atw - International Journal for Nuclear Power | 03.2020

inforum
  • No tags were found...

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.

www.nucmag.com

nucmag.com

2020

3

ISSN · 1431-5254

24.– €

The Future of Nuclear:

The Role of Nuclear in

the Upcoming Global

Energy Transition

The Dual Fluid Reactor –

An Innovative Fast Nuclear-

Reactor Concept with High

Efficiency and Total Burnup

Nuclear Power World Report

2018

Preliminary Programme Inside!


Competence for

Nuclear Services

Operational Waste and D&D

Spent Fuel Management

Nuclear Casks

Calculation Services and Consulting

Waste Processing Systems and Engineering

GNS Gesellschaft für Nuklear-Service mbH

Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de


atw Vol. 65 (2020) | Issue 3 ı March

Silver Jubilee, but not even a Second Place at the End:

The UN Climate Change Conference 2019

123

Dear reader, having been ousted from the front headlines of the media in the meantime and hardly noticed by them,

the 25 th UN Climate Change Conference, officially “25 th Conference of the Parties to the Framework Convention on

Climate Change and 15 th Conference of the Parties to the Kyoto Protocol (COP – Conference of the Parties)” as well as

the “4 th Meeting of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement” took place

in the first weeks of December 2019. The COP is the annual conference as the highest body of the United Nations

Framework Convention on Climate Change (UNFCCC). In this international agreement, states have committed

themselves to reducing their emissions of greenhouse gases.

EDITORIAL

This multinational meeting did not augur well for 2019 in

organisational terms: Brazil withdrew its offer to host the

conference because of “financial constraints and a change

of government”. As a result, the President of Chile and his

Minister for the Environment invited to the country's

capital, Santiago de Chile, in December 2019 or January

2020. Due to the political situation in the country, with

protests by citizens against, among other things, economic

and social policies, Chile also had to withdraw its invitation.

As a third option, Spain stepped in with Madrid as

host, with the political leadership remaining with the

Chilean government.

According to official figures, believe it or not, between

25,000 and 26,000 direct participants in the conferences

found their way to Madrid under the motto “Tiempo De

Actura/Time for Action”.

The central theme and goal was the completion of the

supplementary set of rules to the “Paris Convention”. But

what had been ambitiously heralded, at least in terms of its

title, ended up with commentators using terms ranging

from “minimum consensus” to “inconclusive”. The reasons

for this are certainly complex. For one thing, the

increasingly negative attitude towards emission bans, by

countries with high emissions is contributing to this. On

the other hand, there is also the fact that the conference is

becoming more and more like a showcase for individual

political interests or NGO representatives, and that the

focus is less and less on visible issues and more on bans.

Moreover, there seems to be an increasing lack of visions

for the implementation of emission reductions.

The second commitment period of the Kyoto Protocol

ended in the shadow of the conference, as the minimum

number of ratifications had not been reached by the end of

November 2019.

Let us recall that the 1992 Kyoto Protocol had the

objective of reducing emissions of the six gases classified as

particularly climate-affecting – mainly carbon dioxide,

methane and nitrogen oxides – by approximately 5 percent

worldwide in the period 2008–2012, based on the base

year 1990. In terms of carbon dioxide emissions, with

emissions of around 21 billion tonnes in 1990, this meant a

reduction of around 1 billion tonnes of annual emissions.

The indivi dual signatory states have committed themselves

to different emission levels. For example, the EU-15

at the time pro mised to make a contribution of minus

8 percent. In 2012, at the end of the Kyoto period, CO 2

emissions worldwide then stood at around 32 billion

tonnes, which corresponds to an increase of 51 % and not

the targeted 5 % reduction.

If a political goal is not achieved, a new one is agreed. In

view of the “Kyoto I failure”, the struggle for new targets,

then lasted five years, from the UN climate conference in

Bali in 2007 to the one in Doha, Qatar in 2012. It ended

with a so-called second commitment period (“Kyoto II”).

However, while “Kyoto I” still contained figures on

reduction targets, “Kyoto II” is becoming more and more

lost in emissions trading. But ultimately “Kyoto II” is only

historical and without any effect.

All in all, from Kyoto to Santiago de Chile/Madrid, after

25 years of political discussions about emission reductions,

little can be identified that would allow a ranking at all.

Irrespective of the question of whether and to what

extent mankind's influence on the climate is significant,

any use of sustainable forms of energy makes sense.

At this point the question arises whether nuclear energy

is at all capable of significantly contributing to reductions?

After all, nuclear energy is currently increasingly coming into

focus as a building block for future energy supply. In view

of the enormous challenges not only to reduce emissions in

all sectors, but also to supply a growing world population

with sufficient energy, the question arises as to what potential

exists.

So let the facts speak for themselves: In recent years,

nuclear energy has accounted for around 11 percent of the

world's electricity supply. Approximately 2,500 billion

kilowatt hours are generated annually. Nuclear power

plant operation itself is largely free of climate-impacting

emissions. Well-founded, comprehensible studies show

total emissions of 6 to 30 grams of carbon dioxide per

kilowatt hour of electricity generated, taking into account

all process steps for the construction, operation and

decommissioning of nuclear power plants. This means that

hydropower, wind and nuclear energy are virtually on a

par. The annual CO 2 emissions avoided by nuclear power

are around 2.5 billion tonnes and thus higher – more than

twice as high – than the Kyoto I target, but never reached.

These concrete figures shall make it clear that nuclear

technology can be used to achieve a wide range of

structured goals such as reducing emissions and a reliable

energy supply.

All in all, low-emission technologies for, all energy

sources, must be equally important and not via ideologically

influenced “single- track” paths, which for

example, deliberately exclude nuclear energy, as is

unfortunately happening in some places at European level

in particular.

If the global community is serious about truely

implementing the ambitious climate protection targets,

the use of nuclear energy will certainly be unavoidable.

Christopher Weßelmann

– Editor in Chief –

Editorial

Silver Jubilee, but not even a Second Place at the End: The UN Climate Change Conference 2019


atw Vol. 65 (2020) | Issue 3 ı March

EDITORIAL 124

Silbernes Jubiläum, aber im Ergebnis noch nicht einmal

ein zweiter Platz: Die UN-Klimakonferenz 2019

Liebe Leserin, lieber Leser, zwischenzeitlich aus den vorderen Schlagzeilen der Medien verdrängt und kaum

noch von diesen vermerkt, fanden in den ersten Dezemberwochen 2019 die 25. UN-Klimakonferenz, offiziell

„25. Vertragsstaatenkonferenz der Klimarahmenkonvention und 15. Vertragsstaatenkonferenz des Kyoto-Protokolls

(COP – Conference of the Parties)“ sowie das „4. Treffen der Conference of the Parties serving as the meeting of the

Parties to the Paris Agreement” statt. Die COP ist die jährliche Konferenz als höchstes Gremium der Klimarahmenkonvention

UNFCCC (United Nations Framework Convention on Climate Change). In diesem internationalen

Übereinkommen haben sich Staaten zur Reduktion ihres Ausstoßes an Treibhausgasen verpflichtet.

Dieses multinationale Treffen stand schon organisatorisch

für 2019 unter keinem guten Vorzeichen: Brasilien zog

sein Angebot der Ausrichtung wegen „finanzieller Engpässe

und des Regierungswechsels“ zurück. Daraufhin

luden der Präsident von Chile und seine Umweltministerin

für Dezember 2019 oder Januar 2020 in die Hauptstadt

des Landes, Santiago de Chile, ein. Aufgrund der politischen

Lage im Land, mit Protesten von Bürgern u. a. gegen

die Wirtschafts- und Sozialpolitik, musste auch Chile seine

Einladung zurückziehen. Als dritte Option sprang Spanien

mit Madrid als Ausrichter ein, wobei die politische Leitung

bei der chilenischen Regierung verblieb.

Unter dem Leitmotto „Tiempo De Actura/Time for

Action“ – Es ist Zeit zu handeln, fanden nach offiziellen

Angaben zwischen sage und schreibe 25.000 und 26.000

direkte Teil nehmende an den Konferenzen den Weg nach

Madrid.

Zentrales Thema und Ziel war die Fertigstellung des

ergänzenden Regelwerks zum „Übereinkommen von

Paris“. Doch was zumindest vom Titel her ambitioniert

eingeläutet worden war, endete bei Kommentatoren unter

Begriffen wie „Minimalkonsens“ bis hin zu „ergebnislos“.

Die Gründe hierfür sind sicherlich vielschichtig. Zum einen

trägt die zunehmend ablehnende Haltung zu Emissionsverboten

von Ländern mit hohen Emissionen dazu bei.

Aber auch ein immer mehr zum Schaulaufen politischer

Einzelinteressen oder NGO-Vertreter abdriftender Konferenzablauf

und ein immer weniger auf sichtbare Sachthemen,

denn mehr auf Verbote fixiertes Regelwerk tun

ihr übriges. An Visionen zur Umsetzung von Emissionsminderungen

scheint es zudem mehr und mehr zu fehlen.

Ganz im Schatten der Konferenz endete dann auch

noch die zweite Verpflichtungsperiode des Kyoto-

Protokolls, da bis Ende November 2019 die Mindestzahl an

Ratifikationen noch nicht erreicht worden war.

Dabei war man einmal so ambitioniert gestartet:

Erinnern wir uns: Das Kyoto-Protokoll von 1992 hatte die

Zielsetzung, die Emissionen der sechs als besonders

klimawirksam eingestuften Gase – im Wesentlichen

Kohlendioxid, Methan und Stickoxide – in der Periode

2008–2012 bezogen auf das Basisjahr 1990 weltweit um

ca. 5 Prozent zu vermindern. Für die Kohlendioxidemissionen

bedeutete dies bei Emissionen von rund

21 Mrd. T onnen in 1990 eine Reduzierung um ca. 1 Milliarde

Tonnen der jährlichen Emissionen. Die einzelnen Unterzeichnerstaaten

verpflichten sich dabei auf unterschiedliche

Emissionsmengen. So sagte die damalige EU-15 zu,

einen Beitrag von minus 8 Prozent zu leisten. Im Jahr 2012,

am Ende der Kyoto-Periode, lagen die CO 2 -Emissionen dann

bei rund 32 Mrd. Tonnen weltweit, was einem Plus von 51 %

entspricht und nicht dem angestrebten Minus von 5 %.

Erreicht man ein politisches Ziel nicht, vereinbart man

ein neues. Das Ringen um neue Ziele währte angesichts der

„Kyoto-I Verfehlung“ dann fünf Jahre, von der UN-

Klimakonferenz auf Bali 2007 bis zu der in Doha, Katar

2012. Es endete mit einer sogenannten zweiten Verpflichtungsperiode

(„Kyoto II“). Doch während aus „ Kyoto I“

noch Zahlen zu Minderungszielen zu lesen waren, verliert

sich „Kyoto II“ mehr und mehr in einem Emissions-

Ablasshandel. Aber letztendlich ist „Kyoto II“ nur noch

historisch und ohne jegliche Wirkung.

In Summe, von Kyoto bis Santiago de Chile/Madrid ist

nach 25 Jahren politischer Diskussionen über Emissionsminderungen

also wenig zu identifizieren, was überhaupt

ein Ranking erlaubt.

Unabhängig von der Frage des Ob und des Umfangs des

Einflusses des Menschen auf das Klima, ist jegliche Nutzung

nachhaltiger Energieformen an sich schon sinnvoll.

Es stellt sich an diesem Punkt die Frage, ob die Kernenergie

überhaupt in der Lage ist, einen maßgeblichen

Beitrag zu Reduktionen zu leisten? Denn die Kernenergie

wird aktuell immer stärker als ein Baustein für die zukünftige

Energieversorgung in den Fokus gerückt. Angesichts

der gewaltigen Herausforderungen, nicht nur Emissionen in

allen Sektoren zu mindern, sondern auch eine weiter

wachsende Welt bevölkerung mit ausreichend Energie zu

versorgen, stellt sich die Frage, welche diesbezüglichen

Potenziale vorhanden sind.

Lasst also die Fakten sprechen: Kernenergie hat in den

letzten Jahren einen Anteil an der weltweiten Stromversorgung

von rund 11 Prozent. Jährlich werden

ca. 2.500 Mrd. Kilowattstunden erzeugt. Dabei ist der

Kernkraftwerksbetrieb selbst weitgehend frei von klimawirksamen

Emissionen. Fundierte, nachvollziehbare

Studien weisen unter Einbeziehung aller Prozessschritte

für den Bau, Betrieb und Rückbau von Kernkraftwerken zu

Gesamtemissionen von 6 bis 30 Gramm Kohlendioxid pro

erzeugter Kilowattstunde Strom aus. Damit liegen Wasserkraft,

Wind und Kernenergie quasi gleichauf. Die jährlichen

durch Kernenergie vermiedenen CO 2 -Emissionen

liegen bei rund 2,5 Mrd. t und damit höher – mehr als

doppelt so hoch – als gemäß dem Kyoto-I-Ziel zu erreichen

war, aber nie erreicht wurde.

Diese konkreten Zahlen sollen verdeutlichen, dass sich

mit Kerntechnik vielfältig strukturierte Ziele wie Emissionsminderung

und eine verlässliche Energie versorgung

realisieren lassen.

Insgesamt müssen emissionsarme Technologien für

alle Energieträger, zum Tragen kommen und dürfen nicht

via ideologisch geprägter „einspurige“ Pfade, die z. B. die

Kernenergie bewusst ausschließen wollen, wie es sich

leider gerade auch auf europäischer Ebene mancherorts

abzeichnet.

Sollte es die Weltgemeinschaft ernst meinen mit der

tatsächlichen Umsetzung ihrer ambitionierten Klimaschutzziele,

wird sie an der Nutzung der Kernenergie nicht

vorbei kommen.

Christopher Weßelmann

– Chefredakteur –

Editorial

Silver Jubilee, but not even a Second Place at the End: The UN Climate Change Conference 2019


Kommunikation und

Training für Kerntechnik

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort

3 Atom-, Vertrags- und Exportrecht

Atomrecht – Das Recht der radioaktiven Reststoffe und Abfälle RA Dr. Christian Raetzke 10.03.2020

20.10.2020

Berlin

Export kerntechnischer Produkte und Dienstleistungen –

Chanchen und Regularien

Atomrecht – Ihr Weg durch Genehmigungs- und

Aufsichtsverfahren

RA Kay Höft M.A. (BWL) 17.06.2020 Berlin

RA Dr. Christian Raetzke 25.06.2020 Berlin

Atomrecht – Was Sie wissen müssen

3 Kommunikation und Politik

RA Dr. Christian Raetzke

Akos Frank LL. M.

11.11.2020 Berlin

Public Hearing Workshop –

Öffentliche Anhörungen erfolgreich meistern

Dr. Nikolai A. Behr 10.11. - 11.11.2020 Berlin

3 Rückbau und Strahlenschutz

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:

3 Nuclear English

Das Strahlenschutzrecht und

seine praktische Umsetzung

Stilllegung und Rückbau in Recht und Praxis

Dr. Maria Poetsch

RA Dr. Christian Raetzke

Dr. Stefan Kirsch

RA Dr. Christian Raetzke

17.03. - 18.03.2020

16.06. - 17.06.2020

29.10. - 30.10.2020

Berlin

23.09. - 24.09.2020 Berlin

English for the Nuclear Industry Angela Lloyd 01.04. - 02.04.2020 Berlin

3 Wissenstransfer und Veränderungsmanagement

Erfolgreicher Wissenstransfer in der Kerntechnik –

Methoden und praktische Anwendung

Dr. Tanja-Vera Herking

Dr. Christien Zedler

24.03. - 25.03.2020 Berlin

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30

Kontakt

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı Seminare@KernD.de

Die INFORUM-Seminare können je nach

Inhalt ggf. als Beitrag zur Aktualisierung

der Fachkunde geeignet sein.


atw Vol. 65 (2020) | Issue 3 ı March

126

Issue 3 | 2020

March

CONTENTS

Contents

Editorial

Silver Jubilee, but not even a Second Place at the End:

The UN Climate Change Conference 2019 E/G 123

Inside Nuclear with NucNet

Uzbekistan: Why Energy-Rich Nation is Turning

to Nuclear Power 128

Did you know...? . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Feature | Major Trends in Energy Policy and Nuclear Power

The Future of Nuclear: The Role of Nuclear

in the Upcoming Global Energy Transition 131

Spotlight on Nuclear Law

Regulatory Enquiries and About SMRs G 137

Environment and Safety

Toward a New Risk-Informed Approach to Cyber Security 138

Research and Innovation

Improved Metrology of Thermophysical Properties

at Very High Temperatures: The EMPIR Project Hi-TRACE 140

Neutronic Simulation of ALFRED Core Using MCNPX Code 142

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor

Concept with High Efficiency and Total Burnup 145

Operation and New Build

36C3 – More Questions Than Answers G 155

World Report

Nuclear Power World Report 2018 161

Kerntechnik 2020

Preliminary Programme 164

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Cover:

Novovoronesh, Russia.

Courtesy of Rosatom.

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

Nuclear Today

IAEA Chief’s Zeal for Change Signals Era of Nuclear Renewal 178

G

E/G

= German

= English/German

Imprint 170

Contents


atw Vol. 65 (2020) | Issue 3 ı March

Feature

Major Trends in Energy Policy

and Nuclear Power

127

CONTENTS

131 The Future of Nuclear: The Role of Nuclear

in the Upcoming Global Energy Transition

Hans-Wilhelm Schiffer

Environment and Safety

138 Toward a New Risk-Informed Approach to Cyber Security

Chris Warren

Research and Innovation

142 Neutronic Simulation of ALFRED Core Using MCNPX Code

Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi

145 The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept

with High Efficiency and Total Burnup

Jan-Christian Lewitz, Armin Huke, Götz Ruprecht,

Daniel Weißbach, Stephan Gottlieb, Ahmed Hussein and Konrad Czerski

Operation and New Build

155 36C3 – More Questions Than Answers

36C3 – Mehr offene Fragen als Antworten

Stefan Loubichi

World Report

161 Nuclear Power World Report 2018

Editorial office

Contents


atw Vol. 65 (2020) | Issue 3 ı March

128

INSIDE NUCLEAR WITH NUCNET

Uzbekistan: Why Energy-Rich Nation

is Turning to Nuclear Power

Uzbekistan has confirmed it has begun preliminary site work for the construction of its first

commercial nuclear power units, with the preparation of external infrastructure for two

Russia- supplied pressurised water reactor units scheduled to begin next year.

The central Asian country signed an inter-governmental

agreement with Russia in September 2018 for the

development of the its first nuclear power station. The

facility, which will be constructed by Russian state-owned

nuclear corporation Rosatom, will have two blocks with a

combined capacity of 2,400 MW. The first is due to come

on line in 2028 and the second in 2030.

Engineering and geological work has begun at the site,

an area near Lake Tuzkan in Jizzakh province, west of the

capital Tashkent in the east of the country.

First deputy minister of energy Jurabek Mirzamahmudov

told NucNet Uzbekistan is in the process of preparing the

environmental impact assessment and expects to finalise

all the documentation for site approvals this year.

Next year site preparation will be stepped up and the

preparation of external infrastructure will begin.

Mr Mirzamahmudov, who is also head of the Uzatom

state nuclear agency, which was established in July 2018 to

lead national nuclear development, said the units will

provide about 15 % of the country’s electricity generation

and be a “long-term baseload power resource”.

The construction of the station is scheduled to begin in

2022 with a soft loan from the Russian government,

although Mr Mirzamahmudov said exact details of the

financing package and the cost of the units had not yet

been finalised.

Rosatom head Alexei Likhachev told reporters in Russia

recently that further negotiations are planned in the

coming months and no details would be released until they

are complete.

“We want to add nuclear power as well as renewables

to ensure the sustainability of our energy mix,” said

Mr Mirzamahmudov. “With nuclear, you can plan your

energy strategy for the next 60 years – and we are one of

the top countries in the world for uranium production, so

we have the raw material.”

Uzbekistan, the world’s seventh largest uranium

producer, sees the nuclear project as a pass into the “elite

club” of nuclear powers, according to Mr Mirzamakhmudov.

“We will be joining the club of countries with peaceful use

of nuclear energy. That is an elite club. This is a whole new

level, different type of relationships, new technologies,

science and education development.”

A significant role in ensuring the country’s energy

efficiency is given to diversification of energy sources.

To this end Uzbekistan has made “a historic decision” to

begin the development of nuclear energy generation,

Mr Mirzamahmudov said.

The country’s power complex has traditionally struggled

to meet the demands of a rapidly growing population and

developing economy due to outdated infrastructure and

inefficient management. With consumption forecast to

surge over the coming years, as economic reforms spur a

jump in industrial production, the need for change has

become urgent. “We are seeing new industries coming on

line in processing, textiles, agriculture, manufacturing and

metallurgy, as well as a huge expansion in tourism and

other services,” said Mr Mirzamahmudov. “All of these will

need access to a stable and reliable electricity supply.”

The choice was made in favour of nuclear power given

uranium availability and most importantly, economic

benefits to the country. “Today this is one of the cleanest,

ecologically safest sources of power, as well as the cheapest

one after hydropower,” Mr Mirzamakhmudov said.

Meeting this demand will not come cheap. Over the

next five years, officials estimate that more than $ 2.8 bn

will be required to upgrade existing infrastructure, while

adding new power generation, not including nuclear,

could cost as much as $ 14.4 bn.

The International Energy Agency said that despite

being energy self-sufficient thanks to its oil and gas sectors,

Uzbekistan’s ageing electricity infrastructure struggles to

meet growing domestic energy demand. Oil and natural

gas make up about 97 % of the country’s energy mix.

Uzbekistan’s current reliance on coal, gas, oil and

hydropower will not be enough to meet growing demand,

even with plans to double hydropower capacity by 2030.

With nuclear energy expected to account for 15 % of the

country’s power balance and ensure stable energy supply

with expectations of power demand doubling by 2030,

according to Uzatom.

Uzbekistan was also taking steps to develop solar and

wind energy, but would only rely on them for about 3 %

of power generation in a decade as neither was a stable

supply source, Mr Mirzamakhmudov said.

The Uzbekistan nuclear project is of strategic interest to

both Russia and Uzbeks. It will help Uzbekistan generate

economic growth and it will enable the Russians to

re-establish themselves as the primary regional power

in terms of security and economic muscle, according to

Camilla Hagelund, principal analyst at UK-based risk

consultancy, Verisk Maplecroft.

Quoted in the London-based Financial Times newspaper,

Ms Hagelund said: “Central Asia is often described

as the soft underbelly of Russia. You have continued

security issues in Afghanistan. Central Asia is like a buffer

in between that and a potential security threat in its own

right.”

Moreover, China has been expanding its influence in

the region: “There is a level of competition between Russia

and China, and it is very important for Russia to continue

to demonstrate that it is the primary regional power for

central Asia.”

Author

NucNet

The Independent Global Nuclear News Agency

Editor responsible for this story: David Dalton

Avenue des Arts 56 2/C

1000 Bruxelles

www.nucnet.org

Inside Nuclear with NucNet

Uzbekistan: Why Energy-Rich Nation is Turning to Nuclear Power


atw Vol. 65 (2020) | Issue 3 ı March

Did you know...?

Carbon Leakage into the EU ETS

region in the Electricity Market

The electricity markets subject to the EU Emissions Trading

System (ETS; EU member states, Norway, Switzerland) are

connected to electricity markets outside the ETS, namely Russia,

Belarus, Ukraine, Turkey, North Macedonia, Serbia, Bosnia and

Hercegovina, Montenegro, Albania and Morocco. The recent

study by the climate policy think tank Sandbag “The path of least

resistance – How electricity generated from coal is leaking into

the EU” analyses the implications of this situation. It shows that

the ETS region is a net importer of electricity from theses countries

and the net import as well as the associated carbon emissions

increased substantially in the past years (see graph below). In

2019 gross electricity imports totaled 33.3 TWh worth 1.6 billion

Euro. This import was associated with 25.6 million tons of

CO 2 -emissions worth 630 million Euro in the EU ETS. Since the

carbon intensity of the electricity generation in the above

mentioned countries that have no or no significant carbon pricing

is higher than in the respective importing countries connected,

some additional 11 million tons of CO 2 were produced by these

imports as compared to generation inside the importing

ETS-countries. Because the EU plans to increase total

interconnector capacity to outside of the ETS by 31 percent

including connections to additional countries (Egypt, Tunisia,

Libya, Israel, Moldova), the electricity imports from non-ETS

countries are likely to continue to grow. At the same time the

above mentioned countries plan to increase their coal generation

capacity by a total of 37.2 GW (e.g. Turkey: 14.7 GW, Egypt:

10.6 GW, Russia: 5 GW, Bosnia and Hercegovina: 4.1 GW), so that

a considerable carbon leakage effect in the electricity market is to

be feared. To prevent such a development Sandbag proposes a so

called border carbon adjustment (BCA) for gross electricity

imports into the EU ETS region, a policy that in principle is already

supported by the European Commission in its Green Deal

communications.

DID YOU EDITORIAL KNOW...?

129

Net electricity import into the EU ETS region an associated net carbon emissions

p Electricity (TWh) p Carbon (MtCO2)

25

20.7

20.7

20

19.2

19.6

15

13

10

5

0

9.5

3

2015

8.20

2016

9.4

3.10

2017

2018

2019

For further details please

contact:

Nicolas Wendler

KernD

Robert-Koch-Platz 4

10115 Berlin

Germany

E-mail: presse@

KernD.de

www.KernD.de

Did you know...?


atw Vol. 65 (2020) | Issue 3 ı March

130

Calendar

2020

CALENDAR

19.04. – 24.04.2020

International Conference on Individual

Monitoring. Budapest, Hungary, EUROSAFE,

www.eurosafe-forum.org

20.04. – 21.04.2020

The 53 rd JAIF Annual Conference. Tokyo, Japan,

Japan Atomic Industrial Forum (JAIF), www.jaif.or.jp

20.04. – 22.04.2020

World Nuclear Fuel Cycle 2020. Stockholm,

Sweden, WNA World Nuclear Association,

www.world-nuclear.org

05.05. – 06.05.2020

KERNTECHNIK 2020.

Berlin, Germany, KernD and KTG,

www.kerntechnik.com

10.05. – 15.05.2020

ICG-EAC Annual Meeting 2020. Helsinki, Finland,

ICG-EAC, www.icg-eac.org

11.05. – 15.05.2020

International Conference on Operational Safety

of Nuclear Power Plants. Beijing, China, IAEA,

www.iaea.org

11.05. – 15.05.2020

Fusion Energy Conference Programme

Committee Meeting. Vienna, Austria, IAEA,

www.iaea.org

12.05. – 13.05.2020

INSC — International Nuclear Supply Chain

Symposium. Munich, Germany, TÜV SÜD,

www.tuev-sued.de

17.05. – 22.05.2020

BEPU2020– Best Estimate Plus Uncertainty International

Conference, Giardini Naxos. Sicily, Italy,

NINE, www.nineeng.com

18.05. – 22.05.2020

SNA+MC2020 – Joint International Conference on

Supercomputing in Nuclear Applications + Monte

Carlo 2020, Makuhari Messe. Chiba, Japan, Atomic

Energy Society of Japan, www.snamc2020.jpn.org

20.05. – 22.05.2020

Nuclear Energy Assembly. Washington, D.C., USA,

NEI, www.nei.org

31.05. – 03.06.2020

13 th International Conference of the Croatian

Nuclear Society. Zadar, Croatia, Croatian Nuclear

Society, www.nuclear-option.org

31.05. – 03.06.2020

40 th Annual CNS Conference & 44 th CNS-CNA

Student Conference. Saint John, NB, Canada,

Canadian Nuclear Society, www.cns-snc.ca

06.06. – 12.06.2020

ATALANTE 2020. Montpellier, France, CEA,

www.atalante2020.org

07.06. – 12.06.2020

Plutonium Futures. Montpellier, France, CEA,

www.pufutures2020.org

08.06. – 12.06.2020

20 th WCNDT – World Conference on

Non-Destructive Testing. Seoul, Korea, EPRI,

www.wcndt2020.com

10.06. – 12.06.2020

Innovation for the Future of Nuclear Energy –

A Global Forum. Gyeongju, South Korea,

www.globalnuclearinnovation.com

14.06. – 17.06.2020

The Society for Risk Analysis – European

Conference. Espoo, Finland, Aalto University,

www.blogs.aalto.fi

15.06. – 19.06.2020

International Conference on Nuclear Knowledge

Management and Human Resources Development:

Challenges and Opportunities. Moscow,

Russian Federation, IAEA, www.iaea.org

15.06. – 20.07.2020

WNU Summer Institute 2020. Japan, World Nuclear

University, www.world-nuclear-university.org

18.06.2020

NDA Group Supply Chain Event. Telford,

Shropshire, Cvent, www.web-eur.cvent.com

23.06. – 25.06.2020

World Nuclear Exhibition 2020. Paris Nord

Villepinte, France, Gifen,

www.world-nuclear-exhibition.com

25.06. – 26.06.2020

NuclearEurope 2020 – Nuclear for a sustainable

future. Paris, France, Foratom,

www.events.foratom.org

13.07. – 16.07.2020

46 th NITSL Conference - Fusing Power & People.

Baltimore, MD, USA, Aalto University, www.nitsl.org

02.08. – 06.08.2020

ICONE 28 – 28 th International Conference on

Nuclear Engineering. Disneyland Hotel, Anaheim,

CA, ASME, www.event.asme.org

26.08.-04.09.2020

The Frédéric Joliot/Otto Hahn Summer School

on Nuclear Reactors “Physics, Fuels and Systems”.

Aix-en-Provence, France, CEA & KIT, www.fjohss.eu

01.09. – 04.09.2020

IGORR – Standard Cooperation Event in the International

Group on Research Reactors Conference.

Kazan, Russian Federation, IAEA, www.iaea.org

07.09. – 10.09.2020

International Forum on Enhancing a Sustainable

Nuclear Supply Chain. Helsinki, Finland, Foratom,

www.events.foratom.org

09.09. – 10.09.2020

VGB Congress 2020 – 100 Years VGB. Essen,

Germany, VGB PowerTech e.V., www.vgb.org

09.09. – 11.09.2020

World Nuclear Association Symposium 2020.

London, United Kingdom, WNA World Nuclear

Association, www.world-nuclear.org

16.09. – 18.09.2020

3 rd International Conference on Concrete

Sustainability. Prague, Czech Republic, fib,

www.fibiccs.org

16.09. – 18.09.2020

International Nuclear Reactor Materials

Reliability Conference and Exhibition.

New Orleans, Louisiana, USA, EPRI, www.snetp.eu

21.09.-25.09.2020

64 th IAEA General Conference. Vienna, Austria,

International Atomic Energy Agency IAEA,

www.iaea.org

28.09. – 01.10.2020

NPC 2020 International Conference on Nuclear

Plant Chemistry. Antibes, France, SFEN Société Française

d’Energie Nucléaire,

www.sfen-npc2020.org

28.09. – 02.10.2020

Jahrestagung 2020 – Fachverband Strahlenschutz

und Entsorgung. Aachen, Germany, Fachverband

für Strahlenschutz, www.fs-ev.org

30.09. – 03.10.2020

Nuclear Energy: Challenges and Prospects. Sochi,

Russia, Pocatom, www.nsconf2020.ru

12.10. – 17.10.2020

FEC 2020 – 28 th IAEA Fusion Energy Conference.

Nice, France, IAEA, www.iaea.org

19.10. – 23.10.2020

International Conference on the Management

of Naturally Occurring Radioactive Materials

(NORM) in Industry. Vienna, Austria, IAEA,

www.iaea.org

26.10. – 30.10.2020

NuMat 2020 – 6 th Nuclear Materials Conference.

Gent, Belgium, IAEA, www.iaea.org

27.10. – 29.10.2020

enlit (former European Utility Week and

POWERGEN Europe). Milano, Italy,

www.powergeneurope.com

02.11. – 06.11.2020

International Nuclear Reactor Materials

Reliability Conference and Exhibition.

New Orleans, Louisiana, EPRI, www.custom.cvent.com

09.11. – 13.11.2020

International Conference on Radiation Safety:

Improving Radiation Protection in Practice.

Vienna, Austria, IAEA, www.iaea.org

24.11. – 26.11.2020

ICOND 2020 – 9 th International Conference on

Nuclear Decommissioning. Aachen, Germany,

AiNT, www.icond.de

07.12. – 10.12.2020

SAMMI 2020 – Specialist Workshop on Advanced

Measurement Method and Instrumentation

for enhancing Severe Accident Management in

an NPP addressing Emergency, Stabilization and

Long-term Recovery Phases. Fukushima, Japan,

NEA, www.sammi-2020.org

17.12. – 18.12.2020

ICNESPP 2020 – 14. International Conference on

Nuclear Engineering Systems and Power Plants.

Kuala Lumpur, Malaysia, WASET, www.waset.org

This is not a full list and may be subject to change.

Calendar


atw Vol. 65 (2020) | Issue 3 ı March

The Future of Nuclear: The Role of Nuclear

in the Upcoming Global Energy Transition

Hans-Wilhelm Schiffer

1 Introduction The paper presents the main findings, which the World Energy Council (the Council) presented

in a paper on The Future of Nuclear: Diverse Harmonies in the Energy Transition with contributions from the World

Nuclear Association and the Paul Scherrer Institute. In this report, the future of nuclear is described through the lens of

the Council´s World Energy Scenarios archetype framework – Modern Jazz, Unfinished Symphony and Hard Rock – in

three plausible, alternative pathways for the future development of the sector. This report also describes implications

for the role of nuclear energy in the global energy transition. Nuclear energy could take three different pathways within

the upcoming decades. In the main part of this paper – following a brief section on the current role of nuclear in the

global energy supply (Chapter 2) – the characteristics of the three scenarios including the methodology underlying

their quantification (Chapter 3), and the key findings of the identified future pathways (Chapter 4) are explained.

Chapter 5 deals with a comparison of the global results of the EIA´s International Energy Outlook 2019 (U.S. Energy

Information Administration, September 2019) and the IEA´s World Energy Outlook 2019 (International Energy Agency,

November 2019). A conclusion is presented in Chapter 6.

2 Current role of nuclear energy

in global energy supply

Global electricity generation increased fivefold compared

to the level in 1971 to 26,615 TWh in 2018. 63 % of the

growth recorded during this period was covered by fossil

fuels, 25 % by renewable energies and 12 % by nuclear

energy. As a result, the energy mix in global electricity

generation has changed as follows: The share of fossil

energies in total electricity generation has decreased from

74 % in 1971 to 65 % in 2018. This decline was compensated

for by an increase in the share of nuclear energy from

2 % to 10 % and of renewable energies from 24 % to 25 %

(Figure 1).

In the 1970s and 1980s, nuclear power plants were heavily

expanded. The number of plants in operation worldwide

had quintupled from 84 in 1970 to 420 in 1989. Since

then, there has only been a slight increase – to 449 plants

in operation by December 2019 with a capacity of around

400 gigawatts (GW). Correspondingly, electricity generation

based on nuclear energy increased from 1970 to 1990

with annual growth rates of 17.5 %. This was followed by a

significant slowdown in the average growth rates to 2.6 %

per year in the decade from 1990 to 2000. Since 2000,

electricity generation based on nuclear energy has stagnated.

