Waste to Energy: Harnessing the fuel in organic waste to create a business opportunity for a recycling-based society and system
To generate a feasible amount of methane to support a digester, it is estimated that 10 to 12 tons/d, with 8-10% contamination and 80% of the contamination being bioplastics, can produce about 70 Nm3/h of biogas. This is the amount of biogas needed to produce 200 kg/day of hydrogen, which is the smallest commercially available packaged system. The greenhouse gas emission (GHG) for IngeoTM is currently 1.3 kg CO2 eq./kg polymer compared to approx. 3.2 kg CO2 eq./kg polymer for PET. Therefore, implementing anaerobic digestion for PLA can reduce around 942.5 kg - 1132 kg per day of CO2 equivalent emissions. A total of 1 ton per day of undigested bioplastic with 30% of total solids will be sent to landfills; 3 tons per day of dewatered digestate cake can be utilized for composting, and Class A fertilizer can be produced. The research on anaerobic degradation of biopolymers is still in its infancy. Therefore, this report has discussed different pre-treatment alternatives to treat PLA such as physical, chemical, and thermal treatments. This report suggests on-site segregation benefits of the current solid waste management scenario in the commercial sector of Plano, Texas. Organic waste generated from a cafeteria of the commercial sector in Plano caused an environmental impact on landfills. This report consists of a description of existing scenarios and possible pre-treatment alternatives for bioplastic degradation generated from the commercial sector. Harshada Pednekar was a graduate research analyst in the Hunt Institute while studying for a masters degree in environmental engineering from SMU's Lyle School of Engineering
To generate a feasible amount of methane to support a digester, it is estimated that 10 to 12 tons/d, with 8-10% contamination and 80% of the contamination being bioplastics, can produce about 70 Nm3/h of biogas. This is the amount of biogas needed to produce 200 kg/day of hydrogen, which is the smallest commercially available packaged system. The greenhouse gas emission (GHG) for IngeoTM is currently 1.3 kg CO2 eq./kg polymer compared to approx. 3.2 kg CO2 eq./kg polymer for PET. Therefore, implementing anaerobic digestion for PLA can reduce around 942.5 kg - 1132 kg per day of CO2 equivalent emissions.
A total of 1 ton per day of undigested bioplastic with 30% of total solids will be sent to landfills; 3 tons per day of dewatered digestate cake can be utilized for composting, and Class A fertilizer can be produced. The research on anaerobic degradation of biopolymers is still in its infancy. Therefore, this report has discussed different pre-treatment alternatives to treat PLA such as physical, chemical, and thermal treatments. This report suggests on-site segregation benefits of the current solid waste management scenario in the commercial sector of Plano, Texas. Organic waste generated from a cafeteria of the commercial sector in Plano caused an environmental impact on landfills. This report consists of a description of existing scenarios and possible pre-treatment alternatives for bioplastic degradation generated from the commercial sector.
Harshada Pednekar was a graduate research analyst in the Hunt Institute while studying for a masters degree in environmental engineering from SMU's Lyle School of Engineering
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
0<br />
Page of 33<br />
0
1<br />
<strong>Waste</strong> <strong>to</strong> <strong>Energy</strong>:<br />
<strong>Harness<strong>in</strong>g</strong> <strong>the</strong> <strong>fuel</strong> <strong>in</strong> <strong>organic</strong> <strong>waste</strong><br />
<strong>to</strong> <strong>create</strong> a bus<strong>in</strong>ess <strong>opportunity</strong> <strong>for</strong> a recycl<strong>in</strong>g-<strong>based</strong><br />
<strong>society</strong> <strong>and</strong> <strong>system</strong><br />
Industry Advisors:<br />
Terra Group at <strong>the</strong> Toyota Mo<strong>to</strong>r North America<br />
Mat<strong>the</strong>w Sheldon, Social Intrapreneur<br />
Jason S Sekhon, Fuel Cell <strong>and</strong> Hydrogen SME<br />
Mark Hitchock, Zero <strong>waste</strong>, recycl<strong>in</strong>g, <strong>and</strong> <strong>the</strong> City of Plano Liaison<br />
Kelli Gregory, NTCOG liaison, clean energy mobility<br />
Graduate Research Analyst:<br />
Harshada Pednekar<br />
Project Manager:<br />
Corrie A. Harris, MA, MBA<br />
Faculty Advisors:<br />
Mohammad Khodayar, Ph.D. Associate Professor <strong>in</strong> <strong>the</strong><br />
Department of Electrical <strong>and</strong> Computer Eng<strong>in</strong>eer<strong>in</strong>g at Lyle School of Eng<strong>in</strong>eer<strong>in</strong>g<br />
Eva Csaky, Ph.D., Executive Direc<strong>to</strong>r of <strong>the</strong> Hunt Institute<br />
Sou<strong>the</strong>rn Methodist University<br />
Lyle School of Eng<strong>in</strong>eer<strong>in</strong>g<br />
Hunter <strong>and</strong> Stephanie Hunt Institute <strong>for</strong> Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> Humanity<br />
Global Development Lab<br />
April 2021<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
2<br />
Table of Contents<br />
SUMMARY 5<br />
BACKGROUND 6<br />
CORPORATE SOLID WASTE MANAGEMENT 8<br />
AVAILABLE SOLUTIONS 9<br />
RECYCLING/REUSE 9<br />
INCINERATION WITH ENERGY RECOVERY 10<br />
AEROBIC COMPOSTING 10<br />
ANAEROBIC DIGESTION 11<br />
Processes <strong>in</strong> <strong>the</strong> Digester 12<br />
Digestate 15<br />
Gas Production 15<br />
LANDFILL 17<br />
FEEDSTOCK COMPOSITION 18<br />
THE RATIO OF FOOD WASTE TO PLA 18<br />
ALTERNATIVES FOR PRE-TREATMENT OF PLA 18<br />
