is no longer an option for a large part of
the existing fleets in the EU and the US. As a consequence,
some countries drift gradually towards nuclear new build
options, while a few others will decide to opt out of nuclear.
As far as new build is concerned from 2020-2030, the US
and most EU countries are reluctant to proceed in some
cases due to low public acceptance and in others due
to unclear economic viability. However, others go in the
opposite direction. The Czech Republic, Hungary,
Slovakia, and Bulgaria decide to extend their nuclear
programmes for 2030-2040.
In this scenario, nuclear´s share in global electricity generation
reaches 12.5 % by 2060 compared with 11 % in
2015. Installed nuclear capacity increases by 71 % from
407 GW in 2015 to 696 GW in 2060. “The main focus areas
are new construction in emerging markets and lifetime
extension initiatives in developed economies.” (WEC
2019b).
Feature
The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer
atw Vol. 65 (2020) | Issue 3 ı March
| Fig. 9.
Global CO 2 emissions from fuel combustion by scenario in bn t.
Source: World Energy Council, Paul Scherrer Institute, Accenture Strategy
World Energy Scenarios/2019, September 2019; Kober et al (2018)
* until 2100
4.2 Global CO 2 emissions by scenario
None of the scenarios shows a development, which leads
to an achievement of the Paris Climate Agreement. In
Unfinished Symphony, CO 2 emissions peak by 2020, in
Modern Jazz by 2030 and in Hard Rock by 2040. The
development indicated in the scenarios leads to an increase
in the global temperature of 2 to 2.3 degrees Celsius in
Unfinished Symphony, approximately 2.5 degrees in
Modern Jazz and more than 3 degrees in Hard Rock
( Figure 9).
The Nationally Determined Contributions (NDCs) are
the heart of the Paris Agreement and the achievement of
these long-term goals. The Paris Agreement requires each
country to outline and communicate their post-2020
ambitions to limit the emissions of greenhouse gases. With
the announced efforts by the countries, we are so far not
on track to keep the global temperature increase below
2 degrees Celsius. To achieve the even more ambitious
1.5 degree target, the world had to be carbon-neutral by
2060.
The 25 th Conference of the Parties (COP 25) to the
UNFCCC in Madrid in December 2019 ended with no
major breakthrough. The conference agreed to ask
countries to come up with more ambitious targets to cut
greenhouse gas emissions by the time of the COP 26, which
is expected to take place from 9-19 November 2020 in
Glasgow, UK.
4.3 Selected regional developments
The Council´s scenario study provides not only global
results but a breakdown by eight world regions is given as
well (Figure 10).
As far as nuclear energy is concerned, there is a clear
shift in the use of nuclear energy to the Asian market
within the upcoming decades. The highest capacity
increases are going to take place in China, + 180 GW in
Modern Jazz, + 320 GW in Unfinished Symphony and +
200 GW in Hard Rock by 2060. The outcome for India in
2060: + 50 GW in Modern Jazz, + 140 GW in Unfinished
Symphony and + 70 GW in Hard Rock. Furthermore for
the region Middle East and North Africa significant nuclear
capacity increases are indicated: + 17 GW in Modern Jazz,
+ 37 GW in Unfinished Symphony and + 15 GW in Hard
Rock (Figure 11).
In 2015, 42 % of the world's nuclear power capacity was
distributed to Europe including Russia, 30 % to North
America, 26 % to Asia, 1 % to South America and 0.5 %
each to the two regions of Sub-Saharan Africa and Middle
East & North Africa. By 2060, the share of the three Asian
regions will increase to 56 % in Modern Jazz and Hard
Rock and even 61 % in Unfinished Symphony. The share of
| Fig. 10.
Regional breakdown for modelling.
| Fig. 11.
Nuclear: Installed Capacity in GW. Source: Paul Scherrer Institut
| Fig. 12.
Installed Nuclear Generation Capacity (GW) by Region. Source: World Energy Council, World Energy
Scenarios 2019, The Future of Nuclear: Diverse Harmonies in the Energy Transition. London 2019
North America and Europe combined decreases from 72 %
in 2015 to 40 % in Modern Jazz and in Hard Rock. In
Unfinished Symphony it will be 33 %. Installed capacity in
the Sub-Saharan Africa, Middle East & North Africa and
Latin America regions combined is going to account for
between 4 % (Modern Jazz and Hard Rock) and 6 %
( Unfinished Symphony) of global nuclear capacity in 2060
compared to 2 % in 2015 (Figure 12).
5 Comparison of the WEC scenarios
with the findings of other institutions
“By benchmarking against peer studies and refreshing its
global horizon scanning, the Council's comparative review
has validated the continued relevance, plausibility, and
challenges of its existing archetypal framework and the benefits
of continuing to work with the plausibility-based,
narrative-led methodology in maintaining openness to
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 135
Feature
The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer
atw Vol. 65 (2020) | Issue 3 ı March
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 136
new developments. The comparison of different types of
global energy scenarios has helped identify some important
gaps in bridging the flexibility of the narrative-led,
plausibility-based approach with the rigidity of long-term
global energy system models.” (WEC 2019c).
The following three most relevant global energy
scenario studies, published in the second half of 2019, were
selected for comparing the results:
p WEC´s World Energy Scenarios 2019 (WEC 2019a)
p EIA´s International Energy Outlook 2019 (EIA 2019)
p IEA´s World Energy Outlook 2019 (IEA 2019)
This paper concentrates on EIA´s Reference Case, two of
the three scenarios of the IEA (Stated Policies Scenario
and Sustainable Development) and the three WEC scenarios.
In addition, IAEA's 2019 edition of the Energy, Electricity
and Nuclear Power Estimates for the Period up to 2050
is referred to in the comparison. The year 2040 is chosen
for the comparison, as the time horizon of the IEA scenarios
is to 2040 only.
The Reference Case (RC) of the EIA reflects current
trends and relationships among supply, demand, and
prices in the future. The RC includes some anticipated
changes over time, such as expected regional economic
and demographic trends, planned changes to infrastructure
and assumed incremental cost and performance
improvements in known technologies based on historical
trends. (EIA 2019).
The Stated Policies Scenario of the IEA, which occupies
a central position in the WEO analysis, reflects the impact
of energy-related policies that governments have already
implemented including an assessment of the likely effects
of announced policies as expressed in official targets and
plans. Furthermore, a dynamic evolution of the cost of
energy technologies, reflecting gains from deployment and
learning-by-doing is assumed in this scenario. (IEA 2019).
The Sustainable Development Scenario of the IEA is an
essential counterpart to the Stated Policies Scenario. It sets
out the major changes that would be required to reach the
key energy-related goals of the United Nations Sustainable
Development Agenda simultaneously, such as a reduction
in greenhouse gas emissions in line with the Paris Agreement,
universal access to modern energy by 2030 and a
dramatic reduction in energy-related air pollution. (IEA
2019).
The projections of the International Atomic Energy
Agency (IAEA) “for nuclear electrical generating capacity
are presented as low and high estimates, reflecting different
driving factors that have an impact on the worldwide
deployment of low carbon energy source.” (IAEA 2019).
The main results of the comparison, as far as the expected
development for the global nuclear capacity is concerned
(Figure 13): EIA's Reference Case is very much in line with
the Stated Policies Scenario of the IEA and WEC's Modern
Jazz, while the other two WEC scenarios expect a stronger
development for nuclear energy. The Sustainable Development
Scenario of the IEA, a normative scenario, comes to
slightly higher numbers for nuclear energy by 2040 compared
to WEC's Hard Rock. The by far strongest upward pathway
for nuclear energy is seen in WEC´s Unfinished Symphony.
The numbers shown in Unfinished Symphony for
2040 even exceed the high case of IAEA's outlook. The IAEA
has published a range for the global nuclear capacity between
353 GW and 628 GW for 2040 and between 371 GW
und 715 GW in 2050. (IAEA 2019).
6 Conclusion
A wide range of technologies is necessary to bring energy
economic development closer to climate policy requirements.
The focus should be on approaches that enable
greenhouse gas emissions to be reduced at the lowest CO 2
abatement costs. These include in particular:
p Improved efficiency when converting and using energy.
p Expansion of renewable energies – focused on technologies
and locations that have comparatively
favorable conditions.
p Identification of new customer-centric growth opportunities
in electrification, storage, power-to-X and the
new hydrogen economy.
p Expanded use of nuclear energy by extending the
lifetime of existing plants, provided that their safety is
fully guaranteed, and construction of new plants at
locations where the economic and political conditions
offer a solid basis for this.
p Implementation of an energy infrastructure to prevent
greenhouse gas emissions from the combustion of fossil
fuels and production processes from entering the
atmosphere (carbon capture and usage/storage), and
technologies to generate negative CO 2 emissions.
p Securing new opportunities for international trade not
only with clean electrons but also with clean molecules
(gaseous and liquid) including hydrogen.
CO 2 pricing that is at a comparable level worldwide as
far as possible, a technology-neutral political framework
and increased international cooperation are crucial for
achieving the sustainability goals. Commitments agreed
under the Paris Agreement and other initiatives have the
potential to support nuclear energy development.
References
| BP (2019a) BP Statistical Review of World Energy June 2019, London (June 2019)
| BP (2019b) BP Energy Outlook – 2019 edition, London (February 2019)
| Energy Information Administration (2019) International Energy Outlook 2019, Washington, DC
(September 2019)
| Equinor (2019) Energy Perspectives 2019, Stavanger (June 2019)
| ExxonMobil (2019) 2019 Outlook for Energy: A Perspective to 2040, Irving/Texas (August 2019)
| International Atomic Energy Agency (2019) Energy Electricity and Nuclear Power Estimates for the
Period up to 2050, 2019 edition, Vienna (September 2019)
| International Energy Agency (2019) World Energy Outlook 2019, Paris (November 2019)
| Shell International B.V. (2018) Shell Scenarios. Sky – Meeting the Goals of the Paris Agreement, The
Hague (March 2018)
| World Energy Council (2019a) World Energy Scenarios 2019 – Exploring Innovation Pathways to
2040, in collaboration with Accenture Strategy and Paul Scherrer Institute, London (September
2019)
| World Energy Council (2019b) World Energy Scenarios 2019 – The Future of Nuclear: Diverse Harmonies
in the Energy Transition, with contributions from the World Nuclear Association and the Paul
Scherrer Institute, London (August 2019)
| World Energy Council (2019c) Global Energy Comparison Review, World Energy Insights Brief 2019,
London (April 2019)
| Fig. 13.
World Nuclear Capacityin GW.
* SP = Stated Policies Scenario; SD = Sustainable Development Scenario
Author
Dr. Hans-Wilhelm Schiffer
Member of the Studies Committee
World Energy Council (London)
Visiting Lecturer at the RWTH Aachen University
Feature
The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer
atw Vol. 65 (2020) | Issue 3 ı March
SMRs und regulatorische Fragestellungen
Christian Raetzke
137
In der internationalen Kernenergieszene wird immer mehr über SMRs (Small Modular Reactors) diskutiert, also über
relativ kleine Reaktoren (≤ 300 MW elektrisch), die eine Vielzahl von technischen Designs aufweisen, von
„ verkleinerten“ Ausgaben marktreifer Designs für große Leichtwasserreaktoren bis hin zu innovativen Modellen, die
etwa mit Salzschmelze oder Blei arbeiten. Tatsächlich gebaut und in Betrieb genommen wurde bislang nur wenig, aber
die Zahl der angekündigten Projekte (in Europa zuletzt in Estland), der staatlichen Förderungen (z. B. in den USA),
der Verfahren zumindest für Konzeptgenehmigungen (etwa in den USA und Kanada) und der Studien, die SMRs als
attraktive Option einstufen, hat sich in den letzten zwei bis drei Jahren vervielfacht.
Die Frage, ob SMRs tatsächlich ein wichtiges Zukunftselement
der Kernenergie sind, wurde auch bei der letztjährigen
Jahrestagung Kerntechnik auf einer vom Verfasser
geleiteten Sitzung erörtert. 1 Immerhin scheinen sie, gerade
in der gegenwärtigen weltweiten Debatte um die Rolle
der Kernenergie als klimaneutrale Option der Stromerzeugung,
Vorteile aufzuweisen, die herkömmliche
Großkraftwerke nicht darbieten, insbesondere durch eine
niedrigere Investitionsschwelle und durch flexiblere Einsatzmöglichkeiten
in einem sich wandelnden Energiemix.
Auch eine (noch) weiter verbesserte Sicherheit wird oft als
Argument genannt.
In genehmigungsrechtlicher Hinsicht sind SMRs jedenfalls
definitiv ein spannendes Thema. Die bestehenden
regulatorischen Anforderungen und Strukturen passen
in mancherlei Hinsicht nicht auf die neuen Konzepte;
innovative Ansätze sind nötig.
Dem Verfasser scheinen zwei Aspekte besonders
wichtig zu sein.
Zum einen müssen die nationalen Regelwerke und
Genehmigungsverfahren der Länder, die SMRs bauen
wollen, so gestaltet sein, dass sie die regulatorische
Bewältigung von SMRs gestatten. Für SMRs, die – wie
oben schon erwähnt – eine große Vielzahl von sehr
unterschiedlichen Designs aufweisen, wird man von
vornherein flexible, risiko- und performancebasierte
Anforderungen vorsehen müssen. Als Beispiel für einen
eigens für SMRs gestalteten Katalog mit generischen
Sicherheitskriterien sei auf eine Leitlinie der Canadian
Nuclear Safety Commission (CNSC) verwiesen: „Design of
Small Reactor Facilities (RD-367)“. 2
Im Einzelnen werden viele bestehende Regelungen,
die für Großkraftwerke gedacht sind, für SMRs angepasst
werden müssen. So hat etwa die US-amerikanische
Nuclear Regulatory Commission (NRC) den Entwurf einer
Vorschrift veröffentlicht, die erstmals für SMRs eine
abgestufte Festsetzung der (für die Standortbewertung in
den USA sehr wichtigen) Notfallplanungszone rund um
die Anlage erlaubt. 3 Hintergrund ist das im Vergleich zu
herkömmlichen Anlagen deutlich geringere Kerninventar
von SMRs sowie der Umstand, dass viele Designs angabegemäß
mit passiven Systemen und inhärenter Sicherheit
eine Freisetzung ausschließen sollen („walk-away safe“).
Eine Modifizierung von Anforderungen ist unter diesen
Voraussetzungen kein Sicherheitsnachlass, sondern eine
Anwendung des allgemein anerkannten „gestuften
Ansatzes“ (graded approach) bei der Sicherheitsbewertung,
wonach Anforderungen nach dem Ausmaß
des Risikos zu gestalten sind.
Der zweite Gesichtspunkt lenkt den Blick vom
Nationalen ins Internationale. Wie schon das „M“ für
„ modular“ aussagt, beruhen die meisten SMR-Designs auf
dem Grundgedanken, dass der Reaktor aus Modulen
besteht, die in einer Fabrik vorgefertigt werden und vor
Ort nur noch zusammengebaut oder aufgestellt werden
müssen. Das ist geradezu ein springender Punkt, der das
SMR-Konzept erst ausmacht und den gewünschten weitgefächerten
Einsatz erst ermöglicht. Die standardisierte
Serienfertigung ist auch für die Wirtschaftlichkeit ein
entscheidendes Element, indem die bisher von großen
Reaktoren verwirklichten „economies of scale“ durch
„ economies of series“, also durch hohe Produktionszahlen,
ersetzt werden sollen; auch wären Genehmigungsverfahren
und Errichtung mit weniger Risiken behaftet
und daher besser zu finanzieren als heute. Die Modularität
und die damit einhergehende Standardisierung würden
aber zunichte gemacht, wenn ein SMR jeweils an stark
unterschiedliche nationale Regelwerke angepasst, also im
Design vielfach geändert werden müsste.
Deshalb ist es essentiell, dass die Länder, die SMRs
einsetzen wollen, sich auf (weitgehend) vereinheitlichte
Regeln einigen. In der bisherigen Historie der Kernenergie
waren Sicherheitsanforderungen jedoch dezidiert eine
nationale Sache. Seit ein bis zwei Jahrzehnten gibt es zwar
verstärkte Bemühungen der Genehmigungsbehörden zur
Entwicklung gemeinsamer Ansätze, schon damit sie nicht
jedesmal „das Rad neu erfinden“ müssen und Ressourcen
sparen können; für solche Bemühungen steht beispielhaft
das Multinational Design Evaluation Programme MDEP. 4
Solche Programme müssten für SMRs aber qualitativ auf
eine neue Stufe gehoben werden; Ziel wäre idealerweise
eine gemeinsam von den beteiligten Behörden getragene
Konzeptfreigabe, die dann die Grundlage für die jeweilige
nationale Genehmigung bildete. Wollte man besonders
kühn sein, so könnte man sogar daran denken, dass die
vom Herstellerland erteilte Genehmigung in den Einsatzländern
in gewissem Umfang anerkannt wird.
Länder, die SMRs einsetzen wollen, müssen diese
Herausforderungen angehen. Wieder einmal ist Finnland
ein Vorbild. Die finnische Genehmigungs- und Aufsichtsbehörde
STUK hat jüngst einen Bericht veröffentlicht 5 , der
den Weg zu dem von der Behörde selbst gesetzten Ziel
beschreibt, für die Genehmigung eines SMR bereit zu sein,
wenn es soweit ist.
Die große SMR-Welle steht vorläufig noch auf dem
Papier. Dass sie tatsächlich ausgelöst wird, setzt die Überwindung
vieler Hindernisse voraus, vor allem politischer
und wirtschaftlicher Art. Wenn sie aber kommen sollte,
dann müssen die geeigneten regulatorischen Instrumente
bereitstehen – Instrumente, die SMRs gerecht werden und
zugleich weltweit die erforderliche Sicherheit garantieren.
Author
Rechtsanwalt Dr. Christian Raetzke
Beethovenstr. 19
04107 Leipzig
1) Sitzungsbericht:
https://
www.ktg.org/ktgwAssets/docs/
AMNT/2019/
Raetzke-AMNT-
2019-Focus-Session--
International-Innovation-SMRs.pdf
2) https://
nuclearsafety.gc.ca/
pubs_catalogue/
uploads/RD-367-
Design-of-Small-
Reactor-Facilities_
e.pdf
3) https://
www.nrc.gov/
reading-rm/doccollections/news/
2019/19-063.pdf
4) http://
www.oecd-nea.org/
mdep
5) Zur Pressemitteilung:
https://
www.stuk.fi/web/
en/-/stuk-preparesfor-assessing-thesafety-of-novelnuclear-reactors.
–
Der Bericht selber
ist auf Finnisch.
SPOTLIGHT ON NUCLEAR LAW
Spotlight on Nuclear Law
Regulatory Enquiries and About SMRs ı Christian Raetzke
atw Vol. 65 (2020) | Issue 3 ı March
138
ENVIRONMENT AND SAFETY
About EPRI Journal
EPRI Journal is the
flagship publication of
the Electric Power
Research Institute. It
provides in-depth
reporting on electricity
sector R&D,
industry and
technology news,
EPRI thought leadership,
and guest
perspectives from
industry leaders. With
features, brief articles,
info-graphics, and other
engaging digital
formats, readers gain
insights through clear
explanations about
technology developments,
utility field
experiences, and realworld
solutions. Subscriptions
are free.
Original URL
for article:
http://eprijournal.com/
toward-a-new-riskinformed-approach-tocyber-security/
Toward a New Risk-Informed Approach
to Cyber Security
EPRI Guidelines Equip Electric Power Industry
to Address Growing Risks and Vulnerabilities
Chris Warren
A More Targeted Approach
to Cyber Security
EPRI has developed step-by-step
guidance for utilities to assess cyber
security measures at power plants,
informed by risk. The methodology
enables users to allot more time and
resources to protect the devices most
critical to operations. “We made the
business case for EPRI’s methodology
with our senior management,” said
Brad Yeates, Southern Nuclear’s
manager of cyber security for Vogtle
Units 3 and 4. “We concluded that this
new approach was the most direct and
cost-effective one.”
In a power plant, robust cyber
security depends on safeguarding
control system components. One
critical component is a plant’s engineering
workstation.
“It’s important to protect the engineering
workstation because it’s
connected to the programmable logic
controllers in a power plant,” said
EPRI Senior Technical Leader Jeremy
Lawrence. “It’s a prime target. If
attackers get into it and inject
malware, they could potentially
compromise critical plant control
functions and shut down the plant.”
The traditional “defense-in-depth”
approach to protecting digital plant
control components from attackers
involves layering various security
measures – a complex undertaking.
It’s challenging to quickly determine
the optimal types and number of
layers.
Bulk power system operators in
North America must comply with the
North American Electric Reliability
Corporation’s (NERC) Critical Infrastructure
Protection (CIP) Standards.
The NERC standards, along with cyber
security regulations from the National
Institute of Standards and Technology
and the U.S. Nuclear Regulatory
Commission, are sometimes known
as the committed catalog approach
because they direct the implementation
of a catalog of security measures
for all components. While this
approach provides a degree of security,
power industry stakeholders are
investigating the benefits of a more
targeted approach – applying security
measures to specific vulnerabilities in
plant control systems.
“Standards and regulations have
played an essential role in establishing
a baseline of cyber security protections
for the electric power industry
–and in bringing stakeholders to the
table to discuss how to secure critical
assets,” said Lawrence. “Yet, compliance
with standards and regulations
doesn’t equal security. Power plant
operators are raising the bar on
cyber security to implement more
sophisticated measures above and
beyond the regulatory requirements.”
This is in line with growing
cyber security risks. Last year, U.S.
Department of Energy (DOE) Secretary
Rick Perry told lawmakers that
hundreds of thousands of cyber
attacks on the American energy
system take place each day. According
to DOE’s Multiyear Plan for Energy
Sector Cybersecurity, “The frequency,
scale, and sophistication of cyber
threats have increased, and attacks
have become easier to launch. Nationstates,
criminals, and terrorists
regularly probe energy systems to
exploit cyber vulnerabilities in order
to compromise, disrupt, or destroy
energy systems.”
“The threat only goes up,” said
William Vesely, a project specialist in
control systems engineering at Con
Edison, the utility that serves New
York City and Westchester County,
New York. “Critical infrastructure in
the power industry is a prime target,
and staying ahead of the game is
challenging and requires vigilance.”
Risk-Informed Cyber Security
In collaboration with utilities, control
system manufacturers, policymakers,
and regulators, EPRI is developing
new cyber security approaches to
protect critical power plant assets.
As part of this research, EPRI has
developed an advanced risk-informed
methodology for utilities to assess
cyber security measures. This step-bystep
approach involves considering
potential security breaches, their
Environment and Safety
Toward a New Risk-Informed Approach to Cyber Security ı Chris Warren
atw Vol. 65 (2020) | Issue 3 ı March
likelihood, and the consequences
(such as radiological release, outages,
and reputation damage) and then
prioritizing mitigations.
Security standards and tools typically
focus on company-level risk and
may apply the same controls to every
component. EPRI’s risk-informed
guidance advances the state of the
art through a systems engineering
approach that enables users to assess
specific cyber security risks at the
component, system, and company
levels.
“Not all components are created
equal or serve the same function,”
said Lawrence. “A limitation of the
typical approach is that it doesn’t
always differentiate among components.
With our methodology, power
plant operators can assess specific
vulnerabilities with individual components
and identify the best controls
to mitigate the threats. They can
spend more time protecting the
devices most critical to operations –
and prioritize application of standards
and regulations. Standards provide
the ‘what,’ and EPRI’s methodology
provides the ‘how.’”
Risk-Informed Approach
in Action
The first step in EPRI’s methodology
involves characterizing precisely the
attack surface of each component in
power plant control systems. An
attack surface encompasses all the
points at which a component can be
attacked, including physical, network,
and wireless access.
The next step: Identify the possible
goals of an attack (such as stealing data
or altering configuration files) and the
possible exploit sequences ( attack
strategies), which vary depending on
the goals and vulnerabilities.
With a comprehensive understanding
of where, why, and how
an attacker might strike, the plant
operator can plan the most effective
defenses.
The third step of the risk-informed
approach is to assess each security
measure’s ability to protect against,
detect, respond to, and recover from
the most likely attacks.
“There are lots of potential ways to
mitigate each exploit sequence, and
you want to apply the most effective
combinations,” said Lawrence. “An
engineering workstation may have
anti-virus software already installed
that can effectively detect malware
and alert an operator of its presence.
But it might not help much with
response and recovery.”
A cumulative score is calculated for
each security measure based on its
effectiveness and ease of implementation.
“The score tells you how well
protected you are against each exploit
sequence,” said Lawrence. “Whether
that score is acceptable to a plant
operator depends on the asset’s
importance and the consequences of a
successful attack. Staff at each plant
must determine its acceptable risk
threshold.”
The risk-informed approach provides
a way to map security measures
to regulatory requirements and to
track compliance. While the path to
achieving compliance varies depending
on the regulatory body, regulators
generally consider a risk-informed
approach acceptable if it can be
demonstrated to satisfy the regulations’
intent and objectives.
“The risk-informed approach can
still meet regulatory requirements,”
said Lawrence. “It’s a way to comply
more efficiently and effectively.”
Risk-Informed Cyber Security
at Vogtle
As part of the construction of its
Plant Vogtle Units 3 and 4, Southern
Nuclear adopted EPRI’s systems
engineering approach to cyber
security while complying with security
regulations.
“We made the business case for
EPRI’s methodology with our senior
management,” said Brad Yeates,
manager of cyber security for Vogtle
Units 3 and 4. “We concluded that this
new approach was the most direct and
cost-effective one.”
Vogtle collaborated with EPRI to
develop a risk-informed cyber security
plan to help protect 16,000 digital
plant components from attacks.
“We’re the first utility in the world
to make a commitment to this
approach to cyber security assessment
and mitigation,” said Yeates. “We’re
carving out a path for others to follow.
Everybody that follows us is going to
have a much easier time.”
Yeates worked with EPRI technical
staff to develop the process to analyze
the 16,000 digital assets, identifying
approximately 400 distinct constituent
components. “This is a manageable
number of constituent elements that
we can focus on during our initial
technology assessment,” said Yeates.
“Once these 400 are assessed, they
become like a bag of LEGO® bricks
that can be assembled into larger
digital systems and subsystems, with
appropriate tailoring to their operational
configurations. The technology
assessment includes analysis of 89
critical systems.”
In using EPRI’s risk-informed
methodology, Yeates is assessing each
asset’s vulnerabilities, informing the
selection of the best available protections.
Yeates expects Units 3 and 4
to finalize their cyber security program
by early 2020 and their assessments
by the end of 2020.
“We must have the cyber program
up and running in order to receive
fuel,” he said. “Once we receive fuel,
the units will go through a thorough
testing phase before commercial
operation.”
In 2019, EPRI is collaborating with
vendors, manufacturers, and utilities
on studies that document the
implementation of EPRI’s advanced
risk- informed approach and its
benefits. Based on the results, these
stake holders are expected to provide
EPRI with feedback, informing improvements
to the approach.
Con Edison’s Vesely would like
to see the electric power industry
adopt this type of risk-informed cyber
security approach, viewing it as a
significant improvement to current
practices.
The challenge for power companies
is to balance the benefits
of new digital technologies with
security. “I think EPRI’s risk-informed
approach is going to be a milestone in
that direction,” he said. “I expect
international standards to draw
heavily on the concepts underlying
EPRI’s approach.”
“EPRI has incorporated more
engineering into the assessment of
cyber risks in the electric power
sector,” said EPRI’s Lawrence. “Our
guidance equips power plant operators
with the in- depth understanding
of vulner abilities they need to pinpoint
the best protections and keep
their facilities secure.”
Authors
Chris Warren
Key EPRI Technical Experts
Jeremy Lawrence
techexpert@eprijournal.com
EPRI
3420 Hillview Avenue
Palo Alto, California 94304
United States of America
About EPRI
The Electric Power
Research Institute
(EPRI) conducts
research, development,
and demonstra
tion projects for the
benefit of the public
in the United States
and internationally.
As an independent,
nonprofit organization
for public interest
energy and environmental
research, we
focus on electricity
generation, delivery,
and use in collaboration
with the
electricity sector, its
stakeholders and
others to enhance the
quality of life by
making electric power
safe, reliable, affordable,
and environmentally
responsible.
ENVIRONMENT AND SAFETY 139
Environment and Safety
Toward a New Risk-Informed Approach to Cyber Security ı Chris Warren
atw Vol. 65 (2020) | Issue 3 ı March
140
RESEARCH AND INNOVATION
Improved Metrology of Thermophysical
Properties at Very High Temperatures:
The EMPIR Project Hi-TRACE
Konstantinos Boboridis and Bruno Hay
Introduction Power plants, aerospace and materials processing are prominent examples of technologies and
industrial processes in which materials are exposed to (very) high temperatures. Refractory materials are employed not
only to withstand these high temperatures, but also because of their favourable physical properties at these temperatures.
