19.07.2020 Views

VGB POWERTECH Issue 5 (2020)

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 5 (2020). Technical Journal of the VGB PowerTech Association. Energy is us! Nuclear power.

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 5 (2020).
Technical Journal of the VGB PowerTech Association. Energy is us!
Nuclear power.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

International Journal for Generation and Storage of Electricity and Heat

5 2020

Focus

• Nuclear power

and nuclear power

plant operation

World nuclear

performance eport

Use of robots

in nuclear

decommissioning

CONFERENCE

VGB CONFERENCE

CHEMISTRY 2020

WITH TECHNICAL EXHIBITION

(27) 28 AND 29 OCTOBER 2020

DRESDEN/GERMANY

SMRs – Overview

on international

developments

Physical and

chemical effects of

containment debris

coolant recirculation

Save the Date

Publication of VGB PowerTech e.V. l www.vgb.org

ISSN 1435–3199 · K 43600 l International Edition


VGB PowerTech DVD 1990 bis 2019:

30 Jahrgänge geballtes Wissen rund um

die Strom- und Wärmeerzeugung

Mehr als 30.000 Seiten

Daten, Fakten und Kompetenz

Fachzeitschrift: 1990 bis 2019

Bestellen Sie unter www.vgb.org/shop

· 1990 bis 2019 · · 1990 bis 2019 ·

Diese DVD und ihre Inhalte sind urheberrechtlich geschützt.

© VGB PowerTech Service GmbH

Essen | Deutschland | 2020

© Sergey Nivens - Fotolia

PowerTech-CD/DVD!

Jetzt auch als CD 2019

mit allen Ausgaben der VGB POWERTECH

des Jahres: ab 98,– €

Kontakt: Gregor Scharpey | Tel: +49 201 8128-200 | mark@vgb.org | www.vgb.org

Ausgabe 2019: 1.000 Seiten Daten, Fakten und Kompetenz

aus der internationalen Fachzeitschrift VGB PowerTech

(einschließlich Recherchefunktion über alle Dokumente)

98,- Euro (für Abonnenten der Printausgabe), 198,- Euro (ohne Abonnement), incl. 19 % MWSt. + 5,90 Euro Versand (Deutschland) / 19,90 Euro (Europa)


VGB PowerTech 5 l 2020

Editorial

Nuclear power: The year 2019

The development of nuclear energy

continues to be characterised

by a significant geographical

shift in its expansion from its

countries of origin in the USA

and Europe to the new players

in Asia. By the mid-2020s,

China alone will have commissioned

almost 60 new nuclear

power plant units within two

decades – including the latest

types from Europe and the

USA, such as the EPR, currently

the most powerful reactor in

the world with a gross output of

1,750 MW, the further Generation

III+ reactor AP1000 and

the high-temperature reactor according to the German development

line “pebble-bed reactor”, and a similar expansion is planned

in India and South Korea. In Japan, where the reactors in operation

were shut down after the earthquake and tsunami of 2011 and

the resulting accidents at the Fukushima plants, nuclear power

plants are being recommissioned due to the urgent need for electricity.

Currently, 9 units are supplying electricity again. However,

further safety precautions are also being implemented here, especially

with regard to external impacts from floods. Safety against

the effects of earthquakes was largely ensured even before 2011.

In the long term, Japan is planning further recommissioning and

new build. In order to cover the short- and medium-term electricity

demand, 22 hard coal-fired power plants are to be added in

Japan. All in all, the country’s energy supply strategy provides for

unrestricted consideration of all energy sources. The same also applies

to the cited China and India. In China, around 700,000 MW

of coal-fired power plant capacity has been newly commissioned

over the past two decades, but also 200,000 MW of wind power

plants. India has connected around 150,000 MW of coal-fired

power plants to the grid since 2000, more than doubled its hydropower

capacity from 20,000 MW in 2000 to around 45,000 MW in

2019, and added around 75,000 MW of wind energy.

At the end of 2019, 448 nuclear power plants were in operation in

31 countries, three units less than a year earlier. With 451 nuclear

power plant units, the number of plants in operation worldwide in

2018 was higher than at any time since the first purely commercial

nuclear power plant, Calder-Hall 1 in the United Kingdom, went

into operation in 1956.

Specifically, four units have become critical and were synchronized

with the power grid for the first time: two units in China:

Taishan 2 (EPR) and Yangjiang 6, one unit in South Korea: Shin-

Kori 4 and one unit in Russia: Novovoronezh 2-2. Seven nuclear

power plant units ceased operation: In Germany, Philippsburg 2*

nuclear power plant after 33 years of successful operation; in Japan,

Genkai 2 unit; in Russia, the pilot plant for electricity and

heat generation in remote regions, Bilibinsk 1; in Switzerland,

Mühleberg nuclear power plant; in Taiwan, Qinshan 2 unit; and

in the USA, the two units Pilgrim 1 and Three Mile Island 1.

In terms of electricity generation capacities, the gross output

of nuclear power worldwide was 425,569 MWe, well above the

400,000 MWe mark, and even slightly higher than the previous

year’s 424,074 MWe due to the high output of new plants.

Nuclear power also recorded another good result in electricity

generation. With net generation of over 2,650 TWh, this was

around 4.0 % higher than in the previous year with 2,543 TWh.

However, due to the fact that 29 nuclear power plants in Japan

have not been in operation since 2011, this is still lower than before

the tsunami and the accident in Fukushima.

The share of total global electricity production remained at 11 %;

the share of nuclear energy in total global energy supply was

around 4.5 % – these are two figures that are certainly remarkable:

The 419 nuclear power stations currently in operation are

capable of supplying electricity to one in ten people worldwide,

or one in twenty people worldwide meets all their energy needs

with nuclear power. Regionally and in the individual countries

using nuclear energy, the share of nuclear energy in electricity

generation varies from 6 % in China – a doubling within 5 years

– to almost 71 % in France. 13 countries cover more than 30 % of

their electricity generation with nuclear power. With 180 reactors,

Europe remains the most important region using nuclear energy.

In this region, about every fourth kilowatt hour of electricity

consumed is generated in nuclear power plants, accounting for

about 27 % of the total.

Five new projects have been launched for 2019: In China, construction

work began on the Changjiang 3 and Changjiang 4 units

and Zhangzhou 1. Iran is continuing the Busher 2-2 project with

Russian technology. In Russia, unit 2-2 is being built at the Kursk

site, a pressurized water reactor of the most modern series, which

will replace the pressure-tube reactors still in operation there.

As a result, 54 nuclear power plant units with a gross capacity of

58,627 MWe and a net capacity of 54,752 MWe were under construction

worldwide, one less than a year earlier due to the new

start-ups. In addition, there are around 125 new-build projects

that are in the concrete planning stage. In addition, many of these

projects are planned in countries that want to enter the nuclear

energy market. Preliminary plans exist for a further 100 nuclear

power plant units.

Dipl.-Ing. Christopher Weßelmann

Editor in Chief, VGB POWERTECH

Essen, Germany

* Refer to report: Operating experience with nuclear power plants 2019

this issue of VGB POWERTECH, p. 61 ff.

1


Editorial VGB PowerTech 5 l 2020

Kernenergie: Das Jahr 2019

Die Entwicklung der Kernenergie

ist weiterhin geprägt

von einer geografisch deutlich

verschobenen Tendenz ihres

Ausbaus von ihren Ursprungsländern

in den USA und Europa

hin zu den neuen Akteuren

in Asien. Allein China wird bis

Mitte der 2020er Jahre innerhalb

von zwei Jahrzehnten fast

60 Kernkraftwerksblöcke neu in

Betrieb genommen haben – darunter

auch neueste Typen aus

Europa und den USA, so den

EPR, der aktuell mit 1.750 MW

Bruttoleistung leistungsstärkste

Reaktor weltweit, den weiteren

Generation III+-Reaktor AP1000 sowie Hochtemperaturen nach

der deutschen Entwicklungslinie „Kugelhaufenreaktor“, und ein

ähnlicher Ausbau ist in Indien und Südkorea geplant. In Japan,

wo die in Betrieb befindlichen Reaktoren nach dem Erdbeben und

Tsunami von 2011 und den dadurch ausgelösten Unfällen in den

Anlagen von Fukushima stillgelegt wurden, werden aufgrund des

drängenden Versorgungsbedarfs mit Strom Kernkraftwerke wieder

in Betrieb genommen. Aktuell liefern 9 Blöcke wieder Strom. Hier

wird aber auch weitere Sicherheitsvorsorge umgesetzt, vor allem

was Einwirkungen von Außen durch Hochwasser/Überflutungen

betrifft. Die Sicherheit gegenüber den Einwirkungen von Erdbeben

war weitestgehend auch vor 2011 gegeben. Langfristig plant

Japan weitere Wiederinbetriebnahmen sowie Neubauten. Um den

Kurz- bzw. Mittelfristigen Strombedarf zu decken, sollen 22 Steinkohlekraftwerke

in Japan hinzugebaut werden. Insgesamt sieht die

Energieversorgungsstrategie des Landes vor, uneingeschränkt alle

Energieträger zu berücksichtigen. Gleiches gilt auch für das zitierte

China bzw. Indien. In China sind in den vergangenen zwei Jahrzehnten

rund 700.000 MW an Kohlekraftwerkskapazitäten neu in

Betrieb genommen worden, aber auch 200.000 MW an Windkraftanlagen.

Indien hat seit 2000 rund 150.000 MW an Kohlekraftwerken

ans Netz geschaltet, seine Wasserkraftkapazität von 20.000

MW in 2000 auf rund 45.000 MW in 2019 mehr als verdoppelt und

rund 75.000 MW an Windenergie hinzugebaut.

Mit 448 Kernkraftwerken waren Ende 2019 in 31 Ländern drei

Blöcke weniger in Betrieb als ein Jahr zuvor. Mit 451 Kernkraftwerksblöcken

waren in 2018 so viele Anlagen weltweit in Betrieb

wie noch nie seit Inbetriebnahme des ersten rein kommerziellen

Kernkraftwerks Calder-Hall 1 in Großbritannien im Jahr 1956.

Im Einzelnen sind vier Blöcke kritisch geworden und wurden erstmals

mit dem Stromnetz synchronisiert: zwei Blöcke in China:

Taishan 2 (EPR) und Yangjiang 6, ein Block in Südkorea: Shin-Kori

4 und ein Block in Russland: Novovoronezh 2-2. Sieben Kernkraftwerksblöcke

stellten ihren Betrieb ein: In Deutschland nach

33 Jahren erfolgreichem Betrieb das Kernkraftwerk Philippsburg

2*; in Japan der Block Genkai 2; in Russland die Pilotanlage für

Strom- und Wärmeerzeugung in entlegenen Regionen, Bilibinsk 1,

in der Schweiz das Kernkraftwerk Mühleberg; in Taiwan der Block

Qinshan 2 und in den USA die zwei Blöcke Pilgrim 1 und Three

Mile Island 1.

Bei den Stromerzeugungskapazitäten lag die Bruttoleistung der

Kernenergie weltweit mit 425.569 MWe deutlich die Marke von

400.000 MWe und lag aufgrund der hohen Leistung der Neuanlagen

sogar etwas höher als im Vorjahr mit 424.074 MWe.

Ein erneut gutes Ergebnis kann die Kernenergie auch bei der

Stromerzeugung verzeichnen. Mit einer Nettoerzeugung von

über 2.650 TWh lag diese rund 4,0 % höher als im Vorjahr mit

2.543 TWh. Aufgrund von seit 2011 weiterhin nicht in Betrieb befindlichen

29 Kernkraftwerke in Japan ist diese aber noch niedriger

als vor dem Tsunami und Unfall in Fukushima.

Der Anteil an der gesamten weltweiten Stromproduktion lag

weiterhin bei 11 %; der Anteil der Kernenergie an der gesamten

weltweiten Energieversorgung bei rund 4,5 % – dies sind zwei

sicherlich bemerkenswerte Zahlen: Die 419 derzeit aktiven Kernkraftwerke

sind in der Lage, jeden zehnten Menschen weltweit mit

Strom zu versorgen oder jeder zwanzigste Mensch weltweit deckt

seinen Energiebedarf komplett mit Kernenergie. Regional und in

den einzelnen Kernenergie nutzenden Ländern ist der Anteil der

Kernenergie an der Stromerzeugung mit einer Spannbreite von inzwischen

6 % in China – eine Verdoppelung innerhalb von 5 Jahren

– bis fast 71 % in Frankreich unterschiedlich. 13 Staaten decken

mehr als 30 % ihrer Stromerzeugung nuklear. Europa ist weiterhin

mit 180 Reaktoren die bedeutendste Kernenergie nutzende Region.

In ihr wird mit einem Anteil von rund 27 % rund jede vierte

verbrauchte Kilowattstunde Strom in Kernkraftwerken erzeugt.

Bei den neu begonnenen Projekten sind für das Jahr 2019 fünf

Vorhaben zu verzeichnen: In China wurden Bauarbeiten an den

Blöcken Changjiang 3 und Changjiang 4 sowie Zhangzhou 1 aufgenommen.

Der Iran führt das Projekt Busher 2-2 mit russischer

Technologie weiter. In Russland entsteht am Standort Kursk der

Block 2-2, ein Druckwasserreaktor modernster Baureihe, der die

dort noch in Betrieb befindlichen Druckröhrenreaktoren ablösen

wird. Damit waren weltweit 54 Kernkraftwerksblöcke mit

58.627 MWe Brutto- und 54.752 MWe Nettoleistung in Bau; aufgrund

der Neuinbetriebnahmen einer weniger als ein Jahr zuvor.

Darüber hinaus sind rund 125 Neubauprojekte zu verzeichnen, die

sich im konkreten Planungsstadium befinden. Viele dieser Projekte

werden zudem in Ländern geplant, die neu in die Kernenergie

einsteigen wollen. Für weitere 100 Kernkraftwerksblöcke bestehen

Vorplanungen.

Dipl.-Ing. Christopher Weßelmann

Chefredakteur VGB POWERTECH

Essen, Deutschland

* Siehe auch Betriebsbericht Kernkraftwerke,

diese Ausgabe VGB POWERTECH, S. 61 ff.

2


VGB-WORKSHOP

2. Cyber-Security Tag Energie

8. SEPTEMBER 2020 IN ESSEN

HOTEL FRANZ

TAGUNGSVORTRÄGE

(Änderungen vorbehalten | Vollständiges Programm online!)

Nach der großen Resonanz und dem großen Erfolg des

1. Cyber-Security Tages Energie am 21. November 2019

wird dieser zukünftig im Jahresrhythmus stattfinden.

Angesprochen werden Betreiber, Planer, Dienstleister und

Lieferanten aller Technologien von Anlagen der Energieerzeugung

sowie Energieanlagen.

Im Rahmen der Vorträge von Experten mit anschließender

moderierter Diskussion werden Sie dabei vertiefende Ein blicke

bezüglich der Themen IT-/OT-Security, Cyber- Security sowie

regulatorische Vorgaben erhalten.

Sie sind in Ihrem Unternehmen verantwortlich für Cyber-

Security bzw. IT-/OT-Security! Geht es Ihnen wie einer

Mehrheit Ihrer Kolleginnen und Kollegen und Sie kennen die

Anforderungen aus dem Cyber-Security-Act, dem IT-Sicherheitsgesetz

2.0 oder der IEC 62443 nicht vollumfänglich? Wollen

Sie wissen, wie Marktbegleiter, Behörden, Leittechnikhersteller,

Software-Unternehmen oder andere KRITIS-Branchen die

aktuellen Herausforderungen beurteilen?

Unsere Vortragsreihe widmet sich genau dieser Problematik mit

einem ganzheitlichen Ansatz und wird in mehreren Veranstaltungen

Sie oder Ihre Kolleginnen und Kollegen darauf vorbereiten,

dass der Betrieb ihrer sicheren

IT-/OT-Landschaft noch sicherer wird und Sie vor den

Gefahren von Cyber-Angriffen immer besser geschützt sind.

Nicht zu vernachlässigen sein wird natürlich auch in diesem

Jahr wieder der Erfahrungsaustausch unter den Teilnehmerinnen

und Teilnehmern in den Pausen.

In den Folgeveranstaltungen werden wir Ihnen weiter detaillierte

Einblicke in diesen immer wichtiger werdenden Themenkomplex

anbieten.

Wir freuen uns auf Ihre Teilnahme!

KSG|GfS | VGB PowerTech

L Online-Registrierung und aktuelle Informationen:

www.vgb.org/vgbcyber20.html

09:30 – 09:45 Begrüßung

Prof. h.c. PhDr. Stefan Loubichi,

KSG Kraftwerks-Simulator-Gesellschaft mbH, und

Jörg Kaiser, VGB PowerTech e.V.

09:45 – 10:00

V1

10:00 – 10:30

V2

10:30 – 11:00

V3

11:15 – 11:45

V4

11:45 – 12:15

V5

13:00 – 13:30

V6

13:30 – 14:00

V7

14:00 – 14:30

V8

15:00 – 15:30

V9

15:30 – 16:00

V10

16:00 – 16:30

V11

Vor-Ort Konzept. Wir sorgen für Sie vor!

Das Veranstaltungshotel hat ein detailliertes Hygienekonzept für alle Räumlichkeiten und Aufgabenbereiche erstellt.

Mögliche Anpassungen erfolgen gemäß geltender Rechtsvorschriften und den Vorgaben der Behörden.

Mit diesem Konzept möchten wir unseren Beitrag zur Sicherung unser aller Gesundheit und Sicherheit leisten.

Bearbeitung des Themas Cyber-Security am

Energiecampus, Rollen von KSG|GfS und VGB

Jörg Kaiser, VGB PowerTech e.V.

Aktuelle Aspekte der IT-/OT- und Cyber-Security

aus Sicht des Bundesamtes für Sicherheit in der

Informationstechnik

Jörg Wiesner, Referatsleiter Industrielle

Automatisierung, BSI

Die reale Cyber-Security-Bedrohungslage

für die Energiewirtschaft

Bundesamt für Verfassungsschutz

IT- und Cyber-Security – Wo kann die Politik

hier helfen?

Dr. Ammar Alkassar, Bevollmächtigter für Innovation

und Strategie und Chief Information Officer

(CIO) des Saarlandes

Das PAAG/HAZOP Risikoverfahren und weitere

Risikoverfahren aus der Chemie für die Energiewirtschaft

Prof. h.c. PhDr. Stefan Loubichi,

Abteilungsleiter CS und CISO des Simulatorzentrums

am Energie-Campus Deilbachtal

Der Umgang mit Schwachstellen

in der Leittechnik

Frederic Buchi, Senior Consultant Cyber Security,

Siemens Gas und Power GmbH & Co. KG

Das Collaborative Operations Centre –

digitale Dienstleistungen für Energieerzeuger

mit Sicherheit

Christian Kohlmeyer, Industrial Automation, ABB AG

Paradigmenwechsel der IT-Sicherheit: Von trügerischer

Sicherheit zu dauerhafter Resilienz

Michael Zimmer, GDATA Cyber Defense AG

Einführung von Standards der Informationssicherheit

– ISO27001 in den Braunkohlekraftwerken

der RWE Power AG

Lutz Koehler, Leiter Anlagentechnik

Elektro- und Leittechnik, RWE Power AG

Rollout Softwareverteilung sowie die

ITIL Foundation – Cyber-Security bei

unterstützenden Prozessen

Wolfgang Steffen, Geschäftsführer Sarcom GmbH

Aktuelles aus der Welt der Zertifizierungen

für Energieerzeuger

Prof. Manfred Rothgänger,

Geschäftsführer CertEuropA GmbH

16:45 – 17:00 Schlussworte

Prof. h.c. PhDr. Stefan Loubichi,

KSG Kraftwerks-Simulator-Gesellschaft mbH, und

Jörg Kaiser, VGB PowerTech e.V.

Neuer Termin!


Contents VGB PowerTech 5 l 2020

VGB Conference Chemistry 2020

VGB-Chemiekonferenz

| 27-29 October 2020, Dresden/Germany.

The international VGB Conference Chemistry deals with all

chemical aspects of power and heat generation plants as well as

other industrial processes. The event is a forum beyond Europe for

the exchange of experience and the status of technical/chemical

developments in the following areas:

– Water treatment and conditioning methods for production

processes

– Industrial and municipal waste water treatment processes

– Conditioning of water-steam and cooling cycles in

thermal power plants and industrial processes

– Chemical and corrosion aspects in thermal power

and industrial plants

– Chemical challenges in cyclical plant operation

– Further development of automation in plant chemistry

– Sampling systems and online measurement technology

– Chemical aspects of fuels and input materials

International Journal for Generation

and Storage of Electricity and Heat 5 l 2020

Nuclear power: The year 2019

Kernenergie: Das Jahr 2019

Christopher Weßelmann 1

Abstracts/Kurzfassungen6

Members‘ News 8

Industry News 18

Events in brief 25

Highlights of the World Nuclear Performance Report 2019

World Nuclear Performance Report 2019

Jonathan Cobb 29

Safety Case Considerations for the Use of Robots

in Nuclear Decommissioning

Fallbetrachtungen zur Sicherheit für den Einsatz von Robotern

bei der Stilllegung von Kernkraftwerken

Howard Chapman, John-Patrick Richardson, Colin Fairbairn,

Darren Potter, Stephen Shackleford and Jon Nolan 33

SMRs - Overview on international developments

and safety features

SMRs – Übersicht zu internationalen Entwicklungen

sowie Sicherheitseigenschaften

Andreas Schaffrath and Sebastian Buchholz 39

Experimental and computational analysis of a passive

containment cooling system with closed-loop heat

pipe technology

Experimentelle und Code-Analyse eines passiven

Containment-Kühlsystems mit geschlossenem

Wärmeleitungskreislauf

Lu Changdong, Ji Wenying, Yang Jiang, Cai Wei,

Wang Ting, Cheng Cheng and Xiao Hong 50

Physical and chemical effects of containment debris

on the emergency coolant recirculation

Physikalische und chemische Auswirkungen von

Containment-Ablagerungen auf die Notkühlmittelrückführung

Jisu Kim and Jong Woon Park 57

4


VGB PowerTech 5 l 2020

Contents

– Chemical aspects of exhaust gas purification processes,

CO 2 separation and Power-to-X systems

– Operational analytics for thermal power plants

and production processes

– Chemical aspects of the operation and decommissioning

of nuclear facilities

The conference is accompanied by a trade exhibition, which gives

exhibitors the opportunity to present their companies and products.

CONFERENCE

VGB CONFERENCE

CHEMISTRY 2020

WITH TECHNICAL EXHIBITION

(27) 28 AND 29 OCTOBER 2020

DRESDEN/GERMANY

Contacts

| Ines Moors (Conference)

Phone: +49 201 8128-274

E-Mail: vgb-chemie@vgb.org

| Angela Langen (Exhibition)

Phone: +49 201 8128 310

E-Mail: angela.langen@vgb.org

www.vgb.org

VGB CiK2020 titelseite.indd 1 25.06.2020 07:55:46

Operating experience with nuclear power plants 2019

Betriebserfahrungen mit Kernkraftwerken 2019

VGB PowerTech 61

Operating results 90

VGB News 92

A journey through 100 years VGB | Nuclear power

100 Jahre VGB: Eine Zeitreise | Kernenergie

French experience from the operation of nuclear

power plants with pressurized water reactors

Französische Erfahrungen aus dem Betrieb von Kernkraftwerken mit

Druckwasserreaktoren

J. Kandel 76

The Contribution of Nuclear Energy to CO2 Reduction: Status and

Outlook

Der Beitrag der Kernenergie zur Verminderung von CO2-Emissionen:

Status und Ausblick

H.-U. Fabian 84

Personalien92

Inserentenverzeichnis94

Events95

Imprint96

Preview VGB PowerTech 6|2020 96

Annual Index 2019: The Annual Index 2019, as also of previous

volumes, are available for free download at

https://www.vgb.org/en/jahresinhaltsverzeichnisse_d.html

Jahresinhaltsverzeichnis 2019: Das Jahresinhaltsverzeichnis 2019

der VGB POWERTECH − und früherer Jahrgänge−steht als kostenloser

Download unter folgender Webadresse zur Verfügung:

https://www.vgb.org/jahresinhaltsverzeichnisse_d.html

5


Abstracts VGB PowerTech 5 l 2020

Highlights of the World Nuclear

Performance Report 2019

Jonathan Cobb

The world’s nuclear reactors made a growing

contribution to supplying clean and reliable

electricity in 2018. Global nuclear generation

was 2563 TWh, up 61 TWh on the previous

year. At the end of 2018 the capacity of the

world’s 449 operable reactors was 397 GWe, up

4 GWe on the previous year. Nine new reactors

were connected to the grid, with a combined capacity

of 10.4 GWe. Seven reactors were closed

down in 2018. The world’s nuclear plants continue

to perform excellently. Growth is strong,

with more than 20 new reactors scheduled to

be connected before the end of 2020. For the

industry to reach the Harmony goal of supplying

at least 25 % of the world’s electricity before

2050, much greater commitment from policymakers

will be required.

Safety Case Considerations for the Use of

Robots in Nuclear Decommissioning

Howard Chapman, John-Patrick Richardson,

Colin Fairbairn, Darren Potter,

Stephen Shackleford and Jon Nolan

Decommissioning activities in the nuclear industry

can often require personnel to undertake

tasks manipulating plant, equipment and

deploying tooling in close proximity to contaminated

materials.

The predominant risk associated with such

work is exposure to radiological dose uptake

from direct radiation, internal dose due to inhalation,

or from wounds.

There is an aspiration within the nuclear industry

to remove the need for operators to undertake

manual decommissioning activities by using

‘robotic systems’ which offer the benefit of

overall risk reduction safer, sooner and cheaper.

A vital part of the UK Nuclear Decommissioning

Authority (NDA) mission is to help drive innovation

to address the wide-ranging complex

challenges across their sites and businesses. The

NDA’s ‘Grand Challenges’ for technical innovation

aims to remotely decommission gloveboxes

by 2025 and provide a 50 % reduction in decommissioning

activities carried out by humans

in hazardous environments by 2030.

This paper examines the underpinning Regulations,

Standards and Technical Assessment

Guides necessary for the deployment of ‘robotic

systems’ to remove the need for operators to

undertake manual nuclear decommissioning

activities. It also investigates the information

currently available to produce a safety case, together

with commentary on work being undertaken

by the UK National Nuclear Laboratory

(NNL) who are currently reviewing technology

and proof of concept trials to help future development

in this area.

SMRs - Overview on international

developments and safety features

Andreas Schaffrath and Sebastian Buchholz

Small modular reactors are one interesting

option for new builds in almost all countries

worldwide continuing to use nuclear energy

for commercial electricity production. In this

contribution first definitions, history and current

developments of SMRs are presen-ted.

Subsequently, selected trends of SMR development

such as factory fabrication and transport,

compactness and modularity, core design, improved

core cooling and exclusion of accidents,

features for preventing and limiting the impact

of severe acci-dents are described. Further topics

to be touched are the economic viability and

competitiveness, licensing and the position of

selected European countries concerning new

builds. Last modellings gaps of the GRS simulation

chain applied in nuclear licensing procedures

are identified and a strategy for closure is

developed.

Experimental and computational analysis of

a passive containment cooling system with

closed-loop heat pipe technology

Lu Changdong, Ji Wenying, Yang Jiang, Cai

Wei, Wang Ting, Cheng Cheng and Xiao Hong

In this paper, a conceptual design of Passive

Containment Cooling System with Closed-Loop

Heat Pipe Technology (PCSHP) is studied using

both experimental and computational methods.

By studying on the thermal-hydraulic parameters

in system running, such as temperature,

pressure and flow rate, the paper mainly focuses

on the start-up characteristics, the steady-state

operating characteristics, the heat transfer capacity

and the natural circulation capacity of

the system. Hence, the principle experiment

and GOTHIC simulation are carried out under

start-up conditions, steady-state conditions and

decay heat simulation conditions. The applicability

and conservatism of the GOTHIC model is

evaluated by comparing the simulating results

with the experimental results. The rationality of

the system design is validated by both the principle

experiment and GOTHIC simulation. It is

preliminarily judged that the heat pipe technology

is feasible to apply to the Passive Containment

Cooling System (PCCS) of nuclear power

plant.

Physical and chemical effects of

containment debris on the emergency

coolant recirculation

Jisu Kim and Jong Woon Park*

Physical and chemical effects of containment

debris on the performance of emergency coolant

recirculation are investigated to get insight

on the cost-effective plant modifications to resolve

USNRC’s Generic Safety Issue-191. The effects

of debris sources on the sump screen performance

are evaluated through the head loss

calculation using NUREG/CR-6224 correlation.

The amount of three predominant types of precipitates,

i.e., sodium aluminum silicate (NaAl-

Si 3 O 8 ), aluminum oxyhydroxide (AlOOH), calcium

phosphate (Ca 3 (PO 4 ) 2 ) after 30 days of

ECCS mission time are evaluated under various

environmental conditions using WCAP-16530-

NP chemical models. The debris interceptor is

considered as a viable design option to reduce

particulate debris such as unqualified coatings.

The key parameters of each effect are deduced

and recommendations for reducing their adverse

effects are made through the present analysis:

(a) The amount of unqualified coating debris

is a major source of particulate debris and

has a great adverse effect on the sump screen

head loss by reducing porosity in the fibrous insulation,

(b) The Cal-Sil insulation reacts with

TSP buffer and significantly increases the generation

of a gum-like chemical precipitant, (c)

Spray time increases the chemical byproducts

but the effect is smaller than that of buffer agent

type and unqualified coating, (d) The debris interceptor,

when verified, may play a vital role

reducing head loss generated by coatings and

fibrous debris mix.

Operating experience with nuclear power

plants 2019

VGB PowerTech

The VGB Technical Committee “Nuclear Plant

Operation” has been exchanging operating

experience about nuclear power plants for

more than 30 years. Plant operators from several

European countries are participating in

the exchange. A report is given on the operating

results achieved in 2019, events important

to plant safety, special and relevant repair, and

retrofit measures.

A journey through 100 years VGB |

Nuclear power

––

French experience from the operation of nuclear

power plants with pressurized water

reactors

J. Kandel

––

The Contribution of Nuclear Energy to CO 2

Reduction: Status and Outlook

H.-U. Fabian

6


VGB PowerTech 5 l 2020

Kurzfassungen

World Nuclear Performance Report 2019

Jonathan Cobb

Die Kernkraftwerke weltweit leisteten auch in

2018 einen wachsenden Beitrag zur Versorgung

mit sauberer und zuverlässiger Elektrizität. Die

weltweite Stromerzeugung aus Kernenergie

betrug 2563 TWh, 61 TWh mehr als im Vorjahr

2017. Ende 2018 betrug die Kapazität der 449

betriebsbereiten Reaktoren der Welt 397 GWe,

4 GWe mehr als im Vorjahr. Neun neue Reaktoren

mit einer Gesamtleistung von 10,4 GWe wurden

ans Netz angeschlossen. Sieben Reaktoren

mit einer Gesamtkapazität von 5,4 GWe wurden

2018 abgeschaltet. Davon sind vier japanische

Reaktoren, die seit 2011 nicht mehr am Netz

waren, und ein fünfter, Chinshan 1 in Taiwan,

war seit 2015 nicht mehr am Netz, so dass diese

Stilllegungen nur minimale Auswirkungen auf

die gesamte Stromerzeugung im Jahr 2018 hatten.

Vier Reaktoren in Japan mit einer Gesamtkapazität

von 5,6 GWe erhielten die Genehmigung

zur Wiederinbetriebnahme. 55 Reaktoren

befanden sich Ende 2018 in Bau, wobei mit dem

Bau von fünf Reaktoren begonnen wurde, verglichen

mit den neun, die nach Abschluss der

Bauarbeiten ans Netz gegangen sind.

Fallbetrachtungen zur Sicherheit für den

Einsatz von Robotern bei der Stilllegung von

Kernkraftwerken

Howard Chapman, John-Patrick Richardson,

Colin Fairbairn, Darren Potter, Stephen

Shackleford und Jon Nolan

Stilllegungsaktivitäten in der Nuklearindustrie

erfordern für das Personal häufig unmittelbare

Nähe zu kontaminierten Materialien, die Ausführung

von Aufgaben bei der Arbeit an Anlagen,

Ausrüstungen und dem Einsatz von Werkzeugen.

Das mögliche Risiko, das mit solchen Arbeiten

verbunden ist, ist eine Exposition durch direkte

ionisierende Strahlung oder Aufnahme ionisierender

Teilchen mit folgender innerer Dosis

durch Inhalation oder durch Wunden.

In der Nuklearindustrie ist es ein Ziel, manuelle

Stilllegungsaktivitäten, d.h. mit Beschäftigten

vor Ort, zu vermeiden, indem Robotersysteme

eingesetzt werden, die als Vorteil bieten, dass

Risiken minimiert werden.

Ein wesentlicher Teil der Aufgabe der britischen

Behörde für die Stilllegung kerntechnischer

Anlagen (Nuclear Decommissioning Authority,

NDA) besteht darin, Innovationen voranzutreiben,

um die weitreichenden komplexen Herausforderungen

an ihren Standorten und in ihren

Unternehmen zu bewältigen. Eine “Grand Challenge”

der NDA für technische Innovation zielt

darauf ab, bis 2025 ferngesteuerte Handschuhkästen

einzurichten, um vorgenannte Risiken zu

minimieren.

SMRs – Übersicht zu internationalen

Entwicklungen sowie

Sicherheitseigenschaften

Andreas Schaffrath und Sebastian Buchholz

Kleine modulare Reaktoren sind eine interessante

Option für Neubauten in nahezu allen

Ländern weltweit, die weiterhin Strom aus Kernenergie

erzeugen möchten. In dem vorliegenden

Beitrag werden zunächst die Definitionen, ein

kurzer Rückblick und eine kompakte Übersicht

über aktuelle Entwicklungen gegeben. Anschließend

werden aktuelle Entwicklungstrends

vorgestellt. Hierzu zählen u.a. Themen wie

Fabrikfertigung und Transport, Kompaktheit

und Modularität, Kernauslegung, verbesserte

Kernkühlung sowie die Vermeidung von Störfällen

bei der Auslegung. Weitere Themen, die

gestreift werden, sind die Wirtschaftlichkeit und

Konkurrenzfähigkeit, die Lizensierung sowie

die Position ausgewählter europäischer Länder

zu SMR Neubauten. Zum Schluss werden Modellierungsschwächen

der in kerntechnischen

Genehmigungsverfahren eingesetzten GRS Rechenkette

identifiziert sowie eine Priorisierung

zu deren Beseitigung vorgestellt.

Experimentelle und Code-Analyse eines

passiven Containment-Kühlsystems mit

geschlossenem Wärmeleitungskreislauf

Lu Changdong, Ji Wenying, Yang Jiang, Cai

Wei, Wang Ting, Cheng Cheng und Xiao Hong

In diesem Beitrag wird ein konzeptioneller Entwurf

eines passiven Containment-Kühlsystems

mit geschlossener Wärmerohrtechnologie (PCS-

HP) unter Verwendung sowohl experimenteller

als auch rechnerischer Methoden untersucht.

Durch die Untersuchung der thermohydraulischen

Parameter im Systembetrieb, wie Temperatur,

Druck und Durchflussmenge, konzentriert

sich die Arbeit hauptsächlich auf das

Anlaufverhalten, das stationäre Betriebsverhalten,

die Wärmeübertragungskapazität und die

natürliche Zirkulationskapazität des Systems.

Daher werden das Hauptexperiment und die

GOTHIC-Simulation unter Anfahrbedingungen,

stationären Bedingungen und Simulationsbedingungen

der Nachzerfallswärme durchgeführt.

Die Anwendbarkeit und Konservativität

des GOTHIC-Modells wird durch den Vergleich

der Simulationsergebnisse mit den experimentellen

Ergebnissen bewertet. Die Rationalität des

Systemdesigns wird sowohl durch das Hauptexperiment

als auch durch die GOTHIC-Simulation

validiert. Es wird vorläufig beurteilt, dass die

Heatpipe-Technologie auf das Passive Containment

Cooling System (PCCS) von Kernkraftwerken

anwendbar ist.

Physikalische und chemische Auswirkungen

von Containment-Ablagerungen auf die

Notkühlmittelrückführung

Jisu Kim und Jong Woon Park

Physikalische und chemische Auswirkungen von

Containment-Ablagerungen auf die Leistung der

Notfall-Kühlmittelrückführung werden untersucht,

um einen Einblick in die kosteneffektiven

Anlagenmodifikationen zur Lösung des allgemeinen

Sicherheitsproblems-191 des US-NRC

zu erhalten. Die Auswirkungen von Ablagerungen

auf die Leistung des Sumpfsiebs werden

durch die Berechnung des Druckverlusts unter

Verwendung der NUREG/CR-6224-Korrelation

bewertet. Die Menge der drei vorherrschenden

Arten von Ausfällungen, d.h. Natriumaluminiumsilikat

(NaAlSi 3 O 8 ), Aluminiumoxidhydroxid

(AlOOH), Kalziumphosphat (Ca 3 (PO 4 ) 2 )

nach 30 Tagen ECCS-Missionszeit wird unter

verschiedenen Umweltbedingungen mit Hilfe

chemischer Modelle nach WCAP-16530-NP bewertet.

Der Trümmerabscheider wird als praktikable

Konstruktionsoption zur Reduzierung

von partikelförmigem Trümmerteilchen wie

z.B. unqualifizierten Beschichtungen betrachtet.

Die Schlüsselparameter jeder Wirkung werden

abgeleitet, und durch die vorliegende Analyse

werden Empfehlungen zur Verringerung ihrer

nachteiligen Auswirkungen gegeben: (a) Die

Menge an unqualifiziertem Beschichtungsabfall

ist eine Hauptquelle für Partikelabfall und

hat eine große nachteilige Auswirkung auf den

Sumpfsiebkopfverlust, indem sie die Porosität

in der faserigen Isolierung reduziert, (b) die

Cal-Sil-Isolierung reagiert mit TSP-Puffer und

erhöht die Bildung eines gummiartigen chemischen

Fällungsmittels erheblich, (c) Die Sprühzeit

erhöht die chemischen Nebenprodukte,

aber die Wirkung ist geringer als die von Puffermitteln

und unqualifizierten Beschichtungen,

(d) Der Trümmerabscheider kann, wenn er verifiziert

ist, eine entscheidende Rolle bei der Verringerung

des Druckverlusts spielen, der durch

Beschichtungen und faserige Trümmergemische

entsteht.

Betriebserfahrungen mit

Kernkraftwerken 2019

VGB PowerTech

Innerhalb des VGB-Fachausschusses „Kernkraftwerksbetrieb“

wird seit mehr als 30 Jahren ein

intensiver Austausch von Betriebserfahrungen

mit Kernkraftwerken gepflegt. An diesem Erfahrungsaustausch

sind Kernkraftwerksbetreiber

aus mehreren europäischen Ländern beteiligt.

Über im Jahr 2019 erzielte Betriebsergebnisse

sowie sicherheitsrelevante Ereignisse, wichtige

Reparaturmaßnahmen und besondere Umrüstmaßnahmen

wird berichtet.

100 Jahre VGB: Eine Zeitreise |

Kernenergie

––

Französische Erfahrungen aus dem Betrieb

von Kernkraftwerken mit Druckwasserreaktoren

J. Kandel

––

Der Beitrag der Kernenergie zur Verminderung

von CO 2 -Emissionen: Status und Ausblick

H.-U. Fabian

7


VGB POWERTECH as printed edition,

monthly published, 11 issues a year

Annual edition as CD or DVD

with alle issues from 1990 to 2019:

Profount knowledge about electricity

and heat generation and storage.

Order now at www.vgb.org/shop

1/2 2012

European

Generation Mix

• Flexibility and

Storage

1/2 2012

International Journal for Electricity and Heat Generation

The electricity sector

at a crossroads

The role of

renewables energy

in Europe

Power market,

technologies and

acceptance

Dynamic process

simulation as an

engineering tool

European

Generation Mix

• Flexibility and

Storage

The electricity sector

at a crossroads

The role of

renewables energy

in Europe

Power market,

technologies and

acceptance

Dynamic process

simulation as an

engineering tool

Publication of VGB PowerTech e.V. l www.vgb.org

International Journal for Electricity and Heat Generation

ISSN 1435–3199 · K 123456 l International Edition

1/2 2012

European

Generation Mix

• Flexibility and

Storage

The electricity sector

at a crossroads

The role of

renewables energy

in Europe

Power market,

technologies and

acceptance

Dynamic process

simulation as an

engineering tool

Publication of VGB PowerTech e.V. l www.vgb.org

ISSN 1435–3199 · K 123456 l International Edition

International Journal for Electricity and Heat Generat

Publication of VGB PowerTech e.V. l www.vgb.org

ISSN 1435–3199 · K 123456 l International Edition

Fachzeitschrift: 1990 bis 2019

· 1990 bis 2019 · · 1990 bis 2019 ·

Diese DVD und ihre Inhalte sind urheberrechtlich geschützt.

© VGB PowerTech Service GmbH

Essen | Deutschland | 2019

© Sergey Nivens - Fotolia

VGB PowerTech

Contact: Gregor Scharpey

Tel: +49 201 8128-200

mark@vgb.org | www.vgb.org

The international journal for electricity and heat generation and storage.

Facts, competence and data = VGB POWERTECH

www.vgb.org/shop


VGB-PowerTech-DVD

More than 25,000 digitalised pages with data and expertise

Volumes 1990 to 2019 , incl. search function for all documents.

Volumes 1976 to 2000 | English edition available now!

Technical Journal: 1976 to 2000

Fachzeitschrift: 1990 bis 2019

English Edition

· 1976 to 2000 · · 1976 to 2000 ·

Fachzeitschrift: 2019

· 1990 bis 2019 · · 1990 bis 2019 ·

Diese DVD und ihre Inhalte sind urheberrechtlich geschützt.

© VGB PowerTech Service GmbH

Essen | Deutschland | 2018

All rights reserved.

© VGB PowerTech Service GmbH

Essen | Germany | 2019

· CD 2019 · · CD 2019 ·

Diese CD und ihre Inhalte sind urheberrechtlich geschützt.