PHYSICAL TREATMENT - REDUCTION IN PARTICLE SIZE & CHOPPING AND SHREDDING 19<br />
CHEMICAL TREATMENT - ALKALINITY TREATMENT 19<br />
THERMAL TREATMENT 20<br />
ULTRAVIOLET IRRADIATION 21<br />
DAIRY & WASTEWATER INOCULATION 21<br />
NEED FOR AN ACCELERATING AGENT (I.E. GBX) 22<br />
FEEDSTOCK QUANTITY, METHANE AND HYDROGEN PRODUCTION 23<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
3<br />
CONSISTENCY OF WASTE FROM EMPLOYER 24<br />
RECOMMENDATIONS & WORKPLACE PRACTICES 24<br />
CONCLUSION 25<br />
FUTURE SCOPE 26<br />
APPENDIX A 28<br />
WORKS CITED 29<br />
Useful Websites: 31<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
4<br />
Table of Figures<br />
FIGURE 1: EXAMPLES OF PLA PRODUCTS - WORLD CENTRIC CUP, CUTLERY & CHIPS BAG (CALIFORNIA ORGANICS RECYCLING COUNCIL) .. 6<br />
FIGURE 2: LIFE CYCLE OF BIODEGRADABLE PLASTIC DISPOSAL ..................................................................................................... 9<br />
FIGURE 3: BIODEGRADATION OF BIOPOLYMERS: AEROBIC VS. ANAEROBIC DEGRADATION (BATORI ET AL. 2018)................................ 11<br />
FIGURE 4: PROCESS FLOW DIAGRAM USED WITH PERMISSION BY JOHN MCNAMARA, VP AT CR&R ENVIRONMENTAL SERVICES ............ 12<br />
FIGURE 5: PLA AT DIFFERENT DEGRADATION TIMES (A & B AT 0 DAYS, C & D AT 30 DAYS) (MOON ET AL. 2016) .............................. 14<br />
FIGURE 6: CO2 GENERATION FROM DIFFERENT ORGANIC WASTE TREATMENTS (UNION OF CONCERNED SCIENTISTS) ......................... 16<br />
FIGURE 7: COMPARISON OF UNTREATED CRYSTALLINE PLA BEFORE AND AFTER BMP TEST ........................................................... 20<br />
FIGURE 8: MINERALIZATION OF PLA IN ANAEROBIC CONDITION AT 37C & 52C (ITAVAARA ET AL. 2002) ......................................... 21<br />
FIGURE 9: SCHEMATIC DIAGRAM OF PLA DEGRADATION AND SOIL BURIAL ................................................................................. 22<br />
FIGURE 10: BIOBASED PRODUCT LABELS, CALIFORNIA ORGANICS RECYCLING COUNCIL .................................................................. 24<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
5<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
5<br />
Summary<br />
To generate a feasible amount of methane <strong>to</strong> support a digester, it is estimated that 10 <strong>to</strong><br />
12 <strong>to</strong>ns/d, with 8-10% contam<strong>in</strong>ation <strong>and</strong> 80% of <strong>the</strong> contam<strong>in</strong>ation be<strong>in</strong>g bioplastics, can<br />
produce about 70 Nm3/h of biogas. This is <strong>the</strong> amount of biogas needed <strong>to</strong> produce 200<br />
kg/day of hydrogen, which is <strong>the</strong> smallest commercially available packaged <strong>system</strong>. The<br />
greenhouse gas emission (GHG) <strong>for</strong> Ingeo TM is currently 1.3 kg CO2 eq./kg polymer<br />
compared <strong>to</strong> approx. 3.2 kg CO2 eq./kg polymer <strong>for</strong> PET. There<strong>for</strong>e, implement<strong>in</strong>g<br />
anaerobic digestion <strong>for</strong> PLA can reduce around 942.5 kg - 1132 kg per day of CO2<br />
equivalent emissions.<br />
A <strong>to</strong>tal of 1 <strong>to</strong>n per day of undigested bioplastic with 30% of <strong>to</strong>tal solids will be sent <strong>to</strong><br />
l<strong>and</strong>fills; 3 <strong>to</strong>ns per day of dewatered digestate cake can be utilized <strong>for</strong> compost<strong>in</strong>g, <strong>and</strong><br />
Class A fertilizer can be produced. The research on anaerobic degradation of biopolymers<br />
is still <strong>in</strong> its <strong>in</strong>fancy. There<strong>for</strong>e, this report has discussed different pre-treatment<br />
alternatives <strong>to</strong> treat PLA such as physical, chemical, <strong>and</strong> <strong>the</strong>rmal treatments. This report<br />
suggests on-site segregation benefits of <strong>the</strong> current solid <strong>waste</strong> management scenario <strong>in</strong><br />
<strong>the</strong> commercial sec<strong>to</strong>r of Plano, Texas. Organic <strong>waste</strong> generated from a cafeteria of <strong>the</strong><br />
commercial sec<strong>to</strong>r <strong>in</strong> Plano caused an environmental impact on l<strong>and</strong>fills. This report<br />
consists of a description of exist<strong>in</strong>g scenarios <strong>and</strong> possible pre-treatment alternatives <strong>for</strong><br />
bioplastic degradation generated from <strong>the</strong> commercial sec<strong>to</strong>r.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
6<br />
Background<br />
Bioplastic <strong>waste</strong> go<strong>in</strong>g <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill from break rooms <strong>and</strong> cafeterias of <strong>the</strong> commercial<br />
sec<strong>to</strong>r <strong>in</strong> Plano has caused <strong>in</strong>creas<strong>in</strong>g environmental concerns <strong>for</strong> susta<strong>in</strong>ability<br />
professionals <strong>in</strong> <strong>the</strong> area. Divert<strong>in</strong>g <strong>waste</strong> from l<strong>and</strong>fills <strong>to</strong> decrease environmental impact<br />
is a shared goal among corporations <strong>in</strong>clud<strong>in</strong>g Toyota Mo<strong>to</strong>r North America, Fri<strong>to</strong>-Lay,<br />
PepsiCo, <strong>and</strong> many o<strong>the</strong>rs. Among <strong>the</strong> Environmental Challenge 2050 goals of Toyota is<br />
a call <strong>to</strong> action <strong>to</strong> ensure that its facilities <strong>and</strong> processes support <strong>and</strong> establish a recycl<strong>in</strong>g<strong>based</strong><br />
<strong>society</strong>.<br />