Particularly nuclear reactors are known for the extreme conditions of temperature at which the fuel materials have to
operate during several years, in combination with radiation from the fission process. The performance of the fuel, as
well as the cladding, is key for the safety of the system and needs, thus, be understood in detail.
Scientists and engineers striving to
improve the safety margins of a
particular technology, as well as its
efficiency and competitiveness, often
do that by developing new materials
or by optimizing existing ones. For
instance, in recent years there has
been renewed interest in SiC-based
composite materials and in so-called
ultra-high-temperature ceramics. For
example, they are investigated as
cladding for enhanced accident
tolerant fuel in nuclear power plants,
or as components of gas turbine
aerospace engines. In these cases
design-base and beyond-design-base
accident scenarios need to be
simulated, during which materials
would be exposed to exceedingly high
temperatures.
Reliable values of thermophysical
properties of materials at very high
temperatures, however, are typically
scarce, increasingly uncertain with
temperature, and sometimes contradictory.
These measurements are
indeed challenging. Moreover, when
employing such data in analyses and
simulations that are used for licensing
of nuclear power plants and risk
assessment in general, it is important
to ensure their traceability to national
or international standards and
to establish credible measurement
uncertainties. This requires appropriate
standard reference materials
and reference facilities that can be
used to validate a measurement
technique.
Project description
Hi-TRACE is a project aiming to close
this gap by developing reference
facilities and validating measurement
methods, complete with measurement
uncertainty budgets, for several technologically
important thermophysical
properties at temperatures up to
3,000 °C. Its full title is ‘Industrial
process optimisation through improved
metrology of thermo physical properties’.
It brings together eleven partners
from five European countries: four
National Metrology Institutes (NMIs)
or Designated Institutes (DIs), three
industrial partners, two universities,
and two research centres (see Table 1).
The project is receiving funding
through EMPIR, the European Metrology
Programme for Innovation and
Research, which is co-financed by the
Participating States and the European
Union’s Horizon 2020 research and
innovation programme. It was
kicked-off in July 2018 and will run
for three years with a budget of about
1.6 million Euros.
The project’s work packages
address the measurement of thermal
diffusivity, specific heat, emissivity
and melting temperature up to
3,000 °C, as well as the quantification
of de-bonding between solid materials
Full name
Laboratoire national de métrologie et d’essais (LNE)
NPL Management Limited (NPL)
Physikalisch-Technische Bundesanstalt (PTB)
Institut Za Nuklearne Nauke Vinča
ArianeGroup SAS
NETZSCH Gerätebau GmbH
Commissariat à l’énergie atomique
et aux énergies alternatives
Hochschule für Angewandte Wissenschaften
Würzburg-Schweinfurt (FHWS)
Technische Universität Graz (TUG)
Bayerisches Zentrum
für Angewandte Energieforschung e.V. (ZAE Bayern)
European Commission, Joint Research Centre (JRC)
| Tab. 1.
Project partners.
| Fig. 1.
Hi-Trace: Topics.
and the resulting change in thermal
contact resistance (see Table 2).
These thermophysical properties are
significant for their role in heat
transfer and in thermal management/
thermal protection systems. In
addition, the knowledge of a material’s
emissivity is essential for optical
temperature measurements, including
thermography, which is
often the only viable option due
Country
France
United Kingdom
Germany
Republic of Serbia
France
Germany
France
Germany
Austria
Germany
European Commission
Research and Innovation
Improved Metrology of Thermophysical Properties at Very High Temperatures: The EMPIR Project Hi-TRACE ı Konstantinos Boboridis and Bruno Hay
atw Vol. 65 (2020) | Issue 3 ı March
WP N°
WP1
WP2
WP3
WP4
WP5
WP6
| Tab. 2.
Work packages.
Work package title
Establishment of traceability for thermal diffusivity measurements
at temperatures up to 3000 °C
Establishment of traceability for specific heat measurements
at temperatures up to 3000 °C
Establishment of traceability for emissivity measurements and improved
metrology for temperature of fusion at temperatures up to 3000 °C
Establishment of methods for quantifying de-bonding
at high temperatures (above 1000 °C)
Creating impact
Management and coordination
of good practice guides for calibration
and measurement of these thermophysical
properties. A workshop for
the end-user community will be
organised and e-learning modules
will be prepared. Finally, the datasets
generated in the inter-laboratory
comparisons will be made available
through open repositories, as long as
they are not covered by confidentiality
agreements with the industrial
partners.
More information, including
contact information, can be found
on the project’s website (https://
hi-trace.eu).
Acknowledgement
This project has received funding from
the EMPIR programme co-financed by
the Participating States and from the
European Union’s Horizon 2020
research and innovation programme.
This article is written on behalf of all
partners listed in Table 1.
RESEARCH AND INNOVATION 141
| Fig. 2.
Emissivity and Temperature of Fusion.
to the very high temperatures involved
or other parameters such as
limited access and fast response time.
Reference facilities are currently
being developed by the involved NMIs
and DIs for thermal diffusivity, specific
heat, and emissivity measurements
at very high temperatures. These
facilities will then undergo a metrological
validation before being used
to characterise refractory materials
of technological significance at
the highest temperatures possible.
Existing setups and measurement
techniques, already in use by the
industrial and academic partners,
will be validated against the newly
| Fig. 3.
Temperature rise distribution on the rear
face half-way through the test. — NPL Matlab
model.
developed facilities. Techniques for
measuring the melting temperature of
refractory materials will benefit from
the emissivity data generated by the
project. In addition, techniques are
being developed to quantify the state
of the mechanical adhesion of solid
materials, in particular functional
layers for thermal or corrosion protection
above 1,000 °C, by knowledge
of the thermal contact resistance.
They will be validated in a second step
using well-characterised multilayer
artefacts suitable for high temperatures,
which will also be developed in
the frame of this project.
The project is coordinated by the
French National Metrology Institute
(LNE). An advisory board has been
set up to regularly review progress and
provide guidance in terms of relevance
for the end users. Particular importance
is placed upon ensuring the
widest possible dissemination of the
knowledge generated within the
project, including to standards bodies,
as well as collecting feedback from
end users, such as instrumentation
manufacturers, actors in aerospace,
nuclear energy, additive and conventional
manufacturing involving
very high temperatures. Inter-laboratory
comparisons organised during
the project will lead to the publication
Authors
Konstantinos Boboridis
European Commission
Joint Research Centre (JRC)
Karlsruhe, Germany
Bruno Hay
Laboratoire national de métrologie
et d’essais (LNE)
Trappes, France
Research and Innovation
Improved Metrology of Thermophysical Properties at Very High Temperatures: The EMPIR Project Hi-TRACE ı Konstantinos Boboridis and Bruno Hay
atw Vol. 65 (2020) | Issue 3 ı March
RESEARCH AND INNOVATION 142
Neutronic Simulation of ALFRED Core
Using MCNPX Code
Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi
Introduction Throughout history, energy has played a fundamental role in human’s progress living. To promote
nuclear power to meet the future energy needs, ten countries including Argentina, South Africa, the United States, the
United Kingdom, Brazil, Japan, Switzerland, France, Canada and Korea in a global effort (Generation IV International
Forum – GIF) have agreed to investigate the next generation of nuclear energy systems known as 4 th generation [1].
These reactors are expected to enter the market after 2030. Fundamental changes in the configuration of the systems
and the forms of the old reactors have led to the production of new reactors, which require basic research and
development, careful examination, and the construction of semi-industrial units. The capabilities of fourth-generation
reactors are seawater desalination, and thermal applications in addition to the production of electricity. In 2000, the
founding countries of GIF formed their first meeting to discuss the need for conduct research on the design of
next-generation reactors. Subsequently, a strategy was put forward to direct the activities, and the implementation
responsibility was assigned to the US Department of Energy. In this research, we investigate the neutron behavior of the
advanced reactor core with lead coolant ALFRED. The purpose of the neutron calculations of the core of a reactor is to
calculate the distribution of neutron flux in the center and to calculate the effective reproduction coefficient. Given the
necessity of performing lattice pitch neutron calculations, it is initially required to determine the real geometry of the
core, as well as the order and fuel richness, the lattice pitch the grid, the radius and height of the fuel rods, the
composition and location of the fuel absorbents, the types and locations of the control rods, the fuel complex
arrangement, and radial and axial peaking factor. The MCNPX code is used to perform neutron calculations.
This calculation is done by the MCNPX
code using the Monte Carlo statistical
method. The following six reactors
have been categorized as the 4 th
generation reactors:
1. Gas-Cooled Fast Reactor (GFR)
2. Lead-Cooled Fast Reactor (LFR)
3. Molten Salt Reactor (MSR)
4. Sodium-Cooled Fast Reactor (SFR)
5. Supercritical Water-Cooled Reactor
(SCWR)
6. Very High-Temperature Reactor
(VHTR)
LFR is one of the six advanced 4 th
generation reactors. In recent years,
this kind of reactor has attracted a lot
of attention of the world, and specially
recently countries such as Russia,
America and Germany have always
Parameter Unit Values
Thermal power MW 300
Active height cm 60
Pellet hollow diameter mm 2
Pellet radius mm 4.5
Gap thickness mm 0.15
Clad thickness mm 0.6
Pin diameter mm 10.5
Wrapper thickness mm 4
Distance between 2 wrappers mm 5
Coolant velocity m s -1 ~1.4
Lattice pitch (hexagonal) mm 13.86
Pins per FA - 127
Inner vessel radius cm 165
| Tab. 1.
Main specifications of ALFRED reactor [3].
| Fig. 1.
View of the ALFRED reactor [3].
been interested in this topic. LFR
systems have excellent material
handling capabilities due to the use of
a fast neutron spectrum, and they use
a closed fuel cycle to convert more
efficiently the enriched uranium.
It can also, as an actinide burner,
consume the spent fuel of light water
reactors (LWRs) or be used as an
adiabatic reactor (able to burn off its
produced actinide wastes).
Method and material
1 Technical description
of ALFRED reactor
As stated, the program of the ALFRED
reactor is within the framework of
the LEADER project. The purpose of
the ALFRED project is to analyze
the various aspects of lead cooling
technology in fast reactors. This
project has, therefore, a significant
role as ETDR (European Technology
Demonstrator Reactor) in the technology
chain. The ALFRED reactor
design includes a 125 MW electric
power reactor with lead coolant.
Figure 1 shows a schematic illustration
of this reactor.
Some geometric parameters of the
ALFRED reactor are shown in Table 1.
The core of this reactor has a hexagonal
grid of 171 fuel assemblies (FA),
12 control bars (CR), four safety bars
(SR) and 108 empty bars. A schematic
illustration of the core of this reactor is
shown in Figure 2.
Research and Innovation
Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi
atw Vol. 65 (2020) | Issue 3 ı March
| Fig. 2.
Schematic illustration of the core of the ALFRED reactor [3].
The reactor has eight steam
generators that are symmetrically
placed in the safe container of the
reactor as the modular reactors. A
schematic illustration of the steam
generators of this reactor and its
characteristics are shown in Figure 3.
2 Reactor kinetic calculations
Two important parameters in the neutron
kinetic calculations of the reactor
are the fraction of effective delayed
neutrons (β eff ) and prompt neutron
life (I p ). Delayed neutron fractions are
calculated by taking the TOTNU card
with the No input in the MCNPX code
and using the following equation:
the reactor core is simulated with 1
million particles and 150 cycles using
the KCODE command used for critical
computing springs. The neutron parameters
that have been calculated in
this study are effective reproduction
coefficient (k eff ), excess reactivity
(ρ ex ), average neutron production
time (∧), and distribution of radial
and axial neutron flux.
Results
| Fig. 3.
ALFRED reactor steam generator [3].
Criticality and
kinetic calculations
The calculation of the criticality of the
reactor by considering 10 %, 20 %,
50 % of the control rods inside the
core and the effective reproduction
coefficient (k eff ) are shown in Table 2.
The amount of reactor excess
reactivity is calculated using the
following equation:
ρ ex = (k eff - 1) / k eff
Conclusion
The purpose of this study was to
simulate and obtain neutron parameters
and calculate the criticality
and kinetic parameters of the reactor
in the initial state, taking into account
10 to 50 percent of the control rods in
the reactor core and the Axial and
radial distributions of the flux of the
RESEARCH AND INNOVATION 143
(1)
In this formula, K eff is the effective
multiplication factor for the total
delayed and prompt neutrons and k p is
the effective multiplication factor for
prompt neutrons. The lifetime of the
prompt neutrons (I p ) in MCNPX code
2.6 can be obtained at the standard
code output by calculating the effective
multiplication factor for prompt
neutrons.
Parameter CR10 % CR20 % CR50 % CR ZR+HF
K eff 1.08255 1.07483 1.04200 1.00583 1.08879
ρ ex 0.07625 0.06962 0.04030 0.00579 0.08154
Λ 0.9237 0.9303 0.9596 0.9942 0.9184
| Tab. 2.
ALFRED criticality and kinetic calculations.
k p = 1.00279
β eff = 1-(1.00279/1.00653)
= 0.003716
I p = 1.92 × 10 -6
3 Simulation of the
ALFRED reactor
with MCNPX 2.6 code
In this research, the ALFRED reactor is
simulated using the information
contained in MCNPX 2.6. In this code,
| Fig. 4.
Axial flux Distribution of reactor core.
Research and Innovation
Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi
atw Vol. 65 (2020) | Issue 3 ı March
RESEARCH AND INNOVATION 144
reactor core. The analysis of the
results shows that the effective
propagation coefficient is, at best,
equal to 1. 00583 and its changes by
inserting the control rods to approximately
one. For more accurate estimation,
it is recommended to carry
out thermal hydraulics calculations
considering the distribution of
neutron flux, and the results should
be compared with the estimates.
References
[1] SNETP (2013). Strategic Research and Innovation Agenda,
Paris, France.
[2] LEADER project, www.leader-FP7.eu.
[3] Frogheri, M., Alemberti, A., Mansani, L. (2013). “The Lead
Fast Reactor: Demonstrator (ALFRED) and ELFR Design”,
International Conference on Fast Reactors and Related Fuel
Cycles: Safe Technologies and Sustainable Scenarios (FR13),
Paris, France.
[4] Grasso, G., Petrovich, C., Mikityuk, K., Mattioli, D., Manni, F.,
Gugiu, D. (2013). “Demonstrating the effectiveness of the
European LFR concept: the ALFRED core design”, (FR13),
Paris, France.
[5] Artioli, C., Grasso, G., Petrovich, C. (2010). “A new paradigm
for core design aimed at the sustainability of nuclear energy:
The solution of the extended equilibrium state”, Ann. Nucl.
En. 37(7):915-922.
[6] Alemberti, A., Mansani, L., Grasso, G., Mattioli, D., Roelofs, F.,
De Bruyn, D. (2013). “The European Lead Fast Reactor
Strategy and the Roadmap for the Demonstrator ALFRED”,
(FR13), Paris, France.
[7] Bubelis, E., Schikorr, M., Frogheri, M., Mansani, L., Bandini,
G., Burgazzi, L., Mikityuk, K., Zhang, Y., Lo Frano, R., Forgione,
N. (2013). “LFR safety approach and main ELFR safety
analysis results” (FR13), Paris, France.
[8] Bubelis, E., Schikorr, M., Mansani, L., Bandini, G., Mikityuk,
K., Zhang, Y., Geffraye, G. (2013). “Safety analysis results of
the DBC transients performed for the ALFRED reactor” (FR13),
Paris
[9] Bandini, G., Bubelis, E., Schikorr, M., Stempnievicz, M.H., Lázaro,
A., Tucek, K. Kudinov, P., Kööp, K., Jeltsov, M., Mansani,
L. (2013). “Safety Analysis Results of Representative DEC Accidental
Transients for the ALFRED Reactor” (FR13), Paris,
France.
[10] ARCADIA project, http://arcadiaproject.eu.
[11] Toshinsky, G.I., Grigoriev, O.G., Efimov, E.I., Leonchuk, M.P.,
Novikova, N.N. (2002). “Safety Aspects of SVBR-75/100
Reactor”, Advanced Nuclear Reactor Safety Issues and
Research Needs, Proceedings of OECD/NEA Workshop, Paris,
France.
[12] Adamov, E.O. (2001). “White Book of Nuclear Power”,
N.A. Dollezhal Research Development Institute of Power
Engineering, Moscow, Russia.
[13] Novikova, N., Pashkin, Y., Chekunov, V. (1999). “Some
Features of Sub-Critical Blankets Cooled with Lead-Bismuth”,
Proceedings of ADTTA’99, Praha, Czech Republic.
[14] Wider, H., Carlsson, J., Dietze, K., Konys, J. (2003). “Heavy-
Metal Cooled Reactors – Pros and Cons”, Proceedings of GLO-
BAL’03, New Orleans, USA.
[15] Tucek, K., Wallenius, J., Gudowski, W. (2004). “Coolant Void
Worth in Fast Breeder Reactors and Accelerator-driven
Transuranium and Minor-Actinide Burners”, Annals of
Nuclear Energy, Vol. 31, p. 1783.
| Fig. 5.
Radial flux distribution of reactor core.
Authors
Korosh Rahbari
Darush Masti
Department of Nuclear
Engineering
Bushehr Branch
Islamic Azad University
Bushehr, Iran
Kamran Serpanloo
Ehsan Zarifi
Reactor and Nuclear Safety School
Nuclear Science and Technology
Research Institute (NSTRI)
Tehran, Iran
| Fig. 5.
Radial flux distribution of reactor core.
Research and Innovation
Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi
atw Vol. 65 (2020) | Issue 3 ı March
The Dual Fluid Reactor – An Innovative
Fast Nuclear-Reactor Concept
with High Efficiency and Total Burnup
Jan-Christian Lewitz, Armin Huke, Götz Ruprecht, Daniel Weißbach, Stephan Gottlieb, Ahmed Hussein
and Konrad Czerski
1 Introduction In the early decades of nuclear fission power technology development, most of the possible
implementations were at least considered in studies and many were tested in experimental facilities as have been most
of the types of the Generation IV canon. Uranium enrichment and fuel reprocessing with the wet chemical PUREX
process for today’s reactors originated from the Manhattan project in order to gain weapons-grade fissile material.
The use of fuel elements in light water
reactors originated from the propulsion
systems of naval vessels like
submarines and carriers.
A sound measure for the overall
efficiency and economy of a power
plant is the EROI (Energy Return on
Investment). The known problem of
solid fuel elements in power reactors
is fission product accumulation during
operation requiring heavy safety
measures to avoid a core meltdown.
These measures reduce the EROI for
today’s Pressurized Water Reactors
(PWRs) to values of about 75 (Sec. 9)
which is only a factor of 2 higher than
for fossil-fired power plants. This is
in fact surprisingly low compared
with the possible maximum EROI for
nuclear energy of 10,000 (Sec. 9).
Unfortunately, most Generation IV
reactor concepts except the Molten
Salt Fast Reactor (MSFR, see below)
are again based on solid fuel technology.
For the probably most intensively
developed breeder technology,
the Sodium-Cooled Fast Reactor SFR
(or the Traveling-wave variant, Terrapower’s
TP-1), sodium has been chosen
as the coolant. It has aggressive
chemical reactivity with air, water and
structural materials as well as a high
neutron reaction cross section with
the possibility of a temporary positive
void coefficient. These properties
require a reactor pressure vessel,
double- walled piping, and an intermediary
cooling cycle. In effect, all
this sums up to expenses which double
the electricity production costs of the
SFR relative to a PWR as calculated for
the Superphénix class.
Hence Generation III and most of
Generation IV nuclear power plants
are in danger of losing competition
against fossil fired power plants,
especially in the advent of the shale
gas exploitation.
The Dual Fluid Reactor (DFR)
concept presented here is designed
with respect to the EROI-measure and
to passive safety standards according
to the KISS (keep-it-simple-and-safe)
principle and with attention to
current- state technology in mechanical,
plant and chemical engineering
for a speedy implementation.
There was a gap in the reactor
concepts of the past with a high
development potential for the present
and the future. A DFR power plant
could exploit the potential of nuclear
fission power with an EROI two orders
of magnitude higher than fossil fired
power plants.
2 Basic principle
The Dual Fluid Reactor (DFR) is a
heterogeneous fast reactor with a
liquid fuel and a liquid coolant
whereby both flow through the
reactor core. Separation of cooling
and fuel supply function is achieved
by an interconnected array of fuel
conduits immersed in the coolant
liquid. Both cycles can now be optimized
for their respective purpose.
This has many advantages to a MSFR,
where both functions must be satisfied
by one liquid in a trade-off
between high-temperature fuel, lowtemperature
cooling, and an acceptable
heat capacity.
The coolant liquid should have the
highest possible heat transportation
capability and best neutronic properties.
Pure molten Lead has low neutron
capture cross-sections, a low moderation
capability, and a very suitable
liquid phase temperature range. For
the fuel, it is possible to employ
undiluted fissionable material as
opposed to a MSFR that works with
less than 20 % actinide fluoride, see
Sec. 4 for details. Consequently, a DFR
has increased power density, small
core volume and very hard neutron
spectrum that further improves the
neutron economy. Additional benefits
of liquid metal coolant comprise the
application of magneto hydrodynamic
techniques both for pumping and,
possibly in the future, direct elec tricity
generation because of the high concentration
of charge carriers.
Furthermore, the reactor core and
primary coolant loop can operate at
normal pressure which allows for
simple and cost regressive size- scaling.
Figure 1 explains the synergetic
effects. The Dual Fluid Principle opens
the possibility of a liquid fuel with
high actinide concentration in combination
with a coolant with high
heat transfer capability, which leads
to a high-power density. Liquid fuel
like in a MSR already reduces the
consumption of structural materials
compared with solid fuel reactors,
| Fig. 1.
The flow chart shows the advantages of the Dual Fluid principle partially depending on each other.
It is essential for the understanding of the synergetic effects.
RESEARCH AND INNOVATION 145
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
RESEARCH AND INNOVATION 146
but the power density is limited.
In the DFR, both positive properties
can be combined which leads to a
massive reduction of structural materials.
At high operating temperatures
(needed when using an undiluted salt,
see Sec. 7), corrosion of core structural
materials limits the choices of
such materials. However, corrosion
resistant materials at high temperatures
do exist, but they are quite
expensive. Using such materials in a
DFR design has little effect on its
economy due to its small size, low
material inventory, and the absence of
any parts that need be to replaced
periodically.
On the other hand, the use of such
expensive corrosion resistant ma terials
in a MSR has adverse economic effects
due to its high inventory of structural
material. Thus, the temperature of a
MSR is limited and the MSR research
was focused in the past on finding suitable
eutectic salt mixtures, also complicating
the production and reprocessing
techniques. For the DFR, very simple
state-of-art techniques can be applied,
see Sec. 4.2.
Another comparison can be made
with the Generation IV concept of the
Lead-cooled Fast Reactor, LFR. Again,
due to economic reasons, the wall
material of the exchangeable fuel rods
must be cheap, which focused the research
on finding suitable steel alloys.
They yet have a higher lead corrosion
susceptibility than the expensive
materials intended for the DFR design,
therefore also limiting the operating
temperature. Due to these material
restrictions, both, LFR and MSR,
are not able to achieve operating
tem peratures suitable for economic
hydrogen production from water.
These restrictions do not exist for
the DFR.
Contrary to a MSFR, DFR’s liquid
fuel is not limited to actinide salts,
but it is the current reference design.
However, an alternative could be a
solder-like melt of a metal alloy made
up of actinides and, if necessary, metals
with low melting points in order to
reduce the solidus temperature of the
alloy and gain a pumpable fluid. The
advantage would be an even higher
power density due to better heat
transportation capability, and a possible
higher operating temperature due
to the lower corrosive potential of the
metal alloy. The basic design, then, allows
for a high degree of possibilities
which can be trimmed to a specific
purpose. These concepts will be discussed
briefly in Sec. 4.2.
| Fig. 2.
Possible power plant based on the DFR, with the nuclear part including the core, the pyro-processing
unit (PPU), disposal and decay heat dump (left hand side) and the conventional part with the heat
exchanger and turbines (right hand side). The compactness allows for a subterranean installation.
| Fig. 3.
DFR fuel and cooling loop. The fuel circulates between the PPU (which is also connected to the short-lived
fission products storage) and the core whereas the coolant loop connects the fissile zone to the conventional
part, also cooling the fission product storage. PPU, core and fission product storage are equipped
with a fuse plug.
As a result, a new concept not
fitting into one of the Generation-IV
reactor developments has been invented.
It foresees a compact core with
a very high power density, an operating
temperature of about 1,000 °C, inherits
MSFR’s passive safety features,
and has hard neutron spectrum. The
abundant neutron excess can be used
for multiple transmutation purposes,
like nuclear waste incineration, and
breeding for 238 U and 232 Th cycles.
All this produces a nuclear power
plant with an outstanding economic
competitiveness.
3 System overview
Figure 2 shows how a DFR reference
power plant might look like. The
reference design has a power output
of 3 GW th and an electric output of
1.5 GW e which is currently the typical
nuclear power plant size for the
electric grid of industrialized countries.
But also, power-sizes even down
to approx. 35 M GW e are possible,
depending on markets demands. Due
to its compact size, the nuclear part
can reside in a sub terranean bunker
that can withstand high magnitude
earthquakes, direct aircraft impacts
and non-concen trated conventional
military attacks. The conventional
part can utilize supercritical water or
supercritical CO 2 (see Sec. 8.1) and is
not fortified for economic reasons, but
fortification to any desired degree can
easily be achieved.
3.1 Fuel and coolant loop
Since the cooling function is sepa rated
from the liquid fuel, the circulation
of the fuel can be adjusted to nuclear
purposes like maximum burn-up,
transuranic incineration, isotope production,
fertile material conversion
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
| Fig. 4.
DFR core details. The cubic core (without
blanket here) includes a pipe system filled
with fuel salt which is connected to the fuel
loop (with fuse plugs) and immersed in
flowing Lead (coolant loop).
(breeding), specific deactivation of
fission products, etc. Figure 3 depicts
the reactor core as well as the fuel loop
and the primary coolant loop. The
liquid fuel enters the core vessel at the
bottom, spreads over a system of vertical
tubes where it becomes critical, and
leaves the reactor on top towards the
Pyrochemical Processing Unit (PPU).
The Lead coolant supply pipes have
a large cross section in order to reduce
the circulation speed and therefore
reducing the abrasion at the surface
materials. It circulates with a rate of
90 tons/s (10 m 3 /s). When it enters
the core vessel from the bottom it
takes the heat from the fuel duct by
conduction and leaves the vessel on
top towards the heat exchanger.
Depending on the power needed,
part of the Lead’s heat is taken for
electricity production or as process
heat. The Lead leaves the exchanger at
a lower temperature and is pumped
back to the reactor vessel.
This can be accomplished by an
impeller pump which produces a
steady stream without generating
sonic shock oscillations in the liquid
metal. For maintenance, the Lead
coolant can also be drained at the
bottom of the reactor vessel into a
temporary coolant storage from
where it can be pumped back into the
reactor vessel.
3.2. DFR core
The reference plant uses a mixture
of actinide-salts as fuel. It has a
cylindrical core with diameter and
height of about 3 m for the critical
zone. It contains 10,000 vertical ducts
(the number is reduced in Figure 4
and Figure 5 for illustration reasons).
Figure 4 is a simplified draft of
the core depicting the principle. An
actual core CAD model is depicted in
Figure 5.
| Fig. 5.
Left: DFR core inlet region, cylindrical design. The reflector region is located directly below the lateral salt
feed tubes, surrounded by the blanket region.
Right: Schematics of the inlet. In the inlet region, the salt surrounds the Lead tubes and enters the salt
tubes in the core. This ensures equal pressure on all salt tubes.
The parallel arrangement of the
fuel tubes guarantees a quick drainage
of the fuel liquid within minutes while
the high number of tubes provides
sufficient surface for the heat transfer
to the surrounding coolant. An equal
flow velocity through all vertical rods
is desirable and is achieved by a
horizontal- flow inlet zone with baffle
plates providing equal pressure
differences at the vertical junctions.
An additional outer volume filled
with Lead serves as a neutron reflector
reducing the loss of neutrons and
contributing to the reactivity regulation.
The separation walls have small
vents at the top and bottom in order to
correspond with the Lead loop. A
further fertile blanket, with simple
structure, can increase the conversion
ratio remarkably.
| Fig. 6.
Heat transfer from inside of a single fuel pipe
to the coolant. The temperature gradient is
calculated in three zones: The turbulence layer
of the fuel liquid (salt => inner pipe wall), the
tube wall itself and the turbulence layer of the
liquid Lead (outer pipe wall => Lead). Values
are for high salt velocities and MHC pipes.
Temperature gradient for SiC is about twice.
While passing the core region
through the conduit array more and
more actinides are fissioned and
transmuted and the fuel changes its
chemical composition. The fuel
volume of the reference plant is
only a few cubic meters, which
further simplifies its handling and
processing.