In 2018, it amounted to around 2,700 TWh.

The nuclear power capacities are installed in 31 countries.

The installed capacity is mainly concentrated on

countries in North America (29 %), Western Europe

(28 %), Asia (28 %), Eastern Europe including Russia

(14 %) and to a lesser extent in South America (< 1 %) and

the Middle East / Africa (< 1 %). The United States leads

the ranking of states according to the number of nuclear

power plants with 96 plants, followed by France with

58 plants, China with 48 plants and Russia with 36 plants.

52 nuclear power plants are under construction, including

nine in China, seven in India, six in Russia, and four each in

South Korea and UAE. In addition to Turkey, Belarus and

Bangladesh, the UAE belong to the new nuclear energy

states, i.e. the countries in which nuclear power plants have

not yet been connected to the grid, but are now under

construction.

The contribution of nuclear energy to electricity

generation is very different in the countries that use

nuclear energy. There is a range from 2 % in Iran to 72 % in

France (Figure 2).

| Fig. 1.

World Electricity Production by Energy Source in TWh. Source: IAEA

| Fig. 2.

Share of nuclear power in total electricity generation 2018. Source: H.-W. Schiffer based on World

Nuclear Association, London, August 2019

The age of the existing nuclear power plants extends

over a period of half a century. Corresponding to the focus

of the commissioning of nuclear power plants in the 1970s

and 1980s, the age group 30 to 40 is the most populated.

A good 200 plants and thus almost half of the reactors in

operation can be assigned to this category. Just under 100

plants are younger than 20 years, about 50 plants are

between 20 and 30 years old and almost 100 plants are

older than 40 years (Figure 3).

131

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER

Feature

The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


atw Vol. 65 (2020) | Issue 3 ı March

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 132

| Fig. 3.

Age of Operating Reactors. Source: IAEA Source: IAEA Power Reactor Information System (PRIS)

| Fig. 4.

Scenarios and projections of various institutions on the development of the global energy supply.

* In addition, the BP study includes “alternative” Scenarios, among others „More Energy,

Less Globalization“

3 The World Energy Council's

global energy scenarios

In 2019, a series of forecasts and scenarios on the development

of global energy supply in the coming decades were

published. These include – among others (Figure 4) – the

scenarios of the World Energy Council, which this organization

presented at the World Energy Congress in Abu

Dhabi in September 2019. (WEC 2019a). The Council's

scenarios selected are exploratory routes through the

Grand Transition. They do not follow a normative approach

that is designed to meet a future goal. Neither are they to

be understood as a forecast. Rather, they span a range of

plausible pathways to the development of the global

energy supply.

3.1 Description of the scenarios

When naming the three scenarios considered, the Council

used Modern Jazz, Unfinished Symphony and Hard Rock

to reflect different music genres, giving an idea of the

mood of each scenario (Figure 5).

p For example, Modern Jazz reflects the notion that

Jazz is the music of boundless individualism where

improvisation and innovation are essential elements.

p Unfinished Symphony: You cannot play a symphony

alone; it takes an orchestra to play it and a conductor to

take the lead.

p And finally, Hard Rock is an expression of the strength

of spirit in facing hard times.

p “While all three scenarios reflect the same predetermined

factors, each individual scenario places a

different emphasis on how four critical uncertainties

might play out.” (WEC 2019b).

p Pre-determined factors are: Lower rates of growth in

population than in the past, a rise in the penetration of

new technologies, an increasing appreciation of the

planet´s environmental boundaries, and a shift in

economic power towards Asia.

p The Council recognizes four critical uncertainties: The

pace of innovation and productivity gains, the evolvement

of international governance and geopolitics, the

priority given to climate change and connected issues

and the preferred mode of managing the energy sector

– via state regulation, market mechanisms or a mixture.

p “These four critical uncertainties interplay and create

the underpinnings of the Council's three unique

scenarios to 2060 – Modern Jazz, Unfinished Symphony

and Hard Rock.” (WEC 2019b).

p Modern Jazz follows a market-driven approach. The

world is highly productive, with fast economic growth

and strong technological development. Digitally

enabled technology innovation and new business

models address sustainability.

p Unfinished Symphony follows a government-driven

approach to achieving sustainability through international

cooperation. An extensive network of fiscal

incentives such as green subsidies and converging and

effective carbon pricing across the different parts of the

world is assumed.

p In Hard Rock, national interests prevent countries from

collaborating effectively on a global level, with limited

attention to addressing climate change. Technologies

are mandated based on the availability of local

resources. Protectionism rather than free trade

dominates the scene.

Probabilities of occurrence are not assigned to the

scenarios. On the contrary, it is conceivable that the actual

development in the individual states and regions of the

world does not follow the same scenario. In fact, different

signals, which can be ascribed to one of the scenarios, are

perceived in reality. If frameworks are set by increased

regulation, the development follows the Unfinished

Symphony scenario. A strong commitment to national

unilateralism is attributable to the Hard Rock scenario. If a

pioneering innovation from the private sector is the driver

of change in a region, the development follows the Modern

Jazz scenario. In addition, over time, the primary direction

of development can change from one scenario to another

scenario. Since 2016, signals from each of the three

scenarios have been recorded in different regions of the

world. And there has been a change in the perception of

the Hard Rock scenario, which – unlike in the past – is no

longer perceived as an outsider scenario.

| Fig. 5.

World Energy Scenarios.

Feature

The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


atw Vol. 65 (2020) | Issue 3 ı March

3.2 Methodology for quantification

Experts from all over the world participated in a scenario

study group that basically developed the report under the

guidance of the Council´s London office with the support

of Accenture Strategy. The scenario storylines that resulted

from this expert consultation process were quantified by

the Paul Scherrer Institute (PSI) using its Global Multiregional

MARKAL (GMM) model. The model is based on

input assumptions reflecting the scenario storylines and

determines the least-cost configurations of the global

energy system from a social planner’s perspective with

perfect foresight. The GMM model represents the global

energy system disaggregated into 17 world regions

including region-specific characteristics of energy supply

and demand, as well as the corresponding CO 2 emissions.

The evolution of key scenario drivers is expressed in

coherent storylines of future economic and social developments.

The iteration between the development of the

narratives and their quantification provided the foundation

for a powerful set of scenarios.

The GMM model represents in detail the energy system of

a region from resource extraction to energy end uses. GMM

includes more than 400 energy conversion technologies

with their technical, economic and environmental characteristics.

Beyond conventional technologies, the model

also includes zero-carbon technologies and even options to

achieve net negative CO 2 emissions, such as bioenergy

conversion with CO 2 capture and storage. Applying perfect

foresight, GMM optimizes the total discounted energy

system cost over the entire model horizon. Non-cost and

behavioral assumptions are modeled as side-constraints.

In all three scenarios, a slowing population growth is assumed,

with an increase compared to today by one third to

10 billion by 2060. GDP is assumed to develop differently

across the scenarios with the highest average growth rate

between 2015 and 2060 in the Modern Jazz scenario and

the lowest growth in the Hard Rock scenario (Figure 6). In

the scenarios, the different climate policy priorities are

included via different levels of low-carbon technology

support and different CO 2 pricing (Figure 7). The CO 2

prices rise to 110 US$2010 by 2060 in the Unfinished Symphony

scenario – compared to a range of 60-90 US$2010

in Modern Jazz and only 19-45 US$2010 in Hard Rock.

4 Results with the main focus

on nuclear energy

In addition to the study World Energy Scenarios 2019, the

Council published a specific paper on The Future of

Nuclear: Diverse Harmonies in the Energy Transition.

(WEC 2019b). In this report, the World Energy Council,

with contributions from the World Nuclear Association

and the Paul Scherrer Institute, “has developed new

insights into the future role of nuclear. These insights

contributed to the development of the Council's new

nuclear perspectives through the lens of its three global

archetype scenarios – Modern Jazz, Unfinished Symphony

and Hard Rock. A plausible role for nuclear to 2060 is

described in the context of each scenario.” (WEC 2019b). It

is clear that nuclear energy will feature in the global energy

mix for decades to come. However, its share in the mix and

its rate of growth will depend on a number of factors. “Some

of these are largely determined by actions taken within

the sector, e.g. speed of innovation in new nuclear technology

and shaping policies on legacy waste management,

whilst other factors such as energy policies, market design

and financing structures are shaped and influenced by other

stakeholders.” (WEC 2019b).

| Fig. 6.

Main assumptions of the three WEC scenarios. Source: Paul Scherrer Institut

| Fig. 7.

CO 2 prices assumptions by scenario in US$ (2010) per tCO 2 . Source: Paul Scherrer Institute

4.1 Global results by scenario

Nuclear energy will grow in all three scenarios. But the pathways

are very different – depending on the scenario assumptions

and the underlying storyline (Figure 8).

In the consumer-empowered and market driven world

of Modern Jazz, investors prefer smaller projects with low

capital requirements and relatively quick returns compared

to larger projects that require governmental intervention

and support or the build-up of institutional capacity. New

build is largely driven by China, India and Russia in the

period 2020-2030, and developing economies in the

| Fig. 8.

Global power generation by energy sources in TWh. Source: World Energy Council, Paul Scherrer

Institute, Accenture Strategy: World Energy Scenarios/2019, September 2019

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 133

Feature

The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


atw Vol. 65 (2020) | Issue 3 ı March

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 134

Middle East, like Iran, Turkey, Egypt, as well as Bangladesh

and Indonesia in 2030-2040. These developments firmly

place nuclear energy as a power source for emerging

economies, in which the governmental backing for this

technology can be expected also in the future. The rate of

new nuclear construction in developed countries of Europe

and North America slows down. Many markets do not

value nuclear´s contribution as a dispatchable source in

electricity rooted in large-scale smart grids, decentralized

generation, variability, and effective energy storage.

“Despite the fact that lifetime extension of existing

reactors is one of the best power generation investments

available in the market from a levelised cost of electricity

point of view, a number of EU countries and the US provide

only limited support to nuclear energy. In leading-edge

countries, stability is so reliant on demand-side flexibility

and supply-side optimization that ‘older world’ capacity

reserves no longer seem necessary. Most older generation

reactors in the US and Europe are scheduled for retirement

and decommissioning, which reduces nuclear baseload

available to the grid by 2040. Among the many countries

that opt not to extend the lifetime of their reactor fleet, some

struggle to meet pressing carbon targets.” (WEC

2019b).

Because of the competition from other low-carbon

sources, nuclear´s share in electricity generation accounts

for only 8.5 % by 2060, compared to 11 % in 2015. Nuclear

installed capacity increases by around 52 % from 407 GW

in 2015 to 620 GW in 2060. “In the Modern Jazz scenario,

the nuclear industry has the potential to reinvent itself,

from selling units to providing services, and to remain an

energy source of choice as some of the major existing

nuclear countries and emerging economies expand their

nuclear fleets.” (WEC 2019b).

In Unfinished Symphony, governments support an

acceleration of a net-zero carbon energy transition. Such a

policy also favours nuclear energy and paves the way for a

bright future for nuclear energy. Innovations such as Gen

IV reactors and SMRs are accelerated. Due to high demand

and availability of new investment instruments, these

reactors are commercially introduced by 2035-2040 and

by 2060 they make up 25-30 % of all new orders by

capacity.

“The major share of new nuclear capacity is rolled out

using the fleet approach in China, India, Russia and the

Middle East in 2020-2030. In Africa, major nuclear

construction programmes are started by South Africa,

Nigeria, Tanzania and others to meet rising energy

demand from rapid urbanization. Power plants are

built on time and budget, aided by the enhanced

capability and capacity of the nuclear industry and

facilitated by extensive use of digital technologies in

design, planning, and construction stages. Digital twins

support safe, reliable and efficient plant operations.”

(WEC 2019b).

In the European Union, better coordinated climate

policies supported by new energy regulations and

financing institutions are an encouragement to review the

position on the role of nuclear in tackling climate change.

Digitally enabled nuclear new build is on a roll across the

EU, especially in the nuclear accustomed markets of

Bulgaria, the Czech Republic, Finland, Hungary, Slovakia.

The same is going to take place in the UK.

“Lifetime extension remains high on the nuclear agenda

2020-2030 both in the EU and in the US. Digital tools

become significant for analysis and decision making.

Most ‘old world’ reactors are put on lifetime extension

programmes to keep them operational for another 20 years

or more.” (WEC 2019b).

In Japan, existing reactors are upgraded and restarted.

“Japan also returns to the global nuclear technologies

market as a strong nuclear exporter by 2035, building

power plants in the EU, US, and the Middle East. South

Korea's nuclear projects extend from the Middle East to the

EU and Africa from 2040. There is growing global demand

for nuclear power and competitive global supply chains

from major reactor vendors in Russia, France, Japan,

Korea, and China.” (WEC 2019b).

In this scenario, nuclear accounts for 13.5 % of total

global electricity generation by 2060, compared with 11 %

in 2015. The installed nuclear capacity almost triples to

1002 GW by 2060, compared to 2015. “In addition to

new build and lifetime extension initiatives, new nuclear

technologies – small modular reactor, floating units and

Gen IV reactors – make a significant contribution to the

global nuclear fleet.” (WEC 2019b).

In Hard Rock, which is characterized by a fragmented

world with low economic growth, increasing geopolitical

tensions and low levels of cooperation between nations,

national security, jobs, skills development and local

environmental issues are top of national agendas.

Nuclear new capacity is driven mainly by the fleet

approach in China, India, Russia between 2020 and 2030

– countries that made a strategic bet on nuclear as a main

source of energy and development. This is followed by new

build programmes in 2030-2040 in the Middle East,

including in Saudi Arabia, the United Arab Emirates, Iran,

Turkey, Egypt and others. In these countries the core

nuclear technology remains large-scale Gen III and Gen

III+ reactors for centralized power systems. Incremental

innovations and the use of digital technologies make Gen

III+ a natural choice for all newcomers as it is a reliable,

well-studied, serially built, and economically efficient

nuclear solution.” (WEC 2019b).

Russia and China remain the dominant players in the

nuclear technology market. “In 2030, Russia and China

successfully debut both commercial Gen IV and SMRs. By

2045 Russian and Chinese Gen IV and SMRs have also

been installed in a number of other locations around the

world. Neither Gen IV nor SMR make any considerable

impact on the overall energy system by 2060.” (WEC

2019b).

In the 2020s the EU and the US generally favour policies

that allowed lifetime extension of existing reactors. The

granted 20-year life extension will keep them operational

beyond 2040-2050. However, between 2035 and 2040,

lifetime extension is no longer an option for a large part of

the existing fleets in the EU and the US. As a consequence,

some countries drift gradually towards nuclear new build

options, while a few others will decide to opt out of nuclear.

As far as new build is concerned from 2020-2030, the US

and most EU countries are reluctant to proceed in some

cases due to low public acceptance and in others due

to unclear economic viability. However, others go in the

opposite direction. The Czech Republic, Hungary,

Slovakia, and Bulgaria decide to extend their nuclear

programmes for 2030-2040.

In this scenario, nuclear´s share in global electricity generation

reaches 12.5 % by 2060 compared with 11 % in

2015. Installed nuclear capacity increases by 71 % from

407 GW in 2015 to 696 GW in 2060. “The main focus areas

are new construction in emerging markets and lifetime

extension initiatives in developed economies.” (WEC

2019b).

Feature

The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


atw Vol. 65 (2020) | Issue 3 ı March

| Fig. 9.

Global CO 2 emissions from fuel combustion by scenario in bn t.

Source: World Energy Council, Paul Scherrer Institute, Accenture Strategy

World Energy Scenarios/2019, September 2019; Kober et al (2018)

* until 2100

4.2 Global CO 2 emissions by scenario

None of the scenarios shows a development, which leads

to an achievement of the Paris Climate Agreement. In

Unfinished Symphony, CO 2 emissions peak by 2020, in

Modern Jazz by 2030 and in Hard Rock by 2040. The

development indicated in the scenarios leads to an increase

in the global temperature of 2 to 2.3 degrees Celsius in

Unfinished Symphony, approximately 2.5 degrees in

Modern Jazz and more than 3 degrees in Hard Rock

( Figure 9).

The Nationally Determined Contributions (NDCs) are

the heart of the Paris Agreement and the achievement of

these long-term goals. The Paris Agreement requires each

country to outline and communicate their post-2020

ambitions to limit the emissions of greenhouse gases. With

the announced efforts by the countries, we are so far not

on track to keep the global temperature increase below

2 degrees Celsius. To achieve the even more ambitious

1.5 degree target, the world had to be carbon-neutral by

2060.

The 25 th Conference of the Parties (COP 25) to the

UNFCCC in Madrid in December 2019 ended with no

major breakthrough. The conference agreed to ask

countries to come up with more ambitious targets to cut

greenhouse gas emissions by the time of the COP 26, which

is expected to take place from 9-19 November 2020 in

Glasgow, UK.

4.3 Selected regional developments

The Council´s scenario study provides not only global

results but a breakdown by eight world regions is given as

well (Figure 10).

As far as nuclear energy is concerned, there is a clear

shift in the use of nuclear energy to the Asian market

within the upcoming decades. The highest capacity

increases are going to take place in China, + 180 GW in

Modern Jazz, + 320 GW in Unfinished Symphony and +

200 GW in Hard Rock by 2060. The outcome for India in

2060: + 50 GW in Modern Jazz, + 140 GW in Unfinished

Symphony and + 70 GW in Hard Rock. Furthermore for

the region Middle East and North Africa significant nuclear

capacity increases are indicated: + 17 GW in Modern Jazz,

+ 37 GW in Unfinished Symphony and + 15 GW in Hard

Rock (Figure 11).

In 2015, 42 % of the world's nuclear power capacity was

distributed to Europe including Russia, 30 % to North

America, 26 % to Asia, 1 % to South America and 0.5 %

each to the two regions of Sub-Saharan Africa and Middle

East & North Africa. By 2060, the share of the three Asian

regions will increase to 56 % in Modern Jazz and Hard

Rock and even 61 % in Unfinished Symphony. The share of

| Fig. 10.

Regional breakdown for modelling.

| Fig. 11.

Nuclear: Installed Capacity in GW. Source: Paul Scherrer Institut

| Fig. 12.

Installed Nuclear Generation Capacity (GW) by Region. Source: World Energy Council, World Energy

Scenarios 2019, The Future of Nuclear: Diverse Harmonies in the Energy Transition. London 2019

North America and Europe combined decreases from 72 %

in 2015 to 40 % in Modern Jazz and in Hard Rock. In

Unfinished Symphony it will be 33 %. Installed capacity in

the Sub-Saharan Africa, Middle East & North Africa and

Latin America regions combined is going to account for

between 4 % (Modern Jazz and Hard Rock) and 6 %

( Unfinished Symphony) of global nuclear capacity in 2060

compared to 2 % in 2015 (Figure 12).

5 Comparison of the WEC scenarios

with the findings of other institutions

“By benchmarking against peer studies and refreshing its

global horizon scanning, the Council's comparative review

has validated the continued relevance, plausibility, and

challenges of its existing archetypal framework and the benefits

of continuing to work with the plausibility-based,

narrative-led methodology in maintaining openness to

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 135

Feature

The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


atw Vol. 65 (2020) | Issue 3 ı March

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 136

new developments. The comparison of different types of

global energy scenarios has helped identify some important

gaps in bridging the flexibility of the narrative-led,

plausibility-based approach with the rigidity of long-term

global energy system models.” (WEC 2019c).

The following three most relevant global energy

scenario studies, published in the second half of 2019, were

selected for comparing the results:

p WEC´s World Energy Scenarios 2019 (WEC 2019a)

p EIA´s International Energy Outlook 2019 (EIA 2019)

p IEA´s World Energy Outlook 2019 (IEA 2019)

This paper concentrates on EIA´s Reference Case, two of

the three scenarios of the IEA (Stated Policies Scenario

and Sustainable Development) and the three WEC scenarios.

In addition, IAEA's 2019 edition of the Energy, Electricity

and Nuclear Power Estimates for the Period up to 2050

is referred to in the comparison. The year 2040 is chosen

for the comparison, as the time horizon of the IEA scenarios

is to 2040 only.

The Reference Case (RC) of the EIA reflects current

trends and relationships among supply, demand, and

prices in the future. The RC includes some anticipated

changes over time, such as expected regional economic

and demographic trends, planned changes to infrastructure

and assumed incremental cost and performance

improvements in known technologies based on historical

trends. (EIA 2019).

The Stated Policies Scenario of the IEA, which occupies

a central position in the WEO analysis, reflects the impact

of energy-related policies that governments have already

implemented including an assessment of the likely effects

of announced policies as expressed in official targets and

plans. Furthermore, a dynamic evolution of the cost of

energy technologies, reflecting gains from deployment and

learning-by-doing is assumed in this scenario. (IEA 2019).

The Sustainable Development Scenario of the IEA is an

essential counterpart to the Stated Policies Scenario. It sets

out the major changes that would be required to reach the

key energy-related goals of the United Nations Sustainable

Development Agenda simultaneously, such as a reduction

in greenhouse gas emissions in line with the Paris Agreement,

universal access to modern energy by 2030 and a

dramatic reduction in energy-related air pollution. (IEA

2019).

The projections of the International Atomic Energy

Agency (IAEA) “for nuclear electrical generating capacity

are presented as low and high estimates, reflecting different

driving factors that have an impact on the worldwide

deployment of low carbon energy source.” (IAEA 2019).

The main results of the comparison, as far as the expected

development for the global nuclear capacity is concerned

(Figure 13): EIA's Reference Case is very much in line with

the Stated Policies Scenario of the IEA and WEC's Modern

Jazz, while the other two WEC scenarios expect a stronger

development for nuclear energy. The Sustainable Development

Scenario of the IEA, a normative scenario, comes to

slightly higher numbers for nuclear energy by 2040 compared

to WEC's Hard Rock. The by far strongest upward pathway

for nuclear energy is seen in WEC´s Unfinished Symphony.

The numbers shown in Unfinished Symphony for

2040 even exceed the high case of IAEA's outlook. The IAEA

has published a range for the global nuclear capacity between

353 GW and 628 GW for 2040 and between 371 GW

und 715 GW in 2050. (IAEA 2019).

6 Conclusion

A wide range of technologies is necessary to bring energy

economic development closer to climate policy requirements.

The focus should be on approaches that enable

greenhouse gas emissions to be reduced at the lowest CO 2

abatement costs. These include in particular:

p Improved efficiency when converting and using energy.

p Expansion of renewable energies – focused on technologies

and locations that have comparatively

favorable conditions.

p Identification of new customer-centric growth opportunities

in electrification, storage, power-to-X and the

new hydrogen economy.

p Expanded use of nuclear energy by extending the

lifetime of existing plants, provided that their safety is

fully guaranteed, and construction of new plants at

locations where the economic and political conditions

offer a solid basis for this.

p Implementation of an energy infrastructure to prevent

greenhouse gas emissions from the combustion of fossil

fuels and production processes from entering the

atmosphere (carbon capture and usage/storage), and

technologies to generate negative CO 2 emissions.

p Securing new opportunities for international trade not

only with clean electrons but also with clean molecules

(gaseous and liquid) including hydrogen.

CO 2 pricing that is at a comparable level worldwide as

far as possible, a technology-neutral political framework

and increased international cooperation are crucial for

achieving the sustainability goals. Commitments agreed

under the Paris Agreement and other initiatives have the

potential to support nuclear energy development.

References

| BP (2019a) BP Statistical Review of World Energy June 2019, London (June 2019)

| BP (2019b) BP Energy Outlook – 2019 edition, London (February 2019)

| Energy Information Administration (2019) International Energy Outlook 2019, Washington, DC

(September 2019)

| Equinor (2019) Energy Perspectives 2019, Stavanger (June 2019)

| ExxonMobil (2019) 2019 Outlook for Energy: A Perspective to 2040, Irving/Texas (August 2019)

| International Atomic Energy Agency (2019) Energy Electricity and Nuclear Power Estimates for the

Period up to 2050, 2019 edition, Vienna (September 2019)

| International Energy Agency (2019) World Energy Outlook 2019, Paris (November 2019)

| Shell International B.V. (2018) Shell Scenarios. Sky – Meeting the Goals of the Paris Agreement, The

Hague (March 2018)

| World Energy Council (2019a) World Energy Scenarios 2019 – Exploring Innovation Pathways to

2040, in collaboration with Accenture Strategy and Paul Scherrer Institute, London (September

2019)

| World Energy Council (2019b) World Energy Scenarios 2019 – The Future of Nuclear: Diverse Harmonies

in the Energy Transition, with contributions from the World Nuclear Association and the Paul

Scherrer Institute, London (August 2019)

| World Energy Council (2019c) Global Energy Comparison Review, World Energy Insights Brief 2019,

London (April 2019)

| Fig. 13.

World Nuclear Capacityin GW.

* SP = Stated Policies Scenario; SD = Sustainable Development Scenario

Author

Dr. Hans-Wilhelm Schiffer

Member of the Studies Committee

World Energy Council (London)

Visiting Lecturer at the RWTH Aachen University

Feature

The Future of Nuclear: The Role of Nuclear in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


atw Vol. 65 (2020) | Issue 3 ı March

SMRs und regulatorische Fragestellungen

Christian Raetzke

137

In der internationalen Kernenergieszene wird immer mehr über SMRs (Small Modular Reactors) diskutiert, also über

relativ kleine Reaktoren (≤ 300 MW elektrisch), die eine Vielzahl von technischen Designs aufweisen, von

„ verkleinerten“ Ausgaben marktreifer Designs für große Leichtwasserreaktoren bis hin zu innovativen Modellen, die

etwa mit Salzschmelze oder Blei arbeiten. Tatsächlich gebaut und in Betrieb genommen wurde bislang nur wenig, aber

die Zahl der angekündigten Projekte (in Europa zuletzt in Estland), der staatlichen Förderungen (z. B. in den USA),

der Verfahren zumindest für Konzeptgenehmigungen (etwa in den USA und Kanada) und der Studien, die SMRs als

attraktive Option einstufen, hat sich in den letzten zwei bis drei Jahren vervielfacht.

Die Frage, ob SMRs tatsächlich ein wichtiges Zukunftselement

der Kernenergie sind, wurde auch bei der letztjährigen

Jahrestagung Kerntechnik auf einer vom Verfasser

geleiteten Sitzung erörtert. 1 Immerhin scheinen sie, gerade

in der gegenwärtigen weltweiten Debatte um die Rolle

der Kernenergie als klimaneutrale Option der Stromerzeugung,

Vorteile aufzuweisen, die herkömmliche

Großkraftwerke nicht darbieten, insbesondere durch eine

niedrigere Investitionsschwelle und durch flexiblere Einsatzmöglichkeiten

in einem sich wandelnden Energiemix.

Auch eine (noch) weiter verbesserte Sicherheit wird oft als

Argument genannt.

In genehmigungsrechtlicher Hinsicht sind SMRs jedenfalls

definitiv ein spannendes Thema. Die bestehenden

regulatorischen Anforderungen und Strukturen passen

in mancherlei Hinsicht nicht auf die neuen Konzepte;

innovative Ansätze sind nötig.

Dem Verfasser scheinen zwei Aspekte besonders

wichtig zu sein.

Zum einen müssen die nationalen Regelwerke und

Genehmigungsverfahren der Länder, die SMRs bauen

wollen, so gestaltet sein, dass sie die regulatorische

Bewältigung von SMRs gestatten. Für SMRs, die – wie

oben schon erwähnt – eine große Vielzahl von sehr

unterschiedlichen Designs aufweisen, wird man von

vornherein flexible, risiko- und performancebasierte

Anforderungen vorsehen müssen. Als Beispiel für einen

eigens für SMRs gestalteten Katalog mit generischen

Sicherheitskriterien sei auf eine Leitlinie der Canadian

Nuclear Safety Commission (CNSC) verwiesen: „Design of

Small Reactor Facilities (RD-367)“. 2

Im Einzelnen werden viele bestehende Regelungen,

die für Großkraftwerke gedacht sind, für SMRs angepasst

werden müssen. So hat etwa die US-amerikanische

Nuclear Regulatory Commission (NRC) den Entwurf einer

Vorschrift veröffentlicht, die erstmals für SMRs eine

abgestufte Festsetzung der (für die Standortbewertung in

den USA sehr wichtigen) Notfallplanungszone rund um

die Anlage erlaubt. 3 Hintergrund ist das im Vergleich zu

herkömmlichen Anlagen deutlich geringere Kerninventar

von SMRs sowie der Umstand, dass viele Designs angabegemäß

mit passiven Systemen und inhärenter Sicherheit

eine Freisetzung ausschließen sollen („walk-away safe“).

Eine Modifizierung von Anforderungen ist unter diesen

Voraussetzungen kein Sicherheitsnachlass, sondern eine

Anwendung des allgemein anerkannten „gestuften

Ansatzes“ (graded approach) bei der Sicherheitsbewertung,

wonach Anforderungen nach dem Ausmaß

des Risikos zu gestalten sind.

Der zweite Gesichtspunkt lenkt den Blick vom

Nationalen ins Internationale. Wie schon das „M“ für

„ modular“ aussagt, beruhen die meisten SMR-Designs auf

dem Grundgedanken, dass der Reaktor aus Modulen

besteht, die in einer Fabrik vorgefertigt werden und vor

Ort nur noch zusammengebaut oder aufgestellt werden

müssen. Das ist geradezu ein springender Punkt, der das

SMR-Konzept erst ausmacht und den gewünschten weitgefächerten

Einsatz erst ermöglicht. Die standardisierte

Serienfertigung ist auch für die Wirtschaftlichkeit ein

entscheidendes Element, indem die bisher von großen

Reaktoren verwirklichten „economies of scale“ durch

„ economies of series“, also durch hohe Produktionszahlen,

ersetzt werden sollen; auch wären Genehmigungsverfahren

und Errichtung mit weniger Risiken behaftet

und daher besser zu finanzieren als heute. Die Modularität

und die damit einhergehende Standardisierung würden

aber zunichte gemacht, wenn ein SMR jeweils an stark

unterschiedliche nationale Regelwerke angepasst, also im

Design vielfach geändert werden müsste.

Deshalb ist es essentiell, dass die Länder, die SMRs

einsetzen wollen, sich auf (weitgehend) vereinheitlichte

Regeln einigen. In der bisherigen Historie der Kernenergie

waren Sicherheitsanforderungen jedoch dezidiert eine

nationale Sache. Seit ein bis zwei Jahrzehnten gibt es zwar

verstärkte Bemühungen der Genehmigungsbehörden zur

Entwicklung gemeinsamer Ansätze, schon damit sie nicht

jedesmal „das Rad neu erfinden“ müssen und Ressourcen

sparen können; für solche Bemühungen steht beispielhaft

das Multinational Design Evaluation Programme MDEP. 4

Solche Programme müssten für SMRs aber qualitativ auf

eine neue Stufe gehoben werden; Ziel wäre idealerweise

eine gemeinsam von den beteiligten Behörden getragene

Konzeptfreigabe, die dann die Grundlage für die jeweilige

nationale Genehmigung bildete. Wollte man besonders

kühn sein, so könnte man sogar daran denken, dass die

vom Herstellerland erteilte Genehmigung in den Einsatzländern

in gewissem Umfang anerkannt wird.

Länder, die SMRs einsetzen wollen, müssen diese

Herausforderungen angehen. Wieder einmal ist Finnland

ein Vorbild. Die finnische Genehmigungs- und Aufsichtsbehörde

STUK hat jüngst einen Bericht veröffentlicht 5 , der

den Weg zu dem von der Behörde selbst gesetzten Ziel

beschreibt, für die Genehmigung eines SMR bereit zu sein,

wenn es soweit ist.

Die große SMR-Welle steht vorläufig noch auf dem

Papier. Dass sie tatsächlich ausgelöst wird, setzt die Überwindung

vieler Hindernisse voraus, vor allem politischer

und wirtschaftlicher Art. Wenn sie aber kommen sollte,

dann müssen die geeigneten regulatorischen Instrumente

bereitstehen – Instrumente, die SMRs gerecht werden und

zugleich weltweit die erforderliche Sicherheit garantieren.

Author

Rechtsanwalt Dr. Christian Raetzke

Beethovenstr. 19

04107 Leipzig

1) Sitzungsbericht:

https://

www.ktg.org/ktgwAssets/docs/

AMNT/2019/

Raetzke-AMNT-

2019-Focus-Session--

International-Innovation-SMRs.pdf

2) https://

nuclearsafety.gc.ca/

pubs_catalogue/

uploads/RD-367-

Design-of-Small-

Reactor-Facilities_

e.pdf

3) https://

www.nrc.gov/

reading-rm/doccollections/news/

2019/19-063.pdf

4) http://

www.oecd-nea.org/

mdep

5) Zur Pressemitteilung:

https://

www.stuk.fi/web/

en/-/stuk-preparesfor-assessing-thesafety-of-novelnuclear-reactors.


Der Bericht selber

ist auf Finnisch.

SPOTLIGHT ON NUCLEAR LAW

Spotlight on Nuclear Law

Regulatory Enquiries and About SMRs ı Christian Raetzke


atw Vol. 65 (2020) | Issue 3 ı March

138

ENVIRONMENT AND SAFETY

About EPRI Journal

EPRI Journal is the

flagship publication of

the Electric Power

Research Institute. It

provides in-depth

reporting on electricity

sector R&D,

industry and

technology news,

EPRI thought leadership,

and guest

perspectives from

industry leaders. With

features, brief articles,

info-graphics, and other

engaging digital

formats, readers gain

insights through clear

explanations about

technology developments,

utility field

experiences, and realworld

solutions. Subscriptions

are free.

Original URL

for article:

http://eprijournal.com/

toward-a-new-riskinformed-approach-tocyber-security/

Toward a New Risk-Informed Approach

to Cyber Security

EPRI Guidelines Equip Electric Power Industry

to Address Growing Risks and Vulnerabilities

Chris Warren

A More Targeted Approach

to Cyber Security

EPRI has developed step-by-step

guidance for utilities to assess cyber

security measures at power plants,

informed by risk. The methodology

enables users to allot more time and

resources to protect the devices most

critical to operations. “We made the

business case for EPRI’s methodology

with our senior management,” said

Brad Yeates, Southern Nuclear’s

manager of cyber security for Vogtle

Units 3 and 4. “We concluded that this

new approach was the most direct and

cost-effective one.”

In a power plant, robust cyber

security depends on safeguarding

control system components. One

critical component is a plant’s engineering

workstation.

“It’s important to protect the engineering

workstation because it’s

connected to the programmable logic

controllers in a power plant,” said

EPRI Senior Technical Leader Jeremy

Lawrence. “It’s a prime target. If

attackers get into it and inject

malware, they could potentially

compromise critical plant control

functions and shut down the plant.”

The traditional “defense-in-depth”

approach to protecting digital plant

control components from attackers

involves layering various security

measures – a complex undertaking.

It’s challenging to quickly determine

the optimal types and number of

layers.