Recently, corporations <strong>in</strong> Plano switched all s<strong>in</strong>gle-use items, <strong>in</strong>clud<strong>in</strong>g packag<strong>in</strong>g, <strong>to</strong><br />
compostable plastics. Among <strong>the</strong> o<strong>the</strong>r materials, a wide range of Poly Lactic Acid (PLA)<br />
products are currently used <strong>for</strong> cutlery (examples shown <strong>in</strong> Figure 1). <strong>Waste</strong> reduction at<br />
<strong>the</strong> source is an effective practice that will divert <strong>waste</strong> from l<strong>and</strong>fills <strong>and</strong> ultimately reduce<br />
GHG emissions, ultimately lead<strong>in</strong>g <strong>to</strong>wards achiev<strong>in</strong>g a zero-<strong>waste</strong> policy. Currently,<br />
corporate <strong>waste</strong> management offer<strong>in</strong>gs <strong>in</strong> <strong>the</strong> Plano area cannot support zero-<strong>waste</strong><br />
goals. Companies are committed, however, <strong>to</strong> work<strong>in</strong>g with municipalities <strong>and</strong> o<strong>the</strong>r<br />
concerned corporations <strong>to</strong> discover a path <strong>to</strong>ward zero <strong>waste</strong>.<br />
Figure 1: Examples of PLA Products - World Centric Cup, cutlery & chips bag (Cali<strong>for</strong>nia Organics Recycl<strong>in</strong>g Council)<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
7<br />
The purpose of this engagement is <strong>to</strong> study <strong>and</strong> recommend potential solutions focus<strong>in</strong>g<br />
on an anaerobic digester, or o<strong>the</strong>r applicable technologies, as a potential solution <strong>to</strong> <strong>the</strong><br />
accumulation of Plano’s bioplastic <strong>waste</strong> end<strong>in</strong>g up <strong>in</strong> l<strong>and</strong>fills. The aim is <strong>to</strong> build broad<br />
corporate support <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g area <strong>for</strong> implementation by demonstrat<strong>in</strong>g <strong>the</strong><br />
potential greenhouse gas reduction, <strong>waste</strong> stream diversion from l<strong>and</strong>fills, economic<br />
value, <strong>and</strong> potential <strong>to</strong> <strong>create</strong> a future <strong>fuel</strong><strong>in</strong>g source enabl<strong>in</strong>g consumers <strong>to</strong> purchase<br />
<strong>and</strong> drive hydrogen-powered vehicles.<br />
This report will thoroughly review <strong>the</strong> biodegradability of PLA. PLA & food <strong>waste</strong> have<br />
complementary characteristics <strong>for</strong> anaerobic digestion; both are <strong>organic</strong> <strong>and</strong> degrade<br />
under anaerobic conditions. Food <strong>waste</strong> <strong>and</strong> PLA are explored as potential energy<br />
sources, while also exam<strong>in</strong><strong>in</strong>g <strong>the</strong> potential challenges that can occur while treat<strong>in</strong>g <strong>the</strong>m<br />
<strong>to</strong>ge<strong>the</strong>r. Currently, <strong>the</strong> worldwide annual production capacity <strong>for</strong> biodegradable plastic is<br />
350,000 <strong>to</strong>ns, which pales <strong>in</strong> comparison <strong>to</strong> that of conventional plastic, which is<br />
estimated at 260 million <strong>to</strong>ns (Miller 2005). However, <strong>the</strong> production of bioplastic has<br />
reached an <strong>in</strong>dustrial scale, <strong>and</strong> awareness of its environmental benefits has <strong>in</strong>creased.<br />
In this report, various pre-treatments <strong>for</strong> <strong>the</strong> slow hydrolysis of PLA will be exam<strong>in</strong>ed, <strong>and</strong><br />
feeds<strong>to</strong>ck capacity <strong>in</strong> <strong>the</strong> area will be evaluated <strong>to</strong> calculate m<strong>in</strong>imum requirements. The<br />
DFW Metroplex does not currently have a facility with an anaerobic digester <strong>for</strong><br />
commercial solid <strong>waste</strong>. Instead, this report’s evaluations <strong>and</strong> comparisons will be derived<br />
from o<strong>the</strong>r locations, primarily <strong>in</strong> Cali<strong>for</strong>nia.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
8<br />
Corporate Solid <strong>Waste</strong> Management<br />
The City of Plano has approximately 40 more years of l<strong>and</strong>fill capacity. Currently, 149<br />
pounds of trash per residential cus<strong>to</strong>mer go <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill each month. There are two<br />
transfer stations <strong>in</strong> Plano 1 . Trash loads are dumped at <strong>the</strong> local transfer stations <strong>the</strong>n<br />
transferred <strong>in</strong><strong>to</strong> larger trucks <strong>and</strong> hauled <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill. The average tipp<strong>in</strong>g fee is $43.35<br />
per <strong>to</strong>n.<br />
Texas Pure <strong>in</strong> North Texas produces compost, plant<strong>in</strong>g mix <strong>for</strong> garden<strong>in</strong>g, <strong>and</strong> natural<br />
<strong>and</strong> colonized mulch. Texas Pure accepts only food <strong>waste</strong> <strong>and</strong> yard debris. If <strong>the</strong>re is<br />
trash (plastic, metal, glass, waxy conta<strong>in</strong>ers, compostable products) <strong>in</strong> <strong>the</strong> load, <strong>the</strong> trash,<br />
or even <strong>the</strong> whole load, will be placed <strong>in</strong> <strong>the</strong> l<strong>and</strong>fill. Food <strong>waste</strong> is not accepted at <strong>the</strong><br />