3.3 Heat transfer
Figure 6 shows the heat transport.
Inside the fuel tubes where the
heat is generated the temperature
has its maximum. In a region of only
1 mm towards the tube wall the
temperature drops by 270 °C, inside
the wall by up to 85 °C, and up to
0.5 mm outside the wall another
50 °C, so the total radial temperature
drop is roughly 400 °C. The Lead
coolant moves from the bottom
to the top which defines the Lead
temperatures at those points to
750 °C and 1,000 °C, respectively.
Consequently, the temperature inside
the fuel (tube center, not at the
walls) is 1,150 °C at the bottom
and 1,400 °C at the top which
defines the highest absolute temperature
in the reactor core. Since
the bottom salt temperature at the
tube inner wall is above the melting
temperature in all operational states,
the salt will not freeze out. At normal
operating condition the tube inner
wall temperatures are 840 °C and
1,090 °C for the bottom and top
region, respectively, compared to
the salt melting point of about
800 °C. The maximum allowed variation
of the Lead temperature is
+/- 30 K, still allowing for molten
fuel in all cases. These tube wall
salt temperatures are 840 °C and
1,090 °C for the bottom and top
region, respectively, compared to the
salt melting point of about 800 °C.
RESEARCH AND INNOVATION 147
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
RESEARCH AND INNOVATION 148
| Fig. 7.
Close-up of the DFR core region with part of the coolant cycle and the shortlived
fission products storage inside the coolant conduit ahead of the core.
3.4 Tank for short-lived fission
products
Highly radioactive and heat generating
fission products with half-lives
of weeks to months pose the main
problem for reactors with solid fuel
rods and cause core meltdown unless
sufficiently cooled. In the DFR like the
MSFR these fission products are
regularly separated from the fuel
liquid so that the core contains only
few quantities of fission products and
its handling in case of an emergency is
unproblematic. However, the problem
is then transferred to the storage of
the fission products. In the DFR, this
problem is solved by storing the shortlived
fission product salts, roughly
1 m 3 , in the pipes of a special coolant
duct segment shown at the bottom
part of Figure 7, just before the Lead
reaches the core, where they are
cooled by the liquid Lead stream
during normal operation of the plant.
The molten salts of the short-lived
products slowly revolve through
this tank as well as the PPU. In case of
an emergency or maintenance shutdown,
they will be drained through
a melting fuse plug, similar to the
fuse plug used for the reactor core, see
next chapter.
3.5 Melting fuse and
subcritical heat storage
Melting fuse plugs, already proven
and tested in the Oak Ridge Molten
Salt Reactor Experiment (MSRE), are
used in the DFR for the short-lived
fission products tank and for the
reactor core (green plug below the
core and the tank). It is essentially a
pipe segment which is actively cooled
with a constant heat transportation
such that the fuel inside this segment
just freezes out.
The cooling power of the fuse is
fixed, so that the plug does not yet
melt at 1,000 °C. In case of an emergency,
i.e. higher core temperatures or
loss of power, or for an intended fuse
plug cooling power-off in a regular
shutdown, the fuel heat power will
melt the plug open and the fuel is
drained by gravity into the subcritical
tanks.
The subcritical tanks (see Figure
2) are used for fuel inventory and the
concentrated highly radioactive shortlived
fission products from the storage
in the main coolant loop. Each of the
tanks has a capacity for a subcritical
mass of the liquid fuel only. They
are embedded in a volume filled with
salt or metal (e.g. iron, assembled
from ‘Lego’-like bricks, establishing
full heat contact by temperature
expansion) which transduces the
quickly fading heat energy passively
through the outer walls to the surrounding.
The heat production lowers from
200 MW (emitted from the core)
immediately after shutdown to some
5 MW (from the coolant duct segment)
after 12 days. The salt remains
liquid for several days and can be
pumped up, entering the fuel loop
again. After longer storage, a preheating
system is to be used.
3.6 Fission product treatment
The PPU removes the fission products
from the liquid fuel and replenishes
it with fresh actinides that may come
from natural/depleted uranium, used
fuel elements, and thorium at a
consumption rate of 1,200 kg/year.
Fission products are sorted by
chemical elements and the longer
living (half- lives of years to decades)
are cast into small globes which are
packed and hermetically sealed in
ripple tubes. The tubes are transferred
to a decay storage bunker below by a
remote transfer system (also indicated
in Figure 2). The bunker can store all
fission products, 500 kg/year, produced
during whole life-time of the
reactor. The sorted fission products
can be removed according to their
half-life.
90 % of all fission products can be
removed after 100 years, providing
valuable and rare metals. The
medium- lived fission products decay
within 300 years and may remain in
the storage for that time. The ripple
tubes inside the storage are passively
cooled by ambient air utilizing the
stack effect.
Long-lived fission products are
sent back into the reactor core for
transmutation.
4 Liquid fuel and
its processing
The employment of a liquid fuel
eliminates the need for the costly fuel
element infrastructure industry and
replaces it with online processing of
the fuel. In principal, it is possible
to consider all chemical separation
methods in the reprocessing of
nuclear fuel, since the radioactivity is
a subordinated problem. This, however,
is not true for the presently
applied PUREX process, as shown in
the following.
4.1 Present reprocessing
technologies
Originating from the weapon production,
the usual aqueous organic
reprocessing techniques like PUREX
are performed off-site. As the chemical
processes proceed slowly at normal
temperatures large volumes of consumed
auxiliary chemicals with
medium and low radioactivity are
required and have to be dumped. In
order to limit this additional nuclear
waste, spent fuel elements need to be
stored for at least 1 year, in practice
rather 5–10 years, before starting the
PUREX processing, otherwise the
expensive organic solvents are
destroyed by the intense radiolysis
and therefore have to be replaced very
often. Hence, the radioactivity of the
fuel has an eminent relevance here.
The class of aqueous organic reprocessing
techniques is inappropriate for
online fuel processing. A real progress
was made by implementation of the
reprocessing inside the Integral Fast
Reactor (IFR). It uses electro-refining,
a long-known method in metallurgy,
for the separation of the fission
products: The metallic fuel is converted
to a salt which in turn is used
for the electrolysis wherein the
actinides deposit at the electrode and
the fission products mainly remain in
the molten salt. This manageable
reprocessing unit was used on-site of
an IFR plant. After the IFR program
was canceled its successor, the
S-PRISM reactor, inherited the process,
though in a central off-site
processing facility.
A possible online reprocessing
technique was tested for the MSFR –
a dry method with a vapor-phase
fluoride- salt distillation system as the
main component where the metal
salts are separated by boiling points.
However, many fluorides have very
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
high boiling points so that additional
fluorination is required and yet metal
fluorides remain in a slurry needing
further treatment steps. In a MSR, a
real online fuel reprocessing conflicts
with the cooling requirements, therefore
the reactor must be shut down to
branch the fuel into the reprocessing
facility which needs a high capacity in
order to keep the outage time of the
reactor short. Nevertheless, such
pyrochemical processing facilities are
still small in comparison to PUREXlike
methods.
The distillation techniques, and in
particular, the electro-refining techniques
are subject to ongoing development
activities for the Generation IV
reactors as well as a substitute for the
complex wet chemical PUREX reprocessing
plants.
However, online does not necessarily
mean continuous. Batch techniques
may be used as well, provided
the continuously pumped fuel fluid is
intermittently stored in a small buffer
while the previous batch from the
buffer is processed.
None of the present reactor concepts
of the Generation IV provides a
real online fuel reprocessing. This
means that none of these concepts has
all the advantages of a liquid fuel
that could be achieved with a true
online fuel reprocessing like very
low criticality reserves which are a
control issue in solid-fueled reactors,
especially ADS, or MSRs with long
fuel processing periods.
4.2 Fuel processing in the DFR
As pointed out, for online fuel processing
the employed technique must
be congruously fast so only dry high
temperature methods can be considered.
Moreover, the fuel must be
impervious to radiolysis within the
process. The liquid fuel of the DFR for
the reference design is a molten salt,
but could be also a metallic melt as a
future option. Therefore, the DFR concept
is not an MSR variant, and the
reprocessing techniques are different
because of the very different salts.
Due to the ionic nature of the bond in
the case of the salt and the metallic
bond in the case of the metallic melt,
the liquid is impervious to radiolysis
which makes it suitable for physicochemical
separation methods at high
temperatures. These methods will be
used in the PPU of the DFR.
For the possible future concept of a
metallic fuel melt there are several
options ranging from a more heterogeneous
system with liquid plutonium
over a solution of actinides in Pb/Bi/
Sn to a dispersion of solid actinides
and/or actinide compounds in Pb/Bi/
Sn. The prospects of metallic fuels
were already investigated in the
1950s. More precisely, the last option
would be made up of actinides which
are suspended in a melt of metals with
low melting points with a fraction of
up to 75 atom-% which reduce the
solidus temperature of the alloy below
the operating temperature, because
some of the involved actinides have
too high melting points. Suitable metals
with sufficient neutronic properties
are lead, bismuth and tin. The accrued
multi-component alloy does not
necessarily need to be eutectic – even
in the case the liquidus temperature is
above the operating temperature the
mixture is sufficiently pumpable in
this pasty phase. The processing of the
metallic melt can be performed with a
first fractionated distillation step
where the metals with low boiling
points compared with actinides like
Lead, Bismuth and some of the fission
products can be separated and the remaining
slurry is converted to salts
and then distilled as before. Then, the
resulting salt fractions need to be converted
to metals back again by electrolysis
before re-insertion into the reactor
fuel loop.
For the reference concept, molten
salts are used because of their lower
melting points and wider range of experience.
Unlike an MSR chlorides are
adopted since fluoride salts have considerable
moderating quality thus softening
the neutron spectrum and deteriorating
the neutron economy. This
together with the high boiling points
of many of the involved metal fluorides
render fluorine inapplicable.
Higher halogens are more practical
with respect to both properties. For
the metals in the fuel mixture chlorine
salts have sufficiently low boiling
points so that a separation by boiling
points in a fractionated distillation facility
alone becomes feasible.
Hence, the fuel is a binary combination
of only a fertile and a fissile
actinide chloride which can be
238 U/ 239 Pu or 232 Th/ 233 U. It should be
clearly noticed that no carrier salt is
needed or desired, as opposed to current
MSR concepts – this is the advantage
of the Dual Fluid principle. The
fraction of the initial load of reactor-grade
Pu or enriched U depends
on the size of the reactor core because
of neutron losses through the surface.
For the reference plant, it is 23 %
( reactor-grade Pu) or 19 % ( 235 U)
mass fraction according to first static
SERPENT calculations. The maximum
239 Pu fraction required for the smallest
useful set-up can be very high and
is not limited by the reactivity coefficient
of the Doppler- broadening effect
of 238 U while larger cores can manage
smaller fractions. The rest of the fuel
is fertile material like 238 U or 232 Th.
Here, the fuel salt would consist of the
tri-chlorides of the actinides, i.e. UCl 3
and PuCl 3 , which have a suitable
temperature range of the liquid state.
Purified 37 Cl is to be used in order to
avoid neutron losses due to their
capture by 35 Cl and production of the
long-lived radioactive isotope- 36 Cl.
Both previously developed and
tested reprocessing methods of the
Generation IV reactors, fractional distillation
and electro-refining, can also
be employed for the DFR. The capacity
of the PPU can be designed even
much smaller because of the low fuel
volume. In a simple version, the
electro- refining method can be used
in order to purify the fuel salt by
precipitation of a fission product
mixture. For the purpose of specific
transmutation, a more precise partitioning
is required which can only be
accomplished by fractionated distillation/rectification,
which is beyond
the MSFR principle.
Basically, whenever liquid fuels
are used certain preprocessing steps
have to be accomplished in order to
deal with volatile and ‘noble’ fission
products. In the case of a fuel salt and
the fission of plutonium, significant
quantities of metals are produced
which can hardly form chloride
compounds, notably Mo, Ru, and Rh.
In the frame of the Molten Salt Reactor
Experiment (MSRE) this issue was
investigated in the view of the possible
segregation problem of said fission
products. It turned out that the
segregation is not a progressive process
but instead an equilibrium
accrues between segregation and
solvation. This equilibrium level can
be controlled by the overall chemical
potential of the molten salt which may
be adjusted by the quantity of chlorine
ions and possibly certain minor
additives. The chemical potential also
determines the corrosive properties of
the salt. In preprocessing steps the
noble metals in the fuel coming from
the reactor can be precipitated by
bubbling noble gas (He, Ar) through
the fuel salt. The metals precipitate as
platelets at the phase boundary
between the gas bubble and the salt
liquid where they can be subsequently
retrieved by a rake. This makes it
possible to easily separate 99 Mo,
which decays to the important
RESEARCH AND INNOVATION 149
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
RESEARCH AND INNOVATION 150
medical isotope 99m TC, see also sec. 8.
Concurrently to the gas bubbling the
volatile fission products Kr, Xe, Cs and
I 2 are expelled as well and can be
removed easily.
Volatile iodine as well as cesium
can be removed from the fuel loop/
PPU and bound chemically stable.
Since a permanent reprocessing of the
molten salt fuel is possible, only very
few fission products accumulate
so that their integration in the fuel
salt is unproblematic. The low fission
product concentration in the core also
reduces corrosion.
The salt has to remain in the
liquid state during operation which is
assured in the core by the criticality
condition and in the PPU by the
residual heat. A frozen salt would not
damage the reactor but has to be
preheated, e.g. by inductive heating.
Small, possibly mobile, DFR systems
could use a once through cycle,
i.e. they are not connected to a PPU
and use the fuel inventory once. It can
then be exchanged by pumping and
processed in a PPU at a different
location. The fuel’s range can be
extended with a centrifuge which precipitates
some of the fission product
compounds by density separation.
5 Reactor operation and
regulation
5.1 Neutron absorption and
negative temperature
feedback
The PPU fabricates a fuel mixture
that is critical inside the reactor at
the desired operating temperature of
1,000 °C. There are three main effects
which provide negative feedback to
the fission reaction rate by depression
of the neutron flux when the temperature
rises:
1. Doppler broadening of the
resonances in the neutron capture
cross sections increases the
macroscopic neutron capture cross
section.
2. Density decrease of the molten salt
fuel which reduces the fissile nuclei
concentration, the far dominant
effect with dk/dT >= 0.015 $/K
assuming the density decrease of
UCl 3 for the whole salt, where
k is the effective neutron multiplication
factor and T the fuel
tem perature.
3. Density decrease of the molten
Lead reduces the concentration of
the neutron reflecting lead nuclei.
The change in reactivity due to a
temperature induced density change
in the liquid fuel is by far dominant
and almost instantaneous because it is
determined by the speed of sound.
Lead has a high atomic mass and 4
stable isotopes due to nuclear shell
closure. Therefore, it is an excellent
neutron reflector with low moderation
qualities and low isotope- weighted
neutron capture cross section.
These effects together with the
density change cause a strong negative
temperature coefficient in the fast
neutron spectrum.
This is in contrast to liquid Sodium
as coolant which has a higher neutron
capture cross section, higher neutron
moderation and lower reflection
quality which means an increase of
the neutron flux with rising temperature,
i.e. temporal positive temperature
coefficient in several designs.
Furthermore, since the most
abundant Lead isotopes are each at
the end of a decay chain, prolonged
exposure to neutrons can only induce
low radioactivity. The highest stable
Lead isotope, 208 Pb, has the lowest
neutron capture cross section, which
leads back to stable Lead via 208 Pb
(n,c) 209 Pb (b) 209 Bi (n,c) 210 Bi (b)
210 Po (a) 206 Pb. The stable 209 Bi
accumulates slowly, so that only 209 Pb
contributes remarkably to some
activity, decaying with a half-life of
only 3 h and, in contrast to Sodium,
free from gamma radiation. For the
only longer living nuclide, 210 Po (halflife
138 days), even 50 years of reactor
operation and 209 Bi accumulation
leads to an activity just comparable
with natural Uranium. As a result, the
low and gamma-free radioactivity
makes an intermediary cooling loop
obsolete, which further reduces the
expenses, see Sec. 8.1.
Due to its very strong overall
negative temperature coefficient (five
times that of a TRIGA reactor) and
limited fuel heat capacity, the usage of
control rods in a DFR type reactor is
not necessary.
5.2 Startup procedure
To start up the reactor the system is
pre-heated until the coolant and the
fuel salt liquefy. Concurrently the
cooling of the melting fuse plug is
started. The fuel salt is pumped from
the storage tanks to the reactor. At the
tee connector, just below the reactor
some of the fuel fluid branches to the
fuse where it freezes out and plugs it.
As soon as the salt, preheated to
900 °C, slowly moves into the reactor
core it becomes critical.
Thanks to the very strong negative
reactivity coefficient, dominated
by the liquid fuel, an equilibrium
tem perature will be reached very fast,
and it cannot freeze out anymore
(melting temperature at 800 °C).
Now the reactor is regulated by
the described loops (see sec. 3). At
the beginning the fission rate and
correspondingly the power production
is minimal. Then the coolant
pump starts to accelerate the circulation
of the Lead. The discharge of
heat to the heat exchanger causes a
temperature decrease in the reactor
(of course the heat exchanger must be
able to dump the heat energy). The
control loops render the reactor
supercritical until the nominal temperature
is regained and wellbalanced.
This may continue until the
nominal power output is reached.
Conversely, if the Lead circulation
speed is decelerated (also in case of a
malfunction) the temperature in the
reactor increases and it becomes
subcritical until leveled off at the
nominal temperature but with lower
fission rate. In such a manner, the
fission rate in the reactor follows the
power extraction. This can be done actively
by the Lead pumping speed, or
passively by feedback from the
turbine’s electricity generation. There
is no need to control the fission rate
directly in the reactor core (e.g. by
control rods).
The equilibrium (nominal) temperature
is determined by the fraction
of the fissile material in the fuel salt.
The PPU provides the appropriate fuel
salt mixture.
5.3 Shutdown procedure
For a regular shut down the coolant
circulation and the fuse cooling is
stopped and the fuel salt empties to
the storage tanks. The same happens
if the power to the entire plant fails.
Any other reason like malfunction and
sabotage increasing the fraction of the
fissile material raises the equilibrium
temperature. For these incidents,
again the melting fuse plug kicks in.
Consequently, the emergency shut
down is the same as the regular shut
down.
6 Neutron economy
With the U-Pu fuel cycle the fission of
Pu produces a high neutron yield.
Even after regeneration of the Pu fuel
by conversion of fertile 238 U a large
neutron surplus remains. Neutronics
simulation calculations have been
performed (Serpent, OpenMC); preliminary
results, though with no conversion
ratio calculations, are to be
published. If (besides fissile material)
only 238 U is fed into the fuel this
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
neutron surplus will end up as
additional plutonium. In this case (or
similar for 232 Th) the conversion rate
is larger than one and the reactor
works in the breeder mode.
The neutron surplus can also be
used for other transmutation purposes,
e.g. when long-lived fission
products are specifically mixed in the
fuel salt by the PPU. There is still a
considerable neutron surplus when
the reactor transmutes its own longlived
fission products which can be
used to transmute fission products
from waste fuel elements of other
nuclear reactors. Only if this additional
neutron surplus is consumed
otherwise, but not for breeding, the
reactor works as a self-burner, i.e.
conversion rate equal one.
Alternatively, the PPU can mix in
Th or inert materials to even out the
neutron surplus. The fission neutron
yield of 233 U from the Th/U fuel cycle
is considerably lower than for the
plutonium fission. As other fast
neutron breeders, the DFR also can be
operated in the Th/U cycle with a
conversion ratio slightly larger than 1.
The transmutation of its own longlived
fission products may be feasible.
For that, the PPU needs to separate
out and store the 233 Pa until it decays
to 233 U. The PPU can handle the
transition from the U/Pu to the Th/U
fuel cycle continuously.
The fissile material in the fuel
salt may also contain transuranium
elements from waste nuclear fuel
elements. As in the case of fission
product transmutation the PPU would
process chlorine salts made of the fuel
pellets of waste fuel elements separating
the chemical elements by
boiling points. Then the PPU mixes
the fuel salt from the desired actinides
so that the criticality condition in the
core is maintained. In this way, the
sources of fuel are natural uranium,
depleted uranium, nuclear waste, and
thorium. The reference plant can
consume radiotoxic transuranium
elements from burned LWR fuel up to
1,200 kg per year.
One DFR using the U/Pu cycle can
provide the initial fissile charge for
another DFR, where the doubling
time is comparable to the total construction
time of a power plant and
not the limiting factor for deployment.
SFR’s (like the French Superphénix
and the Russian BN) together
with PUREX-reprocessing plants have
doubling times of 30–40 years.
Utilizing the Th/U cycle in water
cooled reactors with fuel elements
would exceed even these long
doubling times. The thorium MSFR
(also known as liquid fluoride thorium
reactor – LFTR or “lifter”) would have
a doubling time of about 25 years.
7 Materials and
fabrications
As mentioned in Sec. 4.2, for a compact
nuclear core a high actinide fraction
is necessary to obtain sufficient
fissioning and breeding capabilities.
Thus, the fuel salt should be undiluted
which renders eutectic compositions
dispensable. This results in elevated
melting points of about 800 °C and
demands high operating temperatures
above 1,000 °C. Therefore, the
materials of the nuclear part must
withstand high-temperature corrosion,
a high neutron flux, and must
have a very good high-temperature
stability and creep strength.
These extremely resistant materials
are known for many decades but
could not be treated in the past. This
includes in particular alloys from the
extended group of refractory metals,
molybdenum- and tungsten-based
alloys, as well as high-performance
industrial ceramics. Meanwhile, however,
fabrication methods are far
advanced, so that such materials
find applications over a widespread
range in the industry, especially
in the chemical industry, mechanical
engineering as well as in the aviation
(nozzles, jet vanes, balance weights).
Their demand is still low but their
technical feasibility has been proven
in the past decades. For this reason,
they are expensive, and current
material research for solid-fuel based
reactors (LWRs, but also most of the
Generation IV concepts) is focused on
replacements like steel and Ni alloys.
This is in contrast to the DFR where
higher material costs play only a
minor role since the material demand
is several times lower than for
LWRs, as also pointed out in Sec. 2
(Figure 1) and Sec. 9. The entire
reactor needs only a few 100 tons of
refractory materials, with only 20 to
50 tons for the core, while the remaining
80–90 percent are in a simple
geometry. The durability and creep
resistance is a central point: it requires
but at the same time enables a core
that needs not to be exchanged.
This point is often not seen by
critics implicitly assuming a dis posable
material technique as equired by
the solid fuel rod tech nology involving
a very restricted view on the material
variety.
Tungsten and Tantalum show much
less corrosion in NdCl 3 – NaCl- KCl or
MgCl 2 – KCl salts compared to
Hastelloy -X or Iron-/Chromium-based
alloys. Molybdenum-based alloys
show a high resistance against both
molten fluorides and, also Niobium
alloys, against Lead. Chloride salts
are significantly less corrosive than
fluorides.
As a further option, new ceramics
may be considered, as coating and in
the form of new fiber backed composite
workpieces.
Silicon carbide (SiC) is known for
its low neutron capture cross-section
and is therefore in the focus of today’s
nuclear material research. Especially
CVD-like SiC, is very resistant against
Lead corrosion at more than 1,000 °C,
even when Lithium is added (Pb-
17Li), where pure Li would dissolve
SiC at 500 °C. Regarding molten salt
corrosion, much less data is available
for SiC. It was tested with NaCl which
has a similar enthalpy like UCl 3 and
showed a good resistance up to 900 °C
even though it was a much less
corrosion-resistant variant (reactionbonded
SiC with Si excess). Compared
to that, CVD-SiC showed a much
higher corrosion resistance. Below
1,200 °C, this material also shows a
high irradiation resistance, whereas
SiC/SiC fibre pieces are less resistant
although the newest generation of
these composites showed a higher
resistance again. Micro crystalline
damages caused by the high neutron
flux as well as thermal stress will be
automatically healed at those high
temperatures (annealing in metals)
and ceramics are more resistant at
elevated temperatures. In the PPU,
there are even less restrictions as
neutron embrittlement and heat conduction
do not play a dominant role
anymore.
Pieces from high-performance
alloys, even from refractory ones, can
be produced by new electron welding
processes, high-pressure sintering and
laser techniques. In particular, the
laser treatment cares for a high-purity
crystal structure (smooth melting) – a
factor very important for the corrosion
resistance. Generally, refractory
compounds are processed with the
methods of the powder metallurgy,
particularly because of their high
melting temperatures and durability.
The sintering process limits the size
and shape of work-parts but new laser
sintering methods might relieve many
restrictions. Even though the fraction
of voids for today’s applications is
still too high, sintering extruders are
capable of producing monolithic pipes
with smooth surfaces. The whole
RESEARCH AND INNOVATION 151
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
RESEARCH AND INNOVATION 152
array can be assembled with electron
beam and/or laser welding in vacuum.
For valves in molten-salt, contactsurface
seals can be used since they
will only by used hourly.
The high operating temperatures
are well above the brittle-ductile
region of refractory metals hindering
strongly an embrittlement, best seen
on Mo-based alloys. Furthermore,
highly-resistant coatings can be
considered. Some refractory alloys
are already ductile between 300 °C
and 500 °C (or lower), e.g. MHC (1Hf-
0.1C-Mo) or TZM (0.5Ti-0.08Zr-
0.02CMo), maybe with some additions
of Rhenium in the 1 %-region.
All operating temperatures (inlet
and outlet) are well between 850 °C
and 1,100 °C, 1,400 °C occur only in the
axial center of the fuel, not at the tube
walls (see Sec. 3.3 and Figure 6). The
thermal expansion coefficients of
refractory alloys are similar to the ones
of ceramics not causing significant
stress or tension, as also can be seen in
turbine parts or high-temperature
furnaces.
The entire core (total dead weight
is a few ten tons) can be produced in a
factory by the methods mentioned
above and deployed on site exclusively
by bolting and screwing or stacking/
clamping in the case of SiC. Possibly
the core must be segmented in order to
ease the exchange of possibly damaged
parts. For the coatings, corrosion resistant
materials (SiC also as structural
material, Si 3 N 4 , AlN in the core, possibly
TiB 2 , B 4 C elsewhere) exist, having
a heat con ductivity similar to Ni. For
isolation, fan and fold sheets can be
used but because of the high neutron
flux the entire core has to be surrounded
by a concrete shield anyway.
8 Applications
Figure 8 depicts possible application.
The high temperature opens the
hydrogen-based chemistry with
synthetic fuels suitable for today’s
vehicles. The low production costs
make these applications competitive
with fossil fuels like gasoline. Further
applications are described in the
following.
8.1 Conventional part
Due to the low and gamma-free radioactivity
of liquid Lead (see Sec. 5.1)
it is possible to extend the primary
coolant loop directly into the conventional
part of the plant. This translates
into a considerable reduction of the
reactor construction cost, as opposed
to Sodium cooled reactors which
require a secondary cooling circuit
due to the high radioactive and
gamma- emitting content of Sodium.
In the conventional part the heat
energy needs to be transduced
from the liquid metal, a medium with
very high heat transport capacity,
to a working medium with considerable
lower heat transport capacity
suitable for turbines. Without further
development, the most cost effective
technique, nowadays, is supercritical
water (scH 2 O) cycle. Albeit the newest
coal fired plants work at 700 °C there
is no principal problem to increase it
to 1,000 °C. Generally, scH 2 O turbines
have more in common with gas
turbines than with steam turbines
since there is no phase change
throughout the whole cycle; so, operating
parameters are quite similar.
The reactivity of water with respect to
its ability as oxidizer increases with
temperature. However, modern gas
turbines are made of very resilient
materials and are capable to get along
with sulphuric acid, dust particles,
and hot steam at 1,400 °C.
Another near future possibility is
the usage of supercritical carbon
dioxide (scCO 2 ) turbines, leading
to more compact machine components
with a slightly higher thermal
effi ciency and significantly reduced
corrosion rates and pressures compared
to scH 2 O turbines. Although
still in development, the experience
and outlook is promising. The corrosion
rates are monitored to be less
than 1 mm per year at 1,000 °C using
industrial INCONEL-MA-754 nickelbase
alloy, decreasing with time. The
alloys used in the DFR are signifi cantly
more corrosion resistant so scCO 2
should be a minor problem.
8.2 Process heat and electricity
If the DFR is employed for process
heat generation the conventional part
may be modified. For process heat
generation only a heat transducer to a
secondary liquid coolant cycle or a
direct heating of a chemical reactor in
close vicinity with the primary coolant
may be used. If a mixed process heat
and electricity generation is desired, a
first indirect heat exchanger which
decouples heat energy at the high
operating temperature may be followed
by a subsequent heat exchanger
which heats at a lower temperature
water in a steam or supercritical water
cycle with a connected turbine.