Bulk power system operators in

North America must comply with the

North American Electric Reliability

Corporation’s (NERC) Critical Infrastructure

Protection (CIP) Standards.

The NERC standards, along with cyber

security regulations from the National

Institute of Standards and Technology

and the U.S. Nuclear Regulatory

Commission, are sometimes known

as the committed catalog approach

because they direct the implementation

of a catalog of security measures

for all components. While this

approach provides a degree of security,

power industry stakeholders are

investigating the benefits of a more

targeted approach – applying security

measures to specific vulnerabilities in

plant control systems.

“Standards and regulations have

played an essential role in establishing

a baseline of cyber security protections

for the electric power industry

–and in bringing stakeholders to the

table to discuss how to secure critical

assets,” said Lawrence. “Yet, compliance

with standards and regulations

doesn’t equal security. Power plant

operators are raising the bar on

cyber security to implement more

sophisticated measures above and

beyond the regulatory requirements.”

This is in line with growing

cyber security risks. Last year, U.S.

Department of Energy (DOE) Secretary

Rick Perry told lawmakers that

hundreds of thousands of cyber

attacks on the American energy

system take place each day. According

to DOE’s Multiyear Plan for Energy

Sector Cybersecurity, “The frequency,

scale, and sophistication of cyber

threats have increased, and attacks

have become easier to launch. Nationstates,

criminals, and terrorists

regularly probe energy systems to

exploit cyber vulnerabilities in order

to compromise, disrupt, or destroy

energy systems.”

“The threat only goes up,” said

William Vesely, a project specialist in

control systems engineering at Con

Edison, the utility that serves New

York City and Westchester County,

New York. “Critical infrastructure in

the power industry is a prime target,

and staying ahead of the game is

challenging and requires vigilance.”

Risk-Informed Cyber Security

In collaboration with utilities, control

system manufacturers, policymakers,

and regulators, EPRI is developing

new cyber security approaches to

protect critical power plant assets.

As part of this research, EPRI has

developed an advanced risk-informed

methodology for utilities to assess

cyber security measures. This step-bystep

approach involves considering

potential security breaches, their

Environment and Safety

Toward a New Risk-Informed Approach to Cyber Security ı Chris Warren


atw Vol. 65 (2020) | Issue 3 ı March

likelihood, and the consequences

(such as radiological release, outages,

and reputation damage) and then

prioritizing mitigations.

Security standards and tools typically

focus on company-level risk and

may apply the same controls to every

component. EPRI’s risk-informed

guidance advances the state of the

art through a systems engineering

approach that enables users to assess

specific cyber security risks at the

component, system, and company

levels.

“Not all components are created

equal or serve the same function,”

said Lawrence. “A limitation of the

typical approach is that it doesn’t

always differentiate among components.

With our methodology, power

plant operators can assess specific

vulnerabilities with individual components

and identify the best controls

to mitigate the threats. They can

spend more time protecting the

devices most critical to operations –

and prioritize application of standards

and regulations. Standards provide

the ‘what,’ and EPRI’s methodology

provides the ‘how.’”

Risk-Informed Approach

in Action

The first step in EPRI’s methodology

involves characterizing precisely the

attack surface of each component in

power plant control systems. An

attack surface encompasses all the

points at which a component can be

attacked, including physical, network,

and wireless access.

The next step: Identify the possible

goals of an attack (such as stealing data

or altering configuration files) and the

possible exploit sequences ( attack

strategies), which vary depending on

the goals and vulnerabilities.

With a comprehensive understanding

of where, why, and how

an attacker might strike, the plant

operator can plan the most effective

defenses.

The third step of the risk-informed

approach is to assess each security

measure’s ability to protect against,

detect, respond to, and recover from

the most likely attacks.

“There are lots of potential ways to

mitigate each exploit sequence, and

you want to apply the most effective

combinations,” said Lawrence. “An

engineering workstation may have

anti-virus software already installed

that can effectively detect malware

and alert an operator of its presence.

But it might not help much with

response and recovery.”

A cumulative score is calculated for

each security measure based on its

effectiveness and ease of implementation.

“The score tells you how well

protected you are against each exploit

sequence,” said Lawrence. “Whether

that score is acceptable to a plant

operator depends on the asset’s

importance and the consequences of a

successful attack. Staff at each plant

must determine its acceptable risk

threshold.”

The risk-informed approach provides

a way to map security measures

to regulatory requirements and to

track compliance. While the path to

achieving compliance varies depending

on the regulatory body, regulators

generally consider a risk-informed

approach acceptable if it can be

demonstrated to satisfy the regulations’

intent and objectives.

“The risk-informed approach can

still meet regulatory requirements,”

said Lawrence. “It’s a way to comply

more efficiently and effectively.”

Risk-Informed Cyber Security

at Vogtle

As part of the construction of its

Plant Vogtle Units 3 and 4, Southern

Nuclear adopted EPRI’s systems

engineering approach to cyber

security while complying with security

regulations.

“We made the business case for

EPRI’s methodology with our senior

management,” said Brad Yeates,

manager of cyber security for Vogtle

Units 3 and 4. “We concluded that this

new approach was the most direct and

cost-effective one.”

Vogtle collaborated with EPRI to

develop a risk-informed cyber security

plan to help protect 16,000 digital

plant components from attacks.

“We’re the first utility in the world

to make a commitment to this

approach to cyber security assessment

and mitigation,” said Yeates. “We’re

carving out a path for others to follow.

Everybody that follows us is going to

have a much easier time.”

Yeates worked with EPRI technical

staff to develop the process to analyze

the 16,000 digital assets, identifying

approximately 400 distinct constituent

components. “This is a manageable

number of constituent elements that

we can focus on during our initial

technology assessment,” said Yeates.

“Once these 400 are assessed, they

become like a bag of LEGO® bricks

that can be assembled into larger

digital systems and subsystems, with

appropriate tailoring to their operational

configurations. The technology

assessment includes analysis of 89

critical systems.”

In using EPRI’s risk-informed

methodology, Yeates is assessing each

asset’s vulnerabilities, informing the

selection of the best available protections.

Yeates expects Units 3 and 4

to finalize their cyber security program

by early 2020 and their assessments

by the end of 2020.

“We must have the cyber program

up and running in order to receive

fuel,” he said. “Once we receive fuel,

the units will go through a thorough

testing phase before commercial

operation.”

In 2019, EPRI is collaborating with

vendors, manufacturers, and utilities

on studies that document the

implementation of EPRI’s advanced

risk- informed approach and its

benefits. Based on the results, these

stake holders are expected to provide

EPRI with feedback, informing improvements

to the approach.

Con Edison’s Vesely would like

to see the electric power industry

adopt this type of risk-informed cyber

security approach, viewing it as a

significant improvement to current

practices.

The challenge for power companies

is to balance the benefits

of new digital technologies with

security. “I think EPRI’s risk-informed

approach is going to be a milestone in

that direction,” he said. “I expect

international standards to draw

heavily on the concepts underlying

EPRI’s approach.”

“EPRI has incorporated more

engineering into the assessment of

cyber risks in the electric power

sector,” said EPRI’s Lawrence. “Our

guidance equips power plant operators

with the in- depth understanding

of vulner abilities they need to pinpoint

the best protections and keep

their facilities secure.”

Authors

Chris Warren

Key EPRI Technical Experts

Jeremy Lawrence

techexpert@eprijournal.com

EPRI

3420 Hillview Avenue

Palo Alto, California 94304

United States of America

About EPRI

The Electric Power

Research Institute

(EPRI) conducts

research, development,

and demonstra

tion projects for the

benefit of the public

in the United States

and internationally.

As an independent,

nonprofit organization

for public interest

energy and environmental

research, we

focus on electricity

generation, delivery,

and use in collaboration

with the

electricity sector, its

stakeholders and

others to enhance the

quality of life by

making electric power

safe, reliable, affordable,

and environmentally

responsible.

ENVIRONMENT AND SAFETY 139

Environment and Safety

Toward a New Risk-Informed Approach to Cyber Security ı Chris Warren


atw Vol. 65 (2020) | Issue 3 ı March

140

RESEARCH AND INNOVATION

Improved Metrology of Thermophysical

Properties at Very High Temperatures:

The EMPIR Project Hi-TRACE

Konstantinos Boboridis and Bruno Hay

Introduction Power plants, aerospace and materials processing are prominent examples of technologies and

industrial processes in which materials are exposed to (very) high temperatures. Refractory materials are employed not

only to withstand these high temperatures, but also because of their favourable physical properties at these temperatures.

Particularly nuclear reactors are known for the extreme conditions of temperature at which the fuel materials have to

operate during several years, in combination with radiation from the fission process. The performance of the fuel, as

well as the cladding, is key for the safety of the system and needs, thus, be understood in detail.

Scientists and engineers striving to

improve the safety margins of a

particular technology, as well as its

efficiency and competitiveness, often

do that by developing new materials

or by optimizing existing ones. For

instance, in recent years there has

been renewed interest in SiC-based

composite materials and in so-called

ultra-high-temperature ceramics. For

example, they are investigated as

cladding for enhanced accident

tolerant fuel in nuclear power plants,

or as components of gas turbine

aerospace engines. In these cases

design-base and beyond-design-base

accident scenarios need to be

simulated, during which materials

would be exposed to exceedingly high

temperatures.

Reliable values of thermophysical

properties of materials at very high

temperatures, however, are typically

scarce, increasingly uncertain with

temperature, and sometimes contradictory.

These measurements are

indeed challenging. Moreover, when

employing such data in analyses and

simulations that are used for licensing

of nuclear power plants and risk

assessment in general, it is important

to ensure their traceability to national

or international standards and

to establish credible measurement

uncertainties. This requires appropriate

standard reference materials

and reference facilities that can be

used to validate a measurement

technique.

Project description

Hi-TRACE is a project aiming to close

this gap by developing reference

facilities and validating measurement

methods, complete with measurement

uncertainty budgets, for several technologically

important thermophysical

properties at temperatures up to

3,000 °C. Its full title is ‘Industrial

process optimisation through improved

metrology of thermo physical properties’.

It brings together eleven partners

from five European countries: four

National Metrology Institutes (NMIs)

or Designated Institutes (DIs), three

industrial partners, two universities,

and two research centres (see Table 1).

The project is receiving funding

through EMPIR, the European Metrology

Programme for Innovation and

Research, which is co-financed by the

Participating States and the European

Union’s Horizon 2020 research and

innovation programme. It was

kicked-off in July 2018 and will run

for three years with a budget of about

1.6 million Euros.

The project’s work packages

address the measurement of thermal

diffusivity, specific heat, emissivity

and melting temperature up to

3,000 °C, as well as the quantification

of de-bonding between solid materials

Full name

Laboratoire national de métrologie et d’essais (LNE)

NPL Management Limited (NPL)

Physikalisch-Technische Bundesanstalt (PTB)

Institut Za Nuklearne Nauke Vinča

ArianeGroup SAS

NETZSCH Gerätebau GmbH

Commissariat à l’énergie atomique

et aux énergies alternatives

Hochschule für Angewandte Wissenschaften

Würzburg-Schweinfurt (FHWS)

Technische Universität Graz (TUG)

Bayerisches Zentrum

für Angewandte Energieforschung e.V. (ZAE Bayern)

European Commission, Joint Research Centre (JRC)

| Tab. 1.

Project partners.

| Fig. 1.

Hi-Trace: Topics.

and the resulting change in thermal

contact resistance (see Table 2).

These thermophysical properties are

significant for their role in heat

transfer and in thermal management/

thermal protection systems. In

addition, the knowledge of a material’s

emissivity is essential for optical

temperature measurements, including

thermography, which is

often the only viable option due

Country

France

United Kingdom

Germany

Republic of Serbia

France

Germany

France

Germany

Austria

Germany

European Commission

Research and Innovation

Improved Metrology of Thermophysical Properties at Very High Temperatures: The EMPIR Project Hi-TRACE ı Konstantinos Boboridis and Bruno Hay


atw Vol. 65 (2020) | Issue 3 ı March

WP N°

WP1

WP2

WP3

WP4

WP5

WP6

| Tab. 2.

Work packages.

Work package title

Establishment of traceability for thermal diffusivity measurements

at temperatures up to 3000 °C

Establishment of traceability for specific heat measurements

at temperatures up to 3000 °C

Establishment of traceability for emissivity measurements and improved

metrology for temperature of fusion at temperatures up to 3000 °C

Establishment of methods for quantifying de-bonding

at high temperatures (above 1000 °C)

Creating impact

Management and coordination

of good practice guides for calibration

and measurement of these thermophysical

properties. A workshop for

the end-user community will be

organised and e-learning modules

will be prepared. Finally, the datasets

generated in the inter-laboratory

comparisons will be made available

through open repositories, as long as

they are not covered by confidentiality

agreements with the industrial

partners.

More information, including

contact information, can be found

on the project’s website (https://

hi-trace.eu).

Acknowledgement

This project has received funding from

the EMPIR programme co-financed by

the Participating States and from the

European Union’s Horizon 2020

research and innovation programme.

This article is written on behalf of all

partners listed in Table 1.

RESEARCH AND INNOVATION 141

| Fig. 2.

Emissivity and Temperature of Fusion.

to the very high temperatures involved

or other parameters such as

limited access and fast response time.

Reference facilities are currently

being developed by the involved NMIs

and DIs for thermal diffusivity, specific

heat, and emissivity measurements

at very high temperatures. These

facilities will then undergo a metrological

validation before being used

to characterise refractory materials

of technological significance at

the highest temperatures possible.

Existing setups and measurement

techniques, already in use by the

industrial and academic partners,

will be validated against the newly

| Fig. 3.

Temperature rise distribution on the rear

face half-way through the test. — NPL Matlab

model.

developed facilities. Techniques for

measuring the melting temperature of

refractory materials will benefit from

the emissivity data generated by the

project. In addition, techniques are

being developed to quantify the state

of the mechanical adhesion of solid

materials, in particular functional

layers for thermal or corrosion protection

above 1,000 °C, by knowledge

of the thermal contact resistance.

They will be validated in a second step

using well-characterised multilayer

artefacts suitable for high temperatures,

which will also be developed in

the frame of this project.

The project is coordinated by the

French National Metrology Institute

(LNE). An advisory board has been

set up to regularly review progress and

provide guidance in terms of relevance

for the end users. Particular importance

is placed upon ensuring the

widest possible dissemination of the

knowledge generated within the

project, including to standards bodies,

as well as collecting feedback from

end users, such as instrumentation

manufacturers, actors in aerospace,

nuclear energy, additive and conventional

manufacturing involving

very high temperatures. Inter-laboratory

comparisons organised during

the project will lead to the publication

Authors

Konstantinos Boboridis

European Commission

Joint Research Centre (JRC)

Karlsruhe, Germany

Bruno Hay

Laboratoire national de métrologie

et d’essais (LNE)

Trappes, France

Research and Innovation

Improved Metrology of Thermophysical Properties at Very High Temperatures: The EMPIR Project Hi-TRACE ı Konstantinos Boboridis and Bruno Hay


atw Vol. 65 (2020) | Issue 3 ı March

RESEARCH AND INNOVATION 142

Neutronic Simulation of ALFRED Core

Using MCNPX Code

Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi

Introduction Throughout history, energy has played a fundamental role in human’s progress living. To promote

nuclear power to meet the future energy needs, ten countries including Argentina, South Africa, the United States, the

United Kingdom, Brazil, Japan, Switzerland, France, Canada and Korea in a global effort (Generation IV International

Forum – GIF) have agreed to investigate the next generation of nuclear energy systems known as 4 th generation [1].

These reactors are expected to enter the market after 2030. Fundamental changes in the configuration of the systems

and the forms of the old reactors have led to the production of new reactors, which require basic research and

development, careful examination, and the construction of semi-industrial units. The capabilities of fourth-generation

reactors are seawater desalination, and thermal applications in addition to the production of electricity. In 2000, the

founding countries of GIF formed their first meeting to discuss the need for conduct research on the design of

next-generation reactors. Subsequently, a strategy was put forward to direct the activities, and the implementation

responsibility was assigned to the US Department of Energy. In this research, we investigate the neutron behavior of the

advanced reactor core with lead coolant ALFRED. The purpose of the neutron calculations of the core of a reactor is to

calculate the distribution of neutron flux in the center and to calculate the effective reproduction coefficient. Given the

necessity of performing lattice pitch neutron calculations, it is initially required to determine the real geometry of the

core, as well as the order and fuel richness, the lattice pitch the grid, the radius and height of the fuel rods, the

composition and location of the fuel absorbents, the types and locations of the control rods, the fuel complex

arrangement, and radial and axial peaking factor. The MCNPX code is used to perform neutron calculations.

This calculation is done by the MCNPX

code using the Monte Carlo statistical

method. The following six reactors

have been categorized as the 4 th

generation reactors:

1. Gas-Cooled Fast Reactor (GFR)

2. Lead-Cooled Fast Reactor (LFR)

3. Molten Salt Reactor (MSR)

4. Sodium-Cooled Fast Reactor (SFR)

5. Supercritical Water-Cooled Reactor

(SCWR)

6. Very High-Temperature Reactor

(VHTR)

LFR is one of the six advanced 4 th

generation reactors. In recent years,

this kind of reactor has attracted a lot

of attention of the world, and specially

recently countries such as Russia,

America and Germany have always

Parameter Unit Values

Thermal power MW 300

Active height cm 60

Pellet hollow diameter mm 2

Pellet radius mm 4.5

Gap thickness mm 0.15

Clad thickness mm 0.6

Pin diameter mm 10.5

Wrapper thickness mm 4

Distance between 2 wrappers mm 5

Coolant velocity m s -1 ~1.4

Lattice pitch (hexagonal) mm 13.86

Pins per FA - 127

Inner vessel radius cm 165

| Tab. 1.

Main specifications of ALFRED reactor [3].

| Fig. 1.

View of the ALFRED reactor [3].

been interested in this topic. LFR

systems have excellent material

handling capabilities due to the use of

a fast neutron spectrum, and they use

a closed fuel cycle to convert more

efficiently the enriched uranium.

It can also, as an actinide burner,

consume the spent fuel of light water

reactors (LWRs) or be used as an

adiabatic reactor (able to burn off its

produced actinide wastes).

Method and material

1 Technical description

of ALFRED reactor

As stated, the program of the ALFRED

reactor is within the framework of

the LEADER project. The purpose of

the ALFRED project is to analyze

the various aspects of lead cooling

technology in fast reactors. This

project has, therefore, a significant

role as ETDR (European Technology

Demonstrator Reactor) in the technology

chain. The ALFRED reactor

design includes a 125 MW electric

power reactor with lead coolant.

Figure 1 shows a schematic illustration

of this reactor.

Some geometric parameters of the

ALFRED reactor are shown in Table 1.

The core of this reactor has a hexagonal

grid of 171 fuel assemblies (FA),

12 control bars (CR), four safety bars

(SR) and 108 empty bars. A schematic

illustration of the core of this reactor is

shown in Figure 2.

Research and Innovation

Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi


atw Vol. 65 (2020) | Issue 3 ı March

| Fig. 2.

Schematic illustration of the core of the ALFRED reactor [3].

The reactor has eight steam

generators that are symmetrically

placed in the safe container of the

reactor as the modular reactors. A

schematic illustration of the steam

generators of this reactor and its

characteristics are shown in Figure 3.

2 Reactor kinetic calculations

Two important parameters in the neutron

kinetic calculations of the reactor

are the fraction of effective delayed

neutrons (β eff ) and prompt neutron

life (I p ). Delayed neutron fractions are

calculated by taking the TOTNU card

with the No input in the MCNPX code

and using the following equation:

the reactor core is simulated with 1

million particles and 150 cycles using

the KCODE command used for critical

computing springs. The neutron parameters

that have been calculated in

this study are effective reproduction

coefficient (k eff ), excess reactivity

(ρ ex ), average neutron production

time (∧), and distribution of radial

and axial neutron flux.

Results

| Fig. 3.

ALFRED reactor steam generator [3].

Criticality and

kinetic calculations

The calculation of the criticality of the

reactor by considering 10 %, 20 %,

50 % of the control rods inside the

core and the effective reproduction

coefficient (k eff ) are shown in Table 2.

The amount of reactor excess

reactivity is calculated using the

following equation:

ρ ex = (k eff - 1) / k eff

Conclusion

The purpose of this study was to

simulate and obtain neutron parameters

and calculate the criticality

and kinetic parameters of the reactor

in the initial state, taking into account

10 to 50 percent of the control rods in

the reactor core and the Axial and

radial distributions of the flux of the

RESEARCH AND INNOVATION 143

(1)

In this formula, K eff is the effective

multiplication factor for the total

delayed and prompt neutrons and k p is

the effective multiplication factor for

prompt neutrons. The lifetime of the

prompt neutrons (I p ) in MCNPX code

2.6 can be obtained at the standard

code output by calculating the effective

multiplication factor for prompt

neutrons.

Parameter CR10 % CR20 % CR50 % CR ZR+HF

K eff 1.08255 1.07483 1.04200 1.00583 1.08879

ρ ex 0.07625 0.06962 0.04030 0.00579 0.08154

Λ 0.9237 0.9303 0.9596 0.9942 0.9184

| Tab. 2.

ALFRED criticality and kinetic calculations.

k p = 1.00279

β eff = 1-(1.00279/1.00653)

= 0.003716

I p = 1.92 × 10 -6

3 Simulation of the

ALFRED reactor

with MCNPX 2.6 code

In this research, the ALFRED reactor is

simulated using the information

contained in MCNPX 2.6. In this code,

| Fig. 4.

Axial flux Distribution of reactor core.

Research and Innovation

Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi


atw Vol. 65 (2020) | Issue 3 ı March

RESEARCH AND INNOVATION 144

reactor core. The analysis of the

results shows that the effective

propagation coefficient is, at best,

equal to 1. 00583 and its changes by

inserting the control rods to approximately

one. For more accurate estimation,

it is recommended to carry

out thermal hydraulics calculations

considering the distribution of

neutron flux, and the results should

be compared with the estimates.

References

[1] SNETP (2013). Strategic Research and Innovation Agenda,

Paris, France.

[2] LEADER project, www.leader-FP7.eu.

[3] Frogheri, M., Alemberti, A., Mansani, L. (2013). “The Lead

Fast Reactor: Demonstrator (ALFRED) and ELFR Design”,

International Conference on Fast Reactors and Related Fuel

Cycles: Safe Technologies and Sustainable Scenarios (FR13),

Paris, France.

[4] Grasso, G., Petrovich, C., Mikityuk, K., Mattioli, D., Manni, F.,

Gugiu, D. (2013). “Demonstrating the effectiveness of the

European LFR concept: the ALFRED core design”, (FR13),

Paris, France.

[5] Artioli, C., Grasso, G., Petrovich, C. (2010). “A new paradigm

for core design aimed at the sustainability of nuclear energy:

The solution of the extended equilibrium state”, Ann. Nucl.

En. 37(7):915-922.

[6] Alemberti, A., Mansani, L., Grasso, G., Mattioli, D., Roelofs, F.,

De Bruyn, D. (2013). “The European Lead Fast Reactor

Strategy and the Roadmap for the Demonstrator ALFRED”,

(FR13), Paris, France.

[7] Bubelis, E., Schikorr, M., Frogheri, M., Mansani, L., Bandini,

G., Burgazzi, L., Mikityuk, K., Zhang, Y., Lo Frano, R., Forgione,

N. (2013). “LFR safety approach and main ELFR safety

analysis results” (FR13), Paris, France.

[8] Bubelis, E., Schikorr, M., Mansani, L., Bandini, G., Mikityuk,

K., Zhang, Y., Geffraye, G. (2013). “Safety analysis results of

the DBC transients performed for the ALFRED reactor” (FR13),

Paris

[9] Bandini, G., Bubelis, E., Schikorr, M., Stempnievicz, M.H., Lázaro,

A., Tucek, K. Kudinov, P., Kööp, K., Jeltsov, M., Mansani,

L. (2013). “Safety Analysis Results of Representative DEC Accidental

Transients for the ALFRED Reactor” (FR13), Paris,

France.

[10] ARCADIA project, http://arcadiaproject.eu.

[11] Toshinsky, G.I., Grigoriev, O.G., Efimov, E.I., Leonchuk, M.P.,

Novikova, N.N. (2002). “Safety Aspects of SVBR-75/100

Reactor”, Advanced Nuclear Reactor Safety Issues and

Research Needs, Proceedings of OECD/NEA Workshop, Paris,

France.

[12] Adamov, E.O. (2001). “White Book of Nuclear Power”,

N.A. Dollezhal Research Development Institute of Power

Engineering, Moscow, Russia.

[13] Novikova, N., Pashkin, Y., Chekunov, V. (1999). “Some

Features of Sub-Critical Blankets Cooled with Lead-Bismuth”,

Proceedings of ADTTA’99, Praha, Czech Republic.

[14] Wider, H., Carlsson, J., Dietze, K., Konys, J. (2003). “Heavy-

Metal Cooled Reactors – Pros and Cons”, Proceedings of GLO-

BAL’03, New Orleans, USA.

[15] Tucek, K., Wallenius, J., Gudowski, W. (2004). “Coolant Void

Worth in Fast Breeder Reactors and Accelerator-driven

Transuranium and Minor-Actinide Burners”, Annals of

Nuclear Energy, Vol. 31, p. 1783.

| Fig. 5.

Radial flux distribution of reactor core.

Authors

Korosh Rahbari

Darush Masti

Department of Nuclear

Engineering

Bushehr Branch

Islamic Azad University

Bushehr, Iran

Kamran Serpanloo

Ehsan Zarifi

Reactor and Nuclear Safety School

Nuclear Science and Technology

Research Institute (NSTRI)

Tehran, Iran

| Fig. 5.

Radial flux distribution of reactor core.

Research and Innovation

Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi


atw Vol. 65 (2020) | Issue 3 ı March

The Dual Fluid Reactor – An Innovative

Fast Nuclear-Reactor Concept

with High Efficiency and Total Burnup

Jan-Christian Lewitz, Armin Huke, Götz Ruprecht, Daniel Weißbach, Stephan Gottlieb, Ahmed Hussein

and Konrad Czerski

1 Introduction In the early decades of nuclear fission power technology development, most of the possible

implementations were at least considered in studies and many were tested in experimental facilities as have been most

of the types of the Generation IV canon. Uranium enrichment and fuel reprocessing with the wet chemical PUREX

process for today’s reactors originated from the Manhattan project in order to gain weapons-grade fissile material.

The use of fuel elements in light water

reactors originated from the propulsion

systems of naval vessels like

submarines and carriers.

A sound measure for the overall

efficiency and economy of a power

plant is the EROI (Energy Return on

Investment). The known problem of

solid fuel elements in power reactors

is fission product accumulation during

operation requiring heavy safety

measures to avoid a core meltdown.

These measures reduce the EROI for

today’s Pressurized Water Reactors

(PWRs) to values of about 75 (Sec. 9)

which is only a factor of 2 higher than

for fossil-fired power plants. This is

in fact surprisingly low compared

with the possible maximum EROI for

nuclear energy of 10,000 (Sec. 9).

Unfortunately, most Generation IV

reactor concepts except the Molten

Salt Fast Reactor (MSFR, see below)

are again based on solid fuel technology.

For the probably most intensively

developed breeder technology,

the Sodium-Cooled Fast Reactor SFR

(or the Traveling-wave variant, Terrapower’s

TP-1), sodium has been chosen

as the coolant. It has aggressive

chemical reactivity with air, water and

structural materials as well as a high

neutron reaction cross section with

the possibility of a temporary positive

void coefficient. These properties

require a reactor pressure vessel,

double- walled piping, and an intermediary

cooling cycle. In effect, all

this sums up to expenses which double

the electricity production costs of the

SFR relative to a PWR as calculated for

the Superphénix class.

Hence Generation III and most of

Generation IV nuclear power plants

are in danger of losing competition

against fossil fired power plants,

especially in the advent of the shale

gas exploitation.

The Dual Fluid Reactor (DFR)

concept presented here is designed

with respect to the EROI-measure and

to passive safety standards according

to the KISS (keep-it-simple-and-safe)

principle and with attention to

current- state technology in mechanical,

plant and chemical engineering

for a speedy implementation.

There was a gap in the reactor

concepts of the past with a high

development potential for the present

and the future. A DFR power plant

could exploit the potential of nuclear

fission power with an EROI two orders

of magnitude higher than fossil fired

power plants.

2 Basic principle

The Dual Fluid Reactor (DFR) is a

heterogeneous fast reactor with a

liquid fuel and a liquid coolant

whereby both flow through the

reactor core. Separation of cooling

and fuel supply function is achieved

by an interconnected array of fuel

conduits immersed in the coolant

liquid. Both cycles can now be optimized

for their respective purpose.

This has many advantages to a MSFR,

where both functions must be satisfied

by one liquid in a trade-off

between high-temperature fuel, lowtemperature

cooling, and an acceptable

heat capacity.

The coolant liquid should have the

highest possible heat transportation

capability and best neutronic properties.

Pure molten Lead has low neutron

capture cross-sections, a low moderation

capability, and a very suitable

liquid phase temperature range. For

the fuel, it is possible to employ

undiluted fissionable material as

opposed to a MSFR that works with

less than 20 % actinide fluoride, see

Sec. 4 for details. Consequently, a DFR

has increased power density, small

core volume and very hard neutron

spectrum that further improves the

neutron economy. Additional benefits

of liquid metal coolant comprise the

application of magneto hydrodynamic

techniques both for pumping and,

possibly in the future, direct elec tricity

generation because of the high concentration

of charge carriers.

Furthermore, the reactor core and

primary coolant loop can operate at

normal pressure which allows for

simple and cost regressive size- scaling.

Figure 1 explains the synergetic

effects. The Dual Fluid Principle opens

the possibility of a liquid fuel with

high actinide concentration in combination

with a coolant with high

heat transfer capability, which leads

to a high-power density. Liquid fuel

like in a MSR already reduces the

consumption of structural materials

compared with solid fuel reactors,

| Fig. 1.

The flow chart shows the advantages of the Dual Fluid principle partially depending on each other.

It is essential for the understanding of the synergetic effects.

RESEARCH AND INNOVATION 145

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

RESEARCH AND INNOVATION 146

but the power density is limited.

In the DFR, both positive properties

can be combined which leads to a

massive reduction of structural materials.

At high operating temperatures

(needed when using an undiluted salt,

see Sec. 7), corrosion of core structural

materials limits the choices of

such materials. However, corrosion

resistant materials at high temperatures

do exist, but they are quite

expensive. Using such materials in a

DFR design has little effect on its

economy due to its small size, low

material inventory, and the absence of

any parts that need be to replaced

periodically.

On the other hand, the use of such

expensive corrosion resistant ma terials

in a MSR has adverse economic effects

due to its high inventory of structural

material. Thus, the temperature of a

MSR is limited and the MSR research

was focused in the past on finding suitable

eutectic salt mixtures, also complicating

the production and reprocessing

techniques. For the DFR, very simple

state-of-art techniques can be applied,

see Sec. 4.2.

Another comparison can be made

with the Generation IV concept of the

Lead-cooled Fast Reactor, LFR. Again,

due to economic reasons, the wall

material of the exchangeable fuel rods

must be cheap, which focused the research

on finding suitable steel alloys.

They yet have a higher lead corrosion

susceptibility than the expensive

materials intended for the DFR design,

therefore also limiting the operating

temperature. Due to these material

restrictions, both, LFR and MSR,

are not able to achieve operating

tem peratures suitable for economic

hydrogen production from water.

These restrictions do not exist for

the DFR.

Contrary to a MSFR, DFR’s liquid

fuel is not limited to actinide salts,

but it is the current reference design.

However, an alternative could be a

solder-like melt of a metal alloy made

up of actinides and, if necessary, metals

with low melting points in order to

reduce the solidus temperature of the

alloy and gain a pumpable fluid. The

advantage would be an even higher

power density due to better heat

transportation capability, and a possible

higher operating temperature due

to the lower corrosive potential of the

metal alloy. The basic design, then, allows

for a high degree of possibilities

which can be trimmed to a specific

purpose. These concepts will be discussed

briefly in Sec. 4.2.

| Fig. 2.

Possible power plant based on the DFR, with the nuclear part including the core, the pyro-processing

unit (PPU), disposal and decay heat dump (left hand side) and the conventional part with the heat

exchanger and turbines (right hand side). The compactness allows for a subterranean installation.

| Fig. 3.

DFR fuel and cooling loop. The fuel circulates between the PPU (which is also connected to the short-lived

fission products storage) and the core whereas the coolant loop connects the fissile zone to the conventional

part, also cooling the fission product storage. PPU, core and fission product storage are equipped

with a fuse plug.

As a result, a new concept not

fitting into one of the Generation-IV

reactor developments has been invented.

It foresees a compact core with

a very high power density, an operating

temperature of about 1,000 °C, inherits

MSFR’s passive safety features,

and has hard neutron spectrum. The

abundant neutron excess can be used

for multiple transmutation purposes,

like nuclear waste incineration, and

breeding for 238 U and 232 Th cycles.

All this produces a nuclear power

plant with an outstanding economic

competitiveness.

3 System overview

Figure 2 shows how a DFR reference

power plant might look like. The

reference design has a power output

of 3 GW th and an electric output of

1.5 GW e which is currently the typical

nuclear power plant size for the

electric grid of industrialized countries.

But also, power-sizes even down

to approx. 35 M GW e are possible,

depending on markets demands. Due

to its compact size, the nuclear part

can reside in a sub terranean bunker

that can withstand high magnitude

earthquakes, direct aircraft impacts

and non-concen trated conventional

military attacks. The conventional

part can utilize supercritical water or

supercritical CO 2 (see Sec. 8.1) and is

not fortified for economic reasons, but

fortification to any desired degree can

easily be achieved.

3.1 Fuel and coolant loop

Since the cooling function is sepa rated

from the liquid fuel, the circulation

of the fuel can be adjusted to nuclear

purposes like maximum burn-up,

transuranic incineration, isotope production,

fertile material conversion

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

| Fig. 4.

DFR core details. The cubic core (without

blanket here) includes a pipe system filled

with fuel salt which is connected to the fuel

loop (with fuse plugs) and immersed in

flowing Lead (coolant loop).

(breeding), specific deactivation of

fission products, etc. Figure 3 depicts

the reactor core as well as the fuel loop

and the primary coolant loop. The

liquid fuel enters the core vessel at the

bottom, spreads over a system of vertical

tubes where it becomes critical, and

leaves the reactor on top towards the

Pyrochemical Processing Unit (PPU).

The Lead coolant supply pipes have

a large cross section in order to reduce

the circulation speed and therefore

reducing the abrasion at the surface

materials. It circulates with a rate of

90 tons/s (10 m 3 /s). When it enters

the core vessel from the bottom it

takes the heat from the fuel duct by

conduction and leaves the vessel on

top towards the heat exchanger.

Depending on the power needed,

part of the Lead’s heat is taken for

electricity production or as process

heat. The Lead leaves the exchanger at

a lower temperature and is pumped

back to the reactor vessel.