Plano location of Texas Pure, so it must be delivered directly <strong>to</strong> <strong>the</strong> Texas Pure site on<br />
l<strong>and</strong>fill property <strong>in</strong> Melissa, Texas. The North Texas Municipal Water District (NTMWD)<br />
L<strong>and</strong>fill takes all items that residents put <strong>in</strong> <strong>the</strong>ir trash carts. They do not accept hazardous<br />
material or construction site debris.<br />
The City of Plano managed a food <strong>waste</strong> recycl<strong>in</strong>g program <strong>for</strong> approximately 40<br />
bus<strong>in</strong>esses utiliz<strong>in</strong>g 95-gallon carts. Although <strong>the</strong> program was discont<strong>in</strong>ued <strong>in</strong> February<br />
of 2020, <strong>the</strong>re are still several bus<strong>in</strong>esses <strong>in</strong> Plano that recycle food <strong>waste</strong> us<strong>in</strong>g o<strong>the</strong>r<br />
haulers, namely: Sprouts, North Texas Food Bank, Whole Foods, Maui Foods, <strong>and</strong> Fri<strong>to</strong>-<br />
Lay. Texas Pure cont<strong>in</strong>ues <strong>to</strong> process food <strong>waste</strong> from Whole Foods, Maui Foods, <strong>and</strong><br />
<strong>the</strong> North Texas Food Bank. Organizations rely on permitted haulers <strong>to</strong> collect <strong>and</strong><br />
transport <strong>the</strong>ir food <strong>waste</strong> <strong>to</strong> an authorized receiver or compost facility. A few of <strong>the</strong> larger<br />
1 For more <strong>in</strong><strong>for</strong>mation about <strong>the</strong> transfer stations <strong>in</strong> Plano see https://www.ntmwd.com/facilities/<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
9<br />
commercial bus<strong>in</strong>esses keep recycl<strong>in</strong>g food <strong>waste</strong> through smaller <strong>in</strong>dependent food<br />
<strong>waste</strong> recyclers like Organix. Organix hauls food <strong>waste</strong> from three Sam’s Club locations<br />
<strong>and</strong> six Walmart <strong>and</strong> Sprouts locations.<br />
Available Solutions<br />
The life cycle of biodegradable plastic is shown <strong>in</strong> Figure 2, which <strong>in</strong>cludes typical<br />
treatment options such as recycl<strong>in</strong>g (reprocess<strong>in</strong>g polymer with debas<strong>in</strong>g of properties),<br />
monomer recovery (recovery of lactic acid from PLA), <strong>in</strong>c<strong>in</strong>eration with energy recovery,<br />
compost<strong>in</strong>g, anaerobic digestion, <strong>and</strong> l<strong>and</strong>fill. The next section will describe each of <strong>the</strong>se<br />
alternatives.<br />
Recycl<strong>in</strong>g/Reuse<br />
Figure 2: Life Cycle of Biodegradable Plastic Disposal<br />
Any plastic, whe<strong>the</strong>r conventional or bio-<strong>based</strong>, that enters <strong>the</strong> municipal <strong>waste</strong> stream<br />
causes complications. Although it is feasible <strong>to</strong> mechanically recycle some bioplastic<br />
polymers, such as PLA, a few times without significant reduction <strong>in</strong> properties, <strong>the</strong> lack of<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
10<br />
cont<strong>in</strong>uous <strong>and</strong> reliable supply of bioplastic polymer <strong>waste</strong> <strong>in</strong> large quantities presently<br />
makes recycl<strong>in</strong>g less economically attractive than <strong>for</strong> conventional plastics. The “4R’s”—<br />
reus<strong>in</strong>g, reduc<strong>in</strong>g, recycl<strong>in</strong>g, <strong>and</strong> repurpos<strong>in</strong>g—when compared <strong>to</strong> traditional <strong>waste</strong><br />
management practices, offer a more effective answer <strong>to</strong> <strong>the</strong> ongo<strong>in</strong>g bioplastic <strong>waste</strong><br />
disposal dilemma.<br />
Inc<strong>in</strong>eration with <strong>Energy</strong> Recovery<br />
Most commodity plastics have gross calorific values (GCV) comparable <strong>to</strong> or greater than<br />
that of coal (Davis & Song 2006). Inc<strong>in</strong>eration with energy recovery can be a good option<br />
<strong>for</strong> all recyclable <strong>waste</strong>, but it also has an adverse impact. In addition <strong>to</strong> <strong>the</strong> <strong>to</strong>xic gases<br />
generated from <strong>in</strong>c<strong>in</strong>eration, <strong>the</strong> <strong>in</strong>stallation of an <strong>in</strong>c<strong>in</strong>eration plant is an expensive<br />
process requir<strong>in</strong>g tra<strong>in</strong>ed personnel <strong>and</strong> frequent ma<strong>in</strong>tenance. In <strong>the</strong> case of bioplastic,<br />
<strong>the</strong> GCV of both natural cellulose <strong>and</strong> fiber starch is lower than that of coal but comparable<br />
<strong>to</strong> that of wood, <strong>and</strong> <strong>the</strong>y <strong>the</strong>re<strong>for</strong>e have considerable value <strong>for</strong> <strong>in</strong>c<strong>in</strong>eration.<br />
Aerobic Compost<strong>in</strong>g<br />
Unlike petrochemical polymers, PLA can be composted, generat<strong>in</strong>g carbon <strong>and</strong> nutrientrich<br />
compost. Not all bio-<strong>based</strong> products are compostable or biodegradable <strong>and</strong> vice<br />
versa. Biodegradation of <strong>organic</strong> material, <strong>in</strong>clud<strong>in</strong>g bioplastic, produces valuable<br />
compost along with water, CO2, <strong>and</strong> heat. However, <strong>the</strong> produced CO2 does not contribute<br />
<strong>to</strong> an <strong>in</strong>crease <strong>in</strong> greenhouse gases, as it already exists <strong>in</strong> <strong>the</strong> biological carbon cycle<br />