8.3 Future MHD option
A further possibility is the utilization
of an MHD generator connected to the
Lead coolant loop. Liquid metals are
particularly eligible for that because
of their high concentration of free
charge carriers. The efficiency of the
MHD generator is chiefly limited by
the nozzle which converts the internal
energy of the fluid into directed
stream energy which is then converted
to electricity. The still considerable
residual heat after the MHD generator
may be used in a sub sequent
heat exchanger with a water cycle
as above. Such a system may be significantly
less costly than multiple
turbines.
| Fig. 8.
Possible applications for the DFR.
8.4 Radiotomic chemical
production
The short-lived fission products
storage may be designed in an alternative
way in order to enable the
utilization of the intensive radiation
for radiotomic induction of chemical
reactions requiring high doses
(kGy/s). There is a constant power
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
level of 30 MW of the short-lived
fission products in the reference plant
which may induce a γ-doserate of
0.1–1 MGy/s into compressed gases.
There is a small number of simple
molecules that are the base for several
process chains in industrial chemistry
and result from strong endothermic
reactions which are performed with
high expenses over several steps
frequently employing costly catalyzers.
Here a γ-quantum can directly
provide the required energy by
multiple excitation/ionization of the
educts resulting in a considerable
simplification of the required equipment
and reduction of costs all the
more the radiation source exists
anyway. This possibility was already
described in the past.
Such basic compounds are nitrogen
oxides NO 2 , ozone O 3 , hydrocyanic
acid HCN, and carbon monoxide CO.
Nitrogen oxide and ozone can be
obtained by irradiation of compressed
air. Hydrocyanic acid originates
from methane and nitrogen. Carbon
monoxide results from radiative
dis sociation of carbon dioxide. The
DFR reference plant may produce
10 4-5 tons/year tons/year of these
chemicals.
8.5 Medical Isotope
Production
The radiotracer 99m Tc is a prime
example of a medical application that
would not be possible without a
nuclear reactor.
Seeking an alternative during
the world-wide Molybdenum crisis
2009/2010 failed due to the high
neutron flux required for the production
of the 99m Tc precursor 99 Mo. A
cost-effective production in commercial
reactors seems not to be possible
for several reasons, so it is mainly produced
in research reactors. An expensive
separation process follows, and a
sophisticated logistic chain to finally
deliver the technetium generators to
hospitals is required due to the short
half-life of 99 Mo of only 3 days.
The Nuclear Energy Agency (NEA)
estimates the future 99 Mo world
demand to be 4*10 16 6-days-Bq (10 6
6-days-Ci) per year, corresponding to
a demand of roughly 1 kg (assuming
10 % separation efficiency) directly
from the nuclear fission in LWRs
providing 99 Mo. In contrast, one single
DFR produces at least 30 kg 99 Mo per
year but – more important – already
provides it in a separated form, see
also Sec. 4.2. This strongly reduces
the handling so that a complete
on-site medical-clean production of
the technetium generators are feasible
which further simplifies the logistics
of the delivery to the hospitals. This
could lead to a cost implosion for the
99m Tc radiotracer and therefore to an
inflation of applications.
9 EROI consideration
Energy Return on Investment is
probably the most important factor
to characterize the economicalefficiency
of an energy source. It is
defined as the ratio of the total electricity
output of a power plant during
its lifetime to the expended exergy for
construction, fuel supply expense,
maintenance, and decommissioning.
This should not be confused with a
return-on-investment assessment on a
monetary basis.
Unlike monetary measures, the
EROI is time invariant and independent
from the national economic
context. It requires a full life cycle
assessment (LCA) in order to determine
the correct cumulative energy
demand CED (the energy invested, i.e.
Item
Concrete containment for reactor, fission products
and turbine building
High performance refractory metals and ceramics
(PPU and core)
High temperature isolation material for PPU and
core
the denominator of the EROI). For a
typical 1,400 MWe PWR, a major part
of the CED is needed for the enrichment
of uranium which in the first
decades of nuclear power applications
was dominated by the very ineffective
diffusion enrichment.
This reduced the EROI to 24 which
is comparable to fossil fired power
plants and is one explanation why the
expansion of nuclear power came to a
halt in the 1970s in the USA.
A newly built PWR with mostly
centrifuge enrichment has an EROI of
75 to 105, with complete LASER
enrichment up to 115. So the PWR
technology can have an advantage
in the EROI factor of 4 to fossil power
but this defines also the limit of the
PWRs and the Generation III(++)
technology in general.
Another costly contribution to the
low EROI are the expenses for the fuel
element infrastructure industry which
is also conceptually based on the
military logistic chain where as much
as possible is displaced from the
Units
(or total amount
in 1,000 kg)
Energy
inventory
in TJ/(1,000 kg)
| Tab. 1.
Input energy amounts of the DFR; bold: the sum of all inputs and the total electricity output; the ratio leads to an EROI
of almost 2,000 for the DFR, see text.
Total
inventory
in TJ
21,000 0.0014 30
60
100
0.5 30
0.1 10
Initial load, isotopically purified 37 Cl + fuel 25+60 2.5/0.4 50+25
Refractory metals and ceramics for the heat
exchanger
180 0.5 90
Isolation and structural materials, heat exchanger 300 0.1 30
Untreated, low-alloyed metal for fission product
encapsulation
3,000 0.033 100
Structural materials (steel) for non-nuclear part 1,000 0.02 20
Lead coolant 1,200 0.036 45
Turbines with generators 3 40 120
Mechanical engineering parts 150
Cooling tower (special concrete) 20,000 0.003 60
Refueling, 1,200 kg/a actinides over 50 years 60 0.4 25
37 Cl loss compensation 2 2.5 5
Maintenance, high-performance refractories +
isolation for 1 new core
Maintenance, 50% of other reactor parts,
refractories + isolation
Maintenance, 50% of mechanical engineering
and turbines
Maintenance electricity, 2MW over 20 days/a
and heating, 50*0.2 TJ
30+50 0.5/0.1 20
90+175 0.5/0.1 62.5
135
182.5
Sum 1,190
Output over 50 year’s-lifetime, 1,500 MW net,
8,300 full-load hours
2,250,000
RESEARCH AND INNOVATION 153
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
RESEARCH AND INNOVATION 154
This document is
based on Armin Huke
et al., Annals of
Nuclear Energy 80
(2015) 225: „The Dual
Fluid Reactor –
A novel concept for a
fast nuclear reactor of
high efficiency“
| Fig. 9.
Energy Returned on Investment (EROI) at different electricity generating technologies.
battlefield to factories in the back
area. The utilization of fuel elements
then again requires multiple-redundancy
elaborated active and passive
safety systems in order to counteract
the risk of core meltdown, further
reducing the EROI in effect.
The large EROI gain of the DFR
mainly results from two aspects: The
loss of a costly external fuel pro cessing
infrastructure (improvement of more
than a factor of 3) and the much
higher compactness and simplicity
compared to a light water reactor
( another factor of 6). Additional
minor improvements arise from lower
maintenance efforts and from much
less fuel consumption as well as
significantly lower disposal needs.
The higher per-mass efforts for
the refractory parts are far outweighed
by the extreme reduction
of material amounts needed for
construction (several 1,000 metrictons
nickel alloys and highly alloyed
steels in a light water reactor
compared to a few 100 metric-tons
refractories in the DFR). Table 1
describes the evaluation of the EROI
for the DFR.
Since some materials (especially
refractory metals) must be investigated
and modified for use in the
DFR, their energy inventory must be
estimated. Furthermore, the maintenance
for the nuclear part is also
unknown, causing the same uncertainties.
The resulting EROI is therefore
roughly 2,000 which is 25 times
higher than that of today’s PWR
technique. The very compact design
lowers the construction energy
demand down almost to the level of
CCGT plants on a per-watt basis, and
the fuel-related energy demands are
tiny compared to light water reactors
due to the efficient usage.
A theoretical maximum EROI
of 10,000 can be calculated as an
extra polated limit, only taking into
account the exploitation costs at
3 ppm U- content in the earth crust,
erection of power plant, service and
maintenance, dismantling and disposal
being neglected. Further optimization
of the design and extraction of
fuel at basic crust concentrations
(10 ppm for Thorium) would lead to a
domination of the fuel-related input
and opening potential for a further
increase of the EROI.
This all together is showing that
the DFR exhausts the potential of
nuclear fission to a large extent. For
illustration on the relevance of the
EROI-definition, Figure 9 depicts the
EROIs of different currently used
electricity producing technologies
with the EROI for a DFR.
10 Final remarks
The Dual Fluid principle of separating
the cooling and fuel function in creases
the complexity of the reactor core
relative to the MSR but has large
synergetic effects in the fuel reprocessing,
the neutron economy, the
cost efficiency as well as on the
possible applications. This allows to
combine the advantages of different
Generation IV concepts (MSFR, LFR,
SCWR, VHTR) in one reactor type
while considerably undercutting the
costs even of today’s LWRs.
The good neutron economy and
the hard neutron spectrum makes the
DFR an effective waste incinerator
and also an excellent thorium breeder,
outbidding even MSRs like the LFTR
while being more cost-effective. The
high temperature combined with the
high cost-efficiency allows the production
of synthetic fuels in competition
with todays refined oil and
gasoline.
The online separation of fission
products provides presorted metals
that can be used after decay as important
raw materials for the industry.
Other fission products, e.g. 99 Mo
needed for medical diagnostics, can
be quickly withdrawn in large
amounts with no further processing.
The liquid fuel provides the same passive
safety features as already tested
for the molten-salt reactor (melting
fuse plug, deeply negative temperature
reactivity coefficient) but the
concentrated actinide fuel adds additional
safety and controllability due
to a higher delayed neutron fraction
inside the fissile zone. The lower fissile
zone salt inventory means lower heat
capacity leading to a faster power
reduction in the case of additional
reactivity.
Manufacturing the durable workpieces
for the core is feasible by
state-of-the-art technical processes
and well-established industrial procedures.
The complete absence of
control rods, valves or any other
mechanical parts as well as its compact
size enables the use of expensive,
corrosion-resistive materials and
modern fabrication techniques like
laser sintering.
In essence the Dual Fluid principle
resolves the contradiction of contemporary
NPP concepts between a
high power-density which is obligatory
for the crucial economic edge to
prevail in the energy market, and
inherent passive safety necessary for a
safe operation and eventually the
public acceptance of nuclear power.
Author
Jan-Christian Lewitz (a,b)
Armin Huke (b)
Götz Ruprecht (b)
Daniel Weißbach (b,c)
Stephan Gottlieb (b)
Ahmed Hussein (b,d)
Konrad Czerski (b,c)
(a) LTZ-Consulting GmbH,
Tharandter Str. 12
01159 Dresden, Germany
(b) Institut für Festkörper-
Kernphysik gGmbH, Leistikowstr. 2,
14050 Berlin, Germany
(c) Instytut Fizyki, Wydział
Matematyczno-Fizyczny,
Uniwersytet Szczeciński,
ul. Wielkopolska 15
70-451, Szczecin, Poland
(d) Department of Physics,
University of Northern British
Columbia, 3333 University Way,
Prince George, BC, Canada.
V6P 3S6
Research and Innovation
The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski
atw Vol. 65 (2020) | Issue 3 ı March
36C3 – Mehr offene Fragen als Antworten
Stefan Loubichi
155
Die Einschläge kommen näher und wir kennen alle die Folgen Es dürfte (wahrscheinlich)
niemand in der Energiebranche geben, der den am 17.6.2013 erschienenen Roman „BLACKOUT – Morgen ist es zu spät“
nicht kennt.
Weniger bekannt in der Energiebranche
ist (leider) das bereits 2011
im edition sigma Verlag erschienene
Werk „Was bei einem Blackout geschieht
– Folgen eines langandauernden
großflächigen Stromausfalls“ des
Büros für Technikfolge-Abschätzung
beim Deutschen Bundestag.
Für alle diejenigen, welche die beiden
Bücher noch nicht gelesen haben,
sei die Lektüre empfohlen.
Übertragungs- sowie Verteilnetzbetreiber,
bei der die durch Letztverbraucher
und Weiterverteiler entnommene
Jahresarbeit im Jahr den
Schwellenwert 3.700 GWh überschreitet
(siehe hierzu die BSI-Kritis-
Verordnung) mussten sich alle bereits
gemäß des im August 2015 in Kraft
getretenen IT-Sicherheitskataloges
gemäß § 11 Absatz 1a Energiewirtschaftsgesetz
aufgrund dieser
Grundlage durch einen akkreditierten
Zertifizierer auditieren lassen, und
zwar jährlich. In diesem Zusammenhang
mussten die Netzgesellschaften
ein Informationssicherheitsmanagementsystem
nach ISO/IEC 27001 in
Verbindung mit ISO/IEC 27002 und
ISO/IEC 27019 implementieren.
Nach diesseitigem Kenntnisstand
haben alle relevanten Netzbetreiber
mittlerweile die Zertifizierung nach
dem IT-Sicherheitskatalog gemäß § 11
Abs. 1a EnWG bestanden. Integrativer
(und von daher nachzuweisender) Bestandteil
des Auditierungsprozesses
sind:
p Patchmanagement
p Assetmanagement
Als Leitender Auditor für Informationssicherheitsmanagementsysteme
musste der Autor dieses Aufsatzes
aber leider oft feststellen, dass
nirgendwo mehr Potemkin'sche
Dörfer aufgebaut wurden wie hier.
Aufgrund der Tatsache, dass ein
Auditor nur eine Stichprobe zu einem
Stichtag ziehen kann und er nur einen
sehr beschränkten Zeitraum für die
Prüfung hat, ist es nicht sehr schwer,
einen Prüfer in diesen Schlüsselbereichen
hinter das Licht zu führen,
um das „begehrte“ Zertifikat zu
erhalten.
Das Zertifikat ist eine Sache,
Sicher heit im System ist eine andere
Sache. Cyber Terroristen interessiert
es nicht, ob Netzbetreiber oder Kraftwerksbetreiber
ein ISO/IEC 27001
Zertifikat haben oder nicht.
Ende 2019 wurde auf dem
36. Chaos Computer Club Kongress
vom 27.-30. Dezember 2019
gezeigt, wie „einfach“ es für Profis ist,
Zugang zur Leittechnik in Kraftwerken
zu erhalten, wobei diese
strukturellen Herausforderungen
gegeben wären für:
p Siemens
p ABB
p Honeywell
p Yokagawa
p GE
Die in Leipzig gehaltene Präsentation
erfolgte durch Sicherheitsexperten
einer russischen Firma hat vielen die
Augen geöffnet.
Am 15. Januar 2020, d.h. ganze
zwei Wochen später wurde bekannt,
dass die US-amerikanische National
Security Agency (NSA), die sich
eher durch Zurückhaltung in ihrer
Kommunikation kennzeichnet, eine
Sicherheitslücke in Windows 10 und
verschiedenen Windows-Server-Versionen
gemeldet hat. Zum Patchday
hat Microsoft zwar die Lücke
geschlossen. Gleichwohl ist die Lage
sicherlich nicht unernst, wenn die
NSA sich zu solchen Schritten veranlasst
fühlt.
Aber der Januar 2020 hatte bereits
in seinen ersten drei Wochen noch ein
weiteres Highlight:
Viele Industrieunternehmen kennen
und schätzen den Citrix ADC
( Citrix ADC verbindet die Infrastruktur
und die Anwendungen miteinander,
indem diese Erkenntnisse
dem Cisco Application Policy Infrastructure
Controller (APIC) bereitgestellt
werden). Citrix ADC integriert
sich dabei vollständig in die Unified-
Fabric-Anwendungen von Cisco.
Allein auf der Internetseite von
Heise fanden sich in der Zeit vom 3.1.
bis 20.1.2020 folgende Meldungen:
3.1.2020:
Workaround verfügbar: Kritische
Lücke in Citrix ADC:
Angreifer könnten Systeme mit Citrix
ADC und Schadcode ausführen.
Patches sind bislang nicht erschienen.
13.1.2020:
Exploit-Code für kritische Citrix-
Lücke gesichtet:
Es könnten Angriffe auf Citrix CDC
und Gateway bevorstehen. Bislang
gibt es nur einen Workaround. Patches
sollen folgen
17.1.2020:
Citrix-Lücke: Immer mehr Attacken,
Workaround funktioniert nicht
immer:
Die Sicherheitslücke in Citrix Systemen
zieht immer weitere Kreise.
Neben steigenden Angriffszahlen sind
immer mehr Systeme betroffen.
20.1.2020:
Erste Sicherheitsupdates für kritische
Citrix-Lücke erschienen:
Da Angreifer derzeit eine Lücke in
Citrix CDC ausnutzen, sollten Admins
die nun verfügbaren Patches umgehend
installieren.
17 Tage in der Welt der Informationstechnologie
sind eine
Ewig keit und viele Angriffe wurden
mittlerweile erfolgreich ausgeführt.
Was macht also der gewissenhafte
Leiter IT/OT, der zusammen mit
seinem Chief Information Security
Officer (CISO) oftmals gar nicht die
Zeit hat, alle Warnmeldungen zeitnah
zur Kenntnis zu nehmen? Er lässt
nachschauen, ob gepatcht wurde und
ist froh, wenn das System gepatcht
wurde. Aufgrund der Arbeitsverdichtung
wird dann in der Regel auch
gar nicht nachgefragt, wer den Patch
ausgeführt hat.
Unglücklich ist es, wenn Hacker,
die über die Lücke in das System eingedrungen
sind, für das Kraftwerk
den Patch durchführen, gleichwohl
aber sicherstellen, dass diese immer
noch durch eine Hintertür jederzeit in
das System kommen können. Interessanterweise
findet sich in Bezug auf
die aktuelle Citrix-Thematik im Netz
nur ein sehr guter Artikel zu dieser
Thematik:
https://securityaffairs.co/wordpress/
96569/cyber-crime/hackers-patchcitrix-servers.html
Diese Einführung mit drei konkreten
immensen Herausforderungen
in drei Wochen soll aufzeigen,
dass es 5 vor 12 ist, wenn Kaspersky
und NSA nahezu zeitgleich an
OPERATION AND NEW BUILD
Operation and New Build
36C3 – More Questions Than Answers ı Stefan Loubichi
atw Vol. 65 (2020) | Issue 3 ı March
OPERATION AND NEW BUILD 156
| Abb. 1.
SPPA T3000 Security Matrix
Siemens Whitepaper SPPA-T3000 Cyber security for I&C Systems GPPG-T40003-00-7600, 19.12.2019.
die Öffentlichkeit gehen, um Hinweise
zu geben.
Theoretisch kann man denken, wie
dies ein aus Datenschutzgründen
nicht genannter CIO Ende Dezember
2019 anlässlich der 36C3 Präsentation
mutig sinngemäß äußerte: „Wenn wir
betroffen sind, dann gehen eben hier
überall die Lichter aus. Das ist ein
kalkulierbares Risiko und ich glaube
nicht, dass so etwas bei uns passiert,
denn dann gehen anderswo ja auch
die Lichter aus.“
Unter Hinweis darauf, dass –
bereits die Kollegen des Hauses
Kaspersky darauf verwiesen –, dass
die Leittechnik-Schwachstellen nicht
nur die T3000 betreffen, sondern dass
letztlich alle betroffen sind, sei die
36C3 Problematik nachstehend
dezidiert vorgestellt und erläutert,
wie man sich mit gezielten (zusammenhängenden)
Investitionen in
Asset- und Patchmanagement viele
Sorgenfalten ersparen kann.
36C3 oder habe ich einen
Haustürschlüssel komme
ich in das Haus
Die Siemens SPPA T-3000 gehört
unzweifelhaft zu den besten ICS
Systemen, die für den Energiemarkt
derzeit zur Verfügung stehen.
Dabei darf man jedoch nicht vergessen,
dass es sich hierbei um ein
generisch entwickeltes Produkt
handelt und dass man hier auf alte
Erfahrungswerte aufgebaut hat und
diese weiterentwickelt hat. Auch muss
berücksichtigt werden, dass gerade
die Entwicklung in den letzten Jahren
rasant verlief. Web-basierte Applikationen
im ICS-Umfeld waren vor
Jahren nicht denkbar, sodass deren
Risiken auch nicht betrachtet wurden
bzw. werden konnten.
Das Sicherheitskonzept von
Siemens – welches letztlich auf der
hervorragenden IEC 62443 basiertekonnte
trotz Berücksichtigung der
relevanten Standards nicht den GAU
vom 30. Dezember 2019 verhindern.
Es liegt somit eine strukturelle Herausforderung
vor, die wir uns näher
betrachten sollten (Abbildung 1).
Die vom Kaspersky Team entdeckten
Schwachstellen lagen erst
einmal beim Application Server und
hier vor allem bei:
1. Zugangsmanagement
2. Java Umgebung
Hier treffen wir auf ein struk turelles
Problem, welches per se nicht originär
die Hersteller der Leit technik, sondern
die Welt der Programmierung trifft:
Obfuskation, Deobfuskation sowie
Dissection.
Obfuskation bezieht sich auf die
Transformation von Programmcode.
Angestrebtes Ziel ist es, die Ermittlung
der Semantik und der Funktionalität
eines Programms zu erschweren,
wobei dessen Funktionalität jedoch
erhalten bleibt. Prinzipiell wird
Obfuskation auf zwei Programmbestandteile
angewandt:
1. Kontrollfluss
2. Datenstrukturen
Die Art der Obfuskation hängt von der
Art der Programmiersprache ab. Für
uns sind in diesem Zusammenhang
JAVA und .NET Programmierungen
relevant.
Verglichen mit kompilierten
Sprachen sind Java und .NET Programme
relativ einfach zu disassemblen
bzw. Reverse Engineering
von den ausführbaren (exe, dll, jar,
class) Dateien ist einfach. Dies ist
dadurch bedingt, da der Intermediate
Bytecode alle ursprünglich verwendeten
Bezeichner (Variablen- &
Funktionsnamen) enthält, wodurch
ein Decompiler nahezu den gesamten
Source Code (mit Ausnahme der
Kommentare) wiederherstellen kann.
Der eingesetzte Java-Code wurde
mit einem Obfuskator (hier: Zelix
KlassMaster) verschleiert. Beliebte
weitere Obfuskatoren sind:
p DashO
p JavaGuard
p ProGuard
p yGuard
Zusätzlich zur Obfuskation im Bereich
des Kontrollflusses sowie der Datenstrukturen
werden gerne Runtime
Packer genutzt oder es wird verschlüsselt.
Generell versteht man unter einem
Packer ein Programm mit der Software
komprimiert und/oder verschlüsselt
werden kann. Kompressionsverfahren
wie ZIP, CAB und RAR,
aber auch selbst geschriebene Verfahren
kommen dabei zum Einsatz.
Kennt man den verwendeten Algorithmus
nicht, so kann man die Daten
nicht wieder entpacken. Bei Runtime-
Packern können die Programme direkt
ausgeführt werden, ohne dass hierzu
ein externes Tool genutzt werden
muss. Der Grund hierfür liegt darin,
dass diese Packer-Programme – nachdem
diese ein Programm komprimiert
haben – die Dekomprimierungsroutine
direkt vorne in das Programm
einfügen, wobei beim Programmstart
diese Routine als erstes ausgeführt
wird. Als Alternative oder zusätzlich
zur Komprimierung kann auch eine
Verschlüsselung realisiert werden, da
das Schema das Gleiche ist.
So genial sich dies alles anhört, so
gibt es hier eine Schwachstelle:
Selbst wenn ein Packer eine Software
mit dem besten kryptographischen
Algorithmus verschlüsselt,
Operation and New Build
36C3 – More Questions Than Answers ı Stefan Loubichi
atw Vol. 65 (2020) | Issue 3 ı March
so muss das komprimierte bzw. verschlüsselte
Programm entpackt bzw.
entschlüsselt werden, damit die CPU
das Programm ausführen kann. Dies
ist der Zeitpunkt, bei dem das Reverse
Code Engineering normalerweise
startet.
Der Cyber-Kriminelle macht einen
Speicher-Dump der dekomprimierten/
entschlüsselten Anwendung und
speichert selbigen. Hierdurch kann er
die Originalsoftware analysieren und
muss sich nicht mit den Schutzmechanismen
befassen.
Leider findet sich mittlerweile im
Internet frei verfügbar zu jedem
Obfuskator ein Deob-fuskator.
Unter https://javadeobfuscator.
com/ kann man nun zum Beispiel einen
Deobfuskator (seit Jahren) downloaden,
der die Verschleierung wieder
rückgängig machen kann. Dieser Deobfuskator
kann eingesetzt werden
für die folgenden Obfuskatoren: Zelix
KlassMaster, Stringer, Allatori, DashO,
DexGuard, ClassGuard und Smoke.
Auf oben genannter Homepage findet
sich dann die Beschreibung, wie man
erfolgreich agiert:
Download the deobfuscator
Create detect.yml with the following
contents. Replace input.jar with the name
of the input
input: input.jar
detect: true
Create config.yml with the following
contents. Replace input.jar with the name
of the input ```yaml input: input.
jar output: output.jar transformers:
[fully-qualified-name-of-transformer]
[fully-qualified-name-of-transformer]
…etc´´´
Run java -jar deobfuscator.jar
Die Arbeit hält sich somit in Grenzen.
Jetzt benötigt man noch einen Dissector,
der aus dem Zeichensalat die
entsprechenden strukturierten Felder
heraussucht. Obgleich es hier einige
im normalen Internet gibt, hat das
Kaspersky Team einen Dissector gebaut,
am 28.12.2019 veröffentlicht
und auch noch die einfache Funktionsweise
erläutert. Für alle Interessierten
hier die Homepage: https://
github.com/klsecservices/desert
Auf einem zur SPPA T3000 gehörenden
Java-Orion-Server ließen
sich dann Verzeichnisse via https recht
einfach auslesen und es fanden sich
diverse Servlets, welche Anfragen von
Clients entgegennahmen und beantworteten.
Das größte Problem stellte
hierbei ein BrowerServlet für Drittparteien
dar.
Des Weiteren fanden die Kollegen
von Kaspersky relativ einfach diverse
angebotene Java-Dienste inklusive
einer Liste für „AdminService“ inklusive
der Möglichkeit für Reverse Code
Engineering. Da viele der Leser nicht
originär aus dem IT-Berufsumfeld
stammen, sei darauf verwiesen, dass
man unter Reverse Code Engineering
in diesem Zusammenhang die Rückgewinnung
des Quellcodes oder einer
vergleichbaren Beschreibung aus
Maschinencode versteht. Natürlich ist
Reverse Code Engineering strafbar.
Dies interessiert jedoch Cyber-Kriminelle
oder Cyber-Terroristen nicht.
Kaspersky hat uns hier gelehrt:
So gut die Sicherheitsarchitektur der
Leittechnik auch sein mag, so existiert
eine Schwachstelle: Komme ich an den
Bytecode – was eher eine Fleißaufgabe
für den geübten Cyber- Kriminellen /
Cyber-Terroristen ist – so kann er mit
einem frei im Internet erhältlichen
Deobfuskator disassemblen und hat
dann den lediglich um die Kommentarzeilen
gekürzten Source Code.
Das Problem ist somit die Obfuskation
von Java. Eine Ad-hoc–Lösung
gibt es hier derzeit nicht.
Wie Kaspersky auf der 36C3 zur
Entwarnung gegenüber den Leittechnikherstellern
kommunizierte,
betrifft diese Problematik vor allem
das Innere des Kraftwerkes. Die Steuerungssysteme
waren hiernach weitestgehend
gegenüber einem Zugang von
außen geschützt, sodass Cyber-
Kriminelle erst in das Innere eines
Kraftwerkes eindringen müssten.
Es ist sicherlich zutreffend, dass
Mitarbeitende von Kraftwerken in der
Regel loyal zu ihrem Kraftwerk
sind. Vergegenwärtigen wir uns an
dieser Stelle aber die Statistik zur
Täterherkunft der KPMG-Studie
zur Wirtschaftskriminalität 2018
( Abbildung 2).
24 % der IT-relevanten Straftaten
werden von Mitarbeitenden begangen.
Somit ist der von Kaspersky ins
Kalkül gezogene „Faktor Innentäter“
gar nicht so irrelevant, wie wir das
gerne glauben möchten.
OPERATION AND NEW BUILD 157
| Abb. 2.
Täterherkunft Kriminalität in Unternehmen im Kalenderjahr 2018. Quelle: KPMG Wirtschaftskriminalität in Deutschland 2018
Operation and New Build
36C3 – More Questions Than Answers ı Stefan Loubichi
atw Vol. 65 (2020) | Issue 3 ı March
OPERATION AND NEW BUILD 158
| Abb. 3.
Beispiel eines repräsentativen nmap-Scans.
Quelle: https://nmap.org/man/de/index.html
OT-Assetmanagement oder
Excel-Tabellen sind nicht
ausreichend und IT-Assetmanagement
ist anderes
Ein auf dem 36C3 am Rande diskutiertes,
aber immer wichtigeres
Thema war in diesem Zusammenhang
auch die Frage:
Müssen im Bereich der OT wirklich
alle Assets erfasst werden oder reicht
es aus, eine frei zu wählende Klassifizierung
durchzuführen?