This can be accomplished by an

impeller pump which produces a

steady stream without generating

sonic shock oscillations in the liquid

metal. For maintenance, the Lead

coolant can also be drained at the

bottom of the reactor vessel into a

temporary coolant storage from

where it can be pumped back into the

reactor vessel.

3.2. DFR core

The reference plant uses a mixture

of actinide-salts as fuel. It has a

cylindrical core with diameter and

height of about 3 m for the critical

zone. It contains 10,000 vertical ducts

(the number is reduced in Figure 4

and Figure 5 for illustration reasons).

Figure 4 is a simplified draft of

the core depicting the principle. An

actual core CAD model is depicted in

Figure 5.

| Fig. 5.

Left: DFR core inlet region, cylindrical design. The reflector region is located directly below the lateral salt

feed tubes, surrounded by the blanket region.

Right: Schematics of the inlet. In the inlet region, the salt surrounds the Lead tubes and enters the salt

tubes in the core. This ensures equal pressure on all salt tubes.

The parallel arrangement of the

fuel tubes guarantees a quick drainage

of the fuel liquid within minutes while

the high number of tubes provides

sufficient surface for the heat transfer

to the surrounding coolant. An equal

flow velocity through all vertical rods

is desirable and is achieved by a

horizontal- flow inlet zone with baffle

plates providing equal pressure

differences at the vertical junctions.

An additional outer volume filled

with Lead serves as a neutron reflector

reducing the loss of neutrons and

contributing to the reactivity regulation.

The separation walls have small

vents at the top and bottom in order to

correspond with the Lead loop. A

further fertile blanket, with simple

structure, can increase the conversion

ratio remarkably.

| Fig. 6.

Heat transfer from inside of a single fuel pipe

to the coolant. The temperature gradient is

calculated in three zones: The turbulence layer

of the fuel liquid (salt => inner pipe wall), the

tube wall itself and the turbulence layer of the

liquid Lead (outer pipe wall => Lead). Values

are for high salt velocities and MHC pipes.

Temperature gradient for SiC is about twice.

While passing the core region

through the conduit array more and

more actinides are fissioned and

transmuted and the fuel changes its

chemical composition. The fuel

volume of the reference plant is

only a few cubic meters, which

further simplifies its handling and

processing.

3.3 Heat transfer

Figure 6 shows the heat transport.

Inside the fuel tubes where the

heat is generated the temperature

has its maximum. In a region of only

1 mm towards the tube wall the

temperature drops by 270 °C, inside

the wall by up to 85 °C, and up to

0.5 mm outside the wall another

50 °C, so the total radial temperature

drop is roughly 400 °C. The Lead

coolant moves from the bottom

to the top which defines the Lead

temperatures at those points to

750 °C and 1,000 °C, respectively.

Consequently, the temperature inside

the fuel (tube center, not at the

walls) is 1,150 °C at the bottom

and 1,400 °C at the top which

defines the highest absolute temperature

in the reactor core. Since

the bottom salt temperature at the

tube inner wall is above the melting

temperature in all operational states,

the salt will not freeze out. At normal

operating condition the tube inner

wall temperatures are 840 °C and

1,090 °C for the bottom and top

region, respectively, compared to

the salt melting point of about

800 °C. The maximum allowed variation

of the Lead temperature is

+/- 30 K, still allowing for molten

fuel in all cases. These tube wall

salt temperatures are 840 °C and

1,090 °C for the bottom and top

region, respectively, compared to the

salt melting point of about 800 °C.

RESEARCH AND INNOVATION 147

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

RESEARCH AND INNOVATION 148

| Fig. 7.

Close-up of the DFR core region with part of the coolant cycle and the shortlived

fission products storage inside the coolant conduit ahead of the core.

3.4 Tank for short-lived fission

products

Highly radioactive and heat generating

fission products with half-lives

of weeks to months pose the main

problem for reactors with solid fuel

rods and cause core meltdown unless

sufficiently cooled. In the DFR like the

MSFR these fission products are

regularly separated from the fuel

liquid so that the core contains only

few quantities of fission products and

its handling in case of an emergency is

unproblematic. However, the problem

is then transferred to the storage of

the fission products. In the DFR, this

problem is solved by storing the shortlived

fission product salts, roughly

1 m 3 , in the pipes of a special coolant

duct segment shown at the bottom

part of Figure 7, just before the Lead

reaches the core, where they are

cooled by the liquid Lead stream

during normal operation of the plant.

The molten salts of the short-lived

products slowly revolve through

this tank as well as the PPU. In case of

an emergency or maintenance shutdown,

they will be drained through

a melting fuse plug, similar to the

fuse plug used for the reactor core, see

next chapter.

3.5 Melting fuse and

subcritical heat storage

Melting fuse plugs, already proven

and tested in the Oak Ridge Molten

Salt Reactor Experiment (MSRE), are

used in the DFR for the short-lived

fission products tank and for the

reactor core (green plug below the

core and the tank). It is essentially a

pipe segment which is actively cooled

with a constant heat transportation

such that the fuel inside this segment

just freezes out.

The cooling power of the fuse is

fixed, so that the plug does not yet

melt at 1,000 °C. In case of an emergency,

i.e. higher core temperatures or

loss of power, or for an intended fuse

plug cooling power-off in a regular

shutdown, the fuel heat power will

melt the plug open and the fuel is

drained by gravity into the subcritical

tanks.

The subcritical tanks (see Figure

2) are used for fuel inventory and the

concentrated highly radioactive shortlived

fission products from the storage

in the main coolant loop. Each of the

tanks has a capacity for a subcritical

mass of the liquid fuel only. They

are embedded in a volume filled with

salt or metal (e.g. iron, assembled

from ‘Lego’-like bricks, establishing

full heat contact by temperature

expansion) which transduces the

quickly fading heat energy passively

through the outer walls to the surrounding.

The heat production lowers from

200 MW (emitted from the core)

immediately after shutdown to some

5 MW (from the coolant duct segment)

after 12 days. The salt remains

liquid for several days and can be

pumped up, entering the fuel loop

again. After longer storage, a preheating

system is to be used.

3.6 Fission product treatment

The PPU removes the fission products

from the liquid fuel and replenishes

it with fresh actinides that may come

from natural/depleted uranium, used

fuel elements, and thorium at a

consumption rate of 1,200 kg/year.

Fission products are sorted by

chemical elements and the longer

living (half- lives of years to decades)

are cast into small globes which are

packed and hermetically sealed in

ripple tubes. The tubes are transferred

to a decay storage bunker below by a

remote transfer system (also indicated

in Figure 2). The bunker can store all

fission products, 500 kg/year, produced

during whole life-time of the

reactor. The sorted fission products

can be removed according to their

half-life.

90 % of all fission products can be

removed after 100 years, providing

valuable and rare metals. The

medium- lived fission products decay

within 300 years and may remain in

the storage for that time. The ripple

tubes inside the storage are passively

cooled by ambient air utilizing the

stack effect.

Long-lived fission products are

sent back into the reactor core for

transmutation.

4 Liquid fuel and

its processing

The employment of a liquid fuel

eliminates the need for the costly fuel

element infrastructure industry and

replaces it with online processing of

the fuel. In principal, it is possible

to consider all chemical separation

methods in the reprocessing of

nuclear fuel, since the radioactivity is

a subordinated problem. This, however,

is not true for the presently

applied PUREX process, as shown in

the following.

4.1 Present reprocessing

technologies

Originating from the weapon production,

the usual aqueous organic

reprocessing techniques like PUREX

are performed off-site. As the chemical

processes proceed slowly at normal

temperatures large volumes of consumed

auxiliary chemicals with

medium and low radioactivity are

required and have to be dumped. In

order to limit this additional nuclear

waste, spent fuel elements need to be

stored for at least 1 year, in practice

rather 5–10 years, before starting the

PUREX processing, otherwise the

expensive organic solvents are

destroyed by the intense radiolysis

and therefore have to be replaced very

often. Hence, the radioactivity of the

fuel has an eminent relevance here.

The class of aqueous organic reprocessing

techniques is inappropriate for

online fuel processing. A real progress

was made by implementation of the

reprocessing inside the Integral Fast

Reactor (IFR). It uses electro-refining,

a long-known method in metallurgy,

for the separation of the fission

products: The metallic fuel is converted

to a salt which in turn is used

for the electrolysis wherein the

actinides deposit at the electrode and

the fission products mainly remain in

the molten salt. This manageable

reprocessing unit was used on-site of

an IFR plant. After the IFR program

was canceled its successor, the

S-PRISM reactor, inherited the process,

though in a central off-site

processing facility.

A possible online reprocessing

technique was tested for the MSFR –

a dry method with a vapor-phase

fluoride- salt distillation system as the

main component where the metal

salts are separated by boiling points.

However, many fluorides have very

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

high boiling points so that additional

fluorination is required and yet metal

fluorides remain in a slurry needing

further treatment steps. In a MSR, a

real online fuel reprocessing conflicts

with the cooling requirements, therefore

the reactor must be shut down to

branch the fuel into the reprocessing

facility which needs a high capacity in

order to keep the outage time of the

reactor short. Nevertheless, such

pyrochemical processing facilities are

still small in comparison to PUREXlike

methods.

The distillation techniques, and in

particular, the electro-refining techniques

are subject to ongoing development

activities for the Generation IV

reactors as well as a substitute for the

complex wet chemical PUREX reprocessing

plants.

However, online does not necessarily

mean continuous. Batch techniques

may be used as well, provided

the continuously pumped fuel fluid is

intermittently stored in a small buffer

while the previous batch from the

buffer is processed.

None of the present reactor concepts

of the Generation IV provides a

real online fuel reprocessing. This

means that none of these concepts has

all the advantages of a liquid fuel

that could be achieved with a true

online fuel reprocessing like very

low criticality reserves which are a

control issue in solid-fueled reactors,

especially ADS, or MSRs with long

fuel processing periods.

4.2 Fuel processing in the DFR

As pointed out, for online fuel processing

the employed technique must

be congruously fast so only dry high

temperature methods can be considered.

Moreover, the fuel must be

impervious to radiolysis within the

process. The liquid fuel of the DFR for

the reference design is a molten salt,

but could be also a metallic melt as a

future option. Therefore, the DFR concept

is not an MSR variant, and the

reprocessing techniques are different

because of the very different salts.

Due to the ionic nature of the bond in

the case of the salt and the metallic

bond in the case of the metallic melt,

the liquid is impervious to radiolysis

which makes it suitable for physicochemical

separation methods at high

temperatures. These methods will be

used in the PPU of the DFR.

For the possible future concept of a

metallic fuel melt there are several

options ranging from a more heterogeneous

system with liquid plutonium

over a solution of actinides in Pb/Bi/

Sn to a dispersion of solid actinides

and/or actinide compounds in Pb/Bi/

Sn. The prospects of metallic fuels

were already investigated in the

1950s. More precisely, the last option

would be made up of actinides which

are suspended in a melt of metals with

low melting points with a fraction of

up to 75 atom-% which reduce the

solidus temperature of the alloy below

the operating temperature, because

some of the involved actinides have

too high melting points. Suitable metals

with sufficient neutronic properties

are lead, bismuth and tin. The accrued

multi-component alloy does not

necessarily need to be eutectic – even

in the case the liquidus temperature is

above the operating temperature the

mixture is sufficiently pumpable in

this pasty phase. The processing of the

metallic melt can be performed with a

first fractionated distillation step

where the metals with low boiling

points compared with actinides like

Lead, Bismuth and some of the fission

products can be separated and the remaining

slurry is converted to salts

and then distilled as before. Then, the

resulting salt fractions need to be converted

to metals back again by electrolysis

before re-insertion into the reactor

fuel loop.

For the reference concept, molten

salts are used because of their lower

melting points and wider range of experience.

Unlike an MSR chlorides are

adopted since fluoride salts have considerable

moderating quality thus softening

the neutron spectrum and deteriorating

the neutron economy. This

together with the high boiling points

of many of the involved metal fluorides

render fluorine inapplicable.

Higher halogens are more practical

with respect to both properties. For

the metals in the fuel mixture chlorine

salts have sufficiently low boiling

points so that a separation by boiling

points in a fractionated distillation facility

alone becomes feasible.

Hence, the fuel is a binary combination

of only a fertile and a fissile

actinide chloride which can be

238 U/ 239 Pu or 232 Th/ 233 U. It should be

clearly noticed that no carrier salt is

needed or desired, as opposed to current

MSR concepts – this is the advantage

of the Dual Fluid principle. The

fraction of the initial load of reactor-grade

Pu or enriched U depends

on the size of the reactor core because

of neutron losses through the surface.

For the reference plant, it is 23 %

( reactor-grade Pu) or 19 % ( 235 U)

mass fraction according to first static

SERPENT calculations. The maximum

239 Pu fraction required for the smallest

useful set-up can be very high and

is not limited by the reactivity coefficient

of the Doppler- broadening effect

of 238 U while larger cores can manage

smaller fractions. The rest of the fuel

is fertile material like 238 U or 232 Th.

Here, the fuel salt would consist of the

tri-chlorides of the actinides, i.e. UCl 3

and PuCl 3 , which have a suitable

temperature range of the liquid state.

Purified 37 Cl is to be used in order to

avoid neutron losses due to their

capture by 35 Cl and production of the

long-lived radioactive isotope- 36 Cl.

Both previously developed and

tested reprocessing methods of the

Generation IV reactors, fractional distillation

and electro-refining, can also

be employed for the DFR. The capacity

of the PPU can be designed even

much smaller because of the low fuel

volume. In a simple version, the

electro- refining method can be used

in order to purify the fuel salt by

precipitation of a fission product

mixture. For the purpose of specific

transmutation, a more precise partitioning

is required which can only be

accomplished by fractionated distillation/rectification,

which is beyond

the MSFR principle.

Basically, whenever liquid fuels

are used certain preprocessing steps

have to be accomplished in order to

deal with volatile and ‘noble’ fission

products. In the case of a fuel salt and

the fission of plutonium, significant

quantities of metals are produced

which can hardly form chloride

compounds, notably Mo, Ru, and Rh.

In the frame of the Molten Salt Reactor

Experiment (MSRE) this issue was

investigated in the view of the possible

segregation problem of said fission

products. It turned out that the

segregation is not a progressive process

but instead an equilibrium

accrues between segregation and

solvation. This equilibrium level can

be controlled by the overall chemical

potential of the molten salt which may

be adjusted by the quantity of chlorine

ions and possibly certain minor

additives. The chemical potential also

determines the corrosive properties of

the salt. In preprocessing steps the

noble metals in the fuel coming from

the reactor can be precipitated by

bubbling noble gas (He, Ar) through

the fuel salt. The metals precipitate as

platelets at the phase boundary

between the gas bubble and the salt

liquid where they can be subsequently

retrieved by a rake. This makes it

possible to easily separate 99 Mo,

which decays to the important

RESEARCH AND INNOVATION 149

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

RESEARCH AND INNOVATION 150

medical isotope 99m TC, see also sec. 8.

Concurrently to the gas bubbling the

volatile fission products Kr, Xe, Cs and

I 2 are expelled as well and can be

removed easily.

Volatile iodine as well as cesium

can be removed from the fuel loop/

PPU and bound chemically stable.

Since a permanent reprocessing of the

molten salt fuel is possible, only very

few fission products accumulate

so that their integration in the fuel

salt is unproblematic. The low fission

product concentration in the core also

reduces corrosion.

The salt has to remain in the

liquid state during operation which is

assured in the core by the criticality

condition and in the PPU by the

residual heat. A frozen salt would not

damage the reactor but has to be

preheated, e.g. by inductive heating.

Small, possibly mobile, DFR systems

could use a once through cycle,

i.e. they are not connected to a PPU

and use the fuel inventory once. It can

then be exchanged by pumping and

processed in a PPU at a different

location. The fuel’s range can be

extended with a centrifuge which precipitates

some of the fission product

compounds by density separation.

5 Reactor operation and

regulation

5.1 Neutron absorption and

negative temperature

feedback

The PPU fabricates a fuel mixture

that is critical inside the reactor at

the desired operating temperature of

1,000 °C. There are three main effects

which provide negative feedback to

the fission reaction rate by depression

of the neutron flux when the temperature

rises:

1. Doppler broadening of the

resonances in the neutron capture

cross sections increases the

macroscopic neutron capture cross

section.

2. Density decrease of the molten salt

fuel which reduces the fissile nuclei

concentration, the far dominant

effect with dk/dT >= 0.015 $/K

assuming the density decrease of

UCl 3 for the whole salt, where

k is the effective neutron multiplication

factor and T the fuel

tem perature.

3. Density decrease of the molten

Lead reduces the concentration of

the neutron reflecting lead nuclei.

The change in reactivity due to a

temperature induced density change

in the liquid fuel is by far dominant

and almost instantaneous because it is

determined by the speed of sound.

Lead has a high atomic mass and 4

stable isotopes due to nuclear shell

closure. Therefore, it is an excellent

neutron reflector with low moderation

qualities and low isotope- weighted

neutron capture cross section.

These effects together with the

density change cause a strong negative

temperature coefficient in the fast

neutron spectrum.

This is in contrast to liquid Sodium

as coolant which has a higher neutron

capture cross section, higher neutron

moderation and lower reflection

quality which means an increase of

the neutron flux with rising temperature,

i.e. temporal positive temperature

coefficient in several designs.

Furthermore, since the most

abundant Lead isotopes are each at

the end of a decay chain, prolonged

exposure to neutrons can only induce

low radioactivity. The highest stable

Lead isotope, 208 Pb, has the lowest

neutron capture cross section, which

leads back to stable Lead via 208 Pb

(n,c) 209 Pb (b) 209 Bi (n,c) 210 Bi (b)

210 Po (a) 206 Pb. The stable 209 Bi

accumulates slowly, so that only 209 Pb

contributes remarkably to some

activity, decaying with a half-life of

only 3 h and, in contrast to Sodium,

free from gamma radiation. For the

only longer living nuclide, 210 Po (halflife

138 days), even 50 years of reactor

operation and 209 Bi accumulation

leads to an activity just comparable

with natural Uranium. As a result, the

low and gamma-free radioactivity

makes an intermediary cooling loop

obsolete, which further reduces the

expenses, see Sec. 8.1.

Due to its very strong overall

negative temperature coefficient (five

times that of a TRIGA reactor) and

limited fuel heat capacity, the usage of

control rods in a DFR type reactor is

not necessary.

5.2 Startup procedure

To start up the reactor the system is

pre-heated until the coolant and the

fuel salt liquefy. Concurrently the

cooling of the melting fuse plug is

started. The fuel salt is pumped from

the storage tanks to the reactor. At the

tee connector, just below the reactor

some of the fuel fluid branches to the

fuse where it freezes out and plugs it.

As soon as the salt, preheated to

900 °C, slowly moves into the reactor

core it becomes critical.

Thanks to the very strong negative

reactivity coefficient, dominated

by the liquid fuel, an equilibrium

tem perature will be reached very fast,

and it cannot freeze out anymore

(melting temperature at 800 °C).

Now the reactor is regulated by

the described loops (see sec. 3). At

the beginning the fission rate and

correspondingly the power production

is minimal. Then the coolant

pump starts to accelerate the circulation

of the Lead. The discharge of

heat to the heat exchanger causes a

temperature decrease in the reactor

(of course the heat exchanger must be

able to dump the heat energy). The

control loops render the reactor

supercritical until the nominal temperature

is regained and wellbalanced.

This may continue until the

nominal power output is reached.

Conversely, if the Lead circulation

speed is decelerated (also in case of a

malfunction) the temperature in the

reactor increases and it becomes

subcritical until leveled off at the

nominal temperature but with lower

fission rate. In such a manner, the

fission rate in the reactor follows the

power extraction. This can be done actively

by the Lead pumping speed, or

passively by feedback from the

turbine’s electricity generation. There

is no need to control the fission rate

directly in the reactor core (e.g. by

control rods).

The equilibrium (nominal) temperature

is determined by the fraction

of the fissile material in the fuel salt.

The PPU provides the appropriate fuel

salt mixture.

5.3 Shutdown procedure

For a regular shut down the coolant

circulation and the fuse cooling is

stopped and the fuel salt empties to

the storage tanks. The same happens

if the power to the entire plant fails.

Any other reason like malfunction and

sabotage increasing the fraction of the

fissile material raises the equilibrium

temperature. For these incidents,

again the melting fuse plug kicks in.

Consequently, the emergency shut

down is the same as the regular shut

down.

6 Neutron economy

With the U-Pu fuel cycle the fission of

Pu produces a high neutron yield.

Even after regeneration of the Pu fuel

by conversion of fertile 238 U a large

neutron surplus remains. Neutronics

simulation calculations have been

performed (Serpent, OpenMC); preliminary

results, though with no conversion

ratio calculations, are to be

published. If (besides fissile material)

only 238 U is fed into the fuel this

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

neutron surplus will end up as

additional plutonium. In this case (or

similar for 232 Th) the conversion rate

is larger than one and the reactor

works in the breeder mode.

The neutron surplus can also be

used for other transmutation purposes,

e.g. when long-lived fission

products are specifically mixed in the

fuel salt by the PPU. There is still a

considerable neutron surplus when

the reactor transmutes its own longlived

fission products which can be

used to transmute fission products

from waste fuel elements of other

nuclear reactors. Only if this additional

neutron surplus is consumed

otherwise, but not for breeding, the

reactor works as a self-burner, i.e.

conversion rate equal one.

Alternatively, the PPU can mix in

Th or inert materials to even out the

neutron surplus. The fission neutron

yield of 233 U from the Th/U fuel cycle

is considerably lower than for the

plutonium fission. As other fast

neutron breeders, the DFR also can be

operated in the Th/U cycle with a

conversion ratio slightly larger than 1.

The transmutation of its own longlived

fission products may be feasible.

For that, the PPU needs to separate

out and store the 233 Pa until it decays

to 233 U. The PPU can handle the

transition from the U/Pu to the Th/U

fuel cycle continuously.

The fissile material in the fuel

salt may also contain transuranium

elements from waste nuclear fuel

elements. As in the case of fission

product transmutation the PPU would

process chlorine salts made of the fuel

pellets of waste fuel elements separating

the chemical elements by

boiling points. Then the PPU mixes

the fuel salt from the desired actinides

so that the criticality condition in the

core is maintained. In this way, the

sources of fuel are natural uranium,

depleted uranium, nuclear waste, and

thorium. The reference plant can

consume radiotoxic transuranium

elements from burned LWR fuel up to

1,200 kg per year.

One DFR using the U/Pu cycle can

provide the initial fissile charge for

another DFR, where the doubling

time is comparable to the total construction

time of a power plant and

not the limiting factor for deployment.

SFR’s (like the French Superphénix

and the Russian BN) together

with PUREX-reprocessing plants have

doubling times of 30–40 years.

Utilizing the Th/U cycle in water

cooled reactors with fuel elements

would exceed even these long

doubling times. The thorium MSFR

(also known as liquid fluoride thorium

reactor – LFTR or “lifter”) would have

a doubling time of about 25 years.

7 Materials and

fabrications

As mentioned in Sec. 4.2, for a compact

nuclear core a high actinide fraction

is necessary to obtain sufficient

fissioning and breeding capabilities.

Thus, the fuel salt should be undiluted

which renders eutectic compositions

dispensable. This results in elevated

melting points of about 800 °C and

demands high operating temperatures

above 1,000 °C. Therefore, the

materials of the nuclear part must

withstand high-temperature corrosion,

a high neutron flux, and must

have a very good high-temperature

stability and creep strength.

These extremely resistant materials

are known for many decades but

could not be treated in the past. This

includes in particular alloys from the

extended group of refractory metals,

molybdenum- and tungsten-based

alloys, as well as high-performance

industrial ceramics. Meanwhile, however,

fabrication methods are far

advanced, so that such materials

find applications over a widespread

range in the industry, especially

in the chemical industry, mechanical

engineering as well as in the aviation

(nozzles, jet vanes, balance weights).

Their demand is still low but their

technical feasibility has been proven

in the past decades. For this reason,

they are expensive, and current

material research for solid-fuel based

reactors (LWRs, but also most of the

Generation IV concepts) is focused on

replacements like steel and Ni alloys.

This is in contrast to the DFR where

higher material costs play only a

minor role since the material demand

is several times lower than for

LWRs, as also pointed out in Sec. 2

(Figure 1) and Sec. 9. The entire

reactor needs only a few 100 tons of

refractory materials, with only 20 to

50 tons for the core, while the remaining

80–90 percent are in a simple

geometry. The durability and creep

resistance is a central point: it requires

but at the same time enables a core

that needs not to be exchanged.

This point is often not seen by

critics implicitly assuming a dis posable

material technique as equired by

the solid fuel rod tech nology involving

a very restricted view on the material

variety.

Tungsten and Tantalum show much

less corrosion in NdCl 3 – NaCl- KCl or

MgCl 2 – KCl salts compared to

Hastelloy -X or Iron-/Chromium-based

alloys. Molybdenum-based alloys

show a high resistance against both

molten fluorides and, also Niobium

alloys, against Lead. Chloride salts

are significantly less corrosive than

fluorides.

As a further option, new ceramics

may be considered, as coating and in

the form of new fiber backed composite

workpieces.

Silicon carbide (SiC) is known for

its low neutron capture cross-section

and is therefore in the focus of today’s

nuclear material research. Especially

CVD-like SiC, is very resistant against

Lead corrosion at more than 1,000 °C,

even when Lithium is added (Pb-

17Li), where pure Li would dissolve

SiC at 500 °C. Regarding molten salt

corrosion, much less data is available

for SiC. It was tested with NaCl which

has a similar enthalpy like UCl 3 and

showed a good resistance up to 900 °C

even though it was a much less

corrosion-resistant variant (reactionbonded

SiC with Si excess). Compared

to that, CVD-SiC showed a much

higher corrosion resistance. Below

1,200 °C, this material also shows a

high irradiation resistance, whereas

SiC/SiC fibre pieces are less resistant

although the newest generation of

these composites showed a higher

resistance again. Micro crystalline

damages caused by the high neutron

flux as well as thermal stress will be

automatically healed at those high

temperatures (annealing in metals)

and ceramics are more resistant at

elevated temperatures. In the PPU,

there are even less restrictions as

neutron embrittlement and heat conduction

do not play a dominant role

anymore.

Pieces from high-performance

alloys, even from refractory ones, can

be produced by new electron welding

processes, high-pressure sintering and

laser techniques. In particular, the

laser treatment cares for a high-purity

crystal structure (smooth melting) – a

factor very important for the corrosion

resistance. Generally, refractory

compounds are processed with the

methods of the powder metallurgy,

particularly because of their high

melting temperatures and durability.

The sintering process limits the size

and shape of work-parts but new laser

sintering methods might relieve many

restrictions. Even though the fraction

of voids for today’s applications is

still too high, sintering extruders are

capable of producing monolithic pipes

with smooth surfaces. The whole

RESEARCH AND INNOVATION 151

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

RESEARCH AND INNOVATION 152

array can be assembled with electron

beam and/or laser welding in vacuum.

For valves in molten-salt, contactsurface

seals can be used since they

will only by used hourly.

The high operating temperatures

are well above the brittle-ductile

region of refractory metals hindering

strongly an embrittlement, best seen

on Mo-based alloys. Furthermore,

highly-resistant coatings can be

considered. Some refractory alloys

are already ductile between 300 °C

and 500 °C (or lower), e.g. MHC (1Hf-

0.1C-Mo) or TZM (0.5Ti-0.08Zr-

0.02CMo), maybe with some additions

of Rhenium in the 1 %-region.

All operating temperatures (inlet

and outlet) are well between 850 °C

and 1,100 °C, 1,400 °C occur only in the

axial center of the fuel, not at the tube

walls (see Sec. 3.3 and Figure 6). The

thermal expansion coefficients of

refractory alloys are similar to the ones

of ceramics not causing significant

stress or tension, as also can be seen in

turbine parts or high-temperature

furnaces.

The entire core (total dead weight

is a few ten tons) can be produced in a

factory by the methods mentioned

above and deployed on site exclusively

by bolting and screwing or stacking/

clamping in the case of SiC. Possibly

the core must be segmented in order to

ease the exchange of possibly damaged

parts. For the coatings, corrosion resistant

materials (SiC also as structural

material, Si 3 N 4 , AlN in the core, possibly

TiB 2 , B 4 C elsewhere) exist, having

a heat con ductivity similar to Ni. For

isolation, fan and fold sheets can be

used but because of the high neutron

flux the entire core has to be surrounded

by a concrete shield anyway.

8 Applications

Figure 8 depicts possible application.

The high temperature opens the

hydrogen-based chemistry with

synthetic fuels suitable for today’s

vehicles. The low production costs

make these applications competitive

with fossil fuels like gasoline. Further

applications are described in the

following.

8.1 Conventional part

Due to the low and gamma-free radioactivity

of liquid Lead (see Sec. 5.1)

it is possible to extend the primary

coolant loop directly into the conventional

part of the plant. This translates

into a considerable reduction of the

reactor construction cost, as opposed

to Sodium cooled reactors which

require a secondary cooling circuit

due to the high radioactive and

gamma- emitting content of Sodium.

In the conventional part the heat

energy needs to be transduced

from the liquid metal, a medium with

very high heat transport capacity,

to a working medium with considerable

lower heat transport capacity

suitable for turbines. Without further

development, the most cost effective

technique, nowadays, is supercritical

water (scH 2 O) cycle. Albeit the newest

coal fired plants work at 700 °C there

is no principal problem to increase it

to 1,000 °C. Generally, scH 2 O turbines

have more in common with gas

turbines than with steam turbines

since there is no phase change

throughout the whole cycle; so, operating

parameters are quite similar.

The reactivity of water with respect to

its ability as oxidizer increases with

temperature. However, modern gas

turbines are made of very resilient

materials and are capable to get along

with sulphuric acid, dust particles,

and hot steam at 1,400 °C.

Another near future possibility is

the usage of supercritical carbon

dioxide (scCO 2 ) turbines, leading

to more compact machine components

with a slightly higher thermal

effi ciency and significantly reduced

corrosion rates and pressures compared

to scH 2 O turbines. Although

still in development, the experience

and outlook is promising. The corrosion

rates are monitored to be less

than 1 mm per year at 1,000 °C using

industrial INCONEL-MA-754 nickelbase

alloy, decreasing with time. The

alloys used in the DFR are signifi cantly

more corrosion resistant so scCO 2

should be a minor problem.

8.2 Process heat and electricity

If the DFR is employed for process

heat generation the conventional part

may be modified. For process heat

generation only a heat transducer to a

secondary liquid coolant cycle or a

direct heating of a chemical reactor in

close vicinity with the primary coolant

may be used. If a mixed process heat

and electricity generation is desired, a

first indirect heat exchanger which

decouples heat energy at the high

operating temperature may be followed

by a subsequent heat exchanger

which heats at a lower temperature

water in a steam or supercritical water

cycle with a connected turbine.

8.3 Future MHD option

A further possibility is the utilization

of an MHD generator connected to the

Lead coolant loop. Liquid metals are

particularly eligible for that because

of their high concentration of free

charge carriers. The efficiency of the

MHD generator is chiefly limited by

the nozzle which converts the internal

energy of the fluid into directed

stream energy which is then converted

to electricity. The still considerable

residual heat after the MHD generator

may be used in a sub sequent

heat exchanger with a water cycle

as above. Such a system may be significantly

less costly than multiple

turbines.

| Fig. 8.

Possible applications for the DFR.

8.4 Radiotomic chemical

production

The short-lived fission products

storage may be designed in an alternative

way in order to enable the

utilization of the intensive radiation

for radiotomic induction of chemical

reactions requiring high doses

(kGy/s). There is a constant power

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

level of 30 MW of the short-lived

fission products in the reference plant

which may induce a γ-doserate of

0.1–1 MGy/s into compressed gases.

There is a small number of simple

molecules that are the base for several

process chains in industrial chemistry

and result from strong endothermic

reactions which are performed with

high expenses over several steps

frequently employing costly catalyzers.

Here a γ-quantum can directly

provide the required energy by

multiple excitation/ionization of the

educts resulting in a considerable

simplification of the required equipment

and reduction of costs all the

more the radiation source exists

anyway. This possibility was already

described in the past.

Such basic compounds are nitrogen

oxides NO 2 , ozone O 3 , hydrocyanic

acid HCN, and carbon monoxide CO.

Nitrogen oxide and ozone can be

obtained by irradiation of compressed

air. Hydrocyanic acid originates

from methane and nitrogen. Carbon

monoxide results from radiative

dis sociation of carbon dioxide. The

DFR reference plant may produce

10 4-5 tons/year tons/year of these

chemicals.

8.5 Medical Isotope

Production

The radiotracer 99m Tc is a prime

example of a medical application that

would not be possible without a

nuclear reactor.

Seeking an alternative during

the world-wide Molybdenum crisis

2009/2010 failed due to the high

neutron flux required for the production

of the 99m Tc precursor 99 Mo. A

cost-effective production in commercial

reactors seems not to be possible

for several reasons, so it is mainly produced

in research reactors. An expensive

separation process follows, and a

sophisticated logistic chain to finally

deliver the technetium generators to

hospitals is required due to the short

half-life of 99 Mo of only 3 days.

The Nuclear Energy Agency (NEA)

estimates the future 99 Mo world

demand to be 4*10 16 6-days-Bq (10 6

6-days-Ci) per year, corresponding to

a demand of roughly 1 kg (assuming

10 % separation efficiency) directly

from the nuclear fission in LWRs

providing 99 Mo. In contrast, one single

DFR produces at least 30 kg 99 Mo per

year but – more important – already

provides it in a separated form, see

also Sec. 4.2. This strongly reduces

the handling so that a complete

on-site medical-clean production of

the technetium generators are feasible

which further simplifies the logistics

of the delivery to the hospitals. This

could lead to a cost implosion for the

99m Tc radiotracer and therefore to an

inflation of applications.

9 EROI consideration

Energy Return on Investment is

probably the most important factor

to characterize the economicalefficiency

of an energy source. It is

defined as the ratio of the total electricity

output of a power plant during

its lifetime to the expended exergy for

construction, fuel supply expense,

maintenance, and decommissioning.

This should not be confused with a

return-on-investment assessment on a

monetary basis.

Unlike monetary measures, the

EROI is time invariant and independent

from the national economic

context. It requires a full life cycle

assessment (LCA) in order to determine

the correct cumulative energy

demand CED (the energy invested, i.e.

Item

Concrete containment for reactor, fission products

and turbine building

High performance refractory metals and ceramics

(PPU and core)

High temperature isolation material for PPU and

core

the denominator of the EROI). For a

typical 1,400 MWe PWR, a major part

of the CED is needed for the enrichment

of uranium which in the first

decades of nuclear power applications

was dominated by the very ineffective

diffusion enrichment.

This reduced the EROI to 24 which

is comparable to fossil fired power

plants and is one explanation why the

expansion of nuclear power came to a

halt in the 1970s in the USA.