© VGB PowerTech Service GmbH

Essen | Deutschland | 2018

VGB-PowerTech-CD-2019

Volume 2019 of the international renowed technical journal

VGB POWERTECH digital on CD.

Place your order in our shop: www.vgb.org/shop


Members´ News VGB PowerTech 5 l 2020

Members´

News

Land Baden-Württemberg und

EnBW arbeiten bei der

Cybersicherheit zusammen

• Innenminister Thomas Strobl und

EnBW CEO Frank Mastiaux

unterzeichnen Kooperationsvertrag

zur Bekämpfung von Cyberkriminalität

und für den Schutz kritischer

Infrastrukturen

(enbw) Die Cyberkriminalität wird zunehmend

professioneller und internationaler:

Damit wachsen die Aufgaben der Stellen,

die mit der Abwehr und der Ermittlung von

Cyberkriminalität befasst sind. Gemeinsames

Ziel der Public-Private-Non-Profit-Partnership

(PPNPP) Initiative zwischen

dem Innenministerium Baden-Württemberg

und der EnBW ist daher die Verbesserung

der Cybersicherheit für Städte

und Kommunen, Wirtschaft und Gesellschaft

sowie Stadtwerke und das Gesundheitswesen

in Baden-Württemberg.

Der von Innen- und Digitalisierungsminister

Thomas Strobl und EnBW CEO Frank

Mastiaux unterzeichnete Kooperationsvertrag

zielt neben der Schaffung eines Bewusstseins

um die Gefahren von Cyberkriminalität

vor allem auf gemeinsame Präventionsmaßnahmen,

Wissenstransfer,

Vernetzung von Experten und eine standardisierte

Aus- und Weiterbildung. Darüber

hinaus soll ein Lagebild „Cybersicherheit

Kritische Infrastrukturen“ für Baden-Württemberg

erstellt werden. Der Kooperationsvertrag

stärkt das Landeskriminalamt,

die neue Cybersicherheitsagentur

des Landes und die Marke „Cybersicherheit

made in Baden-Württemberg“.

Jede ist zu ersetzen!

Redesign

PE01

S4

S2

„Krankenhäuser, Kraftwerke oder Wasserversorger

leisten unverzichtbare Dienste

für unsere Gesellschaft. Es könnte dramatische

Folgen haben, wenn solche Einrichtungen

– wenn auch nur vorübergehend

– für die Versorgung der Bevölkerung

ausfallen würden, weil sie Opfer eines Cyberangriffs

wurden. Um dies zu verhindern,

werden die EnBW und das Innenministerium

sich zukünftig im Kampf gegen

Cyberkriminelle noch besser vernetzen“,

sagte der Stv. Ministerpräsident und Innenminister

Thomas Strobl bei der Unterzeichnung

des Kooperationsvertrags.

Für EnBW CEO Frank Mastiaux ist die Zusammenarbeit

ein logischer Schritt: „Begünstigt

durch Industrie 4.0 und das Internet

der Dinge stellen Cyberattacken wesentliche

Gefahren für die deutsche Wirtschaft

dar. Als Betreiber systemkritischer

Infrastrukturen bringt die EnBW eine tiefgehende

Expertise im Sicherheitsmanagement

komplexer IT-Strukturen mit. Wir

sind sehr motiviert, diese Kompetenz und

jahrzehntelange Erfahrung gewinnbringend

einzubringen, um den Herausforderungen

der Informationssicherheit und der

Cyberkriminalität effektiv zu begegnen.“

Organisationen und Einrichtungen mit

herausragender Bedeutung für das staatliche

Gemeinwesen, bei deren Ausfall oder

Beeinträchtigung es zu nachhaltigen Versorgungsengpässen

oder anderen dramatischen

Folgen kommen kann, werden als

Kritische Infrastrukturen, kurz KRITIS, bezeichnet.

Eine zunehmende Bedrohung

sind Cyberangriffe gegen Einrichtungen

wie beispielsweise Unternehmen aus den

Bereichen Transport und Verkehr, Stromkraftwerke,

Wasserversorger, Unternehmen

der Informations- und Kommunikationstechnik

sowie die gerade zur Bewältigung

der Corona-Krise so wichtigen Krankenhäuser.

Eine Störung oder der Ausfall

von IT-Infrastrukturen kann gravierende

Folgen haben. Genau deshalb hat das Land

Baden-Württemberg beispielsweise das

Angebot des Pilotprojektes Cyberwehr in

Karlsruhe für drei Monate landesweit auf

das Gesundheitswesen ausgeweitet.

plug and play

100% kompatibel

Baugruppen ab Lager:

KE3 Leistungselektronik

6DT1013 bis 6DT1031 Stepper

Luvo-Sonden und Controller

... und viele Andere, fragen Sie an!

Der Schutz Kritischer Infrastrukturen obliegt

an erster Stelle den Betreibern und

Unternehmen selbst. Als bedeutender Betreiber

von KRITIS-Einrichtungen verfügt

die EnBW hier über eine herausragende

Expertise. Mit dem Full Kritis Service der

EnBW haben auch andere KRITIS-Betreiber

die Möglichkeit, am Know-how zu partizipieren.

Auf staatlicher Seite erarbeitet das Innenministerium

derzeit die gesetzlichen, administrativen

und strukturellen Voraussetzungen

für die Gründung einer Cybersicherheitsagentur.

Diese soll den Schutz vor Cyberangriffen

in einer zentralen Behörde

koordinieren, welche die Cybersicherheit

organisationsübergreifend orchestriert und

koordiniert. Damit soll eine verbesserte Abwehr

von Gefahren für die Cybersicherheit

erreicht werden. „Wir stärken damit einen

umfassenden und ganzheitlichen Ansatz.

Ziel der Cybersicherheitsagentur ist es, Informationen

zentral zu bündeln, Aufgaben

der Cybersicherheit besser zu koordinieren

und dezentral wahrzunehmen. Dabei spielt

der Kooperationsvertrag mit der EnBW, die

über eine exzellente Expertise verfügt, eine

bedeutende Rolle. Dass wir zukünftig unser

Wissen und unsere Erfahrungen gemeinsam

nutzen können, ist ein Gewinn für unser

Land“ erklärte Innen- und Digitalisierungsminister

Thomas Strobl.

Innenminister Thomas Strobl betonte:

„Wir arbeiten freilich ernsthaft an diesem

Thema. Bereits Anfang 2012 wurde beim

Landeskriminalamt die Abteilung Cybercrime

und Digitale Spuren eingerichtet,

in welcher derzeit mehr als 130 Experten

gegen Cyberkriminelle vorgehen. Vergleichbare

Kriminalinspektionen mit insgesamt

mehr als 230 Stellen gibt es bei den

regionalen Polizeipräsidien. Die beim Landeskriminalamt

verankerte Zentrale Ansprechstelle

Cybercrime (ZAC) steht der

Wirtschaft und anderen öffentlichen und

nichtöffentlichen Stellen rund um die Uhr

zur Verfügung. Das Landeskriminalamt

bietet insbesondere mit einer Task-Force

Digitale Spuren zudem schnelle Hilfe bei

Cyberangriffen.“

Die EnBW, das Landeskriminalamt

und die Koordinierungsstelle

Kritische Infrastrukturen im

Innenministerium arbeiten bereits

seit geraumer Zeit vertrauensvoll

zusammen. Diese Zusammenarbeit

soll mit der heute unterzeichneten

Kooperationsvereinbarung

verstetigt und weiter

intensiviert werden. Die Kooperation

zwischen dem Innenministerium

Baden-Württemberg und

der EnBW tritt unverzüglich in

Kraft. (201761410)

LL

www.enbw.com

Stellungsgeber

VEW-GmbH Edisonstr. 19 28357 Bremen

FON: 0421-271530 www.vew-gmbh.de

8


VGB PowerTech 5 l 2020

Members´News

innogy: innogy ebnet den Weg

für ihren dritten Offshore-

Windpark vor der deutschen Küste

• Finale Investitionsentscheidung für 342

MW Kaskasi Offshore-Projekt

• Verträge mit Hauptlieferanten

unterzeichnet:

• Siemens Gamesa Renewable Energy

S.A., Bladt Industries A/S und Seaway 7

• Aufträge im Gesamtwert von über 500

Millionen Euro vergeben

• Bauarbeiten auf See sollen im dritten

Quartal 2021 beginnen

• Reduzierte Bauzeit und

Geräuschemissionen durch verbessertes

Installationsverfahren

(innogy) Die innogy SE bereitet den Weg

für Kaskasi, das dritte Offshore-Projekt des

Unternehmens vor der deutschen Küste:

Das Energieunternehmen hat die finale Investitionsentscheidung

für den Bau des

342 Megawatt Windparks getroffen, der 35

Kilometer nördlich der Insel Helgoland

entstehen soll. Die Verträge für die Lieferung

aller wichtigen Komponenten sind

bereits unterzeichnet. Der Auftragswert

für Windturbinen und Fundamente, die

Offshore-Umspannanlage sowie die Verkabelung

des Windparks liegt insgesamt bei

über 500 Millionen Euro.

Christoph Radke, Vorstand Erneuerbare

Energien der innogy SE: „Offshore-Windenergie

ist eine zuverlässige und nachhaltige

Energiequelle und damit ein wichtiger

Pfeiler, um die deutschen Klimaschutzziele

zu erreichen. Ich freue mich, dass wir den

Weg für den Bau unseres Offshore-Windprojekts

Kaskasi geebnet haben – unserem

dritten Windpark vor der deutschen Küste.

Mit der Investition in dieses Projekt unterstreichen

wir einmal mehr unsere Wachstumsambitionen

im europäischen und

weltweiten Offshore-Windsektor.“

Sven Utermöhlen, Senior Vice President

Renewables Operations Offshore der innogy

SE: „Nach unserem Erfolg bei der deutschen

Offshore-Auktion 2018 haben wir

jetzt den nächsten wichtigen Schritt zur

Realisierung des Offshore-Windparks Kaskasi

unternommen. Mit Siemens Gamesa,

Bladt Industries und Seaway 7 haben wir

sehr erfahrene Zulieferer für alle wichtigen

Komponenten und deren Installation an

Bord. Der Baubeginn auf See ist für nächstes

Jahr geplant.“

innogy hat mit Siemens Gamesa Renewable

Energy S.A. einen Vertrag zur Lieferung

von 38 SG 8.0-167 DD Flex Offshore-Windturbinen

abgeschlossen. Jede Turbine wird

über eine installierte Leistung von bis zu 9

MW verfügen. Der Rotordurchmesser beträgt

167 Meter, die Gesamthöhe 191 Meter.

Die Windturbinen und die Umspannanlage

werden auf Monopile-Fundamenten

der Firma Bladt Industries A/S errichtet.

Seaway 7 wird im dritten Quartal 2021

beginnen die Fundamente mit einem innovativem

Verfahren in moderaten Wassertiefen

von 18 bis 25 Metern zu installieren.

Die Vibrationsrammtechnik, das sogenannte

„Vibro Pile Driving“, ist eine effiziente

Alternative zur herkömmlichen

Schlagrammtechnik. Ein Forschungsprojekt

unter Leitung von innogy hat gezeigt,

dass dieses optimierte Installationsverfahren

das Potenzial hat Konstruktionszeiten

und Geräuschemissionen zu verringern.

Kaskasi wird weltweit als erster Windpark

diese Vibrationsrammtechnik nutzen, um

alle Monopile-Fundamente bis zur endgültigen

Tiefe in den Meeresgrund zu treiben.

Zur Vorbereitung der Bauarbeiten auf See

wurden bereits umfangreiche seismische

Analysen durchgeführt.

Umspannstation und

Verkabelung des Windparks

innogy hat den Auftrag für die Lieferung

der Komponenten, den Bau und die Inbetriebnahme

der Offshore-Umspannstation

an Bladt Industries A/S vergeben. Das

Offshore-Umspannwerk ist das Nervenzentrum

des Windparks: Der von den einzelnen

Windturbinen erzeugte Strom fließt

hier zusammen und wird auf die notwendige

Übertragungsspannung gebracht. Anschließend

schickt der Netzbetreiber den

Strom von der Umspannanlage über die

bestehende Konverterplattform HelWin2

an Land. Die Windturbinen werden über

33-kV Unterseekabel mit verschiedenen

Knotenpunkten und dann mit der Kaskasi-Umspannstation

verbunden. Von Seaway

7 werden dazu rund 50 Kilometer Kabel

verlegt. Produziert werden die Kabel

von der Firma Twentsche Kabel Fabriek

(TKF) aus den Niederlanden.

Netzanschluss gesichert

Der Windpark soll im Sommer 2022 ans

Netz gehen, die finale Terminierung wird

noch mit dem Netzbetreiber TenneT abgestimmt.

Der Offshore-Windpark Kaskasi

soll im gleichen Netzanschluss-Cluster wie

der benachbarte innogy-Windpark Nordsee

Ost angeschlossen werden. Die für den

Netzanschluss notwendige Konverterplattform

HelWin2 ist bereits seit mehreren

Jahren in Betrieb. Bei Instandhaltung und

Betrieb sollen Synergien mit dem Windpark

Nordsee Ost gehoben werden: So soll

der Windpark Kaskasi beispielsweise von

der bestehenden innogy-Servicestation auf

Helgoland aus betrieben werden. Nach der

vollständigen Inbetriebnahme wird der

Offshore-Windpark Kaskasi rechnerisch

rund 400.000 Haushalte pro Jahr mit grünem

Strom versorgen.

LEAG: Akustische Kamera spürt

Geräuschquellen bei

Kohleveredlung auf

• BTU und LEAG kooperieren für leise

Entstaubungsanlagen

(leag) Mit Unterstützung der BTU Cottbus-Senftenberg

(BTU) gelang es dem Veredlungsbetrieb

der LEAG, schalltechnische

Verbesserungen an seinen Entstaubungsanlagen

der Kohleveredlung im Industriepark

Schwarze Pumpe zu erreichen. Über

mehrere Jahre erstreckten sich dabei Untersuchungs-

und Messprogramme, um

mögliche Geräuschquellen zu lokalisieren

und deren Emissionen mit geeigneten

Maßnahmen deutlich zu reduzieren. Zum

Einsatz kam dafür unter anderem eine

akustische Kamera, mit der Wissenschaftler

aus dem Fachgebiet „Gestaltung von

Produktionssystemen/Werkzeugmaschinen“

am Campus Senftenberg die Hauptgeräuschquellen

orten konnten. Bislang wurden

in vier von fünf Entstaubungsanlagen

auf Basis der Erkenntnisse schallabsorbierende

Plattenresonatoren eingebaut sowie

strömungstechnische Verbesserungen und

konstruktive Anpassungen vorgenommen.

Noch in diesem Jahr soll auch der Umbau

der fünften Anlage erfolgen.

„Für uns galt es, einerseits den Stand der

Technik zu überprüfen und weiterhin einzuhalten

und andererseits mit zusätzlichen

Maßnahmen, die Anlagen der Veredlung

leiser werden zu lassen“, erläutert Dr. Dirk

Täschner aus dem Bereich Umweltschutz/

Genehmigungen bei LEAG die Zielstellung

des Projektes. „Bei dem aufwendigen Untersuchungsprogramm

stellte sich schließlich

heraus, dass die Entstaubungsanlagen

Getriebeservice

Instandsetzung aller

Fabrikate und Größen

www.brauer-getriebe.de

Tel.: +49 (0) 2871 / 70 33

9


Members´News VGB PowerTech 5 l 2020

Einsatz einer akustischen Kamera der BTU Cottbus-Senftenberg, Foto: LEAG

ein hohes Optimierungspotenzial hatten“,

so Täschner. Bei diesen Anlagen saugt ein

Radialventilator ein Staub-Luft-Gemisch

aus den Produktionsräumen und leitet es

in eine Abscheidetasse. Eine Wasserbedüsung

trennt dabei den Staub von der

Luft, die anschließend gereinigt durch Kamine

nach außen geführt wird. Die wesentlichen

Geräuschanteile gehen dabei von

den Radialventilatoren aus. Durch den Einbau

von speziell angefertigten Plattenresonatoren

konnten die Geräuschemissionen

minimiert werden.

Das von der BTU angewandte Messprogramm

umfasste neben Pegelmessungen

auch eine Schallintensitätssonde zur Bestimmung

der Schallleistung. Für die Analyse

der Hauptgeräuschquellen setzte die

BTU eine akustische Kamera mit einem

bildgebenden Verfahren zur Ortung von

Geräuschquellen ein. „In Kombination mit

den herkömmlichen Messungen erhöhte

sich dadurch die Qualität und Aussagekraft

der Ergebnisse. Dies ermöglichte uns eine

zielgerichtete technische Anpassung der

Entstaubungsanlagen“, beschreibt Täschner

den Nutzen des innovativen Erfassungskonzepts.

„Die BTU Cottbus-Senftenberg

konnte die Vorteile und die Leistungsfähigkeit

des Verfahrens eindrucksvoll unter

Beweis stellen“, lobt Täschner die Arbeit

der Wissenschaftler. (201761359)

www.leag.de

LL

www.leag.de

RWE: Kraftwerke bauen wichtigen

Umweltservice weiter aus

• Klärschlamm-Zwischenlager auf dem

Knapsacker Hügel wurde erweitert

• RWE Power investiert für die

Entsorgungssicherheit der

Wasserverbände

• Mit Hochdruck arbeitet das

Unternehmen an der Phosphor-

Rückgewinnung

(rwe) RWE Power hat weitere rund 10 Millionen

Euro in die Klärschlamm-Mitverbrennung

investiert: Pünktlich und planmäßig

hat sie das 2017eröffnete Zwischenlager

in Hürth-Knapsack um 2.250 auf

rund 5.300 Quadratmeter Hallenfläche

vergrößert. Gleichzeitig nimmt RWE zwei

weitere Förderstrecken in Betrieb: Neue

Pumpen transportieren zusätzliche 60 Tonnen

Klärschlamm pro Stunde zu den Kraftwerkskesseln.Dort

wird das Material zusammen

mit Braunkohle thermisch verwertet

und erzeugt so Fernwärme und

Prozessdampf. Die Aufsichtsbehörde hat

die neue Anlage heute offiziell bautechnisch

abgenommen.

Die thermische Verwertung gilt als energetisch

und klimapolitisch sinnvoller Entsorgungsweg.

Das Material kommt ganz

überwiegend ausder kommunalen Abwasserreinigung,

ist also letztlich Biomasse.

Wegen seiner Zusammensetzung darf es in

der Regel nicht wie früher als Dünger in

der Landwirtschaft genutzt werden. Die

entsorgungspflichtigen Wasserverbände

und andere Kläranlagenbetreiber setzen

daher überwiegend auf die thermische

Verwertung des Klärschlamms.

RWE Power hat im vergangenen Jahr

rund 900.000 Tonnen Klärschlamm verwertet.

Das entspricht rund der Hälfte des

Aufkommens in NRW. Das biogene Material

wurde hauptsächlich in den Kraftwerken

genutzt, die in Kraft-Wärme-Kopplung und

nach dem emissionsarmen Prinzip der Wirbelschicht

arbeiten. Sie versorgen die benachbarten

industriellen und kommunalen

Großkunden tagein, tagaus mit Fernwärme

und Prozessdampf.

„Da ihr Betrieb wärmegeführt ist, stehen

diese Kraftwerke auch für die Klärschlamm-Mitverbrennung

rund um die

Uhr zur Verfügung. Auf diese Weise sind

Entsorgung und Verwertung des Klärschlamms

sichergestellt“, sagt Karl-Heinz

Stauten, Leiter der Sparte Veredlung von

RWE Power. Die Anlagen sind mit effizienten

Entstaubungsstufen ausgerüstet. Zusätzlich

wird Herdofenkoks (HOK®) als

Filtermaterial eingesetzt, um mögliche

Schadstoffe zu binden und Emissionsgrenzwerte

sicher einzuhalten.

Durch die Mitverbrennung des CO2-neutralen

Klärschlamms im Kraftwerk wird

Braunkohle eingespart. „Es entstehen weniger

Treibhausgase pro Tonne Prozessdampf-

und Fernwärmeerzeugung“, berichtet

Karl-Heinz Stauten: „Die CO2-Bilanz

wird schrittweise verbessert. Das ist

uns wie auch unseren industriellen und

kommunalen Kunden sehr wichtig.“

Vor dem Klärschlamm-Zwischenlager am Kraftwerk Knapsacker Hügel

Quelle: RWE Power, Verwendung frei

10


VGB PowerTech 5 l 2020

Announcement

VGB Conference „Gas Turbines and

Operation of Gas Turbines 2021“

17 and 18 March 2021 | Dorint Hotel, Potsdam/Germany

The VGB Conference “Gas Turbines and Operation of Gas Turbines 2021”

takes place at the Dorint Hotel in Potsdam/Germany on 17/18 March 2021.

In the context of the energy transition in a short period of time, the changing

requirements in electricity and heat market and the public gas transport network

require the timely adjustment of operational and plant engineering concepts

for economical, safe and environmentally operation of gas turbines.

In two-year intervals gas turbine experts from operators, manufacturers, planning

offices, associations, insurance companies, R&D centers, authorities and

corresponding business areas of VGB PowerTech e.V. are invited by VGB

PowerTech e.V. for intensifying the exchange of experience, findings and ideas

by lectures and comprehensive discussions in the area of gas turbines and

the gas turbine operation.

In a wide range of topics, we will address current issues from the operation of

old plants, existing plants and new plants, as well as the planning of new gas

turbine plants and innovative R&D projects in gas turbine-based energy technology.

For the provided topic portfolio we kindly ask you to submit your proposals for

presentations as short description in a reasonable time:

ı Energy and environmental policy framework conditions for gas turbine

plants, among other topics

ELV requirements from the amendment to the 13.BImSchV; CHP law; Requirements

from grid expansion; Gas turbine based storage concepts

ı Measures for increasing the effectiveness and its consequences,

among others topics

Reduction of the minimum load by compliance of the emission limit values;

Increase of the load gradient; Fuel flexibility, e.g. hydrogen, syngas, DME

from “power to gas”; Marketing of old plants and existing plants; Impact of

increased transient loads of the gas turbine on lifetime and frequency of

claims

ı Maintenance and modernization, among other topics

Creation and handling of Cr VI linings on gas turbine components; Concepts

for more flexible and longer revision intervals, EOH algorithms; LTE and upgrade

concepts

ı Innovative technology and new products, among other things

Cooling technologies and materials for the hot gas path; Burner and combustion

chamber concepts for emission reduction and H2 co-incineration;

Combustion chamber bypass as innovative concept for increase of flexibility;

Operational and project experiences with gas turbine plants; Additive

manufacturing (3D-printing) and Selective Laser Melting for new production

and refurbishment; Concepts of digitalization for operation and maintenance

of gas turbine plants

You are kindly asked to submit proposals for lectures and speakers online:

https://www.vgb.org/en/gasturbinen_gasturbinenbetrieb_21_cfp.html

The deadline for submission is 25 September 2020!

To fulfill our high quality standards, please do understand that presentations

with concealed marketing and emphasized product presentation cannot find

consideration.

The accompanying exhibition gives a good opportunity to meet and talk to the

present specialists.

Members´News

Your Contact

Diana Ringhoff (Conference)

E-mail

vgb-gasturb@vgb.org

Phone

+49 201 8128-232

Conference language

German and English

simultaneous translation is forseen.

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Germany

We also ask you to let us know if you are interested

in participating as an exhibitor:

Your Contact: Angela Langen

E-mail:

angela.langen@vgb.org

Phone: +49 201 8128-310

VGB PowerTech Service GmbH

Deilbachtal 173

45257 Essen

Germany


Members´News VGB PowerTech 5 l 2020

Ankündigung

VGB-Fachtagung

„Gasturbinen und Gasturbinenbetrieb 2021“

17. und 18. März 2021 | Dorint Hotel, Potsdam

Die VGB-Fachtagung „Gasturbinen und Gasturbinenbetrieb 2021“ findet

am 17./18. März 2021 im Dorint Hotel in Potsdam statt.

Die sich im Kontext mit der Energiewende in kurzen Zeiträumen verändernden

Anforderungen im Strom- und Wärmemarkt sowie im öffentlichen Gastransportnetz

erfordern für den wirtschaftlichen, sicheren und umweltverträglichen

Betrieb von Gasturbinenanlagen eine rechtzeitige Anpassung operativer und

anlagentechnischer Konzepte.

Im Zweijahresrhythmus werden mit Gasturbinen befasste Fachleute der Betreiber,

Hersteller, Planer, Verbände, Versicherer, F&E-Zentren, Behörden und

in korrespondierenden Geschäftsbereichen vom VGB PowerTech e.V. dazu

eingeladen, durch Vorträge und umfassende Diskussion aktueller Fragen zur

Gasturbine und dem Gasturbinenbetrieb den Erfahrungs-, Erkenntnis- und

Gedankenaustausch zu intensivieren.

In einem breit gefächerten Themenportfolio werden wir uns aktuellen Fragen

aus dem Betrieb von Altanalgen, Bestandsanlagen und Neuanlagen sowie der

Planung neuer Gasturbinenanlagen und innovativen R&D-Projekten der gasturbinenbasierten

Energietechnik zuwenden.

Für das vorgesehene Vortragsportfolio bitten wir Sie, uns freundlicherweise zu

folgenden Themen Ihre Präsentationsvorschläge mit kurzgefasstem Abstract

zeitnah zu unterbreiten:

ı Energie- und Umweltpolitische Rahmenbedingungen für Gasturbinenanlagen,

u. a.

ELV-Anforderungen aus der Novelle der 13.BImSchV; KWK Gesetz; Anforderungen

aus dem Netzausbau; Gasturbinenbasierte Speicherkonzepte

ı Maßnahmen zur Flexibilitätssteigerung und deren Konsequenzen, u. a.

Absenkung der Mindestlast unter Einhaltung von Emissionsgrenzwerten;

Erhöhung der Lastgradienten; Brennstoff-Flexibilität, Einsatz von Wasserstoff,

Syngas, DME aus „Power to Gas“; Vermarktung von Alt- und Bestandsanlagen;

Einfluss vermehrter instationärer Beanspruchung der Gasturbine

auf Lebensdauer und Schadenhäufigkeit

ı Instandhaltung und Modernisierung, u. a.

Entstehung und Umgang mit Cr VI-Belägen auf Gasturbinenkomponenten;

Konzepte für flexiblere und längere Inspektions-/Revisionsintervalle, EOH-

Algorithmen; LTE- und Upgrade-Konzepte

ı Innovative Technologien und neue Produkte, u. a.

Kühltechniken und Werkstoffe für den Heißgaspfad; Brenner- und Brennkammerkonzepte

für die Emissionsminderung und H2-Mitverbrennung; Projekt-

und Betriebserfahrungen mit Gasturbinenanlagen; Additive Manufacturing

(3D-Druck) und Selective Laser Melting für Neufertigung und Refurbishment;

Konzepte der Digitalisierung für Betrieb und Instandhaltung von

Gasturbinen-Anlagen

Reichen Sie Vorschläge von Themen und Vortragenden per Onlineformular ein

unter:

https://www.vgb.org/gasturbinen_gasturbinenbetrieb_21_cfp.html

Einsendeschluss ist der 25. September 2020!

Um unseren hohen qualitativen Ansprüchen gerecht zu werden, bitten wir Sie

Verständnis dafür zu haben, dass Präsentationen mit verdecktem Marketing

und betonter Produktpräsentation keine Berücksichtigung finden können.

Die begleitende Fachausstellung bietet die Möglichkeit zu Standgesprächen

mit den anwesenden Spezialisten.

Ihre Ansprechpartnerin

Diana Ringhoff (Fachtagung)

E-Mail

vgb-gasturb@vgb.org

Telefon

+49 201 8128-232

Konferenzsprachen

Deutsch und Englisch

Simultanübersetzung ist vorgesehen

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Deutschland

Wir bitten ebenfalls um Mitteilung,

falls Sie an einer Teilnahme als Aussteller interessiert sind:

Ihr Ansprechpartner: Angela Langen

E-Mail:

angela.langen@vgb.org

Telefon:

12

+49 201 8128-310

VGB PowerTech Service GmbH

Deilbachtal 173

45257 Essen

Deutschland


VGB PowerTech 5 l 2020

Members´News

Das Zwischenlager auf dem Knapsacker

Hügel wurde 2017 in Betrieb genommen.

Die Einrichtung ist logistisch und fördertechnisch

auf dem neuesten Stand. Sie vergleichmäßigt

die Mitverbrennung des Klärschlamms,

der üblicherweise nur von montags

bis freitags angeliefert wird, aber auch

am Wochenende thermisch verwertet werden

kann. RWE Power optimiert damit im

Rahmen der vorhandenen Genehmigungen

ihre Kapazitäten für die Mitverbrennung

und sichert gleichzeitig Beschäftigung

an den beteiligten Standorten.

Darüber hinaus investiert RWE Power

nicht nur in die Infrastruktur und in die

verfahrenstechnische Weiterentwicklung

der Klärschlammverwertung,sondern

auch in Forschung und Entwicklung. Denn

in dem biogenen Material stecken Phosphorverbindungen,

die ab 2029 zurückgewonnen

werden müssen.

RWE Power errichtet deswegen im Innovationszentrum

Niederaußem eine Versuchsanlage,

in der mit Hochtemperaturkonversion

Phosphor, Kohlenstoff und Wasserstoff

zurückgewonnen werden sollen.

Die Anlage ist Teil einer Kooperation mit

Fraunhofer UMSICHT und der Ruhr-Universität

Bochum. Es wird vom NRW-Ministerium

für Wirtschaft, Innovation, Digitalisierung

und Energie gefördert.

Außerdem untersucht RWE Power, wie

man Phosphor aus der Klärschlammasche

zurückgewinnen kann. Hier hat das Unternehmen

den Vorteil,dass bei der Mitverbrennung

anfallende Aschen auf kraftwerksnahen

Deponien und damit rückholbar

zwischengelagert werden können.

(201761334)

LL

www.rwe.com

STEAG: Neuaufstellung

kommt gut voran

• Konzerngewinn deutlich gesteigert

• 45 Millionen Euro Gewinnabführung

• Grünes Rating erhalten

• CO2-Ausstoß weiter gesenkt

(steag) STEAG blickt auf ein zufriedenstellendes

Geschäftsjahr 2019 zurück. Das Essener

Energieunternehmen hat sich in einem

schwierigen Marktumfeld erfolgreich

behauptet, seine Ergebnisziele erreicht

und die Ertragskraft steigern können. Damit

ist eine solide Grundlage gelegt, um die

großen Herausforderungen des laufenden

Jahres zu bestehen.

Der Deutsche Bundestag wird voraussichtlich

im Sommer das Kohleverstromungsbeendigungsgesetz

(KVBG) verabschieden.

Für die Betreiber von Steinkohlekraftwerken

wird dies nach derzeitigem

Stand eine zügige Stilllegung ihrer Anlagen

voraussichtlich bis spätestens 2030

und nicht wie bei Braunkohlekraftwerken

erst bis 2038 zur Folge haben. Auch bei den

Entschädigungszahlungen ist die Steinkohle

im Vergleich zur Braunkohle im Nachteil.

„Dies ist eine klare Abkehr von den

Empfehlungen der ‚Kommission Wachstum,

Strukturwandel und Beschäftigung‘“,

kritisiert Joachim Rumstadt, der Vorsitzende

der Geschäftsführung der STEAG

GmbH.

Trägt die Bundesregierung den Einwänden

nicht Rechnung, die nicht nur von

STEAG und anderen Betreibern von Steinkohlenkraftwerken,

sondern auch vom

Bundesrat geteilt werden, behält sich

STEAG vor, Klage gegen das KVBG zu erheben.

„Wir akzeptieren den gesellschaftlichen

Willen und die politische Entscheidung

zum Ausstieg aus der Kohleverstromung

in Deutschland“, stellt Joachim

Rumstadt klar. „Aber wir können uns mit

der aktuell geplanten gesetzlichen Umsetzung

nicht einverstanden erklären.“

Corona belastet Wirtschaft

Einen weiteren Belastungsfaktor stellt die

Coronakrise dar. Der Ifo-Geschäftsklimaindex,

ein wichtiger Frühindikator für die

deutsche Konjunktur, ist jüngst auf den

tiefsten, jemals gemessenen Stand abgesackt.

Die Schäden, die durch den Stillstand

des öffentlichen Lebens und weiter

Teile der Wirtschaft rund um den Globus

entstehen, sind erheblich. Selbst wenn die

Einschränkungen Zug um Zug weiter gelockert

werden und eine schrittweise Rückkehr

zur Normalität eingeleitet wird, erwarten

Konjunkturforscher für 2020 eine

schwere Rezession. Nicht nur in Deutschland

und Europa, sondern fast überall in

der Welt.

Auch STEAG, einer der großen Stromund

Wärmeerzeuger in Deutschland und

international tätiger Betreiber von Energieerzeugungsanlagen,

bekommt die Auswirkungen

der Pandemie deutlich zu spüren.

Große Energieverbraucher insbesondere

aus der Industrie drosseln oder unterbrechen

ihre Produktion. Die Folge: Die

Stromnachfrage sinkt und die Strompreise

fallen. „Der Start in das Jahr 2020 war

recht erfreulich, denn in den ersten drei

Monaten lagen wir deutlich über Plan“,

sagt Joachim Rumstadt. „Doch nun gibt es

eine deutliche Trendwende.“ Das gilt insbesondere

für den für STEAG wichtigen

Strommarkt Türkei. Ferner befinden sich

140 Beschäftigte der in Deutschland tätigen

Konzerntochter STEAG Technischer

Service derzeit in Kurzarbeit. Grund ist,

dass Instandhaltungsmaßnahmen an den

eigenen Kraftwerken oder an Anlagen von

externen Kunden verschoben oder auf ein

Minimum zurückgefahren worden sind.

Auch in anderen Unternehmensbereichen

wird die Einführung von Kurzarbeit geprüft.

STEAG hat zugleich mit konsequenten

Schutzmaßnahmen für die eigenen

Mitarbeiter dafür Sorge getragen, dass jederzeit

die sichere Strom- und Wärmeversorgung

durch STEAG gewährleistet ist.

Wichtige Meilensteine erreicht

Die sich zunehmend verschlechternden

wirtschaftlichen Rahmenbedingungen erschweren

überdies den bislang erfolgreich

verlaufenen Transformationsprozess, in

dem sich STEAG – wie alle Energieunternehmen

mit einem vergleichbaren Geschäftsmodell

– wegen der Energiewende

befindet. Beim Umbau des Unternehmens,

der 2016 mit dem Projekt „STEAG 2022“

begann, wurden 2019 weitere Meilensteine

erreicht. Dazu vier Beispiele:

Beispiel I: Strategische Akquisition i

m Bereich Photovoltaik

Im Bereich erneuerbare Energien ist

STEAG eine strategisch wichtige Akquisition

gelungen. Durch das umfangreiche

Know-how und das internationale Netzwerk

der jüngsten Konzerntochter STEAG

Solar Energy Solutions, kurz SENS, hat

STEAG im Wachstumsmarkt Photovoltaik

einen großen Schritt nach vorn gemacht.

Zu den Kernkompetenzen von SENS gehören

die Entwicklung und schlüsselfertige

Errichtung großer Freiflächen-Photovoltaik-Anlagen.

Auf Sizilien entwickelt SENS

gemeinsam mit einem Finanzinvestor rund

440 Megawatt Freiflächen-Photovoltaik.

Die Anlagen decken rechnerisch den

Strombedarf von rund 350.000 Haushalten

mit CO2-frei produzierter Energie.

Beispiel II: Wasserstoff-Projekt

an der Saar

Mit dem vom Bundeswirtschaftsministerium

im Rahmen des Programms „Reallabore

der Energiewende“ geförderten Projekt

„HydroHub Fenne“ leistet STEAG einen

Beitrag, das Saarland als traditionsreichen

Standort der Energiebranche weiterzuentwickeln.

Wasserstoff, bei dessen

Verbrennung klimaschädliche Emissionen

vermieden werden, steht dabei im Mittelpunkt.

Am Standort des STEAG-Kraftwerks

Fenne in Völklingen sollen in Zeiten eines

Überangebots an Wind- und Sonnenenergie

mithilfe eines Elektrolyseurs große

Mengen an grünem Wasserstoff erzeugt

werden. Dieser kann anschließend auf vielfältige

Weise zum Einsatz kommen. Etwa

in saarländischen Stahlunternehmen, die

ihn für die industriellen Prozesse benötigen.

Er kann aber auch ins regionale Gasnetz

eingespeist werden und versorgt zusätzlich

öffentliche Wasserstoff-Tankstellen

im Saarland. Zudem kann Wasserstoff

wieder zur Stromerzeugung genutzt werden.

Obendrein kann die Wärme, die bei

der Erzeugung des Wasserstoffs entsteht,

in das Netz des Fernwärmeverbunds Saar

(FVS) ausgekoppelt werden.

13


Members´News VGB PowerTech 5 l 2020

Beispiel III: Neues GuD-Kraftwerk im

Herzen des Ruhrgebiets

Am Standort Herne baut STEAG mit dem

Partner Siemens ein neues und hocheffizientes

Gas- und Dampfturbinen-Kraftwerk

(GuD). Die Anlage, die Mitte 2022 in den

regulären Betrieb gehen soll, arbeitet nach

dem Prinzip der Kraft-Wärme-Kopplung

(KWK) und wird für die umweltfreundliche

Fernwärmeversorgung von rechnerisch

300.000 Haushalten im Herzen des

Ruhrgebiets sorgen. Mit der Investition eines

mittleren dreistelligen Millionenbetrags,

den sich die Projektpartner je zur

Hälfte teilen, tragen STEAG und Siemens

aktiv zum Gelingen der Energiewende bei.

Denn in der Zeit des Übergangs auf eine

klimaneutrale Energieerzeugung wird die

CO2-arme Erdgasverstromung als Brückentechnologie

unverzichtbar sein.

GuD-Anlagen werden nach dem Ausstieg

aus der Kernenergie und der Beendigung

der Kohleverstromung das Rückgrat einer

sicheren Energieversorgung in Deutschland

bilden. Langfristig hat grüner Wasserstoff

das Potenzial, fossile Brennstoffe auch

in der Energieerzeugung abzulösen und

könnte auch im GuD Herne zum Einsatz

kommen.

Beispiel IV: Effiziente Industrielösung für BP

Für den Mineralölkonzern BP errichtet

STEAG auf dem Gelände der BP-Raffinerie

in Gelsenkirchen-Scholven eine neue Prozessdampfversorgung.

Dabei werden Raffineriegase

verfeuert, die bis dato ungenutzt

abgefackelt werden, und somit energetisch

nutzbar gemacht. Das schont die Umwelt

und spart Ressourcen. Und für den Fall,

dass von der Raffinerie einmal weniger

Prozessdampf abgenommen würde als aus

der Verfeuerung der Raffineriegase zur

Verfügung steht, wird mit dem überschüssigen

Dampf mittels einer Kondensationsturbine

Strom produziert. Das Projekt

„Steam“ sorgt für eine bestmögliche energetische

Verwertung der bisher ungenutzten

Raffineriegase.

Respektable Klimabilanz

Schon diese vier Beispiele zeigen, dass

STEAG die Beschlüsse des Pariser Klimaschutzabkommens

und die CO2-Reduzierungsziele

der Europäischen Union in ihrem

unternehmerischen Handeln konkret

Rechnung trägt. Unsere Klimabilanz kann

sich sehen lassen: Im Vergleich zu 1990 hat

STEAG seine CO2-Emissionen bis Ende

2019 um 79 Prozent gesenkt. Lange bevor

das Kohleausstiegsgesetz verabschiedet

sein wird, hat STEAG mit eigenen finanziellen

Mitteln bereits einen Großteil seiner

Steinkohlekraftwerke in Deutschland stillgelegt.

Auch das Jahr 2020 steht für STEAG ganz

im Zeichen der strategischen Neuaufstellung

des Unternehmens. Seit Monaten arbeiten

Expertenteams aus den unterschiedlichen

Bereichen des Konzerns an der Weiterentwicklung

der Unternehmensstrategie.

„Dank der technischen und energiewirtschaftlichen

Kompetenz, die STEAG in

ihrer mehr als 80-jährigen Unternehmensgeschichte

erworben hat, werden wir uns

erfolgreich auf den Energiemärkten der

Zukunft positionieren“, ist Joachim Rumstadt

überzeugt. (201761425)

LL

www.steag.com

STEAG-Solarkraft unter spanischer

Sonne wächst weiter

• SENS baut weitere 180 Megawatt-

Anlage in Andalusien

(steag) Die Photovoltaik soll im Sonnenland

Spanien durchstarten – dieses Ziel

hatte sich die spanische Regierung Ende

2018 gesetzt und anschließend die rechtlichen

Rahmenbedingungen dafür geschaffen.

Die Würzburger STEAG Solar Energy

Solutions (SENS) GmbH, seit Sommer

2019 Teil des STEAG-Konzerns, unterstützt

diesen Kurs in Richtung einer grünen Energie-Zukunft

und realisiert nun erneut ein

großes Photovoltaik-Projekt im spanischen

Süden.

In der andalusischen Region Almeria

werden unter dem Projektnamen Tinosa

vier Freiflächen-Solarparks mit insgesamt

180 Megawatt installierter Leistung

(MWp) entstehen. Der Auftrag umfasst

Planung und Installation von schlüsselfertigen

Anlagen sowie der dazugehörigen

220-Kilovolt (kV)-Netzanbindung. Die PV-

Parks werden im Konsortium mit dem Projektentwickler

Aurinka International gebaut.

Baubeginn Sommer und Herbst 2020

Sofern die Maßnahmen zur Bekämpfung

der Corona-Pandemie dies zulassen, wird

der Baubeginn des ersten Solarparks noch

im zweiten Quartal 2020 sein. Zwei weitere

Parks folgen voraussichtlich im Herbst

dieses Jahres, für den letzten Abschnitt ist

der Baubeginn für das Frühjahr 2021 vorgesehen.

Die Ertragsprognosen sind dank

der geographischen Lage der Standorte äußerst

vielversprechend; die Anlagen werden

insgesamt über 380.000 Megawattstunden

(MWh) Strom pro Jahr ins Netz

einspeisen. Rein rechnerisch entspricht

das in etwa dem Jahresstromverbrauch

von rund 110.000 Haushalten.