(Song, et al. 2009).<br />
Accord<strong>in</strong>g <strong>to</strong> estimation from Anargia, a <strong>to</strong>n of <strong>the</strong> <strong>organic</strong> fraction of municipal solid <strong>waste</strong><br />
sent <strong>to</strong> compost<strong>in</strong>g produces approximately +80 kg of CO2 equivalent (eq). PLA alone did<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
11<br />
not biodegrade at mesophilic temperature (25-60°C), <strong>and</strong> only 10% CO2 was generated<br />
with<strong>in</strong> 210 days. In contrast, <strong>the</strong> highest rate of CO2 occurred at 60°C, reach<strong>in</strong>g<br />
m<strong>in</strong>eralization of 90% with<strong>in</strong> 120 days <strong>and</strong> 40 days of lag time observed. (Itavaara et al.<br />
2002) Less than 10% mass reta<strong>in</strong>ed by a 2mm sieve <strong>and</strong> resultant compost has no<br />
adverse impact on plants (OECD 2008). St<strong>and</strong>ard tests are available <strong>for</strong> evaluat<strong>in</strong>g <strong>the</strong><br />
compostability of biopolymers, such as ASTM D6400 <strong>and</strong> ISO17088.<br />
Anaerobic Digestion<br />
In anaerobic degradation (AD) of biopolymers, <strong>the</strong> energy is s<strong>to</strong>red <strong>in</strong> <strong>organic</strong> matter <strong>and</strong><br />
is released as methane. Due <strong>to</strong> <strong>the</strong> lack of oxygen <strong>in</strong> this process, less heat <strong>and</strong> less<br />
microbial mass are produced. However, dur<strong>in</strong>g <strong>the</strong> aerobic process <strong>the</strong> energy <strong>in</strong> <strong>organic</strong><br />
matter is released as heat <strong>and</strong> cannot be captured. Figure 3 shows a diagram of <strong>the</strong><br />
biodegradation of biopolymers <strong>and</strong> compares aerobic <strong>and</strong> anaerobic degradation. The<br />
dark green symbols represent <strong>the</strong> microorganisms <strong>in</strong>volved <strong>in</strong> <strong>the</strong> processes. (Ba<strong>to</strong>ri, et<br />
al. 2018)<br />
Figure 3: Biodegradation of Biopolymers: Aerobic vs. Anaerobic Degradation (Ba<strong>to</strong>ri et al. 2018)<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
12<br />
In <strong>the</strong> last decade, numerous studies have focused on <strong>the</strong> PLA degradation under various<br />
treatment conditions such as hydrolysis, hydro<strong>the</strong>rmal, <strong>and</strong> compost. Compared <strong>to</strong><br />
mesophilic (37°C) processes, <strong>the</strong>rmophilic (55°C) <strong>and</strong> hyper<strong>the</strong>rmophilic (above 55°C)<br />
AD processes have <strong>the</strong> advantage of more effective <strong>organic</strong> particle stabilization <strong>and</strong><br />
higher biogas production (Nielsen & Petersen 2000). However, generally applicable <strong>and</strong><br />
effective methods <strong>for</strong> PLA have not yet been proposed (Wang, et al. 2012). Figure 4<br />
describes <strong>the</strong> typical process of anaerobic digestion of <strong>organic</strong> <strong>waste</strong>.<br />
Figure 4: Process flow diagram used with permission by John McNamara, VP at CR&R Environmental Services<br />
Processes <strong>in</strong> <strong>the</strong> Digester<br />
The two-stage, up-flow anaerobic sludge blanket (UASB) reac<strong>to</strong>r is a suitable (good<br />
mix<strong>in</strong>g) technology <strong>for</strong> high strength <strong>waste</strong> (>15% solids) from <strong>the</strong> commercial sec<strong>to</strong>r<br />
(Schroepher, et al. 1955). PLA is a high molecular weight polymer, <strong>and</strong> very few<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
13<br />
microorganisms like Stenotrophomonas pavanii <strong>and</strong> Pseudomonas geniculata can<br />
colonize <strong>and</strong> degrade it. These are examples of nitrogen-fix<strong>in</strong>g, gram-negative<br />
microorganisms. It has been observed that PLA is, despite <strong>the</strong> presence of various<br />
polyester-degrad<strong>in</strong>g microorganisms, very slowly degraded. PLA undergoes cha<strong>in</strong><br />
scission <strong>to</strong> fragments <strong>and</strong> oligomers, hence requir<strong>in</strong>g extensive hydrolysis be<strong>for</strong>e <strong>the</strong><br />
biotic attack. PLA can <strong>for</strong>m a highly crystall<strong>in</strong>e structure that is more difficult <strong>to</strong> hydrolyze<br />
than amorphous (Reeve, et al. 1994). ASTM Method D5511 is a st<strong>and</strong>ard test method <strong>for</strong><br />
determ<strong>in</strong><strong>in</strong>g anaerobic biodegradation of plastic material under high-solid anaerobic<br />
digestion conditions.<br />
Necessary pre-treatments are expla<strong>in</strong>ed later <strong>in</strong> this report. In <strong>the</strong>rmophilic conditions,<br />
anaerobic biodegradation of PLA is faster than <strong>in</strong> aerobic conditions due <strong>to</strong> lactic acid<br />
be<strong>in</strong>g a more favorable substrate <strong>for</strong> anaerobic than aerobic microorganisms. At high<br />
temperatures, micro molecular structure changes, <strong>and</strong> Siparsky et al. (1997) f<strong>in</strong>d that<br />
water absorption <strong>in</strong><strong>to</strong> <strong>the</strong> polymer matrix <strong>in</strong>creases. This not only accelerates <strong>the</strong><br />
chemical hydrolysis, but it also <strong>in</strong>creases polymer hydrophilicity which makes it more<br />
accessible <strong>to</strong> microbes <strong>and</strong> enzymes (Karjomaa, et al. 1998). There<strong>for</strong>e, higher<br />