A newly built PWR with mostly

centrifuge enrichment has an EROI of

75 to 105, with complete LASER

enrichment up to 115. So the PWR

technology can have an advantage

in the EROI factor of 4 to fossil power

but this defines also the limit of the

PWRs and the Generation III(++)

technology in general.

Another costly contribution to the

low EROI are the expenses for the fuel

element infrastructure industry which

is also conceptually based on the

military logistic chain where as much

as possible is displaced from the

Units

(or total amount

in 1,000 kg)

Energy

inventory

in TJ/(1,000 kg)

| Tab. 1.

Input energy amounts of the DFR; bold: the sum of all inputs and the total electricity output; the ratio leads to an EROI

of almost 2,000 for the DFR, see text.

Total

inventory

in TJ

21,000 0.0014 30

60

100

0.5 30

0.1 10

Initial load, isotopically purified 37 Cl + fuel 25+60 2.5/0.4 50+25

Refractory metals and ceramics for the heat

exchanger

180 0.5 90

Isolation and structural materials, heat exchanger 300 0.1 30

Untreated, low-alloyed metal for fission product

encapsulation

3,000 0.033 100

Structural materials (steel) for non-nuclear part 1,000 0.02 20

Lead coolant 1,200 0.036 45

Turbines with generators 3 40 120

Mechanical engineering parts 150

Cooling tower (special concrete) 20,000 0.003 60

Refueling, 1,200 kg/a actinides over 50 years 60 0.4 25

37 Cl loss compensation 2 2.5 5

Maintenance, high-performance refractories +

isolation for 1 new core

Maintenance, 50% of other reactor parts,

refractories + isolation

Maintenance, 50% of mechanical engineering

and turbines

Maintenance electricity, 2MW over 20 days/a

and heating, 50*0.2 TJ

30+50 0.5/0.1 20

90+175 0.5/0.1 62.5

135

182.5

Sum 1,190

Output over 50 year’s-lifetime, 1,500 MW net,

8,300 full-load hours

2,250,000

RESEARCH AND INNOVATION 153

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

RESEARCH AND INNOVATION 154

This document is

based on Armin Huke

et al., Annals of

Nuclear Energy 80

(2015) 225: „The Dual

Fluid Reactor –

A novel concept for a

fast nuclear reactor of

high efficiency“

| Fig. 9.

Energy Returned on Investment (EROI) at different electricity generating technologies.

battlefield to factories in the back

area. The utilization of fuel elements

then again requires multiple-redundancy

elaborated active and passive

safety systems in order to counteract

the risk of core meltdown, further

reducing the EROI in effect.

The large EROI gain of the DFR

mainly results from two aspects: The

loss of a costly external fuel pro cessing

infrastructure (improvement of more

than a factor of 3) and the much

higher compactness and simplicity

compared to a light water reactor

( another factor of 6). Additional

minor improvements arise from lower

maintenance efforts and from much

less fuel consumption as well as

significantly lower disposal needs.

The higher per-mass efforts for

the refractory parts are far outweighed

by the extreme reduction

of material amounts needed for

construction (several 1,000 metrictons

nickel alloys and highly alloyed

steels in a light water reactor

compared to a few 100 metric-tons

refractories in the DFR). Table 1

describes the evaluation of the EROI

for the DFR.

Since some materials (especially

refractory metals) must be investigated

and modified for use in the

DFR, their energy inventory must be

estimated. Furthermore, the maintenance

for the nuclear part is also

unknown, causing the same uncertainties.

The resulting EROI is therefore

roughly 2,000 which is 25 times

higher than that of today’s PWR

technique. The very compact design

lowers the construction energy

demand down almost to the level of

CCGT plants on a per-watt basis, and

the fuel-related energy demands are

tiny compared to light water reactors

due to the efficient usage.

A theoretical maximum EROI

of 10,000 can be calculated as an

extra polated limit, only taking into

account the exploitation costs at

3 ppm U- content in the earth crust,

erection of power plant, service and

maintenance, dismantling and disposal

being neglected. Further optimization

of the design and extraction of

fuel at basic crust concentrations

(10 ppm for Thorium) would lead to a

domination of the fuel-related input

and opening potential for a further

increase of the EROI.

This all together is showing that

the DFR exhausts the potential of

nuclear fission to a large extent. For

illustration on the relevance of the

EROI-definition, Figure 9 depicts the

EROIs of different currently used

electricity producing technologies

with the EROI for a DFR.

10 Final remarks

The Dual Fluid principle of separating

the cooling and fuel function in creases

the complexity of the reactor core

relative to the MSR but has large

synergetic effects in the fuel reprocessing,

the neutron economy, the

cost efficiency as well as on the

possible applications. This allows to

combine the advantages of different

Generation IV concepts (MSFR, LFR,

SCWR, VHTR) in one reactor type

while considerably undercutting the

costs even of today’s LWRs.

The good neutron economy and

the hard neutron spectrum makes the

DFR an effective waste incinerator

and also an excellent thorium breeder,

outbidding even MSRs like the LFTR

while being more cost-effective. The

high temperature combined with the

high cost-efficiency allows the production

of synthetic fuels in competition

with todays refined oil and

gasoline.

The online separation of fission

products provides presorted metals

that can be used after decay as important

raw materials for the industry.

Other fission products, e.g. 99 Mo

needed for medical diagnostics, can

be quickly withdrawn in large

amounts with no further processing.

The liquid fuel provides the same passive

safety features as already tested

for the molten-salt reactor (melting

fuse plug, deeply negative temperature

reactivity coefficient) but the

concentrated actinide fuel adds additional

safety and controllability due

to a higher delayed neutron fraction

inside the fissile zone. The lower fissile

zone salt inventory means lower heat

capacity leading to a faster power

reduction in the case of additional

reactivity.

Manufacturing the durable workpieces

for the core is feasible by

state-of-the-art technical processes

and well-established industrial procedures.

The complete absence of

control rods, valves or any other

mechanical parts as well as its compact

size enables the use of expensive,

corrosion-resistive materials and

modern fabrication techniques like

laser sintering.

In essence the Dual Fluid principle

resolves the contradiction of contemporary

NPP concepts between a

high power-density which is obligatory

for the crucial economic edge to

prevail in the energy market, and

inherent passive safety necessary for a

safe operation and eventually the

public acceptance of nuclear power.

Author

Jan-Christian Lewitz (a,b)

Armin Huke (b)

Götz Ruprecht (b)

Daniel Weißbach (b,c)

Stephan Gottlieb (b)

Ahmed Hussein (b,d)

Konrad Czerski (b,c)

(a) LTZ-Consulting GmbH,

Tharandter Str. 12

01159 Dresden, Germany

(b) Institut für Festkörper-

Kernphysik gGmbH, Leistikowstr. 2,

14050 Berlin, Germany

(c) Instytut Fizyki, Wydział

Matematyczno-Fizyczny,

Uniwersytet Szczeciński,

ul. Wielkopolska 15

70-451, Szczecin, Poland

(d) Department of Physics,

University of Northern British

Columbia, 3333 University Way,

Prince George, BC, Canada.

V6P 3S6

Research and Innovation

The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


atw Vol. 65 (2020) | Issue 3 ı March

36C3 – Mehr offene Fragen als Antworten

Stefan Loubichi

155

Die Einschläge kommen näher und wir kennen alle die Folgen Es dürfte (wahrscheinlich)

niemand in der Energiebranche geben, der den am 17.6.2013 erschienenen Roman „BLACKOUT – Morgen ist es zu spät“

nicht kennt.

Weniger bekannt in der Energiebranche

ist (leider) das bereits 2011

im edition sigma Verlag erschienene

Werk „Was bei einem Blackout geschieht

– Folgen eines langandauernden

großflächigen Stromausfalls“ des

Büros für Technikfolge-Abschätzung

beim Deutschen Bundestag.

Für alle diejenigen, welche die beiden

Bücher noch nicht gelesen haben,

sei die Lektüre empfohlen.

Übertragungs- sowie Verteilnetzbetreiber,

bei der die durch Letztverbraucher

und Weiterverteiler entnommene

Jahresarbeit im Jahr den

Schwellenwert 3.700 GWh überschreitet

(siehe hierzu die BSI-Kritis-

Verordnung) mussten sich alle bereits

gemäß des im August 2015 in Kraft

getretenen IT-Sicherheitskataloges

gemäß § 11 Absatz 1a Energiewirtschaftsgesetz

aufgrund dieser

Grundlage durch einen akkreditierten

Zertifizierer auditieren lassen, und

zwar jährlich. In diesem Zusammenhang

mussten die Netzgesellschaften

ein Informationssicherheitsmanagementsystem

nach ISO/IEC 27001 in

Verbindung mit ISO/IEC 27002 und

ISO/IEC 27019 implementieren.

Nach diesseitigem Kenntnisstand

haben alle relevanten Netzbetreiber

mittlerweile die Zertifizierung nach

dem IT-Sicherheitskatalog gemäß § 11

Abs. 1a EnWG bestanden. Integrativer

(und von daher nachzuweisender) Bestandteil

des Auditierungsprozesses

sind:

p Patchmanagement

p Assetmanagement

Als Leitender Auditor für Informationssicherheitsmanagementsysteme

musste der Autor dieses Aufsatzes

aber leider oft feststellen, dass

nirgendwo mehr Potemkin'sche

Dörfer aufgebaut wurden wie hier.

Aufgrund der Tatsache, dass ein

Auditor nur eine Stichprobe zu einem

Stichtag ziehen kann und er nur einen

sehr beschränkten Zeitraum für die

Prüfung hat, ist es nicht sehr schwer,

einen Prüfer in diesen Schlüsselbereichen

hinter das Licht zu führen,

um das „begehrte“ Zertifikat zu

erhalten.

Das Zertifikat ist eine Sache,

Sicher heit im System ist eine andere

Sache. Cyber Terroristen interessiert

es nicht, ob Netzbetreiber oder Kraftwerksbetreiber

ein ISO/IEC 27001

Zertifikat haben oder nicht.

Ende 2019 wurde auf dem

36. Chaos Computer Club Kongress

vom 27.-30. Dezember 2019

gezeigt, wie „einfach“ es für Profis ist,

Zugang zur Leittechnik in Kraftwerken

zu erhalten, wobei diese

strukturellen Herausforderungen

gegeben wären für:

p Siemens

p ABB

p Honeywell

p Yokagawa

p GE

Die in Leipzig gehaltene Präsentation

erfolgte durch Sicherheitsexperten

einer russischen Firma hat vielen die

Augen geöffnet.

Am 15. Januar 2020, d.h. ganze

zwei Wochen später wurde bekannt,

dass die US-amerikanische National

Security Agency (NSA), die sich

eher durch Zurückhaltung in ihrer

Kommunikation kennzeichnet, eine

Sicherheitslücke in Windows 10 und

verschiedenen Windows-Server-Versionen

gemeldet hat. Zum Patchday

hat Microsoft zwar die Lücke

geschlossen. Gleichwohl ist die Lage

sicherlich nicht unernst, wenn die

NSA sich zu solchen Schritten veranlasst

fühlt.

Aber der Januar 2020 hatte bereits

in seinen ersten drei Wochen noch ein

weiteres Highlight:

Viele Industrieunternehmen kennen

und schätzen den Citrix ADC

( Citrix ADC verbindet die Infrastruktur

und die Anwendungen miteinander,

indem diese Erkenntnisse

dem Cisco Application Policy Infrastructure

Controller (APIC) bereitgestellt

werden). Citrix ADC integriert

sich dabei vollständig in die Unified-

Fabric-Anwendungen von Cisco.

Allein auf der Internetseite von

Heise fanden sich in der Zeit vom 3.1.

bis 20.1.2020 folgende Meldungen:

3.1.2020:

Workaround verfügbar: Kritische

Lücke in Citrix ADC:

Angreifer könnten Systeme mit Citrix

ADC und Schadcode ausführen.

Patches sind bislang nicht erschienen.

13.1.2020:

Exploit-Code für kritische Citrix-

Lücke gesichtet:

Es könnten Angriffe auf Citrix CDC

und Gateway bevorstehen. Bislang

gibt es nur einen Workaround. Patches

sollen folgen

17.1.2020:

Citrix-Lücke: Immer mehr Attacken,

Workaround funktioniert nicht

immer:

Die Sicherheitslücke in Citrix Systemen

zieht immer weitere Kreise.

Neben steigenden Angriffszahlen sind

immer mehr Systeme betroffen.

20.1.2020:

Erste Sicherheitsupdates für kritische

Citrix-Lücke erschienen:

Da Angreifer derzeit eine Lücke in

Citrix CDC ausnutzen, sollten Admins

die nun verfügbaren Patches umgehend

installieren.

17 Tage in der Welt der Informationstechnologie

sind eine

Ewig keit und viele Angriffe wurden

mittlerweile erfolgreich ausgeführt.

Was macht also der gewissenhafte

Leiter IT/OT, der zusammen mit

seinem Chief Information Security

Officer (CISO) oftmals gar nicht die

Zeit hat, alle Warnmeldungen zeitnah

zur Kenntnis zu nehmen? Er lässt

nachschauen, ob gepatcht wurde und

ist froh, wenn das System gepatcht

wurde. Aufgrund der Arbeitsverdichtung

wird dann in der Regel auch

gar nicht nachgefragt, wer den Patch

ausgeführt hat.

Unglücklich ist es, wenn Hacker,

die über die Lücke in das System eingedrungen

sind, für das Kraftwerk

den Patch durchführen, gleichwohl

aber sicherstellen, dass diese immer

noch durch eine Hintertür jederzeit in

das System kommen können. Interessanterweise

findet sich in Bezug auf

die aktuelle Citrix-Thematik im Netz

nur ein sehr guter Artikel zu dieser

Thematik:

https://securityaffairs.co/wordpress/

96569/cyber-crime/hackers-patchcitrix-servers.html

Diese Einführung mit drei konkreten

immensen Herausforderungen

in drei Wochen soll aufzeigen,

dass es 5 vor 12 ist, wenn Kaspersky

und NSA nahezu zeitgleich an

OPERATION AND NEW BUILD

Operation and New Build

36C3 – More Questions Than Answers ı Stefan Loubichi


atw Vol. 65 (2020) | Issue 3 ı March

OPERATION AND NEW BUILD 156

| Abb. 1.

SPPA T3000 Security Matrix

Siemens Whitepaper SPPA-T3000 Cyber security for I&C Systems GPPG-T40003-00-7600, 19.12.2019.

die Öffentlichkeit gehen, um Hinweise

zu geben.

Theoretisch kann man denken, wie

dies ein aus Datenschutzgründen

nicht genannter CIO Ende Dezember

2019 anlässlich der 36C3 Präsentation

mutig sinngemäß äußerte: „Wenn wir

betroffen sind, dann gehen eben hier

überall die Lichter aus. Das ist ein

kalkulierbares Risiko und ich glaube

nicht, dass so etwas bei uns passiert,

denn dann gehen anderswo ja auch

die Lichter aus.“

Unter Hinweis darauf, dass –

bereits die Kollegen des Hauses

Kaspersky darauf verwiesen –, dass

die Leittechnik-Schwachstellen nicht

nur die T3000 betreffen, sondern dass

letztlich alle betroffen sind, sei die

36C3 Problematik nachstehend

dezidiert vorgestellt und erläutert,

wie man sich mit gezielten (zusammenhängenden)

Investitionen in

Asset- und Patchmanagement viele

Sorgenfalten ersparen kann.

36C3 oder habe ich einen

Haustürschlüssel komme

ich in das Haus

Die Siemens SPPA T-3000 gehört

unzweifelhaft zu den besten ICS

Systemen, die für den Energiemarkt

derzeit zur Verfügung stehen.

Dabei darf man jedoch nicht vergessen,

dass es sich hierbei um ein

generisch entwickeltes Produkt

handelt und dass man hier auf alte

Erfahrungswerte aufgebaut hat und

diese weiterentwickelt hat. Auch muss

berücksichtigt werden, dass gerade

die Entwicklung in den letzten Jahren

rasant verlief. Web-basierte Applikationen

im ICS-Umfeld waren vor

Jahren nicht denkbar, sodass deren

Risiken auch nicht betrachtet wurden

bzw. werden konnten.

Das Sicherheitskonzept von

Siemens – welches letztlich auf der

hervorragenden IEC 62443 basiertekonnte

trotz Berücksichtigung der

relevanten Standards nicht den GAU

vom 30. Dezember 2019 verhindern.

Es liegt somit eine strukturelle Herausforderung

vor, die wir uns näher

betrachten sollten (Abbildung 1).

Die vom Kaspersky Team entdeckten

Schwachstellen lagen erst

einmal beim Application Server und

hier vor allem bei:

1. Zugangsmanagement

2. Java Umgebung

Hier treffen wir auf ein struk turelles

Problem, welches per se nicht originär

die Hersteller der Leit technik, sondern

die Welt der Programmierung trifft:

Obfuskation, Deobfuskation sowie

Dissection.

Obfuskation bezieht sich auf die

Transformation von Programmcode.

Angestrebtes Ziel ist es, die Ermittlung

der Semantik und der Funktionalität

eines Programms zu erschweren,

wobei dessen Funktionalität jedoch

erhalten bleibt. Prinzipiell wird

Obfuskation auf zwei Programmbestandteile

angewandt:

1. Kontrollfluss

2. Datenstrukturen

Die Art der Obfuskation hängt von der

Art der Programmiersprache ab. Für

uns sind in diesem Zusammenhang

JAVA und .NET Programmierungen

relevant.

Verglichen mit kompilierten

Sprachen sind Java und .NET Programme

relativ einfach zu disassemblen

bzw. Reverse Engineering

von den ausführbaren (exe, dll, jar,

class) Dateien ist einfach. Dies ist

dadurch bedingt, da der Intermediate

Bytecode alle ursprünglich verwendeten

Bezeichner (Variablen- &

Funktionsnamen) enthält, wodurch

ein Decompiler nahezu den gesamten

Source Code (mit Ausnahme der

Kommentare) wiederherstellen kann.

Der eingesetzte Java-Code wurde

mit einem Obfuskator (hier: Zelix

KlassMaster) verschleiert. Beliebte

weitere Obfuskatoren sind:

p DashO

p JavaGuard

p ProGuard

p yGuard

Zusätzlich zur Obfuskation im Bereich

des Kontrollflusses sowie der Datenstrukturen

werden gerne Runtime

Packer genutzt oder es wird verschlüsselt.

Generell versteht man unter einem

Packer ein Programm mit der Software

komprimiert und/oder verschlüsselt

werden kann. Kompressionsverfahren

wie ZIP, CAB und RAR,

aber auch selbst geschriebene Verfahren

kommen dabei zum Einsatz.

Kennt man den verwendeten Algorithmus

nicht, so kann man die Daten

nicht wieder entpacken. Bei Runtime-

Packern können die Programme direkt

ausgeführt werden, ohne dass hierzu

ein externes Tool genutzt werden

muss. Der Grund hierfür liegt darin,

dass diese Packer-Programme – nachdem

diese ein Programm komprimiert

haben – die Dekomprimierungsroutine

direkt vorne in das Programm

einfügen, wobei beim Programmstart

diese Routine als erstes ausgeführt

wird. Als Alternative oder zusätzlich

zur Komprimierung kann auch eine

Verschlüsselung realisiert werden, da

das Schema das Gleiche ist.

So genial sich dies alles anhört, so

gibt es hier eine Schwachstelle:

Selbst wenn ein Packer eine Software

mit dem besten kryptographischen

Algorithmus verschlüsselt,

Operation and New Build

36C3 – More Questions Than Answers ı Stefan Loubichi


atw Vol. 65 (2020) | Issue 3 ı March

so muss das komprimierte bzw. verschlüsselte

Programm entpackt bzw.

entschlüsselt werden, damit die CPU

das Programm ausführen kann. Dies

ist der Zeitpunkt, bei dem das Reverse

Code Engineering normalerweise

startet.

Der Cyber-Kriminelle macht einen

Speicher-Dump der dekomprimierten/

entschlüsselten Anwendung und

speichert selbigen. Hierdurch kann er

die Originalsoftware analysieren und

muss sich nicht mit den Schutzmechanismen

befassen.

Leider findet sich mittlerweile im

Internet frei verfügbar zu jedem

Obfuskator ein Deob-fuskator.

Unter https://javadeobfuscator.

com/ kann man nun zum Beispiel einen

Deobfuskator (seit Jahren) downloaden,

der die Verschleierung wieder

rückgängig machen kann. Dieser Deobfuskator

kann eingesetzt werden

für die folgenden Obfuskatoren: Zelix

KlassMaster, Stringer, Allatori, DashO,

DexGuard, ClassGuard und Smoke.

Auf oben genannter Homepage findet

sich dann die Beschreibung, wie man

erfolgreich agiert:

Download the deobfuscator

Create detect.yml with the following

contents. Replace input.jar with the name

of the input

input: input.jar

detect: true

Create config.yml with the following

contents. Replace input.jar with the name

of the input ```yaml input: input.

jar output: output.jar transformers:

[fully-qualified-name-of-transformer]

[fully-qualified-name-of-transformer]

…etc´´´

Run java -jar deobfuscator.jar

Die Arbeit hält sich somit in Grenzen.

Jetzt benötigt man noch einen Dissector,

der aus dem Zeichensalat die

entsprechenden strukturierten Felder

heraussucht. Obgleich es hier einige

im normalen Internet gibt, hat das

Kaspersky Team einen Dissector gebaut,

am 28.12.2019 veröffentlicht

und auch noch die einfache Funktionsweise

erläutert. Für alle Interessierten

hier die Homepage: https://

github.com/klsecservices/desert

Auf einem zur SPPA T3000 gehörenden

Java-Orion-Server ließen

sich dann Verzeichnisse via https recht

einfach auslesen und es fanden sich

diverse Servlets, welche Anfragen von

Clients entgegennahmen und beantworteten.

Das größte Problem stellte

hierbei ein BrowerServlet für Drittparteien

dar.

Des Weiteren fanden die Kollegen

von Kaspersky relativ einfach diverse

angebotene Java-Dienste inklusive

einer Liste für „AdminService“ inklusive

der Möglichkeit für Reverse Code

Engineering. Da viele der Leser nicht

originär aus dem IT-Berufsumfeld

stammen, sei darauf verwiesen, dass

man unter Reverse Code Engineering

in diesem Zusammenhang die Rückgewinnung

des Quellcodes oder einer

vergleichbaren Beschreibung aus

Maschinencode versteht. Natürlich ist

Reverse Code Engineering strafbar.

Dies interessiert jedoch Cyber-Kriminelle

oder Cyber-Terroristen nicht.

Kaspersky hat uns hier gelehrt:

So gut die Sicherheitsarchitektur der

Leittechnik auch sein mag, so existiert

eine Schwachstelle: Komme ich an den

Bytecode – was eher eine Fleißaufgabe

für den geübten Cyber- Kriminellen /

Cyber-Terroristen ist – so kann er mit

einem frei im Internet erhältlichen

Deobfuskator disassemblen und hat

dann den lediglich um die Kommentarzeilen

gekürzten Source Code.

Das Problem ist somit die Obfuskation

von Java. Eine Ad-hoc–Lösung

gibt es hier derzeit nicht.

Wie Kaspersky auf der 36C3 zur

Entwarnung gegenüber den Leittechnikherstellern

kommunizierte,

betrifft diese Problematik vor allem

das Innere des Kraftwerkes. Die Steuerungssysteme

waren hiernach weitestgehend

gegenüber einem Zugang von

außen geschützt, sodass Cyber-

Kriminelle erst in das Innere eines

Kraftwerkes eindringen müssten.

Es ist sicherlich zutreffend, dass

Mitarbeitende von Kraftwerken in der

Regel loyal zu ihrem Kraftwerk

sind. Vergegenwärtigen wir uns an

dieser Stelle aber die Statistik zur

Täterherkunft der KPMG-Studie

zur Wirtschaftskriminalität 2018

( Abbildung 2).

24 % der IT-relevanten Straftaten

werden von Mitarbeitenden begangen.

Somit ist der von Kaspersky ins

Kalkül gezogene „Faktor Innentäter“

gar nicht so irrelevant, wie wir das

gerne glauben möchten.

OPERATION AND NEW BUILD 157

| Abb. 2.

Täterherkunft Kriminalität in Unternehmen im Kalenderjahr 2018. Quelle: KPMG Wirtschaftskriminalität in Deutschland 2018

Operation and New Build

36C3 – More Questions Than Answers ı Stefan Loubichi


atw Vol. 65 (2020) | Issue 3 ı March

OPERATION AND NEW BUILD 158

| Abb. 3.

Beispiel eines repräsentativen nmap-Scans.

Quelle: https://nmap.org/man/de/index.html

OT-Assetmanagement oder

Excel-Tabellen sind nicht

ausreichend und IT-Assetmanagement

ist anderes

Ein auf dem 36C3 am Rande diskutiertes,

aber immer wichtigeres

Thema war in diesem Zusammenhang

auch die Frage:

Müssen im Bereich der OT wirklich

alle Assets erfasst werden oder reicht

es aus, eine frei zu wählende Klassifizierung

durchzuführen?

Wer sich noch an die Matrix-

Trilogie erinnern kann, der erinnert

sich sicherlich an den Hinweis auf das

Programm nmap (Abbildung 3).

nmap („Network Mapper“) ist ein

Open-Source-Tool für:

1. Netzwerkanalyse

2. und Sicherheitsüberprüfung.

Das Programm wurde entworfen, um

große Netzwerke schnell zu scannen,

auch wenn es bei einzelnen Hosts

ebenfalls gut funktioniert.

Dabei werden rohe IP-Pakete genutzt,

um festzustellen,

p welche Hosts im Netzwerk verfügbar

sind,

p welche Dienste (Anwendungsname

und -version) diese Hosts

bieten,

p welche Betriebssysteme (und Versionen

davon) darauf laufen,

p welche Art von Paketfiltern/-Firewalls

benutzt werden

p sowie Dutzende anderer Eigenschaften.

Darüber hinaus kann nmap – in der

Regel in der IT-Welt – für folgende

Aufgaben genutzt werden:

p Netzwerkinventarisierung,

p Verwaltung von Ablaufplänen für

Dienstaktualisierungen,

p Überwachung von Betriebszeiten

von Hosts oder Diensten.

Die Ausgabe von nmap ist eine Liste

gescannter Ziele mit zusätzlicher

Information zu jedem Ziel.

Die wichtigsten Informationen

finden sich in der „Tabelle der interessanten

Ports“, wo folgende Informationen

zu finden sind:

die Portnummer

das Protokoll

der Dienstnamen

der Dienstzustand (offen, gefiltert,

geschlossen oder ungefiltert).

Die Dienstzustände sind wie folgt

definiert:

Offen:

Auf diesem Port des Zielrechners

lauscht eine Anwendung auf eingehende

Verbindungen/Pakete.

Gefiltert:

Eine Firewall, ein Filter oder ein

anderes Netzwerkhindernis blockiert

den Port, sodass nmap nicht wissen

kann, ob er offen oder geschlossen ist.

Geschlossen:

Hier gibt es keine Anwendung, die auf

den Ports lauscht, auch wenn diese

jederzeit geöffnet werden könnten.

Ungefiltert:

Ports, die auf nmap-Testpakete antworten,

wobei nmap aber man nicht

feststellen kann, ob die Ports offen

oder geschlossen sind.

Gegebenenfalls kann die Port-

Tabelle auch Details zur Softwareversion

beinhalten und wenn ein

IP-Protokoll-Scan verlangt wurde,

bietet nmap auch Informationen über

die unterstützten IP-Protokolle statt

über lauschende Ports.

Darüber hinaus kann nmap weitere

Angaben über Ziele bieten, darunter:

p Reverse-DNS-Namen,

p Mutmaßungen über das benutzte

Betriebssystem,

p Gerätearten

p MAC-Adressen.

Bekanntlicher Weise ist nmap ein

typisches Dual-useTool, welches

gegebenenfalls von Cyber-Kriminellen

zur Vorbereitung von Straftaten nach

§ 202a StGB genutzt werden könnte,

wobei der Autor dieses Aufsatzes

unter Bezug auf das Urteil des Bundesverfassungsgerichtes

in den Sachen 2

BvR 2233/07, 2 BvR 1151/08, 2 BvR

1524/08 ausdrücklich darauf verweist,

dass dieses Tool nur im eigenen

Unternehmen mit ausdrücklicher

Genehmigung der Geschäftsführung

dazu benutzt werden darf, um eine

Sicherheitsanalyse zur Behebung

eigener Schwachstellen durchzuführen.

Eine andere Nutzung ist

strafbewährt!

Neben dieser Sicherheitsanalyse

befassen wir uns an dieser Stelle

aber vor allem deshalb mit nmap

um darzulegen, wie Administratoren

auf einfache Art- und Weise eine

voll umfängliche Asset-Liste im IT-Bereich

erzeugen können, welche auch

auf

die OT-Welt in gewissen Zügen anwendbar

ist.

Kommen wir nun zu der Welt des

OT-Assetmanagements und einer

persönlichen Erfahrung des Autors

dieses Werkes in seiner Funktion als

leitender Auditor für Informationssicherheitsmanagementsysteme

in

der Energiewirtschaft: In mehr als der

Hälfte der Audits bei Netzbetreibern,

die eine Zertifizierung nach IT-Sicherheitskatalog

gemäß § 11 Abs. 1a

EnWG durchführten, wurden dem

leitenden Auditor EXCEL-Listen vorgelegt,

wobei diese in der Regel

deshalb schon Gegenstand von Auditfeststellungen

waren, weil die Informationen

zu den Assets unvollständig

waren und oftmals nicht verifizierbar

war, ob ein aktueller Softwarestand

vorhanden ist.

Wenn man aber nicht weiß,

welchen Stand das Asset in der OT

hat, kann man im Krisenfall aber

nicht wissen, ob hier ein Patch eingespielt

werden muss oder nicht.

Und im Audit fanden sich dann

auch des Öfteren OT-Assets, die gar

nicht in der Liste der Werte gelistet

waren. Was aber in der Regel nicht

in der Liste der Werte gelistet ist,

kann aber auch nicht gepatcht

werden, da man es nicht kennt!

Es ist erst einmal zu begrüßen,

dass immer mehr – aber immer noch

vergleichsweise wenige – Unternehmen

in kritischen Sektoren hingehen

und ein automatisierten Scan

ihrer OT-Landschaft durchführen.

Die derzeit leider immer noch

gebräuchlichste Variante ist der

„ Passive Scan“.

Der Begriff des passiven Scannens

ist technisch gesehen falsch, da

kein Netzwerkscan stattfindet. Beim

passiven Scan spioniert eine Netzwerkanwendung

den gesamten

Netzwerkverkehr aus und analysiert

ihn nach Daten, die zum Identifizieren

von Endpunkten und Datenverkehrsmustern

verwendet werden können.

In diesem Zusammenhang muss

darauf verwiesen werden, dass Metadaten,

die für die Ressourcenermittlung

erforderlich sind, tief im

Drahtverkehr verborgen sind. Die

Suche nach Informationen, welche

verwendet werden könnten, um

Geräteherstellung und Modell, Firmware-Version

usw. zu identifizieren,

stellt sich als eine ebenso schwierige

Aufgabe dar wie die Suche nach einer

Nadel in einem Heuhaufen. Es ist aus

diesem Grunde verständlich, dass

Operation and New Build

36C3 – More Questions Than Answers ı Stefan Loubichi


atw Vol. 65 (2020) | Issue 3 ı March

der passive Scan nicht immer die

genauesten Ergebnisse liefern kann.

Auch hat das passive Scannen in

der Regel einige technische Einschränkungen:

1. „Stille Geräte“ werden nicht

erkannt.

2. Sicherheitspatches werden oftmals

nicht mit hinreichender Genauigkeit

erkannt.

3. Es kann vorkommen, dass die

Netztopologie in den Ebenen eins

und zwei verborgen ist.

Sicherlich ist der passive Scan ein

grundlegender Meilenstein gegenüber

der händischen Erfassung der

OT-Assets im EXCEL-Format, aber aus

heutiger Gefährdungslagensicht nicht

mehr ausreichend ist.

Eine Alternative mit in der Regel

besseren Ergebnissen ist aus Sicht des

Autors das selektive Abfragen.

Hier werden die Geräteerkennungsfunktionen

der Protokolle

genutzt, welche die Automatisierungstechnik

in der Regel sowieso

spricht, z.B. Profinet, SNMP, WMI.

Hierdurch liefert die selektive Abfrage

in der Regel vollständige Daten, unter

anderem zur Netzwerktopologie,

Firmwareversionen, Softwareanwendungen,

installierten sowie nicht installierten

Sicherheitspatches, Seriennummern

und vieles mehr.

Die Erfahrungen haben viele

Unternehmen der Energiewirtschaft

gelehrt, dass man im Bereich des Asset

Managements auch mit einer Sammlung

an EXCEL Listen das begehrte

ISO/IEC 27001 Zertifikat erhalten

kann. Aber mit dem ISO/IEC 27001

erlangt man nicht die Sicherheit, die

man letztlich wirklich als KRITIS-

Energieerzeuger benötigt. Ein Scan

der OT-Assets nach Stand der Technik

ist zweifelsfrei eine nicht unerhebliche

Investition, aber eine Investition,

welche für die Cyber- Sicherheit/IT-

Sicherheit relevant ist.

Warum funktioniert das Patchmanagement

nicht?

Kommen wir hier nochmals zum

36. Chaos Computer Club Kongress

vom 27.-30. Dezember 2019 und die

Präsentation des Kaspersky Teams in

Sachen Siemens SPPA T3000. Als

erstes Ergebnis verbleibt zu vermerken,

dass nach der Präsentation

erst einmal Betroffenheit herrschte

und dass einige hiernach erklärten,

sich schnellstmöglich mit Siemens in

Verbindung setzen zu müssen.

Zur Rettung der Siemens Kolleg-

*innen in Karlsruhe / Erlangen muss

jedoch erklärt werden, dass nachweislich

zum 10. Dezember 2019 von

Siemens eine Sicherheitswarnung

herausgegeben wurde und auch mit

dem Servicepack R8.2 SP1 ein umfangreiches

Sicherheitsupdate herausgebracht

wurde (siehe hierzu:

https://cert-portal. siemens.com/

productcert/pdf/ssa-451445. pdf).

Das Cyber+Infrastructure Department

des US Homeland Security

Ministeriums verwies am 17.12.2019

medienwirksam auf Sicherheitswarnung

und -update (Abbildung 4).

Auch wurden direkt von der US-

Sicherheitsbehörde eine E-Mail-

Adresse und eine Telefonnummer

angegeben, an die sich betroffene US-

Firmen wenden konnten.

Zwischen der Sicherheitswarnung

und der Bereitstellung des Sicherheitsupdates

auf der einen Seite und

der Präsentation der Sicherheitslücken

auf 36C3 lagen 19 (in Worten:

neunzehn) Tage.

Energieunternehmen – gleich ob

Netzbetreiber oder Energieerzeuger –

welche eine Warnmeldung des Herstellers

ihrer Leittechnik erhalten,

dann 19 Tage nichts tun und erst nach

entsprechenden Meldungen in der

Tagesschau nach 21 Tagen besorgt

nachfragen, ob denn überhaupt die

Sicherheitslücke gepatcht wurde,

haben mehr als eine große Herausforderung

in ihrer IT-/OT-Sicherheit.