Erfahren auf dem spanischen Markt

Den Experten der SENS ist der spanische

Markt nicht unbekannt, ganz im Gegenteil:

Bereits seit 2007 ist man dort sowohl im

EPC- bzw. Contracting- als auch im Servicegeschäft

aktiv. Seit 2018 hat die SENS

zusätzlich einen starken Fokus auf die eigene

Entwicklung von PV-Projekten gelegt:

„Wir haben auch in den schwierigen Zeiten

immer an den Markt geglaubt und freuen

uns nun umso mehr, dass die Entwicklung

wieder Fahrt aufnimmt“, sagt SENS-Geschäftsführer

André Kremer.

Seit Erlass eines königlichen Dekrets im

Jahr 2018 hat sich auf dem spanischen

Markt für erneuerbare Energien einiges getan.

Die weitreichende Liberalisierung und

die ehrgeizigen Ziele des Nationalen Energie-

und Klimaplans haben zur Dynamisierung

des Marktgeschehens maßgeblich

beigetragen.

Weitere Repräsentanz in Madrid eröffnet

Auch die SENS spürt diese wachsende

Nachfrage sowohl im Großkundengeschäft

als auch im Bereich der Industriekunden

sowie beim Thema Eigenverbrauch. Neben

EPC-Aufträgen arbeitet das Unternehmen

derzeit auch an eigenen Entwicklungen.

Den Standort Spanien hat die SENS erst

kürzlich nach Madrid durch ein weiteres

Büro in Sevilla gestärkt. „Wir gehen davon

aus, dass wir bis Ende 2021 in Spanien

rund 500 MW installiert haben werden –

größtenteils aus eigener Entwicklung“,

blickt André Kremer zuversichtlich in die

Zukunft. (201761429)

LL

www.steag.com

STEAG-Solarkraft unter spanischer Sonne wächst weiter. Foto: Steag

14


VGB PowerTech 5 l 2020

Members´News

Uniper to build new gas-drive

power plant for swb in Bremen

• swb to replace the coal-fired unit 15

with a gas-drive power plant

• The technology group Wärtsilä will

supply the gas-drive generation plant

for the 105 megawatt project

• Additional joint projects planned

between Uniper and Wärtsilä​

(uniper) Over the next two and a half

years, Uniper with be working with the Finland-based

Wärtsilä Group to build a gasdrive

power plant for swb Bremen. The

plant in Bremen-Hastedt will operate using

nine Wärtsilä 31SG gas-drives, which will

significantly contribute toward converting

swb’s energy generation to natural gas. The

facility has a planned generating capacity

of 105 megawatts (MW); it will also supply

the district heating system with 93 MW of

thermal output. The project will get underway

as soon as emission approvals have

been issued. This is expected in the near

future.

The Wärtsilä 31SG drive technology is

specifically designed for variable power

generation. It provides the means to react

quickly to balance power generation and

demand, thereby facilitating, for example,

the integration of larger volumes of volatile

power from renewable sources with no risk

of downtime.

This project will help the state and city of

Bremen in achieving its environmental targets.

The conversion from coal to gas will

allow swb to decrease CO2 emissions by up

to 75 %. The construction of co-generation

plants (CHP) is an important element in

de-centralizing power generation. Going

forward, Uniper and Wärtsilä aim to pursue

other joint projects of this kind.

The engineering division at Uniper will

serve as general contractor in overseeing

all aspects of the project. Wärtsilä will supply

all the technical components for the

nine generation units and following startup

assume responsibility for repair and

maintenance of the plant with guaranteed

plant output.

David Bryson, Chief Operating Officer

Uniper: “We are very pleased to be able to

assist swb in achieving its climate goals

through this engineering project. Engineering

knowhow is a critical factor in environmental

protection, which too often

comes up short in discussions. Uniper not

only set itself very ambitious goals for climate

neutrality in its own European generation

by 2035, it also has invited its customers

to pursue similar goals. We enjoy a

long-term association with swb in energy

supply that we have been able to build

upon.”

VGB Fachtagung

Dampfturbinen und

Dampfturbinenbetrieb

Mit Fachausstellung

Save the date!

www.vgb.org

1. und 2. Juni 2021

Köln

Die ursprünglich für Juni 2020 geplante

Veranstaltung richtet sich an Hersteller,

Planer, Betreiber, Versicherer und alle an der

Technik und deren Umfeld interessierte Fachleute,

Forscher und Verantwortungsträger.

Die Unterstützung des Erfahrungsaustauschs

ist ein wichtiger Aspekt dieser Fachtagung,

um den Dampfturbinenbetrieb auch in

Zukunft mit einer hohen Verfügbarkeit und

guten Wirkungsgraden zu gewährleisten.

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Germany

Informationen

Diana Ringhoff

E-Mail

vgb-dampfturb@vgb.org

Telefon

+49 201 8128-232

Fachausstellung

Angela Langen

E-Mail

angela.langen@vgb.org

www.vgb.org

Neuer Termin

in 2021!


Members´News VGB PowerTech 5 l 2020

Jens-Uwe Freitag, Managing Director of

swb Erzeugung und Entsorgung GmbH

und Co KG: „With the decision to replace

the hard coal-fired combined-cycle block

Hastedt 15 with a highly efficient combined-cycle

unit with nine natural gas-powered

engines, we have achieved the optimum

combination of climate protection,

availability and cost-effectiveness. With

the consortium, we have found an internationally

active project partner who will

contribute to a successful implementation

of the project by using all of their combined

experience in technology, projects and operations

in this special partnership.“

Pekka Tolonen, Energy Business Director

Europe at Wärtsilä, adds: “I am very

pleased to have achieved this milestone in

cooperation with our consortium partner,

Uniper, and with swb’s decision to place its

trust in our joint proposal. This is the first

project in our partnership for high-value,

sustainable co-generation solutions in Germany.”

(201761430)

LL

www.uniper.energy

www.swb-gruppe.de

www.wartsila.com

Uniper and Co-shareholder

decide to return Irsching 4 and 5

gas power plants to the market

• Lower gas prices allow for more

economical operation

• Remuneration for a secure energy

supply from state-of-the-art gas power

plants in Germany remains generally

insufficient

(uniper) The owners of the Irsching 5 gas

power plant near Ingolstadt, Uniper, N-ER-

GIE, Mainova and ENTEGA have today decided

to return the plant to the market on

October 1, 2020. This is driven by improved

market prices – in particular lower gas

prices – which should make it possible to

operate the highly efficient gas power plant

economically. At the same time, and for the

same reasons, Uniper, the sole owner of the

Irsching 4 gas power plant, is preparing to

restart market operation of that plant as

well. The owners reserve the right to reassess

the situation from year to year and to

revise the decision in the event of a deterioration

in market conditions.

David Bryson, Board Member and COO at

Uniper: „We have always said that we

would constantly monitor whether economic

market developments allow a return

of the Irsching power plants. As things

stand, it may be possible to obtain slightly

improved margins in the foreseeable future

through market operation of these plants.

As the level of power generated from the

wind and sun can fluctuate heavily, highly

efficient and modern gas power plants

such as Irsching 4 and 5 can provide a reliable

foundation for the energy supply. The

German federal government should therefore

take this opportunity to follow the recommendations

of the Coal Commission

and, after setting out the framework conditions

for phasing out coal, enshrine the

provision of a continuous power supply in

German law. So far, there has been a lack of

transparency and reliability. Above all, the

system of drawing on very different reserves

is not forward-looking, as it focuses

largely on older existing plants.

Josef Hasler, Chairman of the Management

Board of N-ERGIE Aktiengesellschaft,

says: „In order to ensure a secure power

supply, we need to use gas power plants

that are as flexible and environmentally

friendly as Irsching 5 as a transitional technology.

To protect the environment, it will

also be necessary in the long term to make

natural gas „green,“ for instance via powerto-gas.

With the return to the market, we

expect the operation of Irsching 5 to become

more economical than before. However,

this does not mean that we will earn

money with the market return. Rather, we

hope that the losses that our power plant

has been making for years will be reduced.”

Norbert Breidenbach, Board Member of

Mainova AG, says: „Irsching 5 is a particularly

flexible and environmentally friendly

gas power plant with a state-of-the-art design.

The change in market conditions

shows that gas power plants such as this

one will play an increasingly important

role in the energy transition in the future.

After all, gas power plants will make a significant

contribution to securing the energy

supply of tomorrow.“

Marie-Luise Wolff, Chairwoman of the

Management Board of ENTEGA AG: „We

are delighted that GKI is returning from

regulated operations to the market. After

all, we believe that high-efficiency power

plants are currently most sensibly stored in

the market, where they can replace power

plants with higher emissions. One of the

major challenges for politics now is to make

both possible, to operate such power plants

efficiently and in an economically optimal

way in the market and at the same time to

support security of supply through intelligent

regulation. The two systems should be

merged“.

Most recently, the owners of Irsching 4

and 5 indicated in September 2019 that the

units would be subject to a temporary closure

between October 2020 and the end of

September 2021. However, the closure of

these units was forbidden by the Reserve

Power Plants Ordinance (Netzreserveverordnung).

This means that the units will

only be used when their output is needed

to maintain the stability of the grid. For example,

if the grid in southern Germany requires

additional support due to temporary

bottlenecks. The owners have now withdrawn

the notification of closure.

Irsching 5 has an output of 846 megawatts

and was commissioned in 2010. With

an efficiency rate of 59.7%, it is one of the

most modern gas power plants in Europe.

It is operated by Uniper Kraftwerke GmbH

on behalf of the owners. Uniper has a

50.2% share, N-ERGIE 25.2%, Mainova

15.6%, and ENTEGA 9%. Irsching 4, with a

capacity of 561 megawatts, was commissioned

in 2011, and has an efficiency rate of

60.4%, making it one of the most efficient

gas power plants in the world. (201761440)

LL

www.uniper.energy

www.entega.ag

www.mainova.de

www.n-ergie.de

VERBUND: Sichere

Stromversorgung mit

der Kraft der Donau

(verbund) Die VERBUND-Mitarbeiter im

Donaukraftwerk Abwinden-Asten schlossen

unter Einhaltung aller COVID-19-Vorsorgemaßnahmen

erfolgreich die Revisionsarbeiten

mit Anfang Mai ab. Das Wasserkraftwerk

ist damit wieder voll einsatzbereit

und erbringt konstant und zuverlässig

seinen Beitrag zur sicheren, sauberen

und leistbaren Stromversorgung in Österreich.

Weiter donauabwärts, im VER-

BUND-Kraftwerk Wallsee-Mitterkirchen,

laufen noch die Wartungsarbeiten in der

linken Schiffsschleuse, um vor allem für

die Transportschifffahrt wieder verfügbar

zu sein.

„Wir sind täglich draußen, damit drinnen

alles läuft“, bezieht sich der für Revisionen

in allen 4 oberösterreichischen Donaukraftwerken

zuständige Betriebsingenieur

Kurt Schauer, auf das VERBUND-Motto.

„Unsere Mitarbeiter sind Tag und auch bei

Nacht im Einsatz, um mit sorgfältiger Wartung

den störungsfreien Betrieb zu gewährleisten,

damit die Stromversorgung in

Österreich gesichert ist.“

Schauer erläutert weiter: „Unsere Kraftwerksmannschaften

sind zur Sicherheit in

Teams aufgeteilt, um das Ansteckungsrisiko

zu minimieren. Sie arbeiten getrennt

und mit versetzten Arbeitszeiten. Bisher

hat das sehr gut funktioniert und die Revisionsarbeiten

im Donaukraftwerk Abwinden-Asten

und Wallsee-Mitterkirchen

konnten so einigermaßen problemlos weitergeführt

bzw. erfolgreich beendet werden.“

Abwinden-Asten voll im Einsatz

Mit Ende April erzeugt das Donaukraftwerk

Abwinden-Asten wieder zuverlässig

Strom aus Wasserkraft für fast 300.000 Privathaushalte.

Mit voller Energie arbeiteten

die Kraftwerksmannschaften seit Mitte Februar

trotz der krisenbedingten Einschränkungen

an der Turbine. Maschine 7 von

insgesamt 9 Kaplanturbinen wurde grundüberholt,

der Kühlkreislauf von einem

offenen auf einen geschlossenen Kühlkreis-

16


VGB PowerTech 5 l 2020

Members´News

lauf umgebaut und zusätzlich erfolgte dabei die

Elektromontage und Einbindung in die Leittechnik.

Der gesamte Maschinensatz inklusive Generator mit

Stator und das Hydrauliksystem wurde überprüft,

Kavitationsschäden am Laufrad behoben und Korrosionsschutz

aufgetragen, Dichtungen an der Turbinenwelle

erneuert und Leckagen behoben.

Bald Schiff ahoi in Wallsee-Mitterkirchen

Schon seit Ende Oktober 2019 läuft die Großrevision

der Schiffsschleuse im Donaukraftwerk Wallsee-Mitterkirchen.

Dort arbeiten die getrennten

Kraftwerksteams noch fleißig an der linken Schleusenkammer.

Es wird derzeit das gesamte Schleusenbauwerk

(Stahlwasserbau) und das Stemmtor saniert,

das Füll- und Entleerbauwerk repariert sowie

Leckagen behoben, der Schiffsstoßschutz erneuert,

Schäden am Ober- und Unterhaupt ausgebessert

und Korrosionsschutz aufgetragen und vieles mehr.

„Wir geben auch hier besonders Acht auf die räumliche

und zeitliche Trennung von Eigenpersonal und

Fremdfirmen“, informiert Schauer. „Diese umfangreichen

Revitalisierungsarbeiten sind sehr personalintensiv.“

In den ersten Maiwochen werden die

VERBUND-Taucher wieder helfen, die Dammbalken

zu entfernen. Damit sind dann auch die Instandhaltungsarbeiten

abgeschlossen.

Donau als Basis der österreichischen

Stromversorgung

Den stabilen Dauerläufern an der Donau kommt

besondere Bedeutung zu: 20 % des österreichischen

Strombedarfs stammen aus den 9 Donaukraftwerken.

Das entspricht in etwa dem Verbrauch aller heimischen

Haushalte. Im vergangenen Jahr lag die

durchschnittliche Erzeugung trotz trockenem Wetter

um 2 % über dem langjährigen Durchschnitt.

VERBUND-Mitarbeiterinnen und -Mitarbeiter sorgen

rund um die Uhr für sicheren Betrieb. Zusätzlich

zur Erzeugung stabilisiert die Leistung der

schweren Turbinen das Stromnetz. Wenn Wind und

Sonne schnell und mitunter schwankend Strom ins

Netz speisen, stabilisiert die verlässliche Frequenz

der Wasserkraft. (201761500)

LL

www.verbund.com

VGB Fachtagung

BRENNSTOFFTECHNIK

UND FEUERUNGEN

MIT FIRMENPRÄSENTATIONEN

Programm online!

www.vgb.org

9. und 10. Dezember 2020

Hamburg

Die Fachtagung „Brennstofftechnik und

Feuerungen 2020“ bietet Betreibern,

Herstellern, Planern, Behörden und

Forschungsinstituten eine Plattform

die aktuellen Herausforderungen

der Energiepolitik und die daraus

abzuleitenden Anforderungen an

die Technik zu diskutieren.

VERBUND: Wasser marsch

in Abwinden-Asten

(verbund) Unter Einhaltung aller Sicherheits- und

Vorsichtsmaßnahmen wurde am Montag, den 11.

Mai 2020 die Fischwanderhilfe beim Donaukraftwerk

Abwinden-Asten trotz krisenbedingter Einschränkungen

in Betrieb genommen. Fertiggestellt

wurde die Fischwanderhilfe bereits im Winter 2020,

die Flutung aber durch die Beschränkungen in den

Mai verlegt. Mit 12. Mai soll schon mit dem Fischmonitoring

gestartet werden.

„Mit Abstand war dies die schnellst gebaute Fischwanderhilfe

bei VERBUND“, zeigt sich VER-

BUND-Projektleiter David Oberlerchner erfreut. Der

rund 5 Kilometer lange naturnah gestaltet Fluss

wurde nur in knapp einem Jahr errichtet und wahrlich

in Rekordzeit erbaut. „Wir waren mit allen

wichtigen Bauschritten immer im Zeitplan“, so

Oberlerchner.

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Germany

Informationen

Barbara Bochynski

E-Mail

vgb.brennstoffe@vgb.org

Telefon

+49 201 8128-205

www.vgb.org

17

Neuer Termin!


Industry News VGB PowerTech 5 l 2020

Inbetriebsetzung erfolgreich

Aufgrund der krisenbedingten Beschränkungen

begaben sich nur wenige Baubeteiligte

zur Flutung der Fischwanderhilfe Abwinden-Asten.

Unter Einhaltung des Sicherheitsabstandes

und mit Mundschutz

überwachten sie das Einlaufbauwerk beim

Öffnen des Einlaufschützes. Die Füllung

des Flusses erfolgte kontrolliert. Zuerst

wurde das Einlaufschütz nur wenige Zentimeter

geöffnet bis sich das Flussbett mit

Wasser gefüllt hat und das Schütz weiter

geöffnet werden konnte.

Das Wasser arbeitete sich nur langsam abwärts.

Die erste Wassermenge zu Beginn

musste zuerst den Porenraum des Kieskörpers

oberhalb der Dichtschicht auffüllen.

Nach vier Stunden erreichte das Wasser

den Einstieg unterhalb des Kraftwerks.

Projektleiter Oberlerchner freute sich: „Es

ist geschafft! Die erste Flutung ist erfolgreich.

Das Donaukraftwerk Abwinden-Asten

ist nun ab sofort barrierefrei. Welche

Fische schon ungeduldig auf die Durchgängigkeit

warten, werden wir in den nächsten

Wochen erfahren.“ Denn unmittelbar nach

der Inbetriebnahme startet das Fischmonitoring

durch das auf Gewässerökologie

spezialisierte Technische Büro „Blattfisch“

aus Wels.

Fisch ahoi!

Ab Inbetriebnahme wird beobachtet, ob

und welche Fische den Fischaufstieg nutzen.

Auch die Sicherheit der Anlage (beispielsweise

der Dämme) wird durch eine

tägliche Kontrolle der gesamten Anlage

gewährleistet.

Noch im Spätherbst 2019 installierte

VERBUND zwei PIT Tag Stationen (PIT =

Passive Integrated Transponder, also ein

Mikrochip ähnlich wie sie zur Markierung

von Hunden und Katzen eingesetzt werden)

zur Fischzählung. Jeweils eine Antenne

beim Einstieg und Ausstieg der Fischwanderhilfe

sowie eine Reuse beim

Einstieg sind montiert worden. In den

nächsten Jahren wird dann von den Fischökologen

wissenschaftlich untersucht

wie die Fische wandern. Dabei werden

auch die Art, Größe und Alter der Tiere bestimmt.

Mit diesen Daten wird die Funktionsfähigkeit

der Anlage dokumentiert und

schlussendlich auch behördlich bestätigt.

(201761502)

LL

www.verbund.com

LIFE Netzwerk Donau: Flutung Fischwanderhilfe Abwinden-Asten. CopyrightVERBUND

Industry

News

Company

Announcements

Sumitomo Heavy Industries (SHI)

and Highview Power partner to

expand cryogenic long-duration

energy storage globally

(shi) Sumitomo Heavy Industries, Ltd.

(“SHI”), and Highview Power have partnered

to expand the development of Liquid

Air Energy Storage (“LAES”) technology

globally. As part of this partnership, SHI

has made a USD $46 million investment

into Highview Power. Sumitomo SHI FW

(SFW) will become SHI’s technology center

and hub for the CRYOBattery business,

thereby expanding the technology’s geographical

footprint in Europe, Asia, and

Americas.

LAES technology stores energy in the

form of liquefied air and discharges the

stored energy as electricity when needed.

The system consists of three main processes:

• Charge: A charging device which uses

excess electricity to power an industrial

liquefier to produce liquid air.

• Energy Store: An energy store where the

liquid air is held in an insulated tank at

low pressure.

• Discharge: A power-recovery unit where

gasified liquid air is used to drive a

turbine and to generate electricity.

“One of the biggest barriers to a carbon-free

future has been the ability of renewables

to perform as reliably as, and as

cost-effectively as traditional fuel sources.

LAES technology not only solves the problems

that enable dispatchable renewables

but will be a catalyst in bringing the energy

transition forward,” stated Tomas Harju-Jeanty,

CEO at SFW. (201761237)

LL

www.shi-fw.com

18


VGB PowerTech 5 l 2020

Industry News

Valmet to deliver a biomass-fired boiler

plant to Tampereen Sähkölaitos in Tampere,

Finland

(valmet) Valmet will deliver a biomass-fired boiler

plant to Tampereen Sähkölaitos Oy’s Naistenlahti power

plant in Tampere, Finland. The new Naistenlahti 3

boiler will replace the Naistenlahti 2 boiler that has

reached the end of its technical lifetime.

The order is included in Valmet’s orders received of

the second quarter 2020. The value of the order is approximately

EUR 70 million. The boiler plant will be

handed over to the customer at the end of the year

2022.

“Tampereen Sähkölaitos took a turn towards sustainable

energy production in 2010 and started to systematically

use more and more renewable energy sources

and lower its CO2 emissions. Our goal is a 95 percent

decrease in emissions by the end of 2030. Thanks to

the Naistenlahti 3 boiler plant, our CO2 emissions will

reduce significantly, and the share of renewable energy

sources will increase,” says Antti-Jussi Halminen, Director

at Tampereen Sähkölaitos.

“Sustainability is one of the cornerstones in Valmet’s

operations, too, so we are delighted to be involved in

the massive energy turnaround that Tampereen Sähkölaitos

is carrying out. This delivery is a continuation

of our long-standing cooperation. Earlier, Valmet has

supplied equipment to the company’s plants in Naistenlahti,

Lielahti, Hervanta and Sarankulma. We have also

delivered a flue gas cleaning system to the Tammervoima

plant, which is a subsidiary of Tampereen Sähkölaitos,”

says Kai Janhunen, Vice President, Pulp and

Energy business line, Energy business unit, Valmet.

The Naistenlahti 3 plant will be fueled mainly by renewable

biomasses, while milled peat will remain as a

secondary fuel. With a steam capacity of 191 megawatts,

it will run as a base load plant for district heat

production from September to June. The plant concept

is based on combined heat and power (CHP) production,

and it uses the existing old steam turbine and its

auxiliary systems, such as the flue gas heat recovery

system delivered by Valmet to the Naistenlahti 2 plant

earlier. Thanks to the condensation of the water vapor

in the flue gas, the total efficiency ratio of the new plant

is about 112 percent based on the fuel’s effective heating

value.

The new boiler plant will be built between the

Naistenlahti 2 boiler and Lake Näsijärvi. Special attention

has been paid to its architecture. The façade facing

the lake, for example, will feature aluminum profiles in

diverse shapes. (201761325)

LL

www.valmet.com

VGB Workshop

Flue Gas

Cleaning 2020

New event date!

Programme out now.

www.vgb.org

30 Sept. and 1 Oct 2020

Dresden/Germany

The workshop will cover a wide range of

flue gas cleaning activities, especially

with a view to the activities for meeting

the future emission limits, which

are defined in the BREF-LCP process.

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Germany

Informationen

Ines Moors

E-Mail

vgb-flue-gas@vgb.org

Telefon

+49 201 8128-222

www.vgb.org

19

New event date!


Industry News VGB PowerTech 5 l 2020

VGB-KONFERENZ

ELEKTRO-, LEIT- UND INFORMATIONS TECHNIK

IN DER ENERGIEVERSORGUNG – KELI 2020

mit Fachausstellung

NEUER VERANSTALTUNGSTERMIN: (23.) 24. UND 25. NOVEMBER 2020 | BREMEN

VERANSTALTUNGSORT

Maritim Hotel & Congress Centrum Bremen

Im Zweijahresrhythmus richtet der VGB PowerTech die KELI – Fachkonferenz

für Elektro­, Leit­ und Informationstechnik in der Energieversorgung

– aus. Angesprochen sind Betreiber, Planer, Dienstleister

und Lieferanten von Energieanlagen aller Technologien sowie

Universitäten, Versicherer und Behörden. Aktuelle Fragen und Lösungen

werden in Vorträgen präsentiert und können mit international

tätigen Experten diskutiert werden. Begleitet wird die Konferenz

von einer Fachausstellung unter Beteiligung namhafter

Hersteller und Lieferanten sowie einem attraktiven Rahmenprogramm.

Beides bietet für einen Gedankenaustausch und die Erweiterung

geschäftlicher wie persönlicher Kontakte beste Voraussetzungen.

Die KELI 2020 wird ebenso eine Plattform sein, um die durch die

aktuelle Energiepolitik bedingten technischen Herausforderungen

zu diskutieren.

Schwerpunkte bilden dabei:

| Die Auswirkungen des sich verändernden Energiemixes

auf die Erzeugungsanlagen

(Einsatzregimes, Marktmodelle, Systemstabilität)

| Neue Herausforderungen an die Elektro­, Leit­ und Informationstechnik

durch Industrie 4.0, Digitalisierung und IT­Sicherheit

Folgende Themen stehen im Focus der Vorträge und Diskussionen:

| Flexibler Betrieb der Erzeugungs­ und Speicheranlagen

in veränderter Netz­ und Marktsituation

| Erbringung von Systemdienstleistungen

| Neue regulatorische Rahmenbedingungen

und deren Auswirkungen

| Technische Entwicklungen in der Elektro­, Leitund

Informationstechnik

| Betrieb, Instandhaltung, Monitoring, Prüfungen

und Lebensdauerkonzepte

| Informationssicherheit (IT­Sicherheit)

| Digitalisierung, Industrie 4.0, Big Data Anwendungen

Um den Ingenieurnachwuchs der Branche zu fördern,

werden Studierende bei Anreise und Unterkunft unterstützt.

Wir – die Geschäftsstelle und der Programmausschuss –

freuen uns, auf der KELI 2020 alte Bekannte und neue

Gesichter zu begrüßen.

ONLINEANMELDUNG & INFORMATIONEN

L www.vgb.org/keli_2020.html

L www.maritim.de

TAGUNGSPROGRAMM

(Änderungen vorbehalten)

ab

15:00

ab

17:00

MONTAG, 23. NOVEMBER 2020

Technische Besichtigung –

Hybrid Regelkraftwerk / Heizkraftwerk Hastedt

Detaillierte Angaben zur Besichtigung entnehmen

Sie bitte den organisatorischen Hinweisen.

Registrierung

19:00 Abendveranstaltung

Geselliges Beisammensein in der Fachausstellung.

Für das leibliche Wohl ist gesorgt.

09:00

A1

09:10

A2

09:35

A3

10:00

A4

10:30

A5

DIENSTAG, 24. NOVEMBER 2020

Plenarvorträge

Eröffnung der Konferenz

Dr. Oliver Then, VGB PowerTech e. V., Essen

VGB-Aktivitäten zur Elektro-, Leit- und

Informationstechnik in der Energieversorgung

Joachim von Graeve,

Uniper Technologies GmbH, Gelsenkirchen

VGB im Energiesystem der Zukunft

Dr. Oliver Then, VGB PowerTech e. V., Essen

Saal Kaisen

Kohleausstieg versus Versorgungssicherheit

Prof. Dr. Harald Schwarz, Brandenburgische Technische

Universität Cottbus­Senftenberg

Das H2-Speicherkraftwerk

Prof. Dr. Harald Weber, Universität Rostock

11:00 Besuch der Fachausstellung – Kaffeepause

11:30 Sektion S1 „Digitalisierung I“ Saal Kaisen

Sektionsleitung

Marcus Schönwälder,

Vattenfall Wärme Berlin AG

11:30

S1.1

12:00

S1.2

Automatisieren Wir noch oder digitalisiert Ihr schon?

Vom Wesen der Industrie 4.0

Jan Koltermann,

Lausitz Energie Kraftwerke AG, Cottbus

„Combustion 4.0“ – Integriert-modellgestützte

Optimierung des Kraftwerksbetriebs

Dr. Martin Habermehl, aixprocess GmbH, Aachen

Bleiben Sie mit uns in Kontakt, digital und aktuell!

‣ Newsletter subscription | www.vgb.org/en/newsletter.html

20


VGB NEUER PowerTech VERANSTALTUNGSTERMIN:

5 l 2020

(23.) 24. UND 25. NOVEMBER 2020

BREMEN

Industry News

12:30

S1.3

Digitalisierungsprojekte gestalten –

mit den Menschen für die Menschen

Axel Bürgers, Kraftwerksschule e. V., Essen

16:15

S4.3

Cyber Security – Prozessdaten auf der sicheren Reise

Richard Biala, ABB AG, Mannheim

16:45 Raumwechsel

11:30 Sektion S2 „Systemdienstleistungen“ Saal Focke­Wulf

Sektionsleitung

Frank Körnert, Vattenfall Wärme Berlin AG

11:30

S2.1

12:00

S2.2

12:30

S2.3

Betriebserfahrung und Optimierung

von Großbatteriesystemen

Diego Hidalgo Rodriguez,

STEAG Energie Services GmbH, Essen

Schwarzstart-Hilfe für das

GuD-Bestands-HKW Berlin-Mitte

Thomas Lehmann, Vattenfall Wärme Berlin AG

Systemdienstleistungen mit H2-Speicherkraftwerken

Martin Töpfer, Universität Rostock

13:00 Mittagspause – Besuch der Fachausstellung

14:00 Fachbeiträge der Aussteller

www.vgb.org/keli20_ausstellerforum.html

14:00 Forum für Studierende Salon Scharoun

15:00 Besuch der Fachausstellung – Kaffeepause

15:15 Sektion S3 Saal Kaisen

„IT-Sicherheit I – regulatorische Vorgaben“

Sektionsleitung

Peter Riedijk, RWE Generation NL,

Geertruidenberg/Niederlande

15:15

S3.1

15:45

S3.2

16:15

S3.3

Der neue Cybersecurity Act der EU und

das IT-Sicherheitsgesetz 2.0

Prof. Stefan Loubichi,

KSG Kraftwerks­Simulator­Gesellschaft mbH,

GfS Gesellschaft für Simulatorschulung mbH, Essen

Die Cybersicherheitslage in der Energiewirtschaft

Stefan Menge,

Freies Institut für IT­Sicherheit e. V., Bremen

Cybersicherheit im Energiesektor

Carolin Wagner, Bundesamt für Sicherheit

in der Informationstechnik BSI, Bonn

15:15 Sektion S4 Saal Focke­Wulf

„IT-Sicherheit II – Umsetzungserfahrungen“

Sektionsleitung

Andreas Jambor, RWE Power AG, Essen

15:15

S4.1

15:45

S4.2

Zwischen Mensch und Algorithmus – Methoden für

Nutzerakzeptanz und Praxistauglichkeit von selbstlernenden

Anomalieerkennungssystemen im Kraftwerk

(BMBF-Projekt WAIKIKI)

Franka Schuster, Brandenburgische Technische

Universität Cottbus­Senftenberg

Gesetzliche IT-Security Anforderungen – Perspektiven

aus der Sicht von Betreibern und Lieferanten

Frederic Buchi, Siemens Gas and Power GmbH &

Co. KG, Erlangen

16:50

16:50

17:00

bis

18:00

19:00

Podiumsdiskussion

zum IT-Sicherheitsgesetz 2.0

Leitung

Jakob Menauer,

EnBW Baden­Württemberg AG, Altbach

Betreiberstatement

Andreas Jambor, RWE Power AG, Essen

Podiumsdiskussion „Wie können wir

den Transformationsprozess gestalten?“

mit Referenten aus den Sektionen zur IT­Sicherheit

Abendveranstaltung

Gemeinsamer Spaziergang zum „Ratskeller“

Saal Kaisen

19:30 Abendveranstaltung im „Ratskeller“

(Detaillierte Angaben zur Abendveranstaltung

entnehmen Sie bitte den organisatorischen Hinweisen)

MITTWOCH, 25. NOVEMBER 2020

09:00 Sektion S5

„Regulatorische Anforderungen“

Sektionsleitung

Prof. Dr. Hendrik Lens, Universität Stuttgart

09:00

S5.1

09:30

S5.2

10:00

S5.3

RoCoF-Anforderungen an Erzeugungsanlagen –

Parametereinflüsse auf das Verhalten von

Turbo generatoren am Netz bei steigenden

Frequenz änderungsgeschwindigkeiten

Melanie Herzig, Hochschule Ruhr West, Bottrop

Saal Kaisen

Herausforderungen an den Betrieb konventioneller

Kraftwerke in Netzen mit hoher Einspeisung von

Wind und Solarenergie

Dr. Marios Zarifakis, ESB Generation &

Wholesale Markets, Dublin/Irland

Dynamisches Monitoringverfahren

für die Erbringung von Primärregelleistung

Philipp Maucher, Universität Stuttgart

09:00 Sektion S6 Saal Focke­Wulf

„Technische Entwicklungen“

Sektionsleitung

Prof. Dr. Jens Paetzold, Hochschule Ruhr West, Mülheim

09:00

S6.1

09:30

S6.2

10:00

S6.3

Bleiben Sie mit uns in Kontakt, digital und aktuell!

‣ Newsletter | www.vgb.org/en/newsletter.html

Optimaler Entwurf von klassischen Regelungen

Prof. Kai Michels, Universität Bremen

Betrieb von virtuellen Kraftwerken: Vernetzte Anlagen

Jan Weustink, Siemens Gas and Power

GmbH & Co. KG, Erlangen

Supraleiter – die Eisschnelläufer

der Energieübertragung

Gudrun Sachs, VPC GmbH, Vetschau,

Dr. Wolfgang Reiser, Vision Electric

Superconductors GmbH, Kaiserslautern

10:30 Besuch der Fachausstellung – Kaffeepause

21

Neuer Termin!


Industry News VGB PowerTech 5 l 2020

Elektro-, Leit- und

Informations technik in der

Energieversorgung – KELI 2020

(23.) 24. UND 25. NOVEMBER 2020 | BREMEN

11:00 Sektion S7 Saal Kaisen

„Betrieb, Instandhaltung, Monitoring“

Sektionsleitung

Dr. Thomas Krüger,

Lausitz Energie Kraftwerke AG, Cottbus

11:00

S7.1

11:30

S7.2

12:00

S7.3

Fit für die Zukunft – Replacement-Lösungen für den

DR-Generatorschalter erläutert am realen Beispiel

Markus Stay, ABB Power Grids Germany AG, Mannheim

Betriebsmittel im Fokus – effektives Anlagenmanagement

vom Instandhaltungs manage ment zum

Asset Management im Instandhaltungs prozess

Michael Lukas, Lausitz Energie Kraftwerke AG,

Boxberg/Oberlausitz

Basissicherheit und zusätzlicher Schutz durch

„Airbags“ in den Niederspannungs-Schaltanlagen

im HKW Berlin-Reuter West

Holger Kuhlemann, Rolf Janssen GmbH

Elektrotechnische Werke, Aurich

11:00 Sektion S8 Saal Focke­Wulf

„Technische Entwicklungen, Digitalisierung“

Sektionsleitung

Jakob Menauer,

EnBW Baden­Württemberg AG, Altbach

11:00

S8.1

11:30

S8.2

12:00

S8.3

Steuerung einer verfahrenstechnischen Anlage mit

neuronalem Netz

Frank Gebhardt, Uniper Technologies GmbH, Gelsenkirchen

KI-basierte digitale Assistenzsysteme –

Operator im Mittelpunkt

Harald Bruns, ABB AG, Mannheim

Flexibilisierung – Schäden, Auswirkungen und Trends,

eine Auswertung der VGB-Datenbank KISSY

Dr. Jörg M. Bareiß,

EnBW Energie Baden­Württemberg AG, Stuttgart

12:30 Mittagspause – Besuch der Fachausstellung

13:15 Fachbeiträge der Aussteller

https://www.vgb.org/keli20_ausstellerforum.html

13:15 Forum für Studierende Salon Scharoun

14:00 Sektion S9 „Flexibler Betrieb“ Saal Kaisen

Sektionsleitung

Simon Wanjek, Grosskraftwerk Mannheim AG

14:00

S9.1

14:30

S9.2

15:00

S9.3

Neue Speichertechnologien im Energiemarkt

Jan Weustink, Siemens Gas and Power

GmbH & Co. KG, Erlangen

Flexibler Betrieb eines großskaligen

thermischen Energiespeichers

Alexander Zaczek, Siemens Gamesa

Renewable Energy GmbH & Co. KG, Hamburg

Brennstoffwechsel auf Biomasse

Peter Riedijk, RWE Generation NL,

Geertruidenberg/Niederlande

14:00 Sektion S10 „Digitalisierung II“ Saal Focke­Wulf

Sektionsleitung

Andreas Knieschke, VPC GmbH, Vetschau

14:00

S10.1

14:30

S10.2

15:00

S10.3

MIM versus Google – generationsabhängiger

Umgang mit Daten im Kraftwerk

Hans Karl Preuss, GABO IDM mbH, Erlangen

Elektronisches Freischalt- und Informationssystem eFIS

David Röbbing, enercity AG, Hannover

Hochverfügbare private Funknetze (private LTE und 5G)

als Grundlage der Digitalisierung – Wie und warum

werden diese am Kraftwerkscampus eingesetzt?

Manfred Bürger, Nokia, Wien/Österreich

15:30 Schlusswort

Joachim von Graeve,

Uniper Technologies GmbH, Gelsenkirchen

15:40 Verabschiedungskaffee

ca. Ende der Veranstaltung

16:00

ORGANISATORISCHE HINWEISE

VERANSTALTUNGSORT

Maritim Hotel & Congress Centrum Bremen

Hollerallee 99

28215 Bremen

E­Mail: info.bre@maritim.de

L www.maritim.de/de/hotels/deutschland/

hotel­bremen/unser­hotel

KONFERENZSPRACHEN

Deutsch – Simultanübersetzung ins Englische bei Bedarf

(bitte bei der Anmeldung vermerken!)

ONLINEANMELDUNG

www.vgb.org/registration_keli.html

bis zum 3. November 2020 (Redaktionsschluss des Teilnehmerverzeichnisses,

spätere Anmeldung, auch vor Ort, möglich).

TEILNEHMERGEBÜHREN

Teilnahmegebühren

VGB­Mitglieder 890,00 €

Nichtmitglieder 1.250,00 €

Hochschule, Behörde, Ruheständler 350,00 €

Tagesticket (Mittwoch oder Donnerstag)

VGB­Mitglieder 550,00 €

Nichtmitglieder 750,00 €

ABENDVERANSTALTUNG

Am Mittwoch, 13. Mai 2020 sind die Teilnehmenden ab 19:30 in den

„Ratskeller“ eingeladen.

ONLINEANMELDUNG & INFORMATIONEN

L www.vgb.org/keli_2020.html

Kontakte: Ulrike Künstler, Tel.: +49 201 8128­206 | Ulrike Hellmich, Tel.: +49 201 8128­282 | E­Mail: vgb­keli@vgb.org

VGB PowerTech e.V. | Deilbachtal 173 | 45257 Essen | www.vgb.org

22


VGB PowerTech 5 l 2020

Industry News

90 Jahre Energietechnik-

Innovationen aus Berlin:

Traditionsunternehmen La Mont

entwickelt neuen Dampfkessel-Typ

(lamont) Effizienzsteigernde Strukturrohre

für industrielle Wärmetauscher, ein miniaturisierter

Dampf-Rotationskessel oder

eine GuD-Technologie für Bereiche unter

1000 kW el. mit bisher unerreichtem Wirkungsgrad:

Aktuelle Technologie-Highlights

des Berliner Power-Inkubators La

Mont schreiben eine Erfolgsgeschichte

fort, die vor 90 Jahren mit einem bis heute

genutzten Industriekesseltyp begann.

Schon kurz nach ihrem Handelsregister-Eintrag

beim Amtsgericht Berlin-Mitte

im Sommer 1929 meldete die „La-Mont Gesellschaft“

ein erstes Patent für eine innovative

Dampfkesselanlage an. Ihre entscheidenden

Vorteile: die besonders zuverlässige

Verteilung des Prozesswassers im

Kessel und die hohe Betriebssicherheit. Der

erste Kessel ging Anfang 1930 am Chemiestandort

Leuna, der zweite kurz darauf

in den Vereinigten Stahlwerken Duisburg

in Betrieb. Seither bewährten sich La

Mont-Systeme weltweit zehntausendfach

in der industriellen Dampf- und Heißwassererzeugung,

später auch in der energetischen

Verwertung von Abfallstoffen, Biomassen,

Kohle, Öl, Gas und in mobilen

Anwendungen. Nicht nur die Handelsschifffahrt

setzt bei Abgaskesseln bis heute

auf die robuste und verlässliche Technik.

Strukturrohre: Wärmeübertragung

drastisch gesteigert

Nach wie vor liegt die Kernkompetenz

des durchgängig in der Hauptstadt ansässigen

Unternehmens in energietechnischen

Lösungen für die Industrie. Nach Jahrzehnten

kesselbasierter Entwicklungsleistungen

folgte 2003 ein weiterer innovatorischer

Paukenschlag: In Kooperation mit

der Technischen Hochschule Wildau, an

der La Mont-Geschäftsführer Prof. Udo

Hellwig langjährig Verfahrenstechnik lehrte,

hatte das Unternehmen gemeinsam mit

der Schwesterfirma Eckrohrkessel GmbH

sogenannte ERK-Tubes entwickelt – für

vielfältige Nutzungszwecke auslegbare

Strukturrohre, die optimierte Wärmeübertragungsprozesse

etwa im Bereich der

Rauchrohrkesselanlagen, der Automobilund

Lebensmittelindustrie sichern. Dort

bewähren sich die Tubes besonders bei der

thermischen Versorgung von Anlagen, nun

kompakter auslegbaren Wärmetauschern

und Reaktoren. Je nach Art der Strukturierung

liegt ihre Effizienz um den Faktor 2

bis 4 über jener klassischer Glattrohre. Damit

gehen ein drastisch geringerer Materialbedarf

und eine Anlagenschrumpfung

um bis zu 70 % einher. Zusätzliche Pluspunkte:

die hohe Korrosionsfestigkeit sowie

der deutlich geringere Wartungsaufwand

dank stark reduzierter Fouling-Effekte.