biodegradation is measured at higher temperatures—about 90% biodegradation of PLA<br />
<strong>in</strong> 60 days at 55°C with no lag phase observed (Yagi, et al. 2009). These results are<br />
achieved from an evolved <strong>system</strong> developed by us<strong>in</strong>g a gas collection bag at atmospheric<br />
pressure.<br />
The morphological characteristics of <strong>the</strong> PLA particles were exam<strong>in</strong>ed under optical<br />
microscopy. Figure 5 shows <strong>the</strong> bacterial attachment on <strong>the</strong> PLA surface. For this<br />
experiment, only <strong>the</strong> bacteria with <strong>the</strong> ability <strong>to</strong> attach <strong>to</strong> PLA were selected <strong>and</strong> those<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
14<br />
bacteria were dom<strong>in</strong>ant <strong>in</strong> <strong>the</strong> f<strong>in</strong>al stage (c & d) of degradation as shown <strong>in</strong> Figure 5<br />
(Moon, et al. 2016). Additional research will be needed <strong>to</strong> exam<strong>in</strong>e <strong>the</strong> metabolic<br />
reactions at <strong>the</strong> <strong>in</strong>terface.<br />
Figure 5: PLA at Different Degradation Times (a & b at 0 days, c & d at 30 days) (Moon et al. 2016)<br />
Important parameters <strong>in</strong> <strong>the</strong> AD processes are – Solid Retention Time, Hydraulic<br />
Retention Time, temperature, pH, alkal<strong>in</strong>ity, moisture content, C/N (carbon/nitrogen) ratio,<br />
nutrients, <strong>and</strong> <strong>to</strong>xic material. SRT is <strong>the</strong> average time <strong>the</strong> solids are <strong>in</strong> <strong>the</strong> <strong>system</strong>, <strong>and</strong><br />
HRT is a measure of <strong>the</strong> average length of time that water rema<strong>in</strong>s <strong>in</strong> a bioreac<strong>to</strong>r. SRT,<br />
HRT, <strong>and</strong> temperature are required <strong>to</strong> determ<strong>in</strong>e <strong>the</strong> processes, while alkal<strong>in</strong>ity controls<br />
<strong>the</strong> digestion, <strong>and</strong> nutrients <strong>and</strong> <strong>to</strong>xic material determ<strong>in</strong>e bacterial growth. Most<br />
bioplastics are very carbon-rich <strong>and</strong> conta<strong>in</strong> little <strong>to</strong> no nitrogen; <strong>the</strong> addition of bioplastics<br />
<strong>to</strong> corporate cafeteria <strong>organic</strong> <strong>waste</strong>, however, will improve <strong>the</strong> C/N ratio of <strong>the</strong> mixture.<br />
ADs are highly susceptible <strong>to</strong> upsets due <strong>to</strong> environmental conditions such as wea<strong>the</strong>r<br />
<strong>and</strong> seasonal variation. There<strong>for</strong>e, it is crucial <strong>to</strong> ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> parameter with<strong>in</strong> <strong>the</strong><br />
recommended limit. Appendix A shows <strong>the</strong> specifications of <strong>the</strong> AD process <strong>for</strong> Food<br />
<strong>Waste</strong> <strong>and</strong> PLA (Tchobanoglous 2014).<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
15<br />
Digestate<br />
Ideally, bioplastics would biodegrade <strong>and</strong> dis<strong>in</strong>tegrate dur<strong>in</strong>g <strong>the</strong> anaerobic phase <strong>in</strong> an<br />
anaerobic digestion plant, just as a major part of “natural” bio<strong>waste</strong> does. However, if<br />
bioplastics dis<strong>in</strong>tegrate dur<strong>in</strong>g <strong>the</strong> anaerobic phase, <strong>the</strong>y later can biodegrade completely<br />
dur<strong>in</strong>g <strong>the</strong> aerobic stabilization phase or with <strong>the</strong> use of digestate or compost <strong>in</strong> <strong>the</strong> soil.<br />
Usually, <strong>in</strong>dustrial digestate is sieved through a 2 mm mesh, <strong>and</strong> if <strong>the</strong> result<strong>in</strong>g biomanure<br />
is not 100% PLA, it can be dangerous. The feeds<strong>to</strong>ck of pure PLA can produce<br />
Class A sludge <strong>and</strong> be used as fertilizer on farms.<br />
No significant amount of chemicals (PLA, Accelerant, etc) were found <strong>in</strong> <strong>the</strong> compost<strong>in</strong>g<br />
process, but daily lab test<strong>in</strong>g is required. Seasonal variation <strong>in</strong> <strong>the</strong> <strong>waste</strong> can <strong>create</strong><br />
obstacles <strong>in</strong> <strong>the</strong> process. A sampl<strong>in</strong>g at various stages is recommended. The undigested<br />
matter would go <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill, <strong>and</strong> it is assumed that <strong>the</strong> residual untreated PLA from <strong>the</strong><br />
AD process will not cont<strong>in</strong>ue <strong>to</strong> emit biogas when l<strong>and</strong>filled <strong>and</strong> will offset emission via<br />
carbon sequestration. Generally, one <strong>to</strong>n per day of <strong>organic</strong> matter produces<br />
approximately 33 <strong>to</strong>ns of bio manure per year.<br />
A <strong>to</strong>tal of 1TPD of undigested bioplastic with 30% of <strong>to</strong>tal solids will be sent <strong>to</strong> <strong>the</strong><br />
l<strong>and</strong>fill; about 3TPD dewatered digestate cake can be utilized <strong>for</strong> compost<strong>in</strong>g, <strong>and</strong><br />
Class A fertilizer can be produced.<br />
Gas Production<br />
Gas from anaerobic digestion conta<strong>in</strong>s about 65 - 70% CH4 by volume, 25 <strong>to</strong> 30% CO2,<br />