Nun könnte man natürlich argumentieren,

dass die in diesem Artikel

dezidiert beschriebene Thematik

Java- Umfeld ja nur die innere Kraftwerkssicherheit

beträfe, aber es waren

auch diverse andere sicherheitsrelevante

Aspekte betroffen, auf die

hier nicht weiter eingegangen wird.

Wenn bei der Leittechnik trotz

Warnmeldung nicht gepatcht wird, so

stellt sich die Frage, wie es denn dann

bei Assets ist, die aus Sicht der Verantwortlichen

noch weniger relevant

sind. Das, was hier in Teilen geschieht,

muss aus juristischer Sicht mit grober

Fahrlässigkeit umschrieben werden.

Bzgl. der sonstigen Warnmeldungen

muss jedoch zugegeben

werden, dass die Vielzahl der CVE-

Warnmeldungen für viele Unternehmen

einfach unüberschaubar

geworden ist.

Common Vulnerabilities and

Exposures (nachfolgendend nur noch

CVE genannt), ist eine Liste mit

öffentlichen Sicherheitsschwachstellen

in Systemen der Informationstechnologie.

Unter CVE versteht man

in der Regel die CVE-Nummer, die

einer bestimmten Schwachstelle

zugewiesen ist. Die CVE hilft IT-Fachkräften

derartige Schwachstellen

leichter zu priorisieren und zu

beheben, um die Systeme sicherer zu

machen.

CVE wird überwacht von der

MITRE Corporation und von der

Cybersecurity and Infrastructure

Security Agency finanziert, welche

beide zum U.S. Department of

Homeland Security gehört.

CVE-Einträge sind vergleichsweise

kurz und enthalten keinerlei hinreichenden

technischen Daten oder

Infos zu Risiken, Auswirkungen

und Fixes. Diese Details werden in

anderen Datenbanken angezeigt, so

zum Beispiel:

1. U.S. National Vulnerability Database:

https://nvd.nist.gov/

2. CERT/CC Vulnerability Notes

Database: https://www.kb.cert.

org/vuls/

3. diverse andere.

Inmitten dieser verschiedenen Systeme

sorgen die CVE-Nummern dafür,

dass der Benutzer Sicherheitsschwachstellen

eindeutig voneinander

unterscheiden kann.

Oben genannte CVE-Nummern

werden von einer CVE Numbering

Authority (CNA) zugewiesen. Hiervon

gibt es derzeit circa 100. Es sind

dies wichtige (und kooperative) IT-

Anbieter, Sicherheitsfirmen und

Forschungseinrichtungen. Mitre weist

den CNAs CVE-Nummernblöcke zu.

Bei Bedarf können hieraus dann die

CVE-Meldungen systemisch und

nachvollziehbar generiert werden.

CVE-Meldungen können im Übrigen

aus unterschiedlichen Quellen

stammen, d.h.: Anbieter, Wissenschaftler

oder fachkundige Benutzerhelfen

helfen hier bei der Verbesserung

von Schwachstellen.

Um die Eigenschaft eines CVE's

zu bekommen, müssen folgende

Kriterien erfüllt sein:

1. Unabhängige Behebbarkeit

2. Bestätigung durch den betroffenen

Anbieter

3. Auswirkungen auf eine Codebase

| Abb. 4.

ICSA-19-351-02. https://www.us-cert.gov/ics/advisories/icsa-19-351-02

OPERATION AND NEW BUILD 159

Operation and New Build

36C3 – More Questions Than Answers ı Stefan Loubichi


atw Vol. 65 (2020) | Issue 3 ı March

OPERATION AND NEW BUILD 160

Der Schweregrad einer Schwachstelle

lässt sich durch verschiedene Modi

ermitteln. Eine weit verbreitete

Option ist das Common Vulnerability

Scoring System, welches aus mehreren

offenen Standards besteht, mit

denen eine Zahl zur Festlegung eines

Schweregrads zugewiesen wird. Die

Skala reicht von 0,0 bis 10,0, wobei

der Schweregrad mit der Zahl zunimmt.

Vergegenwärtigen wir uns an

dieser Stelle nur einmal an einer

kleinen Auswahl von möglichen im

Energiebereich (häufig) genutzten

Entitäten, wo es im Jahr 2019

entsprechende Sicherheitswarnmeldungen

gab:

Suchanfrage Siemens SPPA T3000

53 Einträge für das Jahr 2019

Quelle:

https://cve.mitre.org/cgi-bin/

cvekey.cgi? keyword=Siemens+

SPPA+T3000

Suchanfrage ABB 800xa

15 Einträge für das Jahr 2019

https://cve.mitre.org/cgi-bin/

cvekey.cgi? keyword=ABB+800xa

Suchanfrage Cisco Router

25 Einträge für das Jahr 2019

https://cve.mitre.org/cgi-bin/

cvekey.cgi?keyword=Cisco+Router

Suchanfrage SAP AIN

117 Einträge für das Jahr 2019

https://cve.mitre.org/cgi-bin/

cvekey.cgi?keyword=SAP+AIN

(SAP AIN = SAP Asset Intelligence

Network)

Suchanfrage Java

29 Einträge für das Jahr 2019

https://cve.mitre.org/cgi-bin/

cvekey.cgi?keyword=Java

Suchanfrage Windows 10

38 Einträge für das Jahr 2019

https://cve.mitre.org/cgi-bin/

cvekey.cgi?keyword=Windows+10

Suchanfrage Linux

368 Einträge für das Jahr 2019

https://cve.mitre.org/cgi-bin/

cvekey.cgi?keyword=Linux

Allein nur in dieser begrenzten

Auswahl an Entitäten gab es 645

Sicherheitswarnmeldungen im Jahr

2019.

Es ist aus mangelnden zeitlichen

Ressourcen für den CISO eines

klein bis mittelgroßen Energieerzeugers

unmöglich, sich auch nur

annähernd in hinreichender Qualität

und Quantität mit diesen CVE's

zu beschäftigen. Diese Unternehmen

können in der Regel nur

hoffen, dass sie von Cyber-Kriminellen

bzw. Cyber-Terroristen als zu

uninteressant angesehen werden.

Interessanterweise haben (große)

europäische Energieerzeuger (mit

Ausnahme zweier EU-Länder) in

der Regel keinen „Chief Analyst

IT- Security/Cyber-Security“, welcher

sich alleine oder mit einem (kleinen)

schlagkräftigen Team um die Beantwortung

der nachfolgenden Fragen

kümmert:

1. Sind diese Sicherheitswarn meldungen

für unsere Organisation

relevant, d.h. sind diese Assets für

die Organisation überhaupt relevant?

2. Kann gepatcht werden, ohne dass

die auf diesen Assets laufenden

Programme nach dem Patch nicht

mehr „laufen“?

3. Welche Auswirkung hat es bzw.

könnte es haben, wenn wir den

Patch nicht realisieren?

In Japan und Südkorea sind derartige

Funktionen als „Chief Analyst IT-

Security/OT-Security“ neben den

CISOs und Ansprechpartnern IT-/

Cybersecurity oftmals implementiert.

Dies könnte auch der Grund sein,

warum KRITIS-Betreiber in diesen

Ländern sorgenfreier in die Zukunft

blicken.

Welche adhoc-Lösungen

könnten aus 36C3 gezogen

werden/Fazit?

Obwohl die Energiewirtschaft nur ein

Nischendasein auf dem 2019er Chaos

Computer Club hatte, so muss festgehalten

werden, dass die „Kaspersky-

Präsentation“ und die anschließenden

Diskussionen einiges bewegt haben.

Weitgehende Einigkeit besteht bei

vielen darüber, dass die Nachweise

in Sachen Assetmanagement bzw.

Patchmanagement aufgrund des Zeitdruckes

vieler Auditoren eine Zertifizierung

nach ISO/IEC 27001 erlauben

könnten. Das derzeitige Asset- und

Patchmanagement wird aber nach

derzeitiger Sicht nicht ausreichen,

um sich erfolgreich gegen eine professionelle

Attacke von Cyber-

Terroristen bzw. Cyber-Kriminellen

erfolgreich zur Wehr zu setzen.

Ein dynamisches IT-/OT-Assetmanagement

muss zur Gefahrenabwehr

umgehend realisiert werden,

wobei passives Scannen nicht ausreichen

wird. Um die derzeit teilweise

katastrophalen Zustände des unzureichenden

Patchmanagements zu

verbessern, müssen entweder für

kleinere bis mittlere Energieunternehmen

entsprechende intelligente

Wissensdatenbanken (mit Querverweis

zu Assetmanagement-Datenbanken)

eingeführt werden oder für

größere Energieunternehmen die

Stabsstelle eines „Chief Analyst IT-/

OT- Security“ geschaffen werden, die

unabhängig von den Funktionsträgern

CISO bzw. Ansprechpartner

IT-Sicherheit die aktuelle Gefährdungslage

bewerten. Zugegebener

Maßen kostet so etwas viel Geld,

jedoch immer noch weniger Geld als

der Ausfall der Energieerzeugung

bzw. den Imageschaden.

Referenzen

| Marc Elsberg, Blackout – Morgen ist es zu spät, blanvalet,

ISBN 9783442380299

| Thomas Petermann, Harald Bradke, Arne Lüllmann, Maik

Poetzsch, Ulrich Riehm,Folgen eines langandauernden großräumigen

Stromausfalls, edition sigma, ISBN 978386081337

| Verordnung zur Bestimmung Kritischer Infrastrukturen nach dem

BSI-Gesetz, BGBl. I S. 1903

| Bundesnetzagentur, IT-Sicherheits-katalog gemäß § 11 Abs. 1a

EnWG, htps://www.bundesnetzagen tur.de/ Sharedocs/

Downloads/DE/Sach gebiete/Energie/Unternehmen_

Institutionen/Versorgungssicher heit/IT_Sicher heit/IT_

Sicherheitskatalog_08-2015.pdf? __blob=publicationFile&v=1

| https://www.heise.de/suche/

?q=Citrix&rm=search&sort_by=date

| https://securityaffairs.co/wordpress/96569/cyber-crime/

hackers-patch-citrix-servers.html

| https://assets.new.siemens.com/siemens/assets/api/

uuid:fd8546a5-17c0-476b-86fe-cc5b5187dd16/

version:1576355 096/wp-ics-security-v8-0-en-2019-12-10.pdf

| R. Abrams, „WeLiveSecurity (Packers),“ 27 October 2008.

[Online]. available: http://www.welivesecurity.com/2008/

10/27/an-introduction-to-packers/

| KPMG Wirtschaftskriminalität in Deutschland 2018

| Urteil des Bundesverfassungsgerichtes in den Sachen 2 BvR

2233/07, 2 BvR 1151/08, 2 BvR 1524/08

| https://cert-portal. siemens.com/product cert/pdf/

ssa-451445.pdf

| https://www.us-cert.gov/ics/advisories/ icsa-19-351-02

| https://nvd.nist.gov/

| https://www.kb.cert.org/vuls/

Author

Prof. h.c. PhDr. Dipl.-Kfm./

Dipl.-Vw. Stefan Loubichi

International experienced lead

auditor for management systems

(ISO 27001, ISO 14001, ISO 9001,

ISO 45001, ISO 26000), auditor

according to § 8 BSI-Law and

IT-security catalogue, more than

ten years of international

experience in implementing ITand

cyber security

Essen, Deutschland

Operation and New Build

36C3 – More Questions Than Answers ı Stefan Loubichi


atw Vol. 65 (2020) | Issue 3 ı March

Nuclear Power World Report 2018

Editorial office

At the end of the year 2018, there were 450 nuclear power plant units in 31 countries in operation* worldwide.

This means that the number of units increased by 1 unit to the key date of the previous year (31 December 2017: 449,

+1 unit, -0.25 %) (compare Figure 1) due to the commissioning (= first criticality) of 8 new plants, and the final

decommissioning of 7 plants. In the following are the values given on 31 December 2018 and change compared to the

previous year as a percentage in brackets. There were 53 (58, -5.0 %) nuclear power plant units under construction in

17 (16) countries, in other words, 1 less than on the previous year’s key date. The available total gross capacity 1) of the

nuclear plants operating amounted to 424,074 MWe (420,383 MWe, +1.0 %) and the total net capacity to 401,416 MWe

(397,009 MWe, +0.9 %). This equates to an increase of 3,691 MWe gross and 4,407 MWe net. The additional capacity

results mainly from newly defined nominal capacities of operating plants (compare Table 1 and Figures 1 to 3). As of

the year 2017 the base for all capacities, in particular for the U.S. nuclear power plant units, are the nameplate data. Due

to cooling water conditions (higher or lower cooling water temperatures with respect to design capacity) actual gross

and net capacities may vary by plus or minus 3 % of the nameplate (design) capacity. In some countries the lower

capacity value is used for capacity data due to its relevance for system services.

In the year 2018, the nuclear power plant units Haiyang 1

(1250 MW, PWR), Sanmen 1 (1251 MW, PWR), Sanmen 2

(1251 MW, PWR), Taishan 1 (1750 MW, PWR), Tianwan 4

(1060 MW, PWR), and Yangjiang 5 (1086 MW, PWR) in

China, and Leningrad 2-1 (1187 MW, PWR) in Russia reached

first criticality, were connected to the grid

for the first time and put into commercial operation.

Additionally Haiyang 2 (1250 MW, PWR) in China reached

first criticality and was connected to the grid for the first

time. The commissioning program followed. Commercial

takeover by the operator was planned in the first half of

2019. Tianwan 3 (1060 MW, PWR, in 2019) in China and

Rostov 4 (1030 MW, PWR) in Russia were connected to

the grid for the first time and put into commercial

operation; date of first criticality was 29 September 2017

and 29 December 2017.

In 2018 four additional nuclear power plant units

resumed operations after long-term shutdown. In Japan

the units Genkai 3 (1180 MW, PWR), Genkai 4 (1180 MW,

PWR), Ohi 3 (1180 MW, PWR), and Ohi 4 (1180 MW,

PWR) were restarted after about 7 years of lay-up

operations respectively after the Tohoku earthquake and

tsunami in 2011. In 2018 in total nine NPP‘s have been

restarted since 2011, when all 51 nuclear power plants in

operation in Japan have been shut down for lay-upoperation

and safety checks. E.g. in Canada in total 6 units

were restarted after more than 10 years of lay-up

operations respectively. In the course of the liberalisation

of the Canadian electricity market in the mid-1990s, the

operator at the time Ontario Hydro ascertained insufficient

competitive capacity in the market environment for 4 units

at the site Bruce with around 3,100 MW as well as for 4

others at the site Pickering with approximately 1,850 MW.

That is the reason why the 8 CANDU units Bruce A1 to

Bruce A4 and Pickering 1 to Pickering 4 were disconnected

from the grid and removed from commercial operations

between 1995 and 1997. Pickering 1 and Pickering 4 were

re-commissioned in 2003 and 2005 by the new operator

Ontario Power Generation due to changes in the market

and after a retrofitting program. Bruce 3 and Bruce 4 were

re-commissioned at the end of 2003/beginning of 2004.

With the re-commissioning of both units Bruce A-1 and

Bruce A-2 in 2012, the operator of the site BrucePower has

completed his investment program successfully. The site is

intended to secure the power supply in the region in the

long-term during the coming decades. With a gross capacity

of approximately von 6,740 MWe Bruce is also the nuclear

power site with highest output worldwide.

Worldwide 7 nuclear power units were definitively

taken out of operation in 2018: Japan the Ikata 2

(566 MW, PWR, first criticality 1981), Ohi 1 (1175 MW,

PWR, first criticality 1977), Ohi 2 (1175 MW, PWR, first

criticality 1978), and Onagawa 1 (524 MW, BWR, first

criticality 1983), in Russia the Leningrad 1 (1000 MW,

LWGR, first criticality 1973), in Taiwan, China, the Chin

Shan 1 (636 MW, BWR, first criticality 1977), and in the

USA Oyster Creek (595 MW, BWR, first criticality 1969).

There were 53 (55, -2 %) plants with 57,883 MWe gross

and 54,773 MWe net capacity under construction

worldwide at the end of the year 2018. That means that in

comparison to the figure of the previous year, there were

2 nuclear power units less under construction worldwide,

since 5 projects have been newly started and 7 plants have

attained first criticality. No project was suspended in 2018.

Work started for the unit Rooppur 2 (PWR VVER V-491,

1,194 MWe gross and 1,109 MWe net capacity) in Bangladesh

by the supplier Atomstroyexport. In the Republic of Korea

construction of the Shin-Kori 6 unit (PWR ACPR-1000,

1,087 MWe gross and 1,000 MWe net capacity) started. In

Russia construction started of the Kursk 2-1 unit (PWR

VVER V-510K, 1,255 MWe gross and 1,175 MWe net capacity)

by the supplier Rosatom. In Turkey construction

started of the first nuclear power plant of the country,

Akkuyu 1 unit (PWR VVER V-509, 1,200 MWe gross and

1,114 MWe net capacity) by the supplier Atomstroyexport.

Mexico 2

Canada 19

USA 98 |2

Slovak Republic 4|2

Czech Republic 6 Hungary 4

Finland 4|1

Slovenia 1

Sweden 8

Belarus -|2

Netherlands 1

United Kingdom 15|1

Russia 36|6

Switzerland 5

France 58|1

Spain 7

Turkey |1

Iran 1

Bulgaria 2 Ukraine 15

Romania 2 UAE -|4

Brazil 2|1

Argentina 3|1

Belgium 7

Germany 7

South Africa 2

Armenia 1

Pakistan 5|2

India 22|7

China 46|11

Bangladesh |2

Nuclear power plant units in operation: 450, location with units ( first number)

Nuclear power plant units under construction: 53, location with units ( second number)

Rep. Korea 24|5

Japan 38|2

Taiwan, China 5|2

| Fig. 1.

World map nuclear power plants in operation and under construction at the end of 2018.

* The atw lists nuclear

power plants as

“operating” as the

time when first

criticality was

attained as a

“nuclear” criterion.

Other sources refer

to the 1 st power generation

or the start

of commercial operation.

Nuclear

power plants are no

longer listed as

“ operating” when a

long-term cessation,

i.e. over several years,

has been

decided. Should the

operator possess a

valid framework

operating approval

or no application

for the definitive

cessation of the

operating plant has

been submitted,

then the operating

status is listed as

“lay-up”. (cf. Spain

and Japan).

1) The data for gross

and net capacities

have been revised

with reference to

“nameplate” data

as from 2018 (in

particular data for

U.S: nuclear power

plant units, source:

U.S. EIA)

As of: 31.12.2018

atw , 01/2020

161

WORLD REPORT

World Report

Nuclear Power World Report 2018


atw Vol. 65 (2020) | Issue 3 ı March

162

WORLD REPORT

Two units are planned to be build at the site. In the United

Kingdom the construction of the first of two EPR at the Hinkley

Point site started. Each reactor, Hinkley Point C-1 and

Hinkley Point C-2 is planned with a gross capacity of 1,720

MW and a net capacity of 1,630 MW.

Active construction projects (numbers in brackets)

listed are: Argentina (1), Bangladesh (2), Belarus (2),

Brazil (1), China (11), Finland (1), France (1), India (7),

Japan (2), Republic of Korea (5), Pakistan (2), Russia (6),

Slovak Republic (2), Taiwan, China (2), Turkey (1), the

USA (2), the United Arab Emirates (4) and the United

Kingdom (1).

Worldwide there were about 200 projects in the concrete

planning or application phase at the turn of the year

2018/2019. In addition, there are a further approx.

100 declarations of intent by companies or government

offices in other countries. Looking at the structural impact

of the incidents in Japan and Fukushima on 11 March

2011, it can be ascertained that, in the meantime, they do

not have an effect on the number of new construction project

and plans worldwide, with the exception of political

reactions in Germany, Italy and Switzerland.

Nuclear power plant units in operation [-]

500

400

300

200

100

0

1956 1960 1970 1980 1990 2000

2010 2015

Year

atw 12/2020

| Fig. 2.

Development of the number of nuclear power plants in operations from

1956 to 2018.

The development of the number of the commercially

operated nuclear power plants worldwide, in addition to

the available gross nuclear power plant capacity is depicted

in Figure 2 and Figure 3 for the years 1956 to 2018

(1956: year of commissioning the first commercial nuclear

power plant, Calder Hall 1, in Great Britain. The first

Country In operation Under construction Net nuclear

electricity production

Capacity

Capacity

Number

gross

[MWe]

net

[MWe]

Number

gross

[MWe]

| Tab. 1.

Nuclear power plant units worldwide in operation and under construction (set date: 31 December 2018),

nuclear electricity production and share of nuclear power of total electricity production in 2018 [Source: plant operators, IAEO, atw].

Nuclear

share

total

net

[MWe] [TWh] [%]

Argentina 3 1,750 1,627 1 29 25 6.45 5.00

Armenia 1 408 376 0 0 0 1.90 26.00

Bangladesh - 0 0 2 2.400 2,160 0.00 0.00

Belarus - 0 0 2 2,388 2,218 0.00 0.00

Belgium 7 6,220 5,937 0 0 0 27.30 39.00

Brazil 2 1,990 1,884 1 1,300 1,245 15.70 3.00

Bulgaria 2 2,000 1,906 0 0 0 15.40 33.00

Canada 19 14,385 13,517 0 0 0 95.00 15.00

China 46 45,328 42,294 11 11,757 10,860 281.00 4.00

Czech Republic 6 4,133 3,925 0 0 0 28.30 35.00

Finland 4 2,860 2,752 1 1,720 1,600 21.90 33.00

France 58 65,880 63,130 1 1,720 1,630 393.20 72.00

Germany 7 10,013 9,515 0 0 0 71.90 11.00

Hungary 4 2,000 1,889 0 0 0 14.90 51.00

India 22 6,780 6,219 7 5,300 4,824 35.40 3.00

Iran, Islamic Republic of 1 1,000 915 0 0 0 6.30 2.00

Japan 38 38,242 36,728 2 2,760 2,650 49.30 6.00

Korea, Republic of 24 23,495 22,474 5 7,000 6,700 127.10 24.00

Mexico 2 1,640 1,560 0 0 0 13.20 5.00

Netherlands, The 1 515 482 0 0 0 3.30 3.00

Pakistan 5 1,467 1,355 2 2,200 2,028 9.50 6.00

Romania 2 1,412 1,305 0 0 0 10.50 17.00

Russia 36 29,089 27,217 6 4,875 4,525 172.20 18.00

Slovak Republic 4 1,950 1,816 2 942 880 13.70 55.00

Slovenia 1 727 696 0 0 0 5.50 36.00

South Africa 2 1,940 1,860 0 0 0 10.60 5.00

Spain 7 7,398 7,121 0 0 0 53.40 20.00

Sweden 8 8,706 8,350 0 0 0 63.90 40.00

Switzerland 5 3,485 3,333 0 0 0 24.30 38.00

Taiwan, China 5 5,213 5,028 2 2,712 2,630 26.60 11.00

Turkey - - - 1 1,200 1,114

Ukraine 15 13,818 13,090 0 0 0 78.50 52.00

United Arab Emirates - 0 0 4 5,600 5,380 0.00 0.00

United Kingdom 15 10,366 9,361 0 0 0 59.10 18.00

United States of America 98 109,864 103,686 2 2,500 2,230 808.30 20.00

Total 450 424,074 401,416 53 58,123 54,329 2543.65 11.60

World Report

Nuclear Power World Report 2018


atw Vol. 65 (2020) | Issue 3 ı March

450

Installed nuclear power plant capacity worldwide [gross, GW = 10 3 MW]

Electricity production in nuclear power plants [TWh = 10 9 kWh/a]

3,000

Unit capability factor [%]

100

400

2,500

80

163

300

2,000

60

200

100

0

1956 1960 1970 1980 1990 2000

2010 2015

Year

atw 12/2020

| Fig. 3.

Development of the gross nuclear power plant capacity in operation from

1956 to 2018.

1,500

1,000

500

0

1956 2000

1960 1970 1980 1990 2010 2015

Year

| Fig. 4.

Development of the nuclear electricity production and plant availability

from 1956 to 2018.

40

20

0

atw 12/2020

WORLD REPORT

nuclear- generated electricity occurred on 20 December

1951 in the US-American Experimental Breeder Reactor

EBR-1.) Also worth noting is the continued capacity

increase (Figure 3) in the 1980s, as the nuclear power

plants, ordered due the impact of the first oil crisis at the

beginning and end of the 1970s, started operations with

high capacities per plant averaging 1,000 MWe. Worldwide

and in Germany, the commissioning of the nuclear power

unit Biblis A in 1974 with 1,225 MWe gross represented an

important milestone in the development of high-capacity

plants, which were from the beginning designed also

technically for a longer operating period of several decades

– previously, the pilot plants were also built with the focus

on technical feasibility and practicability. Since about 1993,

a developmental stagnation can be observed with the number

of nuclear power plants and capacity and this is due, on

the one hand to the de-commissioning of older, prototypical

and no longer profitable plants in the USA, Europe

and the GUS states and, on the other, the compensatory

expansion of capacities in the Asian region and capacity

increases of operating plants. Since the mid-1990s,

remarkable increases in capacity have been achieved. With

further optimised turbines alone, an increase in capacity of

around 5 % can be gained without increasing the reactor

capacity. If a construction measure also makes increasing

the thermal reactor capa city possible, then the generating

capacity in countries such as Mexico, Sweden, the Slovak

Republic, the USA and Hungary that are already approved

and realised would increase by around 20 %. Until the end

of the 2010s, a cumulated capacity increase totalling

7,750 MW is estimated. This equates to the new construction

of about 4 large nuclear power units. In the USA alone,

capacity increases totalling approx. 10,000 MWe net have

been realised or approved, a further 500 MWe currently to

be realised until 2020 have been applied for. In Sweden,

the operators estimate a capacity increase program

totalling 1,050 MWe net. In Mexico the nuclear power plant

units Laguna Verde 1 and Laguna Verde 2 have been

upgraded from 700 MWe gross to 840 MWe gross each; this

is an capacity increase of about 20 %.

With the 450 operating plants at the end of 2018, the

number was equal to the hitherto record year 2016 with

also 450 nuclear power plants in operation.

The nuclear power plants worldwide have achieved

an approx. 1 % higher result in 2018 compared to the

previous year 2017 in the net electricity generation

with approx. 2,544 billion (10 9 ) kWh (2,477.2 billion kWh,

provision details and calculations, cf. Table 1 and

Figure 4). In Japan, with the exception of five reactor

units, all other 37 plants were not connected to the grid

for the whole year. The previous best result of nuclear

electricity production accounted for 2,658 billion kWh in

2006. Good operating results were reported from the power

plants in Belgium, China, Finland, Germany, Russia,

Switzerland and the USA.

The overall operational reliability of the plants is

underlined by the average mean availability for work of all

nuclear power plants worldwide (cf. Figure 4). Their

average had increased since the mid 1990s. The strong

decrease in availability at the beginning of the 1990s is due

to the large drop in the availability of plants in the East

European states and the GUS states, whose operating data

were included consistently in the statistics for the first time.

The long-term cessation of individual profitable

nuclear power plant, and the quasi whole nuclear power

park of Japan as of 2011, also influence the lower average

availability in the years 2006 to 2009. Since 2011 the

availability is slightly increasing with the commissioning

of nuclear power plants in lay-up operation.

The Top Ten nuclear power plants in power generation

(MW gross and billion kWh ) 2018 are: (1) Chooz B-2, FR,

PWR, 1560 MW, 12.388 billion kWh; (2) Isar 2, DE, PWR,

1485 MW, 12.127 billion kWh; (3) Palo Verde-1, USA, PWR

1528 MW, 11.850 billion kWh; (4) Emsland, DE, PWR,

1406 MW, 11.495 billion kWh; (5) Susqehanna-2, USA,

BWR, 1374 MW, 11.470 billion kWh; (6) Millstone-3, PWR,

1308 MW, 11.168 billion kWh; (7) Peach Bottom-3, USA,

BWR, 1412 MW, 11.151 billion kWh, (8) Callaway-1, USA;

PWR, 1316 MW, 11.130 billion kWh; Oskarshamn-3, SE,

BWR, 1450 MW, 11.129 billion kWh; Comanche Peak-1,

USA, PWR, 1283 MW, 11.118 billion kWh.

Worldwide around 81,329 billion (10 9 ) kWh net

electricity have cumulatively been produced in nuclear

power plants since electricity was first generated from

nuclear power. The experience in the nuclear power plant

operations amount to approx. 17,300 reactor years.

Regarding climate protection, nuclear power plants

have avoided about 2.40 billion (10 9 ) t carbon dioxide

emisisons 2)

in 2018. The emissions avoided through

nuclear energy correspond to some 6 % of the current

annual emissions worldwide of CO 2 , in the meanwhile

over, approx. 36 billion tons. The emissions avoided each

year through nuclear power are distinctly higher than the

worldwide reduction targets contained in the existing

international protocols and agreements on climate

protection (Kyoto Protocol) for the period 2008 to 2012!

2) The CO 2 reduction

factor is based on

the average worldwide

CO 2 emissions

of fossile-fired

power plants in

countries with NPPS

in operation.

World Report

Nuclear Power World Report 2018


atw Vol. 65 (2020) | Issue 3 ı March

164

Preliminary Programme

KERNTECHNIK 2020

PRELIMINARY PROGRAMME

Tuesday, 5. May 2020

Plenary Day

9:00-13:00

Convention Hall I/A

N.N.

F.A.Z.,

will lead through the Plenary Day.

Plenary Session

9:00 D/E

Begrüßung und

Eröffnungsansprache

Welcome and Opening Address

Dr. Joachim Ohnemus

Vorsitzender des Vorstands, KernD

Policy

9:15 D/E

Kernenergiepolitik in der Schweiz –

Wie geht es weiter?

Nuclear Energy Policy in Switzerland

– What's Next?

Hans-Ulrich Bigler

Präsident, Nuklearforum Schweiz

9:35 D/E

Wirtschaftsstandort Deutschland –

Welchen Beitrag kann die kerntechnische

Industrie leisten?

Business Location Germany – What

Contribution Can Be Made by the

Nuclear Industry?

Karlheinz Busen, MdB

Stellvertretendes Mitglied im Ausschuss

für Umwelt, Naturschutz und nukleare Sicherheit,

Deutscher Bundestag

Economy

9:55 D/E

Restbetrieb und Rückbau in Nordund

Süddeutschland

Dismantling and Last Years of

Operation in Northern and Southern

Germany

Dr. Guido Knott

CEO, PreussenElektra GmbH

Competence

10:25 D/E

Kerntechnische Ausbildung –

Ein Grund zur Sorge?

Nuclear Education – A Cause

of Concern?

Prof. Dr. Jörg Starflinger

Geschäftsführender Direktor,

Institut für Kern energetik und Energiesysteme

(IKE), Universität Stuttgart

10:45 Coffee Break

11:15 D/E

System-Know how – der Schlüssel

für die Zukunft der nuklearen

Kompetenz

System-Oriented Know-How –

The Key to the Future of Nuclear

Competence

Wolfgang Däuwel

Framatome GmbH, Germany

Waste Management

11:15 E/D

Creating Public Acceptance

for a Final Repository

Jussi Heinonen

Director of the Nuclear Waste and Material

Regulation Department, STUK – Radiation and

Nuclear Safety Authority, Finland

11:35 D /EN

Ansprache

Karsten Möring, MdB

Ordentliches Mitglied im Ausschuss

für Umwelt, Naturschutz und nukleare Sicherheit,

Deutscher Bundestag

11:55 E/D

N. N.

N. N.

12:10 D/E

Die Standortauswahl –

Entwicklungen und Einblicke

Site Selection – Developments

and Insights

Steffen Kanitz

Managing Director, Bundesgesellschaft

für Endlagerung mbH (BGE), Germany

12:30

Verleihung der Ehrenmitgliedschaft

der KTG | Award of the Honorary

Membership of KTG

Präsentiert von Frank Apel

Vorsitzender der KTG

13:00 End of Plenary Session

13:00 - 14:30 Lunch Break

19:00 - 23:00

KernD-Reception and

Social Evening

in the Exhibition Area

Änderungen vorbehalten / Subject to change

KERNTECHNIK 2020

Preliminary Programme


atw Vol. 65 (2020) | Issue 3 ı March

165

Tuesday, 5. May 2020

Themenblock

Kompetenz & Innovation

CFD Simulations for Reactor

Safety Relevant Objectives

Raum III, EG

Koordinator

Dr. Andreas Schaffrath

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH, Germany

14:00

Advances in CFD Applications

to Nuclear Safety

Dominique Bestion

currently Commissariat à l’énergie atomique et aux

énergies alternatives (CEA), Grenoble

14:30

Progress in the EPFL-Supported

IAEA Project for an Open-Source

Platform for Reactor Analysis

Dr. Carlo Fiorina

Ecole Polytechnique Fédérale de Lausanne (EPFL)

15:00

Water Hammer Simulation in Pipe

Systems with the Open Source Code

OpenFOAM

Paul Fuchs

Prof. Dr. Marco K. Koch

Ruhr-Universität Bochum,

Plant Simulation and Safety

15:30 Coffee Break

Themenblock

Sicherheit und Betrieb

Raum V, 2.OG

Koordinatoren

Dr. Tatiana Salnikova

Framatome GmbH, Germany

Erik Baumann

Framatome GmbH, Germany

Dr. Angelika Bohnstedt

Karlsruhe Institute of Technology, Germany

14:00

N. N.

N. N.

16:00 Coffee Break

16:30

N. N.

N. N.

17:00 End of Session

Subject to change.

Themenblock

Rückbau & Abfallbehandlung

Praktische Erfahrungen aus

ersten Demontageprojekten

Raum I, 1. OG

Koordinator

Dr. Erich Gerhards

PreussenElektra GmbH, Germany

16:00

Freigabe 4.0

Dr. Tim Thomas

Safetec Entsorgungs- und Sicherheitstechnik GmbH

16:30

Errichtung des Zwischenlagers LUnA

im Kernkraftwerk Unterweser

Ingo Fehrenbach

LUDWIG FREYTAG GmbH & Co. Kommanditgesellschaft

18:00 End of Session

This Session will be held in German

with simultaneous English Translation.