Allein für die letzten 10 Jahre sind

über 1.000 ERK-Tube-Referenzanwendungen

verzeichnet.

Dampfkessel: 90 Prozent

weniger Volumen

Sehr zeitnah will die La Mont nun ein

neues Highlight präsentieren: einen Rotationskessel

zur industriellen Dampferzeugung,

der bei gleicher Leistung nur noch

ein Zehntel des Bauvolumens konventioneller

Systeme benötigt. Möglich wurde

die Schrumpfung dank des Ersatzes herkömmlicher,

still stehender Rohranordnungen

durch rotierende. Infolge der Rotation

der Heizflächen steigt der Wärmübergang

stark an, ohne dass die Druckverluste

auf der Rauchgasseite wesentlich zunehmen.

Die Neuentwicklung ist ein Re-Engineering

auf historischer Grundlage:

„Diese Lösung wurde von La Mont-Ingenieuren

schon vor 80 Jahren konzipiert, aber

wohl aus Geheimhaltungsgründen nie im

Handelsbereich umgesetzt“, sagt Udo Hellwig.

Sein Team habe gemeinsam mit Industriepartnern

das Lösungsprinzip aus

dem Firmenarchiv auf aktuelle Anforderungen

übertragen und stehe nun kurz vor

der Serienreife. Hauptanwendungsfelder

des neuen Kessels seien Blockheizkraftwerke

und vielfältige Abhitzenutzungen im

gewerblichen Bereich.

Die Fachwelt verfolgt die Entwicklung

aufmerksam: Dr. Ralf Kriegel, Abteilungsleiter

Hochtemperaturseparation und Katalyse

am Fraunhofer-Institut für Keramische

Technologien und Systeme IKTS in

Hermsdorf, hält den La Mont-Ansatz für so

sinnvoll wie aussichtsreich. Ginge doch mit

der verbesserten Wärmeübertragung bei

gleichzeitiger Volumenminderung eine

deutliche Kostenreduzierung einher. Die

preiswerte Energieumwandlung begünstige

eine effiziente lokale Energieproduktion.

„Bei üblichem Wirkungsgrad werden

diese Systeme wesentlich günstiger – das

kann die Akzeptanz industrieller Anwender

etwa für BHKW stark erhöhen“, sagt

der Energietechnik-Spezialist. Er erwägt

nun, das Wirkprinzip in geplante Forschungsarbeiten

seines Instituts einzubinden

und mit einer neuartigen Verdichtungstechnologie

für Motoren und Gasturbinen

zu koppeln. So könnten deren Wirkungsgrad

um 15 bis 20 %gesteigert und

beispielsweise Fahrzeugantriebe mit höherer

Effizienz als bei Brennstoffzellen ermöglicht

werden.

GuD: Effizienzsprung im kleinen

Leistungsbereich

Mit Unterstützung durch Wissenschaftsund

Industriepartner ist bei La Mont noch

eine weitere Entwicklung, ein besonders

kompaktes, effizientes und dennoch preiswertes

GuD-System speziell für Haustechnik-

und kleingewerbliche Anwendungen,

weit fortgeschritten. Erstmals soll damit im

kleinen Leistungsbereich unter 100 kW el

ein Wirkungsgrad von bis zu 60 Prozent

erreicht werden. „Binnen Jahresfrist“ solle

die auch für dezentrale Verbundnetze geeignete

Lösung verfügbar sein, sagt Hellwig.

Strategisches Ziel sei eine spätere Steigerung

des Wirkungsgrades auf bis 90 % –

unter anderem dank Nutzung für Energietechnik-Anwendungen

völlig neuer, hochfester

Materialien.

„Mit der Konzentration auf optimierte

Wärmeübertragung sowie die Turbinenentwicklung

sind wir nahe an den historischen

Wurzeln von La Mont aus der Zeit

vor dem Weltkrieg, so Firmenchef Hellwig.

Er ergänzt, im Firmenarchiv warte noch

manches ingenieurtechnische Kleinod darauf,

mit Hilfe der heutigen technologischen

Möglichkeiten und neuer Materialien

gehoben zu werden. (201761316)

LL

www.lamont-services.com

Know-how für Zukunftslösungen: Visualisierung einer 3 MW-Gasturbine mit gekühlten Schaufeln

aus den 1940-er Jahren (Quelle: La Mont)

23


Industry News VGB PowerTech 5 l 2020

Products and

Services

Wölfel: Optimierter Weiterbetrieb

und frühzeitige Identifikation von

Schädenan Fundament und Turm

(woelfel) Um Schäden am Fundament professionell

überwachen zu können, hat sich

Wölfel Wind Systems dazu entschlossen,

das bestehende Produkt SHM.Tower® mit

einem Neigungssensor im Fundament zu

erweitern. Damit kann eine Schiefstellung

der Turmachse überwacht werden. Mit Methoden

der Künstlichen Intelligenz (KI)

und unter Einbeziehung von EOC/SCA-

DA-Daten wird ein präzises Monitoring des

Schadensfortschritts ermöglicht.

„SHM.Foundation® zeichnet sich auf dem

Markt aus, da man mit dem System die Anlage

umfassend überwachen und bewerten

und gleichzeitig Daten für das Lebensdauer-Monitoring

sammeln kann. Damit erfüllt

es gleich zwei wesentliche Anforderungen:

Der Betreiber hat stets einen aktuellen

Überblick über den gesamten Windpark

und eine Basis für den sicheren Weiterbetrieb“,

so Dr.-Ing. Manuel Eckstein,

Leiter des Bereichs Vibration and Monitoring

Technologies bei Wölfel.

Ob Rissbildung im Beton, eine Entkopplung

von Fundament und Turm oder ein

gelockertes Fundamenteinbauteil – Turmund

Fundamentschäden sind ein relevanter

Risikofaktor. Werden z.B. entstehende

Risse oder Entkopplungen nicht frühzeitig

erkannt, drohen gravierende Folgeschäden,

kostenintensive Instandsetzungen

und lange Ausfallzeiten.

Da regelmäßige visuelle Inspektionen aufwändig

und teuer sind, wird das Monitoring

von Größen wie Beschleunigungen, Verformungen,

Bauteilspannungen oder Frequenzen

inzwischen einhellig empfohlen.

Mit unserem professionellen Monitoringsystem

SHM.Foundation mit direkt angebundener

Neigungssensorik können Belastungen

und Schäden am Turm und am

Fundament synchron und effizient überwacht

werden (Kombination der Module

Lebensdauer, Eigenfrequenzen und Fundamentschäden).

Durch Korrelation mit EOC/SCADA-Daten

wird die Abhängigkeit der Schadensindikatoren

(statische Schiefstellung der

Windenergieanlage (WEA)) gegenüber

den Betriebsbedingungen kompensiert

und eine direkte Bewertung ermöglicht.

Durch Einsatz von KI-Methoden kann die

Genauigkeit erheblich erhöht werden (Modul

Fundamentschäden).

SHM.Foundation ermöglicht folgende

Potenziale zur Kostenoptimierung:

• Optimierte Weiterbetriebsdauer mit

gesicherten Betriebskosten durch

Lebensdauer-Monitoring

• Einsparung und Optimierung von

visuellen Inspektionen durch stets

aktuelles Bild der Asset-Gesundheit

• Erhalt des Asset-Wertes

• Identifizierung von problematischen

WEA mit hohem OPEX-Risiko (schwarze

Schafe) durch Windfarm-Monitoring

• Dauerhafte Überwachung von

problematischen WEA-Fundamenten als

Maßnahme einer objektbezogenen

Schadensanalyse oder Sonderprüfung

sowie zur Bewertung des

Schadensfortschritts

LL

www.woelfel.de

Production starts in Europe’s

first gigafactory for energy

storage systems

• Demand for storage systems on the rise

despite COVID-19

(tesvolt) Semi-automated production began

in Europe’s first gigafactory for commercial

battery storage systems, located in

Wittenberg, Germany. Innovations in Tesvolt’s

production process have enabled extremely

flexible and efficient series manufacturing

of its lithium-ion storage systems

for industry and commerce. Production in

the new factory is subject to stringent safety

precautions. Additional measures are

being taken to protect staff and customers

from COVID-19.

On a production area of 12,000 m² Tesvolt

manufactures battery storage systems

in various size categories with storage capacities

ranging from 9.6 kWh into the

megawatt range. Its new production line

will allow the company to produce storage

systems with a total capacity of up to one

megawatt hour (MWh) every day and 255

MWh each year. The factory is designed so

that the production capacity can be expanded

to as much as one gigawatt. Tesvolt

will be gradually adding capacity to account

for the current increase in demand,

seeing as its order volume has almost tripled

since the same quarter last year.

One of the most important innovations in

the new production process is semi-automated

full-cycling. Every battery module is

fully charged and discharged and checked

for anomalies in terms of temperature,

voltage and internal resistance. After this

step, fully automated end-of-line inspection

ensures the highest possible quality.

Every battery cell is checked and modules

that do not meet high performance standards

are automatically removed from the

process.

Rising demand

“The coronavirus crisis is a major concern

for us as a manufacturer as well as on a human

level. We’re very grateful that we were

able to close the first quarter with strong

turnover figures”, says Daniel Hannemann,

Managing Director and co-founder of Tesvolt.

Demand has spiked in particular for

storage systems with an emergency power

function as well as for off-grid storage, according

to Hannemann. “We don’t know

how demand will change in light of the

coronavirus crisis. We want to work closely

with our customers to overcome these new

challenges in a spirit of solidarity, creativity,

flexibility and ingenuity.”

Production staff working in isolation

“When it comes to COVID-19, our employees’

safety is of course our top priority.

Three weeks ago we asked all staff who can

do so to work from home — including production

planning staff. In production itself,

meanwhile, employees are still at work but

isolated from one another”, says Simon

Schandert, Director of Engineering and

co-founder of Tesvolt. “We’re lucky that

production is continuing at our battery cell

supplier Samsung SDI in Korea.”

Roadshow and training

sessions via webinar

“We are taking COVID-19 very seriously.

Following the outbreak of the epidemic, we

decided to switch our European roadshow

over to a webinar format. We were unsure

whether a roadshow could work without

face-to-face contact, but it’s proven to be a

success. Lots of registrations came in within

a very short period of time and the webinar

participants have given us positive

feedback”, says Thomas Franken, who is

responsible for international marketing at

Tesvolt. Tesvolt set up its own recording

studio for the webinars. Its training sessions

are now also being held online.

“Our staff put in some night shifts to

quickly change everything over to an online

format. We can only overcome this crisis

by working together”, says Hannemann.

LL

www.tesvolt.com

24


VGB PowerTech 5 l 2020

Industry News

Events in brief

Messen für Prozess- und

Fabrikautomation

„NACH-Corona“

(meorga) Die MEORGA veranstaltet Spezialmessen

für Mess-, Steuerungs- und Regeltechnik,

Prozessleitsysteme und Automatisierungstechnik

in ausgesuchten Wirtschaftsregionen.

Regelmäßig zeigen ca. 150 Fachfirmen,

darunter die Marktführer der Branche, von

08:00 bis 16:00 Uhr Geräte und Systeme,

Engineering- und Serviceleistungen sowie

neue Trends im Bereich der Prozess- und

Fabrikautomation. 18 begleitende Fachvorträge

informieren den Besucher umfassend.

Den Ausstellern unserer Messe garantiert

unser Konzept hohe Zielgruppengenauigkeit

bei minimalem Aufwand.

Wir als erfahrener Veranstalter glauben

fest daran, dass Live-Veranstaltungen in

puncto face-to-face Kommunikation auch

in Zukunft unschlagbar bleiben. Auf das

Messe-Flair, intensive Gespräche, die Marken-Inszenierungen

und den persönlichen

Eindruck vor Ort werden die Experten in

der Industrie bei wichtigen Themen nicht

verzichten wollen.

Der Blick über den Tellerrand, der Austausch

von Expertenwissen über Fachgrenzen

hinaus werden zum wertvollen Objekt

der Begierde. Das ist ein großer Anspruch

an jede Messe. In einer immer komplexeren

Welt mit ihren immer umfassenderen

Problemen sind sicher auch interdisziplinäre

Problemlösungen gefragt. Deshalb

sind unsere Messen auch „NACH-Corona“

verstärkt Treiber technologischer und wirtschaftlicher

Entwicklung.

Mit diesem Anspruch im Blick freuen wir

uns sehr auf zahlreichen Besuch während

unserer nächsten Messen in der Ludwigshafener

Friedrich-Ebert-Halle am 16. September

2020 und im Bochumer RuhrCongress

am 4. November 2020, vorausgesetzt

dass die Landes-spezifischen Verordnungen

den Messebetrieb zulassen.

(201761234)

LL

www.meorga.de

REMBE Safety Days Digital Home

Edition – Erfolgsevent wird per

Videokonferenz fortgesetzt

(rembe) Die Veranstaltungsreihe „REMBE

Safety Days“ sorgte in den letzten Jahren

dafür, dass Brilon immer wieder aufs Neue

zum Treffpunkt des globalen Explosionsschutzes

und der Prozesssicherheit wurde.

Inhalt der Veranstaltungen war es, aktuelle

Themen aus diesen Bereichen vorzustellen

und zu diskutieren sowie eine Plattform für

Networking zu schaffen. Im November

VGB Expert Event

Digitalization in

Hydropower 2020

New event date!

www.vgb.org

10 and 11 November 2020

Graz/Austria

The 3 rd international VGB expert event

will focus on providing a comprehensive

overview of digitalization in hydropower

dealing mainly with implemented innovative

digital measures, products and tools.

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Germany

Informationen

Dr Mario Bachhiesl

E-Mail

vgb-digi-hpp@vgb.org

Telefon

+49 201 8128-270

www.vgb.org

25

New event date!


Power News VGB PowerTech 5 l 2020

2019 konnten 150 Teilnehmer aus fünf

Kontinenten im Sauerland begrüßt werden.

Aufgrund der aktuellen Situation können

leider keine Live Events stattfinden.

Um den so wichtigen Wissensaustausch

dennoch zu ermöglichen, bietet REMBE

eine digitale Version der REMBE Safety

Days an.

Sicherheit ist essenziell – besonders in

schwierigen Zeiten wie diesen. Um den Erfahrungsaustausch

von Experten im Bereich

der Sicherheitstechnik weiterhin zu

ermöglichen, hat REMBE die „REMBE Safety

Days - Digital Home Edition“ ins Leben

gerufen. „Wir sind stolz darauf, eine Plattform

wie diese zur Verfügung stellen zu

können“, so Claire Lloyd (Team Leader

Process Safety Europe und eine der Referentinnen

der REMBE Safety Days - Digital

Home Edition).

Dieses Format ist eine ideale Lösung, um

aktuelles Expertenwissen, neueste Erfahrungen

und Sicherheitsansätze auszutauschen.

Die Vorträge richten sich an Betreiber,

Planer, Techniker, Ingenieure, Instandhalter,

Sicherheitsbeauftragte, Sachverständige

und Inspekteure in Überwachungsorganisationen.

Einmal wöchentlich, jeden Mittwoch ab

13:15 Uhr, findet ein 45-minütiger Vortrag

der REMBE Safety Days - Digital Home Edition

zu den unterschiedlichsten Themen

des Explosionsschutzes und der Prozesssicherheit

statt. Da es sich bei den Teilnehmern

seit jeher um ein internationales Publikum

handelt, wird es sowohl deutsche

als auch englische Vorträge geben. Die

Übersicht aller Vorträge ist über die Webseite

erreichbar.

LL

www.rembe-safetydays.de

Power News

Rotterdam boosts hydrogen

economy with new infrastructure

(por) The hydrogen economy is quickly

gathering momentum after Shell announced

its plans to take a green hydrogen

plant into operation as early as 2023. This

plant will be constructed at Maasvlakte 2.

From here, the produced hydrogen will be

transported via a pipeline to Shell’s refinery

in Pernis. Gasunie and the Port of Rotterdam

Authority intend to realise the new

pipeline in a joint venture.

The green hydrogen plant and the pipeline

are part of a series of projects associated

with the production, import, use and

transfer of hydrogen in which the Port Authority

is working together with a variety

of partners. These concrete projects seamlessly

tie in with the hydrogen outlook recently

published by the Dutch government.

Allard Castelein, CEO of the Port of Rotterdam

Authority: ‘We are currently expediting

our plans to construct a public hydrogen

network in the port area. The work

on this backbone for Rotterdam’s industrial

sector will be rounded off concurrently

with Shell’s electrolyser. A main transport

network like this can be used to connect

producers and users. This in turn helps to

create a market and boosts the production

and consumption of hydrogen. Besides accommodating

production, in the longer

term Rotterdam will also play a crucial part

in the import of hydrogen thanks to the realisation

of multiple hydrogen terminals.

Hydrogen promises to become the energy

carrier of the 21st century. In Northwest

Europe, we will not be able to produce sufficient

hydrogen locally, meaning that a

large volume will need to be imported. Rotterdam

will play a central role in this process

– similar to its current role in the oil

sector. This allows us to reinforce the port

of Rotterdam’s position as an important pillar

of the Dutch economy.”

Hydrogen pipeline

The Port Authority and Gasunie plan to

jointly construct and operate the hydrogen

pipeline, which will run parallel with the

A15 motorway between Maasvlakte and

Pernis. The parties plan to take the definite

decision to greenlight construction in the

first half of 2021. In the near future, Rotterdam’s

hydrogen pipeline will be hooked up

to the national hydrogen network developed

by Gasunie.

Shell will be constructing its hydrogen

plant at a dedicated industrial site realised

by the Port Authority at Maasvlakte for

electrolysers operated by various companies.

Another project planned at this site is

H2-Fifty (the construction of a 250 MW

electrolyser operated by BP and Nouryon).

This facility is expected to become operational

in 2025. Situated on the coast of the

North Sea, this special industrial site

(named a ‘conversion farm’) uses offshore

wind power to produce hydrogen. The hydrogen

produced at the plant will be transported

to users via a pipeline.

Blue and green

Apart from these two mega electrolysers,

various companies in the port area are

working on plans for smaller models with

capacities ranging from 5 to 100 MW (for

the sake of comparison: the largest electrolyser

currently operating in the Netherlands

has a capacity of 1 MW). In addition,

a consortium is working on plans for the

production of the hydrogen variant known

as blue hydrogen. The objective within this

H-vision project is to produce hydrogen

from gas sourced from refineries or natural

gas, while capturing the carbon released by

this process and storing it under the North

Sea seabed. The large-scale production of

blue hydrogen could be set up well before

2030. By contrast, the production of green

hydrogen via electrolysis requires a huge

volume of green electric power – which

will at any rate be in short supply for another

decade.

Another project that has therefore been

initiated is the realisation of 2 GW of extra

offshore wind capacity (extra when compared

to the existing plans for wind farms

out on the North Sea) that will be reserved

for the production of green hydrogen. This

has been recognised as an option in the

government’s Climate Agreement, and the

Port Authority is currently conferring with

the national authorities regarding the

landing of this project. The electrolysers

that will be sourcing this offshore power

can be set up at the Maasvlakte conversion

park.

Carbon reduction

The H-Vision project will yield around 2.2

to 4.3 Mt in carbon savings. The 2 GW electrolysis

‘conversion park’ will reduce carbon

emissions by 3.3 Mt (based on the electrolysers

running 8,000 hours per year, and

compared to the production of grey hydrogen).

Transport, heating

The Port Authority is also closely involved

in various projects that are intended to promote

hydrogen as a transport fuel – both in

road haulage and inland shipping. In the

road transport sector, parties are setting up

a consortium that aims to have 500 trucks

running on hydrogen by 2025. Inland shipping

can also move from diesel to hydrogen.

In the longer term, hydrogen can also

be used to heat greenhouses and buildings

– particularly locations that are less suited

for heating via a heat network or a ground

source heat pump.

Large-scale import

Northwest Europe consumes far more

power than can be generated locally from

renewable sources. That is why the region

is required to import hydrogen (or hydrogen

bonds like ammonia) on a large scale.

The national government has asked the

Port Authority to map out the various options

to import hydrogen from abroad, so

the port of Rotterdam can retain its pivotal

role in international power transport. Similar

to how the port presently imports large

volumes of oil and coal for the Netherlands,

Germany and Belgium, in the near future,

Rotterdam will serve as a major hub for renewable

energy flows.

The domestic demand for hydrogen is expected

to increase to approximately 14 Mt

per year by 2050. If half of this volume is

sourced via Rotterdam, the port will be

handling some 7 Mt in throughput. According

to prognoses, there will also be a sizeable

demand from neighbouring countries

(and specifically Germany) for hydrogen

via Rotterdam: approximately 13 Mt by

2050. This puts the required volume of hydrogen

produced or imported in Rotter-

26


VGB PowerTech 5 l 2020

Power News

dam at 20 Mt. This volume would require 200

GW in operational wind farm capacity. The

Dutch section of the North Sea currently accommodates

1 GW in wind farm capacity. This

can be increased to 60-70 GW by 2050. The

lion’s share of the required hydrogen will

therefore need to be imported. This calls for

import terminals and pipelines similar to the

facilities that have been set up for oil and oil

products. From 2030 on, forecasts therefor

include the large-scale import and transport

of hydrogen to the hinterland – to raise the

sustainability of industrial activities in Geleen

and North Rhine-Westphalia, among other

things.

The Port of Rotterdam Authority recently

drew up a hydrogen outlook that describes

and quantifies the aforementioned trends.

This document is based on a series of studies

performed by various large corporations and

Dutch and international organisations in the

energy sector.

LL

www.portofrotterdam.com

Global Focus on renewable energy

creates tremendous

growth prospects for wind

turbine materials

• Innovation and increased government

spending will push the market to nearly

double by 2026, finds Frost & Sullivan

(frost) The increasing demand for energy

worldwide and traditional energy independence

due to volatile oil prices is encouraging

governments throughout the world to harness

the potential of renewable energy, driving the

global market for wind turbine materials. Expanding

at a compound annual growth rate

(CAGR) of 8.9%, the wind turbine materials

market is likely to almost double, reaching

$19.57 billion by 2026 from $10.76 billion in

2019.

“With the increasing population and economic

development, global energy demand is

rising rapidly. Many countries across the globe

have been experiencing an energy gap, which

is being broadened by the deliberate depletion

of fossil fuels,” said Sayantan Sengupta,

Visionary Science Research Analyst at Frost &

Sullivan. “These factors urgently call for

transforming the world’s traditional energy

system with excessive uptake of energy-efficient

renewables. In turn, this is expected to

enhance the investments in the renewable energy

sector, such as wind power, thereby driving

the demand for both structural and

non-structural materials.”

Frost & Sullivan’s recent analysis, Global

Wind Turbine Materials Market, Forecast to

2026, covers global market trends, including

market drivers and restraints, regional technology

trends, and key market participants.

APAC, divided into India and the Rest of APAC,

will continue to lead the market for both

structural and non-structural materials due to

the rapid development of the region’s wind

energy sector. The Middle East and Rest of the

VGB Seminar

Wasseraufbereitung

SAVE

THE DATE

15. bis 17. September 2020

Essen

Profitieren Sie von der Teilnahme

an diesem praxisorientierten Seminar

von den langjährigen Erfahrungen

des Bereiches „Wasserchemie“

der Technischen Dienste des VGB.

VGB PowerTech

Service GmbH

Deilbachtal 173

45257 Essen

Germany

Informationen

Konstantin Blank

E-Mail

vgb-wasserraufb@vgb.org

Telefon

+49 201 8128-214

Fachliche Koordination

Dr. Claudia Stockheim

www.vgb.org

27


Power News VGB PowerTech 5 l 2020

VGB Workshop

28

ÖL IM KRAFTWERK

Verfahrenstechnik Turbinenbetrieb mit

Schwerpunktthema Ölsystem und

Reinigung, Schwingungsanalyse

während des Dampfturbinenbetriebes

Neuer Termin!

www.vgb.org

10. und 11. November 2020

Bedburg

Oftmals treten nach Revisionen Fehler auf.

Ziel des Workshops ist es, den Teilnehmern

Möglichkeiten einer Analyse zu

Schwingungsereignissen – verursacht durch

Ausrichtungsfehler, Lagergeometrien und

Ölqualität – aufzuzeigen.

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Germany

Informationen

Diana Ringhoff

E-Mail

vgb-oil-pp@vgb.org

Telefon

+49 201 8128-321

www.vgb.org

Neuer Termin!

World (ROW comprises countries in Africa,

Latin America, and others, including Russia

and Turkey) are expected to be the two

fastest-growing wind turbine materials

markets, with increasing government

spending and favorable policy targets for

wind energy deployment in these regions.

“Due to the complexity of the production

process and application areas, brand equity,

global presence, manufacturing expertise,

and supply reliability, long-term relationships

with OEMs are extremely critical

in the wind turbine materials market,” noted

Sengupta. “Further, with the increasing

greenhouse gas emissions, government

authorities worldwide are expected to focus

on offshore wind energy installations,

which are still at a nascent stage in most

parts of the world. This is expected to

strengthen the demand for high-performance

specialized materials.”

Uncertain government policies and inconsistent

incentives and tariff rates along

with the scarcity of infrastructure for wind

energy transmission are likely to restrain

the growth of the wind turbine materials

market. However, original equipment manufacturers’

(OEMs’) focus on innovation

and product enhancement within existing

material chemistries is expected to unlock

tremendous growth opportunities, including:

• Demand for renewable energy in

developing countries: Vendors should

adopt strategies such as capacity

expansion and addition and also focus

on enhancing the performance of

existing formulations.

• Need for high-quality wind turbine

materials in developed regions: Highquality

structural and non-structural

metals are needed for offshore

applications across regions.

• Mergers and acquisitions: Vendors

seeking to get ahead of the competition

need to strengthen ties with wind

turbine OEMs by providing value-added

services and stay abreast of M&A

opportunities to expand their product

offerings and provide differential

services.

• Use of value-added materials in North

America and Europe: Vendors must

enhance the quality of wind turbine

materials to be more sustainable with

improved performance across diverse

domains.

Global Wind Turbine Materials Market,

Forecast to 2026 is the latest addition to

Frost & Sullivan’s Visionary Science research

and analysis available through the

Frost & Sullivan Leadership Council, which

helps organizations identify a continuous

flow of growth opportunities to succeed in

an unpredictable future.

LL

www.frost.com


VGB PowerTech 5 l 2020 Highlights of the World Nuclear Performance Report 2019

Highlights of the World Nuclear

Performance Report 2019

Jonathan Cobb

Kurzfassung

World Nuclear Performance Report 2019

Die Kernkraftwerke weltweit leisteten auch in

2018 einen wachsenden Beitrag zur Versorgung

mit sauberer und zuverlässiger Elektrizität. Die

weltweite Stromerzeugung aus Kernenergie betrug

2.563 TWh, 61 TWh mehr als im Vorjahr

2017. Ende 2018 betrug die Kapazität der 449

betriebsbereiten Reaktoren der Welt 397 GWe,

4 GWe mehr als im Vorjahr. Neun neue Reaktoren

mit einer Gesamtleistung von 10,4 GWe

wurden ans Netz angeschlossen. Sieben Reaktoren

mit einer Gesamtkapazität von 5,4 GWe

wurden 2018 abgeschaltet. Davon sind vier japanische

Reaktoren, die seit 2011 nicht mehr

am Netz waren, und ein fünfter, Chinshan 1 in

Taiwan, war seit 2015 nicht mehr am Netz, so

dass diese Stilllegungen nur minimale Auswirkungen

auf die gesamte Stromerzeugung im

Jahr 2018 hatten. Vier Reaktoren in Japan mit

einer Gesamtkapazität von 5,6 GWe erhielten

die Genehmigung zur Wiederinbetriebnahme.

55 Reaktoren befanden sich Ende 2018 in Bau,

wobei mit dem Bau von fünf Reaktoren begonnen

wurde, verglichen mit den neun, die nach

Abschluss der Bauarbeiten ans Netz gegangen

sind.

l

Author

Dr. Jonathan Cobb

Senior Communication Manager

World Nuclear Association

Tower House, 10 Southampton Street

London WC2E 7HA, UK

The world’s nuclear plants continue to perform

excellently. Growth is strong; but for

the industry to reach the Harmony goal of

supplying at least 25 % of the world’s electricity

before 2050, much greater commitment

from policymakers will be required.

The need for the reliable, predictable and

clean electricity generated by nuclear has

never been greater and, worldwide, that is

reflected in the growing number of new

build programmes underway.

However, a number of factors – both internal

and external – are creating profound

challenges for nuclear power in some of its

most mature markets.

Nuclear reactors generated a total of

2,563 TWh of electricity in 2018, up from

2,503 TWh in 2017. This was the sixth successive

year that nuclear generation has

TWh

3,000

2,500

2,000

1,500

1,000

500

0

West & Central Europe

South America

North America

East Europe & Russia

Asia

AfricaSource

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

Source: World Nuclear Association and IAEA Power Reactor Information Service (PRIS)

Fig. 1. Nuclear electricity production 1970 to 2018.

GWe

450

400

350

300

250

200

150

100

50

0

Not operating

Operating

AfricaSource: World Nuclear Association, IAEA PRIS

Fig. 2. Nuclear generation capacity operable (net) 1971 to 2018.

risen, with output 217 TWh higher than in

2012 (Figure 1).

Nuclear generation increased in Asia, East

Europe & Russia, North America, South

America and West & Central Europe. Generation

fell in Africa, which has only two

reactors operating, both in South Africa.

In 2018 the peak total net capacity of nuclear

power in operation reached 402 GWe,

up from 394 GWe in 2017. The end of year

capacity for 2018 was 397 GWe, up from

393 GWe in 2017 (F i g u r e 2 ).

Over 2019 six reactors with a combined

generating capacity of 5,178 MWe were

added to the grid, while nine units were

permanently shut down. Based on provisional

figures global nuclear generating

capacity stood at 391 GWe at the end of

2019.

1994

1996

2098

2000

2002

2004

2006

2008

2010

2012

2014

2016

2018

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

2099

2001

2003

2005

2007

2009

2011

2013

2015

2017

29


Highlights of the World Nuclear Performance Report 2019 VGB PowerTech 5 l 2020

90

poured in 1987, construction was suspended

between 1991 and 2008. Start-up of the

first unit is now expected in 2020.

Over the course of nuclear energy’s 66

years of commercial operation reactor designs

have evolved. One characteristic of

that evolution has been an overall increase

in reactor capacity, particularly over the

first thirty years of reactor development.

Reactor start-ups are predominantly taking

place in non-OECD countries, demonstrating

the importance of nuclear energy in

growing economies.

The evolution of reactor start-ups in different

regions is shown in F i g u r e 7. The majority

of reactor capacity built between

1970 and 1990 was in West and Central

%

80

70

60

50

0

1970

1974

1978

1982

Source: World Nuclear Association, IAEA PRIS

1986

1990

1994

Fig. 3. Global average capacity factor 1970 to 2018.

1998

2002

2006

2010

2014

2018

Construction was started in 2019 on three

new power reactors: unit 2 of the Kursk II

plant in Russia; unit 1 of China’s Zhangzhou

plant; and unit 2 of Iran’s Bushehr

plant.

Of the 442 reactors that were operable at

the end of 2019, over half were in the USA

and Europe where, despite the vital importance

of nuclear to achieving sustainable

energy goals, reactor retirements continue

to outpace capacity additions.

In 2018 the global average capacity factor

was 79.8 %, down from 81.1 % in 2017

(F i g u r e 3 ). Despite the small reduction,

this maintains the high level of performance

seen since 2000 following the substantial

improvement over the preceding

years. In general, a high capacity factor is a

reflection of good operational performance.

However, there is an increasing

trend in some countries for nuclear reactors

to operate in a load-following mode to

accommodate variable wind and solar generation,

which reduces the overall capacity

factor.

There was a substantial improvement in

capacity factors from the mid 1970s

through to the end of the 1990s, which

since has been maintained. Whereas nearly

half of all reactors had capacity factors under

70 %, the share is now less than onequarter.

In 1978 only 5 % of reactors

achieved a capacity factor higher than

90 %, compared to 33 % of reactors in 2018

(F i g u r e 4 ). Capacity factors in 2018 are

broadly similar to the previous five years,

and reflect the consistently high capacity

factors seen over the past 20 years.

There is no significant age-related trend in

nuclear reactor performance. The mean capacity

factor for reactors over the last five

years shows little variation with age (F i g -

u r e 5 ). In 2019 five reactors reached the

milestone of 50 years of operation: Tarapur

1 and 2 in India, Nine Mile Point 1 and

R.E. Ginna in the US and Beznau 1 in Switzerland.

The continued good operation of reactors

is an indication of the potential for longer

operations. In the US Turkey Point units 3

%

100

90

80

70

60

50

40

30

20

10

0

1978 1988 1998 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Source: World Nuclear Association, IAEA PRIS

Fig. 4. Long-term trends in capacity factors 1978 to 2018.

%

100

80

60

40

20

0

Source: World Nuclear Association, IAEA PRIS

and 4 became the first reactors to be issued

with licences authorizing them to operate

for up to 80 years.

Most reactors under construction today

started construction in the last nine years

(F i g u r e 6 ). A small number of reactors

have been formally under construction for

a longer period, but may have had their

construction suspended. For Mochovce

3&4 in Slovakia, where first concrete was

Age of reactor in years

>90%

80-90%

70-80%

60-70%

50-60%

40-50%

0-40%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fig. 5. Mean capacity factor 2014-2018 by age of reactor 2014 to 2018.

Europe and in North America. Since that

period the majority of reactor start-ups

have been in Asia, with grid connections in

East Europe and Russia also contributing to

new global capacity.

There is growing demand for electricity,

and that electricity must be cleanly generated.

The world’s population continues to

grow, the economic and societal aspirations

of developing countries are un-

30


VGB PowerTech 5 l 2020 Highlights of the World Nuclear Performance Report 2019

Number of reactors

18

16

14

12

10

8

6

4

2

0

Permanent shutdown Operable Under construction

Source: World Nuclear Association, IAEA PRIS

1983

1984

1985

1986

1987

1988

1989

1990

1981

1992

1993

1994

1996

1997

1998

1999

2000

Reactor construction start date

Fig. 6. Operational status of reactors with construction starts since 1983.

Sum of reference unit power in MWe

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

West & Central Europe

South America

North America

East Europe & Russia

Asia

Africa

1954

1956

1958

1960

1962

1964

1966

Source: World Nuclear Association, IAEA PRIS

Fig. 7. Capacity of first grid connection 1954 to 2018.

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

2001

2002

2003

2004

2005

2007

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

2016

2018

dimmed and demand grows as modern

society produces ever-more uses of electricity.

Nuclear energy can meet this growing demand,

providing clean and reliable supplies

of electricity.

In May 2019, the International Energy

Agency (IEA) published its report, “Nuclear

Power in a Clean Energy System”. The

vital role for nuclear energy was set out by

IEA Director General Fatih Birol, who said;

“Without an important contribution from

nuclear power, the global energy transition

will be that much harder.”

The IEA report made it clear that nuclear

can make a significant contribution to

achieving sustainable energy goals and enhancing

energy security. However, urgent

action is needed to ensure that this significant

contribution can be made.

Fatih Birol said; “Policy makers hold the

key to nuclear power’s future. Electricity

market design must value the environmental

and energy security attributes of nuclear

power and other clean energy sources.”

These conclusions were echoed by the

OECD Nuclear Energy Agency’s (NEA) report,

“The Costs of Decarbonisation”,

which observed that; “Decarbonizing the

electricity sector in a cost-effective manner

while maintaining security of supply requires

the rapid deployment of all available

low-carbon technologies.”

To achieve this would require policymakers

to recognize and allocate the system costs

to the technologies that cause them and to

encourage new investment in all low-carbon

technologies by providing stability for

investors. The overall conclusion of the

NEA analysis was that the most effective

way to achieve deep decarbonization of the

electricity generation mix was to have a

high proportion of electricity supplied by

nuclear power.

This conclusion echoes that reached in the

Intergovernmental Panel on Climate

Change (IPCC) report on Global Warming

of 1.5 °C, published in 2018. This report

evaluated 85 scenarios that would achieve

the goal of limiting global warming to

1.5 °C.

On average, these scenarios would see nuclear

generation increasing by around two

and a half times by 2050. In a representative

scenario, where societal and technological

developments follow current patterns,

nuclear generation increases over

five-fold.

It is evident that unless nuclear energy is a

significant part of the global response to

climate change it is highly unlikely we will

be able to achieve a full decarbonization of

our generation mix, and even if it were possible

the costs would be exorbitant.

Over the last two years the call for action

on climate change has become louder and

more urgent. Some have questioned

whether nuclear energy can be deployed

quickly enough to tackle climate change in

time. The fact is that nuclear energy is

making a major contribution to avoiding

climate change today, with more than 10 %

of the world’s electricity supplied by nuclear

generation.

One of the most effective actions to be taken

to avoid greenhouse gas emissions is to

ensure those reactors continue to operate

to their full potential. The average age of

the nuclear fleet is around 30 years. This

year, five reactors have achieved fifty years

of operation and reactors today are seeking

approval for 60 or even 80 years of operation.

Many of our current reactors have the

potential to still be part of a fully decarbonized

generation mix in 2050.

More than 50 reactors are under construction,

and half of those are expected to start

generating electricity over the next two

years.

Using nuclear avoids carbon dioxide emissions,

as it reduces our dependence on

coal. By 2025, the reactors under construction

today will avoid the emission of

450 million tonnes of carbon dioxide each

year – adding to the already two billion

tonnes of CO 2 avoided by the existing fleet.

This is equivalent to the combined annual

CO 2 emissions of Japan, Germany and Australia.

Where reactors are decommissioned over

the next 30 years, new reactors should be

constructed to replace them. As well as ensuring

the continuation of the benefits of

nuclear generation, construction and commissioning

of replacement reactors will

ensure that key skills are retained and local

communities continue to have employment

opportunities.

But can nuclear generation be expanded

fast enough to combat climate change?

During the rapid expansion of nuclear generation

in France in the 1980s and 1990s,

most reactors were built in six to seven

years. In recent years in China, nuclear reactors

have been frequently constructed in

around five years. In 2018, the global median

construction time was longer, eightand-a-half

years, primarily because of the

high proportion of first of a kind reactors

starting in 2018.

A commitment to a substantial expansion

of nuclear generation would deliver the

benefits of series construction, including

faster and lower cost construction.

The IPCC’s 1.5 °C report states that global

greenhouse gas emissions need to start to

decline almost immediately. Reactors under

construction and the continued operation

of existing reactors can contribute to

this goal. But to achieve the further reduc-

31


Highlights of the World Nuclear Performance Report 2019 VGB PowerTech 5 l 2020

tions that will be necessary from 2025, and

net zero emissions by 2050, decisions to

invest in new nuclear build will need to accelerate

urgently.

The nuclear industry’s Harmony goal is for

nuclear generation to supply 25 % of the

world’s electricity before 2050. This would

require at least 1,000 GWe of new nuclear

build. To achieve this, new nuclear capacity

added each year would need to accelerate

from the current 10 GWe to around

35 GWe for the period 2030-2050. Those

countries operating nuclear power plants

should commit to continue to do so and

those countries with recent experience of

new nuclear build should commit to a rapid

expansion of their construction programmes

to deliver significant new nuclear

construction from 2025.

Beyond 2025 more countries will be able to

contribute to achieving our Harmony goal.

More new nuclear generation will be needed

to bring economic growth, as developed

countries continue their efforts to decarbonize

their generation mixes and developing

countries endeavour to meet demand

for electricity driven by growing populations

and industrial expansion essential to

modern life.

If we are to be serious about climate change

we should also be serious about the solutions.

Transitioning to a low-carbon economy

that meets the energy needs of the

global community presents a daunting

task. But it is a challenge that must be met,

and one that can only be met by using the

full potential of nuclear energy. l

FIND & GET FOUND! POWERJOBS.VGB.ORG

ONLINE–SHOP | WWW.VGB.ORG/SHOP

JOBS IM INTERNET | WWW.VGB.ORG

VGB Technical-Scientific Report

Recommendations for the operation and monitoring

of boiler circulating pumps

Based on extensive follow-up examina-tions relating to the damage event in 2014

Technical-Scientific Report

Recommendations for the

operation and monitoring

of boiler circulating pumps

Based on extensive follow-up examinations

relating to the damage event in 2014

Edition 2019 – VGB-TW 530 (German edition) and VGB-TW 530e (English Edition)

DIN A4, 96 pages, price for VGB-mebers € 180.–, for non-VGB-member € 270.–, + postage and VAT

On 12th May 2014 the pressure casing of a boiler circulating pump (BCP) in the hard coal-fired supercritical

power station Staudinger, unit 5, failed which led to considerable damage in the power plant [1/1]. As is

customary following such severe damage events, the topic was discussed by VGB PowerTech e. V. (VGB) –

as the competent international association of power plant operators – who took up the topic, coordinated it

and dealt with it within the scope of its responsibility.

As a prompt reaction to the damage event, VGB distributed first information in the form of a newsletter in mid-

June 2014, and in mid-July 2014 a concrete, detailed member information to the member companies [1/2].

The main task of VGB was pri-marily the coordination of measures on the plant operators side and the provision

of information. For this purpose, the working group (WG) “Boiler Circulation Systems” was installed. In

addition to power plant operators and the manufacturer of the dam-aged BCP, members of this working group

were or are NDT companies for the non-destructive testing of the affected components as well as representatives

of the ac-cepted inspection body (ZÜS) in accordance with the German Ordinance on Industrial Safety and Health (BetrSichV).

In addition to the Working Group “Boiler Circulation Systems”, specific topics were dealt with in affiliated ad-hoc working groups.

- Ad-hoc WG “Process Engineering”

- Ad-hoc WG “Calculation and periodic inspections”

- Ad-hoc WG “Scope and method of inspection”

The primary objective of the WG and the affiliated ad-hoc working groups was to avoid future damage events – such as the one that occurred

on 12th May 2014 – to the best possible extent. The present document therefore describes the main lessons learned in the ad-hoc WG meetings

in individual sections.

