27.07.2021 Views

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Delft</strong> <strong>Sand</strong>, <strong>Clay</strong> & <strong>Rock</strong> <strong>Cutting</strong> <strong>Model</strong>.<br />

Figure 6-54: An example of pore pressure measurements versus the theory. ......................................................183<br />

Figure 6-55: An example of the forces measured versus the theory. ...................................................................184<br />

Figure 6-56: An example of the measured signals (forces and pore pressures). ..................................................185<br />

Figure 6-57: F h, F v, F d and E sp as a function of the cutting velocity and the layer thickness, without deviation.186<br />

Figure 6-58: F h, F v, F d and E sp as a function of the cutting velocity and the layer thickness, with deviation. .....187<br />

Figure 7-1: <strong>The</strong> cutting process, definitions. ........................................................................................................191<br />

Figure 7-2: <strong>The</strong> Curling Type in clay. ..................................................................................................................192<br />

Figure 7-3: <strong>The</strong> Flow Type in clay.......................................................................................................................192<br />

Figure 7-4: <strong>The</strong> Tear Type in clay. ......................................................................................................................192<br />

Figure 7-5: <strong>The</strong> Boltzman probability distribution. .............................................................................................193<br />

Figure 7-6: <strong>The</strong> probability of exceeding an energy level Ea. .............................................................................193<br />

Figure 7-7: <strong>The</strong> probability of net activation in direction of force. ......................................................................194<br />

Figure 7-8: <strong>The</strong> adapted Boltzman probability distribution. ................................................................................195<br />

Figure 7-9: <strong>The</strong> probability of net activation in case 1. .......................................................................................196<br />

Figure 7-10: <strong>The</strong> probability of net activation in case 2. .....................................................................................197<br />

Figure 7-11: <strong>The</strong> probability of net activation in case 3. .....................................................................................197<br />

Figure 7-12: <strong>The</strong> probability of net activation in case 4. .....................................................................................197<br />

Figure 7-13: Shear stress as a function of strain rate with the horizontal axis logarithmic. .................................201<br />

Figure 7-14: Shear stress as a function of strain rate with logarithmic axis. ........................................................201<br />

Figure 7-15: Comparison of 3 rheological models. ..............................................................................................202<br />

Figure 7-16: Abelev & Valent (2010) data. .........................................................................................................203<br />

Figure 7-17: Comparison of the model developed with the v/d Schrieck (1996) model. .....................................205<br />

Figure 7-18: <strong>The</strong> Flow Type cutting mechanism when cutting clay. ...................................................................207<br />

Figure 7-19: <strong>The</strong> forces on the layer cut in clay. ..................................................................................................207<br />

Figure 7-20: <strong>The</strong> forces on the blade in clay. .......................................................................................................207<br />

Figure 7-21: <strong>The</strong> shear angle as a function of the blade angle and the ac ratio r. ................................................212<br />

Figure 7-22: <strong>The</strong> blade angle α + the shear angle β. ............................................................................................212<br />

Figure 7-23: <strong>The</strong> horizontal cutting force coefficient λ HF as a function of the blade angle and the ac ratio r. ....213<br />

Figure 7-24: <strong>The</strong> vertical cutting force coefficient λ VF as a function of the blade angle and the ac ratio r. .........213<br />

Figure 7-25: Specific energy and production in clay for a 60 degree blade. ........................................................214<br />

Figure 7-26: <strong>The</strong> Tear Type cutting mechanism in clay. .....................................................................................215<br />

Figure 7-27: <strong>The</strong> transition Flow Type vs. Tear Type. ........................................................................................218<br />

Figure 7-28: <strong>The</strong> Mohr circles when cutting clay. ...............................................................................................218<br />

Figure 7-29: <strong>The</strong> shear angle β vs. the blade angle α for the Tear Type. .............................................................220<br />

Figure 7-30: <strong>The</strong> horizontal cutting force coefficient λ HT/r T. ...............................................................................220<br />

Figure 7-31: <strong>The</strong> vertical cutting force coefficient λ VT/r T. ...................................................................................221<br />

Figure 7-32: <strong>The</strong> vertical cutting force coefficient λ VT/r T zoomed. ......................................................................221<br />

Figure 7-33: <strong>The</strong> Curling Type cutting mechanism when cutting clay. ...............................................................222<br />

Figure 7-34: <strong>The</strong> equilibrium of moments on the layer cut in clay. .....................................................................227<br />

Figure 7-35: <strong>The</strong> shear angle β for the Curling Type. ..........................................................................................228<br />

Figure 7-36: <strong>The</strong> horizontal cutting force coefficient λ HC. ...................................................................................228<br />

Figure 7-37: <strong>The</strong> vertical cutting force coefficient λ VC. .......................................................................................229<br />

Figure 7-38: <strong>The</strong> ratio h b/h i at the transition Flow Type/Curling Type. ...............................................................229<br />

Figure 7-39: Horizontal force; cohesion c=1 kPa, adhesion a=1 kPa, tensile strength σ T=-0.3 kPa, blade height<br />

h b=0.1 m, blade angle α=55° .........................................................................................................230<br />

Figure 7-40: Vertical force; Cohesion c=1 kPa, adhesion a=1 kPa, tensile strength σ T=-0.3 kPa, blade height h b=0.1<br />

m, blade angle α=55°.....................................................................................................................231<br />

Figure 7-41: <strong>The</strong> Mohr circles for h i=0.1 m, two possibilities. ............................................................................231<br />

Figure 7-42: <strong>The</strong> Mohr circles for h i=0.5 m, only tensile failure possible. ..........................................................232<br />

Figure 7-43: <strong>The</strong> specific energy E sp in clay as a function of the compressive strength (UCS). ..........................233<br />

Figure 7-44: <strong>The</strong> shear angles measured and calculated. .....................................................................................235<br />

Figure 7-45: <strong>The</strong> total cutting force measured and calculated. ............................................................................235<br />

Figure 7-46: <strong>The</strong> direction of the total cutting force measured and calculated. ...................................................236<br />

Figure 7-47: <strong>The</strong> 60 degree experiments. .............................................................................................................236<br />

Figure 7-48: <strong>The</strong> 30 degree experiment. ..............................................................................................................237<br />

Figure 7-49: <strong>The</strong> strengthening factor. .................................................................................................................238<br />

Figure 8-1: Ductile and brittle cutting Verhoef (1997). .......................................................................................241<br />

Figure 8-2: <strong>The</strong> stress-strain curves for ductile and brittle failure. ......................................................................242<br />

Figure 8-3: <strong>The</strong> Chip Type. ..................................................................................................................................243<br />

Figure 8-4: Failure envelopre according to Verhoef (1997) (Figure 9.4) of intact rock. .....................................243<br />

Page 438 of 454 TOC Copyright © Dr.ir. S.A. Miedema

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!