Themenblock

Zwischen- und Endlagerung

Raum II, EG

Koordinator

Dr. Ron Dagan

Karlsruher Institut für Technologie (KIT), Germany

14:00

Welcome and Keynote

Begrüßung und Ansprache

N. N.

N. N.

14:30 - 15:30

N. N.

N. N.

15:30 Coffee Break

KERNTECHNIK 2020

16:00

Application of CFD Codes

in Nuclear Licensing and

Supervisory Procedures

Frank Blömeling

TÜV NORD EnSys GmbH & Co. KG

14:00

Robotergestützte Zerlegung

der RDB-Einbauten im Kernkraftwerk

Brunsbüttel

Thomas Eichhorn

Geschäftsführer Orano GmbH , Germany

16:00

Introducing Burnup Credit Rendit for

Expansion Stage 2 of the External

Spent Fuel Pool at Gösgen NPP

Dr. Axel Hoefer

Framatome GmbH

16:30

Coupling of OpenFOAM

to System Codes

Joachim Herb

Gesellschaft für Anlagen und Reaktorsicherheit

(GRS) gGmbH

17:00

Multiphysics Calculations – Future

Vision and next Steps

Prof. Dr. Horst-Michael Prasser

ETH Zürich, Department Maschinenbau und

Verfahrenstechnik

17:30 End of Session

14:30

Feedback from Large Integrated D&D

Projects

Joseph Boucau

Westinghouse Electric Germany GmbH

15:00

Projektmanagement

im Dufo Projekt KWL

Christian Bolles

UNIPER-Anlagenservice GmbH

15:30 Coffee Break

16:15

Casks and Casks stacks

in Interim Storage Facilities

Under Earthquake Loads

Dr. Nina Wieczorek

TÜV NORD EnSys GmbH & Co. KG

Änderungen vorbehalten / Subject to change

KERNTECHNIK 2020

Preliminary Programme


atw Vol. 65 (2020) | Issue 3 ı March

166

Wednesday, 6. May 2020

KERNTECHNIK 2020

16:30

Aktuelles Vorgehen bei der Ermittlung

von Freisetzungsparametern

bei einem Flugzeugabsturz auf eine

kerntechnische Anlage im Rahmen

von Störfallanalysen

Dr. Steffen Böhlke

Steag Energy Services GmbH

16:45

Radiologische Bewertung von auslegungsüberschreitenden

Ereignissen

im Rahmen der Genehmigungsverfahren

zur Lagerung von radioaktiven

Abfällen in Deutschland

Dr. Vera Derya

WTI Wissenschaftlich-Technische Ingenieurberatung

GmbH

Young Scientist's Workshop

Part I

Raum Paris

Koordinator

Prof. Dr.-Ing. Jörg Starflinger

University of Stuttgart, Germany

The Jury

Prof. Dr. Marco K. Koch

Ruhr-Universität Bochum, Germany

Prof. Dr.-Ing. Jörg Starflinger

University of Stuttgart, Germany

Dr. Katharina Stummeyer

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH, Germany

Dr. Hannes Wimmer

GNS Gesellschaft für Nuklear-Service mbH,

Germany

Sponsors of the

Young Scientist's Workshop-

Competence Award:

GNS Gesellschaft

für Nuklear-Service mbH

Kraftanlagen Heidelberg GmbH

14:00-14:05

Welcome and Introduction

Prof. Dr.-Ing. Jörg Starflinger

University of Stuttgart, Germany

14:05-17:50

N. N.

N. N.

17:50 End of Session

Themenblock

Kompetenz & Innovation

Reactor Physics, Thermo

and Fluid Dynamics

Raum III, EG

Chair

Dr. Andreas Wielenberg

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH, Germany

9:00 - 10:00

Keynotes

N. N.

N. N.

10:00 Coffee Break

10:30

Keynotes

N. N.

N. N.

11:00

Framatome’s Thermohydraulik

Platform: Experimentelle Sicherheitsforschung

und Innovationen

Dr. Thomas Mull

Framatome GmbH

11:15

Geplante Experimente und Analysen

zur Modellierung der Zinkfreisetzung

und thermo hydraulischer Aus wirkungen

von Zinkborat ablagerungen

im DWR-Kern

Dr. André Seeliger

Hochschule Zittau / Görlitz, Germany

11:30

Laboruntersuchungen zu Zinkfreisetzungen

im DWR-Containment

sowie zum Kristallisations- und

Ablagerungs verhalten von Zinkboraten

im DWR-Kern als Basis für die

Modellierung unterschiedlicher KMV

Szenarien

Dr. Ulrich Harm

Technische Universität Dresden, Germany

12:00 Lunch

13:00

Water Hammer Simulation

in Pipe Systems with Open Source

Code OpenFOAM

Paul Fuchs

Ruhr-Universität Bochum, Germany

13:15

Numerische Simulation des unterkühlten

Strömungssiedens für

reaktortechnische Anwendungen

mit OpenFOAM

Zhi Yang

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH, Germany

13:30

Simulation der DEBRIS-Testanlage mit

dem Störfallanalysecode ASTEC V2.1

Jan Peschel

Ruhr-Universität Bochum, Germany

13:45

Analyse des Schmelzeverhaltens

im unteren Plenum des Reaktors

der TMI-2 Anlage mit dem Systemcode

AC² – ATHLET-CD

Florian Krist

Ruhr-Universität Bochum, Germany

14:00

Verification of Azimuthal Melt

Relocation Modelling

Christophe D'Alessandro

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH, Germany

14:15

Simulation ausgewählter

BETA-Versuche

Maximilian Hoffmann

Ruhr-Universität Bochum, Germany

14:30

Generalized Interpretation of MCCI-

Experiments with the AC2/COCOSYS

Code and Application to Core Catcher

Simulation

Claus Spengler

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH, Germany

14:45

N. N.

N. N.

15:00 End of Session

Änderungen vorbehalten / Subject to change

KERNTECHNIK 2020

Preliminary Programme


atw Vol. 65 (2020) | Issue 3 ı March

Wednesday, 6. May 2020

167

Know-how, New Build

and Innovations

Raum V, 2. OG

Chair

Dr. Matthias Lamm

Framatome GmbH

13:00

Es ist eine Illusion, zu glauben,

Deutschland könne gleichzeitig

aus der Kernkraft und aus der Kohle

aussteigen.

em. Prof. Dr. Manfred Mach

Emeritus Technische Universität Berlin

13:15

Bürgerinitiative pro Kernenergie

Hauke Rathjen

Bürgerinitiative MitKernenergie

11:00

Evolution of Core Design and Operational

Requirements in German PWRs

from a Technical Expert Organization's

Point of View

SebastianSchoop

TÜV NORD EnSys GmbH & Co. KG

11:15

Reactor Core Control Based on Artificial

Intelligence

Dr. Victor Morokhovskyi

Framatome GmbH

11:30

The EMPIRE Irradiation Test: Lower-

Enriched Fuel for High-Performance

Research Reactors

Bruno Baumeister

Technische Universität München

Themenblock

Rückbau & Abfallbehandlung

Decommissioning

of Nuclear Installations

Raum I, 1. OG

Chair

Dr. Martin Brandauer

Karlsruhe Institute of Technology (KIT)

9:00 - 10:00

N. N.

N. N.

10:00 Break

10:30 - 12:00

N. N.

N. N.

KERNTECHNIK 2020

13:30

BioKernSprit – die Lösung

für ein Energieproblem

Jochen Michels

Consulting Company

11:45

Nachweis der Integrität des Zentralkanals

im FRM II mit ZfP Methoden

Dr. Heiko Gerstenberg

Technische Universität München ZWE FRM II

12:00 Lunch

This Session will be held in German/English

with simultaneous translation.

13:45 End of Session

Themenblock

Sicherheit und Betrieb

Operation and Safety

of Nuclear Installations, Fuel

Raum IV, 2.OG

Chair

Dr.-Ing. Thorsten Hollands

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH, Germany

9:00

Keynote

Taking Responsibility – The Scientific

Backing of the German Quiver Project

Dr. Wolfgang Faber

PreussenElektra GmbH, Hannover

9:30

Keynote

Lifetime Extension of I&C-Modules

Dr. Lothar Mensching

PreussenElektra GmbH, Hannover

10:00 Coffee Break

10:30

Keynote

Quo vadis Netzstabilität –

Zunehmende Herausforderungen im

Wandel des Erzeugungsportfolios‘

Dr. Kai Kosowski

PreussenElektra GmbH, Hannover

12:00 Lunch

13:00

Novel Challenges for Anomaly

Detection in I&C Networks:

Strategic Preparation for the Advent

of Information Hiding based Attacks

Kevin Lamshöft

Otto-von-Guericke-Universität Magdeburg

13:15

Perspektive der Energiewende

ohne Kernenergie und ohne Kohlekraftwerke

Dr. Helmut Alt

FH Aachen

13:30

N. N.

N. N.

14:00 End of Session

Themenblock

Zwischen- und Endlagerung

Radioactive Waste Management,

Storage and Disposal

Raum II, EG

Chair

Dr. Ron Dagan

Karlsruhe Institute of Technology (KIT), Germany

9:00

Keynote

Marcus Seidel

9:30

Activity Ratio of Short-Lived

Radio nuclides in MTR Fuel Assemblies

Under Irregular Irradiation Regime

Dr. Erez Gilad

Ben-Gurion University of the Negev

10:00 Break

10:30

Keynote

Ander Sjölan

11:00

A Geopolymer Waste Form

for Technetium, Iodine and

Hazardous Metals

Prof. Dr. Werner Lutze

The Catholic University of America

Änderungen vorbehalten / Subject to change

KERNTECHNIK 2020

Preliminary Programme


atw Vol. 65 (2020) | Issue 3 ı March

168

Wednesday, 6. May 2020

KERNTECHNIK 2020

11:15

Mobility of Radionuclides in SNF in

View of Extended Dry Interim Storage

Dr. Michael Herm

Karlsruhe Institute of Technology

11:30

Experimentelle Untersuchung des

geplanten Probenentnahmesystems

im Fortluftkanal Kamin des Endlagers

Konrad

Herr Dr. Steffen Wildgrube

VPC GmbH

12:00 Lunch

13:00

IP-2 Beladungen „planbar“ machen

– Beladetools zur Abschätzung der

Transportfähigkeit von IP-2 Behältern

und ihre Verwendung im Rückbau

deutscher Kernkraftwerke

Dr. Luc Schlömer

WTI Wissenschaftlich Technische Ingenieurberatung

GmbH

13:15

Overcoming Design and Licensing

Challenges – The Type B(U)F Flask

TGC 27

Dr. Simon Orilski

AGC c/o GNS mbH

14:30

Impact of Neutron Slowing Down

on Radiation Fields for High-Level

Nuclear Fuel Waste Storage

He Wu

KIT-Institute for Nuclear Waste Disposal

15:00 Coffee Break

15:30

Keynote

N. N.

N. N.

16:00 End of Session

This Session will be held in German/Englisch

with simultaneous translation.

Young Scientist's Workshop

Part II

09:00-12:00

N. N.

N. N.

15:10

Prize Ceremony in the Exhibition Area

12:45

Besuch der Stationen II

13:45 Coffee Break

14:00

Auflösung des Handyexperiments

14:10

Besuch der Stationen III

15:10

Schlussworte

15:20 End of Campus

Jetzt anmelden:

kerntechnik2020.com

13:30

Erfahrungen aus der Entsorgung

von Sonderbrennstäben mit Köchern

in deutschen Kernkraftwerken

Wolfgang Reuter

GNS Gesellschaft für Nuklear Service mbH, Germany

CAMPUS Nuclear Technology

Foyer 3

Koordinatoren

Dr. Florian Gremme

Natalija Cobanov

Young Generation Network, KTG e. V., Germany

13:45

Quality Assurance and Data Analysis

in Automated Radiological Characterization

of Large Soil Volumes

Dr. Christoph Klein

NUKEM Technologies Engineering Services GmbH

14:00

Development of an Automated

Decontamination Cabin with

Documentation Based on Industry 4.0

Features

Dr. Maarten Becker

iUS Institut für Umwelttechnologien und

Strahlenschutz GmbH

14:15

APG 02 durch Betonierung –

das Abfall/Matrix-Verhältnis

Martina Kößler

GNS Gesellschaft für Nuklear Service mbH, Germany

9:00

Willkommen & Vorstellung der KTG JG

Dr. Florian Gremme

Junge Generation der KTG

9:20

Radioaktivität & Strahlenschutz

, Handyexperiment

Sven Jansen

VKTA – Strahlenschutz, Analytik & Entsorgung

Rossendorf e. V.

9:50

Arbeiten in einem Kernkraftwerk

Sebastian Hahn

KTG, Deutschland

10:10 Coffee Break

10:25

Besuch der Stationen I

11:25

Energie im Zeichen des Klimawandels

Andrea Kozlowski

FH Aachen

12:00 Lunch

Änderungen vorbehalten / Subject to change

KERNTECHNIK 2020

Preliminary Programme


atw Vol. 65 (2020) | Issue 3 ı March

Inside

Liebe LeserInnen der “Jungen Generation”,

liebe LeserInnen, die nicht mehr zu dieser

Altersgruppe zählen!

Kennen Sie die Bücher „Mama, erzähl

mal!“ oder „Papa, erzähl mal!“?

Das sind Ausfüllbücher, die Kinder oder Enkel ver schenken

(auch ich habe ein solches Buch bekommen), um

Antworten auf viele ihrer Fragen zu bekommen:

Was passierte gerade in der Welt, als du geboren

wurdest? Was für ein Kind warst du, als du klein warst?

Was ist die nachhaltigste Erinnerung an Deine Kindheit?

Was für ein Kind war ich in deinen Augen, als ich noch

klein war? Wann ist mir der erste Zahn gewachsen?

Fragen über Fragen. Beim Beantworten habe ich mich

häufig geärgert, dass ich nichts dokumentiert hatte;

manchmal halfen Fotos.

Damit ich auch später noch Fragen zur deutschen

Kerntechnik beantworten kann, schreibe ich mir jetzt

meine Antworten auf. Zudem sind diese Antworten auch

gedacht als einerseits Rückblick zu den allgemeinen

Entwicklungen der Kernenergie seit Fukushima sowie als

Momentaufnahme zur derzeitigen Klimaschutzdiskussion.

Andererseits sollen meine Ausführungen die LeserInnen

dieser Zeilen zum weiteren Nachdenken anregen.

Was ist im März 2011 in Japan passiert?

Am 11. März 2011 erschütterte ein Erdbeben mit einer

Stärke von 9 die Ostküste Japans. Das Beben erzeugte

einen gewaltigen Tsunami. Bis zu 40 Meter hohe Wellen

rasten auf die Küste zu. Mehr als 18.000 Menschen starben.

Ganze Städte wurden verwüstet. Im Kernkraftwerk

Fukushima- Daiichi fiel der Strom aus. Noch am Abend des

11. März erklärte die japanische Regierung den nuklearen

Notfall. In den Wochen nach der Havarie bestätigte sich

der Verdacht einer Kernschmelze. Nach mehreren

Sammelklagen stellte ein japanisches Gericht Ende 2017

die Mitschuld des Staates und des Betreiberkonzerns

Tepco an der Katastrophe fest. Obwohl viele Gebiete um

das KKW Fukushima seit Ende März 2017 wieder

bewohnbar sind, herrscht noch bei vielen Menschen

Verunsicherung…

Wichtig ist meines Erachtens der psychisch-rationale

Umgang mit derartigen Ereignissen. Nach der wahlkampftechnischen

Schnellabschaltung der deutschen Kernkraftwerke

nach dem Reaktorunfall hat die Bundesregierung

2011 unter Führung von Kanzlerin und Doktorin der

Naturwissenschaften Angela Merkel beschlossen, die

Atomkraftwerke gestaffelt abzuschalten. Der Bundestag

hat dem zugestimmt – mit den Stimmen von CDU/CSU,

FDP, SPD und Grünen.

Warum hacken die Kinder im Kindergarten

auf mir rum, nur weil meine Eltern für die

Kerntechnik arbeiten?

Das war die Frage unseres Jüngsten nachdem der Pfarrer

mit den Kleinen über Fukushima und die böse Atomkraft

gesprochen hat. (Ich muss an dieser Stelle betonen, dass

unser Kindergarten mit einem kirchlichen Träger immer

super toll war und dies die einzige zweifelhafte „ Verirrung“

war.)

Warum wollen Sie, Herr Bundestags abgeordneter,

dass meine Eltern arbeitslos werden?

Diese Frage haben unsere Kinder dem MdB unseres Wahlkreises

auf der Kirchweih in unserem Ort gestellt, kurz

nachdem die namentliche Abstimmung zum Atomausstieg

im Bundestag gelaufen war. Vielleicht war es der falsche

Ort, es gab keine direkte Antwort. Aber nach mehreren

Wochen dann doch: er hat auch eine Familie, die er

ernähren muss.

Wer ist Greta Thunberg?

Greta Tintin Eleonora Ernman Thunberg ist eine

schwedische Klimaaktivistin, die im Kern eine Forderung

hat: Klimapolitik muss sich konsequent an den Erkenntnissen

der Wissenschaft orientieren.

Ich habe viele Jahre in Thunbergs Heimat gelebt und

gearbeitet. Schweden setzt neben Wasser, Biomasse und

Wind weiter auf Kernkraft. Zwischen 1973 und 2012 ist

der Anteil fossiler Energieträger von 71 auf 28 Prozent

gesunken, gleichzeitig wuchs der Anteil der Kernenergie

bis heute von einem auf rund 40 Prozent. Seit Beginn der

1990er-Jahre hat Schweden seinen CO 2 -Ausstoß um

26 Prozent reduziert – trotz eines erheblichen wirtschaftlichen

Aufschwungs.

„Greta“ hat eine Meinung zur Kernenergie. Sie schrieb:

Atomenergie könne „ein kleiner Teil einer sehr großen

neuen kohlenstofffreien Energielösung“ sein. Dies ist eine

Position, die ein beträchtlicher Teil der Experten aus

Wirtschaft und Energiesektor seit Jahren vertritt, die bei

einer Mehrheit der Umweltaktivisten allerdings nicht

willkommen ist. Nach 4 Tagen hat „Greta“ den Text

korrigiert: „Persönlich bin ich gegen Atomkraft. Aber laut

dem IPCC kann sie ein kleiner Teil einer sehr großen neuen

kohlenstofffreien Energielösung sein.“ Was war passiert?

Thunberg erklärte in einem Kommentar, sie habe die

„ kleine Änderung gemacht, weil einige Leute meine Worte

immer auf die Goldwaage legen…“

Vor knapp einem Jahr war Greta Thunberg zu Gast bei

„Anne Will“. Im Originalinterview hörte sich das so an:

Anne Will: Let me follow up. If one wants to stop the emissions

– and that is what you want: not to lower them but to stop the

emissions – is it then possible to avoid nuclear energy in your

understanding?

Greta Thunberg: Ask scientists. That is something I can’t

speak out on because I don’t have that scientific education.

That is such a big decision that we need to have scientific

evidence and scientific based recommendations on what we

should do. So, I can’t say what we should do.

Wer sind die Wissenschaftler, die nach „Greta‘s“

Meinung die Empfehlungen für die zukünftige Energiepolitik

erarbeiten sollen? Ich denke, in den Reihen der

KTG gibt es viele, die einen wirtschaftlich sinnvollen

Energiemix beschreiben und begründen können.

Wo „Fridays for Future“ drauf steht, soll auch „Fridays

for Future“ drin sein. Der Name solle vor Missbrauch

geschützt werden - deshalb hat Greta Thunberg jetzt den

Schutz ihres Namens und den ihrer Klima-Bewegungen

„Fridays For Future“ oder „Skolstrejk för klimatet“ als

Marken beantragt. Beide würden ständig und ohne

Zustimmung für kommerzielle Zwecke genutzt, erklärte

die 17-jährige Schwedin…

Und Greta Thunberg ist nach 2019 auch in 2020 als

Kandidatin für den Friedensnobelpreis nominiert.

169

KTG INSIDE

KTG Inside


atw Vol. 65 (2020) | Issue 3 ı March

170

KTG INSIDE

Wenn wir jetzt bis 2038 in Deutschland auch

noch aus der Kohle aussteigen, sollten wir

dann nicht aus Überlegungen der Versorgungssicherheit

zumindest die Konvoi-Anlagen ein

paar Jahre länger am Netz lassen?

Wir betreiben in Deutschland mit viel Fachexpertise die

sichersten Kraftwerke der Welt. Die Verfügbarkeiten sind

spitze und wir sind mehrfacher Weltmeister in der Stromproduktion.

In 2019 hatte eine konservative Gruppierung von CDU

und CSU, die WerteUnion, Laufzeitverlängerungen

gefordert. Dadurch könne der Kohleausstieg vorgezogen

werden, hieß es. Es sei höchste Zeit, den Fehler des übereilten

Atomausstiegs von 2011 zu korrigieren und „die

Laufzeit der sichersten Atomkraftwerke der Welt zu

verlängern“. Die Debatte um eine Laufzeitverlängerungen

war zuletzt allerdings auch in der Wirtschaft aufgeflammt.

Hochrangige Vertreter wie Linde-Aufsichtsratschef

Wolfgang Reitzle und jüngst VW-Vorstandschef Herbert

Diess hatten den Atomausstieg infrage gestellt. Diess sagte,

„wenn uns der Klimaschutz wichtig ist, sollten die

Kernkraftwerke länger laufen“.

Die deutschen Stromkonzerne sind sich einig, dass

gesellschaftlich und damit letztlich auch langfristig unternehmerisch,

eine erneute Änderung der hiesigen Kernenergiepolitik

ein hochriskantes, konfrontatives Spiel mit

unsicherem Ausgang wäre. Längst haben sie sich zudem

strategisch neu orientiert. Theoretisch könnte ein Dritter

im Auftrag der Bundesnetzagentur die Kernkraftwerke

betreiben, aber ein derartiges Szenarium ist zurzeit nicht

darstellbar und auch neue Brennelemente hat niemand

bestellt.

Politische Mehrheiten für einen Weiterbetrieb sind

nicht erkennbar und so hat auch die Bundesregierung

Spekulationen über eine Abkehr vom Atomausstieg aus

Klimaschutzgründen eine klare Absage erteilt. „Der

Ausstieg wird wie geplant vollzogen“, sagte Regierungssprecher

Steffen Seibert. Die Haltung der Bundes regierung

zur Atomkraft gelte unverändert.

In welchem gesellschaftlichen Umfeld betreiben

unsere Nachbarn ihre Kernkraftwerke und warum

will Polen sogar neu einsteigen und bis 2033 das

erste Kernkraftwerk am Netz haben?

Schauen wir nach Frankreich: 72 % des Stroms kommt aus

Kernkraftwerken und dies seit vielen Jahren. Der Termin,

zu dem der Anteil der Kernenergie im französischen

Energiemix nur noch 50 Prozent betragen soll, wurde von

2025 auf 2035 verschoben. Mit einem signifikanten

Investprogramm der EdF – dem sogenannten Grand

Carénage – werden derzeit die französischen Kernkraftwerke

fit gemacht für längere Laufzeiten. Auch in

Frankreich gibt es Klimaaktivisten und die Bevölkerung ist

bezüglich der Nutzung der Kernenergie gespalten.

Dennoch sind über 54 % der unlängst in einer Umfrage

Befragten der Meinung, dass der Anteil der Kernenergie im

französischen Energiemix in der Zukunft stabil bleibt oder

zunehmen wird. Nur 26 % wollen einen Komplettumstieg

auf die Erneuerbaren. Die Umfrage hat auch einige Überraschungen

zutage gebracht: 69 % der Befragten denken,

dass Kernkraftwerke eine Menge Treibhausgase produzieren

und damit ein Klimakiller sind und 67 % der

Franzosen glauben, dass der französische Strompreis

höher als in den Nachbarländern ist.

Imprint

| Editorial Advisory Board

Frank Apel

Erik Baumann

Dr. Erwin Fischer

Carsten George

Eckehard Göring

Dr. Florian Gremme

Dr. Ralf Güldner

Carsten Haferkamp

Christian Jurianz

Dr. Anton Kastenmüller

Prof. Dr. Marco K. Koch

Ulf Kutscher

Herbert Lenz

Jan-Christan Lewitz

Andreas Loeb

Dr. Thomas Mull

Dr. Joachim Ohnemus

Olaf Oldiges

Dr. Tatiana Salnikova

Dr. Andreas Schaffrath

Dr. Jens Schröder

Norbert Schröder

Prof. Dr. Jörg Starflinger

Dr. Brigitte Trolldenier

Dr. Walter Tromm

Dr. Hans-Georg Willschütz

Dr. Hannes Wimmer

| Editorial Office

Christopher Weßelmann (Editor in Chief)

Im Tal 121, 45529 Hattingen, Germany

Phone: +49 2324 4397723

Fax: +49 2324 4397724

E-mail: editorial@nucmag.com

Nicole Koch (Editor)

c/o INFORUM, Berlin, Germany

Phone: +49 176 84184604

E-mail: nicole.koch@nucmag.com

| Official Journal of Kerntechnische Gesellschaft e. V. (KTG)

| Publisher

INFORUM Verlags- und Verwaltungsgesellschaft mbH

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-30

Fax: +49 30 498555-18

www.nucmag.com

| General Manager

Dr. Thomas Behringer

| CvD

Nicolas Wendler

| Advertising and Subscription

Petra Dinter-Tumtzak

Phone: +49 30 498555-30

Fax: +49 30 498555-18

E-mail: petra.dinter@nucmag.com

| Layout

zi.zero Kommunikation

Antje Zimmermann

Berlin, Germany

| Printing

inpuncto:asmuth

druck + medien gmbh

Buschstraße 81, 53113 Bonn, Germany

| Price List for Advertisement

Valid as of 1 January 2019

Published monthly, 9 issues per year

Germany:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT and postage) 187.- €

All EU member states without VAT number:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT, excl. postage) 187.- €

EU member states with VAT number

and all other countries:

Per issues/copy (no VAT, excl. postage) 22.43 €

Annual subscription (no VAT, excl. postage) 174.77 €

| Copyright

The journal and all papers and photos contained in it are protected by

copyright. Any use made thereof outside the Copyright Act without the

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft

mbH, is prohibited. This applies to reproductions, translations,

micro filming and the input and incorporation into electronic systems.

The individual author is held responsible for the contents of the

respective paper. Please address letters and manuscripts only to the

Editorial Staff and not to individual persons of the association´s staff.

We do not assume any responsibility for unrequested contributions.

Signed articles do not necessarily represent the views of the editorial.

ISSN 1431-5254

KTG Inside


atw Vol. 65 (2020) | Issue 3 ı March

Polen bezieht 77 Prozent seiner Elektrizität aus Kohle.

Um die Klimaneutralität der EU im Jahre 2050 zu

erreichen, kann „Kernenegie ein (kleiner) Teil einer sehr

großen neuen kohlenstofffreien Energielösung sein“. Für

viele europäische Staaten nicht nachvollziehbar, ist im

Green Deal der EU die klimaneutrale Kernenergie nicht als

saubere Energiequelle akzeptiert wurden.

Wie ist das mit den Verbraucherpreisen

für Strom?

Strom hat heute einen stolzen Preis: 31,37 Cent kostet eine

Kilowattstunde im Januar 2020 im Schnitt, wenn ein

Haushalt 3.500 Kilowattstunden im Jahr bezieht. Im Jahr

2000 waren es noch rund 14 Cent.

Seit Beginn des neuen Jahrtausends führte der Gesetzgeber

ein neues Förderinstrument in der Stromversorgung

ein: Umlagen. Sie sollen die Energiewende vorantreiben.

Der Stromverbraucher bezahlt sie über den Strompreis.

Insgesamt fünf Umlagen gibt es auf den Strompreis – und

sie haben ihn in die Höhe getrieben. Angestiegen sind auch

die Entgelte für die Stromnetze. Je stärker die einzelnen

Posten wachsen, desto mehr Mehrwertsteuer fällt am

Ende an. Das ist schön für den Haushalt der Bundesrepublik,

aber weniger schön für uns Verbraucher.

Die Strompreise an der Börse sind gesunken – wegen

subventionierter erneuerbarer Energien zu Lasten

der Konventionellen. Nach 2011 verringerten sich die

Beschaffungskosten um bis zu 3 Cent pro Kilowattstunde.

Diesen Vorteil haben aber die gestiegenen Umlagen – allen

voran die sogenannte EEG-Umlage zur Vergütung von

Ökostrom – und die entsprechend höheren Mehrwertsteuerkosten

mehr als aufgefressen. Bei uns Verbrauchern

kam von den niedrigeren Großhandelspreisen gar nichts an.

Und im Vergleich zu Frankreich zahlen wir Verbraucher

in Deutschland schon seit vielen Jahren das 1,5 fache.

Können sich Industrie und private Haushalte diese

hohen Strompreise leisten? Die meisten schon. Noch!

Müssen wir eben am Urlaub sparen. Fliegen sollen wir ja

auch nicht mehr, wegen der Flugscham…

Frank Apel

Vorstandsvorsitzender Kerntechnische Gesellschaft e. V. (KTG)

171

KTG INSIDE

Bericht zur Veranstaltung

„Kernenergie – der Weg aus der Klimakrise“

Die im Februar seitens der Sektion Nord organisierte

Veranstaltung in Hamburg zum Thema Kernenergie und

Klimakrise wurde von 23 interessierten Teilnehmern

besucht.

Redner Rainer Klute, Vorsitzender der Nuklearia e.V.,

stieg in seinen Vortrag ein, indem er den Interessenten

erläutert, wie sich der deutsche Strommix zusammensetzt

und wo die Probleme der Energiewende bestehen. Er

führt aus, warum Solar- und Windenergie alleine nicht

genügen, um Deutschland mit CO 2 -freiem Strom zu versorgen.

Über einen Live-Vergleich mittels des Portals

www.electricitymap.org zeigte er eingänglich, dass Länder

mit hohem Kernenergieanteil – wie Frankreich – signifikant

geringere CO 2 -Emissionen haben als z.B. Deutschland.

Anhand von Tagesganglinien der Stromproduktion und

des Bedarfs zeigte er auf, dass erneuerbare Energien

alleine niemals die Energieversorgung Deutschlands

werden sichern können. Ergo müsse Kernenergie zwingend

ein Teil der Lösung im Kampf gegen den Klimawandel sein.

Klute stellte dar, dass mittlerweile Befürworter der Kernenergie

weltweit auch aus den Lagern der traditio nellen

Gegner stammen. Weltweit sei die Kernenergie im

Aufwind, sogar in Deutschland nehme die Befassung mit

dem Thema Kernenergie wieder zu. Er zeigte dazu aktuelle

Beispiele von Stellungnahmen deutscher Parteien und

Leitmedien und leitete daraus die Frage ab: Ist der Ausstieg

aus dem Ausstieg denkbar? Als Beispiel internationaler

Entwicklung zeigte er neben neuartigen sogenannten SMR

(Small Modular Reactor), kleinen und modularen

Reaktoren, auch das Beispiel des russischen BN-800 auf.

Der BN-800 ist ein schneller Brutreaktor, der im

kommerziellen Betrieb Strom aus abgebrannten Brennelementen

(“Atommüll”) produziert.

“Kernenergie kann nicht nur Strom” – so bot Klute

zahlreiche weitere aktuelle Beispiele für die Vielfalt

möglicher Einsatzgebiete von Kernenergie: Fernheizwärme,

Wasserentsalzung, Wasserstoffproduktion und

vieles mehr.

Zum Abschluss räumte er mit den klassischen

Argu menten der Kernkraftgegner ebenso auf, wie mit den

jüngsten. In jedem Fall sei es besser, heute Kernkraft neu

zu bauen und zu fördern, als nie.

Im Anschluss an den Vortrag konnten sich die Teilnehmer

bei einem Imbiss austauschen.

Helge Gottschling

KTG Inside


atw Vol. 65 (2020) | Issue 3 ı March

172

NEWS

Wenn Sie künftig eine

Erwähnung Ihres

Geburtstages in der

atw wünschen, teilen

Sie dies bitte der KTG-

Geschäftsstelle mit.

KTG Inside

Verantwortlich

für den Inhalt:

Die Autoren.

Lektorat:

Natalija Cobanov,

Kerntechnische

Gesellschaft e. V.

(KTG)

Robert-Koch-Platz 4

10115 Berlin

T: +49 30 498555-50

F: +49 30 498555-51

E-Mail:

natalija.cobanov@

ktg.org

www.ktg.org

Herzlichen Glückwunsch!

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag

und wünscht ihnen weiterhin alles Gute!

April 2020

65 Jahre | 1955

02. Helmut Gradic, Stadland

24. Klaus-Dieter Brandt, Berlin

15. Thomas Grahnert, Dresden

70 Jahre | 1950

28. Dr. Wolfgang Wiesenack, Halden

78 Jahre | 1942

09. Prof. Dr. Hans-Christoph Mehner,

Dresden

80 Jahre | 1940

18. Dipl.-Ing. Norbert Granner,

Bergisch Gladbach

82 Jahre | 1938

04. Prof. Dr.-Ing. Klaus Kühn,

Clausthal-Zellerfeld

05. Dr. Hans Fuchs, Gelterkinden

09. Dr. Carl Alexander Duckwitz,

Alzenau-Kälberau

28. Prof. Dr. Georg-Friedrich Schultheiss,

Lüneburg

83 Jahre | 1937

13. Dr. Martin Peehs, Bubenreuth

85 Jahre | 1935

05. Prof. Dr. Hans-Henning Hennies,

Karlsruhe-Bergwald

89 Jahre | 1931

09. Dr. Klaus Penndorf, Geesthacht


6. Januar 2019 ı

Dr. Helmut Hübel

Bensberg

Die KTG verliert in ihm ein langjähriges

aktives Mitglied, dem sie ein

ehrendes Andenken bewahren wird.

Seiner Familie gilt unsere Anteilnahme.

89 Jahre | 1931

28. Dipl.-Ing. Rudolf Eberhart, Burgdorf

Top

BlackRock and $35 trillion

investor group want to go

carbon-free, tech innovators

look to nuclear

(nei) BlackRock Inc. – a global

investment firm that manages nearly

$ 7 trillion dollars in assets – joined an

investment pact focused on reducing

carbon emissions, Climate Action

100+. With BlackRock’s commitment,

Climate Action 100+ represents more

than $ 41 trillion dollars in investments.

That’s a lot of capital and

another influential name committed

to protecting the climate.

While every investor wants to

make money, the climate pact represents

an increasing number of people

who also want their investments to

make a positive change in the world,

especially for issues like climate.

Melanie Nakagawa, head of climate

initiative at investment firm Princeville

Capital, said – in a recent episode

of “Off the Menu” – that this type of

“impact investing” is becoming the

norm as climate concerns are viewed

by the financial world as an untenable

risk.

“[Climate] awareness is rapidly

changing, and I believe we are on the

edge of a fundamental reshaping of

finance,” said BlackRock Chairman

and Chief Executive Officer Larry Fink

in a letter to clients. “In the near future

– and sooner than most anticipate –

there will be a significant reallocation

of capital.”

While reducing carbon emissions

and transitioning to a low-carbon

economy will involve more than the

electricity sector, it still makes up

28 % of emissions. When you consider

that going carbon-free in other sectors

like transportation or industry will

require more electricity, generating

power as cleanly as possible becomes

even more important. For this reason,

nuclear energy – which provides

more than 55 percent of our current

carbon-free electricity – plays a major

role in holding down carbon emissions.

Additionally, advanced reactors

expand the future of nuclear and clean

energy. In fact, leading tech

entrepreneur Bill Gates sees great

opportunities in advanced nuclear and

even helped launch TerraPower LLC

to design a next-generation reactor.