VGB-TW 530e

* Access for eBooks (PDF files) is included in the membership fees for Ordinary Members (operators, plant owners) of VGB, www.vgb.org/en/vgbvs4om.html

* Für Ordentliche Mitglieder des VGB ist der Bezug von eBooks im Mitgliedsbeitrag enthalten, siehe www.vgb.org/vgbvs4om.html

VGB PowerTech Service GmbH

Deilbachtal 173 | 45257 Essen |Germany

Verlag technisch-wissenschaftlicher Schriften Fon: +49 201 8128-200 | Fax: +49 201 8128-302 | Mail: mark@vgb.org | www.vgb.org/shop

32


VGB PowerTech 5 l 2020

Robots in nuclear decommissioning

Safety Case Considerations for the

Use of Robots in Nuclear

Decommissioning

Howard Chapman, John-Patrick Richardson, Colin Fairbairn, Darren Potter,

Stephen Shackleford and Jon Nolan

Kurzfassung

Fallbetrachtungen zur Sicherheit für den

Einsatz von Robotern bei der Stilllegung

von Kernkraftwerken

Stilllegungsaktivitäten in der Nuklearindustrie

erfordern für das Personal häufig unmittelbare

Nähe zu kontaminierten Materialien, die Ausführung

von Aufgaben bei der Arbeit an Anlagen,

Ausrüstungen und dem Einsatz von Werkzeugen.

Das mögliche Risiko, das mit solchen Arbeiten

verbunden ist, ist eine Exposition durch direkte

ionisierende Strahlung oder Aufnahme ionisierender

Teilchen mit folgender innerer Dosis

durch Inhalation oder durch Wunden.

In der Nuklearindustrie ist es ein Ziel, manuelle

Stilllegungsaktivitäten, d.h. mit Beschäftigten

vor Ort, zu vermeiden, indem Robotersysteme

eingesetzt werden, die als Vorteil bieten, dass

Risiken minimiert werden.

Ein wesentlicher Teil der Aufgabe der britischen

Behörde für die Stilllegung kerntechnischer Anlagen

(Nuclear Decommissioning Authority,

NDA) besteht darin, Innovationen voranzutreiben,

um die weitreichenden komplexen Herausforderungen

an ihren Standorten und in ihren

Unternehmen zu bewältigen. Eine „Grand Challenge“

der NDA für technische Innovation zielt

darauf ab, bis 2025 ferngesteuerte Handschuhkästen

einzurichten, um vorgenannte Risiken

zu minimieren.

l

Authors

Howard Chapman

John-Patrick Richardson

Colin Fairbairn

Darren Potter

Stephen Shackleford

Jon Nolan

National Nuclear Laboratory Limited

Safety, Security, Safeguards

5th Floor, Chadwick House,

Birchwood Park, Warrington, WA3 6AE

United Kingdom

Decommissioning activities in the nuclear

industry can often require personnel to undertake

tasks manipulating plant, equipment

and deploying tooling in close proximity

to contaminated materials.

The predominant risk associated with such

work is exposure to radiological dose uptake

from direct radiation, internal dose

due to inhalation, or from wounds.

There is an aspiration within the nuclear

industry to remove the need for operators

to undertake manual decommissioning activities

by using ‘robotic systems’ which offer

the benefit of overall risk reduction safer,

sooner and cheaper.

A vital part of the UK Nuclear Decommissioning

Authority (NDA) mission is to help

drive innovation to address the wide-ranging

complex challenges across their sites

and businesses. The NDA’s ‘Grand Challenges’

for technical innovation aims to remotely

decommission gloveboxes by 2025

and provide a 50 % reduction in decommissioning

activities carried out by humans in

hazardous environments by 2030 [1].

It is known that:

“nuclear sites with their background in

radiological substances and hazards

have created the need for extensive safety

measures involving the requirement

for high integrity instrumentation and

control measures for protection to stringent

nuclear standards” [2].

This paper examines the underpinning

Regulations, Standards and Technical Assessment

Guides necessary for the deployment

of ‘robotic systems’ to remove the

need for operators to undertake manual

nuclear decommissioning activities. It also

investigates the information currently

available to produce a safety case, together

with commentary on work being undertaken

by the UK National Nuclear Laboratory

(NNL) who are currently reviewing

technology and proof of concept trials to

help future development in this area.

Introduction

The civil nuclear industry worldwide is

regulated to ensure that activities related

to nuclear energy and ionising radiation

are conducted in a manner which adequately

protects people, property and the

environment.

In the UK, the Office for Nuclear Regulation

(ONR) is the agency responsible for

the licensing and regulation of nuclear installations,

and the legal framework for the

nuclear industry is based around the

Health and Safety at Work Act (HSWA) [3],

the Energy Act [4] and the Nuclear Installations

Act (NIA) [5].

A fundamental requirement cited in the

legislation is that risks be reduced to As

Low As Reasonably Practicable (ALARP).

This principle provides a requirement to

implement proportionate measures to reduce

risk where doing so is reasonable. The

ALARP principle is applied by adhering to

established good practice, or in cases

where this is unavailable, it is applied to

demonstrate that measures have been implemented

up to the point where the cost of

additional risk reduction is disproportionate

to the benefit gained [6].

The aspiration to use robots in the nuclear

industry requires hazards to be safely managed

and the risks demonstrated to be

ALARP. This paper investigates how this

might be achieved to ensure all potential

hazards are identified and prevented, with

key safety measures recognised, implemented

and maintained in an appropriate

and pragmatic manner, benefitting from

experience gained from wider industry.

Outside of the nuclear industry industrial

robots are found increasingly in the workplace

where it is widely acknowledged that

robot movements can have the potential to

cause humans physical harm and damage

to other equipment. Deployment of robots

in the nuclear industry also raises further

concern that impact events may have the

potential to result in loss of containment of

nuclear material, and cause damage to nuclear

safety significant equipment and instrumentation.

Operators and equipment must therefore

be protected against the robot. The strict

segregation of man and robot has previously

been employed in wider industry as a

33


Robots in nuclear decommissioning VGB PowerTech 5 l 2020

key Hazard Management Strategy (HMS)

to protect workers. The robot remained enclosed

in a controlled area while it performed

its tasks. In the present day, thanks

to a new generation of robots and technologies

segregation may no longer be necessary

if the potential for collision is not perceived

as being hazardous [7].

Assessment of Hazards

Robot Systems Regulation and Legal

Requirements

The European Union (EU) formulates general

safety objectives via a large number of

directives, (circa 30 active directives currently

available). However, only a small

selection of directives are relevant to a

typical machine builder and the safety objectives

are more precisely specified

through standards [7].

The standards have no direct legal status

on their own until they are referenced in

domestic laws and regulations. In practice

manufacturers of robotic Commercial off

the Shelf (COTS) equipment use the “Conformité

Européenne” (CE) mark to document

the fact that all relevant European

directives have been applied and appropriate

conformity to all assessment procedures

achieved [7].

Based on the European Parliament and

Council of the European Union Machinery

Directive 2006/42/EC [8], a robot system

is considered to be partly completed machinery.

This means that robot systems require

CE marking. The person placing the

machine into a specific application is

known as the ‘integrator’ and must perform

the conformity assessment procedure

to conclude a Declaration of Conformity

[7].

Other useful documents include the International

Organization for Standardisation

(ISO) 12100 [9] for risk assessment; ISO

13849 part 1 [10]; or International Electrotechnical

Commission (IEC) 62061 [11] for

the functional safety requirements.

Two standards from the ISO 10218 “Safety

of Industrial Robots” Part 1 [12]: “Robots”

and Part 2 [13]: “Robot systems and integration”

are listed under the Machinery

Directive 2006/42/EC [8] to specify detailed

safety requirements. ISO 10218-1 is

solely concerned with the actual robot system,

whilst in contrast to this, ISO 10218-2

expands to the entire robot application [7].

In practice the standards above have

proved to be insufficient in their own right

when it comes to safely implementing an

actual Human and Robot Collaboration

(HRC). Protective measures for HRC are

therefore currently identified through

ISO/TS15066 [14] in order to help production

technicians and safety experts in the

development of safe shared workspaces

and the risk assessment process. This describes

four types of collaboration reproduced

below [7] as protection principles to

ensure human safety is guaranteed at all

times during collaborative operation [7],

as shown in F i g u r e 1 :

1: Safety-Rated Monitored Stop

Here, the human only has access to the

robot once stopped and the robot system

must not start up again automatically

and unexpectedly.

2: Hand Guiding

In this case the human only has access to

a stationary robot. The hand guiding of

the robot system can only be enabled by

manually operating an enabling device.

3: Speed and Separation Monitoring

With this method, the distance between

human and robot is permanently monitored

by a sensor. The robot system moves

with correspondingly safely reduced

speed. The closer the human gets to the

robot, the slower the robot becomes. If the

distance is too short, a safety stop is triggered.

Safety is guaranteed in the first three

methods by maintaining the distance between

human and robot, to avoid collision.

When implementing one of these

three methods, no special HRC robots are

necessary. Standard industrial robots can

be used that are equipped with corresponding

safety packages for speed moni-

Machinery Directive 12006 / 42 / CE

ISO 1210 Machinery Safely – Risk Assessment

EN ISO 13849

Safety of Machinery

IEC 61508 Functional Safety

OR EIC 62061

Safety of Machinery

ISO 12018 Safety of Industrial Robots

ISO 12018-1

Robot

System

ISO / TS 15066

Collaborative Operation

ISO 12018-2

Robot

Application

1) Safety Rated Monitored Stop

2) Hand Guiding

3) Speed and Separation Monitoring

4) Power and Force Limiting

Fig. 1. Overview of Robot Systems Regulation and Standards.

toring, or workspace monitoring by the

manufacturer.

4: Power and Force Limiting

In contrast to methods one to three, contact

between human and robot is possible

under certain circumstances, whereas in

the case of method four, the manufacturer

of the application must guarantee that

the collision between human and robot is

not hazardous. The manufacturer of the

application confirms this with a signature

on the declaration of conformity.

Risk Assessment

To ensure robot safety, manufacturers and

users normally apply a three-stage risk assessment

approach detailed in ISO 12100

reproduced below [9] as follows;

––

Inherent safe design measures (hazard

elimination);

––

Safeguarding and complementary protective

measures (fixed guards, movable

guards with interlocks, safety devices);

and

––

Information for use (safe working practices

for the use of the machinery, warning

of residual risks, recommended Personal

Protective Equipment (PPE)). Residual

risk is then managed by the user.

The performance requirement of safety

measures is set out in ISO 10218, which

also mentions compliance with Safety Integrity

Levels (SILs) which comes from vol-

34


VGB PowerTech 5 l 2020

Robots in nuclear decommissioning

Frequency

5

4

3

2

1

SIL3

SIL2

SIL1



SIL4

SIL3

SIL2

SIL1

1 2 3 4 5

untary International Electrotechnical

Commission standards used by plant owners/operators

to quantify safety performance

requirements for hazardous operations

[15]; including IEC 61508: Functional

Safety of Electrical/Electronic/Programmable

Electronic Safety-Related Systems

[16].

Four SILs are defined in these standards,

with SIL 4 the most dependable and SIL 1

the least. The applicable SIL is determined

based on a number of factors and is an exercise

in risk analysis, where the risk associated

with a specific hazard is calculated

without beneficial risk reduction. The unmitigated

risk is then compared against a

tolerable risk target [17].

The amount of risk reduction required to

achieve a tolerable risk is known as a Risk

Reduction Factor (RRF) and can be correlated

to a SIL number and Probability of

Failure on Demand (PFD) for protection

systems (the relationship between each is

outlined in Ta b l e 1 ). Each order of magnitude

of risk reduction that is required essentially

correlates with an increase in one

of the required SIL numbers [18] as shown

in Figure 2.


X

SIL4

SIL3

SIL2

SIL1

Severity of Consequence

Fig. 2. SIL as a Function of Hazard Frequency and Severity.

Tab. 1. Relationship between SIL, PFD and RRF [18].

X

X

SIL4

SIL3

SIL2

SIL PFD RRF

1 1 in 10 – 1 in 100 10 to 100

2 1 in 100 – 1 in 1,000 100 to 1,000

3 1 in 1,000 – 1 in 10,000 1,000 to 10,000

4 1 in 10,000 – 1 in 100,000 10,000 to 100,000

cant equipment and instrumentation can

all be safely managed, and also that the

identified risks are deemed ALARP.

A clear link of how the assessment will be

implemented is known as the ‘Golden

Thread’. This can be achieved through a

Claims Arguments Evidence (CAE) approach,

as illustrated in F i g u r e 3 . From a

robotic CAE perspective, there is a top-level

claim requirement to ensure all robot systems

can be safely managed and the risks

are ALARP. This is supported by a series of

sub-claims listed below:

––

All robot system hazards can be identified,

and potential hazards understood.

––

All robot system hazards can be adequately

prevented or managed, by determining

the unmitigated consequences

such that appropriate safety measures

SUB CLAIM 1.1

Hazard

Identification

X

X

X

SIL4

SIL3

CLAIM AII ‘Robot’ hazards can be safely managed and

the risk are as low as reasonably practicable (ALARP)

SUB CLAIM 1.2

Prevention &

Management

can be identified and the risks can be

shown to be ALARP.

––

All key operational and engineering

measures can be identified, implemented

and maintained.

The foundation of a HMS in a nuclear robot

system safety case will be based upon a

standard hierarchical approach to safety.

This starts with elimination of the hazard

wherever possible, followed by substitution

to replace the hazard, isolation of people

from the hazard, administrative control,

with reliance upon PPE being the

weakest and therefore least favourable

HMS as shown in F i g u r e 4 . It is argued

that in the context of nuclear robot systems

which operate remotely, the use of PPE is

not necessarily relevant unless it relates to

the need for human intervention, for example

during repair or maintenance work.

The approach for developing a robot system

safety case is summarised as:

––

Identification of hazards;

––

Assessment of hazards and identification

of suitable safety measures;

––

Substantiation of safety measures; and

––

Implementation of safety measures.

A structured and systematic examination

of robot systems will be undertaken using

HAZard and OPerability (HAZOP) studies

to identify potential problems that may

represent risks to personnel, or equipment,

or prevent efficient operation [20].

Hazards are then assessed, and safety

measures are identified in the safety case.

The HMS developed for the robot system

will be used to identify safety measures

which are proportional to hazard severity,

demonstrate there is sufficient strength in

depth, and that the risk is ALARP.

The individual hazards identified by HAZ-

OP will be presented in the form of a number

of fault sequences. Each fault sequence

starts with an initiating event that could

SUB CLAIM 1.3

Implementation

Assessment of Radiological

Hazards

Radiological safety assessments follow a

rigorous process and are required as part of

Nuclear Installations Site Licence Conditions.

The fundamental requirement in any nuclear

decommissioning safety case involving

robot systems will be to demonstrate

that hazards presenting radiological exposure;

loss of containment of nuclear material;

and damage to nuclear safety signifi-

Inherent

‘Robot‘ hazard

understood

Wider industry

data sources

Fault

Idendification

HAZOP Studies

Consequence

Assessment

Nuclear

Modelling

Methodology

Fig. 3. Claims Arguments Evidence Approach.

Hazard

Management

Strategy (HMS)

based on

ERICPD

Defence in

Depth

DBA Approac

Engineered Safety

Measures

Substantiation

Maintenance

Operation

Safety

Measures

Work

Instructions

Training

35


Robots in nuclear decommissioning VGB PowerTech 5 l 2020

Most

effective

Elimination

Physically remove

the hazard

frequency estimates (for comparison with

criteria) that are over-estimated in comparison

to reality, but this drawback is not

as significant as using reliability figures

that cannot easily be justified.

Any risk reduction benefit claimed for PES/

SMART is currently generally limited. For

example, a PES would normally be claimed

within a possible PFD range of unity to 1 in

30.

For nuclear decommissioning purposes,

substantiation of PES and SMART systems

is achieved through interpretation of the

relationship between PFD and SIL requirements

contained in IEC 61508 [16].

Least

effective

Substitution

Engineering Controls

Administrative

Controls

PPE

Replace

the hazard

Isolate people

from the hazard

Change the way

people work

Protect the worker with

Personal Protective Equipment

Assessment of Robot Systems for

Decommissioning Activities

Fig. 4. Hierarchy of Controls, (by the National Institute of Occupational Safety and Health) [19].

lead to unwanted consequences and place a

demand on a set of safety measures. The assessment

of the fault sequence included failure

of some or all of these safety measures.

Radiological safety assessments specify the

Engineering and/or Operational Safety

Measures that need to be in place to minimise

the risks to acceptable levels, i.e.

ALARP and ensure the adequacy of safety.

The concept of defence in depth is fundamental

to radiological safety to prevent accidents

and if prevention fails, to limit potential

consequences. For significant faults

Design Basis Analysis (DBA) requires the

designation of a passive safety measure,

(such as an enclosure wall), or two key independent

safety measures, (such as high

integrity Control, Electrical and Instrumentation

Equipment (CE&I)) with predefined

action on failure and substitution arrangements.

Alternatively, it is possible in some

instances for Operational Safety Measures

to be claimed, which must be carried out to

prevent possible harm /dose uptake.

For lesser significant faults, DBA requires

the designation of one safety measure,

which can either be passive, or an item of

CE&I equipment that does not need to have

any predefined action on outage or substitution

arrangements. Alternatively, it is

possible in some instances for Operational

Safety Measures, about operator actions,

or plant conditions to be claimed which

support the safety case.

The various engineering safety measures in

the safety case are uniquely identified as a

Structure, System, or Component (SSC),

and the safety function and performance

requirement of each is recorded in an Engineering

Schedule and substantiated

against their required Safety Function, Performance

Requirement and PFD. The operational

safety measures and compliance

arrangements are defined within a Clearance

Certificate.

However a fault sequence is initiated, it is

also important to identify the involvement

of any Programmable Electronic Systems

(PES) in protection/mitigation as the system

may not be capable of substantiation,

ultimately requiring a different safety

measure to be defined.

PES contain both hardware and software.

Software is different from hardwired systems

in that it has a greater potential for a

number of systematic failures (as opposed

to random failures) which may remain unrevealed

for many years. Knowledge of the

failure of a PES is usually only identified

when the system fails in operation, because

they employ hierarchal coding and identification

of sequential coding errors are usually

difficult.

Where the PES controls a process, the liability

to initiate fault sequences must be

recognised in the safety assessment, and an

‘initiator type’ safety function defined.

Where a PES initiates a fault sequence, no

credit may be claimed for protection by the

same PES in the same fault sequence.

Therefore, dependency upon PES for protection/mitigation

should be minimised

wherever possible.

PES should be distinguished from SMART

Instruments – although the latter include

some software (sometimes referred to as

‘firmware’), they are arguably very little

different from the hardwired (‘dumb’) instruments.

Unlike a PES, SMART instrument software

can be simulated, run inactively or actively

with real-time communication between execution

and operation limit. SMART instrument

software may only be altered using

configured operator parameters, allowing

the opportunity to remove any potential

coding error identified and for multiple

level recovery. Hence SMART instrumentation

is not prone to the same level of systematic

failure.

There is currently little specific data for

PES/SMART reliability available for the

purposes of making a nuclear decommissioning

safety case. This results in some

There appears to be an understanding in

wider industry that stringent standards for

nuclear decommissioning places a requirement

for CE&I safety measures to be substantiated

to SIL 3, or even SIL 4 to meet

the designation of high integrity protection

systems. The dilemma in the nuclear industry

is often a choice of placing reliance

upon a single but complex safety measure,

versus multiple layers of safety measures.

Complex systems typically demand significant

effort, and therefore cost more to substantiate

and maintain, compared with

systems involving multiple layers.

For the majority of nuclear decommissioning

cases the integrity level designated to

each individual hardwired ‘dumb’ CE&I

layer of protection is usually no more than

SIL 1 in practice, which provides a PFD of 1

in 100 and a risk reduction of 100 for each

layer. Only in rare cases have claims been

made on SIL 2 CE&I safety protection systems.

It is argued that the substantiation

process would prove far too onerous to

achieve SIL 3, or SIL 4 level of integrity.

One common mis-understanding appears

to be in the interpretation of safety integrity

claims made upon multiple layer protection

systems. An example multiple layer

protection system arbitrarily consisting of

3 layers of protection is used to exemplify

the mis-understanding. Architectures with

3 layers of CE&I protection are not the

same as a SIL 3 system and should be substantiated

as a series of 3 x SIL 1 separate

systems. It is argued that the safety integrity

level of such circumstances should default

to the lowest common denominator,

i.e. SIL 1, or possibly SIL 1 + 1 in rare circumstances.

A robot system recently deployed by NNL

at its Preston Laboratory included the use

of a robot controlled 5kW laser which enabled

selective, semi-autonomous controlled

laser cutting for disassembly in confined

spaces [20]. This capability consisted

of a KUKA KR series robot which operated

in an enclosure with a SIL 1 rated hardwired

door interlock system, which disal-

36


VGB PowerTech 5 l 2020

Robots in nuclear decommissioning

Fig. 5. Future Deployment of Robot Systems for Decommissioning Activities Operated within a

Virtual Enclosure.

lowed laser activation and robotic movement

if anyone attempted to access the enclosure

during usage.

Multiple safety systems focused on limiting

the robot’s movement to a controlled

safe working area. This provided additional

laser firing safety inputs, reducing the

amount of human intervention required

in order to reduce rig downtime. The KUKA

robot included physical hard-stops installed

in each robot joint which helped

reduce potential damage to the enclosure,

as well as limiting its working area.

Based on the methods described earlier for

HRC, the NNL robot system safety case at

Preston Laboratory ultimately relied primarily

upon claims on ‘dumb’ hardwired

door interlock systems and physical end

stops, rather than claims on robot SMART

systems.

It is recognised that future deployment of

robot systems for decommissioing activities

may not benefit from physical enclosures,

and will require hazard management

strategies moving towards methods

described previously under HRC 3 or HRC

4 to prevent potential collisions.

NNL are currently reviewing available industry-wide

SMART technology together

with proof of concept non-active commissioning

trials, to support the necessary substantiation

to achieve a SIL 1 rating for individual

layers within a diverse multi layer

protection system. It is argued that such an

approach could prove useful to create vitual

enclosures (as shown in F i g u r e 5 ), allowing

HRC 3 or HRC 4 for nuclear decommissioing.

Historically most of the ISO standards defined

for robot systems have been developed

singularly for the automotive industry

with the opportunity for human intervention

for teach and repeat. Future

deployment of SMART robot systems for

decommissioning activities enable the opportunity

for the review and monitoring of

sequences with constant communication to

the robot prior, during and after the execution

of operations.

Path Forwards

This paper has examined the underpinning

Regulations, Standards and Technical Assessment

Guides necessary for the deployment

of ‘robotic systems’ to remove the

need for operators to undertake manual

nuclear decommissioning activities.

It is NNL’s view that consideration of

the approach taken for the robot systems

outside of traditional industrial settings,

for example their use in medical applications,

may have useful applicability for

safety in harsh nuclear decommissioning

environments and HRC 3 or HRC 4 interaction.

NNL believes the adoption of HRC 3 or

HRC 4 methods for decommissioning purposes

will require a change in the way the

nuclear industry views the reliability of

SMART protective layers. This will be

achieved by striking a balance between risk

versus the benefits gained from using robot

systems. A challenge to the current position

of high risk and low confidence in

SMART protective layers will offer the potential

for decommissioning risk reduction

safer, sooner and cheaper.

The forthcoming NNL review of wider industry

SMART instrument applications

will make reference to any guidance currently

in the process of being established

by the International Atomic Energy Agency

(IAEA), due for publication later in 2020. It

is expected that the IAEA guidance will

provide a common technical basis of how

to design, select and evaluate candidate

SMART devices for their safe use in nuclear

safety systems, including instrumentation

and control, electrical, mechanical and

other areas [21].

NNL aims to improve on the current position

by establishing a higher degree of confidence

in SMART protection systems,

which can provide a safety function to prevent

impact causing harm to humans and

equipment resulting in loss of containment

of nuclear material. This will be supported

by a safety performance requirement to operate

within specified distances within a

virtual enclosure to ensure the risk of generating

a hazardous collision between robot,

human and equipment is reduced to ALARP.

The intention is to ensure the science becomes

a robust, safe and efficient engineered

solution for nuclear industry decommissioning

activities and achieve UK

NDA’s ‘Grand Challenges’.

References

[1] https://nda.blog.gov.uk/2020/01/31/

the-ndas-grand-challenges-for-technicalinnovation/.

[2] National Nuclear Laboratory “A Pragmatic

Approach to Chemotoxic Safety in the Nuclear

Industry”, H Chapman, Marc Thomas,

Stephen Lawton, ATW-International

Journal for Nuclear Power, Issue 8/9/2019.

[3] United Kingdom Government, “Health and

Safety at Work Act,” 1974.

[4] United Kingdom Government, “Energy

Act,” 2013.

[5] United Kingdom Government, “Nuclear Installations

Act,” 1965.

[6] https://www.hse.gov.uk/risk/theory/

alarpglance.htm.

[7] https://www.pilz.com › TechBo_Pilz_safety_compendium_1004669-EN-01,

5th Edition

March 2018.

[8] European Parliament and Council of the

European Union Machinery Directive

2006/42/EC.

[9] International Organization for Standardization

ISO 12100 “Safety of Machinery

General Principles for Design – Risk assessment

and Risk Reduction”, 2010.

37


Robots in nuclear decommissioning VGB PowerTech 5 l 2020

[10] International Organization for Standardization

ISO 13849 part 1 “Safety of Machinery

– Safety Related Parts of Control Systems”

Part 1 General Principles of Design,

2015.

[11] International Electrotechnical Commission

IEC 62061 “Safety of Machinery –

Functional Safety of Safety Related Electrical

– Electronic and Programmable Electronic

Control Systems”, 2015.

[12] International Organization for Standardization;

ISO 10218 “Safety Requirements for

Robot System in an Industrial Environment”

Part 1, Robot, 2011.

[13] International Organization for Standardization

ISO 10218 “Safety Requirements for

Industrial Robots” Part 2, Robot Systems

Integration, 2011.

[14] International Organization for Standardization

ISO/TS15066 “Robots and Robot

Devices – Collaborative Robots”, 2016.

[15] https://www.crossco.com/resources/articles/determining-safety-integrity-levelsfor-your-process-application/.

[16] International Electrotechnical Commission

IEC 61508 “Standard for Functional

Safety of Electrical/Electronic/Programmable

Electronic Safety Related Systems”,

2010

[17] Petroleum Refining Design and Applications

Handbook Volume 1. A. Kayode Coker.

© 2018 Scrivener Publishing LLC. Published

2018 by John Wiley & Sons, Inc.17

on line library.wiley.com.

[18] Honeywell Plant and Personnel Safety

Control Engineering 2019 eBook Series.

[19] “Hierarchy of Controls”. U.S. National Institute

for Occupational Safety and Health.

Retrieved 2017-01-31.,” [Online].

[20] National Nuclear Laboratory “Laser Cutting

for Nuclear Decommissioning An Integrated

Safety Approach”, H Chapman, Stephen

Lawton, Joshua Fitzpatrick, ATW-

International Journal for Nuclear Power,63

Issue 10 2018.

[21] https://www.world-nuclear-news.org/Articles/IAEA-addresses-safety-of-smart-devices-in-nuclear.

l

VGB-Standard

Structural Design of Cooling Towers

VGB Standard on the Structural Design, Calculation, Engineering

and Construction of Cooling Towers

Edition 2019 – VGB-S-610-00-2019-10-EN (English edition)

VGB-S-610-00-2019-10-DE (German edition)

eBook (PDF)/print DIN A4, 86 pa ges, ISBN: 978-3-96284-145-4 (print),

ISBN: 978-3-96284-146-1 (eBook). Pri ce for VGB mem bers € 180.–,

for non mem bers € 270.–, + VAT, ship ping and hand ling.

eBook (PDF)/Druckfassung DIN A4, 86 Seiten, ISBN: 978-3-96284-143-0 (print),

ISBN: 978-3-96284-144-7 (eBook). Preis für VGB-Mit glie der € 180,–,

für Nicht mit glie der € 270,–, + Ver sand kos ten und MwSt.

VGB-Standard

Structural Design of

Cooling Towers

VGB-Standard on the Structural Design,

Calculation, Engineering and Construction

of Cooling Towers

(formerly VGB-R 610e)

This VGB Standard VGB-S-610, “Structural Design of Cooling Towers” constitutes the

VGB-S-610-00-2019-10-DE

joint basis – together with VGB-R 135e, “Planning of Cooling Towers”, and VGB-R

612e, “Protection Measures on Reinforced Concrete Cooling Towers and Chimneys

against Operational and Environmental Impacts” – for the civil engineering-related

planning including design, construction and approval as well as for the construction

of cooling tower facilities built from reinforced concrete. It is based on more than 50

years of experience in the construction of cooling towers gained by plant and structural

design engineers, by construction companies, accredited review engineers and

owners. In addition, Guideline VGB-R 613e, “Code of Practice for Life Cycle Management of Reinforced Concrete Cooling Towers

at Power Plants”, presents notes on in-process inspection and maintenance.

The VGB Standard was thoroughly revised and restructured compared with the last edition, VGB-R 610e of 2010, chiefly in order

to increase its application and ac-ceptance by potential users outside Germany. To this end its structure was modified to make it

similar to the European standards by dividing into a generally valid and internationally oriented base part and a specific national,

i.e., German part. Different from the European standards, however, no national annex was created. Instead, for improved readability

a unified document was produced comprising the generally applicable base part and the location-specific part (on a grey

background) with German rules. For application outside Germany it is necessary to use the respective national rules and specifications

instead of the German rules.

New findings from continued engineering studies and feedback from practice have also necessitated modifications. In particular,

hybrid cooling towers and multi-cell cooling towers as now common cooling tower design variants have been included, in addition

to natural draught cooling towers.

This VGB Standard VGB-S-610e, “Structural Design of Cooling Towers”, supersedes VGB Guideline VGB-R 610e of 2010 with the

same name.

* Access for eBooks (PDF files) is included in the membership fees for Ordinary Members (operators, plant owners) of VGB, www.vgb.org/en/vgbvs4om.html

* Für Ordentliche Mitglieder des VGB ist der Bezug von eBooks im Mitgliedsbeitrag enthalten, siehe www.vgb.org/vgbvs4om.html

VGB PowerTech Service GmbH

Verlag technisch-wissenschaftlicher Schriften

Deilbachtal 173 | 45257 Essen |Germany

Fon: +49 201 8128-200 | Fax: +49 201 8128-302 | Mail: mark@vgb.org | www.vgb.org/shop

38


VGB PowerTech 5 l 2020

SMRs – Overview on international developments and safety features

SMRs – Overview on international

developments and safety features

Andreas Schaffrath and Sebastian Buchholz

Kurzfassung

SMRs – Übersicht zu internationalen

Entwicklungen sowie

Sicherheitseigenschaften

Kleine modulare Reaktoren sind eine interessante

Option für Neubauten in nahezu allen

Ländern weltweit, die weiterhin Strom aus

Kernenergie erzeugen möchten. In dem vorliegenden

Beitrag werden zunächst die Definitionen,

ein kurzer Rückblick und eine kompakte

Übersicht über aktuelle Entwicklungen gegeben.

Anschließend werden aktuelle Entwicklungstrends

vorgestellt. Hierzu zählen u.a. Themen

wie Fabrikfertigung und Transport, Kompaktheit

und Modularität, Kernauslegung,

verbesserte Kernkühlung sowie die Vermeidung

von Störfällen bei der Auslegung. Weitere

Themen, die gestreift werden, sind die Wirtschaftlichkeit

und Konkurrenzfähigkeit, die Lizensierung

sowie die Position ausgewählter europäischer

Länder zu SMR Neubauten. Zum

Schluss werden Modellierungsschwächen der in

kerntechnischen Genehmigungsverfahren eingesetzten

GRS Rechenkette identifiziert sowie

eine Priorisierung zu deren Beseitigung vorgestellt.

l

Authors

Andreas Schaffrath

Sebastian Buchholz

Gesellschaft für Anlagen- und

Reaktorsicherheit (GRS) gGmbH

Garching bei München, Germany

Small modular reactors are one interesting

option for new builds in almost all countries

worldwide continuing to use nuclear energy

for commercial electricity production. In this

contribution first definitions, history and

current developments of SMRs are presented.

Subsequently, selected trends of SMR

development such as factory fabrication and

transport, compactness and modularity,

core design, improved core cooling and exclusion

of accidents, features for preventing and

limiting the impact of severe accidents are

described. Further topics to be touched are

the economic viability and competitiveness,

licensing and the position of selected European

countries concerning new builds. Last

modellings gaps of the GRS simulation chain

applied in nuclear licensing procedures are

identified and a strategy for closure is developed.

1 Introduction

In the last years, several well-developed

Small Modular Reactor (SMR) designs

from different international vendors were

announced. SMRs are mainly designated

for deployment not only in sparsely populated

remote areas but also near heavily

populated cities and may provide electricity,

district heating and potable water. The

construction and deployment of SMRs is

also being promoted in various European

countries (e.g. the UK or Russia) [BUS-16],

[WNA-19].

SMRs can satisfy the need for low carbon

generation energy sources and especially

the need for new capacities, since significant

(conventional and nuclear) power

plant capacities have to be retired and replaced

in the coming decades. Additionally,

many countries see nuclear energy

alongside renewables as a possibility for

sustainable development and a reliable energy

system [OZA-19].

Especially for strongly growing developing

countries, SMRs can provide the possibility

to establish a nuclear industry with a fraction

of the costs of currently operating nuclear

power plants. These savings result

mainly due to complete prefabrication of

modules fully equipped in factories. This

results in high qualities, shorter production

times, lower capital costs, standardization

and therefore lower costs due to mass production,

simplification of safety systems by

primarily use of passive systems, a lower

number of employees for deploying and removal,

the opportunity to deploy one module

after another and higher plant availability

due to modular character. SMRs

may also replace older fossil plants and

lead consequently to savings of gas, oil

and other fossil resources [BUS-15],

[WNA-19].

In chapter 2 of this contribution an overview

on current SMR developments is given.

Due to the large number of designs currently

in operation, in construction or under

development, the focus of this

contribution is on identifying general construction

und safety trends. These are discussed

in chapter 3. The description of individual

details is given below for illustrative

purposes only. For the sake of

completeness, issues such as competitiveness,

licensing, position of selected European

decision makers are addressed additionally.

Finally, in chapter 4 an overview

of necessary improvements and validation

of the nuclear simulation chain applied in

nuclear licensing procedures is provided.

The improved simulation chain will be

used for safety assessments of SMRs according

to the current state of the art science

and technology.

2 Definitions, History and Current

Developments

After a compilation of different SMR definitions

in section 2.1, a short overview on

the history (section 2.2) and current projects

(section 2.3) is provided. This publication

deals exclusively with SMRs for energy

and / or power generation. Engines

for nuclear icebreakers, merchant vessels

and submarines, studies of mobile SMRs,

propulsion systems for outer space, as

well as military applications are not considered

here, as this would go far beyond

the scope.

2.1 Definitions

There are two different definitions for SMR

in literature. The first one is widely used in

North America (e.g. the USA and Canada).

Here, the abbreviation SMR stands for

Small Modular Reactor. The emphasis of

this definition is on the term modular,

which characterises, that a (larger) production

unit can consist of different mod-

39


SMRs – Overview on international developments and safety features VGB PowerTech 5 l 2020

ules, which may be added one by one. Also,

it is possible to refuel one module, while

the others continue operation. The term

small in the definition SMR characterises

an electrical power output of less than 300

MW e . In this scale the primary coolant system,

selected parts of the secondary and,

where necessary, intermediate circuit and

auxiliary systems can be arranged in an integral

reactor pressure vessel (RPV). An

SMR module may be transported to the

construction site in one piece or in few

parts [WNA-19].

On the contrary, the IAEA defines SMR as

Small and Medium Sized Reactor. These

reactors can have capacities up to 700 MW e .

The modular character is not met by this

definition but is also not excluded [BUS-

15]. According to this definition, all reactors

ever built in this power range – even

the VVER440s – are SMRs [SCA-19].

Therefore, in the following the focus is on

modular SMRs.

SM-1, Fort Belvoir (Virginia)

SL-1, Nat. Reactor Test. Station (Idaho)

PM-1, Sundance (Wyoming)

PM-3A, McMurdo Station (Antarctica)

2.2 History

The idea of small (modular) reactors is not

a new one. Since the mid of the last century

the former USSR and the USA have used

SMRs for

––

energy and heat production of remote

areas (e.g. Arctic, the Antarctica or

Greenland) and

––

engines for their submarines, merchant

vessels and ice breakers [BUS-15].

One well-known example is e.g. the Army

Nuclear Power Program (ANPP) [SUL-90].

Numerous information and pictures about

the ANPP are published on the website

Army Engineer History of the U.S. Army

Corps of Engineers [ARH-171]. The ANPP

was supervised by the U.S. Army Engineer

Reactors Group and had it headquarters in

Fort Belvoir (Virginia). Eight nuclear power

plants (NPPs) were built and operated in

remote areas. The program ran from 1954

to 1977, when the last nuclear reactor was

decommissioned. The main tasks were

––

to carry out research and development in

the field of nuclear power plants together

with the Atomic Energy Commission,

––

to operate the nuclear power plants of

the Corps of Engineers,

––

to carry out training measures for the operation

of these nuclear power plants,

––

to provide technical assistance to other

authorities as needed and

––

to develop programs for the application

of nuclear reactors for military use.

One peculiarity was the naming of the

SMRs. The name consists of two letters followed

by a number and in some cases a

third letter. The first letter indicates whether

the installation is stationary (S), mobile

(M) or portable (P), the second letter

whether the power is high (H), medium

(M) or low (L). Then the sequence number

of the reactor follows. Last the character A

is added in case of site installation. The

PM-2A, Camp Century (Greenland)

sites and names of the SMRs of the ANPP

are: Fort Belvoir (SM-1), National Reactor

Testing Station in Idaho (SL-1 and ML-1),

Camp Century, Greenland (PM-2A),

Sundance United Air Station, Wyoming

(PM-1), McMurdo Station, Antarctica (PM-

3A), Fort Greely, Alaska (SM-1A), Liberty

Ship Sturgis anchored in Gatún Lake (MH-

1A) [ARH-172]. Selected SMRs of the

ANPP are shown in F i g u r e 1 .

The ANPP has achieved numerous pioneering

successes:

––

detailed designs for pressurized water,

boiling water, gas-cooled and liquid metal

reactors (all ANPP NPPs),

––

first nuclear power plant with a containment

(SM-1),

––

first use of stainless steel for fuel element

assemblies (SM-1),

––

first nuclear power plant in the United

States to supply electricity to a commercial

grid (SM-1),

––

first nuclear district heating source in the

United States (SM-1A),

––

first replacement of a steam generator in

the United States (SM-1A),

––

first containment with pressure suppression

(SM-1A),

––

first operational nuclear power plant

with boiling water reactor (SL-1),

SM-1A, Fort Greely (Alaska)

Fig. 1. Selected reactors and sites of the Army Nuclear Power Program (all pictures were

published by the U.S. Army on [ARH-172]).

––

first portable, prefabricated, modular

nuclear power plant to be built, operated

and dismantled (PM-2A),

––

first use of nuclear energy for seawater

desalination (PM-3A),

––

first mobile, land transportable nuclear

power plant (ML-1),

––

first nuclear-powered gas turbine with

closed Brayton circuit (ML-1) and

––

first (on a ship) floating nuclear power

plant (MH-1A).

Nuclear ship propulsion is mainly used by

the military (e.g. nuclear submarines). For

this purpose, pressurized water reactors

(PWRs) with an output of around 100 megawatts

are usually used. Nuclear propulsion

has also been tested for the civilian sector.

Examples are or were the Soviet icebreakers

Lenin, Arktika and Sibir [ARV-17] and

the cargo ships Savannah (USA), Otto Hahn

(Germany), Mutsu (Japan) and Sevmorput

(USSR). The NS Savannah and NS Otto

Hahn are shown in F i g u r e 2 . The Russian

icebreakers Rossiya, Tajmyr, Sovetskiy Soyuz,

Waigatsch, Yamal and 50 Let Pobedy are

still in operation today [ARV-17].

2.3 Current SMR Developments

Currently, there are numerous as well as

comprehensive activities in the operation,

40


VGB PowerTech 5 l 2020

SMRs – Overview on international developments and safety features

Fig. 2. Nuclear cargo vessels (left: NS Savannah, first commercial nuclear cargo vessel

(picture: U.S. Government), right: NS Otto Hahn, third civil nuclear cargo vessel

(picture: Jens Bludau)).

Tab. 1. SMRs in operation.

Name Type Manufacturer

Country

CEFR LMR CNEIC CN 20

CNP-300 PWR CNNC CN 325

EGP-6

RBMK

OMZ

Group

PHWR-220 HWR BARC IN 236

P [MW e ] Status Site

Operating, Prototype

for CDFR-1000

Operating, additional

units planned

Ru 12 4 operating

16 operating, additional

units planned

Tuoli (CN)

Qinshan 1 (CN),

Chashma (PK)

Bilinino Nuclear

Power Plant (RU)

Rajasthan, Madras,

Narora, Kakrapar,

Kaiga (all IN)

CNP-300, which has already been introduced

above.

In 2015, China has decided to build an indigenously

modular floating nuclear power

plant. This SMR is called ACPR50S and has

an electrical power output of 60 MW. The

reactor is designed to supply energy to islands,

remote coastal areas or offshore oil

and gas production facilities [NFS-162].

The ACPR50S can also be applied for seawater

desalination. For instance, approx.

20 planned floating nuclear power plants

could ensure the supply of fresh water to

islands in the South China Sea [EGN-19]. In

January 2016, China General Nuclear Power

Corporation (CGN) and China Shipbuilding

Industry Corporation (CSIC), China’s

largest shipbuilding company, signed a strategic

cooperation agreement for the development

of offshore reactors [NFS-161]. On

November 4, 2016, CGN also announced the

start of construction on the first demonstration

unit of a floating nuclear power plant

with the signing of the purchase contract for

the first ACPR50S reactor.

In Argentina a CAREM-25 [MAC-14] is currently

built by CNEA at the Atucha site

construction and development of SMRs.

Apart from nuclear ship engines in icebreakers

and submarines, which are not

subject of this article, currently four SMR

designs are operating, two in China and

one in India and Russia each (see Ta b l e 1

and Figure 3).