Wer sich noch an die Matrix-
Trilogie erinnern kann, der erinnert
sich sicherlich an den Hinweis auf das
Programm nmap (Abbildung 3).
nmap („Network Mapper“) ist ein
Open-Source-Tool für:
1. Netzwerkanalyse
2. und Sicherheitsüberprüfung.
Das Programm wurde entworfen, um
große Netzwerke schnell zu scannen,
auch wenn es bei einzelnen Hosts
ebenfalls gut funktioniert.
Dabei werden rohe IP-Pakete genutzt,
um festzustellen,
p welche Hosts im Netzwerk verfügbar
sind,
p welche Dienste (Anwendungsname
und -version) diese Hosts
bieten,
p welche Betriebssysteme (und Versionen
davon) darauf laufen,
p welche Art von Paketfiltern/-Firewalls
benutzt werden
p sowie Dutzende anderer Eigenschaften.
Darüber hinaus kann nmap – in der
Regel in der IT-Welt – für folgende
Aufgaben genutzt werden:
p Netzwerkinventarisierung,
p Verwaltung von Ablaufplänen für
Dienstaktualisierungen,
p Überwachung von Betriebszeiten
von Hosts oder Diensten.
Die Ausgabe von nmap ist eine Liste
gescannter Ziele mit zusätzlicher
Information zu jedem Ziel.
Die wichtigsten Informationen
finden sich in der „Tabelle der interessanten
Ports“, wo folgende Informationen
zu finden sind:
die Portnummer
das Protokoll
der Dienstnamen
der Dienstzustand (offen, gefiltert,
geschlossen oder ungefiltert).
Die Dienstzustände sind wie folgt
definiert:
Offen:
Auf diesem Port des Zielrechners
lauscht eine Anwendung auf eingehende
Verbindungen/Pakete.
Gefiltert:
Eine Firewall, ein Filter oder ein
anderes Netzwerkhindernis blockiert
den Port, sodass nmap nicht wissen
kann, ob er offen oder geschlossen ist.
Geschlossen:
Hier gibt es keine Anwendung, die auf
den Ports lauscht, auch wenn diese
jederzeit geöffnet werden könnten.
Ungefiltert:
Ports, die auf nmap-Testpakete antworten,
wobei nmap aber man nicht
feststellen kann, ob die Ports offen
oder geschlossen sind.
Gegebenenfalls kann die Port-
Tabelle auch Details zur Softwareversion
beinhalten und wenn ein
IP-Protokoll-Scan verlangt wurde,
bietet nmap auch Informationen über
die unterstützten IP-Protokolle statt
über lauschende Ports.
Darüber hinaus kann nmap weitere
Angaben über Ziele bieten, darunter:
p Reverse-DNS-Namen,
p Mutmaßungen über das benutzte
Betriebssystem,
p Gerätearten
p MAC-Adressen.
Bekanntlicher Weise ist nmap ein
typisches Dual-useTool, welches
gegebenenfalls von Cyber-Kriminellen
zur Vorbereitung von Straftaten nach
§ 202a StGB genutzt werden könnte,
wobei der Autor dieses Aufsatzes
unter Bezug auf das Urteil des Bundesverfassungsgerichtes
in den Sachen 2
BvR 2233/07, 2 BvR 1151/08, 2 BvR
1524/08 ausdrücklich darauf verweist,
dass dieses Tool nur im eigenen
Unternehmen mit ausdrücklicher
Genehmigung der Geschäftsführung
dazu benutzt werden darf, um eine
Sicherheitsanalyse zur Behebung
eigener Schwachstellen durchzuführen.
Eine andere Nutzung ist
strafbewährt!
Neben dieser Sicherheitsanalyse
befassen wir uns an dieser Stelle
aber vor allem deshalb mit nmap
um darzulegen, wie Administratoren
auf einfache Art- und Weise eine
voll umfängliche Asset-Liste im IT-Bereich
erzeugen können, welche auch
auf
die OT-Welt in gewissen Zügen anwendbar
ist.
Kommen wir nun zu der Welt des
OT-Assetmanagements und einer
persönlichen Erfahrung des Autors
dieses Werkes in seiner Funktion als
leitender Auditor für Informationssicherheitsmanagementsysteme
in
der Energiewirtschaft: In mehr als der
Hälfte der Audits bei Netzbetreibern,
die eine Zertifizierung nach IT-Sicherheitskatalog
gemäß § 11 Abs. 1a
EnWG durchführten, wurden dem
leitenden Auditor EXCEL-Listen vorgelegt,
wobei diese in der Regel
deshalb schon Gegenstand von Auditfeststellungen
waren, weil die Informationen
zu den Assets unvollständig
waren und oftmals nicht verifizierbar
war, ob ein aktueller Softwarestand
vorhanden ist.
Wenn man aber nicht weiß,
welchen Stand das Asset in der OT
hat, kann man im Krisenfall aber
nicht wissen, ob hier ein Patch eingespielt
werden muss oder nicht.
Und im Audit fanden sich dann
auch des Öfteren OT-Assets, die gar
nicht in der Liste der Werte gelistet
waren. Was aber in der Regel nicht
in der Liste der Werte gelistet ist,
kann aber auch nicht gepatcht
werden, da man es nicht kennt!
Es ist erst einmal zu begrüßen,
dass immer mehr – aber immer noch
vergleichsweise wenige – Unternehmen
in kritischen Sektoren hingehen
und ein automatisierten Scan
ihrer OT-Landschaft durchführen.
Die derzeit leider immer noch
gebräuchlichste Variante ist der
„ Passive Scan“.
Der Begriff des passiven Scannens
ist technisch gesehen falsch, da
kein Netzwerkscan stattfindet. Beim
passiven Scan spioniert eine Netzwerkanwendung
den gesamten
Netzwerkverkehr aus und analysiert
ihn nach Daten, die zum Identifizieren
von Endpunkten und Datenverkehrsmustern
verwendet werden können.
In diesem Zusammenhang muss
darauf verwiesen werden, dass Metadaten,
die für die Ressourcenermittlung
erforderlich sind, tief im
Drahtverkehr verborgen sind. Die
Suche nach Informationen, welche
verwendet werden könnten, um
Geräteherstellung und Modell, Firmware-Version
usw. zu identifizieren,
stellt sich als eine ebenso schwierige
Aufgabe dar wie die Suche nach einer
Nadel in einem Heuhaufen. Es ist aus
diesem Grunde verständlich, dass
Operation and New Build
36C3 – More Questions Than Answers ı Stefan Loubichi
atw Vol. 65 (2020) | Issue 3 ı March
der passive Scan nicht immer die
genauesten Ergebnisse liefern kann.
Auch hat das passive Scannen in
der Regel einige technische Einschränkungen:
1. „Stille Geräte“ werden nicht
erkannt.
2. Sicherheitspatches werden oftmals
nicht mit hinreichender Genauigkeit
erkannt.
3. Es kann vorkommen, dass die
Netztopologie in den Ebenen eins
und zwei verborgen ist.
Sicherlich ist der passive Scan ein
grundlegender Meilenstein gegenüber
der händischen Erfassung der
OT-Assets im EXCEL-Format, aber aus
heutiger Gefährdungslagensicht nicht
mehr ausreichend ist.
Eine Alternative mit in der Regel
besseren Ergebnissen ist aus Sicht des
Autors das selektive Abfragen.
Hier werden die Geräteerkennungsfunktionen
der Protokolle
genutzt, welche die Automatisierungstechnik
in der Regel sowieso
spricht, z.B. Profinet, SNMP, WMI.
Hierdurch liefert die selektive Abfrage
in der Regel vollständige Daten, unter
anderem zur Netzwerktopologie,
Firmwareversionen, Softwareanwendungen,
installierten sowie nicht installierten
Sicherheitspatches, Seriennummern
und vieles mehr.
Die Erfahrungen haben viele
Unternehmen der Energiewirtschaft
gelehrt, dass man im Bereich des Asset
Managements auch mit einer Sammlung
an EXCEL Listen das begehrte
ISO/IEC 27001 Zertifikat erhalten
kann. Aber mit dem ISO/IEC 27001
erlangt man nicht die Sicherheit, die
man letztlich wirklich als KRITIS-
Energieerzeuger benötigt. Ein Scan
der OT-Assets nach Stand der Technik
ist zweifelsfrei eine nicht unerhebliche
Investition, aber eine Investition,
welche für die Cyber- Sicherheit/IT-
Sicherheit relevant ist.
Warum funktioniert das Patchmanagement
nicht?
Kommen wir hier nochmals zum
36. Chaos Computer Club Kongress
vom 27.-30. Dezember 2019 und die
Präsentation des Kaspersky Teams in
Sachen Siemens SPPA T3000. Als
erstes Ergebnis verbleibt zu vermerken,
dass nach der Präsentation
erst einmal Betroffenheit herrschte
und dass einige hiernach erklärten,
sich schnellstmöglich mit Siemens in
Verbindung setzen zu müssen.
Zur Rettung der Siemens Kolleg-
*innen in Karlsruhe / Erlangen muss
jedoch erklärt werden, dass nachweislich
zum 10. Dezember 2019 von
Siemens eine Sicherheitswarnung
herausgegeben wurde und auch mit
dem Servicepack R8.2 SP1 ein umfangreiches
Sicherheitsupdate herausgebracht
wurde (siehe hierzu:
https://cert-portal. siemens.com/
productcert/pdf/ssa-451445. pdf).
Das Cyber+Infrastructure Department
des US Homeland Security
Ministeriums verwies am 17.12.2019
medienwirksam auf Sicherheitswarnung
und -update (Abbildung 4).
Auch wurden direkt von der US-
Sicherheitsbehörde eine E-Mail-
Adresse und eine Telefonnummer
angegeben, an die sich betroffene US-
Firmen wenden konnten.
Zwischen der Sicherheitswarnung
und der Bereitstellung des Sicherheitsupdates
auf der einen Seite und
der Präsentation der Sicherheitslücken
auf 36C3 lagen 19 (in Worten:
neunzehn) Tage.
Energieunternehmen – gleich ob
Netzbetreiber oder Energieerzeuger –
welche eine Warnmeldung des Herstellers
ihrer Leittechnik erhalten,
dann 19 Tage nichts tun und erst nach
entsprechenden Meldungen in der
Tagesschau nach 21 Tagen besorgt
nachfragen, ob denn überhaupt die
Sicherheitslücke gepatcht wurde,
haben mehr als eine große Herausforderung
in ihrer IT-/OT-Sicherheit.
Nun könnte man natürlich argumentieren,
dass die in diesem Artikel
dezidiert beschriebene Thematik
Java- Umfeld ja nur die innere Kraftwerkssicherheit
beträfe, aber es waren
auch diverse andere sicherheitsrelevante
Aspekte betroffen, auf die
hier nicht weiter eingegangen wird.
Wenn bei der Leittechnik trotz
Warnmeldung nicht gepatcht wird, so
stellt sich die Frage, wie es denn dann
bei Assets ist, die aus Sicht der Verantwortlichen
noch weniger relevant
sind. Das, was hier in Teilen geschieht,
muss aus juristischer Sicht mit grober
Fahrlässigkeit umschrieben werden.
Bzgl. der sonstigen Warnmeldungen
muss jedoch zugegeben
werden, dass die Vielzahl der CVE-
Warnmeldungen für viele Unternehmen
einfach unüberschaubar
geworden ist.
Common Vulnerabilities and
Exposures (nachfolgendend nur noch
CVE genannt), ist eine Liste mit
öffentlichen Sicherheitsschwachstellen
in Systemen der Informationstechnologie.
Unter CVE versteht man
in der Regel die CVE-Nummer, die
einer bestimmten Schwachstelle
zugewiesen ist. Die CVE hilft IT-Fachkräften
derartige Schwachstellen
leichter zu priorisieren und zu
beheben, um die Systeme sicherer zu
machen.
CVE wird überwacht von der
MITRE Corporation und von der
Cybersecurity and Infrastructure
Security Agency finanziert, welche
beide zum U.S. Department of
Homeland Security gehört.
CVE-Einträge sind vergleichsweise
kurz und enthalten keinerlei hinreichenden
technischen Daten oder
Infos zu Risiken, Auswirkungen
und Fixes. Diese Details werden in
anderen Datenbanken angezeigt, so
zum Beispiel:
1. U.S. National Vulnerability Database:
https://nvd.nist.gov/
2. CERT/CC Vulnerability Notes
Database: https://www.kb.cert.
org/vuls/
3. diverse andere.
Inmitten dieser verschiedenen Systeme
sorgen die CVE-Nummern dafür,
dass der Benutzer Sicherheitsschwachstellen
eindeutig voneinander
unterscheiden kann.
Oben genannte CVE-Nummern
werden von einer CVE Numbering
Authority (CNA) zugewiesen. Hiervon
gibt es derzeit circa 100. Es sind
dies wichtige (und kooperative) IT-
Anbieter, Sicherheitsfirmen und
Forschungseinrichtungen. Mitre weist
den CNAs CVE-Nummernblöcke zu.
Bei Bedarf können hieraus dann die
CVE-Meldungen systemisch und
nachvollziehbar generiert werden.
CVE-Meldungen können im Übrigen
aus unterschiedlichen Quellen
stammen, d.h.: Anbieter, Wissenschaftler
oder fachkundige Benutzerhelfen
helfen hier bei der Verbesserung
von Schwachstellen.
Um die Eigenschaft eines CVE's
zu bekommen, müssen folgende
Kriterien erfüllt sein:
1. Unabhängige Behebbarkeit
2. Bestätigung durch den betroffenen
Anbieter
3. Auswirkungen auf eine Codebase
| Abb. 4.
ICSA-19-351-02. https://www.us-cert.gov/ics/advisories/icsa-19-351-02
OPERATION AND NEW BUILD 159
Operation and New Build
36C3 – More Questions Than Answers ı Stefan Loubichi
atw Vol. 65 (2020) | Issue 3 ı March
OPERATION AND NEW BUILD 160
Der Schweregrad einer Schwachstelle
lässt sich durch verschiedene Modi
ermitteln. Eine weit verbreitete
Option ist das Common Vulnerability
Scoring System, welches aus mehreren
offenen Standards besteht, mit
denen eine Zahl zur Festlegung eines
Schweregrads zugewiesen wird. Die
Skala reicht von 0,0 bis 10,0, wobei
der Schweregrad mit der Zahl zunimmt.
Vergegenwärtigen wir uns an
dieser Stelle nur einmal an einer
kleinen Auswahl von möglichen im
Energiebereich (häufig) genutzten
Entitäten, wo es im Jahr 2019
entsprechende Sicherheitswarnmeldungen
gab:
Suchanfrage Siemens SPPA T3000
53 Einträge für das Jahr 2019
Quelle:
https://cve.mitre.org/cgi-bin/
cvekey.cgi? keyword=Siemens+
SPPA+T3000
Suchanfrage ABB 800xa
15 Einträge für das Jahr 2019
https://cve.mitre.org/cgi-bin/
cvekey.cgi? keyword=ABB+800xa
Suchanfrage Cisco Router
25 Einträge für das Jahr 2019
https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=Cisco+Router
Suchanfrage SAP AIN
117 Einträge für das Jahr 2019
https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=SAP+AIN
(SAP AIN = SAP Asset Intelligence
Network)
Suchanfrage Java
29 Einträge für das Jahr 2019
https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=Java
Suchanfrage Windows 10
38 Einträge für das Jahr 2019
https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=Windows+10
Suchanfrage Linux
368 Einträge für das Jahr 2019
https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=Linux
Allein nur in dieser begrenzten
Auswahl an Entitäten gab es 645
Sicherheitswarnmeldungen im Jahr
2019.
Es ist aus mangelnden zeitlichen
Ressourcen für den CISO eines
klein bis mittelgroßen Energieerzeugers
unmöglich, sich auch nur
annähernd in hinreichender Qualität
und Quantität mit diesen CVE's
zu beschäftigen. Diese Unternehmen
können in der Regel nur
hoffen, dass sie von Cyber-Kriminellen
bzw. Cyber-Terroristen als zu
uninteressant angesehen werden.
Interessanterweise haben (große)
europäische Energieerzeuger (mit
Ausnahme zweier EU-Länder) in
der Regel keinen „Chief Analyst
IT- Security/Cyber-Security“, welcher
sich alleine oder mit einem (kleinen)
schlagkräftigen Team um die Beantwortung
der nachfolgenden Fragen
kümmert:
1. Sind diese Sicherheitswarn meldungen
für unsere Organisation
relevant, d.h. sind diese Assets für
die Organisation überhaupt relevant?
2. Kann gepatcht werden, ohne dass
die auf diesen Assets laufenden
Programme nach dem Patch nicht
mehr „laufen“?
3. Welche Auswirkung hat es bzw.
könnte es haben, wenn wir den
Patch nicht realisieren?
In Japan und Südkorea sind derartige
Funktionen als „Chief Analyst IT-
Security/OT-Security“ neben den
CISOs und Ansprechpartnern IT-/
Cybersecurity oftmals implementiert.
Dies könnte auch der Grund sein,
warum KRITIS-Betreiber in diesen
Ländern sorgenfreier in die Zukunft
blicken.
Welche adhoc-Lösungen
könnten aus 36C3 gezogen
werden/Fazit?
Obwohl die Energiewirtschaft nur ein
Nischendasein auf dem 2019er Chaos
Computer Club hatte, so muss festgehalten
werden, dass die „Kaspersky-
Präsentation“ und die anschließenden
Diskussionen einiges bewegt haben.
Weitgehende Einigkeit besteht bei
vielen darüber, dass die Nachweise
in Sachen Assetmanagement bzw.
Patchmanagement aufgrund des Zeitdruckes
vieler Auditoren eine Zertifizierung
nach ISO/IEC 27001 erlauben
könnten. Das derzeitige Asset- und
Patchmanagement wird aber nach
derzeitiger Sicht nicht ausreichen,
um sich erfolgreich gegen eine professionelle
Attacke von Cyber-
Terroristen bzw. Cyber-Kriminellen
erfolgreich zur Wehr zu setzen.
Ein dynamisches IT-/OT-Assetmanagement
muss zur Gefahrenabwehr
umgehend realisiert werden,
wobei passives Scannen nicht ausreichen
wird. Um die derzeit teilweise
katastrophalen Zustände des unzureichenden
Patchmanagements zu
verbessern, müssen entweder für
kleinere bis mittlere Energieunternehmen
entsprechende intelligente
Wissensdatenbanken (mit Querverweis
zu Assetmanagement-Datenbanken)
eingeführt werden oder für
größere Energieunternehmen die
Stabsstelle eines „Chief Analyst IT-/
OT- Security“ geschaffen werden, die
unabhängig von den Funktionsträgern
CISO bzw. Ansprechpartner
IT-Sicherheit die aktuelle Gefährdungslage
bewerten. Zugegebener
Maßen kostet so etwas viel Geld,
jedoch immer noch weniger Geld als
der Ausfall der Energieerzeugung
bzw. den Imageschaden.
Referenzen
| Marc Elsberg, Blackout – Morgen ist es zu spät, blanvalet,
ISBN 9783442380299
| Thomas Petermann, Harald Bradke, Arne Lüllmann, Maik
Poetzsch, Ulrich Riehm,Folgen eines langandauernden großräumigen
Stromausfalls, edition sigma, ISBN 978386081337
| Verordnung zur Bestimmung Kritischer Infrastrukturen nach dem
BSI-Gesetz, BGBl. I S. 1903
| Bundesnetzagentur, IT-Sicherheits-katalog gemäß § 11 Abs. 1a
EnWG, htps://www.bundesnetzagen tur.de/ Sharedocs/
Downloads/DE/Sach gebiete/Energie/Unternehmen_
Institutionen/Versorgungssicher heit/IT_Sicher heit/IT_
Sicherheitskatalog_08-2015.pdf? __blob=publicationFile&v=1
| https://www.heise.de/suche/
?q=Citrix&rm=search&sort_by=date
| https://securityaffairs.co/wordpress/96569/cyber-crime/
hackers-patch-citrix-servers.html
| https://assets.new.siemens.com/siemens/assets/api/
uuid:fd8546a5-17c0-476b-86fe-cc5b5187dd16/
version:1576355 096/wp-ics-security-v8-0-en-2019-12-10.pdf
| R. Abrams, „WeLiveSecurity (Packers),“ 27 October 2008.
[Online]. available: http://www.welivesecurity.com/2008/
10/27/an-introduction-to-packers/
| KPMG Wirtschaftskriminalität in Deutschland 2018
| Urteil des Bundesverfassungsgerichtes in den Sachen 2 BvR
2233/07, 2 BvR 1151/08, 2 BvR 1524/08
| https://cert-portal. siemens.com/product cert/pdf/
ssa-451445.pdf
| https://www.us-cert.gov/ics/advisories/ icsa-19-351-02
| https://nvd.nist.gov/
| https://www.kb.cert.org/vuls/
Author
Prof. h.c. PhDr. Dipl.-Kfm./
Dipl.-Vw. Stefan Loubichi
International experienced lead
auditor for management systems
(ISO 27001, ISO 14001, ISO 9001,
ISO 45001, ISO 26000), auditor
according to § 8 BSI-Law and
IT-security catalogue, more than
ten years of international
experience in implementing ITand
cyber security
Essen, Deutschland
Operation and New Build
36C3 – More Questions Than Answers ı Stefan Loubichi
atw Vol. 65 (2020) | Issue 3 ı March
Nuclear Power World Report 2018
Editorial office
At the end of the year 2018, there were 450 nuclear power plant units in 31 countries in operation* worldwide.
This means that the number of units increased by 1 unit to the key date of the previous year (31 December 2017: 449,
+1 unit, -0.25 %) (compare Figure 1) due to the commissioning (= first criticality) of 8 new plants, and the final
decommissioning of 7 plants. In the following are the values given on 31 December 2018 and change compared to the
previous year as a percentage in brackets. There were 53 (58, -5.0 %) nuclear power plant units under construction in
17 (16) countries, in other words, 1 less than on the previous year’s key date. The available total gross capacity 1) of the
nuclear plants operating amounted to 424,074 MWe (420,383 MWe, +1.0 %) and the total net capacity to 401,416 MWe
(397,009 MWe, +0.9 %). This equates to an increase of 3,691 MWe gross and 4,407 MWe net. The additional capacity
results mainly from newly defined nominal capacities of operating plants (compare Table 1 and Figures 1 to 3). As of
the year 2017 the base for all capacities, in particular for the U.S. nuclear power plant units, are the nameplate data. Due
to cooling water conditions (higher or lower cooling water temperatures with respect to design capacity) actual gross
and net capacities may vary by plus or minus 3 % of the nameplate (design) capacity. In some countries the lower
capacity value is used for capacity data due to its relevance for system services.
In the year 2018, the nuclear power plant units Haiyang 1
(1250 MW, PWR), Sanmen 1 (1251 MW, PWR), Sanmen 2
(1251 MW, PWR), Taishan 1 (1750 MW, PWR), Tianwan 4
(1060 MW, PWR), and Yangjiang 5 (1086 MW, PWR) in
China, and Leningrad 2-1 (1187 MW, PWR) in Russia reached
first criticality, were connected to the grid
for the first time and put into commercial operation.
Additionally Haiyang 2 (1250 MW, PWR) in China reached
first criticality and was connected to the grid for the first
time. The commissioning program followed. Commercial
takeover by the operator was planned in the first half of
2019. Tianwan 3 (1060 MW, PWR, in 2019) in China and
Rostov 4 (1030 MW, PWR) in Russia were connected to
the grid for the first time and put into commercial
operation; date of first criticality was 29 September 2017
and 29 December 2017.
In 2018 four additional nuclear power plant units
resumed operations after long-term shutdown. In Japan
the units Genkai 3 (1180 MW, PWR), Genkai 4 (1180 MW,
PWR), Ohi 3 (1180 MW, PWR), and Ohi 4 (1180 MW,
PWR) were restarted after about 7 years of lay-up
operations respectively after the Tohoku earthquake and
tsunami in 2011. In 2018 in total nine NPP‘s have been
restarted since 2011, when all 51 nuclear power plants in
operation in Japan have been shut down for lay-upoperation
and safety checks. E.g. in Canada in total 6 units
were restarted after more than 10 years of lay-up
operations respectively. In the course of the liberalisation
of the Canadian electricity market in the mid-1990s, the
operator at the time Ontario Hydro ascertained insufficient
competitive capacity in the market environment for 4 units
at the site Bruce with around 3,100 MW as well as for 4
others at the site Pickering with approximately 1,850 MW.
That is the reason why the 8 CANDU units Bruce A1 to
Bruce A4 and Pickering 1 to Pickering 4 were disconnected
from the grid and removed from commercial operations
between 1995 and 1997. Pickering 1 and Pickering 4 were
re-commissioned in 2003 and 2005 by the new operator
Ontario Power Generation due to changes in the market
and after a retrofitting program. Bruce 3 and Bruce 4 were
re-commissioned at the end of 2003/beginning of 2004.
With the re-commissioning of both units Bruce A-1 and
Bruce A-2 in 2012, the operator of the site BrucePower has
completed his investment program successfully. The site is
intended to secure the power supply in the region in the
long-term during the coming decades. With a gross capacity
of approximately von 6,740 MWe Bruce is also the nuclear
power site with highest output worldwide.
Worldwide 7 nuclear power units were definitively
taken out of operation in 2018: Japan the Ikata 2
(566 MW, PWR, first criticality 1981), Ohi 1 (1175 MW,
PWR, first criticality 1977), Ohi 2 (1175 MW, PWR, first
criticality 1978), and Onagawa 1 (524 MW, BWR, first
criticality 1983), in Russia the Leningrad 1 (1000 MW,
LWGR, first criticality 1973), in Taiwan, China, the Chin
Shan 1 (636 MW, BWR, first criticality 1977), and in the
USA Oyster Creek (595 MW, BWR, first criticality 1969).
There were 53 (55, -2 %) plants with 57,883 MWe gross
and 54,773 MWe net capacity under construction
worldwide at the end of the year 2018. That means that in
comparison to the figure of the previous year, there were
2 nuclear power units less under construction worldwide,
since 5 projects have been newly started and 7 plants have
attained first criticality. No project was suspended in 2018.
Work started for the unit Rooppur 2 (PWR VVER V-491,
1,194 MWe gross and 1,109 MWe net capacity) in Bangladesh
by the supplier Atomstroyexport. In the Republic of Korea
construction of the Shin-Kori 6 unit (PWR ACPR-1000,
1,087 MWe gross and 1,000 MWe net capacity) started. In
Russia construction started of the Kursk 2-1 unit (PWR
VVER V-510K, 1,255 MWe gross and 1,175 MWe net capacity)
by the supplier Rosatom. In Turkey construction
started of the first nuclear power plant of the country,
Akkuyu 1 unit (PWR VVER V-509, 1,200 MWe gross and
1,114 MWe net capacity) by the supplier Atomstroyexport.
Mexico 2
Canada 19
USA 98 |2
Slovak Republic 4|2
Czech Republic 6 Hungary 4
Finland 4|1
Slovenia 1
Sweden 8
Belarus -|2
Netherlands 1
United Kingdom 15|1
Russia 36|6
Switzerland 5
France 58|1
Spain 7
Turkey |1
Iran 1
Bulgaria 2 Ukraine 15
Romania 2 UAE -|4
Brazil 2|1
Argentina 3|1
Belgium 7
Germany 7
South Africa 2
Armenia 1
Pakistan 5|2
India 22|7
China 46|11
Bangladesh |2
Nuclear power plant units in operation: 450, location with units ( first number)
Nuclear power plant units under construction: 53, location with units ( second number)
Rep. Korea 24|5
Japan 38|2
Taiwan, China 5|2
| Fig. 1.
World map nuclear power plants in operation and under construction at the end of 2018.
* The atw lists nuclear
power plants as
“operating” as the
time when first
criticality was
attained as a
“nuclear” criterion.
Other sources refer
to the 1 st power generation
or the start
of commercial operation.
Nuclear
power plants are no
longer listed as
“ operating” when a
long-term cessation,
i.e. over several years,
has been
decided. Should the
operator possess a
valid framework
operating approval
or no application
for the definitive
cessation of the
operating plant has
been submitted,
then the operating
status is listed as
“lay-up”. (cf. Spain
and Japan).
1) The data for gross
and net capacities
have been revised
with reference to
“nameplate” data
as from 2018 (in
particular data for
U.S: nuclear power
plant units, source:
U.S. EIA)
As of: 31.12.2018
atw , 01/2020
161
WORLD REPORT
World Report
Nuclear Power World Report 2018
atw Vol. 65 (2020) | Issue 3 ı March
162
WORLD REPORT
Two units are planned to be build at the site. In the United
Kingdom the construction of the first of two EPR at the Hinkley
Point site started. Each reactor, Hinkley Point C-1 and
Hinkley Point C-2 is planned with a gross capacity of 1,720
MW and a net capacity of 1,630 MW.