He’s not alone. Dozens of new

companies are working on advanced

reactors that represent the cuttingedge

in nuclear technology. Advanced

reactors promise an affordable and

reliable source of clean electricity,

plus the ability to produce clean transportation

fuels and building materials

and to desalinate drinking water,

while offering inherent safety features

and even the ability to recycle used

fuel and reduce waste.

As more investors push for clean

energy solutions, nuclear energy leads

the way in carbon-free electricity

today and is innovating for the

reactors and grid of tomorrow.

| (20491542) www.nei.org

World

IAEA Ministerial Conference

commits to strengthening

nuclear security amid concerns

about global threats

(iaea) Government ministers and

other high-level representatives from

more than 140 countries adopted a

declaration at a major International

Atomic Energy Agency (IAEA) conference

today to enhance global nuclear

security and counter the threat of

nuclear terrorism and other malicious

acts.

From a possible cyber attack on

a nuclear power plant to the illicit

trafficking of radioactive materials,

nuclear security is a growing international

concern. The IAEA and its

Member States have in recent years

intensified their efforts to strengthen

nuclear security but agree that more

action is needed.

Nuclear and radioactive material

is a magnet for groups with malicious

intent that see in this material a

possibility to create panic and bring

News


atw Vol. 65 (2020) | Issue 3 ı March

distress and pain to our societies,”

IAEA Director General Rafael Mariano

Grossi said at the opening of the weeklong

conference at IAEA head quarters,

shortly before the declaration was

adopted by the participants, including

more than 55 ministerial-level

representatives.

Nuclear technology and science

help improve the lives of millions of

people around the world in areas

ranging from clean energy and cancer

care to food security and pest control.

But the nuclear and radioactive

materials used to produce those

benefits must be secured at all times

to prevent them from falling into

the wrong hands. Nuclear security

involves preventing, detecting and

responding to malicious acts with

nuclear material, radioactive substances

or their associated facilities.

In the declaration, IAEA Member

States reaffirmed the common goals

of nuclear non-proliferation, nuclear

disarmament and the peaceful uses of

nuclear energy and recognized that

nuclear security contributes to international

peace and security.

“We remain concerned about

existing and emerging nuclear

security threats and committed

to addressing such threats,” the

ministerial declaration said. “We

encourage Member States to implement

threat mitigation and risk

reduction measures that contribute to

improving nuclear security, including,

but not limited to, ensuring the

protection of nuclear and other radioactive

materials and facilities.”

Nuclear security is a national

responsibility, but the central role of

the IAEA in facilitating and coordinating

international cooperation in

this area was also highlighted at the

conference and in the declaration.

“The adoption of a Declaration at

ministerial level is indicative of the

continuous commitment to nuclear

security of IAEA Member States. It

is a concise, politically driven and

forward- looking document, adding

value to the efforts of strengthening

nuclear security worldwide,” said

Bogdan Aurescu, Minister of Foreign

Affairs of Romania and Co-President

of the conference.

“In the coming years, global stocks

of nuclear material are expected to

continue growing, especially as we

look into emerging nuclear technologies

and their role in mitigating the

consequences of climate change,” said

Federico Alfaro, Vice-Minister of

Foreign Affairs of Panama and Co-

President of the conference. “We

cannot allow for such material to fall

into the wrong hands.”

| (20491539) www.iaea.org

Reactors

Excellent production year

for PreussenElektra's

nuclear power plants

(pe) The three PreussenElektra

nuclear power plants Brokdorf,

Grohnde and Isar 2 had another

successful year of operation: The

three power plants generated a total

of almost 33 billion kilowatt hours

(kWh) of electricity in 2019. This

amount alone from these three plants

is sufficient to supply around

13 million electric cars with low-CO 2

electricity [1].

With an availability of almost 90 %,

the power plants were available

almost without restriction. The continuing

drought and the high ambient

and cooling water temperatures of

last summer 2019 had no significant

impact on the plants.

With 12 billion kilowatt hours

(gross), the Isar 2 nuclear power plant

(Bavaria) in Germany generated the

largest amount of electricity of all

German nuclear power plants and

therefore has a good chance of once

again finishing among the world-wide

top three. Around 10.7 billion kilowatt

hours (gross) were supplied by the

Grohnde nuclear power plant in

Lower Saxony and a good 10 billion

kilowatt hours (gross) came from

the Brokdorf nuclear power plant

in Schleswig-Holstein. The Grohnde

nuclear power plant celebrated its

35 th anniversary of grid synchronisation:

With its approximately

386 billion kilowatt hours of electricity

generated since commissioning,

the power plant continues to be

the undisputed world leader: No plant

in the world has ever generated so

much electricity. Preussen Elektra

invested around 50 million Euros in

the power plants as part of the power

plant overhauls.

“I would like to thank my

colleagues in the power plants and the

company headquarters as well as the

employees of our contractors, whose

commitment has ensured reliable

and safe operation,” said Dr. Erwin

Fischer, the Managing Director

responsible for technology and operations.

“We are doing everything we

can to make our contribution to a

climate-friendly and reliable electricity

supply in Germany in the few

remaining years of production.

However, the occasional question addressed

to us regarding the possible

continued operation of our three

plants is clearly rejected: All the points

have been set for dismantling, and

further operation is ruled out. We

submitted the applications for

decommissioning and dismantling at

an early stage and the approval

procedures are in full swing.”

With their grid-supporting services,

the three nuclear power plants ensure

that the electricity grid is stabilised.

Almost daily, the power plants flexibly

reduce and increase their output

according to the requirements of the

market and the grid operator. By

generating electricity with low CO 2

emissions, they also save the environment

around 29 million tonnes of CO 2

annually.

| (20491507)

www.preussenelektra.de

Company News

PreussenElektra GmbH orders

62 CASTOR® casks

(gns) GNS supplies 62 spent fuel casks

of the type CASTOR® V/19 for the

spent fuel elements from the nuclear

power plants Grohnde (KWG) and

Brokdorf (KBR) of PreussenElektra

GmbH.

GNS Gesellschaft für Nuklear-

Service mbH has received an order for

the delivery of a total of 62 transport

and storage casks of the type CASTOR®

V/19. The casks – Brokdorf receives

39, Grohnde 23 – will be used for

the spent fuel elements of the

two pressurized water reactor nuclear

power plants of PreussenElektra

GmbH which will be in operation until

the end of 2021. The order has a total

volume of well over EUR 100 million.

“With this large order, we are

securing the largest share of the

CASTOR® casks required for the

disposal of irradiated fuel elements

from our nuclear power plants in

Brokdorf and Grohnde”, explains

Lothar Mertens, Head of Fuel Cycle

and Interim Storage at Preussen-

Elektra GmbH. “This gives us planning

security at both sites and allows

us to secure disposal at an early stage

until the two plants are completely

free from fuel”.

The casks are to be delivered from

the GNS plant in Mülheim an der

Ruhr/Germany to the two power

plants from mid 2022. After loading

in the reactor building, the casks

173

NEWS

News


atw Vol. 65 (2020) | Issue 3 ı March

174

NEWS

the heat created in the reactor core.

This steam drives the turbines that

generate electricity.

TVA’s Browns Ferry Nuclear Plant

is home to three boiling water

reactors. Both the Sequoyah and

Watts Bar nuclear plants have two

pressurized water reactors. Collectively,

these plants generate enough

electricity to power more than

4.5 million homes and businesses.

| (20491335) www.framatome.com

| PreussenElektra GmbH orders 62 CASTOR® casks. View of a CASTOR® V/19 casks with shock absorbers.

will be transferred to the local on-site

interim storage facilities operated

by the federally owned BGZ Gesellschaft

für Zwischenlagerung mbH.

A total of 33 (Brokdorf ISF) and 34

(Grohnde ISF) loaded casks of this

type are already in store in the local

on-site interim storage facilities.

| (20491220) www.gns.de

Framatome signs multimillion-dollar

contracts with

Tennessee Valley Authority

(framatome) Tennessee Valley Authority

(TVA) awarded Framatome

several multimillion-dollar contracts

for work across the company’s reactor

fleet. This includes fuel for the Browns

Ferry Nuclear Plant, fuel handling

equipment upgrades across the fleet

and steam generator replacements at

the Watts Bar Nuclear Plant.

“Framatome’s long-standing relationship

with TVA is the result of our

U.S. and global teams’ expertise and

commitment to delivering excellence

in everything they do,” said Bernard

Fontana, CEO of Framatome. “We

are pleased to expand our cooperation

with TVA and support them in providing

efficient, reliable and low-carbon

electricity to residents and businesses

across the Tennessee Valley.”

Framatome will provide its stateof-

the-art ATRIUM 11 fuel for the

three boiling water reactors at Browns

Ferry with the first use planned for

2023. This contract makes TVA the

third U.S. utility to switch to the

ATRIUM 11 fuel design.

ATRIUM 11 helps utilities to save

money by using the uranium in nuclear

fuel more efficiently. The fuel also

allows operators to run their plants

with more flexibility as demand fluctuates

and other generation sources

provide power to the electric grid.

Framatome’s fuel fabrication facility,

which recently celebrated its 50 th

anniversary, in Richland, Washington,

will manufacture the fuel.

Framatome will also upgrade the

fuel handling equipment at the

Browns Ferry, Sequoyah and Watts

Bar nuclear plants on an accelerated

schedule, saving the plants both time

and money.

This work includes upgrading the

refuel bridges at Browns Ferry, the

manipulator cranes at both Sequoyah

units and Watts Bar Unit 1, and the

fuel transfer systems at Watts Bar.

Framatome previously upgraded the

fuel transfer systems at Sequoyah. The

company will also replace the spent

fuel bridges at Sequoyah and Watts

Bar.

Additionally, SGT, a joint venture

between Framatome and AECOM,

will replace four steam generators at

Watts Bar Unit 2. In a nuclear energy

plant, the steam generator has an

essential role in producing electricity.

It converts water into steam using

| Watts Bar nuclear power plant (Tennessee Valley, United-States) – © TVA

Westinghouse expands nuclear

services & capabilities with

acquisition of Rolls-Royce civil

nuclear systems and services

(west) Westinghouse Electric Company

will complete the acquisition

of Rolls-Royce’s Civil Nuclear Systems

and Services business in North

America and in select sites in Europe.

The acquisition represents a strategic

investment in expanding the company’s

nuclear products and services

offerings. This acquisition supports

Westinghouse’s global customer base

through enhanced operating plant

services, capabilities and technologies.

It also strengthens the company’s

digital innovation efforts.

“Expanding our geographic footprint

and strengthening our portfolio

of systems and services is a key focus

to better serve our clients and deploy

innovative and leading solutions to

the installed base of nuclear plants,”

said Westinghouse President and Chief

Executive Officer Patrick Fragman.

“Both Westinghouse and Rolls-Royce

Civil Nuclear customers will gain

an expanded presence and benefit

from synergies between our companies.

With this strategic investment,

we are enhancing our customer offerings

in order to support their longterm

operating goals to produce

carbon- free, cost-effective and reliable

energy.”

News


atw Vol. 65 (2020) | Issue 3 ı March

Through the transaction, Westinghouse

will acquire the Rolls-Royce

Civil Nuclear Systems and Services’ 11

locations in Canada, France, the

United Kingdom and the United

States. These sites support plant

automation and monitoring systems,

field services, manufacturing and

engineering services as well as digital

engineering services. These are key

areas in supporting Westinghouse’s

efforts to optimize customer planning

and maintenance, and provide innovative

systems and services to maximize

performance, cost effectiveness

and support life extension of the

nuclear plants worldwide.

All closing conditions have been

met for Westinghouse to complete the

acquisition.

| (20491515)

www.westinghousenuclear.com

Operating Results November 2019

The first serial batch of MOX

fuel loaded into BN-800 fast

reactor at Beloyarsk NPP

(tvel) BN-800, the world’s most

powerful operational fast neutron

reactor at Unit 4 of Beloyarsk NPP in

Russia, has been loaded with the first

serial batch of MOX fuel made of

depleted uranium and plutonium

oxides. After an overhaul, the power

unit has successfully resumed

operation.

Distinct from traditional nuclear

fuel with enriched uranium, MOX fuel

pellets are based on the mix of nuclear

fuel cycle derivatives, such as oxide of

plutonium bred in commercial reactors,

and oxide of depleted uranium

which is derived by defluorination of

depleted uranium hexafluoride (UF6),

the so-called secondary tailings of

uranium enrichment facilities.

The power plant engineers have

loaded eighteen MOX fuel assemblies

at the BN-800 reactor core, while in

2020, Rosenergoatom and TVEL (i.e.

power generation and nuclear fuel

divisions of ROSATOM) are planning

to load another batch of 180 fuel

assemblies. By the end of 2021,

ROSATOM is committed to replace all

remaining uranium-based fuel

assemblies in the core with MOX fuel.

Thus, for the first time in Russian

history, a fast neutron reactor would

start operations with a full load of

MOX fuel only.

“ROSATOM strategy is aimed at

the dual-component nuclear power

system with both thermal neutron

and fast neutron reactors, and closing

nuclear fuel cycle, which would solve

a number of highly important tasks.

First, this would exponentially boost

*)

Net-based values

(Czech and Swiss

nuclear power

plants gross-based)

1)

Refueling

2)

Inspection

3)

Repair

4)

Stretch-outoperation

5)

Stretch-inoperation

6)

Hereof traction supply

7)

Incl. steam supply

8)

New nominal

capacity since

January 2016

BWR: Boiling

Water Reactor

PWR: Pressurised

Water Reactor

Source: VGB

175

NEWS

Plant name Country Nominal

capacity

Type

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Month Year Since

commissioning

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Month Year Month Year

OL1 Olkiluoto BWR FI 910 880 720 667 236 7 120 756 268 775 964 100.00 97.25 99.98 96.48 100.73 96.56

OL2 Olkiluoto BWR FI 910 880 720 664 455 6 777 931 258 674 474 100.00 92.55 99.70 92.08 100.31 91.91

KCB Borssele PWR NL 512 484 720 366 867 5 879 653 167 601 341 99.56 86.65 99.56 86.58 99.72 83.77

KKB 1 Beznau 7) PWR CH 380 365 720 276 758 2 688 017 130 022 127 100.00 88.80 100.00 88.64 101.20 88.16

KKB 2 Beznau 7) PWR CH 380 365 720 275 241 2 661 444 137 011 851 100.00 87.90 100.00 87.74 100.67 87.27

KKG Gösgen 7) PWR CH 1060 1010 720 766 212 7 446 898 321 322 426 100.00 88.46 99.99 87.98 100.40 87.64

KKM Mühleberg BWR CH 390 373 720 269 130 3 048 020 130 452 335 100.00 100.00 100.00 99.78 95.84 97.50

CNT-I Trillo PWR ES 1066 1003 720 760 270 7 696 038 254 987 706 100.00 91.12 100.00 90.78 98.62 89.48

Dukovany B1 1) PWR CZ 500 473 720 358 378 3 282 064 115 511 557 100.00 83.92 99.97 83.44 99.55 81.89

Dukovany B2 PWR CZ 500 473 720 355 601 2 438 815 110 672 986 100.00 62.46 100.00 61.91 98.78 60.85

Dukovany B3 PWR CZ 500 473 720 354 008 3 383 385 109 881 425 100.00 86.84 100.00 86.51 98.34 84.42

Dukovany B4 PWR CZ 500 473 720 362 785 3 980 533 110 423 802 100.00 99.86 100.00 99.72 100.77 99.31

Temelin B1 PWR CZ 1080 1030 681 722 495 7 024 500 121 385 542 100.00 82.41 99.98 82.19 92.91 81.00

Temelin B2 PWR CZ 1080 1030 720 788 191 7 395 583 116 668 100 100.00 84.96 99.98 84.74 101.17 85.27

Doel 1 2) PWR BE 454 433 0 0 2 291 598 137 736 060 0 61.99 0 61.65 0 61.57

Doel 2 2) PWR BE 454 433 0 0 2 533 531 136 335 470 0 70.54 0 69.35 0 69.30

Doel 3 PWR BE 1056 1006 720 775 232 7 172 489 262 304 974 100.00 84.44 100.00 83.89 101.69 84.26

Doel 4 PWR BE 1084 1033 720 790 278 8 452 548 268 825 958 100.00 100.00 99.96 96.90 99.62 95.70

Tihange 1 PWR BE 1009 962 720 730 179 8 023 972 306 854 830 100.00 100.00 99.98 99.98 100.64 99.31

Tihange 2 3) PWR BE 1055 1008 348 335 969 2 622 307 257 274 237 48.31 32.84 44.32 31.92 44.53 31.23

Tihange 3 PWR BE 1089 1038 720 781 451 8 527 900 279 755 173 100.00 99.97 100.00 99.38 100.31 98.20

Plant name

Type

Nominal

capacity

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Time availability

[%]

Energy availability Energy utilisation

[%] *) [%] *)

Month Year Since Month Year Month Year Month Year

commissioning

KBR Brokdorf 3) DWR 1480 1410 603 821 025 9 199 396 359 767 206 83.69 86.55 78.38 81.23 76.88 77.25

KKE Emsland DWR 1406 1335 720 1 015 679 9 761 898 356 580 867 100.00 88.20 100.00 88.11 100.45 86.62

KWG Grohnde DWR 1430 1360 720 1 010 989 9 696 598 387 270 812 100.00 89.13 100.00 88.88 97.76 84.06

KRB C Gundremmingen SWR 1344 1288 720 973 994 9 393 954 340 335 709 100.00 88.14 100.00 87.63 100.37 86.76

KKI-2 Isar DWR 1485 1410 720 1 010 500 9 386 510 339 213 344 100.00 93.48 99.97 85.99 100.57 83.78

GKN-II Neckarwestheim DWR 1400 1310 720 1 062 321 10 967 231 364 693 044 100.00 95.57 100.00 95.27 99.10 91.77

KKP-2 Philippsburg 4) DWR 1468 1402 720 922 869 9 766 080 375 927 235 100.00 88.73 100.00 88.52 85.66 81.68

News


atw Vol. 65 (2020) | Issue 3 ı March

Organisations

People

176

NEWS

| The first serial batch of MOX fuel loaded into BN-800 fast reactor

at Beloyarsk NPP. View of the site.

the feedstock for nuclear power

plants. Second, this would enable to

recycle spent nuclear fuel instead of

storage. And third, we once again involve

into nuclear fuel cycle and

utilize the accumulated ground stocks

of depleted uranium hexafluoride

and plutonium”, commented Vitaly

Khadeev, Vice-President for Development

of Closed Nuclear Fuel Cycle

Technologies and Industrial Facilities

at TVEL JSC.

Director of Beloyarsk NPP Ivan

Sidorov emphasized: “At power unit

No. 4, we have carried out the first

general overhaul in four years of its

operation. This power unit has two

tasks, not only to produce electricity,

but also to master a promising technology

that is important for the future

of nuclear power. The works performed

during the overhaul are aimed

to ensure the long-term safe operation

of the whole power unit and the

reliability of equipment.”

Serial batch-production of MOX

fuel started in late 2018, at the site

of Mining and Chemical Combine in

Zheleznogorsk, Krasnoyarsk region

(Russia’s East Siberia). The launch of

this unique highly automatized

fabrication shop-floor had been

provided due to the broad cooperation

of Russian nuclear industry

enterprises with the coordination role

of TVEL Fuel Company, which is also

the official supplier of the MOX fuel to

Beloyarsk NPP.

The BN-800 reactor was initially

launched with a hybrid core containing

both uranium and MOX fuels.

But as the uranium BN-800 fuel

assemblies were produced by

Elemash, TVEL’s major fabrication

facility in Elekrostal, Moscow region,

the MOX fuel assemblies were experimental

ones, assembled at the

Research Institute of Atomic Reactors

in Dimitrovgrad, Ulyanovsk Region.

| (20500850) www.tvel.ru

www.rosatom.ru

NEA launches new initiatives

in nuclear innovation

(oecd-nea) NEA is organising two

workshops focused on the need to

bring more innovation into the

nuclear energy sector. The first event

is the NEA Workshop on Innovative

Financing: Towards Sustainable

Nuclear Financing, which will be held

on 6 to 7 April 2020 in Warsaw,

Poland, hosted by the Polish Ministry

of Energy and organised in collaboration

with the Cambridge Nuclear

Energy Centre and the International

Framework for Nuclear Energy

Cooperation (IFNEC). This first- of‐itskind

workshop will bring together

experts from the nuclear energy

and financing sectors to discuss

approaches for financing sustainable,

large infrastructure projects with a

focus on nuclear new build.

The second event is the KAERI/

NEA International Workshop on

Disruptive Technologies for Nuclear

Safety Applications, which will take

place on 19 to 20 May 2020 in Jeju

Island, Korea. This workshop will

gather experts from within and outside

the nuclear sector to exchange

insights on the potential for disruptive

technologies to have a positive impact

on the construction and operation of

nuclear power plants.

These efforts will culminate in

the 2020 Global Forum on Innovation

for the Future of Nuclear Energy on 4

to 7 October 2020 in London, United

Kingdom. Organised in partnership

between the UK National Nuclear

Laboratory (NNL), EDF Energy, the

Electric Power Research Institute

(EPRI), the International Atomic

Energy Agency (IAEA) and the NEA,

this event will build on the outcomes

of the workshops highlighted above

and the 2019 Global Forum. The

report summarising the 2019 Global

Forum, which took place in June 2019

in Gyeongju, South Korea, is available

on the NEA website.

| (20491528) www.oecd-nea.org

German association AEK

re-established: Invitation to

members meeting

(aek) The “Aktionsgemeinschaft

Energiesicherung und Kerntechnik –

AEK e.V.” (founded 1981) invites all

members and interested persons to its

re-establishing meeting on 28. March

2020, Hotel Kaiserhof, Münster,

Germany.

| (20491534) Contact:

mitglieder@energiesicherung.org

FORATOM selects new

President Esa Hyvärinen

(foratom) FORATOM announced that

Esa Hyvärinen has been appointed by

the association’s General Assembly as

FORATOM President for a two-year

period starting on 1 January 2020.

“I feel deeply honoured to be

appointed as the new president of

FORATOM and I look forward to the

next two years working with the

General Assembly, Executive Board,

FORATOM Members and the

Secretariat as well as all external

stakeholders involved in the European

decision-making process” – states

Mr. Hyvärinen. “Even though the

European Commission and the European

Parliament have recently recognised

nuclear energy as an important

element of Europe’s decarbonised future,

the European nuclear industry

will face many challenges in the

upcoming months and years in

order to maintain and improve its

current role in the energy mix.

That is why we will do our best

to convince decision makers that

low-carbon, cost-effective and reliable

nuclear energy can help the EU

achieve its climate and energy

objectives”.

Mr. Hyvärinen is currently Head of

the CEO Office at Fortum Corporation.

In the past, he was Senior Vice

President for Public Affairs at Fortum,

Head of Recycling and Environmental

units at the Confederation of

European paper industries in Brussels,

and Senior Advisor at the Finnish

Ministry of Trade and Industry. He

has been member of the FORATOM

Executive Board since 2016.

Esa Hyvärinen replaces Dr Teodor

Chirica, Senior Adviser to the CEO of

NuclearElectrica, who has reached

the end of his mandate as FORATOM

President.

| (20491525) www.foratom.org

Market data

(All information is supplied without

guarantee.)

Nuclear Fuel Supply

Market Data

Information in current (nominal)

U.S.-$. No inflation adjustment of

prices on a base year. Separative work

data for the formerly “secondary

market”. Uranium prices [US-$/lb

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =

News


atw Vol. 65 (2020) | Issue 3 ı March

Uranium

Prize range: Spot market [USD*/lb(US) U 3 O 8 ]

140.00

) 1

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]

140.00

120.00

120.00

177

100.00

100.00

80.00

60.00

40.00

20.00

0.00

1980

Yearly average prices in real USD, base: US prices (1982 to1984) *

1985

1990

1995

2000

2005

2010

2015

2019

Year

* Actual nominal USD prices, not real prices referring to a base year. Year

Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020

| Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.

Separative work: Spot market price range [USD*/kg UTA]

Conversion: Spot conversion price range [USD*/kgU]

180.00

) 1 23.00

160.00

140.00

120.00

80.00

60.00

40.00

20.00

0.00

Jan. 2008

Jan. 2009

Jan. 2010

Jan. 2011

Jan. 2012

Jan. 2013

Jan. 2014

Jan. 2015

Jan. 2016

Jan. 2017

Jan. 2018

Jan. 2019

Jan. 2020

NEWS

100.00

80.00

60.00

40.00

20.00

0.00

Jan. 2008

Jan. 2009

Jan. 2010

Jan. 2011

Jan. 2012

Jan. 2013

* Actual nominal USD prices, not real prices referring to a base year. Year

Jan. 2014

Jan. 2015

Jan. 2016

Jan. 2017

Jan. 2018

Jan. 2019

Jan. 2020

Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020

) 1 Sources: Energy Intelligence, Nukem; Bild/Figure: atw 2020

22.00

20.00

18.00

16.00

) 1

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Jan. 2008

Jan. 2009

Jan. 2010

Jan. 2011

Jan. 2012

Jan. 2013

* Actual nominal USD prices, not real prices referring to a base year. Year

Jan. 2014

Jan. 2015

Jan. 2016

Jan. 2017

Jan. 2018

Jan. 2019

Jan. 2020

| Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.

)1

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.

* Actual nominal USD prices, not real prices referring to a base year

Sources: Energy Intelligence, Nukem; Bilder/Figures: atw 2020

0.385 kg U]. Conversion prices

[US-$/kg U], Separative work

[US-$/SWU (Separative work unit)].

2017

p Uranium: 19.25–26.50

p Conversion: 4.50–6.75

p Separative work: 39.00–50.00

2018

p Uranium: 21.75–29.20

p Conversion: 6.00–14.50

p Separative work: 34.00–42.00

2019

January 2019

p Uranium: 28.70–29.10

p Conversion: 13.50–14.50

p Separative work: 41.00–44.00

February 2019

p Uranium: 27.50–29.25

p Conversion: 13.50–14.50

p Separative work: 42.00–45.00

March 2019

p Uranium: 24.85–28.25

p Conversion: 13.50–14.50

p Separative work: 43.00–46.00

April 2019

p Uranium: 25.50–25.88

p Conversion: 15.00–17.00

p Separative work: 44.00–46.00

May 2019

p Uranium: 23.90–25.25

p Conversion: 17.00–18.00

p Separative work: 46.00–48.00

June 2019

p Uranium: 24.30–25.00

p Conversion: 17.00–18.00

p Separative work: 47.00–49.00

July 2019

p Uranium: 24.50–25.60

p Conversion: 18.00–19.00

p Separative work: 47.00–49.00

August 2019

p Uranium: 24.90–25.60

p Conversion: 19.00–20.00

p Separative work: 47.00–49.00

September 2019

p Uranium: 24.80–26.00

p Conversion: 20.00–21.00

p Separative work: 47.00–50.00

October 2019

p Uranium: 23.75–25.50

p Conversion: 21.00–22.00

p Separative work: 47.00–50.00

November 2019

p Uranium: 23.95–26.25

p Conversion: 22.00–23.00

p Separative work: 48.00–50.00

December 2019

p Uranium: 24.85–26.00

p Conversion: 22.00–23.00

p Separative work: 48.00–52.00

| Source: Energy Intelligence

www.energyintel.com

News


atw Vol. 65 (2020) | Issue 3 ı March

178

NUCLEAR TODAY

John Shepherd is a

freelance journalist

and communications

consultant.

Sources:

Grossi’s remarks in US

https://bit.ly/

2SdY2OZ

NPT review

conference

https://bit.ly/

2OHdot4

Agora Energiewende/

Sandbag report

https://bit.ly/2vo5y0s

IAEA Chief’s Zeal for Change Signals

Era of Nuclear Renewal

This year marks the 50th anniversary of the Treaty on the Non-Proliferation of Nuclear Weapons, which has been a key

component in spurring the worldwide spread of peaceful nuclear technology for development.

The Non-proliferation Treaty (NPT), as it is commonly

known, entered into force in 1970, was extended

indefinitely in 1995 and has become nearly universal. The

anniversary will be marked at a review conference at the

United Nations headquarters in New York in April – and

the event comes at a crucial time.

Newly-elected director-general of the International

Atomic Energy Agency (IAEA), Rafael Mariano Grossi, had

been due to be president of the conference until his

elevation to head of the global nuclear watchdog following

the death of Yukiya Amano.

Now Grossi has the task of not only shepherding the

agency through this latest five-yearly review of the NPT,

but to steering the IAEA beyond, into a new decade at a

time when the agency’s role and responsibilities are under

the utmost scrutiny and when funding constraints and

geopolitical pressures threaten to undermine the role of

the watchdog itself.

Ongoing tensions between North Korea and the

international community and the recent flare-up of

political hostilities between Iran, the US and others has

increased the strain the IAEA is under as the world’s

‘ honest broker’ in maintaining, through the NPT, a strong

non-proliferation regime.

But the director-general also, rightly, sees an expanded

role for the IAEA in tackling climate change in cooperation

with partner agencies. He said climate change would be an

increasing theme for the agency. “Many countries are

interested in making more use of nuclear technology to

mitigate and adapt to the impact of climate change.”

On nuclear security, Grossi said member states had

agreed the IAEA should be “the global focal point for nuclear

security”. “Demands for our assistance are constantly

increasing,” he said. “But I believe more could be done to

make us a real focal point in practice and not just in name.”

Grossi’s belief is that the “great majority of countries”

that join the IAEA do so “because they are interested in

using nuclear technology to improve the day-to-day lives of

their people”.

In terms of health and welfare, Grossi has highlighted

cancer control as a priority, “as one of the most important

areas in which we make that technology available”. He

went as far as to say that deaths in developing countries

from cancer, which he said were treatable in richer countries

were “quite simply, a scandal”.

Meanwhile, as Grossi confirmed to staff at the start of

this year, there needs to be “tight control” of costs as the

agency navigates a period of “zero real budget growth”.

The IAEA, for all its vital work on behalf of us all (nuclearenergy

using nations and those that do not include nuclear

in the electricity-generating mix) has never been awash

with funds.

However, Grossi should be applauded for setting out a

bold vision for the IAEA in the years ahead rather than

allowing cash constraints to limit his breadth of scope and

ambition.

In 2018, the IAEA’s regular budget was about

€370.5 million. The US is the single largest contributor to

the agency’s regular budget and provides significant

extra- budgetary funding. The IAEA said this, together with

support also from other member states, has enabled it to

step up its assistance in areas benefiting millions of people

around the world, such as food security, cancer care,

nutrition, animal health, water management, energy

planning and others.

Following recent talks with Trump administration

officials in the US; Grossi acknowledged it would be

difficult to secure a “significant increase” in the IAEA’s

budget in the years ahead. He said the agency had to find

new ways to fund its activities.

Instead of simply pleading for more from the agency’s

member states, Grossi plans to use his role to entice

investment from non-traditional quarters. He confirmed

he has been “reaching out to new partners such as the

World Bank and the Islamic Development Bank”.

The director-general has told his officials “I am not

interested in departmental achievements… I am interested

in agency achievements and especially in successes

achieved by member states thanks to the support of the

IAEA”.

Grossi said he was elected “on a platform of change”

and his goal is to “recalibrate our approach where

necessary”.

The path ahead to ensure the IAEA’s continued viability

as a credible, valuable and trusted institution, to safeguard

the interests of the global nuclear community, will not be

an easy one. But the new director-general is to be

congratulated for his declared zeal and determination in

his early days of office.

There is still a blind spot for many in understanding

that nuclear energy goes hand in hand with environmental

protection, tackling climate change, supporting food

production, pest control and treating the sick – to name

just a few.

An increased role for the IAEA would be welcome – and

on climate change in particular, nuclear is pushing at an

open door, according to the latest findings of a study of

current electricity data carried out by Germany’s Agora

Energiewende and UK climate think-tank Sandbag.

The findings showed that in 2019, the European Union

electricity sector emitted 12 % less CO 2 than in the previous

year. At the same time, the share of renewables in

electricity production rose EU-wide to 35 %, a new record.

Electricity from nuclear power plants for the period

declined by only 1 %, the study said. The slight fall in

nuclear performance was put down to drought in some

areas, particularly in July, which hampered supplies of

cooling water from rivers.

If Grossi is successful in “recalibrating” the IAEA, his

leadership can be of particular benefit to nuclear power

producing nations and the myriad of industries supporting

the development of future nuclear technologies.

Nuclear Today

IAEA Chief’s Zeal for Change Signals Era of Nuclear Renewal ı John Shepherd


Kommunikation und

Training für Kerntechnik

Strahlenschutz – Aktuell

In Kooperation mit

TÜV SÜD Energietechnik GmbH

Baden-Württemberg

Seminar:

Das Strahlenschutzrecht

und seine praktische Umsetzung

Seminarinhalte

1. Einführung: Grundlagen des Strahlenschutzes und des Strahlenschutzrechts

2. Das neue Strahlenschutzrecht von 2017/18

3. Genehmigungen, Anzeigen, Pflichten bei strahlenschutzrelevanten Aktivitäten

a. Geplante Expositionssituationen (Tätigkeiten)

b. Bestehende Expositionssituationen

c. Notfallexpositionssituationen (Schutz der Einsatzkräfte)

4. Umsetzung des Strahlenschutzes

a. Dosisgrenzwerte, Dosisrichtwerte

b. Betriebliche Organisation des Strahlenschutzes

c. Fachkunde

d. Strahlenschutzregister

5. Aufsicht

6. Notfallschutz und Notfallvorsorge

7. Strahlenschutz im Back End

a. Radioaktive Abfälle

b. Freigabe, Herausgabe

Zielgruppe

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, an Projekt- und Abteilungsleiter und

Experten aus den Bereichen Betrieb, Abfälle, Genehmigung, Strategie und Unternehmens kommunikation

sowie an Juristen.

Referenten

Dr. Maria Poetsch

Dr. Christian Raetzke

ı Strahlenschutzexpertin bei der TÜV SÜD Energietechnik GmbH

Baden-Württemberg

ı Rechtsanwalt, Leipzig

Wir freuen uns auf Ihre Teilnahme!

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.

Termine

2 Tage

17. bis 18. März 2020

16. bis 17. Juni 2020

29. bis 30. Oktober 2020

Tag 1: 10:30 bis 17:30 Uhr

Tag 2: 09:00 bis 16:30 Uhr

Berlin

Teilnahmegebühr

1.598,– € ı zzgl. 19 % USt.

Im Preis inbegriffen sind:

ı Seminarunterlagen

ı Teilnahmebescheinigung

ı Pausenverpflegung

inkl. Mittagessen

Kontakt

INFORUM

Verlags- und Verwaltungsgesellschaft

mbH

Robert-Koch-Platz 4

10115 Berlin

Petra Dinter-Tumtzak

Fon +49 30 498555-30

Fax +49 30 498555-18

Seminare@KernD.de


#51KT

www.kerntechnik.com

Medienpartner

51. KERNTECHNIK

2020

Jetzt anmelden!

www.kerntechnik.com/kerntechnik/registration/

5. – 6. Mai 2020

Estrel Convention Center

Berlin

More magazines by this user
Similar magazines