The CEFR (China Experimental Fast Reactor)

is China’s first fast neutron reactor (see

upper left photography of F i g u r e 3 ). It is

located in the vicinity of Beijing and aims to

provide China with fast-reactor design,

construction and operational experience.

The CEFR is a 65 MW th respectively 20 MW e

sodium-cooled, pool-type reactor with a

30-year design lifetime and a target burnup

of 100 MWd/kg and will be a key facility

for testing and researching components

and materials to be used in subsequent fast

reactors. The CEFR is the basis for the development

of the CDFR (China Demonstration

Fast Reactor), which shall have a capacity

of 1,000-1,200 MW e at present

[POW-11].

The CNP-300 is the first own development

of a nuclear power plant in China and was

built between 1985 and 1991 at the Quinshan

site [IAEA-12]. This design was exported

to Pakistan, where two reactors were

constructed at Chasman site in 1999 and

2012. The CNP-300 is a pressurized water

reactor and has a capacity of 999 MW th respectively

325 MW e .

The EGP-6, a scaled down version of the

RBMK reactor design, is currently the

world’s smallest and northernmost nuclear

reactor in operation [INSP-99]. Four

units of this type were erected at Bilibino

NPP. Plans for shutdown have been announced.

Unit one was already taken out

of service in 2018. The Bilibino NPP shall

CEFR, Tuoli [POW-11]

CNP-300, Quinchan [MPS-14]

Fig. 3. SMRs currently in operation.

be replaced by the floating nuclear power

station Akademic Lomonosov (see below).

The PHWR-220 is a pressurized heavy-water

reactor indigenously built in India. Sixteen

units of this series were constructed at

5 different sites. The PHWR-220 have an

output of roughly 800 MW th and 220 MW e .

6 SMR designs (see Ta b l e 2 and F i g -

u r e 4 ) are currently under construction.

These are the ACPR50S in China (PWR), the

CAREM in Argentina (PWR), 2 CNP-300 in

Pakistan (LWR), 2 KLT-40S in Russia (PWR),

2 HTR-PM in China (GCR) and a PFBR-500

in India (LMR). In the following these SMRs

are briefly described with exception of the

4 EGP-6 units, Bilibino NPP [INSP-99]

4 PHWR-200, Kaiga NPP [NS-19]

northwest of Buenos Aires. A special feature

is the integral design of the primary

circuit, where pressurizer, steam generator

and control rod drives are integrated within

the reactor pressure vessel. Since the

core is cooled with natural convection even

in operation, no pumps are necessary

[WNN-141]. First tests of the CAREM started

in 2016.

The construction of the HTR-PM started in

December 2012 in Shidao Bay Nuclear

Power Plant. It consists of two high-temperature

gas-cooled pebble-bed reactors

with an electrical output of 105 MW each.

Both reactors are connected to a single

steam turbine. The HTR-PM is partly based

41


SMRs – Overview on international developments and safety features VGB PowerTech 5 l 2020

Tab. 2. SMRs in construction.

Name Type Manufacturer

Country

ACPR50S PWR CGNPC CN 60

CAREM PWR CNEA AR 27

CNP-300 PWR CNNC CN 325

HTR-PM GCR INET CN 105

KLT-40S

PWR

OKBM

Afrikantov

RU 35

PFBR-500 LMR IGCAR IN 500

CAREM, Atucha NPP [EN-17]

Barge Akademic Lomonosov [POW-18]

Fig. 4. Selected SMRs currently under construction.

on the HTR-10 prototype reactor and expected

to be the first Gen IV reactor to enter

operation [ZUZ-16].

In Russia the floating NPP Akademic Lomonosov

has been built in a shipyard in St.

Petersburg since 2007. It contains two KLT-

40S reactors with a thermal power of

150 MW each. These reactors are derivatives

of the KLT-40 [IAEA-00], which were

used in icebreakers of the Sevmorput class

and the KLT-40M used in icebreakers of the

Taymyr class [OKB-13]. The Akademic Lomonosov

shall be deployed to Pevek at the

East Siberian Sea in order to provide electricity

district heating and potable water to

the region.

The PFBR-500 [CHE-06] is a fast breeder

developed by the Indira Gandhi Centre for

Atomic Research and is under construction

at the Madras Atomic Power Station in

Kalpakkam (India). First criticality is

planned to achieve in 2020 [WNN-19]. The

P [MW e ] Status Site

Start of construction

November 2016

Start of construction:

February 2014

2 blocks under construction

Demonstration plant

under construction

since 2012 Bau

(2 modules)

2 reactors in

Akademik

Lomonosov,

deployment: 2016

Under construction,

first criticality planned

in September 2014

Demonstration

offshore Nuclear

Reactor (CN)

Atucha (AR)

Chashm (PK)

Shidaowan (CN)

Barge Akademik

Lomonosov (RU)

Madras (IN)

HTR-PM, Sidaowan NPP [WNN-16]

PFBR-500, Madras [COI-18]

PFBR-500 has an electrical output of 500

MW and will burn MOX fuel with expected

burn-up of up to 100 GWd/t. It is is a pool

type reactor with approx. 1,750 tonnes of

sodium.

There are plans for the construction of 11

more SMR concepts (see Ta b l e 3 ). In addition,

roughly 50 SMR concepts are at a

design state without explicit deployment

plans.

3 GRS Study on Safety an

International Development of

Small Modular Reactors

In the last years, several well-developed

SMR designs from different international

vendors were announced. For creating an

overview about current SMR designs to

identify essential issues for reactor safety

research, GRS performed a study on safety

and international development of SMRs.

This is the basis to specify needs of adaptation

of system codes used at GRS for reactor

safety research. The large number of

SMR designs in operation, under construction

and under development at an advanced

state of planning requires a generic

approach and the identification of general

trends.

In section 3.1 the changed political framework

in Germany and in section 3.2 the motivation

of GRS to investigate SMRs are described.

Afterwards in section 3.3 selected

results of the SMR study such as technical

trends on factory fabrication and transport,

compactness and modularity, core design,

improved core cooling and exclusion of accidents

and features for preventing and limiting

the impact of severe accidents are presented.

Afterwards first estimations concerning

economic viability and competitiveness

(section 3.4) and licensing (section

3.5) are summarized. Finally, in section

3.6 a sound overview on the position of

selected European countries is given.

3.1 Changed political Framework in

German

After the Fukushima nuclear disaster

[GRS-16], the German Federal government

decided to terminate the use of nuclear

energy latest in 2022. The thirteenth

amendment of the Atomic Energy Act

[ATG-11] came into force on August 6,

2011. It regulates that the licenses of the

seven oldest and the Krümmel NPP expired

and that the remaining nine NPPs are to be

shut down by 2022. Consequently, the

pressurized water reactor (PWR) Grafenrheinfeld

was shut down in 2015 and the

boiling water reactor (BWR) Gundremmingen

Unit B in 2017 [BFE-18].

Worldwide, national government policies

differ on the further use of nuclear energy

for electricity generation. Many countries

(e.g. China, Finland, France, Hungary, Turkey,

UK, USA, Russia) are planning to build

new NPPs or at least maintain and / or extend

their operating time. In Europe, currently

27 % of all electricity consumed in

the European Union (EU) is generated by

NPPs. The projection in the latest European

Nuclear Illustrative Programme (PINC)

forecasts a stable nuclear capacity in Europe

between 95 and 105 GW e from 2030

onwards. At this time, roughly 80-90 % of

the installed capacity would be new builds

[EC-16].

Currently SMRs are discussed worldwide

as one interesting option for new builds in

almost all countries, which continue to use

nuclear energy for commercial power generation.

For asserting of legitimate nuclear

safety and / or security interests, German

authorities require in this context, own and

independent expertise for the safety assessments

of NPPs and other nuclear facilities

in our neighborhood on an international

level of the state of the art in science and

technology. This position, for which a

42


VGB PowerTech 5 l 2020

SMRs – Overview on international developments and safety features

Tab. 3. SMRs at an advanced state of planning.

Name Type Manufacturer

Country

ACP-100 LWR CNNC CN 100

ARC-100 SFR ARC USA 100

cross-party consensus exists, is e.g. stipulated

in the coalition agreement of the current

Federal Government [BR-18]. For this

reason, the German Federal Government

continues to fund reactor safety research

which is in line with national and international

framework conditions and obligations.

The technical expertise in Germany for

promoting comprehensive safety reviews

and ambitious binding targets, is essentially

built-up and provided by the Gesellschaft

für Anlagen- und Reaktorsicherheit

(GRS) gGmbH [GRS-19]. GRS is an independent

non-profit organization and entirely

funded by projects. The main shareholders

are the Federal Republic of Germany

and the Technical Inspection

Agencies, each with a share of 46.15 %.

GRS is the

––

main technical support organization

(TSO) in nuclear safety for the German

Federal Government (especially the Federal

Ministry for the Environment, Nature

Conservation and Nuclear Safety

(BMU) and the Federal Foreign Office

(AA)),

––

a major research organization in nuclear

safety (e.g. for the Federal Ministry for

Economic Affairs and Energy (BMWi),

BMU and the Federal Ministry for Education

and Research (BMBF)) and

––

traditionally involved in numerous international

activities (e.g. of the European

Commission (EC), the International

Atomic Energy Agency (IAEA) and the

Nuclear Energy Agency of Organization

for Economic Co-operation and Development

(OECD-NEA)).

As a first step, in this direction GRS performed

a study on Safety and International

development of Small Modular Reactors

(SMR) [GRS-15], from which selected re-

P [MW e ] Status Site

Planned construction

(Start 06/2014)

Well advanced

development

Zhangzhou, later:

Jiangxi, Hunan,

Jilin (CN)

BREST LMR RDIPE RU 300 Planned construction Beloyarsk (RU)

Integral

MSR

NuScale

MSR

PWR

Terrestrial

Energy

NuScale

Power and

Flour

CA 192

USA 60

PRISM SFR GE Hitachi USA 311

SMART PWR KAERI KR 100

SMR-160

PWR

Holtec

SNC-Lavalin

USA 160

Well advanced

development

Well advanced

development

Well advanced

development

Well advanced

development

Well advanced

development

SVBR-100 LMR RDIPE RU 250 Planned construction

VBER-300 PWR OKBM RU 300

Well advanced

development

(CA)

(CA)

(US)

sults are presented in the following sections.

3.2 GRS Study on Safety an International

Development of Small Modular

Reactors

The aims of the GRS study on Safety and

International Development of Small Modular

Reactors [GRS-15], published in 2015,

were

––

to set-up a sound overview on current

SMRs,

––

to identify essential issues of SMR reactor

safety research and future R&D projects

and

––

to identify needs for adaption of system

codes of GRS used in this field of activity.

In the following, selected results (e.g. general

trends and safety features) are specifically

described for the first working point.

For this it was advantageous to assign the

SMRs compiled in the Ta b l e s 1 , 2 and 3

into groups. Criteria for this were:

––

the coolant (light-water, heavy-water,

liquid metals, gases and molten salts),

––

the place of construction (onshore, offshore,

subsea-based) and

––

the state of deployment (in operation,

construction, development with / without

specific construction intention).

3.3 Selected Technical Trends

In the following the selected trends of the

SMRs are summarized. Some of these

trends apply for all SMRs (section 3.3.1 up

to section 3.3.2), while others (section

3.3.3 up to section 3.3.5) are only valid for

light-water cooled SMRs. These SMRs have

best chances of realization in large numbers

because they are based on a long-term

operational proven technology and an already

existing fuel cycle. Furthermore, all

-

(SA)

(US, CA)

RIAR in

Dimitrovgrad (RU)

(KZ, RU)

nuclear stakeholder (especially of the regulators)

have collected the greatest experiences

with this technology by far.

3.3.1 Factory Fabrication and

Transport

The definition SMR contains the two terms

small and modular. The term small characterises

that SMRs are small (electrical output

of less than 300 MW) in comparison to

currently operated NPPs, which have an

electrical output of roughly 1,000 –

1,750 MW. Modular means that these NPPs

have a modular construction and major

components are small enough to be built

on a production line in a factory and assembled

on-site [GAD-19]. Factory production

allows to produce several units simultaneously

and not as present assembling

one item at a time [BAJ-18]. Standardisation

increases quality and reduces training

[HUK-13].

The components of all current power reactors

(for example in a PWR the reactor

pressure vessel, the steam generators, the

main coolant pumps, the pressurizer and

the blow-off tank) are so large and heavy,

so that these must be manufactured, transported

individually to the construction site

and connected here to each other by piping.

However, site construction has a higher

risk of sub-standards and / or rejects.

The crafts are e.g. exposed to strongly varying

weather conditions, dirt and grime.

Furthermore, assembly and mounting devices

are only available to a limited extend

compared to a factory production [HUK-

13]. On-site technical inspection is

more difficult and is also more expensive.

The same is valid for the costs of on-site

production due to higher ancillary costs

[SCA-19].

The advantage of SMR design with ship,

truck or even railway delivering in mind is

that the size of modules allows their transports

from the factory to the construction

site as one unit. Unlike conventional large

power plants, which have huge components

that are difficult to transport, SMRs

do not require huge custom transporters,

highway closures, or reinforcement of

bridges along the transportation route.

With SMRs, getting all the equipment to

the construction site is a lot easier [NGR-

11], [WNN-18]. This context is e.g. addressed

in [POW-17] and by several SMR

designer. In [POW-17] a picture is shown in

which current construction (e.g. of Olkiluoto

3) is compared to a factory build

module, transported by a truck (see F i g -

ure 5).

SMRs are much less demanding in terms of

siting. Large reactors need low population

zones, and a relatively large sites with access

to large volumes of cooling water.

Therefore, the number of suitable construction

sites for SMRs is far larger than

the number of construction sites for large

reactors. At the same time several of these

locations (especially the site far away from

43


SMRs – Overview on international developments and safety features VGB PowerTech 5 l 2020

Current Construction vs. Factory Built

and delivered by truck.

Fig. 5. Comparison of site construction (here Olkiluoto 3) and a factory-built module delivered by

truck (taken over from [POW-17]).

pitch to diameter of the helix) and may

have an impact on heat transfer.

3.3.3 Core Design

The reactor cores of light-water cooled

SMRs consist of 40 up to 80 shortened

standard fuel assemblies arranged according

to optimized loading patterns. The cores

have an active length between 2 and 2.5 m.

The fuel (UO 2 as well MOX) is higher enriched

and shall be burned-up significantly

higher. The SMR cores are designed for fuel

cycles between two and ten years [SCA-19].

All light-water cooled SMRs have a negative

temperature coefficient for both primary

coolant and fuel. Some concepts spare a boron

acid system in order to safe space and

lower the temperature coefficient. Instead of

a boron system, burnable absorbers like

Gd 2 O 3 , IFBA, Er or B 4 C are used. Compensation

of the excess reactivity is also achieved

by the use of the control rods which are also

be used for short time control of the core.

Used materials here are Ag In-Cd, B 4 C and

Dy 2 Ti 2 O 7 [BUS-15], [GRS-15].

large rivers) are more difficult to reach

[WNN-18]. This is now possible e.g. with

the trucks.

3.3.2 Compactness and Modularity

The SMR designs are mainly characterized

by high compactness, which supports the

modularity. Modularity in turn leads to

large savings of space. Consequently, the

modules can be factory produced and deployed

to the site by truck, barge or train

(see section 3.3.1).

Many of the SMRs are proposed as an integral

design [GRS-15]. Integral means, that

the components of the primary coolant circuit

(e.g. core, pressurizer, steam generators,

main coolant pumps (if the respective

SMR has a forced convection cooling)) are

arranged within the reactor pressure vessel.

This construction excludes large break

loss of coolant accidents (LBLOCA) by design,

since no large connection lines are

needed (see section 3.3.4). In some cases,

also the control rod drives are integrated

into the reactor pressure vessel [SUH-16].

Beside the integral design, also loop designs

with very short coaxial connection

nozzles can be found (e.g. KLT-40S). Here

the hot legs are located in the inner pipe

while the cold legs are in the outer part of

the coaxial pipe in order to minimize temperature

losses [IAEA-00].

However, the compact SMR designs require

new types of extremely powerful steam

generators able to transfer large heat quantities

at a low overall height at the same

time [SCA-19]. For this purpose, bayonet,

helical coil or plate heat exchangers were

adapted from conventional energy technology.

In addition, new arrangements of the

heat exchangers have also been developed

(e.g. the steam generator of the SCOR is

placed on the top of the RPV (see F i g u r e

6 taken from publication [SCA-18]).

steam

generator

The arrangement of the helical coil steam

generators could be either several steam

generators in the downcomer (e.g. in CAR-

EM) or one steam generator around the

riser (e.g. NuScale). Common in all designs

is that the efficiency is increased by thin

walls and highly turbulent flow fields,

which makes the steam generators susceptible

to flow-induced vibrations. Experiments

for verification of the performance

e.g. for the helical coil heat exchangers

were performed for example for the

NuScale and the IRIS concepts at the fulllength

Helical Coil Steam Generator

(HCSG) tests at SIET in Piacenza (Italy)

[WNN-142]. CFD calculations mentioned

in [DEA-14] show a strong secondary flow

inside the helical tubes, which depends

strongly on the torsion rate (fraction of

12 helical shaped

steam generator

1 helical

shaped steam

generator

Fig. 6. New types of extremely powerful steam generators for SMRs (left: steam generator is

placed on the top of the RPV (SCOR [THC-15]), middle: 12 helical coil type heat

exchangers arranged in the downcomer (CAREM [MAC-14]), right: one helical coil type

SG is arranged around the rizer (NuScale [IND-14]) – Figure 6 was taken from [SCA-18].

In NPPs with several modules one module

can be refueled, while the others continue

operation. The output of the multi-module

production NPPs is reduced only in this

time span; but the plant is not entirely powered

down. The outage can be planned and

carried out at times of low energy demand.

At the end of their lives the modules are

returned to the factories for disassembling

[SCA-19].

3.3.4 Improved Core Cooling and

Exclusion of Accidents

The core cooling of the SMR was improved

compared to the currently operated LWRs.

For this similar design principles as for the

advanced Gen III / III+ reactors are applied

[WNN-18]. Concerning [SCA-19]

these are e.g.:

44


VGB PowerTech 5 l 2020

SMRs – Overview on international developments and safety features

––

the reduction of the power density of the

core (up to -50 % compared to currently

operated Gen II LWRs),

––

a low positioning of the core inside the

RPV,

––

a high-water coverage of the core so that

even for a break of the largest line connected

at RPV no core exposure occurs

during blowdown,

––

large water inventors in – respectively

outside the RPV to ensure excellent slowacting

accident control capabilities,

––

large heat storage inside the containment

as a result of large water inventories,

––

passive equipment for heat removal from

the RPV and the containment,

––

passive cooling of the RPV exterior in the

event of core melt scenarios to ensure retention

of the core melt inside the RPV.

There is a scientific consensus, that up to

an electrical power output of roughly

200 MW decay heat can be safely removed

from the RPV and core melt can be excluded.

The improved heat removal features

result on the one hand from the larger surface

to volume ration of the RPV. This again

results from the diameter to length ratio of

the vessel. Compared to Gen II LWRs, the

reactor core has a smaller distance to the

RPV wall, which leads to a better heat conduction.

Additionally, the heat transfer resistance

of an SMR RPV wall is lower than

the RPV wall of a Gen II LWR, because the

wall thickness decreases with the curvature

of the vessel [SCA-19].

Several SMRs exclude accidents by design.

Many of the light-water cooled SMRs are

operating under natural circulation without

the use of main coolant pumps (e.g.

CAREM, NuScale, etc.). Consequently, in

these concepts, no pump trips have to be

considered. But especially during the startup

phase this may lead to flow instabilities

like geysering or density wave oscillations,

the designers have to deal with. Descriptions

of such phenomena for the integrated

modular reactor (IMR) design can be found

in [DIX-13]. Boron dilution accidents can

be excluded for SMRs with boron free

cores. When using integral control rod

drives (e.g. CAREM) the threat of an unprotected

control rod ejection is essentially

eliminated, since the pressure difference

between top and lower edge of the control

rod is not formed out of ambient and primary

pressure anymore but level difference

in the reactor pressure vessel only

[MAC-14]. Finally, the integral design can

exclude large break loss-of-coolant accidents

(LBLOCA) [HUK-13].

SMR concepts consider three main design

principles for a save control of postulated

LOCA: First, the number of lines connected

to the RPV is minimised. Second, the connections

of the pipe are far above the core

top edge and third, lines with radioactive

coolant outside the RPV shall be avoided.

Since the maximum break sizes of a Gen II

reactor building

4 reactor modules

arranged in caverns

LWR (a double ended break leads to a

break area of roughly 1 m²) and an SMR

vary by up to 3 orders of magnitude, LOCA

in SMRs can be easier controlled and loads

on RPV internal and on the containment

structure decrease [SCA-19].

As mentioned above, in many SMRs decay

heat removal relies on passive safety systems.

The operation mode of these systems

is based on laws of nature (e.g. free convection,

condensation, evaporation). The decay

heat is removed by natural circulation

to large water inventories arranged in large

heights in – or outside the containment.

However, at present there are neither uniform

definitions of passive safety systems

nor requirements for experimental and / or

analytical evidences [SCA-19]. While the

definitions of IAEA [IAEA-91] and EPRI

[EPRI-99] allow an active initiation of the

operation of a passive safety system, German

Safety Requirements for NPPs [BMU-

15] do not allow this. Systems with an active

initiation of operation would, according

to [BMU-15], be an active system, for

which a n+2 degree of redundancy is required.

Due to a current existing lack of operation

experience there are, however concerns

regarding the performance and reliability

of passive safety systems [SCA-19].

The containments of light-water cooled

SMRs have a passive cooling capacity of at

least 72 h. Some SMRs even have an infinite

passive containment cooling to an ultimate

heat sink which could be either air or

water. Four different design approaches

exist for this issue: These are horizontally

or vertically containments arranged in

large water pools, subsea-based containments,

floating containments and containment

cooled by heat pipes [SCA-18].

reactor building

buried under an

earth wall

Fig. 7. The reactor building of the I-150 with 4 modules shall be buried under an earth wall

[CHE-17].

3.3.5 Features for Preventing and

Limiting the Impact of Severe

Accidents

In general, the smaller amount of nuclear

fuel in the SMR cores, the improved core

cooling features and the exclusion of accidents

(both described in section 3.3.4) lead

to a reduction of the probability and consequences

of core melting. As a result, the offsite

emergency planning requirements can

be scaled down to be proportionate to those

reduced risks. This includes inter alia emergency

planning zones (EPZ), which do not

have to be extended beyond the plant side

boundary [WNN-18].

SMRs contain new ideas to increase the resilience

against external events (e.g. earthquakes,

explosion pressure waves, air plane

crashes). This includes among others the

arrangement of SMR modules in (water

filled) caverns partially or completely below

the ground level or at the ground of on

ocean in a water depth of up to roughly 100

meters. F i g u r e 7 shows the reactor building

of the French SMR I-150, which shall be

buried under an earth wall [CHJ-17].

3.4 Economic Viability and

Competitiveness

In principle, questions of economic viability

and competitiveness are not included in

the working fields of GRS, which are exclusively

safety aspects. Since both issues are

the ultimately basis for a positive construction

decision, GRS has roughly dealt with

these aspects for estimating whether SMRs

can be an option for new builds in the direct

neighbourhood of Germany. These

considerations are the prerequisite for the

development of additional competences as

well as the necessary extension and validation

of the evidence tools developed by

GRS and which have been successfully applied

for these issues in the last decades.

Unfortunately, many countries planning to

build SMRs have not yet committed themselves

to specific designs. Therefore, only

fundamental estimations can be performed,

of which selected aspects are discussed

in the following.

The evaluation of various studies (e.g.

[LOG-14]), and publications (e.g. [ENH-

19]) as well as qualitative considerations

e.g. by [HUK-13] in this regard indicates that

SMRs can be (under certain assumptions)

competitive compared to Gen II, III and III+

LWRs as well as in the medium term to gas

powered plants. However, the extend of

costs considered vary from study to study.

For SMRs it is the key to offset the economies

of scale, which seemed to be in favor

of large reactors, with economies of numbers,

provided by the concept of modules

or entire plants built in factories and

shipped to the site [ENH-19].

45


SMRs – Overview on international developments and safety features VGB PowerTech 5 l 2020

Since, at this stage no valid data are publicly

available, only some qualitative considerations

are made in the following: SMRs have

a large application spectrum and can be

used for many purposes such as electricity,

heat production and desalination. They require

lower capital costs for construction. A

production unit can be extended module by

module, already after connecting the first

module, electricity and / or heat can be generated

and sold. The risks of delays can be

eliminated by factory production of the nuclear

island. After transportation to the site

the modules can be immediately connected

to grid. The SMRs have been designed for

longer operating cycles and require less

maintenance. Finally, SMRs can be disposed

easier, since the complete modules can be

transported back to the factory and could be

dismantled there.

But however, it must be mentioned that the

different studies indicating the economic

feasibility as well as a significant market

potential base on the assumptions, that

––

all entry barriers have been overcome,

––

SMRs are produced in series in factories,

which have to be built first,

––

efficient transnational licensing procedures

have been established (see section

3.5).

With regard to the second bullet, it should be

pointed out, that it is not clear which company

respectively economy is willing and

able to realize the necessary investments.

Licensing

The following section describes necessary

global harmonization of rules and regulations

and changes in current licensing procedures,

which are prerequisites for SMRs

being successful in the market. The decisions

necessary for the implementation are

taken by respective national governments

and regulators. In this sense, the following

remarks are only brief summaries of the

current discussion in the nuclear community,

which may differ from the GRS view.

The studies concerning the economic viability

and competitiveness indicate that a

cost efficiency of SMRs requires the construction

of minimum 80 up to 100 identical

units worldwide. The phrase identical

means, that the same design must be deployed

in all target markets. Currently the

SMR vendors desire to reduce the number,

the time and financial effort for the nuclear

licensing procedure. This includes, for example,

that if identical modules are added

to a production unit, no new licensing procedure

is required for the nuclear island.

Furthermore, approvals should be recognized

internationally. For example, the construction

surveillance could be carried out

by a TSO in the country, in which the SMR

factory is located. All aspects discussed

above require a harmonization of definitions

(e.g. for passive safety systems – see

section 3.3.4), rules and regulations (e.g.

for experimental and analytical evidence).

As already mentioned in the introduction

of section 3.3 SMRs based on LWR technology

offer currently advantages, due to the

experiences of the nuclear regulators collected

with light-water reactor technology

in the last decades. Since a licensing process

lasts several years, SMRs in operation

or even under construction are in advance.

Licenses have been granted for light-water

cooled SMRs e.g. for CAREM in 2010 and

SMART in 2012.

3.6 Position of Selected European

Countries

In the following, the position on SMRs of

selected European countries (Germany,

United Kingdom, Russia) and the European

Commission is summarized.

According to the 13 th amendment of the

Atomic Energy Act [ATG-11] in Germany

neither an SMR will be built or operated.

The European Commission on the other

hand proposes a licensed SMR by 2025 and

operation of an SMR by 2030 as an important

strategic target / priority.

In the United Kingdom (UK) the National

Nuclear Laboratories have published a report

on SMR concepts, feasibility and potential

in 2014 [NNL-14]. Subsequently the

UK Department of Energy and Climate

Change (DECC) called for expression of interests

in an SMR competition to identify

the best value for the UK (2016).

Russia, where 70 % of Russia’s territory

and 20 % of population cannot use the services

of centralized energy providing, has a

high potential and interest for SMR application.

The base for civil SMR development

are e.g. SMRs of the Russian Navy (with an

operational experience of approx. 6,000

reactor years) and the civil icebreakers and

cargo ships (with an additional operational

experience of approx. 370 reactor years)

[ARV-17].

One example for the respective extensive

Russian activities are the replacement of

the the Bilibino NPP by the floating nuclear

power station Akademic Lomonosov (see

section 2.3 and F i g u r e 4 ). But Russia is

also increasingly developing SMRs for export.

The target markets are Asia, Africa

and Latin America, where countries are

facing challenges related to the supply of

fossil fuels and grid development [PEJ-18].

4 GRS Simulation Chain,

Identification of Modelling

Gaps and Priorities for Closure

The focus of this publication is to provide

an overview on international developments

and safety features on SMRs, which

are in several countries of our neighborhood

an interesting option for nuclear new

builds. The Gesellschaft für Anlagen und

Reaktor-sicherheit (GRS) gGmbH, is the

main German technical support organization

in nuclear safety. It supports the German

Federal government e.g. in asserting

legitimate nuclear safety and / or security

interests. This require the necessarily

know-how as well as qualified numerical

simulation tools. However, these tools

must be suitable extended and validated at

first. Necessary items are summarized below

briefly and concisely. However, the following

list does not claim to be complete.

Today, a comprehensive, historically grown

scientific code system is available at GRS.

An overview of this simulation chain was

e.g. presented at the 1 st Sino-German Symposium

on Fundamentals of Advanced Nuclear

Safety Technology in March 2015

[SCA-15] and published in [SCA-17] in

2017. In general, GRS develops, as far as

possible, its own codes, because this approach

leads to an improved understanding

of the relevant physical phenomena.

This approach allows GRS to be independent

of the interests of commercial software

developers and therefore to improve selected

codes to respond faster and more

flexible to current events. The identification

of work required for this was one main

result of the GRS SMR study. The following

remarks shall give a brief overview of what

is still to be done.

The structure of this nuclear simulation

chain is depicted in F i g u r e 8 [SCA-15],

[SCA-17]. It consists of GRS’ own developments

(deep blue boxes) and third-party

codes (white boxes). Many codes can be

coupled simply for data transfer (indicated

by the dotted lines) or in a more complex

way through interfaces (indicated by red

line in F i g u r e 8 ). The latter option requires

the development of appropriate interfaces.

The advantages of coupling

will be discussed more detailed later in this

section.

The codes are assigned to the following

main thematic areas: reactor physics, thermal-hydraulics/severe

core damage and

structural mechanics (columns in F i g -

u r e 8 ). The systems/components: reactor

core, reactor coolant system (RCS), containment

which can be simulated with the

codes are arranged in rows and correspond

to the respective fundamental safety functions

control of reactivity, core cooling and

enclosure of radioactivity. In addition, there

is a fourth row, which contains other codes

(e.g. for visualization, sensitivity, uncertainty

and probabilistic dynamic analysis).

From GRS’ point of view at least short and

medium-term proofs for SMRs introduced

by vendors and operators in nuclear procedures

will be assessed by independent recalculations

of regulators and / or TSOs

with the simulation tools already developed,

validated and successfully applied

for Gen II LWRs. These are e.g. the GRS

develop-ments QUABOX/CUBBOX (a 3-D

neutron kinetics core model) and the system

code package AC 2 consisting of the

46


VGB PowerTech 5 l 2020

SMRs – Overview on international developments and safety features

ELSMOR two important work packages.

The consortium consists of support organisations

of European TSOs, universities,

power companies, and some of the developers

of a French SMR design I-150 [CHE-17].

ELSMOR is developing systematic methods

for the safety assessments of new and innovative

reactors (here especially SMRs). The

project shall contribute that European experimental

infrastructures and modelling /

evidence tools will be ready for use in nuclear

licensing procedures [VTT-19].

5 Summary

Fig. 8. The Nuclear Simulation Chain of GRS taken over from [SCA-15], [SCA-17] and

negligible modified.

codes ATHLET (a lumped parameter code

for analysis of leaks and transients in the

reactor coolant circuit (RCS)), ATHLET-CD

(the extension of ATHLET for severe accident

analyses in the RCS including core

meltdown and fission product release) and

COCOSYS (a lumped parameter code for

analysis of conditions within the containment

and buildings of NPPs in case of accidents

and severe accidents). The neutron

kinetics core QUABOX/CUBBOX requires

further model improvements and validation

e.g. for:

––

long fuel cycle length (> 24 month),

––

cores with higher burn-up (> 50 MWd/

kg) and/or higher fuel enrichment,

––

advanced loading pattern,

––

boron free cores under consideration of

the behavior of burnable absorber at the

beginning of new cycles,

––

moveable reflectors for long-term compensation

of excess reactivity.

The system code package AC² requires e.g.

further model improvements and validation

for:

––

innovative, high performance heat exchangers

(bayonet, helical coiled and

plate heat exchanger),

––

the assessment of occurrence of flow induced

vibrations and their effects,

––

the operation mode and operation

boundaries of heat pipes (viscous, sonic,

entrainment, capillary and boiling limits),

enhancement of the parameter

range of correlations towards low pressures,

improvement and validation of

the semi-empirical closure correlations

for interphase friction, heat and mass

transfer and if necessary implementation

of properties for new heat pipe

working fluids,

––

single / two phase flow natural convection,

flow instabilities and transition

range between single and two natural

convection,

––

passive safety systems (special components,

start-up behavior, mutual interaction

of different passive safety systems or

trains of one passive safety system, extension

of the scope of correlations for

containment heat transfer)

––

check-valves, in which the opening cross

section and the associated form loss is

calculated dependent on the pressure

difference up- and downstream the

valve,

––

3D models for water pools / environment

(ultimate containment heat sink),

temperature and velocity fields, stratification,

––

heat transfer at bundle surfaces at free

convection, subcooled or saturated boiling

conditions,

––

steam condensation at containment

walls, structures and internals especially

for the case of small break LOCA, inertised

containments or containments operated

at near vacuum conditions,

––

new coupling (strategy) between ATH-

LET and COCOSYS,

––

infinite passive containment cooling to

an ultimate heat sink in ocean environment

(influence of seawater, mussel

growth, etc.),

––

heat transfers of horizontally arranged

containment in large water pools or the

ocean at RA-numbers of approx. 10 15 .

The above mentioned, open issues shall be

processed and closed with national and international

research alliances. One example

is the EU project ELSMOR (Towards

European Licensing of Small Modular Reactors),

which has received approval for

grant agreement preparations under the

European Union’s Horizon 2020 research

and innovation programme. Scheduled to

be launched in the summer of 2019, a total

of 15 organisations from 8 countries will

participate in ELSMOR, to which the EU

has granted EUR 3.5 million. GRS leads in

Small modular reactors are one interesting

option for new builds in almost all countries

continuing to use nuclear energy for commercial

electricity production. Currently

four SMRs are in operation, further six

SMRs are under construction and eleven at

an advanced stage of planning. Different

European countries (e.g. the United

Kingdem, Russia, Poland) are planning to

build and operate SMRs.

The Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH as the main German

technical support organization in nuclear

safety for the German government,

has performed a Study on Safety an International

Development on SMR published

in 2015 (GRS-376). In this, numerous

trends of current SMR development were

identified. They are presented in this publication.

The modelling gaps of the GRS

simulation chain were compiled and a

strategy for their closure was developed.

The main findings are: The safety level was

increased e.g. by an advanced, conservative

design, implementation of new safety

features (e.g. passive safety systems) and

the exclusion of accidents (e.g. LBLOCA,

control rod ejection). Therefore, SMRs

could be – if proven by safety analyses –

among the safest nuclear equipment ever

made. Factory fabrication minimizes the

(financial) risk of delay in construction.

Competitiveness e.g. with gas power plants

requires the construction of a large number

of identical SMR units worldwide. Prerequisites

for this are that all entry barriers

have been overcome like series production

in factories, which are currently not existing,

and a worldwide harmonization of

rules and regulations and recognition of

licenses of foreign nuclear regulators.

However, currently published figures are

fraught with large uncertainties and not

yet reliable. Independently of the previously

mentioned open points, which are

irrelevant from TSO’s point of view, GRS

will further develop and validate its nuclear

simulation chain. This allows to successfully

apply the GRS simulation chain in

nuclear licenses procedures and independent

safety analyses also for SMRs.

47


SMRs – Overview on international developments and safety features VGB PowerTech 5 l 2020

Acknowledgement

This presentation contains results of the

research project Study of Safety and International

Development of SMR (grant number

RS1521), which was funded by the

German Federal Ministry for Economic Affairs

and Energy (BMWi).

Literature

[ARH-171] Army Engineer History. Army nuclear

Power Program Virtual Exhibit,

April 2017. https://armyengineerhistory.dodlive.mil/anpp/,

last visit:

23.05.2019

[ARH-172] Army Engineer History. Experimental

Reactors, April 2017. https://armyengineerhistory.dodlive.mil/

anpp/experimental-reactors/, last

visit: 23.05.2019

[ARV-17] V. Artisiuk. SMR Technology Development

in Russia and Capacity Building

Supports for Embarking Countries,

IAEA Technical Meeting on

Technology Assessment of Small

Modular Reactors for Near Term

Deployment, October 02-05, 2017,

Tunis (Tunisia).

[ATG-11] Atomgesetz. Dreizehntes Gesetz zur

Änderung des Atomgesetzes (13. At-

GÄndG) vom 11. Juli 2011, Bundesgesetzblatt

Teil 1, Nr. 43 vom

05.08.2011.

[BAJ-18] J. Bailey. NuScale – Blazing the Trail

for Modular SMRs, Energy Huntsville,

January 16, 2018.

[BFE-18] Bundesamt für kerntechnische Entsorgung.

Bekanntmachung gemäß

§7 Absatz 1 c Atomgesetz (AtG), Jahresmeldung

2018, 01.04.2019. htt-

ps://www.bfe.bund.de/Shared-

Docs/Downloads/BfE/DE/berichte/kt/elektrizitaetsmenge-2018.

html;jsessionid=2A7282737BADE

20FBAB532ED BA614995.1_

cid382, last visit: 23.05.2019

[BR-18] Bundesregierung. Ein neuer Aufbruch

für Europa, eine neue Dynamik

für Deutschland, ein neuer Zusammenhalt

für unser Land, Koalitionsvertrag

zwischen CDU, CSU und

SPD, 19. Legislaturperiode,

12.03.2018, Berlin (Germany).

[BMU-15] Bundesministerium für Umwelt,

Naturschutz, Bau und Reaktorsicherheit.

Sicherheitsanforderungen

für Kernkraftwerke, in der Fassung

vom 03.03.2015, Bundesanzeiger

AT 30.03.2015 B2.

[BUS-15] S. Buchholz, A. Krüssenberg, A.

Schaffrath. Safety and International

Development of Small Modular Reactors

(SMR) – A Study of GRS, atw

International Journal for Nuclear

Power, Vol. 60 (2015), Issue 11, pp.

645 – 653.

[BUS-16] S. Buchholz, A. Schaffrath, A. Krüssenberg.

Study of Safety and International

Development of SMR. EU-

ROSAFE 2016, November 07-08,

Munich (Germany).

[CHE-06] S.C. Chetal, et al. The Design of the

Prototype Fast Breeder Reactor, Nuclear

Engineering and Design Vol.

236 (2006), pp. 852 – 860.

[CJH-17] J. Chenais. SMR Technology – The

[COI-18]

[DEA-14]

[DIX-13]

[EC-16]

[EGN-19]

[EN-17]

[ENH-19]

[EPRI-99]

[GAD-19]

[GRS-15]

[GRS-16]

[GRS-19]

French Approach, IAEA Technical

Meeting on Technology Assessment

of Small Modular Reactors for Near

Term Deployment, October 2-5,

2017, Tunis (Tunisia).

Competitive India. India’s first Indigenously

Developed Prototype Fast

Breeder Reactor to achieve Criticality

in 2019, 22.09.2018. http://competitiveindia.com/currentaffairs/2018/09/22/indias-first-indige-nously-developed-prototypefast-breeder-reactor-to-achievecriticality-in-2019/,

last visit:

23.05.2019

J. De Amicis, et. al. Experimental

and Numerical Study of the Laminar

Flow in Helically Coiled Pipes, Progress

in Nuclear Engineering, Vol.

76, 2014, pp. 206-215

A. Dixit et al. Start-up Transient Test

Simulation with and without Void-

Reactivity Feedback for a Two-Phase

Natural Circulation Reactor, Nuclear

Engineering and Design, Vol.

265 (2013), pp. 1131 – 1147.

European Commission. Nuclear Illustrative

Programme (PINC) presented

under Article 40 of the European

Treaty for the opinion of the

European Economic and social Committee,

COM(2016) 177 final,

04/04/16. http://ec.europa.eu/

transparency/regdoc/rep/1/2016/

EN/1-2016-177-EN-F1-1.PDF, last

visit: 23.05.2019

Engineeringpro. China plans to

Build 20 Floating Nuclear Power

Plants, 26.03.2019. https://www.

fircroft.com/blogs/china-plans-tobuild-20-floating-nuclear-powerplants-98526946496,

last visit:

23.05.2019

ENERNEWS. El Uranio de la Polemica,

07.07.2017. http://www.enernews.com/nota/308896/uranioargentino-cnea-y-pole-mica-el-carem-25,

last visit: 23.05.2019

H. Engelbrecht. SMR – it’s all about

economics, Focus Session Inter-national

Innovation: Small Modular

Reactors: a major Element of the Future

of Nuclear?, Annual Meeting on

Nuclear Technology, Mai 07-08,

2019, Berlin.

Electric Power Institute (EPRI). Advanced

Light Water Reactor Requirements,

Volume 3, Revision 8, ALWR

Passive Plant, March 1999.

D.W. Gandy. Factory Fabrication of

Small Modular Reactor Vessel Assemblies,

NUC RIC: Use of Advanced

Manufacturing Technology for

Power Reactors, Electrical Power

Institute (EPRI), March 2019.

Gesellschaft für Anlagen und Reaktorsicherheit

(GRS) gGmbH. Studie

zur Sicherheit und zu internationalen

Entwicklungen von Small Modular Reactors,

Bericht GRS-376, Mai 2015.

Gesellschaft für Anlagen und Reaktorsicherheit

(GRS) gGmbH. Fukushima

Daiichi 11. März 2011 – Unfallablauf,

Radiologische Folgen,

Technischer Bericht GRS-S-56, 5.

Auflage, März 2016.

Gesellschaft für Anlagen- und Reaktorsicherheit

(GRS) gGmbH. Unternehmen,

Arbeitsfelder, Forschung

und Entwicklung, etc., 2019. https://www.grs.de/,

last visit:

23.05.2019

[HUK-13] K.-D. Humpich. SMR Teil 1 – nur eine

Mode. 11.12.2013. http://www.

nukeklaus.net/2013/12/11/smrteil-1-nur-eine-neue-mode/ad-minklaus/,

last visit: 23.05.2019

[IAEA-91] International Atomic Energy Agency

(IAEA). Safety related Terms for

Advanced Nuclear Plants, IAEA-TEC-

DOC-626, September 1991.