Active construction projects (numbers in brackets)
listed are: Argentina (1), Bangladesh (2), Belarus (2),
Brazil (1), China (11), Finland (1), France (1), India (7),
Japan (2), Republic of Korea (5), Pakistan (2), Russia (6),
Slovak Republic (2), Taiwan, China (2), Turkey (1), the
USA (2), the United Arab Emirates (4) and the United
Kingdom (1).
Worldwide there were about 200 projects in the concrete
planning or application phase at the turn of the year
2018/2019. In addition, there are a further approx.
100 declarations of intent by companies or government
offices in other countries. Looking at the structural impact
of the incidents in Japan and Fukushima on 11 March
2011, it can be ascertained that, in the meantime, they do
not have an effect on the number of new construction project
and plans worldwide, with the exception of political
reactions in Germany, Italy and Switzerland.
Nuclear power plant units in operation [-]
500
400
300
200
100
0
1956 1960 1970 1980 1990 2000
2010 2015
Year
atw 12/2020
| Fig. 2.
Development of the number of nuclear power plants in operations from
1956 to 2018.
The development of the number of the commercially
operated nuclear power plants worldwide, in addition to
the available gross nuclear power plant capacity is depicted
in Figure 2 and Figure 3 for the years 1956 to 2018
(1956: year of commissioning the first commercial nuclear
power plant, Calder Hall 1, in Great Britain. The first
Country In operation Under construction Net nuclear
electricity production
Capacity
Capacity
Number
gross
[MWe]
net
[MWe]
Number
gross
[MWe]
| Tab. 1.
Nuclear power plant units worldwide in operation and under construction (set date: 31 December 2018),
nuclear electricity production and share of nuclear power of total electricity production in 2018 [Source: plant operators, IAEO, atw].
Nuclear
share
total
net
[MWe] [TWh] [%]
Argentina 3 1,750 1,627 1 29 25 6.45 5.00
Armenia 1 408 376 0 0 0 1.90 26.00
Bangladesh - 0 0 2 2.400 2,160 0.00 0.00
Belarus - 0 0 2 2,388 2,218 0.00 0.00
Belgium 7 6,220 5,937 0 0 0 27.30 39.00
Brazil 2 1,990 1,884 1 1,300 1,245 15.70 3.00
Bulgaria 2 2,000 1,906 0 0 0 15.40 33.00
Canada 19 14,385 13,517 0 0 0 95.00 15.00
China 46 45,328 42,294 11 11,757 10,860 281.00 4.00
Czech Republic 6 4,133 3,925 0 0 0 28.30 35.00
Finland 4 2,860 2,752 1 1,720 1,600 21.90 33.00
France 58 65,880 63,130 1 1,720 1,630 393.20 72.00
Germany 7 10,013 9,515 0 0 0 71.90 11.00
Hungary 4 2,000 1,889 0 0 0 14.90 51.00
India 22 6,780 6,219 7 5,300 4,824 35.40 3.00
Iran, Islamic Republic of 1 1,000 915 0 0 0 6.30 2.00
Japan 38 38,242 36,728 2 2,760 2,650 49.30 6.00
Korea, Republic of 24 23,495 22,474 5 7,000 6,700 127.10 24.00
Mexico 2 1,640 1,560 0 0 0 13.20 5.00
Netherlands, The 1 515 482 0 0 0 3.30 3.00
Pakistan 5 1,467 1,355 2 2,200 2,028 9.50 6.00
Romania 2 1,412 1,305 0 0 0 10.50 17.00
Russia 36 29,089 27,217 6 4,875 4,525 172.20 18.00
Slovak Republic 4 1,950 1,816 2 942 880 13.70 55.00
Slovenia 1 727 696 0 0 0 5.50 36.00
South Africa 2 1,940 1,860 0 0 0 10.60 5.00
Spain 7 7,398 7,121 0 0 0 53.40 20.00
Sweden 8 8,706 8,350 0 0 0 63.90 40.00
Switzerland 5 3,485 3,333 0 0 0 24.30 38.00
Taiwan, China 5 5,213 5,028 2 2,712 2,630 26.60 11.00
Turkey - - - 1 1,200 1,114
Ukraine 15 13,818 13,090 0 0 0 78.50 52.00
United Arab Emirates - 0 0 4 5,600 5,380 0.00 0.00
United Kingdom 15 10,366 9,361 0 0 0 59.10 18.00
United States of America 98 109,864 103,686 2 2,500 2,230 808.30 20.00
Total 450 424,074 401,416 53 58,123 54,329 2543.65 11.60
World Report
Nuclear Power World Report 2018
atw Vol. 65 (2020) | Issue 3 ı March
450
Installed nuclear power plant capacity worldwide [gross, GW = 10 3 MW]
Electricity production in nuclear power plants [TWh = 10 9 kWh/a]
3,000
Unit capability factor [%]
100
400
2,500
80
163
300
2,000
60
200
100
0
1956 1960 1970 1980 1990 2000
2010 2015
Year
atw 12/2020
| Fig. 3.
Development of the gross nuclear power plant capacity in operation from
1956 to 2018.
1,500
1,000
500
0
1956 2000
1960 1970 1980 1990 2010 2015
Year
| Fig. 4.
Development of the nuclear electricity production and plant availability
from 1956 to 2018.
40
20
0
atw 12/2020
WORLD REPORT
nuclear- generated electricity occurred on 20 December
1951 in the US-American Experimental Breeder Reactor
EBR-1.) Also worth noting is the continued capacity
increase (Figure 3) in the 1980s, as the nuclear power
plants, ordered due the impact of the first oil crisis at the
beginning and end of the 1970s, started operations with
high capacities per plant averaging 1,000 MWe. Worldwide
and in Germany, the commissioning of the nuclear power
unit Biblis A in 1974 with 1,225 MWe gross represented an
important milestone in the development of high-capacity
plants, which were from the beginning designed also
technically for a longer operating period of several decades
– previously, the pilot plants were also built with the focus
on technical feasibility and practicability. Since about 1993,
a developmental stagnation can be observed with the number
of nuclear power plants and capacity and this is due, on
the one hand to the de-commissioning of older, prototypical
and no longer profitable plants in the USA, Europe
and the GUS states and, on the other, the compensatory
expansion of capacities in the Asian region and capacity
increases of operating plants. Since the mid-1990s,
remarkable increases in capacity have been achieved. With
further optimised turbines alone, an increase in capacity of
around 5 % can be gained without increasing the reactor
capacity. If a construction measure also makes increasing
the thermal reactor capa city possible, then the generating
capacity in countries such as Mexico, Sweden, the Slovak
Republic, the USA and Hungary that are already approved
and realised would increase by around 20 %. Until the end
of the 2010s, a cumulated capacity increase totalling
7,750 MW is estimated. This equates to the new construction
of about 4 large nuclear power units. In the USA alone,
capacity increases totalling approx. 10,000 MWe net have
been realised or approved, a further 500 MWe currently to
be realised until 2020 have been applied for. In Sweden,
the operators estimate a capacity increase program
totalling 1,050 MWe net. In Mexico the nuclear power plant
units Laguna Verde 1 and Laguna Verde 2 have been
upgraded from 700 MWe gross to 840 MWe gross each; this
is an capacity increase of about 20 %.
With the 450 operating plants at the end of 2018, the
number was equal to the hitherto record year 2016 with
also 450 nuclear power plants in operation.
The nuclear power plants worldwide have achieved
an approx. 1 % higher result in 2018 compared to the
previous year 2017 in the net electricity generation
with approx. 2,544 billion (10 9 ) kWh (2,477.2 billion kWh,
provision details and calculations, cf. Table 1 and
Figure 4). In Japan, with the exception of five reactor
units, all other 37 plants were not connected to the grid
for the whole year. The previous best result of nuclear
electricity production accounted for 2,658 billion kWh in
2006. Good operating results were reported from the power
plants in Belgium, China, Finland, Germany, Russia,
Switzerland and the USA.
The overall operational reliability of the plants is
underlined by the average mean availability for work of all
nuclear power plants worldwide (cf. Figure 4). Their
average had increased since the mid 1990s. The strong
decrease in availability at the beginning of the 1990s is due
to the large drop in the availability of plants in the East
European states and the GUS states, whose operating data
were included consistently in the statistics for the first time.
The long-term cessation of individual profitable
nuclear power plant, and the quasi whole nuclear power
park of Japan as of 2011, also influence the lower average
availability in the years 2006 to 2009. Since 2011 the
availability is slightly increasing with the commissioning
of nuclear power plants in lay-up operation.
The Top Ten nuclear power plants in power generation
(MW gross and billion kWh ) 2018 are: (1) Chooz B-2, FR,
PWR, 1560 MW, 12.388 billion kWh; (2) Isar 2, DE, PWR,
1485 MW, 12.127 billion kWh; (3) Palo Verde-1, USA, PWR
1528 MW, 11.850 billion kWh; (4) Emsland, DE, PWR,
1406 MW, 11.495 billion kWh; (5) Susqehanna-2, USA,
BWR, 1374 MW, 11.470 billion kWh; (6) Millstone-3, PWR,
1308 MW, 11.168 billion kWh; (7) Peach Bottom-3, USA,
BWR, 1412 MW, 11.151 billion kWh, (8) Callaway-1, USA;
PWR, 1316 MW, 11.130 billion kWh; Oskarshamn-3, SE,
BWR, 1450 MW, 11.129 billion kWh; Comanche Peak-1,
USA, PWR, 1283 MW, 11.118 billion kWh.
Worldwide around 81,329 billion (10 9 ) kWh net
electricity have cumulatively been produced in nuclear
power plants since electricity was first generated from
nuclear power. The experience in the nuclear power plant
operations amount to approx. 17,300 reactor years.
Regarding climate protection, nuclear power plants
have avoided about 2.40 billion (10 9 ) t carbon dioxide
emisisons 2)
in 2018. The emissions avoided through
nuclear energy correspond to some 6 % of the current
annual emissions worldwide of CO 2 , in the meanwhile
over, approx. 36 billion tons. The emissions avoided each
year through nuclear power are distinctly higher than the
worldwide reduction targets contained in the existing
international protocols and agreements on climate
protection (Kyoto Protocol) for the period 2008 to 2012!
2) The CO 2 reduction
factor is based on
the average worldwide
CO 2 emissions
of fossile-fired
power plants in
countries with NPPS
in operation.
World Report
Nuclear Power World Report 2018
atw Vol. 65 (2020) | Issue 3 ı March
164
Preliminary Programme
KERNTECHNIK 2020
PRELIMINARY PROGRAMME
Tuesday, 5. May 2020
Plenary Day
9:00-13:00
Convention Hall I/A
N.N.
F.A.Z.,
will lead through the Plenary Day.
Plenary Session
9:00 D/E
Begrüßung und
Eröffnungsansprache
Welcome and Opening Address
Dr. Joachim Ohnemus
Vorsitzender des Vorstands, KernD
Policy
9:15 D/E
Kernenergiepolitik in der Schweiz –
Wie geht es weiter?
Nuclear Energy Policy in Switzerland
– What's Next?
Hans-Ulrich Bigler
Präsident, Nuklearforum Schweiz
9:35 D/E
Wirtschaftsstandort Deutschland –
Welchen Beitrag kann die kerntechnische
Industrie leisten?
Business Location Germany – What
Contribution Can Be Made by the
Nuclear Industry?
Karlheinz Busen, MdB
Stellvertretendes Mitglied im Ausschuss
für Umwelt, Naturschutz und nukleare Sicherheit,
Deutscher Bundestag
Economy
9:55 D/E
Restbetrieb und Rückbau in Nordund
Süddeutschland
Dismantling and Last Years of
Operation in Northern and Southern
Germany
Dr. Guido Knott
CEO, PreussenElektra GmbH
Competence
10:25 D/E
Kerntechnische Ausbildung –
Ein Grund zur Sorge?
Nuclear Education – A Cause
of Concern?
Prof. Dr. Jörg Starflinger
Geschäftsführender Direktor,
Institut für Kern energetik und Energiesysteme
(IKE), Universität Stuttgart
10:45 Coffee Break
11:15 D/E
System-Know how – der Schlüssel
für die Zukunft der nuklearen
Kompetenz
System-Oriented Know-How –
The Key to the Future of Nuclear
Competence
Wolfgang Däuwel
Framatome GmbH, Germany
Waste Management
11:15 E/D
Creating Public Acceptance
for a Final Repository
Jussi Heinonen
Director of the Nuclear Waste and Material
Regulation Department, STUK – Radiation and
Nuclear Safety Authority, Finland
11:35 D /EN
Ansprache
Karsten Möring, MdB
Ordentliches Mitglied im Ausschuss
für Umwelt, Naturschutz und nukleare Sicherheit,
Deutscher Bundestag
11:55 E/D
N. N.
N. N.
12:10 D/E
Die Standortauswahl –
Entwicklungen und Einblicke
Site Selection – Developments
and Insights
Steffen Kanitz
Managing Director, Bundesgesellschaft
für Endlagerung mbH (BGE), Germany
12:30
Verleihung der Ehrenmitgliedschaft
der KTG | Award of the Honorary
Membership of KTG
Präsentiert von Frank Apel
Vorsitzender der KTG
13:00 End of Plenary Session
13:00 - 14:30 Lunch Break
19:00 - 23:00
KernD-Reception and
Social Evening
in the Exhibition Area
Änderungen vorbehalten / Subject to change
KERNTECHNIK 2020
Preliminary Programme
atw Vol. 65 (2020) | Issue 3 ı March
165
Tuesday, 5. May 2020
Themenblock
Kompetenz & Innovation
CFD Simulations for Reactor
Safety Relevant Objectives
Raum III, EG
Koordinator
Dr. Andreas Schaffrath
Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Germany
14:00
Advances in CFD Applications
to Nuclear Safety
Dominique Bestion
currently Commissariat à l’énergie atomique et aux
énergies alternatives (CEA), Grenoble
14:30
Progress in the EPFL-Supported
IAEA Project for an Open-Source
Platform for Reactor Analysis
Dr. Carlo Fiorina
Ecole Polytechnique Fédérale de Lausanne (EPFL)
15:00
Water Hammer Simulation in Pipe
Systems with the Open Source Code
OpenFOAM
Paul Fuchs
Prof. Dr. Marco K. Koch
Ruhr-Universität Bochum,
Plant Simulation and Safety
15:30 Coffee Break
Themenblock
Sicherheit und Betrieb
Raum V, 2.OG
Koordinatoren
Dr. Tatiana Salnikova
Framatome GmbH, Germany
Erik Baumann
Framatome GmbH, Germany
Dr. Angelika Bohnstedt
Karlsruhe Institute of Technology, Germany
14:00
N. N.
N. N.
16:00 Coffee Break
16:30
N. N.
N. N.
17:00 End of Session
Subject to change.
Themenblock
Rückbau & Abfallbehandlung
Praktische Erfahrungen aus
ersten Demontageprojekten
Raum I, 1. OG
Koordinator
Dr. Erich Gerhards
PreussenElektra GmbH, Germany
16:00
Freigabe 4.0
Dr. Tim Thomas
Safetec Entsorgungs- und Sicherheitstechnik GmbH
16:30
Errichtung des Zwischenlagers LUnA
im Kernkraftwerk Unterweser
Ingo Fehrenbach
LUDWIG FREYTAG GmbH & Co. Kommanditgesellschaft
18:00 End of Session
This Session will be held in German
with simultaneous English Translation.
Themenblock
Zwischen- und Endlagerung
Raum II, EG
Koordinator
Dr. Ron Dagan
Karlsruher Institut für Technologie (KIT), Germany
14:00
Welcome and Keynote
Begrüßung und Ansprache
N. N.
N. N.
14:30 - 15:30
N. N.
N. N.
15:30 Coffee Break
KERNTECHNIK 2020
16:00
Application of CFD Codes
in Nuclear Licensing and
Supervisory Procedures
Frank Blömeling
TÜV NORD EnSys GmbH & Co. KG
14:00
Robotergestützte Zerlegung
der RDB-Einbauten im Kernkraftwerk
Brunsbüttel
Thomas Eichhorn
Geschäftsführer Orano GmbH , Germany
16:00
Introducing Burnup Credit Rendit for
Expansion Stage 2 of the External
Spent Fuel Pool at Gösgen NPP
Dr. Axel Hoefer
Framatome GmbH
16:30
Coupling of OpenFOAM
to System Codes
Joachim Herb
Gesellschaft für Anlagen und Reaktorsicherheit
(GRS) gGmbH
17:00
Multiphysics Calculations – Future
Vision and next Steps
Prof. Dr. Horst-Michael Prasser
ETH Zürich, Department Maschinenbau und
Verfahrenstechnik
17:30 End of Session
14:30
Feedback from Large Integrated D&D
Projects
Joseph Boucau
Westinghouse Electric Germany GmbH
15:00
Projektmanagement
im Dufo Projekt KWL
Christian Bolles
UNIPER-Anlagenservice GmbH
15:30 Coffee Break
16:15
Casks and Casks stacks
in Interim Storage Facilities
Under Earthquake Loads
Dr. Nina Wieczorek
TÜV NORD EnSys GmbH & Co. KG
Änderungen vorbehalten / Subject to change
KERNTECHNIK 2020
Preliminary Programme
atw Vol. 65 (2020) | Issue 3 ı March
166
Wednesday, 6. May 2020
KERNTECHNIK 2020
16:30
Aktuelles Vorgehen bei der Ermittlung
von Freisetzungsparametern
bei einem Flugzeugabsturz auf eine
kerntechnische Anlage im Rahmen
von Störfallanalysen
Dr. Steffen Böhlke
Steag Energy Services GmbH
16:45
Radiologische Bewertung von auslegungsüberschreitenden
Ereignissen
im Rahmen der Genehmigungsverfahren
zur Lagerung von radioaktiven
Abfällen in Deutschland
Dr. Vera Derya
WTI Wissenschaftlich-Technische Ingenieurberatung
GmbH
Young Scientist's Workshop
Part I
Raum Paris
Koordinator
Prof. Dr.-Ing. Jörg Starflinger
University of Stuttgart, Germany
The Jury
Prof. Dr. Marco K. Koch
Ruhr-Universität Bochum, Germany
Prof. Dr.-Ing. Jörg Starflinger
University of Stuttgart, Germany
Dr. Katharina Stummeyer
Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Germany
Dr. Hannes Wimmer
GNS Gesellschaft für Nuklear-Service mbH,
Germany
Sponsors of the
Young Scientist's Workshop-
Competence Award:
GNS Gesellschaft
für Nuklear-Service mbH
Kraftanlagen Heidelberg GmbH
14:00-14:05
Welcome and Introduction
Prof. Dr.-Ing. Jörg Starflinger
University of Stuttgart, Germany
14:05-17:50
N. N.
N. N.
17:50 End of Session
Themenblock
Kompetenz & Innovation
Reactor Physics, Thermo
and Fluid Dynamics
Raum III, EG
Chair
Dr. Andreas Wielenberg
Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Germany
9:00 - 10:00
Keynotes
N. N.
N. N.
10:00 Coffee Break
10:30
Keynotes
N. N.
N. N.
11:00
Framatome’s Thermohydraulik
Platform: Experimentelle Sicherheitsforschung
und Innovationen
Dr. Thomas Mull
Framatome GmbH
11:15
Geplante Experimente und Analysen
zur Modellierung der Zinkfreisetzung
und thermo hydraulischer Aus wirkungen
von Zinkborat ablagerungen
im DWR-Kern
Dr. André Seeliger
Hochschule Zittau / Görlitz, Germany
11:30
Laboruntersuchungen zu Zinkfreisetzungen
im DWR-Containment
sowie zum Kristallisations- und
Ablagerungs verhalten von Zinkboraten
im DWR-Kern als Basis für die
Modellierung unterschiedlicher KMV
Szenarien
Dr. Ulrich Harm
Technische Universität Dresden, Germany
12:00 Lunch
13:00
Water Hammer Simulation
in Pipe Systems with Open Source
Code OpenFOAM
Paul Fuchs
Ruhr-Universität Bochum, Germany
13:15
Numerische Simulation des unterkühlten
Strömungssiedens für
reaktortechnische Anwendungen
mit OpenFOAM
Zhi Yang
Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Germany
13:30
Simulation der DEBRIS-Testanlage mit
dem Störfallanalysecode ASTEC V2.1
Jan Peschel
Ruhr-Universität Bochum, Germany
13:45
Analyse des Schmelzeverhaltens
im unteren Plenum des Reaktors
der TMI-2 Anlage mit dem Systemcode
AC² – ATHLET-CD
Florian Krist
Ruhr-Universität Bochum, Germany
14:00
Verification of Azimuthal Melt
Relocation Modelling
Christophe D'Alessandro
Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Germany
14:15
Simulation ausgewählter
BETA-Versuche
Maximilian Hoffmann
Ruhr-Universität Bochum, Germany
14:30
Generalized Interpretation of MCCI-
Experiments with the AC2/COCOSYS
Code and Application to Core Catcher
Simulation
Claus Spengler
Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Germany
14:45
N. N.
N. N.
15:00 End of Session
Änderungen vorbehalten / Subject to change
KERNTECHNIK 2020
Preliminary Programme
atw Vol. 65 (2020) | Issue 3 ı March
Wednesday, 6. May 2020
167
Know-how, New Build
and Innovations
Raum V, 2. OG
Chair
Dr. Matthias Lamm
Framatome GmbH
13:00
Es ist eine Illusion, zu glauben,
Deutschland könne gleichzeitig
aus der Kernkraft und aus der Kohle
aussteigen.
em. Prof. Dr. Manfred Mach
Emeritus Technische Universität Berlin
13:15
Bürgerinitiative pro Kernenergie
Hauke Rathjen
Bürgerinitiative MitKernenergie
11:00
Evolution of Core Design and Operational
Requirements in German PWRs
from a Technical Expert Organization's
Point of View
SebastianSchoop
TÜV NORD EnSys GmbH & Co. KG
11:15
Reactor Core Control Based on Artificial
Intelligence
Dr. Victor Morokhovskyi
Framatome GmbH
11:30
The EMPIRE Irradiation Test: Lower-
Enriched Fuel for High-Performance
Research Reactors
Bruno Baumeister
Technische Universität München
Themenblock
Rückbau & Abfallbehandlung
Decommissioning
of Nuclear Installations
Raum I, 1. OG
Chair
Dr. Martin Brandauer
Karlsruhe Institute of Technology (KIT)
9:00 - 10:00
N. N.
N. N.
10:00 Break
10:30 - 12:00
N. N.
N. N.
KERNTECHNIK 2020
13:30
BioKernSprit – die Lösung
für ein Energieproblem
Jochen Michels
Consulting Company
11:45
Nachweis der Integrität des Zentralkanals
im FRM II mit ZfP Methoden
Dr. Heiko Gerstenberg
Technische Universität München ZWE FRM II
12:00 Lunch
This Session will be held in German/English
with simultaneous translation.
13:45 End of Session
Themenblock
Sicherheit und Betrieb
Operation and Safety
of Nuclear Installations, Fuel
Raum IV, 2.OG
Chair
Dr.-Ing. Thorsten Hollands
Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Germany
9:00
Keynote
Taking Responsibility – The Scientific
Backing of the German Quiver Project
Dr. Wolfgang Faber
PreussenElektra GmbH, Hannover
9:30
Keynote
Lifetime Extension of I&C-Modules
Dr. Lothar Mensching
PreussenElektra GmbH, Hannover
10:00 Coffee Break
10:30
Keynote
Quo vadis Netzstabilität –
Zunehmende Herausforderungen im
Wandel des Erzeugungsportfolios‘
Dr. Kai Kosowski
PreussenElektra GmbH, Hannover
12:00 Lunch
13:00
Novel Challenges for Anomaly
Detection in I&C Networks:
Strategic Preparation for the Advent
of Information Hiding based Attacks
Kevin Lamshöft
Otto-von-Guericke-Universität Magdeburg
13:15
Perspektive der Energiewende
ohne Kernenergie und ohne Kohlekraftwerke
Dr. Helmut Alt
FH Aachen
13:30
N. N.
N. N.
14:00 End of Session
Themenblock
Zwischen- und Endlagerung
Radioactive Waste Management,
Storage and Disposal
Raum II, EG
Chair
Dr. Ron Dagan
Karlsruhe Institute of Technology (KIT), Germany
9:00
Keynote
Marcus Seidel
9:30
Activity Ratio of Short-Lived
Radio nuclides in MTR Fuel Assemblies
Under Irregular Irradiation Regime
Dr. Erez Gilad
Ben-Gurion University of the Negev
10:00 Break
10:30
Keynote
Ander Sjölan
11:00
A Geopolymer Waste Form
for Technetium, Iodine and
Hazardous Metals
Prof. Dr. Werner Lutze
The Catholic University of America
Änderungen vorbehalten / Subject to change
KERNTECHNIK 2020
Preliminary Programme
atw Vol. 65 (2020) | Issue 3 ı March
168
Wednesday, 6. May 2020
KERNTECHNIK 2020
11:15
Mobility of Radionuclides in SNF in
View of Extended Dry Interim Storage
Dr. Michael Herm
Karlsruhe Institute of Technology
11:30
Experimentelle Untersuchung des
geplanten Probenentnahmesystems
im Fortluftkanal Kamin des Endlagers
Konrad
Herr Dr. Steffen Wildgrube
VPC GmbH
12:00 Lunch
13:00
IP-2 Beladungen „planbar“ machen
– Beladetools zur Abschätzung der
Transportfähigkeit von IP-2 Behältern
und ihre Verwendung im Rückbau
deutscher Kernkraftwerke
Dr. Luc Schlömer
WTI Wissenschaftlich Technische Ingenieurberatung
GmbH
13:15
Overcoming Design and Licensing
Challenges – The Type B(U)F Flask
TGC 27
Dr. Simon Orilski
AGC c/o GNS mbH
14:30
Impact of Neutron Slowing Down
on Radiation Fields for High-Level
Nuclear Fuel Waste Storage
He Wu
KIT-Institute for Nuclear Waste Disposal
15:00 Coffee Break
15:30
Keynote
N. N.
N. N.
16:00 End of Session
This Session will be held in German/Englisch
with simultaneous translation.
Young Scientist's Workshop
Part II
09:00-12:00
N. N.
N. N.
15:10
Prize Ceremony in the Exhibition Area
12:45
Besuch der Stationen II
13:45 Coffee Break
14:00
Auflösung des Handyexperiments
14:10
Besuch der Stationen III
15:10
Schlussworte
15:20 End of Campus
Jetzt anmelden:
kerntechnik2020.com
13:30
Erfahrungen aus der Entsorgung
von Sonderbrennstäben mit Köchern
in deutschen Kernkraftwerken
Wolfgang Reuter
GNS Gesellschaft für Nuklear Service mbH, Germany
CAMPUS Nuclear Technology
Foyer 3
Koordinatoren
Dr. Florian Gremme
Natalija Cobanov
Young Generation Network, KTG e. V., Germany
13:45
Quality Assurance and Data Analysis
in Automated Radiological Characterization
of Large Soil Volumes
Dr. Christoph Klein
NUKEM Technologies Engineering Services GmbH
14:00
Development of an Automated
Decontamination Cabin with
Documentation Based on Industry 4.0
Features
Dr. Maarten Becker
iUS Institut für Umwelttechnologien und
Strahlenschutz GmbH
14:15
APG 02 durch Betonierung –
das Abfall/Matrix-Verhältnis
Martina Kößler
GNS Gesellschaft für Nuklear Service mbH, Germany
9:00
Willkommen & Vorstellung der KTG JG
Dr. Florian Gremme
Junge Generation der KTG
9:20
Radioaktivität & Strahlenschutz
, Handyexperiment
Sven Jansen
VKTA – Strahlenschutz, Analytik & Entsorgung
Rossendorf e. V.
9:50
Arbeiten in einem Kernkraftwerk
Sebastian Hahn
KTG, Deutschland
10:10 Coffee Break
10:25
Besuch der Stationen I
11:25
Energie im Zeichen des Klimawandels
Andrea Kozlowski
FH Aachen
12:00 Lunch
Änderungen vorbehalten / Subject to change
KERNTECHNIK 2020
Preliminary Programme
atw Vol. 65 (2020) | Issue 3 ı March
Inside
Liebe LeserInnen der “Jungen Generation”,
liebe LeserInnen, die nicht mehr zu dieser
Altersgruppe zählen!
Kennen Sie die Bücher „Mama, erzähl
mal!“ oder „Papa, erzähl mal!“?
Das sind Ausfüllbücher, die Kinder oder Enkel ver schenken
(auch ich habe ein solches Buch bekommen), um
Antworten auf viele ihrer Fragen zu bekommen:
Was passierte gerade in der Welt, als du geboren
wurdest? Was für ein Kind warst du, als du klein warst?