<strong>and</strong> small amounts of N2, H2, H2S, water vapor, <strong>and</strong> o<strong>the</strong>r gases. PLA was degraded<br />
us<strong>in</strong>g dry digestion with high solids under <strong>the</strong> mesophilic condition up <strong>to</strong> 60% over 40<br />
days (Itavaara, et al. 2002). It was found that approx. 90% degradation occurs <strong>in</strong> 60 days<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
16<br />
under 55°C (Yagi, et al. 2009) whereas 189 N-Lit/dry kg of methane estimated from 40%<br />
degradation of amorphous PLA at 35°C <strong>for</strong> 170 days (100% degradation gives 467 N-<br />
Lit/dry kg <strong>based</strong> on reaction – C6H8O4 + 2H2O → 3CO2 + 3CH4) (Kolstad, et. al. 2012).<br />
For this particular scenario <strong>for</strong> a s<strong>in</strong>gle corporation, 10 TPD of food <strong>and</strong> bioplastic <strong>waste</strong><br />
with 28% of <strong>to</strong>tal solids would produce 66 N-m3/hr of biogas under <strong>the</strong> mesophilic<br />
condition with HRT of 24 days <strong>and</strong> an <strong>organic</strong> load<strong>in</strong>g rate of 4.3 kg VSS/m3.d <strong>in</strong> <strong>in</strong>sulated<br />
bolter steel anaerobic digester. After biogas condition<strong>in</strong>g, 40 N-m3/hr of biomethane will<br />
be generated.<br />
L<strong>and</strong>fill biogas has a greater carbon <strong>in</strong>tensity than digester biogas because l<strong>and</strong>fill<br />
<strong>system</strong>s are not as efficient at produc<strong>in</strong>g <strong>and</strong> captur<strong>in</strong>g biogas, whereas digesters are<br />
specifically designed <strong>for</strong> that purpose. Figure 6 shows that <strong>organic</strong> diversion <strong>and</strong><br />
anaerobic digestion can result <strong>in</strong> negative lifecycle emissions (Union of Concerned<br />
Scientists 2012).<br />
Figure 6: CO2 Generation from Different Organic <strong>Waste</strong> Treatments (Union of Concerned Scientists)<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
17<br />
L<strong>and</strong>fill<br />
<strong>Waste</strong> plastics be<strong>in</strong>g sent <strong>to</strong> l<strong>and</strong>fill is <strong>the</strong> least favored option <strong>in</strong> <strong>the</strong> <strong>waste</strong> hierarchy.<br />
Levels of concern are ris<strong>in</strong>g <strong>for</strong> <strong>the</strong> impact of l<strong>and</strong>fills on health <strong>and</strong> <strong>the</strong> environment due<br />
<strong>to</strong> <strong>the</strong> number of <strong>to</strong>xic materials <strong>in</strong> l<strong>and</strong>-filled municipal <strong>waste</strong> <strong>and</strong> <strong>the</strong>ir potential leach<strong>in</strong>g<br />
out of l<strong>and</strong>fill sites. The l<strong>and</strong>fill of biodegradable materials <strong>in</strong>clud<strong>in</strong>g bioplastic polymers,<br />
garden <strong>waste</strong>, <strong>and</strong> kitchen <strong>waste</strong> presents a problem <strong>in</strong> that methane, a greenhouse gas<br />
with 25 <strong>to</strong> 36 times <strong>the</strong> effect of CO2, may be produced under anaerobic conditions<br />
encountered <strong>in</strong> <strong>the</strong> l<strong>and</strong>fill. In <strong>the</strong> US, a typical recycl<strong>in</strong>g facility is not equipped <strong>to</strong> deal<br />
with food packag<strong>in</strong>g, <strong>and</strong> this material is <strong>the</strong>re<strong>for</strong>e disposed of <strong>in</strong> l<strong>and</strong>fills.<br />
The assessment of anaerobic degradation of Ingeo TM PLA under accelerated l<strong>and</strong>fill<br />
conditions shows that semi-crystall<strong>in</strong>e PLA under AD <strong>in</strong> a l<strong>and</strong>fill at a moderate<br />
temperature will not generate significant methane because <strong>the</strong>re are no significant<br />
microorganisms available <strong>to</strong> degrade high molecular weight PLA. There<strong>for</strong>e, it needs a<br />
chemical hydrolysis step be<strong>for</strong>e any degradation (Kolstad, et al. 2012).<br />
Fortunately, methane is an energy-dense <strong>fuel</strong> that can be used <strong>for</strong> electricity, heat<strong>in</strong>g,<br />
<strong>and</strong> transportation. For example, U.S. <strong>waste</strong>-derived “biomethane” could produce nearly<br />
4.5 billion gasol<strong>in</strong>e-equivalent gallons of <strong>fuel</strong> annually—enough <strong>fuel</strong> <strong>for</strong> 10.4 million cars<br />
(EIA 2021). This could displace nearly 75% of <strong>the</strong> natural gas consumed by <strong>the</strong><br />
transportation sec<strong>to</strong>r or 7% of <strong>the</strong> natural gas consumed by <strong>the</strong> electricity sec<strong>to</strong>r (EIA<br />
2021). As <strong>the</strong> electric vehicle market cont<strong>in</strong>ues <strong>to</strong> grow, biomethane-generated electricity<br />
could allow <strong>for</strong> truly zero-emission driv<strong>in</strong>g.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
18<br />
Feeds<strong>to</strong>ck Composition<br />
Food <strong>waste</strong> has a high energy potential <strong>and</strong> an estimated decay rate of 0.14 yr - which<br />
makes it compatible <strong>to</strong> digest with PLA. Feeds<strong>to</strong>ck will be composed of food <strong>waste</strong> <strong>and</strong><br />
PLA/bioplastic. The source of food <strong>waste</strong> is <strong>the</strong> cafeteria <strong>and</strong> canteen food <strong>waste</strong>.<br />
Because of high moisture content (approx. 80% or more) <strong>in</strong> food <strong>waste</strong>, it is suitable <strong>to</strong><br />