[IAEA-00] International Atomic Energy Agency

(IAEA). Advisory group meeting

on small power and heat generation

systems on the basis of propulsion

and innovative reactor technologies,

Obninsk (Russian Federation), July

20-24, 1998, published in IAEA-

TECDOC-1172, September 2000,

Vienna (Austria).contribution: V.

Beliaev, V. Polinichev. Basic Safety

Principles of KLT-40C Reactor

Plants, OKB Mechanical Engineering,

pp. 29 – 39.

[IAEA-12] International Atomic Energy Agency

(IAEA). Status of Small and Medium

sized Reactor design, Report,

September 2012.

[IND-14] D.T. Ingersoll, Z.J. Houghton, R.

Bromm, C. Desportes. NuScale

Small Modular Reactor for Co-Generation

of Electricity and Water, Desalination,

Vol. 340 (2014), pp. 84

– 93.

[INSP-99] International Nuclear Security. Bilibino

Nuclear Power Plant,

22.02.1999. https://insp.pnnl.

gov/-profiles-bilibino-bi.htm

[LOG-14] G. Locatelli, C. Bingham, N. Mancini.

Small Modular reactors: A Comprehensive

Overview of their Economics

and Strategic Aspects, Progress

in Nuclear Energy, Vol. 73

(2014), pp. 75 – 85.

[MAC-14] C. Marcel, D. Delmastro, M. Celeste

Magni, O. Calzetta. CAREM: Argentina’s

innovative SMR, Nuclear Engineering

International, May 14,

2014. https://www.neimagazine.

com/features/featurecarem-argentinas-innova-tive-smr-4266787/,

last visit: 23.05.2019

[MPS-14] Modern Power Systems. Design Evolution:

Chinese Reactors, 20.08.2014

http://www.growthmarkets-power.com/features/featuredesign-evolution-chinese-reactors-4348218/,

last visit: 23.05.2019

[NFS-161] Nuklearforum Schweiz. CGN arbeitet

mit Schiffbauer zusammen,

01.02.2016.

https://www.nuklearforum.ch/de/

aktuell/e-bulletin/cgn-arbeitetmit-schiff-bauer-zusammen,

last

visit: 23.05.2019

[NFS-162] Nuklearforum Schweiz. China:

Baubeginn für schwimmendes Kernkraftwerk,

10.11.2016. https://

www.nuklearforum.ch/de/

aktuell/e-bulletin/china-baubeginn-fuer-schwimmendes-kernkraftwerk,

last visit: 23.05.2019

[NGR-11] C. Barton. Transporting Small Factory

Built Reactors and Modular

Components, 29.09.2011. https://

nucleargreen.blogspot.com/2011/

09/transporting-small-factory-built.

html, last visit: 23.05.2019

48


8 >

Umschlag VGB-S-169-11-2015-11-EN_A3q.indd 1 24.05.2016 13:38:07

VGB PowerTech 5 l 2020

SMRs – Overview on international developments and safety features

[NNL-14]

[NS-19]

[OKB-13]

[OZA-19]

[PEJ-18]

[POW-11]

[POW-17]

[POW-18]

National Nuclear Laboratory. Small

Modular Reactors (SMR) Feasibility

Study, December 2014. http://

www.nnl.co.uk/media/1627/smrfeasibility-study-december-2014.

pdf, last visit: 23.05.2019

Nuclear Street. Kaiga Unit 1 Sets

NPP Continuous Run Record,

04.01.2019 https://nuclearstreet.

com/nuclear_power_industry_

news/b/nuclear_power_news/ar-

chive/2019/01/04/kaiga-unit-

1-sets-npp-continuous-run-record-010401#.XOGYdOSP4kc,

last

visit: 23.05.2019

OKBM Afrikantov. RITM-200 Reactor

Plant for the new Generation Universal

Icebreakers, Brochure, 2013.

A. Ozeretzko. Current SMR Developments

and Key Enablers for Deployment,

Focus Session International

Innovation: Small Modular Reactors:

a major Element of the Future

of Nuclear?, Annual Meeting on Nuclear

Technology, May 07-08, 2019,

Berlin (Germany).

J. Perera. Russia: Keeping the SMR

Dream Afloat, Nuclear Enginering

International, 03.10.2018. https://

www.neimagazine.com/features/

featurerussia-keeping-the-smrdream-afloat-6782084/,

last visit:

23.05.2019

Power. China begins Operation of Experimental

Fast Reactor, 09.01.2011.

https://www.powermag.com/china-begins-operation-of-experimental-fast-reactor/,

last visit:

23.05.2019

Power-Technology. Small Modular

Reactors: a Nu Design, 01.05.2017.

https://www.power-technology.

com/features/featuresmall-modular-reac-tors-a-nu-design-5809591/

Power. Rosatom’s Floating NPP: On a

Wave for future Energy, 21.11.2018.

https://www.utilities-me.com/

power/12137-knowledge-partnerrosatoms-floating-npp-on-a-wavefor-future-energy,

last visit:

23.05.2019

[SCA-15] A. Schaffrath, A. The Nuclear Simulation

of GRS, 1 st Chinese/German

Symposium on Fundamentals of

Advanced Nuclear Safety Technology,

Shanghai, March 2015

[SCA-17] A. Schaffrath, M. Sonnenkalb, W.

Luther, K. Velkov. The Nuclear Simulation

Chain of GRS, Independent

Journal for Nuclear Engineering

Kerntechnik Vol. 81 (2016), Issue 2,

pp. 105 – 116.

[SCA-18] A. Schaffrath, A.-K. Krüssenberg, S.

Buchholz, A. Wielenberg. Necessary

improvements of the GRS simulation

chain for the simulation of light-water-cooled

SMRs, Independent Journal

for Nuclear Engineering Kerntechnik

Vol. 83 (2018), Issue 3, pp.

169 – 176.

[SCA-19] A. Schaffrath. SMRs – Overview on

international Developments and

Safety Features, Focus Session International

Innovation: Small Modular

Reactors: a major Element of the

Future of Nuclear?, Annual Meeting

on Nuclear Technology, May 07-08,

2019, Berlin (Germany).

[SUH-16] H. Subki. Advances in Development

and Deployment of Small Modular

Reactor Design and Technology, AN-

NuR – IAEA – U.S. NRC Workshop on

Small Modular Reactor Safety and

Licensing, January 12-15, 2016, Vienna

(Austria).

[SUL-90] L.H. Suid. The Army’s Nuclear Power

Program: The Evolution of a Support

Agency, Greenwood Press 1990.

[THC-15] C. Thevenot, G.-M. Gautier, P. Marsault,

J.-F. Pignatel. Workshop on

Innovations in Water-Cooled Reactor

Technologies, OECD/NEA, Session

II-2, February 11-12, 2015, Issy-les-

Moulineaux (France).

[VTT-19] VTT Technical research Centre of

Finland Ldt. VTT coordinates an EU

project that paves the way for small

modular reactors in Europe,

28.03.2019. https://www.vttresearch.com/media/news/the-smallmodular-reactors-in-europe,

last

visit: 23.05.2019

[WNA-19] World Nuclear Association. Small

Modular Power Reactors,

19.05.2019. http://world-nuclear.

org/information-library/nuclearfuel-cycle/nuclear-power-reactors/

small-nuclear-power-reactors.

aspx2, last visit: 23.05.2019

[WNN-141] World Nuclear News. Construction

of CAREM underway, 18.03.2014.

http://www.world-nuclear-news.

org/NN-Construction-of-CAREMunderway-1002144.html,

last visit:

23.05.2019

[WNN-142] World Nuclear News. Helical steam

generator passes test, 25.06.2014.

http://www.world-nuclear-news.

org/NN-Helical-steam-generatorpasses-test-2702147.html,

last visit:

23.05.2019

[WNN-16] World Nuclear News. First vessel installed

in China’s HTR-PM Unit,

21.02.2016. http://www.world-nuclear-news.org/NN-First-vessel-installed-in-Chinas-HTR-PMunit-2103164.html,

last visit:

23.05.2019

[WNN-18] World Nuclear News. Viewpoint:

The advantages of Small Modular Reactors,

29.10.2018. http://www.

world-nuclear-news.org/Articles/

Viewpoint-The-advantages-of-

Small-Modular-Reactors, last visit:

23.05.2019

[WNN-19] World Nuclear News. Indian Government

takes steps to get back on

track, 11.02.2019. http://www.

world-nuclear-news.org/Articles/

Indian-government-takes-steps-toget-nuclear-back,

last visit:

23.05.2019

[ZUZ-16] Z. Zhang, Y. Dong, et al. The Shandong

Shidao Bay 200 MW e High-

Temperature Gas-Cooled Reactor

Pebble-Bed Module (HTR-PM) Demonstration

Power Plant, An Engineering

and Technological Innovation,

Engineering, Volume 2 (2016),

pp. 112 – 118.

l

VGB-Standard

Quality requirements for mineral oils

in power transformers

Ausgabe/edition 2016 – VGB-S-169-11-2015-11-EN

DIN A4, 26 Seiten, Preis für VGB-Mit glie der € 150,–, für Nicht mit glie der € 200,–, + Ver sand kos ten und MwSt.

DIN A4, 26 Pa ges, Pri ce for VGB mem bers € 150.–, for non mem bers € 200.–, + VAT, ship ping and hand ling.

This VGB Standard, “Quality requirements for mineral oils in power transformers”, was created by the

VGB Project Group “Transformers”. Its compilation was essentially the work of a working group established

for that purpose. It was composed of experts in laboratory analysis, planning and operation of power plant

transformers. This VGB-Standard should be understood as a guide. In the following, therefore, the terms

VGB-Standard and (VGB) guide are used interchangeably.

The VGB-Standard outlines the processes beginning with the procurement of the mineral oil and ending with

the commissioning and first start-up of the transformer, and in this context provides information and recommendations

regarding the demands on the quality of mineral oils.

The objective of the VGB-Standard is to safeguard the required quality criteria for the complete production

VGB PowerTech e.V. Fon: +49 201 8128 – 0

Deilbachtal 173

Fax: +49 201 8128 – 329

processes up to and including commissioning and first start-up. It is intended as a pragmatic 45257 Essen aid www.vgb.org for the users.

This VGB-Standard has been drawn up to the best of our knowledge, but is by no means exhaustive.

In essence, it is a recommendation.

VGB-Standard

Quality requirements

for mineral oils in

power transformers

VGB-S-169-11-2015-11-EN

VGB PowerTech Service GmbH

Verlag technisch-wissenschaftlicher Schriften

Deilbachtal 173 | 45257 Essen | Germany

Fon: +49 201 8128-200 | Fax: +49 201 8128-302 | Mail: mark@vgb.org | www.vgb.org/shop

49


Experimental and computational analysis of a passive containment cooling system VGB PowerTech 5 l 2020

Experimental and computational

analysis of a passive containment

cooling system with closed-loop heat

pipe technology

Lu Changdong, Ji Wenying, Yang Jiang, Cai Wei, Wang Ting, Cheng Cheng and Xiao Hong

Kurzfassung

Experimentelle und Code-Analyse eines

passiven Containment-Kühlsystems mit

geschlossenem Wärmeleitungskreislauf

In diesem Beitrag wird ein konzeptioneller Entwurf

eines passiven Containment-Kühlsystems

mit geschlossener Wärmerohrtechnologie

(PCSHP) unter Verwendung sowohl experimenteller

als auch rechnerischer Methoden untersucht.

Durch die Untersuchung der thermohydraulischen

Parameter im Systembetrieb,

wie Temperatur, Druck und Durchflussmenge,

konzentriert sich die Arbeit hauptsächlich auf

das Anlaufverhalten, das stationäre Betriebsverhalten,

die Wärmeübertragungskapazität

und die natürliche Zirkulationskapazität des

Systems. Daher werden das Hauptexperiment

und die GOTHIC-Simulation unter Anfahrbedingungen,

stationären Bedingungen und Simulationsbedingungen

der Nachzerfallswärme

durchgeführt. Die Anwendbarkeit und Konservativität

des GOTHIC-Modells wird durch den

Vergleich der Simulationsergebnisse mit den

experimentellen Ergebnissen bewertet. Die Rationalität

des Systemdesigns wird sowohl durch

das Hauptexperiment als auch durch die GO-

THIC-Simulation validiert. Es wird vorläufig

beurteilt, dass die Heatpipe-Technologie auf das

Passive Containment Cooling System (PCCS)

von Kernkraftwerken anwendbar ist. l

Authors

Lu Changdong

Cai Wei

China Nuclear Power Technology

Research Institute

Shanghai Branch

Shanghai, China, 200241

Ji Wenying

Yang Jiang

Wang Ting

Cheng Cheng

Xiao Hong

China Nuclear Power Technology

Research Institute

Shenzhen, Guangdong, China, 518031

In this paper, a conceptual design of Passive

Containment Cooling System with Closed-

Loop Heat Pipe Technology (PCSHP) is studied

using both experimental and computational

methods. By studying on the thermalhydraulic

parameters in system running,

such as temperature, pressure and flow rate,

the paper mainly focuses on the start-up

characteristics, the steady-state operating

characteristics, the heat transfer capacity

and the natural circulation capacity of the

system. Hence, the principle experiment and

GOTHIC simulation are carried out under

start-up conditions, steady-state conditions

and decay heat simulation conditions.

The applicability and conservatism of the

GOTHIC model is evaluated by comparing

the simulating results with the experimental

results. The rationality of the system design

is validated by both the principle experiment

and GOTHIC simulation. It is preliminarily

judged that the heat pipe technology is

feasible to apply to the Passive Containment

Cooling System (PCCS) of nuclear power

plant.

Introduction

Passive safety systems are adopted in the

design of the third generation nuclear power

plants represented by AP1000. Passive

safety systems can enhance safety, reliability

and economy of nuclear power plant by

using natural driving forces such as gravity,

natural circulation and natural convection

[IAEA, 2009].

For instance, Passive Containment Cooling

System (PCCS) is used to cool down and

depressurize the containment in case of an

accident and thus ensures the containment

integrity. The passive containment cooling

system of AP1000 uses the containment

vessel as the heat transfer surface. The heat

is released to the interior of the containment

vessel by condensation of vapor, and

then removed by means of an evaporating

water film combined with a natural circulation

of air outside the containment vessel

[Westinghouse, 2010; Li et al., 2017].

Unlike AP1000, a conceptual design of Passive

Containment Cooling System with

Closed-Loop Heat Pipe Technology (PC-

SHP) is shown in F i g u r e 1 . Loop heat

pipe technology has been widely employed

in the thermal management of spacecraft

and electronic component. Although it has

not been practically applied in nuclear

power plant, its future prospect is remarkable.

Loop heat pipes, as highly-effective

passive heat transfer devices which transfer

heat by internal phase change, have

many advantages such as good heat transfer

capacity, long transmission distance

and flexible application [Chenlong et al.,

2013; Jean et al., 2005]. Comparing to the

passive containment cooling system of

AP1000, PCSHP has simpler structure and

better heat transfer efficiency. Besides, it is

applicable to most existing nuclear power

plants without major changes in the containment

structure.

The heat in the containment is firstly absorbed

by the heat exchanger inside the

containment (evaporator). The heated

coolant boils and evaporates in the evaporator.

Driven by the density difference, the

vapor goes up along the loop to the heat

exchanger in the cooling water storage

tank outside the containment (condenser)

where it is condensed and returns to the

evaporator because of gravity. At this point,

a closed-loop circulation is completed. The

cooling water storage tank is constantly

heated till its ebullition. Steam in the tank

is released to atmosphere, the final heat

sink, and thus derives heat from the containment.

The heat exchanger inside the

containment is in a half-full state and

should maintain certain vacuum degree.

Apart from the activation and isolation

valves, the whole system does not comprise

other active components or any components

requiring alternating current power

support.

In order to validate the rationality of the

design of PCSHP and to provide essential

inputs for the design improvement and

safety analysis of the system, the principle

50


VGB PowerTech 5 l 2020

Experimental and computational analysis of a passive containment cooling system

Containment

Fig. 1. A conceptual design of PCSHP.

Evaporator

Cooling water Storage Tank

Isolation

Valve

Condenser

degree of the loop on the steady-state

operating characteristics such as the natural

circulation flow rate and the overall

heat transfer capacity.

––

To verify whether the system can reach

the steady state of natural circulation after

the core decay heat decreases by the

step change of heating power which simulates

the decline of the core decay heat.

To achieve the listed objectives, the experiment

is divided into three parts: start-up

conditions, steady-state conditions and decay

heat simulation conditions.

Before the experiment begins, the experimental

bench is at environmental condition.

The system filling rate is adjusted to

50% and the containment simulator and

the condensing tank are adjusted to the

specified water level.

Initial conditions of the start-up conditions

are shown in Ta b l e 2 . At the beginning,

the initial pressure (vacuum degree) of the

loop is set to 0.045 MPa by the vacuum

pump. The heater simulator is turned on

and maintains containment pressure at

0.35 MPa. Then the heating power is adjusted

to 109 kW and the isolation valves

are turned on simultaneously. Main operating

parameters such as temperature,

experiment was carried out. The principle

experiment focuses on the start-up characteristics,

steady-state operating characteristics,

heat transfer capacity and natural

circulation capacity of the system by studying

on the thermal-hydraulic parameters in

system running, such as temperature, pressure

and flow rate.

Based on conservative assumptions, we developed

a GOTHIC model of PCSHP to

study the thermal-hydraulic characteristics

of the system. The applicability and conservatism

of this model is evaluated by

comparing the simulating results with the

experimental results. The GOTHIC model

can be used to simulate the operating characteristics

of PCSHP, optimize system design

and provide a foundation model for

accident analysis and containment pressure

and temperature response analysis.

VV109

6 3 4

VV102 JV108

10

JV104 JV103

9

JV102

JV105

7

SV101

1

2

5

JV101

QV101

Fig. 2. The scheme of PCSHP principle experiment.

11

1

2

3

4

5

6

7

8

9

10

11

Containment Simulator

Lower Heat Pipe Heat Exchanger

Upper Heat Pipe Heat Exchanger

Condensing Tank

Heater Simulator

Condensing Tank Level Gauge

Vacuum Pump

Condensing Tank Drain Pipe

Containment Simulator Drain Pipe

Heat Pipe Drain Pipe

Loop Feed Pipe

Principle Experiment

The principle experiment is of significance

to study the key technology of PCSHP. By

the principle experiment, we study the system

characteristics, validate the rationality

of the system design and lay a foundation

for subsequent design improvements and

safety analysis.

The scheme of the principle experiment is

shown in F i g u r e 2 . Main parameters are

listed in Ta b l e 1 . The main experimental

equipment include a heater simulator, a

condensing tank, two heat pipe heat exchangers,

a containment simulator and a

steel platform which support experimental

bench. The containment simulator is used

to simulate the containment, the heater

simulator is used to simulate heat source inside

the containment, the condensing tank

is used to simulate the cooling water storage

tank outside containment and the two heat

pipe heat exchangers are used to model the

evaporator and condenser of PCSHP.

The objectives of PCSHP principle experiment

are:

––

To study the influence of the initial containment

pressure on the start-up characteristics

of PCSHP and obtain operating

parameters such as the pressure,

temperature and start-up flow rate of the

system.

––

To study the influence of the containment

pressure and the initial vacuum

pressure, flow rate are collected by computer

during system start-up. By repeating

the experiment at initial containment pressure

of 0.40 MPa, 0.45 MPa and 0.52 MPa,

the start-up characteristics of the system

are studied.

As for the study of the steady-state characteristics

of PCSHP with different containment

pressure and different initial vacuum

degree, the initial conditions are listed in

Ta b l e 3 . The initial temperature of the

condensing tank is saturated temperature

(about 100 °C). In order to study the influence

of the containment pressure and the

initial vacuum degree on the natural circulation

flow rate of the system, the initial

vacuum degree of the loop is set and the

51


Experimental and computational analysis of a passive containment cooling system VGB PowerTech 5 l 2020

Tab. 1. System parameters of PCSHP principle experiment.

Equipments

Evaporator

Condenser

Height difference between evaporator and

condenser

Ascending leg

Descending leg

System filling rate

Parameters

Outer diameter of single heat exchange tube: 57 mm

Wall thickness of single heat exchange tube: 2.5 mm

Number of heat exchange tubes: 37

Length of single heat exchange tubes: 1.2 m

Outer diameter of single heat exchange tube: 57 mm

Wall thickness of single heat exchange tube: 2.5 mm

Number of heat exchange tubes: 37

Length of single heat exchange tubes: 1.2 m

5.5 m

Inner diameter of tube: 150 mm

Inner diameter of tube: 20 mm

50 % (Volume faction of the heat exchange tubes in

the Evaporator)

Initial vacuum degree Start-up condition: 0.045 MPa 1

Steady condition: various value

Water level of condensing tank 2.6 m (total height: 3.0 m)

Diameter of condensing tank 1.5m

Inner diameter of containment simulator

Height of containment simulator

Water level of containment simulator

2.0 m (wall thickness: 12 mm)

3.0 m

1.3 m

1

Unless otherwise specified, pressure in this paper refers to absolute pressure.

Tab. 2. Start-up conditions.

Initial containment

pressure

Heating power in

the containment

Initial vacuum

degree of the loop

Initial temperature of

consensing tank

0.35 MPa 109 kW 0.045 MPa Ambient temperature

0.40 MPa 109 kW 0.045 MPa Ambient temperature

0.45 MPa 109 kW 0.045 MPa Ambient temperature

0.52 MPa 109 kW 0.045 MPa Ambient temperature

Tab. 3. Steady-state conditions.

Initial vacuum degree of

the loop

Containment pressure

Initial temperature of

consensing tank

0.021 MPa 0.30 MPa ~ 0.52MPa Saturated temperature

0.045 MPa 0.30 MPa ~ 0.52MPa Saturated temperature

0.065 MPa 0.30 MPa ~ 0.52MPa Saturated temperature

0.100 MPa 0.30 MPa ~ 0.52MPa Saturated temperature

Tab. 4. Decay heat simulation conditions.

Initial vacuum

degree of the

loop

Initial

containment

pressure

Initial containment

temperature

Initial temperature of

the condensing tank

Heating power

0.021 MPa 1 atm Ambient temperature Saturated temperature 10 kW ~ 80 kW

0.045 MPa 1 atm Ambient temperature Saturated temperature 10 kW ~ 80 kW

0.065 MPa 1 atm Ambient temperature Saturated temperature 10 kW ~ 80 kW

0.100 MPa 1 atm Ambient temperature Saturated temperature 10 kW ~ 80 kW

containment pressure is maintained constant.

When the temperature and flow rate

of the loop reach a steady state, the natural

circulation flow rate of the system is recorded.

Initial conditions of the decay heat simulation

conditions are shown in Ta b l e 4 .

The decay heat simulation conditions

study on the steady-state characteristics of

PCSHP under different input power. The

decline of the core decay heat is simulated

by the step change of heating power to verify

whether the system can reach the steady

state of natural circulation after the core

decay heat decreases. In order to study the

influence of heating power and initial vacuum

degree on the steady-state characteristics,

the heating power of the heater simulator

and the initial vacuum degree of the

loop are set as Ta b l e 4 . Before the system

starts, the condensing tank is at saturated

temperature (about 100 °C), the containment

is at environmental condition. Once

the temperature and flow rate of the loop

reach a steady state, the natural circulation

flow rate of the system is recorded.

GOTHIC modeling of the principle

experiment

GOTHIC (Generation of Thermal Hydraulic

Information for Containment) is a general

purpose code for thermal-hydraulic

calculation, mainly used for containment

design, license application, safety analysis

and operational analysis of nuclear power

plants. GOTHIC is capable of modeling

multiphase fluid flow involving steam, gases,

pools, droplets, bubbles and ice and the

interaction between phases, including sublimation,

evaporation, condensation, boiling

and flashing as well as the heat transfer

inside and between solids and fluids [EPRI,

2014].

The GOTHIC version 8.1 code is used to

model the principle experiment. The model

diagram is shown in F i g u r e 3 . Wherein,

the boundary condition 1P refers to the

environment, the control volume 1 is the

containment, the control volume 2 is the

heat exchanger in the containment (evaporator),

and the control volume 5 is the heat

exchanger in the cooling water storage

tank outside the containment (condenser),

and the control volume 8 is the cooling water

storage tank outside the containment,

control volume 3, control volume 4, control

volume 6 and control volume 7 indicate

connected pipes [Hui-Un et al., 2013;

Philipp et al., 2011].

In order to accurately simulate the thermal

stratification effect and natural circulation

in the containment, the evaporator and the

condenser (control volume 1, control volume

2 and control volume 5) are subdivided.

That is to say, a large control volume is

divided into many small subdivided volumes.

Conversely, other control volumes

are simulated using lumped parameters.

The flow between the above control volumes

is simulated by the flow path, wherein

the cooling water storage tank outside

containment is connected to the environment

with flow path 7, which simulates the

chimney structure of the storage tank so

that the heated steam in the storage tank

can be smoothly discharged. The heating

power in the containment is simulated using

a heater component. Valves are placed

upstream and downstream of the evaporator

to model system start-up and shutdown.

The heat transfer between the condenser

and the cooling water storage tank outside

containment is simulated by the thermal

conductor 1. The heat transfer between the

condenser and the thermal conductor 1

uses a diffusion layer model (DLM) to simulate

steam condensation. The temperature

rise of the cooling water storage tank

outside containment is simulated by the

FILM heat transfer model that GOTHIC

built in. At this point, the GOTHIC code au-

52


VGB PowerTech 5 l 2020

Experimental and computational analysis of a passive containment cooling system

Contaiment

Environment

transfer, sub-cooled nucleate boiling heat

transfer, saturated nucleate boiling heat

transfer, film boiling heat transfer, and

single-phase steam natural convection heat

transfer in the evaporator. The GOTHIC

code is able to recognize the above mentioned

heat transfer modes and automatically

switches relations. The heat transfer

inside both 2 thermal conductors is heat

conduction. Since the pipe materials are

all made of stainless steel, the properties

of the stainless steel are used such as density,

thermal conductivity and specific

heat.

In the model, the ambient temperature is

conservatively set at 30 °C, and atmospheric

pressure is taken as 101 kPa. Conservatively,

the heat absorption of the equipment,

walls, floors or ceilings isn’t considered,

neither does the heat loss of the

experimental system to the environment.

Other initial conditions and parameters are

exactly the same as those in the experiments.

Condenser

Simulation results and analysis

Thermal Conductor

Fig. 3. GOTHIC model of PCSHP.

Valve

Evaporator

tomatically selects the single-phase liquid

heat transfer relationship built in the FILM

model. The heat transfer between the

evaporator and the containment is simulated

by the thermal conductor 2, wherein

the condensation of the containment simulated

with the Uchida relation. And the

boiling heat transfer of the evaporator is

simulated with the FILM heat transfer

model that GOTHIC built in. There may be

multiple heat transfer modes such as single-phase

liquid natural convection heat

Flow Path

Cooling Water

Storage Tank

The principle experiment is modeled using

the GOTHIC code, and the start-up conditions,

steady-state conditions and decay

thermal simulation conditions are simulated

and analyzed.

Start-up conditions

In the start-up conditions, under different

initial containment pressures, the curves of

containment pressure over time are shown

in F i g u r e 4 , where (a) shows the experimental

results and (b) shows GOTHIC

simulation results (P1 indicates the initial

containment pressure). When the heat

transfer capacity of PCSHP is greater than

the heating power, the containment pressure

will gradually decrease. Conversely,

when the heat transfer capacity of PCSHP

is less than the heating power, the containment

pressure will gradually increase. According

to the experimental results, when

the initial containment pressure is

0.35 MPa and 0.40 MPa, the containment

pressure begins to rise after a brief decline.

When the initial containment pressure is

0.45 MPa and 0.52 MPa, the containment

pressure will gradually decrease after the

brief decline. However the GOTHIC simulation

results shows that the containment

pressure at all conditions begin to rise after

a brief decline. Nevertheless, the trend of

0.55

0.55

0.50

0.50

Containment Pressure in MPa

0.45

0.40

0.35

0.30

P 1 = 0.35MPa

P 1 = 0.40MPa

0.45

0.40

0.35

0.30

P 1 = 0.35MPa

P 1 = 0.40MPa

0.25

P 1 = 0.45MPa

P 1 = 0.52MPa

0.25

P 1 = 0.45MPa

P 1 = 0.52MPa

0.20

0.20

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Containment Pressure in MPa

Time in s

Time in s

(a) Experimental results

(b) GOTHIC simulation results

Fig. 4. Containment pressure in start-up conditions.

53


Experimental and computational analysis of a passive containment cooling system VGB PowerTech 5 l 2020

Flow Rate of the Loop in m 3 /h

0.6

0.5

0.4

0.3

0.2

0.1

P 1 = 0.35MPa

P 1 = 0.40MPa

P 1 = 0.45MPa

P 1 = 0.52MPa

Flow Rate of the Loop in m 3 /h

0.6

0.5

0.4

0.3

0.2

0.1

P 1 = 0.35MPa

P 1 = 0.40MPa

P 1 = 0.45MPa

P 1 = 0.52MPa

0.0

0.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time in s

Time in s

(a) Experimental results

(b) GOTHIC simulation results

Fig. 5. Flow rate of the loop in start-up conditions.

0.25

0.20

P 1 = 0.35MPa

P 1 = 0.40MPa

P 1 = 0.45MPa

P 1 = 0.52MPa

0.25

0.20

P 1 = 0.35MPa

P 1 = 0.40MPa

P 1 = 0.45MPa

P 1 = 0.52MPa

Loop Pressure in MPa

0.15

Loop Pressure in MPa

0.15

0.10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time in s

0.10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time in s

(a) Experimental results

(b) GOTHIC simulation results

Fig. 6. Loop pressure in start-up conditions.

the containment pressure is about the same

in the simulation results and the experimental

result, but the simulation results

underestimate the heat transfer capacity of

PCSHP compares to experimental results.

In the start-up conditions, under different

initial containment pressure, the curves of

the flow rate of the loop over time are

shown in F i g u r e 5 . After the loop heat

pipe is activated, the natural circulation

flow rate reaches a large value instantly and

decreases rapidly at a certain moment, then

the flow rate oscillates and gradually stabilizes.

Under same boundary conditions, the

flow rate in the loop tends to increase with

the rise of initial containment pressure. The

comparison of the simulation results and

the experimental results shows that the

trend of the flow rate of the loop is about

the same. However, the flow rate obtained

by the simulation results is relatively small

compared to the experimental results. Generally,

the heat transfer capacity of the system

is positive correlated with the circulating

flow rate, which also indicates that the

simulation results underestimate the heat

transfer capacity of PCSHP.

In the start-up condition, under different

initial containment pressures, the curves of

loop pressure over time are shown in F i g -

u r e 6 . After the system is started, the loop

pressure drops rapidly, and it rises at a certain

moment and gradually stabilizes,

maintaining a tendency to rise slowly. Under

the same boundary condition, the flow

rate in the loop tends to increase with the

rise of initial containment pressure. The

comparison between the simulation results

and the experimental results shows that

the trend of the loop pressure is about the

same, but the loop pressure obtained by

simulation results are relatively small compared

to the experimental results.

In the start-up condition, with initial containment

pressure at 0.35 MPa, the curves

of the fluid temperature at various positions

of the loop over time are shown in

Figure 7.

The evaporator outlet temperature is substantially

equal to the condenser inlet temperature,

and is stabilized at about 110 °C.

The condenser outlet temperature is slightly

higher than 30 °C. The comparison of the

results shows that the simulation results

are in good agreement with the experimental

results of the above three parameters,

but the evaporator inlet temperature

differs greatly. In the experimental results,

the evaporator inlet temperature decreases

rapidly after the start-up of PCSHP and remains

equal to the condenser outlet. However

in the simulation results, the evaporator

inlet temperature rises after a brief

drop. This is mainly because the evaporator

inlet temperature is greatly affected by

the evaporator in the GOTHIC simulation.

Steady-state conditions

In the steady-state conditions, under different

initial vacuum degrees of the

loop, the curves of the steady natural circulation

flow rate over containment pressure

54


VGB PowerTech 5 l 2020

Experimental and computational analysis of a passive containment cooling system

150

120

150

120

Evaporator Inlet

Evaporator Outlet

Condenser Inlet

Condenser Outlet

Temperatur in o C

90

60

30

Evaporator Inlet

Evaporator Outlet

Condenser Inlet

Condenser Outlet

Temperatur in o C

90

60

30

0

0 200 400 600 800 1000 1200 1400

Time in s

0

0 200 400 600 800 1000 1200 1400

Time in s

(a) Experimental results

(b) GOTHIC simulation results

Fig. 7. Fluid temperature at various positions of the loop in start-up conditions.

0.16

0.16

Flow Rate of the Loop in m 3 /h

0.14

0.12

0.10

0.08

0.06

0.04

0.02

P 0 = 0.021MPa

P 0 = 0.045MPa

P 0 = 0.065MPa

P 0 = 0.100MPa

Flow Rate of the Loop in m 3 /h

0.14

0.12

0.10

0.08

0.06

0.04

0.02

P 0 = 0.021MPa

P 0 = 0.045MPa

P 0 = 0.065MPa

P 0 = 0.100MPa

0.00

0.30 0.35 0.40 0.45 0.50 0.55

0.00

0.30 0.35 0.40 0.45 0.50 0.55

Containment Pressure in MPa

Containment Pressure in MPa

(a) Experimental results

(b) GOTHIC simulation results

Fig. 8. Steady natural circulation flow rate of the loop over containment pressure in steady-state conditions.

are shown in F i g u r e 8 (P0 indicates the

initial vacuum degree of the loop). With

the same vacuum degree, when the containment

pressure rises, the steady natural

circulation flow rate of the loop tends

to increase. This is mainly because the containment

temperature goes up with the

rise of containment pressure and the temperature

difference between the evaporator

and the containment increases. Larger

temperature difference results in a

higher heat transfer coefficient in the evaporator,

which leads to an increased loop

circulating dive head, and a larger natural

circulation flow rate is observed accordingly.

This demonstrates that the heat

transfer capacity of the system is highly

adaptive with changes in containment

pressure.

It can also be seen from F i g u r e 8 that

when at same containment, the higher the

initial vacuum degree of the loop (the lower

the initial loop pressure), the larger the

steady natural circulation flow rate.

It can be seen from the comparison of the

results that the simulation results agree

well with the experimental results. However,

the natural circulation flow rate obtained

by the simulation is relatively small

compares to the experimental results.

Decay heat simulation conditions

In the decay heat simulation condition, under

different initial vacuum degrees of

loop, the curves of the steady natural circulation

flow rate over heating power are

shown in F i g u r e 9 . The simulation results

are in good agreement with the experimental

results. Both the simulation results

and the experimental results indicate

that under same initial vacuum degree, the

steady natural circulation flow rate of the

loop increases linearly with the increase of

heating power. Generally, the heat transfer

capacity of the system is positive correlated

with the circulating flow rate. Hence, the

heat transfer capacity of the system is highly

adaptive with the change of decay heat.

Under the same heating power, the steady

natural circulation flow rate of the loop

with different initial vacuum is basically

the same. The initial vacuum of the heat

pipe has little effect on the natural circulation

flow rate when the system is stable.

This indicates from another angle that heat

pipe system is an adaptive system. Certainly,

the initial vacuum degree has a certain

influence on the heat transfer capacity of

the heat pipe system, but it cannot change

the inherent characteristics of the system.

The applicability of the heat pipe technology

on PCCS is validated by both the principle

experiment and GOTHIC simulation.

PCSHP is able to cool down and depressurize

the containment. It is preliminarily

judged that the heat pipe technology is feasible

to apply to the Passive Containment

Cooling System (PCCS) of nuclear power

plant.

The simulation results of the GOTHIC model

are in good agreement with the experimental

results. However, compares to the

55


Experimental and computational analysis of a passive containment cooling system VGB PowerTech 5 l 2020

0.15

0.20

P 0 = 0.021MPa

P 0 = 0.021MPa

Flow Rate of the Loop in m 3 /h

0.12

0.09

0.06

0.03

P 0 = 0.045MPa

P 0 = 0.065MPa

P 0 = 0.100MPa

Flow Rate of the Loop in m 3 /h

0.15

0.10

0.05

P 0 = 0.045MPa

P 0 = 0.065MPa

P 0 = 0.100MPa

0.00

0.00

0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100

Heating Power

Heating Power

(a) Experimental results

(b) GOTHIC simulation results

Fig. 9. Steady natural circulation flow rate of the loop over heating power in decay heat simulation conditions.

principle experiment, the GOTHIC model

underestimates the heat transfer capacity of

the PCSHP because some conservative assumptions

are made in the model.

Conclusion

In this paper, a conceptual design of PC-

SHP is studied using both experimental

and computational methods. The rationality

of the system design is validated by

both the principle experiment and GOTH-

IC simulation. It is preliminarily judged

that the heat pipe technology is feasible

to apply to the PCCS of nuclear power

plant.

The applicability and conservatism of the

GOTHIC model is evaluated by comparing

the simulating results with the experimental

results. The simulation results of

the GOTHIC model are in good agreement

with the experimental results and the

main parameters are within reasonable

and credible range. The GOTHIC model

can be used to simulate the operating

characteristics of PCSHP, optimize system

design and provide a foundation model

for accident analysis and containment

pressure and temperature response

analysis.

The main conclusions drawn from this paper

are as follows:

––

The simulation results of the GOTHIC

model are in good agreement with the

experimental results, which sufficiently

verifies the applicability and rationality References

of the GOTHIC model;

––

The simulation results of the GOTHIC [1] IAEA. 2009. Passive Safety Systems and Natural

Circulation in Water Cooled Nuclear Power

Plants, IAEA-TECDOC-1624. IAEA, Aus-

model underestimates the overall heat

transfer capacity of the system, which tria.

indicates the conservatism of the GOTH- [2] Westinghouse Electric Company LLC, 2010.

IC model;

AP1000 Design Control Document, Revision

––

At the same initial vacuum degree of the 19. Westinghouse Electric Company LLC,

loop, the steady natural circulation flow America.

rate tends to increase with the rise of [3] Li Jingya, Zhang Xiaoying, 2017. Simulations

for cooling effect of PCCS in hot leg SB-LOCA

containment pressure, which shows that

of 1000 MW PWR, Nuclear Engineering and

system heat transfer capacity is highly Design, 320, 222-234.

adaptive with changes in containment [4] Chenlong Wang, Zhangpeng Guo, 2013.

pressure;

Transient behavior of the sodium-potassium

––

When the containment pressure is stabilized

at the same value, the higher the al system of molten salt reactor, Progress in

alloy heat pipe in passive residual heat remov-

initial vacuum degree of the loop (the

Nuclear Energy, 68 , 142-152.

[5] Jean-Michel P. Tournier, Mohamed S. ELlower

the initial loop pressure), the larger

the steady natural circulation flow tor for Space Nuclear Reactor Power Systems,

Genk, 2005. Liquid Metal Heat Pipes Radia-

rate.

3rd International Energy Conversion Engineering

Conference, San Francisco, Califor-

––

At the same initial vacuum degree of the

loop, the system flow rate increases linearly

with the rise of heating power, [6] EPRI. 2014. GOTHIC Thermal Hydraulic

nia, August 15-18.

showing that the heat transfer capacity

Analysis Package User Manual, Version 8.1,

Electric Power Research Institute, America.

of the system is highly adaptive with the

[7] Hui-Un Ha, Han-Gon Kim, 2013. GOTHIC

change of decay heat;

Simulation of Passive Containment Cooling

––

With the same heating power, the steady System, Transactions of the Korean Nuclear

flow rate of the loop under different initial

vacuum is basically the same, which May 30-31, 2013.

Society Spring Meeting, Gwangju, Korea,

demonstrates from another angle that the [8] Philipp Broxtermann, Hans-Josef Allelein,

heat pipe system is an adaptive system. 2011. Simulation of AP1000’s Passive Containment

Cooling with the German Containment

Code System COCOSYS, Nuclear Ener-

The initial vacuum has a certain influence

on the heat transfer capacity of the heat gy for New Europe 2011, 20th International

pipe system, but it cannot change the inherent

characteristics FIND of the system. & GET FOUND! POWERJOBS.VGB.ORG

Conference, Bovec, Slovenia, September

12-15.

l

ONLINE–SHOP | WWW.VGB.ORG/SHOP

56

JOBS IM INTERNET | WWW.VGB.ORG


VGB PowerTech 5 l 2020

Physical and chemical effects of containment debris on the emergency coolant recirculation

Physical and chemical effects of

containment debris on the emergency

coolant recirculation

Jisu Kim and Jong Woon Park

Kurzfassung

Physikalische und chemische

Auswirkungen von Containment-

Ablagerungen auf die

Notkühlmittelrückführung

Physikalische und chemische Auswirkungen

von Containment-Ablagerungen auf die Leistung

der Notfall-Kühlmittelrückführung werden

untersucht, um einen Einblick in die kosteneffektiven

Anlagenmodifikationen zur Lösung

des allgemeinen Sicherheitsproblems-191

des US-NRC zu erhalten. Die Auswirkungen von

Ablagerungen auf die Leistung des Sumpfsiebs

werden durch die Berechnung des Druckverlusts

unter Verwendung der NUREG/CR-6224-Korrelation

bewertet. Die Menge der drei vorherrschenden

Arten von Ausfällungen, d.h. Natriumaluminiumsilikat

(NaAlSi 3 O 8 ), Aluminiumoxidhydroxid

(AlOOH), Kalziumphosphat

(Ca 3 (PO 4 ) 2 ) nach 30 Tagen ECCS-Missionszeit

wird unter verschiedenen Umweltbedingungen

mit Hilfe chemischer Modelle nach WCAP-

16530-NP bewertet. Der Trümmerabscheider

wird als praktikable Konstruktionsoption zur

Reduzierung von partikelförmigem Trümmerteilchen

wie z.B. unqualifizierten Beschichtungen

betrachtet. Die Schlüsselparameter jeder

Wirkung werden abgeleitet, und durch die vorliegende

Analyse werden Empfehlungen zur

Verringerung ihrer nachteiligen Auswirkungen

gegeben: (a) Die Menge an unqualifiziertem Beschichtungsabfall

ist eine Hauptquelle für Partikelabfall

und hat eine große nachteilige Auswirkung

auf den Sumpfsiebkopfverlust, indem

sie die Porosität in der faserigen Isolierung reduziert,

(b) die Cal-Sil-Isolierung reagiert mit

TSP-Puffer und erhöht die Bildung eines gummiartigen

chemischen Fällungsmittels erheblich,

(c) Die Sprühzeit erhöht die chemischen

Nebenprodukte, aber die Wirkung ist geringer

als die von Puffermitteln und unqualifizierten

Beschichtungen, (d) Der Trümmerabscheider

kann, wenn er verifiziert ist, eine entscheidende

Rolle bei der Verringerung des Druckverlusts

spielen, der durch Beschichtungen und faserige

Trümmergemische entsteht.

l

Authors

Jisu Kim

Jong Woon Park

Dongguk University

Dongdae-ro, Gyeongju, Gyeongbuk,

South Korea

Physical and chemical effects of containment

debris on the performance of emergency coolant

recirculation are investigated to get insight

on the cost-effective plant modifications

to resolve USNRC’s Generic Safety Issue-191.