Was ist die nachhaltigste Erinnerung an Deine Kindheit?
Was für ein Kind war ich in deinen Augen, als ich noch
klein war? Wann ist mir der erste Zahn gewachsen?
Fragen über Fragen. Beim Beantworten habe ich mich
häufig geärgert, dass ich nichts dokumentiert hatte;
manchmal halfen Fotos.
Damit ich auch später noch Fragen zur deutschen
Kerntechnik beantworten kann, schreibe ich mir jetzt
meine Antworten auf. Zudem sind diese Antworten auch
gedacht als einerseits Rückblick zu den allgemeinen
Entwicklungen der Kernenergie seit Fukushima sowie als
Momentaufnahme zur derzeitigen Klimaschutzdiskussion.
Andererseits sollen meine Ausführungen die LeserInnen
dieser Zeilen zum weiteren Nachdenken anregen.
Was ist im März 2011 in Japan passiert?
Am 11. März 2011 erschütterte ein Erdbeben mit einer
Stärke von 9 die Ostküste Japans. Das Beben erzeugte
einen gewaltigen Tsunami. Bis zu 40 Meter hohe Wellen
rasten auf die Küste zu. Mehr als 18.000 Menschen starben.
Ganze Städte wurden verwüstet. Im Kernkraftwerk
Fukushima- Daiichi fiel der Strom aus. Noch am Abend des
11. März erklärte die japanische Regierung den nuklearen
Notfall. In den Wochen nach der Havarie bestätigte sich
der Verdacht einer Kernschmelze. Nach mehreren
Sammelklagen stellte ein japanisches Gericht Ende 2017
die Mitschuld des Staates und des Betreiberkonzerns
Tepco an der Katastrophe fest. Obwohl viele Gebiete um
das KKW Fukushima seit Ende März 2017 wieder
bewohnbar sind, herrscht noch bei vielen Menschen
Verunsicherung…
Wichtig ist meines Erachtens der psychisch-rationale
Umgang mit derartigen Ereignissen. Nach der wahlkampftechnischen
Schnellabschaltung der deutschen Kernkraftwerke
nach dem Reaktorunfall hat die Bundesregierung
2011 unter Führung von Kanzlerin und Doktorin der
Naturwissenschaften Angela Merkel beschlossen, die
Atomkraftwerke gestaffelt abzuschalten. Der Bundestag
hat dem zugestimmt – mit den Stimmen von CDU/CSU,
FDP, SPD und Grünen.
Warum hacken die Kinder im Kindergarten
auf mir rum, nur weil meine Eltern für die
Kerntechnik arbeiten?
Das war die Frage unseres Jüngsten nachdem der Pfarrer
mit den Kleinen über Fukushima und die böse Atomkraft
gesprochen hat. (Ich muss an dieser Stelle betonen, dass
unser Kindergarten mit einem kirchlichen Träger immer
super toll war und dies die einzige zweifelhafte „ Verirrung“
war.)
Warum wollen Sie, Herr Bundestags abgeordneter,
dass meine Eltern arbeitslos werden?
Diese Frage haben unsere Kinder dem MdB unseres Wahlkreises
auf der Kirchweih in unserem Ort gestellt, kurz
nachdem die namentliche Abstimmung zum Atomausstieg
im Bundestag gelaufen war. Vielleicht war es der falsche
Ort, es gab keine direkte Antwort. Aber nach mehreren
Wochen dann doch: er hat auch eine Familie, die er
ernähren muss.
Wer ist Greta Thunberg?
Greta Tintin Eleonora Ernman Thunberg ist eine
schwedische Klimaaktivistin, die im Kern eine Forderung
hat: Klimapolitik muss sich konsequent an den Erkenntnissen
der Wissenschaft orientieren.
Ich habe viele Jahre in Thunbergs Heimat gelebt und
gearbeitet. Schweden setzt neben Wasser, Biomasse und
Wind weiter auf Kernkraft. Zwischen 1973 und 2012 ist
der Anteil fossiler Energieträger von 71 auf 28 Prozent
gesunken, gleichzeitig wuchs der Anteil der Kernenergie
bis heute von einem auf rund 40 Prozent. Seit Beginn der
1990er-Jahre hat Schweden seinen CO 2 -Ausstoß um
26 Prozent reduziert – trotz eines erheblichen wirtschaftlichen
Aufschwungs.
„Greta“ hat eine Meinung zur Kernenergie. Sie schrieb:
Atomenergie könne „ein kleiner Teil einer sehr großen
neuen kohlenstofffreien Energielösung“ sein. Dies ist eine
Position, die ein beträchtlicher Teil der Experten aus
Wirtschaft und Energiesektor seit Jahren vertritt, die bei
einer Mehrheit der Umweltaktivisten allerdings nicht
willkommen ist. Nach 4 Tagen hat „Greta“ den Text
korrigiert: „Persönlich bin ich gegen Atomkraft. Aber laut
dem IPCC kann sie ein kleiner Teil einer sehr großen neuen
kohlenstofffreien Energielösung sein.“ Was war passiert?
Thunberg erklärte in einem Kommentar, sie habe die
„ kleine Änderung gemacht, weil einige Leute meine Worte
immer auf die Goldwaage legen…“
Vor knapp einem Jahr war Greta Thunberg zu Gast bei
„Anne Will“. Im Originalinterview hörte sich das so an:
Anne Will: Let me follow up. If one wants to stop the emissions
– and that is what you want: not to lower them but to stop the
emissions – is it then possible to avoid nuclear energy in your
understanding?
Greta Thunberg: Ask scientists. That is something I can’t
speak out on because I don’t have that scientific education.
That is such a big decision that we need to have scientific
evidence and scientific based recommendations on what we
should do. So, I can’t say what we should do.
Wer sind die Wissenschaftler, die nach „Greta‘s“
Meinung die Empfehlungen für die zukünftige Energiepolitik
erarbeiten sollen? Ich denke, in den Reihen der
KTG gibt es viele, die einen wirtschaftlich sinnvollen
Energiemix beschreiben und begründen können.
Wo „Fridays for Future“ drauf steht, soll auch „Fridays
for Future“ drin sein. Der Name solle vor Missbrauch
geschützt werden - deshalb hat Greta Thunberg jetzt den
Schutz ihres Namens und den ihrer Klima-Bewegungen
„Fridays For Future“ oder „Skolstrejk för klimatet“ als
Marken beantragt. Beide würden ständig und ohne
Zustimmung für kommerzielle Zwecke genutzt, erklärte
die 17-jährige Schwedin…
Und Greta Thunberg ist nach 2019 auch in 2020 als
Kandidatin für den Friedensnobelpreis nominiert.
169
KTG INSIDE
KTG Inside
atw Vol. 65 (2020) | Issue 3 ı March
170
KTG INSIDE
Wenn wir jetzt bis 2038 in Deutschland auch
noch aus der Kohle aussteigen, sollten wir
dann nicht aus Überlegungen der Versorgungssicherheit
zumindest die Konvoi-Anlagen ein
paar Jahre länger am Netz lassen?
Wir betreiben in Deutschland mit viel Fachexpertise die
sichersten Kraftwerke der Welt. Die Verfügbarkeiten sind
spitze und wir sind mehrfacher Weltmeister in der Stromproduktion.
In 2019 hatte eine konservative Gruppierung von CDU
und CSU, die WerteUnion, Laufzeitverlängerungen
gefordert. Dadurch könne der Kohleausstieg vorgezogen
werden, hieß es. Es sei höchste Zeit, den Fehler des übereilten
Atomausstiegs von 2011 zu korrigieren und „die
Laufzeit der sichersten Atomkraftwerke der Welt zu
verlängern“. Die Debatte um eine Laufzeitverlängerungen
war zuletzt allerdings auch in der Wirtschaft aufgeflammt.
Hochrangige Vertreter wie Linde-Aufsichtsratschef
Wolfgang Reitzle und jüngst VW-Vorstandschef Herbert
Diess hatten den Atomausstieg infrage gestellt. Diess sagte,
„wenn uns der Klimaschutz wichtig ist, sollten die
Kernkraftwerke länger laufen“.
Die deutschen Stromkonzerne sind sich einig, dass
gesellschaftlich und damit letztlich auch langfristig unternehmerisch,
eine erneute Änderung der hiesigen Kernenergiepolitik
ein hochriskantes, konfrontatives Spiel mit
unsicherem Ausgang wäre. Längst haben sie sich zudem
strategisch neu orientiert. Theoretisch könnte ein Dritter
im Auftrag der Bundesnetzagentur die Kernkraftwerke
betreiben, aber ein derartiges Szenarium ist zurzeit nicht
darstellbar und auch neue Brennelemente hat niemand
bestellt.
Politische Mehrheiten für einen Weiterbetrieb sind
nicht erkennbar und so hat auch die Bundesregierung
Spekulationen über eine Abkehr vom Atomausstieg aus
Klimaschutzgründen eine klare Absage erteilt. „Der
Ausstieg wird wie geplant vollzogen“, sagte Regierungssprecher
Steffen Seibert. Die Haltung der Bundes regierung
zur Atomkraft gelte unverändert.
In welchem gesellschaftlichen Umfeld betreiben
unsere Nachbarn ihre Kernkraftwerke und warum
will Polen sogar neu einsteigen und bis 2033 das
erste Kernkraftwerk am Netz haben?
Schauen wir nach Frankreich: 72 % des Stroms kommt aus
Kernkraftwerken und dies seit vielen Jahren. Der Termin,
zu dem der Anteil der Kernenergie im französischen
Energiemix nur noch 50 Prozent betragen soll, wurde von
2025 auf 2035 verschoben. Mit einem signifikanten
Investprogramm der EdF – dem sogenannten Grand
Carénage – werden derzeit die französischen Kernkraftwerke
fit gemacht für längere Laufzeiten. Auch in
Frankreich gibt es Klimaaktivisten und die Bevölkerung ist
bezüglich der Nutzung der Kernenergie gespalten.
Dennoch sind über 54 % der unlängst in einer Umfrage
Befragten der Meinung, dass der Anteil der Kernenergie im
französischen Energiemix in der Zukunft stabil bleibt oder
zunehmen wird. Nur 26 % wollen einen Komplettumstieg
auf die Erneuerbaren. Die Umfrage hat auch einige Überraschungen
zutage gebracht: 69 % der Befragten denken,
dass Kernkraftwerke eine Menge Treibhausgase produzieren
und damit ein Klimakiller sind und 67 % der
Franzosen glauben, dass der französische Strompreis
höher als in den Nachbarländern ist.
Imprint
| Editorial Advisory Board
Frank Apel
Erik Baumann
Dr. Erwin Fischer
Carsten George
Eckehard Göring
Dr. Florian Gremme
Dr. Ralf Güldner
Carsten Haferkamp
Christian Jurianz
Dr. Anton Kastenmüller
Prof. Dr. Marco K. Koch
Ulf Kutscher
Herbert Lenz
Jan-Christan Lewitz
Andreas Loeb
Dr. Thomas Mull
Dr. Joachim Ohnemus
Olaf Oldiges
Dr. Tatiana Salnikova
Dr. Andreas Schaffrath
Dr. Jens Schröder
Norbert Schröder
Prof. Dr. Jörg Starflinger
Dr. Brigitte Trolldenier
Dr. Walter Tromm
Dr. Hans-Georg Willschütz
Dr. Hannes Wimmer
| Editorial Office
Christopher Weßelmann (Editor in Chief)
Im Tal 121, 45529 Hattingen, Germany
Phone: +49 2324 4397723
Fax: +49 2324 4397724
E-mail: editorial@nucmag.com
Nicole Koch (Editor)
c/o INFORUM, Berlin, Germany
Phone: +49 176 84184604
E-mail: nicole.koch@nucmag.com
| Official Journal of Kerntechnische Gesellschaft e. V. (KTG)
| Publisher
INFORUM Verlags- und Verwaltungsgesellschaft mbH
Robert-Koch-Platz 4, 10115 Berlin, Germany
Phone: +49 30 498555-30
Fax: +49 30 498555-18
www.nucmag.com
| General Manager
Dr. Thomas Behringer
| CvD
Nicolas Wendler
| Advertising and Subscription
Petra Dinter-Tumtzak
Phone: +49 30 498555-30
Fax: +49 30 498555-18
E-mail: petra.dinter@nucmag.com
| Layout
zi.zero Kommunikation
Antje Zimmermann
Berlin, Germany
| Printing
inpuncto:asmuth
druck + medien gmbh
Buschstraße 81, 53113 Bonn, Germany
| Price List for Advertisement
Valid as of 1 January 2019
Published monthly, 9 issues per year
Germany:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT and postage) 187.- €
All EU member states without VAT number:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT, excl. postage) 187.- €
EU member states with VAT number
and all other countries:
Per issues/copy (no VAT, excl. postage) 22.43 €
Annual subscription (no VAT, excl. postage) 174.77 €
| Copyright
The journal and all papers and photos contained in it are protected by
copyright. Any use made thereof outside the Copyright Act without the
consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft
mbH, is prohibited. This applies to reproductions, translations,
micro filming and the input and incorporation into electronic systems.
The individual author is held responsible for the contents of the
respective paper. Please address letters and manuscripts only to the
Editorial Staff and not to individual persons of the association´s staff.
We do not assume any responsibility for unrequested contributions.
Signed articles do not necessarily represent the views of the editorial.
ISSN 1431-5254
KTG Inside
atw Vol. 65 (2020) | Issue 3 ı March
Polen bezieht 77 Prozent seiner Elektrizität aus Kohle.
Um die Klimaneutralität der EU im Jahre 2050 zu
erreichen, kann „Kernenegie ein (kleiner) Teil einer sehr
großen neuen kohlenstofffreien Energielösung sein“. Für
viele europäische Staaten nicht nachvollziehbar, ist im
Green Deal der EU die klimaneutrale Kernenergie nicht als
saubere Energiequelle akzeptiert wurden.
Wie ist das mit den Verbraucherpreisen
für Strom?
Strom hat heute einen stolzen Preis: 31,37 Cent kostet eine
Kilowattstunde im Januar 2020 im Schnitt, wenn ein
Haushalt 3.500 Kilowattstunden im Jahr bezieht. Im Jahr
2000 waren es noch rund 14 Cent.
Seit Beginn des neuen Jahrtausends führte der Gesetzgeber
ein neues Förderinstrument in der Stromversorgung
ein: Umlagen. Sie sollen die Energiewende vorantreiben.
Der Stromverbraucher bezahlt sie über den Strompreis.
Insgesamt fünf Umlagen gibt es auf den Strompreis – und
sie haben ihn in die Höhe getrieben. Angestiegen sind auch
die Entgelte für die Stromnetze. Je stärker die einzelnen
Posten wachsen, desto mehr Mehrwertsteuer fällt am
Ende an. Das ist schön für den Haushalt der Bundesrepublik,
aber weniger schön für uns Verbraucher.
Die Strompreise an der Börse sind gesunken – wegen
subventionierter erneuerbarer Energien zu Lasten
der Konventionellen. Nach 2011 verringerten sich die
Beschaffungskosten um bis zu 3 Cent pro Kilowattstunde.
Diesen Vorteil haben aber die gestiegenen Umlagen – allen
voran die sogenannte EEG-Umlage zur Vergütung von
Ökostrom – und die entsprechend höheren Mehrwertsteuerkosten
mehr als aufgefressen. Bei uns Verbrauchern
kam von den niedrigeren Großhandelspreisen gar nichts an.
Und im Vergleich zu Frankreich zahlen wir Verbraucher
in Deutschland schon seit vielen Jahren das 1,5 fache.
Können sich Industrie und private Haushalte diese
hohen Strompreise leisten? Die meisten schon. Noch!
Müssen wir eben am Urlaub sparen. Fliegen sollen wir ja
auch nicht mehr, wegen der Flugscham…
Frank Apel
Vorstandsvorsitzender Kerntechnische Gesellschaft e. V. (KTG)
171
KTG INSIDE
Bericht zur Veranstaltung
„Kernenergie – der Weg aus der Klimakrise“
Die im Februar seitens der Sektion Nord organisierte
Veranstaltung in Hamburg zum Thema Kernenergie und
Klimakrise wurde von 23 interessierten Teilnehmern
besucht.
Redner Rainer Klute, Vorsitzender der Nuklearia e.V.,
stieg in seinen Vortrag ein, indem er den Interessenten
erläutert, wie sich der deutsche Strommix zusammensetzt
und wo die Probleme der Energiewende bestehen. Er
führt aus, warum Solar- und Windenergie alleine nicht
genügen, um Deutschland mit CO 2 -freiem Strom zu versorgen.
Über einen Live-Vergleich mittels des Portals
www.electricitymap.org zeigte er eingänglich, dass Länder
mit hohem Kernenergieanteil – wie Frankreich – signifikant
geringere CO 2 -Emissionen haben als z.B. Deutschland.
Anhand von Tagesganglinien der Stromproduktion und
des Bedarfs zeigte er auf, dass erneuerbare Energien
alleine niemals die Energieversorgung Deutschlands
werden sichern können. Ergo müsse Kernenergie zwingend
ein Teil der Lösung im Kampf gegen den Klimawandel sein.
Klute stellte dar, dass mittlerweile Befürworter der Kernenergie
weltweit auch aus den Lagern der traditio nellen
Gegner stammen. Weltweit sei die Kernenergie im
Aufwind, sogar in Deutschland nehme die Befassung mit
dem Thema Kernenergie wieder zu. Er zeigte dazu aktuelle
Beispiele von Stellungnahmen deutscher Parteien und
Leitmedien und leitete daraus die Frage ab: Ist der Ausstieg
aus dem Ausstieg denkbar? Als Beispiel internationaler
Entwicklung zeigte er neben neuartigen sogenannten SMR
(Small Modular Reactor), kleinen und modularen
Reaktoren, auch das Beispiel des russischen BN-800 auf.
Der BN-800 ist ein schneller Brutreaktor, der im
kommerziellen Betrieb Strom aus abgebrannten Brennelementen
(“Atommüll”) produziert.
“Kernenergie kann nicht nur Strom” – so bot Klute
zahlreiche weitere aktuelle Beispiele für die Vielfalt
möglicher Einsatzgebiete von Kernenergie: Fernheizwärme,
Wasserentsalzung, Wasserstoffproduktion und
vieles mehr.
Zum Abschluss räumte er mit den klassischen
Argu menten der Kernkraftgegner ebenso auf, wie mit den
jüngsten. In jedem Fall sei es besser, heute Kernkraft neu
zu bauen und zu fördern, als nie.
Im Anschluss an den Vortrag konnten sich die Teilnehmer
bei einem Imbiss austauschen.
Helge Gottschling
KTG Inside
atw Vol. 65 (2020) | Issue 3 ı March
172
NEWS
Wenn Sie künftig eine
Erwähnung Ihres
Geburtstages in der
atw wünschen, teilen
Sie dies bitte der KTG-
Geschäftsstelle mit.
KTG Inside
Verantwortlich
für den Inhalt:
Die Autoren.
Lektorat:
Natalija Cobanov,
Kerntechnische
Gesellschaft e. V.
(KTG)
Robert-Koch-Platz 4
10115 Berlin
T: +49 30 498555-50
F: +49 30 498555-51
E-Mail:
natalija.cobanov@
ktg.org
www.ktg.org
Herzlichen Glückwunsch!
Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag
und wünscht ihnen weiterhin alles Gute!
April 2020
65 Jahre | 1955
02. Helmut Gradic, Stadland
24. Klaus-Dieter Brandt, Berlin
15. Thomas Grahnert, Dresden
70 Jahre | 1950
28. Dr. Wolfgang Wiesenack, Halden
78 Jahre | 1942
09. Prof. Dr. Hans-Christoph Mehner,
Dresden
80 Jahre | 1940
18. Dipl.-Ing. Norbert Granner,
Bergisch Gladbach
82 Jahre | 1938
04. Prof. Dr.-Ing. Klaus Kühn,
Clausthal-Zellerfeld
05. Dr. Hans Fuchs, Gelterkinden
09. Dr. Carl Alexander Duckwitz,
Alzenau-Kälberau
28. Prof. Dr. Georg-Friedrich Schultheiss,
Lüneburg
83 Jahre | 1937
13. Dr. Martin Peehs, Bubenreuth
85 Jahre | 1935
05. Prof. Dr. Hans-Henning Hennies,
Karlsruhe-Bergwald
89 Jahre | 1931
09. Dr. Klaus Penndorf, Geesthacht
6. Januar 2019 ı
Dr. Helmut Hübel
Bensberg
Die KTG verliert in ihm ein langjähriges
aktives Mitglied, dem sie ein
ehrendes Andenken bewahren wird.
Seiner Familie gilt unsere Anteilnahme.
89 Jahre | 1931
28. Dipl.-Ing. Rudolf Eberhart, Burgdorf
Top
BlackRock and $35 trillion
investor group want to go
carbon-free, tech innovators
look to nuclear
(nei) BlackRock Inc. – a global
investment firm that manages nearly
$ 7 trillion dollars in assets – joined an
investment pact focused on reducing
carbon emissions, Climate Action
100+. With BlackRock’s commitment,
Climate Action 100+ represents more
than $ 41 trillion dollars in investments.
That’s a lot of capital and
another influential name committed
to protecting the climate.
While every investor wants to
make money, the climate pact represents
an increasing number of people
who also want their investments to
make a positive change in the world,
especially for issues like climate.
Melanie Nakagawa, head of climate
initiative at investment firm Princeville
Capital, said – in a recent episode
of “Off the Menu” – that this type of
“impact investing” is becoming the
norm as climate concerns are viewed
by the financial world as an untenable
risk.
“[Climate] awareness is rapidly
changing, and I believe we are on the
edge of a fundamental reshaping of
finance,” said BlackRock Chairman
and Chief Executive Officer Larry Fink
in a letter to clients. “In the near future
– and sooner than most anticipate –
there will be a significant reallocation
of capital.”
While reducing carbon emissions
and transitioning to a low-carbon
economy will involve more than the
electricity sector, it still makes up
28 % of emissions. When you consider
that going carbon-free in other sectors
like transportation or industry will
require more electricity, generating
power as cleanly as possible becomes
even more important. For this reason,
nuclear energy – which provides
more than 55 percent of our current
carbon-free electricity – plays a major
role in holding down carbon emissions.
Additionally, advanced reactors
expand the future of nuclear and clean
energy. In fact, leading tech
entrepreneur Bill Gates sees great
opportunities in advanced nuclear and
even helped launch TerraPower LLC
to design a next-generation reactor.
He’s not alone. Dozens of new
companies are working on advanced
reactors that represent the cuttingedge
in nuclear technology. Advanced
reactors promise an affordable and
reliable source of clean electricity,
plus the ability to produce clean transportation
fuels and building materials
and to desalinate drinking water,
while offering inherent safety features
and even the ability to recycle used
fuel and reduce waste.
As more investors push for clean
energy solutions, nuclear energy leads
the way in carbon-free electricity
today and is innovating for the
reactors and grid of tomorrow.
| (20491542) www.nei.org
World
IAEA Ministerial Conference
commits to strengthening
nuclear security amid concerns
about global threats
(iaea) Government ministers and
other high-level representatives from
more than 140 countries adopted a
declaration at a major International
Atomic Energy Agency (IAEA) conference
today to enhance global nuclear
security and counter the threat of
nuclear terrorism and other malicious
acts.
From a possible cyber attack on
a nuclear power plant to the illicit
trafficking of radioactive materials,
nuclear security is a growing international
concern. The IAEA and its
Member States have in recent years
intensified their efforts to strengthen
nuclear security but agree that more
action is needed.
“Nuclear and radioactive material
is a magnet for groups with malicious
intent that see in this material a
possibility to create panic and bring
News
atw Vol. 65 (2020) | Issue 3 ı March
distress and pain to our societies,”
IAEA Director General Rafael Mariano
Grossi said at the opening of the weeklong
conference at IAEA head quarters,
shortly before the declaration was
adopted by the participants, including
more than 55 ministerial-level
representatives.
Nuclear technology and science
help improve the lives of millions of
people around the world in areas
ranging from clean energy and cancer
care to food security and pest control.
But the nuclear and radioactive
materials used to produce those
benefits must be secured at all times
to prevent them from falling into
the wrong hands. Nuclear security
involves preventing, detecting and
responding to malicious acts with
nuclear material, radioactive substances
or their associated facilities.
In the declaration, IAEA Member
States reaffirmed the common goals
of nuclear non-proliferation, nuclear
disarmament and the peaceful uses of
nuclear energy and recognized that
nuclear security contributes to international
peace and security.
“We remain concerned about
existing and emerging nuclear
security threats and committed
to addressing such threats,” the
ministerial declaration said. “We
encourage Member States to implement
threat mitigation and risk
reduction measures that contribute to
improving nuclear security, including,
but not limited to, ensuring the
protection of nuclear and other radioactive
materials and facilities.”
Nuclear security is a national
responsibility, but the central role of
the IAEA in facilitating and coordinating
international cooperation in
this area was also highlighted at the
conference and in the declaration.
“The adoption of a Declaration at
ministerial level is indicative of the
continuous commitment to nuclear
security of IAEA Member States. It
is a concise, politically driven and
forward- looking document, adding
value to the efforts of strengthening
nuclear security worldwide,” said
Bogdan Aurescu, Minister of Foreign
Affairs of Romania and Co-President
of the conference.
“In the coming years, global stocks
of nuclear material are expected to
continue growing, especially as we
look into emerging nuclear technologies
and their role in mitigating the
consequences of climate change,” said
Federico Alfaro, Vice-Minister of
Foreign Affairs of Panama and Co-
President of the conference. “We
cannot allow for such material to fall
into the wrong hands.”
| (20491539) www.iaea.org
Reactors
Excellent production year
for PreussenElektra's
nuclear power plants
(pe) The three PreussenElektra
nuclear power plants Brokdorf,
Grohnde and Isar 2 had another
successful year of operation: The
three power plants generated a total
of almost 33 billion kilowatt hours
(kWh) of electricity in 2019. This
amount alone from these three plants
is sufficient to supply around
13 million electric cars with low-CO 2
electricity [1].
With an availability of almost 90 %,
the power plants were available
almost without restriction. The continuing
drought and the high ambient
and cooling water temperatures of
last summer 2019 had no significant
impact on the plants.
With 12 billion kilowatt hours
(gross), the Isar 2 nuclear power plant
(Bavaria) in Germany generated the
largest amount of electricity of all
German nuclear power plants and
therefore has a good chance of once
again finishing among the world-wide
top three. Around 10.7 billion kilowatt
hours (gross) were supplied by the
Grohnde nuclear power plant in
Lower Saxony and a good 10 billion
kilowatt hours (gross) came from
the Brokdorf nuclear power plant
in Schleswig-Holstein. The Grohnde
nuclear power plant celebrated its
35 th anniversary of grid synchronisation:
With its approximately
386 billion kilowatt hours of electricity
generated since commissioning,
the power plant continues to be
the undisputed world leader: No plant
in the world has ever generated so
much electricity. Preussen Elektra
invested around 50 million Euros in
the power plants as part of the power
plant overhauls.
“I would like to thank my
colleagues in the power plants and the
company headquarters as well as the
employees of our contractors, whose
commitment has ensured reliable
and safe operation,” said Dr. Erwin
Fischer, the Managing Director
responsible for technology and operations.
“We are doing everything we
can to make our contribution to a
climate-friendly and reliable electricity
supply in Germany in the few
remaining years of production.
However, the occasional question addressed
to us regarding the possible
continued operation of our three
plants is clearly rejected: All the points
have been set for dismantling, and
further operation is ruled out. We
submitted the applications for
decommissioning and dismantling at
an early stage and the approval
procedures are in full swing.”
With their grid-supporting services,
the three nuclear power plants ensure
that the electricity grid is stabilised.
Almost daily, the power plants flexibly
reduce and increase their output
according to the requirements of the
market and the grid operator. By
generating electricity with low CO 2
emissions, they also save the environment
around 29 million tonnes of CO 2
annually.
| (20491507)
www.preussenelektra.de
Company News
PreussenElektra GmbH orders
62 CASTOR® casks
(gns) GNS supplies 62 spent fuel casks
of the type CASTOR® V/19 for the
spent fuel elements from the nuclear
power plants Grohnde (KWG) and
Brokdorf (KBR) of PreussenElektra
GmbH.
GNS Gesellschaft für Nuklear-
Service mbH has received an order for
the delivery of a total of 62 transport
and storage casks of the type CASTOR®
V/19. The casks – Brokdorf receives
39, Grohnde 23 – will be used for
the spent fuel elements of the
two pressurized water reactor nuclear
power plants of PreussenElektra
GmbH which will be in operation until
the end of 2021. The order has a total
volume of well over EUR 100 million.