The effects of debris sources on the sump

screen performance are evaluated through

the head loss calculation using NUREG/CR-

6224 correlation. The amount of three predominant

types of precipitates, i.e., sodium

aluminum silicate (NaAlSi 3 O 8 ), aluminum

oxyhydroxide (AlOOH), calcium phosphate

(Ca 3 (PO 4 ) 2 ) after 30 days of ECCS mission

time are evaluated under various environmental

conditions using WCAP-16530-NP

chemical models. The debris interceptor is

considered as a viable design option to reduce

particulate debris such as unqualified coatings.

The key parameters of each effect are

deduced and recommendations for reducing

their adverse effects are made through the

present analysis: (a) The amount of unqualified

coating debris is a major source of particulate

debris and has a great adverse effect

on the sump screen head loss by reducing porosity

in the fibrous insulation, (b) The Cal-

Sil insulation reacts with TSP buffer and

significantly increases the generation of a

gum-like chemical precipitant, (c) Spray

time increases the chemical byproducts but

the effect is smaller than that of buffer agent

type and unqualified coating, (d) The debris

interceptor, when verified, may play a vital

role reducing head loss generated by coatings

and fibrous debris mix.

Introduction

A primary safety issue regarding long-term

recirculation core cooling following a

LOCA (Loss of Coolant Accident) is that

LOCA-generated debris may be transported

to the recirculation sump screen, resulting

in adverse blockage on the sump screen

and deterioration of available NPSH (Net

Positive Suction Head) of ECCS (Emergency

Core Cooling System). USNRC identified

this as Generic Safety Issue (GSI) 191

[1] and issued the Generic Letter 04-02 [2]

to resolve the issue. The GL required that

all PWR owners perform an engineering

assessment of their containment recirculation

sumps to ensure they will not suffer

from excessive blockage. The guidance report

(GR) [3] for PWR sump performance

evaluation has been developed by NEI (Nuclear

Energy Institute) and approved by the

USNRC [4].

The objective of the assessment is to derive

required plant modifications including

new insulation, sump screen, etc. of a Korean

nuclear power plant for 10-year life

extension. To derive the cost-effective

modifications, the effects of physical and

chemical conditions on the performance of

the ECCS recirculation sump with respect

to head loss are parametrically investigated.

The physical and chemical conditions

are debris source, containment environments

and debris interceptor as a candidate

design option

Analysis Methods

NUREG/CR-6224 Head Loss Correlation

The effects of debris sources on the sump

screen are evaluated through head loss calculations

using NUREG/CR-6224 correlation

[5]. This is applicable for laminar,

transient, and turbulent flow regimes

through mixed debris beds (i.e., debris

beds composed of fibrous and particulate

debris). This correlation is approved by US-

NRC for the determination of head loss [4]

and is given by:

(1)

The fluid velocity(U), is given by simply in

terms of the volumetric flow rate(Q) and

the effective screen area(A) as:


(2)

The mixed debris bed solidity α m is given

by:

(3)

For debris deposition on a flat surface of a

constant size, the compression rate (c) relates

the actual debris bed thickness (∆L m )

57


Physical and chemical effects of containment debris on the emergency coolant recirculation VGB PowerTech 5 l 2020

and the theoretical fibrous debris bed

thickness (∆L o ) via the relation:


(4)

Compression of the fibrous bed due to the

pressure gradient across the bed is also accounted,

which must be satisfied in parallel

to the previous head loss equation, Eq.(1),

is given by (valid for ratios of ∆H/∆L o > 0.5

ft-water/inch-insulation):

(5)

where “K” is a constant that depends on the

insulation type. The value of K is 1.0 for

NUKON fiber. Test data or a similitude

analysis are required to determine “K” for

fibrous materials that are dissimilar to NU-

KON insulations.

Each constituent of debris has a surface-tovolume

ratio associated with it based on

the characteristic shape of that debris type.

For typical debris type, we have [3]:

Cylindrically shaped debris: S v = 5/diam

Spherically shaped debris: S v = 6/daim

Flakes (flat plates):

S v = 2/thick

where “diam” is the diameter in feet of the

fiber or spherical particle, and “thick” is the

thickness in feet of the flake/chip.

The average surface-to-volume ratio of

various types of debris constituents is calculated

as:


(6)

where v is the microscopic volume of the

constituent and the subscript “n” refers to

the n-th constituent.

cipitates due to chemical reactions with

other dissolved materials. These chemical

products may become another source of

debris loading to be considered in sump

screen performance and downstream effects.

Recently Westinghouse Owners Group

(WOG) proposed a four step process for

evaluating the post-accident chemical effects

in containment sump fluids to support

GSI-191 [6]. As shown in F i g u r e 1 , using

ICET test results and plant data, the chemistry

bench tests are performed and a

chemical model is developed to identify

the type and amount of chemical products

that are produced. This chemical product

information generated from the bench testing

and the chemical model is used as an

input to performance testing to be conducted

by licenses and vendors of replacement

sump screens.

Through bench test, three types of predominant

chemical precipitates are identified

for the plant using NaOH or TSP (Tri-Sodium

Phosphate) as a buffer agent:

––

Sodium aluminum silicate (NaAlSi 3 O 8 )

––

Aluminum oxyhydroxide (AlOOH)

––

Calcium phosphate (Ca 3 (PO 4 ) 2 ) (if TSP

is used)

Each quantity of precipitate generated can

be calculated as followings:

[NaAlSi 3 O 8 ] = 3.11 [Si], if [Si] < 3.12 [Al]

= 9.72 [Al], if [Si] > 3.12 [Al]

(7)

[AlOOH]

= 2.22 {[Al] - 0.32 [Si]}(8)

[Ca 3 (PO 4 ) 2 ] = 2.58 [Ca] (if TSP is used)(9)

where for each chemical species, concentration

data generated during the singleeffect

bench testing at specific chemistry

conditions is used in a regression analysis

to develop release equations as a function

of temperature, pH, and the concentration

of that species. Equations are developed for

each predominant source material for each

chemical species (Ca, Al, and Si). The detailed

information about the equations for

the material release rate is described in the

reference 6.

Results and Discussion

Effects of Debris Sources

The sump screen head loss calculations

with various debris loadings on the sump

screen are performed using USNRC’s

NUREG/CR-6224 correlation [5]. The

screen area is assumed as 1,000 ft 2 with

maximum ECCS flow rate of 7,000 gpm.

The sump pool temperature and pressure

are assumed as 212 °F and 14.7 psi, respectively.

The debris source and their characteristics

are summarized in Ta b l e 1 . It is

assumed that the particulate debris mixture

consists of 85 % of coatings, 10 %

CalSil and 5 % of latent dust/dirt debris by

mass. The head loss by RMI (Reflective

Metal Insulation) debris bed is not considered

because its effect on the head loss is

negligible

Tab. 1. Debris Source and Characteristics

[3, 4].

Debris

Type

Asfabricated

Density

[lbm/ft 3 ]

Particle

Density

[lbm/ft 3 ]

Sv

[ft -1 ]

Fiber 2.4 175 171,700

Coatings - 94 183,000

CalSil - 115 600,000

Dirt/Dust - 169 106,000

WCAP-16530 Post-Accident Chemical

Effects Evaluation Method

The materials inside containment may dissolve

or corrode when exposed to the reactor

coolant and spray solutions. This would

produce oxide particulate corrosion products

and a potential for formation of pre-

10

9

8

7

4-in Initial Fibrous

Debris Loading

Particulate Debris Mixture Loading

0 lbm (Fiber Only)

500 lbm

1000 lbm

1500 lbm

2000 lbm

3000 lbm

1. ICET Test:

Basic Information

on post-accident

chemical effects

2. Plant Data:

Identification of materials

and conditions to be

covered in bench test

3. Chemistry Bench Testing:

Develop information on chemical products

to be used with testing replacement sump

screens with plant specific debris loading

Head Loss in ft-water

6

5

4

3

2

1

Debris Packing Limit

of 6224 Correlation

6-in Initial Fibrous

Debris Loading

4. Screen Performance Tesing:

“Proof of Performance” testing performed

for replacement sump screens

0

0 200 400 600 800

Fiber Volume in ft 3

Fig. 1. WCAP-16350 Post-Accident Chemical

Effects Evaluation Methodology.

Fig. 2. Head loss with various mixed debris loading on the 1,000 ft 2 sump screen

(7,000 gpm ECCS flow).

58


VGB PowerTech 5 l 2020

Physical and chemical effects of containment debris on the emergency coolant recirculation

The head loss with various loadings of fiber

and particulate mixture debris is shown in

F i g u r e 2 . The head losses by fiber only

debris beds are significantly lower than

mixed debris beds of fiber and particulate.

The head loss appreciably increases with

the amount of particulate debris. Head loss

drastically increases with the decrease of

the amount of fiber debris because the

mass ratio of particulate to fiber increases.

The debris packing limit is shown in F i g -

u r e 2 , which is closely related to the maximum

solidity limit. Above this limit, the

particulate is the predominant ingredient

and the fiber is embedded in the matrix.

Such a condition of the debris bed is physically

unacceptable. This situation can arise

in the plant with a large particulate debris

source. Therefore the mass ratio of particulate

to fibrous debris is an important parameter

in the evaluation of the head loss.

Major source of particulate debris is the

unqualified coatings in the containment

because the generation and transport of

unqualified coatings are assumed to be

100% in the GR [3].

The 4-in and 6-in initial fibrous debris

loading lines are shown in F i g u r e 2 . US-

NRC recommended that NUREG/CR-6224

correlations be used within the range of

1/8 to 4 inches initial fibrous debris loading

(for NUKON) because it is not fully

validated in the range exceeding 4 inches.

In that case, the screen size should be increased

or NUKON insulation should be

replaced by an alternate insulation (i.e.,

RMI). As mentioned above, the head loss is

closely related to the particulate-to-fibrous

debris mass ratio. The screen size should

be determined carefully considering the

cost effects between the reductions of the

amounts of fibrous and particulate debris.

Effects of Containment Environmental

Conditions

The prediction model for head loss by

chemical products is currently not available

and its effect on the head loss is evaluated

only by the screen vendor’s performance

testing. In the present analysis, the

amounts of the potential chemical precipitates

in the various containment environments

are evaluated using WCAP-16530-

NP methodology [6]. The amount of three

predominant types of precipitates, i.e., sodium

aluminum silicate (NaAlSi 3 O 8 ), aluminum

oxyhydroxide (AlOOH), calcium

phosphate (Ca 3 (PO 4 ) 2 ) after 30 days of

ECCS mission time are evaluated under

various environmental conditions as

shown in Ta b l e 2 . The typical environmental

conditions of a Korean Westinghouse

two loop nuclear power plant are

used as the following input data in the present

analysis:

––

pH and temperature profiles of sump and

containment during 30 days,

––

The maximum pool volume during the

recirculation phase after LBLOCA,

Tab. 2. Environmental Conditions in the Present

Study.

Amount of Cal-Sil insulation

[ft 3 ]

0, 50, 100

Spray Termination Time [sec] Short: 95,000

Long; 1,000,000

Buffer Agent

NaOH, TSP

––

Amount of metallic aluminum (submerged

and unsubmerged),

––

Amount of E-glass within ZOI (such as

NUKON)

––

Concrete surface area within ZOI (submerged

and unsubmerged).

The presence of Cal-Sil insulation increases

the releases of calcium and silicate as shown

in F i g u r e 3 . For plants with sodium hydroxide

(NaOH) buffer, sodium aluminum

silicate is the principal precipitant since the

insulation mix is a main source of silicon.

Both of the presence of Cal-Sil and long

spray time could drastically increase the

amount of sodium aluminum silicate precipitates

because long spray time increases

dissolution of aluminum as well as silicon.

The precipitation of aluminum oxyhydroxide

is negligible in the present analysis because

the concentration of aluminum is not

sufficiently lager than that of silicon. The

quantity of sodium aluminum silicate is

limited by the amount of silicon available

in solution, if the silicon concentration is

less than 3.12 times the aluminum concentration

as shown in Eq.(7). Any remaining

aluminum in solution will precipitate as

aluminum oxyhyroxide. If the concentration

of silicon is greater than 3.12 times the

aluminum concentration, then the quantity

of sodium aluminum silicate generated

is limited by the concentration of aluminum

available.

For plants using trisodium phosphate

(TSP), calcium phosphate is generated in

Precipitate Mass in kg

1,000

900

800

700

600

500

400

300

NaOH TSP NaOH

200

100

0

Ca3(PO4)2

AlOOH

NaAlSi3O8

0 ft 3 of CalSil

Short

Spray

TSP

Long

Spray

NaOH

Short

Spray

addition to sodium aluminum silicate and

aluminum oxyhydroxide. When CalSil and

TSP co-exist, significant amount of calcium

phosphate is generated with increasing

amount of Cal-Sil as shown in F i g u r e 3 .

It has been known that calcium phosphate

has a significant impact on the head loss

because its characteristics are like a gum.

Therefore, above-mentioned three parameters,

i.e., the amount of Cal-Sil, long spray

termination time, use of TSP as a buffer

agent has a most negative effect on the recirculation

sump performance. Through

the present study, the following recommendations

are made:

––

Reduce the amount of Cal-Sil insulation

––

Replace TSP with alternate buffer agent

––

Reduce spray time by operation

Debris Interceptor

There may be various design options to reduce

the head loss across the sump screen

such as an active strainer and a specially

designed screen surface to prevent the thin

bed effects. The adoption of a debris interceptor

is another viable option for reducing

particulate debris such as unqualified coatings.

The detailed effects on the debris

transport are dependent on the specific debris

interceptor design. For example, if the

debris interceptor can reduce the particulate

debris from 3,000 lbm to 1,000 lbm,

the head loss can be reduced form 3.98 ft to

0.87 ft for 400 ft 3 fiber debris loading as

shown in F i g u r e 1 .

Conclusions

A parametric study is performed on the effects

of debris source, containment environments

and debris interceptor on the

overall performance of ECCS recirculation

sump. The key parameters of each effect

are deduced and the recommendations for

50 ft 3 of CalSil

TSP

TSP

NaOH

Long

Spray

NaOH

Short

Spray

Fig. 3. Comparison of the chemical precipitates with various plant environments.

100 ft 3 of CalSil

TSP

TSP

NaOH

Long

Spray

59


Physical and chemical effects of containment debris on the emergency coolant recirculation VGB PowerTech 5 l 2020

reducing their adverse effects are made

through the present analysis. Following

conclusions can be made:

––

The amount of unqualified coating debris

has a great adverse effect on the

screen head loss by reducing porosity in

the fibrous insulation,

––

Cal-Sil insulation reacts with TSP buffer

and significantly increases the generation

of a gum-like chemical precipitate,

––

Spray time increases the chemical byproducts

but the effect is smaller than

that of buffer agent type and unqualified

coating.

––

The debris interceptor, when verified,

may play a vital role reducing head loss

generated by coatings and fibrous debris

mix.

The cost of reducing debris sources, removal

of Cal-Sil insulation and installation

of debris interceptor should be compared

with the benefit of reducing number

of suction strainers to select design

change options for a particular plant. For

this, the present parametric analysis method

are being used for Korean nuclear power

plants.

Nomenclature

A effective screen area [ft 2 ]

K constant depending insulation type

S v surface-to-volume ratio of the debris

[ft 2 /ft 3 ]

U fluid approach velocity [ft/sec]

Q volumetric flow rate [ft 3 /sec]

c compression rate

v microscopic volume of the debris

constituent

∆H head loss [ft-water]

∆L m actual mixed debris bed thickness

[in]

∆L o theoretical fibrous debris bed thickness

∧ conversion factor

∧ = 1 for SI units, and

∧= 4.1528E-5 (ft-water/inch)/

(lbm/ft 2 /sec 2 )

for English units.

o solidity of the original fiber blanket

(i.e., the “as-fabricated” solidity)

m mixed debris bed solidity

m p /m f , the particulate-to-mass ratio

in the debris bed (i.e., total particulate

mass/total fibrous mass)

dynamic viscosity of water [lbm/ft/

sec]

density of water [lbm/ft 3 ]

f fiber density [lbm/ft 3 ]

p average particulate material density

[lbm/ft 3 ]

Acknowledgments

This work was supported by a grant from

the nuclear safety research program of

the Korea Foundation of Nuclear Safety

with funding by the Korean Government’s

Nuclear Safety and Security Commission

(Grant Code: 1307008-0719-

CG100).

References

[1] NUREG-0933, A Prioritization of Generic

Safety Issues, Supplements 28, USNRC, Aug.

2004.

[2] USNRC Generic Letter 2004-02, Potential

Impact of Debris Blockage on Emergency Recirculation

during DBA at PWR, USNRC, Sep.

13, 2004.

[3] NEI 04-07, Pressurized Water Reactor Sump

Performance Evaluation Methodology, Rev. 1,

Nov. 2004.

[4] Safety Evaluation by the USNRC related to

NRC NRC Generic Letter 2004-2 NEI Guidance

Report (NEI-04-07) Pressurized Water

Reactor Sump Performance Evaluation Methodology,

Dec. 2004.

[5] NUREG/CR-6224, Parametric Study of

the Potential for BWR ECCS Strainer Blockage

due to LOCA Generated Debris, Sep.

1995.

[6] WCAP-16530-NP, Evaluation of Post-Accident

Chemical Effects in Containment Sump

Fluids to Support GSI-191, Westinghouse,

Feb. 2006.

l

VGB-Standard

KKS Identification System for Power Stations

Guideline for Application and Key Part

VGB-S-811-01-2018-01-EN, 8 th revised edition 2018 (formerly VGB-B 105e)

DIN A4, 836 pages, Price for VGB-Members* € 490.–, for Non-Members € 680.–, + VAT, ship ping and hand ling

VGB-S-811-01-2018-01-DE, 8. revised German edition 2018 (formerly VGB-B 105)

DIN A4, 836 pages, Price for VGB-Members* € 490.–, for Non-Members € 680.–, + VAT, ship ping and hand ling

KKS Key Part: Function Keys, Equipment Unit Keys, and Component Keys, as a Microsoft Excel ® file also available.

The VGB-Standard VGB-S-811-01-2018-01-EN is completed by VGB-B 106e and VGB-B 105.1;

additionally the VGB-B 108 d/e and VGB-S-891-00-2012-06-DE-EN are recommended.

VGB-Standard

KKS Identification System

for Power Stations

Guideline for Application and Key Part

8 th revised edition 2018

(formerly VGB-B 105e)

VGB-S-811-01-2018-01-EN

The KKS is used for identification coding and labelling of plants, systems and items equipment in any type

of power station according to their function in the process and their location. It applies to the disciplines of

mechanical engineering, civil engineering, electrical and C&I and is to be used for planning, licensing,

construction, operation and maintenance.

Owing to the national and international standardization process, the KKS Identification System for Power Stations (hereinafter referred to as

“KKS”) is being replaced by the RDS-PP ® Reference Designation System for Power Plants based on DIN ISO 81346-10. Thus, RDS-PP ® is thus

considered to be a generally accepted good engineering practice and can be applied in planning, construction, operation and dismantling of

energy supply plants and equipment as a an unambiguous identification system.

Existing power plants with identification coding to KKS will not be re-coded to RDS-PP ® . Consequently, it will be necessary to

continue to apply the KKS system in the event of additions to existing plants and conversion measures, I&C retrofits etc.

Technical progress made over time called for adjustments to the KKS rules. Some examples were added to the KKS guidelines and

the KKS keys were updated. The examples given in the KKS guidelines are intended only for explanation of the defined rules.

The KKS Rules as a code of practice consist of the KKS Guidelines and the KKS Keys.

The present guidelines define the rules for application of the KKS. For application cases not covered by the present rules, additional s

pecifications are to be agreed between the parties involved in the specific project. A practical checklist is provided.

The present guidelines apply to conversion, expansion, retrofitting, modernization etc. of energy supply plants with identification

coding to the KKS Identification System for Power Stations.

60


VGB PowerTech 5 l 2020



Nuclear power plants: Operating results 2019

In 2019 the seven (7) German nuclear power plants generated 75.10

billion kilowatt hours (kWh) of electricity gross. At the end of 2019

the Philippsburg 2 nuclear power plant ceased commercial operation

due to the revision of the German Atomic Energy Act in the political

aftermath of the accidents in Fukushima, Japan, in 2011. Seven

nuclear power plants with an electric gross output of 10,013 MWe

were in operation during the year 2019.

All seven nuclear power plants in operation in 2019 achieved results

with a gross production greater than 10 billion kilowatt hours,

one power plant. The Isar 2 unit even produced more than 12 billion

kilowatt hours.

Additionally the Isar 2 unit achieved one of the world’s ten best

production results in 2019 (“Top Ten”, sixth place). At the end of 2019,

449 reactor units were in operation in 31 countries worldwide and 54

were under construction in 16 countries. The share of nuclear power

in world electricity production was around 11 %. German nuclear

power plants have been occupying top spots in electricity production

for decades thus providing an impressive demonstration of their efficiency,

availability and reliability.

The Taishan-1 nuclear power plant in China (capacity: 1,750 MWe

gross, 1,660 MWe net, reactor type: EPR, the most powerful nuclear

power plant worldwide and the most powerful single power plant

worldwide) achieved the world record in electricity production in

2019 with appr. 13 billion kilowatt hours.

Worldwide, 41 nuclear power plant units achieved production results

of more thant 10 billion kilowatt hours net in the year 2019.

Additionally German nuclear power plants are leading with their

lifetime electricity production. The Brokdorf, Emsland, Grohnde,

Isar 2 and Philippsburg 2 nuclear power plant have produced more

than 350 billion kilowatt hours since their first criticality.

Operating results of nuclear power plants in Germany 2019 and 2019

Nuclear power plant Rated power Gross electricity

generation

in MWh

Availability

factor*

in %

Energy availability

factor**

in %

gross

in MWe

net

in MWe

2018 2019 2018 2019 2018 2019

Brokdorf KBR 1,480 1,410 10,375,751 10,153,213 90.60 87.69 84.72 82.34

Emsland KKE 1,406 1,335 11,495,686 10,781,232 94.78 89.20 94.67 89.12

Grohnde KWG 1,430 1,360 10,946,635 10,700,632 92.82 90.06 91.61 89.82

Gundremmingen KRB C 1,344 1,288 10,361,862 10,381,798 90.41 89.15 89.85 88.54

Isar KKI 2 1,485 1,410 12,127,490 12,036,656 95.46 95.95 95.24 95.68

Neckarwestheim GKN II 1,400 1,310 9,703,700 10,411,410 81.35 94.03 81.00 87.18

Philippsburg KKP 2* 1,468 1,402 10,993,639 10,606,307 90.63 89.63 90.47 89.31

Total (in 2018 and 2019) 10,013 9,515 76,004,763 75,071,247 90.85 90.82 89.60 88.86

* Availability factor (time availability factor) kt = tN/tV: The time availability factor kt is the quotient

of available time of a plant (tV) and the reference period (tN). The time availability factor is a degree

for the deployability of a power plant.

** Energy availability factor kW = WV/WN: The energy availability factor kW is the quotient of available

energy of a plant (WV ) and the nominal energy (WN). The nominal energy WN is the product of nominal

capacity and reference period. This variable is used as a reference variable (100 % value) for availability

considerations. The available energy WV is the energy which can be generated in the reference period

due to the technical and operational condition of the plant. Energy availability factors in excess of 100 %

are thus impossible, as opposed to energy utilisation.

*** Inclusive of round up/down, rated power in 2019.

**** The Philippsburg nuclear power plant (KKP 2 ) was permanently shutdown on 31 December 2019

due to the revision of the German Atomic Energy Act in 2011.

All data in this report as of 31 March 2020

61


 VGB PowerTech 5 l 2020

Brokdorf

Operating sequence in 2019

Electrical output in %

100

90

80

70

60

50

40

30

20

10

January February March April May June July August September October November December

100

In 2019, the Brokdorf nuclear power plant (KBR) was connected to

the 80 grid for a total of 7,682 operating hours with an availability factor

of 82.3 %. The gross generation for the year under review was

10,153,212 60 MWh. In 2019, the thermal reactor output was again limited

to a maximum of 95 % with a coolant temperature reduced by 3

K

40due to the specifications of ME 02/2017 “Increased oxide layer

thickness on fuel rod cladding tubes of fuel elements”.

20

On 13 April 2019, the plant was disconnected from the grid by

triggering “Manual-TUSA” due to increasing vibrations at the turbine-generator

set. After completion of the inspection work, the unit

0

was reconnected to the grid on 22 April 2019.

In the period from 17 to 22 November 2019, the plant was shut

100

down to the “subcritical cold” state due to several findings on the baffle

in the cooling water return structure.

80

Planned

60

shutdowns

On 7 June 2019, the plant was shut down for the 31st refuelling and

annual 40 inspection.

The inspection and maintenance included the following priorities:

• Reactor 20

0

Full core discharge

Replacement of 60 fresh fuel elements

Inspection of fuel elements,

control elements, throttle bodies.

• Containment Leak rate test.

• Main coolant Ring exchange electric motor

pump

Positionierung:

YD30 Inspection of axial bearings

Replacing the mechanical seal

Bezug, links,

(axial

unten

bearing).

• Main coolant Inspection of the axial bearing.

pump VGB: YD40 HKS6K 30 %

• Steam generator WS test Steam generator 10/20,

atw: 100 60 0 0

additionally 30/40.

• Main steam safety Internal inspections.

and relief valves station

• Cooling water Work in the pump antechambers of the

secondary cooling water systems

VE10/20 and 30/40

Work in the main cooling water

channels VA40-60.

• Turbine/ Control Inspection / Generator

Generator ND II + III, run-out measurements,

Displacement measurements

Inspection bearing SB14.

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

• Transformers Exchange CS32 (emergency power supply),

replacement Exchange CS41 (normal power supply).

• Building ZB.9 Fire protection upgrading overflow flaps.

The grid synchronisation took place on 9 July 2019 at 08:17 h after

31.1 days.

Compared to planning, the start-up date was delayed by 4.6 days.

The inspection extension is mainly due to the additional inspections

of the heating tube plugs on steam generators 30 and 40.

Unplanned shutdowns and reactor/turbine trip

On 13 April 2019, the turbine was disconnected from the grid by triggering

“manual turbine trip” due to increasing vibrations at the turbine-generator

set. After completion of the inspection work, the unit

was reconnected with the grid on 22 April 2019.

In the period from 17 to 22 November 2019, the plant was shut

down to “subcritical cold” state due to several findings on the baffle

in the cooling water return structure.

Power reductions above 10 % and longer than for 24 h

Load reductions for the implementation of the grid-supporting power

control as well as redispatch on demand of the control centre were

carried out.

WANO Review/Technical Support Mission

The WANO Peer Review 2019 was conducted in the period 15 to 26

July 2019 in the form of an “Optimized Peer Review”, i.e. shortened

to 2 weeks. In the run-up to the WANO Peer Review 2019, a Crew

Performance Observation (CPO) was successfully completed for the

first time by the KBR shift team on the simulator of a German nuclear

power plant with pressurised water reactor in the period from 6 to 9

May 2019.

In summary, WANO confirmed a very good result for KBR.

Delivery of fuel elements

During the reporting year 28 fuel elements were delivered and

stored.

Waste management status

By the end of the year 2019, 33 loaded CASTOR © cask were located

at the Brokdorf on-site intermediate storage.

62


VGB PowerTech 5 l 2020



Operating data

Review period 2019

Plant operator: PreussenElektra GmbH

Shareholder/Owner: PreussenElektra GmbH (80 %),

Vattenfall Europe Nuclear Energy GmbH (20 %)

Plant name: Kernkraftwerk Brokdorf (KBR)

Address: PreussenElektra GmbH, Kernkraftwerk Brokdorf,

25576 Brokdorf, Germany

Phone: 04829 752560, Telefax: 04829 511

Web: www.preussenelektra.de

First synchronisation: 10-14-1986

Date of commercial operation: 12-22-1986

Design electrical rating (gross):

1,480 MW

Design electrical rating (net):

1,410 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

100

90

80

70

60

50

40

84

Availability factor in %

Capacity factor in %

92

93

93

93

44

90

78

The following operating results were achieved:

Operating period, reactor:

7,682 h

Gross electrical energy generated in 2019:

10,153,212 MWh

Net electrical energy generated in 2019:

9,635,834 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2019:

360,721,021 MWh

Net electrical energy generated since

first synchronisation until 12-31-2019:

342,884,965 MWh

Availability factor in 2019: 87.69 %

Availability factor since

date of commercial operation: 89.78 %

Capacity factor 2019: 78.01 %

Capacity factor since

date of commercial operation: 85.94 %

Downtime

(schedule and forced) in 2019: 12.31 %

Number of reactor scrams 2019: 0

Licensed annual emission limits in 2019:

Emission of noble gases with plant exhaust air:

Emission of iodine-131 with plant exhaust air:

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

1.0 · 10 15 Bq

6.0 · 10 9 Bq

5.55 · 10 10 Bq

30

20

10

0

10

9

8

7

6

84

2012

93

2013

93

2014

93

2015

93

2016

52

2017

Collective radiation dose of own

and outside personnel in Sv

91

2018

88

2019

Proportion of licensed annual emission limits

for radioactive materials in 2019 for:

Emission of noble gases with plant exhaust air: 0.075 %

Emission of iodine-131 with plant exhaust air: 0.087 %

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.0005 %

Collective dose:

0.158 Sv

5

4

3

2

1

0

0.13

2012

0.22

2013

0.17

2014

0.14

2015

0.14

2016

0.13

2017

0.14 0.16

2018 2019

63


 VGB PowerTech 5 l 2020

Emsland

Operating sequence in 2019

Electrical output in %

100

90

80

70

60

50

40

30

20

10

0

January February March April May June July August September October November December

Apart from the 39.4 days refuelling outage the Emsland nuclear power

plant (KKE) had been operating uninterrupted and mainly at full

load during the review period 2019. Producing a gross power generation

of 10,781,232 MWh with a capacity factor of 89.12 % the power

plant achieved a very good operating result.

Planned shutdowns

32 rd refuelling and 31 rd overall maintenance outage.

The annual outage was scheduled for the period 17 May to 26 June.

The outage took 39.4 days from breaker to breaker including an outage

prolongation (18 days) due to replacement of the generator. In

100 addition to the replacement of 40 fuel elements the following major

maintenance and inspection activities were carried out:

80

• Inspection of core and reactor pressure vessel internals.

• 60 Inspection of a reactor coolant pump.

• Inspection of pressurizer valves.


40

Eddy current test on steam generator tubes.

• Containment leak rate test.

20

• Pressure test on different coolers and tanks.

• Inspection on main condensate pump.

0

• Maintenance works on different transformers.

• Different automatic non-destructive examinations.

Unplanned shutdowns and reactor/turbine trip

None.

Power reductions above 10 % and longer than for 24 h

16 April to 17 May: 17st Stretch-out operation.

Peer Reviews

From 9 September 2019 to 20 September 2019 a WANO team of 10

experienced nuclear professionals from 7 different countries, conducted

an optimized Peer Review (PR) at KKE NPP.

In summary, the WANO exit report concludes that KKE completed

the 2019 Peer Review with a very good result.

Delivery of fuel elements

28 Uranium-fuel elements were delivered.

Waste management status

No CASTOR © cask loading was carried out during the review period

2019.

At the end of the year 47 loaded casks were stored in the local interim

storage facility.

Positionierung:

Bezug, links, unten

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

VGB: HKS6K 30 %

atw: 100 60 0 0

64


VGB PowerTech 5 l 2020



Operating data

Review period 2019

Plant operator: Kernkraftwerke Lippe-Ems GmbH

Shareholder/Owner: RWE Power AG (87,5 %),

PreussenElektra GmbH (12,5 %)

Plant name: Kernkraftwerk Emsland (KKE)

Address: Kernkraftwerk Emsland,

Am Hilgenberg , 49811 Lingen, Germany

Phone: 0591 806-1612

Web: www.rwe.com

100

90

80

95

Availability factor in %

Capacity factor in %

95

95

91

94

93

95

89

First synchronisation: 04-19-1988

Date of commercial operation: 06-20-1988

Design electrical rating (gross):

1,406 MW

Design electrical rating (net):

1,335 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

70

60

50

40

The following operating results were achieved:

Operating period, reactor:

7,821 h

Gross electrical energy generated in 2019:

10,781,232 MWh

Net electrical energy generated in 2019:

10,237,093 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2019:

357,600,201 MWh

Net electrical energy generated since

first synchronisation until 12-31-2019:

339,066,997 MWh

Availability factor in 2019: 89.20 %

Availability factor since

date of commercial operation: 93.91 %

Capacity factor 2019: 89.12 %

Capacity factor since

date of commercial operation: 93.77 %

Downtime

(schedule and forced) in 2019: 10.80 %

Number of reactor scrams 2019: 0

Licensed annual emission limits in 2019:

Emission of noble gases with plant exhaust air:

Emission of iodine-131 with plant exhaust air:

(incl. H-3 and C-14)

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

1.0 · 10 15 Bq

5.0 · 10 9 Bq

3.7 · 10 10 Bq

Proportion of licensed annual emission limits

for radioactive materials in 2019 for:

Emission of noble gases with plant exhaust air: 0.016 %

Emission of iodine-131 with plant exhaust air: 0.0 %

(incl. H-3 and C-14)

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.00 %

Collective dose:

0.067 Sv

30

20

10

0

10

9

8

7

6

5

4

3

2

1

95

2012

95

2013

95

2014

91

2015

94

2016

93

2017

Collective radiation dose of own

and outside personnel in Sv

95

2018

89

2019

0

0.09

2012

0.08

2013

0.06

2014

0.10

2015

0.05

2016

0.09

2017

0.06 0.07

2018 2019

65


 VGB PowerTech 5 l 2020

Grohnde

Operating sequence in 2019

Electrical output in %

100

90

80

70

60

50

40

30

20

10

January February March April May June July August September October November December

100

During the 2019 reporting year, the Grohnde nuclear power plant

was scheduled for a 36-day overhaul with refueling from grif and

80

achieved a time availability of 90.1 %. Gross generation amounted to

10,700,632

60

MWh.

Compared to the planned 26 days, the inspection was extended by

250 40 hours. Delays in the inspection of the drive rods, the replacement

of the LVD lance G10, a conspicuous closing behaviour of the

DH 20 spray valve YP10 S233 and contamination of the turbine oil were

the main reasons for the revision delay.

0 Due to a high Weser water temperature, the output was reduced

to 447 MW on June 26 and then increased again to full capacity.

According to the specifications of the load distribution system, 26

load 100 reductions were made in 2019 over a total of 228 hours and 156

mains and 70 primary controls for a total of 4,307 hours.

80

Planned shutdowns

21

60April to 27 May: 36 th refuelling and plant inspection with maintenance.

40

As planned, the Grohnde nuclear power plant was shut down on

April 21 for revision and the 36 th refuelling. The main planned work

20

of the inspection and maintenance were:

• Unloading and loading with the insertion

0

of 52 fresh fuel elements.

• Full inspection on 19 fuel elements.

• Eddy current testing on 32 control rods.

• Visual inspection on 15 throttle bodies.

• YD10 Positionierung:

D001 Overhaul axial bearing.

• YD30 Bezug, D001 Motor links, conversion. unten

• YD20 D001 Replacing the mechanical seal.

• YD40 D001 Replacing the mechanical seal &WS test of the pump

shaft. VGB: HKS6K 30 %

• Start-up atw: test 100 of the 60 BE 0 centring 0 pins of the UKG and the OKG.

• VA01 + VA02 Inspection and cleaning of cooling water sections.

• TF20 B001 Cleaning the nuclear intercooler.

• TF20 S013/S014 Replacing the screws on the quick-closing flaps.

• TH20 Inspection of secondary shut-offs with pipe freezing.

• Work and inspections in the redundancies with the main focus of

activities in the main redundancy 2/6 (maintenance work on

valves and actuators and tests on tanks, batteries and electrotechnical

branches).

X = 20,475 Y = 95,25 B = 173,5 H = 38,2

After completion of the work on bracing the RPV head and closing

the primary circuit (RKL hydraulically sealed), a limited availability

of a core instrumentation lance (internal neutron measuring system

for the determination and monitoring of the power distribution density)

and 3 Fuel element exit temperature measurements, caused by

a defective plug connection, were determined. The defective core instrumentation

lance was replaced.

Unplanned shutdowns and reactor/turbine trip

None.

Power reductions above 10 % and longer than for 24 h

In the months January, February, April, October and December

load following operation due to requirements of the load distributor.

Delivery of fuel elements

In March 2019 the delivery of 44 U-/U-Gd fuel elements of the company

Westinghouse took place.

Waste management status

No CASTOR © V/19 containers were loaded in 2019.

The interim storage facility with 34 stored CASTOR © V/19 casks was

handed over to Bundesgesellschaft für Zwischenlagerung mbH

(BGZ).

General points/management systems

In September 2019, the surveillance audit of the quality management

system (ISO 9001) and the recertification of the environmental

management system (ISO 14001) and the occupational health and

safety management system (OHSAS 18001) were successfully completed.

66


VGB PowerTech 5 l 2020



Operating data

Review period 2019

Plant operator: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG

Shareholder/Owner: PreussenElektra GmbH (83,3 %),

Stadtwerke Bielefeld (16,7 %)

Plant name: Kernkraftwerk Grohnde (KWG)

Address: Gemeinschaftskernkraftwerk Grohnde GmbH & Co. OHG,

P.O. bx 12 30, 31857 Emmerthal, Germany

Phone: 05155 67-1

E-mail: kwg-kraftwerksleitung@preussenelektra.de

Web: www.preussenelektra.de

100

90

80

70

95

Availability factor in %

Capacity factor in %

89

84

89

73

82

92

90

First synchronisation: 09-05-1984

Date of commercial operation: 02-01-1985

Design electrical rating (gross):

1,430 MW

Design electrical rating (net):

1,360 MW

Reactor type:

PWR

Supplier:

Siemens/KWU

60

50

40

The following operating results were achieved:

Operating period, reactor:

7,889 h

Gross electrical energy generated in 2019:

10,700,632 MWh

Net electrical energy generated in 2019:

10,113,330 MWh

Gross electrical energy generated since

first synchronisation until 12-31-2019:

388,274,835 MWh

Net electrical energy generated since

first synchronisation until 12-31-2019:

367,082,606 MWh

Availability factor in 2019: 90.10 %

Availability factor since

date of commercial operation: 91.70 %

Capacity factor 2019: 89.80 %

Capacity factor since

date of commercial operation: 91.30 %

Downtime

(schedule and forced) in 2019: 9.90 %

Number of reactor scrams 2019: 0

30

20

10

0

10

9

8

95

2012

90

2013

84

2014

89

2015

75

2016

86

2017

Collective radiation dose of own

and outside personnel in Sv

93

2018

90

2019

Licensed annual emission limits in 2019:

Emission of noble gases with plant exhaust air: 9.0 · 10 14 Bq

Emission of iodine-131 with plant exhaust air: 7.5 · 10 9 Bq

Emission of nuclear fission and activation products

with plant waste water (excluding tritium):

5.55 · 10 10 Bq

Proportion of licensed annual emission limits

for radioactive materials in 2019 for:

Emission of noble gases with plant exhaust air: 0.019 %

Emission of iodine-131 with plant exhaust air: 0.000 %

Emission of nuclear fission and activation products

with plant waste water (excluding tritium): 0.000 %

Collective dose:

0.261 Sv

7

6

5

4

3

2

1

0

0.27

2012

0.54

2013

0.25

2014

0.31

2015

0.52

2016

0.23

2017

0.12 0.26

2018 2019

67


 VGB PowerTech 5 l 2020

Gundremmingen C

Operating sequence in 2019

Electrical output in %

100

90

80

70

60

50

40

30

20

10

0

January February March April May June July August September October November December

In the review year 2019, unit C of Gundremmingen (KRB C) nuclear

power plant was operated at full load without any major restrictions

except for one planned outage for refuelling.

From 4 April to 21 April unit C was in stretch out operation.

During the shutdown a total of 152 fuel elements were unloaded

and replaced with 112 fresh and 40 (2 MOX) partially spent fuel elements.

During the outage all safety relevant workings were monitored by

the relevant nuclear controlling authority, the Bavarian State Ministry

of the Environment and Consumer Protection (StMUV), and consulted

authorized experts. The inspection of the technical systems

with regard to safety and reliability confirmed the excellent condition

of the plant.

100

A gross total of 10,381,798 MWh of electricity was produced.

80

Planned shutdowns

21 60 April to 29 May 2019: 33 th refuelling outage and 21 th overall

maintenance inspection.

40

The following major activities were carried out:

• Refuelling and sipping of all fuel elements inside the core; result:

20

two defective fuel elements.

• Visual inspection and non-destructive testing of reactor pressure

0

vessel stud bolts and internals.

• Inspection of main isolation valves of main steam and safety and

relief valves.

• Emptying of redundancies 1 and 3 for preventive measures on

valves Positionierung:

and tanks.

• Inner inspection and pressure tests on high pressure preheater

Bezug, links, unten