“With this large order, we are
securing the largest share of the
CASTOR® casks required for the
disposal of irradiated fuel elements
from our nuclear power plants in
Brokdorf and Grohnde”, explains
Lothar Mertens, Head of Fuel Cycle
and Interim Storage at Preussen-
Elektra GmbH. “This gives us planning
security at both sites and allows
us to secure disposal at an early stage
until the two plants are completely
free from fuel”.
The casks are to be delivered from
the GNS plant in Mülheim an der
Ruhr/Germany to the two power
plants from mid 2022. After loading
in the reactor building, the casks
173
NEWS
News
atw Vol. 65 (2020) | Issue 3 ı March
174
NEWS
the heat created in the reactor core.
This steam drives the turbines that
generate electricity.
TVA’s Browns Ferry Nuclear Plant
is home to three boiling water
reactors. Both the Sequoyah and
Watts Bar nuclear plants have two
pressurized water reactors. Collectively,
these plants generate enough
electricity to power more than
4.5 million homes and businesses.
| (20491335) www.framatome.com
| PreussenElektra GmbH orders 62 CASTOR® casks. View of a CASTOR® V/19 casks with shock absorbers.
will be transferred to the local on-site
interim storage facilities operated
by the federally owned BGZ Gesellschaft
für Zwischenlagerung mbH.
A total of 33 (Brokdorf ISF) and 34
(Grohnde ISF) loaded casks of this
type are already in store in the local
on-site interim storage facilities.
| (20491220) www.gns.de
Framatome signs multimillion-dollar
contracts with
Tennessee Valley Authority
(framatome) Tennessee Valley Authority
(TVA) awarded Framatome
several multimillion-dollar contracts
for work across the company’s reactor
fleet. This includes fuel for the Browns
Ferry Nuclear Plant, fuel handling
equipment upgrades across the fleet
and steam generator replacements at
the Watts Bar Nuclear Plant.
“Framatome’s long-standing relationship
with TVA is the result of our
U.S. and global teams’ expertise and
commitment to delivering excellence
in everything they do,” said Bernard
Fontana, CEO of Framatome. “We
are pleased to expand our cooperation
with TVA and support them in providing
efficient, reliable and low-carbon
electricity to residents and businesses
across the Tennessee Valley.”
Framatome will provide its stateof-
the-art ATRIUM 11 fuel for the
three boiling water reactors at Browns
Ferry with the first use planned for
2023. This contract makes TVA the
third U.S. utility to switch to the
ATRIUM 11 fuel design.
ATRIUM 11 helps utilities to save
money by using the uranium in nuclear
fuel more efficiently. The fuel also
allows operators to run their plants
with more flexibility as demand fluctuates
and other generation sources
provide power to the electric grid.
Framatome’s fuel fabrication facility,
which recently celebrated its 50 th
anniversary, in Richland, Washington,
will manufacture the fuel.
Framatome will also upgrade the
fuel handling equipment at the
Browns Ferry, Sequoyah and Watts
Bar nuclear plants on an accelerated
schedule, saving the plants both time
and money.
This work includes upgrading the
refuel bridges at Browns Ferry, the
manipulator cranes at both Sequoyah
units and Watts Bar Unit 1, and the
fuel transfer systems at Watts Bar.
Framatome previously upgraded the
fuel transfer systems at Sequoyah. The
company will also replace the spent
fuel bridges at Sequoyah and Watts
Bar.
Additionally, SGT, a joint venture
between Framatome and AECOM,
will replace four steam generators at
Watts Bar Unit 2. In a nuclear energy
plant, the steam generator has an
essential role in producing electricity.
It converts water into steam using
| Watts Bar nuclear power plant (Tennessee Valley, United-States) – © TVA
Westinghouse expands nuclear
services & capabilities with
acquisition of Rolls-Royce civil
nuclear systems and services
(west) Westinghouse Electric Company
will complete the acquisition
of Rolls-Royce’s Civil Nuclear Systems
and Services business in North
America and in select sites in Europe.
The acquisition represents a strategic
investment in expanding the company’s
nuclear products and services
offerings. This acquisition supports
Westinghouse’s global customer base
through enhanced operating plant
services, capabilities and technologies.
It also strengthens the company’s
digital innovation efforts.
“Expanding our geographic footprint
and strengthening our portfolio
of systems and services is a key focus
to better serve our clients and deploy
innovative and leading solutions to
the installed base of nuclear plants,”
said Westinghouse President and Chief
Executive Officer Patrick Fragman.
“Both Westinghouse and Rolls-Royce
Civil Nuclear customers will gain
an expanded presence and benefit
from synergies between our companies.
With this strategic investment,
we are enhancing our customer offerings
in order to support their longterm
operating goals to produce
carbon- free, cost-effective and reliable
energy.”
News
atw Vol. 65 (2020) | Issue 3 ı March
Through the transaction, Westinghouse
will acquire the Rolls-Royce
Civil Nuclear Systems and Services’ 11
locations in Canada, France, the
United Kingdom and the United
States. These sites support plant
automation and monitoring systems,
field services, manufacturing and
engineering services as well as digital
engineering services. These are key
areas in supporting Westinghouse’s
efforts to optimize customer planning
and maintenance, and provide innovative
systems and services to maximize
performance, cost effectiveness
and support life extension of the
nuclear plants worldwide.
All closing conditions have been
met for Westinghouse to complete the
acquisition.
| (20491515)
www.westinghousenuclear.com
Operating Results November 2019
The first serial batch of MOX
fuel loaded into BN-800 fast
reactor at Beloyarsk NPP
(tvel) BN-800, the world’s most
powerful operational fast neutron
reactor at Unit 4 of Beloyarsk NPP in
Russia, has been loaded with the first
serial batch of MOX fuel made of
depleted uranium and plutonium
oxides. After an overhaul, the power
unit has successfully resumed
operation.
Distinct from traditional nuclear
fuel with enriched uranium, MOX fuel
pellets are based on the mix of nuclear
fuel cycle derivatives, such as oxide of
plutonium bred in commercial reactors,
and oxide of depleted uranium
which is derived by defluorination of
depleted uranium hexafluoride (UF6),
the so-called secondary tailings of
uranium enrichment facilities.
The power plant engineers have
loaded eighteen MOX fuel assemblies
at the BN-800 reactor core, while in
2020, Rosenergoatom and TVEL (i.e.
power generation and nuclear fuel
divisions of ROSATOM) are planning
to load another batch of 180 fuel
assemblies. By the end of 2021,
ROSATOM is committed to replace all
remaining uranium-based fuel
assemblies in the core with MOX fuel.
Thus, for the first time in Russian
history, a fast neutron reactor would
start operations with a full load of
MOX fuel only.
“ROSATOM strategy is aimed at
the dual-component nuclear power
system with both thermal neutron
and fast neutron reactors, and closing
nuclear fuel cycle, which would solve
a number of highly important tasks.
First, this would exponentially boost
*)
Net-based values
(Czech and Swiss
nuclear power
plants gross-based)
1)
Refueling
2)
Inspection
3)
Repair
4)
Stretch-outoperation
5)
Stretch-inoperation
6)
Hereof traction supply
7)
Incl. steam supply
8)
New nominal
capacity since
January 2016
BWR: Boiling
Water Reactor
PWR: Pressurised
Water Reactor
Source: VGB
175
NEWS
Plant name Country Nominal
capacity
Type
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated, gross
[MWh]
Month Year Since
commissioning
Time availability
[%]
Energy availability
[%] *) Energy utilisation
[%] *)
Month Year Month Year Month Year
OL1 Olkiluoto BWR FI 910 880 720 667 236 7 120 756 268 775 964 100.00 97.25 99.98 96.48 100.73 96.56
OL2 Olkiluoto BWR FI 910 880 720 664 455 6 777 931 258 674 474 100.00 92.55 99.70 92.08 100.31 91.91
KCB Borssele PWR NL 512 484 720 366 867 5 879 653 167 601 341 99.56 86.65 99.56 86.58 99.72 83.77
KKB 1 Beznau 7) PWR CH 380 365 720 276 758 2 688 017 130 022 127 100.00 88.80 100.00 88.64 101.20 88.16
KKB 2 Beznau 7) PWR CH 380 365 720 275 241 2 661 444 137 011 851 100.00 87.90 100.00 87.74 100.67 87.27
KKG Gösgen 7) PWR CH 1060 1010 720 766 212 7 446 898 321 322 426 100.00 88.46 99.99 87.98 100.40 87.64
KKM Mühleberg BWR CH 390 373 720 269 130 3 048 020 130 452 335 100.00 100.00 100.00 99.78 95.84 97.50
CNT-I Trillo PWR ES 1066 1003 720 760 270 7 696 038 254 987 706 100.00 91.12 100.00 90.78 98.62 89.48
Dukovany B1 1) PWR CZ 500 473 720 358 378 3 282 064 115 511 557 100.00 83.92 99.97 83.44 99.55 81.89
Dukovany B2 PWR CZ 500 473 720 355 601 2 438 815 110 672 986 100.00 62.46 100.00 61.91 98.78 60.85
Dukovany B3 PWR CZ 500 473 720 354 008 3 383 385 109 881 425 100.00 86.84 100.00 86.51 98.34 84.42
Dukovany B4 PWR CZ 500 473 720 362 785 3 980 533 110 423 802 100.00 99.86 100.00 99.72 100.77 99.31
Temelin B1 PWR CZ 1080 1030 681 722 495 7 024 500 121 385 542 100.00 82.41 99.98 82.19 92.91 81.00
Temelin B2 PWR CZ 1080 1030 720 788 191 7 395 583 116 668 100 100.00 84.96 99.98 84.74 101.17 85.27
Doel 1 2) PWR BE 454 433 0 0 2 291 598 137 736 060 0 61.99 0 61.65 0 61.57
Doel 2 2) PWR BE 454 433 0 0 2 533 531 136 335 470 0 70.54 0 69.35 0 69.30
Doel 3 PWR BE 1056 1006 720 775 232 7 172 489 262 304 974 100.00 84.44 100.00 83.89 101.69 84.26
Doel 4 PWR BE 1084 1033 720 790 278 8 452 548 268 825 958 100.00 100.00 99.96 96.90 99.62 95.70
Tihange 1 PWR BE 1009 962 720 730 179 8 023 972 306 854 830 100.00 100.00 99.98 99.98 100.64 99.31
Tihange 2 3) PWR BE 1055 1008 348 335 969 2 622 307 257 274 237 48.31 32.84 44.32 31.92 44.53 31.23
Tihange 3 PWR BE 1089 1038 720 781 451 8 527 900 279 755 173 100.00 99.97 100.00 99.38 100.31 98.20
Plant name
Type
Nominal
capacity
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated, gross
[MWh]
Time availability
[%]
Energy availability Energy utilisation
[%] *) [%] *)
Month Year Since Month Year Month Year Month Year
commissioning
KBR Brokdorf 3) DWR 1480 1410 603 821 025 9 199 396 359 767 206 83.69 86.55 78.38 81.23 76.88 77.25
KKE Emsland DWR 1406 1335 720 1 015 679 9 761 898 356 580 867 100.00 88.20 100.00 88.11 100.45 86.62
KWG Grohnde DWR 1430 1360 720 1 010 989 9 696 598 387 270 812 100.00 89.13 100.00 88.88 97.76 84.06
KRB C Gundremmingen SWR 1344 1288 720 973 994 9 393 954 340 335 709 100.00 88.14 100.00 87.63 100.37 86.76
KKI-2 Isar DWR 1485 1410 720 1 010 500 9 386 510 339 213 344 100.00 93.48 99.97 85.99 100.57 83.78
GKN-II Neckarwestheim DWR 1400 1310 720 1 062 321 10 967 231 364 693 044 100.00 95.57 100.00 95.27 99.10 91.77
KKP-2 Philippsburg 4) DWR 1468 1402 720 922 869 9 766 080 375 927 235 100.00 88.73 100.00 88.52 85.66 81.68
News
atw Vol. 65 (2020) | Issue 3 ı March
Organisations
People
176
NEWS
| The first serial batch of MOX fuel loaded into BN-800 fast reactor
at Beloyarsk NPP. View of the site.
the feedstock for nuclear power
plants. Second, this would enable to
recycle spent nuclear fuel instead of
storage. And third, we once again involve
into nuclear fuel cycle and
utilize the accumulated ground stocks
of depleted uranium hexafluoride
and plutonium”, commented Vitaly
Khadeev, Vice-President for Development
of Closed Nuclear Fuel Cycle
Technologies and Industrial Facilities
at TVEL JSC.
Director of Beloyarsk NPP Ivan
Sidorov emphasized: “At power unit
No. 4, we have carried out the first
general overhaul in four years of its
operation. This power unit has two
tasks, not only to produce electricity,
but also to master a promising technology
that is important for the future
of nuclear power. The works performed
during the overhaul are aimed
to ensure the long-term safe operation
of the whole power unit and the
reliability of equipment.”
Serial batch-production of MOX
fuel started in late 2018, at the site
of Mining and Chemical Combine in
Zheleznogorsk, Krasnoyarsk region
(Russia’s East Siberia). The launch of
this unique highly automatized
fabrication shop-floor had been
provided due to the broad cooperation
of Russian nuclear industry
enterprises with the coordination role
of TVEL Fuel Company, which is also
the official supplier of the MOX fuel to
Beloyarsk NPP.
The BN-800 reactor was initially
launched with a hybrid core containing
both uranium and MOX fuels.
But as the uranium BN-800 fuel
assemblies were produced by
Elemash, TVEL’s major fabrication
facility in Elekrostal, Moscow region,
the MOX fuel assemblies were experimental
ones, assembled at the
Research Institute of Atomic Reactors
in Dimitrovgrad, Ulyanovsk Region.
| (20500850) www.tvel.ru
www.rosatom.ru
NEA launches new initiatives
in nuclear innovation
(oecd-nea) NEA is organising two
workshops focused on the need to
bring more innovation into the
nuclear energy sector. The first event
is the NEA Workshop on Innovative
Financing: Towards Sustainable
Nuclear Financing, which will be held
on 6 to 7 April 2020 in Warsaw,
Poland, hosted by the Polish Ministry
of Energy and organised in collaboration
with the Cambridge Nuclear
Energy Centre and the International
Framework for Nuclear Energy
Cooperation (IFNEC). This first- of‐itskind
workshop will bring together
experts from the nuclear energy
and financing sectors to discuss
approaches for financing sustainable,
large infrastructure projects with a
focus on nuclear new build.
The second event is the KAERI/
NEA International Workshop on
Disruptive Technologies for Nuclear
Safety Applications, which will take
place on 19 to 20 May 2020 in Jeju
Island, Korea. This workshop will
gather experts from within and outside
the nuclear sector to exchange
insights on the potential for disruptive
technologies to have a positive impact
on the construction and operation of
nuclear power plants.
These efforts will culminate in
the 2020 Global Forum on Innovation
for the Future of Nuclear Energy on 4
to 7 October 2020 in London, United
Kingdom. Organised in partnership
between the UK National Nuclear
Laboratory (NNL), EDF Energy, the
Electric Power Research Institute
(EPRI), the International Atomic
Energy Agency (IAEA) and the NEA,
this event will build on the outcomes
of the workshops highlighted above
and the 2019 Global Forum. The
report summarising the 2019 Global
Forum, which took place in June 2019
in Gyeongju, South Korea, is available
on the NEA website.
| (20491528) www.oecd-nea.org
German association AEK
re-established: Invitation to
members meeting
(aek) The “Aktionsgemeinschaft
Energiesicherung und Kerntechnik –
AEK e.V.” (founded 1981) invites all
members and interested persons to its
re-establishing meeting on 28. March
2020, Hotel Kaiserhof, Münster,
Germany.
| (20491534) Contact:
mitglieder@energiesicherung.org
FORATOM selects new
President Esa Hyvärinen
(foratom) FORATOM announced that
Esa Hyvärinen has been appointed by
the association’s General Assembly as
FORATOM President for a two-year
period starting on 1 January 2020.
“I feel deeply honoured to be
appointed as the new president of
FORATOM and I look forward to the
next two years working with the
General Assembly, Executive Board,
FORATOM Members and the
Secretariat as well as all external
stakeholders involved in the European
decision-making process” – states
Mr. Hyvärinen. “Even though the
European Commission and the European
Parliament have recently recognised
nuclear energy as an important
element of Europe’s decarbonised future,
the European nuclear industry
will face many challenges in the
upcoming months and years in
order to maintain and improve its
current role in the energy mix.
That is why we will do our best
to convince decision makers that
low-carbon, cost-effective and reliable
nuclear energy can help the EU
achieve its climate and energy
objectives”.
Mr. Hyvärinen is currently Head of
the CEO Office at Fortum Corporation.
In the past, he was Senior Vice
President for Public Affairs at Fortum,
Head of Recycling and Environmental
units at the Confederation of
European paper industries in Brussels,
and Senior Advisor at the Finnish
Ministry of Trade and Industry. He
has been member of the FORATOM
Executive Board since 2016.
Esa Hyvärinen replaces Dr Teodor
Chirica, Senior Adviser to the CEO of
NuclearElectrica, who has reached
the end of his mandate as FORATOM
President.
| (20491525) www.foratom.org
Market data
(All information is supplied without
guarantee.)
Nuclear Fuel Supply
Market Data
Information in current (nominal)
U.S.-$. No inflation adjustment of
prices on a base year. Separative work
data for the formerly “secondary
market”. Uranium prices [US-$/lb
U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =
News
atw Vol. 65 (2020) | Issue 3 ı March
Uranium
Prize range: Spot market [USD*/lb(US) U 3 O 8 ]
140.00
) 1
Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]
140.00
120.00
120.00
177
100.00
100.00
80.00
60.00
40.00
20.00
0.00
1980
Yearly average prices in real USD, base: US prices (1982 to1984) *
1985
1990
1995
2000
2005
2010
2015
2019
Year
* Actual nominal USD prices, not real prices referring to a base year. Year
Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020
* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020
| Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.
In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.
Separative work: Spot market price range [USD*/kg UTA]
Conversion: Spot conversion price range [USD*/kgU]
180.00
) 1 23.00
160.00
140.00
120.00
80.00
60.00
40.00
20.00
0.00
Jan. 2008
Jan. 2009
Jan. 2010
Jan. 2011
Jan. 2012
Jan. 2013
Jan. 2014
Jan. 2015
Jan. 2016
Jan. 2017
Jan. 2018
Jan. 2019
Jan. 2020
NEWS
100.00
80.00
60.00
40.00
20.00
0.00
Jan. 2008
Jan. 2009
Jan. 2010
Jan. 2011
Jan. 2012
Jan. 2013
* Actual nominal USD prices, not real prices referring to a base year. Year
Jan. 2014
Jan. 2015
Jan. 2016
Jan. 2017
Jan. 2018
Jan. 2019
Jan. 2020
Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020
) 1 Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020
22.00
20.00
18.00
16.00
) 1
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
Jan. 2008
Jan. 2009
Jan. 2010
Jan. 2011
Jan. 2012
Jan. 2013
* Actual nominal USD prices, not real prices referring to a base year. Year
Jan. 2014
Jan. 2015
Jan. 2016
Jan. 2017
Jan. 2018
Jan. 2019
Jan. 2020
| Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.
)1
In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.
* Actual nominal USD prices, not real prices referring to a base year
Sources: Energy Intelligence, Nukem; Bilder/Figures: atw 2020
0.385 kg U]. Conversion prices
[US-$/kg U], Separative work
[US-$/SWU (Separative work unit)].
2017
p Uranium: 19.25–26.50
p Conversion: 4.50–6.75
p Separative work: 39.00–50.00
2018
p Uranium: 21.75–29.20
p Conversion: 6.00–14.50
p Separative work: 34.00–42.00
2019
January 2019
p Uranium: 28.70–29.10
p Conversion: 13.50–14.50
p Separative work: 41.00–44.00
February 2019
p Uranium: 27.50–29.25
p Conversion: 13.50–14.50
p Separative work: 42.00–45.00
March 2019
p Uranium: 24.85–28.25
p Conversion: 13.50–14.50
p Separative work: 43.00–46.00
April 2019
p Uranium: 25.50–25.88
p Conversion: 15.00–17.00
p Separative work: 44.00–46.00
May 2019
p Uranium: 23.90–25.25
p Conversion: 17.00–18.00
p Separative work: 46.00–48.00
June 2019
p Uranium: 24.30–25.00
p Conversion: 17.00–18.00
p Separative work: 47.00–49.00
July 2019
p Uranium: 24.50–25.60
p Conversion: 18.00–19.00
p Separative work: 47.00–49.00
August 2019
p Uranium: 24.90–25.60
p Conversion: 19.00–20.00
p Separative work: 47.00–49.00
September 2019
p Uranium: 24.80–26.00
p Conversion: 20.00–21.00
p Separative work: 47.00–50.00
October 2019
p Uranium: 23.75–25.50
p Conversion: 21.00–22.00
p Separative work: 47.00–50.00
November 2019
p Uranium: 23.95–26.25
p Conversion: 22.00–23.00
p Separative work: 48.00–50.00
December 2019
p Uranium: 24.85–26.00
p Conversion: 22.00–23.00
p Separative work: 48.00–52.00
| Source: Energy Intelligence
www.energyintel.com
News
atw Vol. 65 (2020) | Issue 3 ı March
178
NUCLEAR TODAY
John Shepherd is a
freelance journalist
and communications
consultant.
Sources:
Grossi’s remarks in US
https://bit.ly/
2SdY2OZ
NPT review
conference
https://bit.ly/
2OHdot4
Agora Energiewende/
Sandbag report
https://bit.ly/2vo5y0s
IAEA Chief’s Zeal for Change Signals
Era of Nuclear Renewal
This year marks the 50th anniversary of the Treaty on the Non-Proliferation of Nuclear Weapons, which has been a key
component in spurring the worldwide spread of peaceful nuclear technology for development.
The Non-proliferation Treaty (NPT), as it is commonly
known, entered into force in 1970, was extended
indefinitely in 1995 and has become nearly universal. The
anniversary will be marked at a review conference at the
United Nations headquarters in New York in April – and
the event comes at a crucial time.
Newly-elected director-general of the International
Atomic Energy Agency (IAEA), Rafael Mariano Grossi, had
been due to be president of the conference until his
elevation to head of the global nuclear watchdog following
the death of Yukiya Amano.
Now Grossi has the task of not only shepherding the
agency through this latest five-yearly review of the NPT,
but to steering the IAEA beyond, into a new decade at a
time when the agency’s role and responsibilities are under
the utmost scrutiny and when funding constraints and
geopolitical pressures threaten to undermine the role of
the watchdog itself.
Ongoing tensions between North Korea and the
international community and the recent flare-up of
political hostilities between Iran, the US and others has
increased the strain the IAEA is under as the world’s
‘ honest broker’ in maintaining, through the NPT, a strong
non-proliferation regime.
But the director-general also, rightly, sees an expanded
role for the IAEA in tackling climate change in cooperation
with partner agencies. He said climate change would be an
increasing theme for the agency. “Many countries are
interested in making more use of nuclear technology to
mitigate and adapt to the impact of climate change.”
On nuclear security, Grossi said member states had
agreed the IAEA should be “the global focal point for nuclear
security”. “Demands for our assistance are constantly
increasing,” he said. “But I believe more could be done to
make us a real focal point in practice and not just in name.”
Grossi’s belief is that the “great majority of countries”
that join the IAEA do so “because they are interested in
using nuclear technology to improve the day-to-day lives of
their people”.
In terms of health and welfare, Grossi has highlighted
cancer control as a priority, “as one of the most important
areas in which we make that technology available”. He
went as far as to say that deaths in developing countries
from cancer, which he said were treatable in richer countries
were “quite simply, a scandal”.
Meanwhile, as Grossi confirmed to staff at the start of
this year, there needs to be “tight control” of costs as the
agency navigates a period of “zero real budget growth”.
The IAEA, for all its vital work on behalf of us all (nuclearenergy
using nations and those that do not include nuclear
in the electricity-generating mix) has never been awash
with funds.
However, Grossi should be applauded for setting out a
bold vision for the IAEA in the years ahead rather than
allowing cash constraints to limit his breadth of scope and
ambition.
In 2018, the IAEA’s regular budget was about
€370.5 million. The US is the single largest contributor to
the agency’s regular budget and provides significant
extra- budgetary funding. The IAEA said this, together with
support also from other member states, has enabled it to
step up its assistance in areas benefiting millions of people
around the world, such as food security, cancer care,
nutrition, animal health, water management, energy
planning and others.
Following recent talks with Trump administration
officials in the US; Grossi acknowledged it would be
difficult to secure a “significant increase” in the IAEA’s
budget in the years ahead. He said the agency had to find
new ways to fund its activities.
Instead of simply pleading for more from the agency’s
member states, Grossi plans to use his role to entice
investment from non-traditional quarters. He confirmed
he has been “reaching out to new partners such as the
World Bank and the Islamic Development Bank”.
The director-general has told his officials “I am not
interested in departmental achievements… I am interested
in agency achievements and especially in successes
achieved by member states thanks to the support of the
IAEA”.
Grossi said he was elected “on a platform of change”
and his goal is to “recalibrate our approach where
necessary”.
The path ahead to ensure the IAEA’s continued viability
as a credible, valuable and trusted institution, to safeguard
the interests of the global nuclear community, will not be
an easy one. But the new director-general is to be
congratulated for his declared zeal and determination in
his early days of office.
There is still a blind spot for many in understanding
that nuclear energy goes hand in hand with environmental
protection, tackling climate change, supporting food
production, pest control and treating the sick – to name
just a few.
An increased role for the IAEA would be welcome – and
on climate change in particular, nuclear is pushing at an
open door, according to the latest findings of a study of
current electricity data carried out by Germany’s Agora
Energiewende and UK climate think-tank Sandbag.
The findings showed that in 2019, the European Union
electricity sector emitted 12 % less CO 2 than in the previous
year. At the same time, the share of renewables in
electricity production rose EU-wide to 35 %, a new record.
Electricity from nuclear power plants for the period
declined by only 1 %, the study said. The slight fall in
nuclear performance was put down to drought in some
areas, particularly in July, which hampered supplies of
cooling water from rivers.
If Grossi is successful in “recalibrating” the IAEA, his
leadership can be of particular benefit to nuclear power
producing nations and the myriad of industries supporting
the development of future nuclear technologies.
Nuclear Today
IAEA Chief’s Zeal for Change Signals Era of Nuclear Renewal ı John Shepherd
Kommunikation und
Training für Kerntechnik
Strahlenschutz – Aktuell
In Kooperation mit
TÜV SÜD Energietechnik GmbH
Baden-Württemberg
Seminar:
Das Strahlenschutzrecht
und seine praktische Umsetzung
Seminarinhalte
1. Einführung: Grundlagen des Strahlenschutzes und des Strahlenschutzrechts
2. Das neue Strahlenschutzrecht von 2017/18
3. Genehmigungen, Anzeigen, Pflichten bei strahlenschutzrelevanten Aktivitäten
a. Geplante Expositionssituationen (Tätigkeiten)
b. Bestehende Expositionssituationen
c. Notfallexpositionssituationen (Schutz der Einsatzkräfte)
4. Umsetzung des Strahlenschutzes
a. Dosisgrenzwerte, Dosisrichtwerte
b. Betriebliche Organisation des Strahlenschutzes
c. Fachkunde
d. Strahlenschutzregister
5. Aufsicht
6. Notfallschutz und Notfallvorsorge
7. Strahlenschutz im Back End
a. Radioaktive Abfälle
b. Freigabe, Herausgabe
Zielgruppe
Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, an Projekt- und Abteilungsleiter und
Experten aus den Bereichen Betrieb, Abfälle, Genehmigung, Strategie und Unternehmens kommunikation
sowie an Juristen.
Referenten
Dr. Maria Poetsch
Dr. Christian Raetzke
ı Strahlenschutzexpertin bei der TÜV SÜD Energietechnik GmbH
Baden-Württemberg
ı Rechtsanwalt, Leipzig
Wir freuen uns auf Ihre Teilnahme!
Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.
Termine
2 Tage
17. bis 18. März 2020
16. bis 17. Juni 2020
29. bis 30. Oktober 2020
Tag 1: 10:30 bis 17:30 Uhr
Tag 2: 09:00 bis 16:30 Uhr
Berlin
Teilnahmegebühr
1.598,– € ı zzgl. 19 % USt.
Im Preis inbegriffen sind:
ı Seminarunterlagen
ı Teilnahmebescheinigung
ı Pausenverpflegung
inkl. Mittagessen
Kontakt
INFORUM
Verlags- und Verwaltungsgesellschaft
mbH
Robert-Koch-Platz 4
10115 Berlin
Petra Dinter-Tumtzak
Fon +49 30 498555-30
Fax +49 30 498555-18
Seminare@KernD.de
#51KT
www.kerntechnik.com
Medienpartner
51. KERNTECHNIK
2020
Jetzt anmelden!
www.kerntechnik.com/kerntechnik/registration/
5. – 6. Mai 2020
Estrel Convention Center
Berlin