comb<strong>in</strong>e with PLAs that are low <strong>in</strong> moisture content. Not all bio-<strong>based</strong> plastics will<br />
biodegrade. Lactic acid is a great source of food <strong>for</strong> microorganisms <strong>and</strong> hence is easy<br />
<strong>to</strong> biodegrade. Biodegradable bioplastics like pure PLA have great potential <strong>to</strong> contribute<br />
<strong>to</strong> material recovery, reduction of l<strong>and</strong>fills, <strong>and</strong> use of renewable resources.<br />
The Ratio of Food <strong>Waste</strong> <strong>to</strong> PLA<br />
There are a variety of ratios of food <strong>waste</strong> <strong>to</strong> PLA recommended, but overall, a very small<br />
percentage of PLA <strong>to</strong> <strong>organic</strong> <strong>waste</strong> is feasible. The ratio of bioplastic <strong>to</strong> kitchen <strong>waste</strong><br />
was kept very low at a compost plant <strong>in</strong> Kassel, Germany: 1 plastic part <strong>to</strong> 99 parts of<br />
<strong>organic</strong> <strong>waste</strong> on a weight basis. It showed no negative effects observed <strong>in</strong> terms of<br />
quality <strong>and</strong> <strong>the</strong> same effect on plants as regular compost. (Song, et al. 2009). SMU faculty<br />
members from <strong>the</strong> Civil <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g Department <strong>and</strong> professionals<br />
had <strong>the</strong> same op<strong>in</strong>ion that an acceptable ratio is up <strong>to</strong> 10%. It can also work as COD of<br />
kitchen garbage (raw - 230 g/lit) <strong>to</strong> PLA at a 4:1 ratio. (Wang, et al. 2012).<br />
Alternatives <strong>for</strong> Pre-Treatment of PLA<br />
Inconsistencies <strong>in</strong> product label<strong>in</strong>g <strong>and</strong> a lack of accepted def<strong>in</strong>itions <strong>for</strong> <strong>in</strong>dustry terms<br />
confuse consumers upon purchas<strong>in</strong>g <strong>and</strong> discard<strong>in</strong>g products. Improperly sorted<br />
bioplastics can contam<strong>in</strong>ate recycl<strong>in</strong>g streams <strong>and</strong> feeds<strong>to</strong>ck <strong>for</strong> compost<strong>in</strong>g operations<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
19<br />
or end up buried <strong>in</strong> a l<strong>and</strong>fill. Also, <strong>in</strong>consistent rates of decomposition across products<br />
can impede commercial compost<strong>in</strong>g operations.<br />
Physical Treatment - Reduction <strong>in</strong> Particle Size & Chopp<strong>in</strong>g <strong>and</strong><br />
Shredd<strong>in</strong>g<br />
Particle size may significantly affect <strong>the</strong> speed <strong>and</strong> stability of anaerobic digestion, so<br />
match<strong>in</strong>g <strong>the</strong> choice of particle size reduction equipment <strong>to</strong> digester type can determ<strong>in</strong>e<br />
<strong>the</strong> outcome of <strong>the</strong> process. The anaerobic biodegradation rate of PLA film (thickness 25<br />
μm) was faster than <strong>the</strong> PLA powder (125–250 μm) at 55 °C. Itavarra, et al. (2002) found<br />
that samples of 2x2 cm pieces of PLA film diluted <strong>in</strong> <strong>waste</strong>water <strong>in</strong>oculum had better<br />
degradation due <strong>to</strong> <strong>the</strong> physical change of <strong>the</strong> PLA. On <strong>the</strong> contrary, although <strong>the</strong> smaller<br />
pieces were expected <strong>to</strong> degrade faster, it turned out that <strong>the</strong>y stuck <strong>to</strong>ge<strong>the</strong>r <strong>and</strong><br />
generated static electricity. There<strong>for</strong>e, <strong>the</strong> <strong>to</strong>tal surface area <strong>in</strong> contact with sludge was<br />
less than with larger pieces (Ba<strong>to</strong>ri, et al. 2018).<br />
Chemical Treatment - Alkal<strong>in</strong>ity Treatment<br />
Alkal<strong>in</strong>e pretreatment has <strong>the</strong> highest solid reduction rate of PLA <strong>and</strong> maximum<br />
production of CH4 when comb<strong>in</strong>ed with food <strong>waste</strong> <strong>and</strong> anaerobically digested sludge.<br />
PLA dissolv<strong>in</strong>g <strong>in</strong> a high alkal<strong>in</strong>e solution leads <strong>to</strong> hydrolysis of aliphatic polyester,<br />
cleav<strong>in</strong>g <strong>the</strong> ester bonds. The hydrolytic degradation of crystall<strong>in</strong>e PLA leads <strong>to</strong> an<br />
<strong>in</strong>creased rate of mass loss <strong>in</strong> solution <strong>and</strong> <strong>in</strong>creased consumption of O2 due <strong>to</strong> PLA<br />
content. The biotic degradation of PLA is desirable dur<strong>in</strong>g disposal, <strong>and</strong> degradation can<br />
be enhanced through <strong>the</strong>rmal treatment mak<strong>in</strong>g anaerobic digestion viable. Hobbs, et al.<br />
(2019) found that PLA <strong>in</strong>cubated at 12.96 pH <strong>for</strong> 15 days showed 98% solubilization.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
20<br />
Figure 7: Comparison of Untreated Crystall<strong>in</strong>e PLA Be<strong>for</strong>e <strong>and</strong> After BMP Test<br />
Figure 7 shows <strong>the</strong> change <strong>in</strong> <strong>the</strong> weight of PLA. The PLA without treatment after<br />
anaerobic digestion experienced a 53% reduction of <strong>in</strong>itial weight due <strong>to</strong> <strong>the</strong> conversion<br />
of long polymer cha<strong>in</strong>s <strong>in</strong><strong>to</strong> shorter cha<strong>in</strong>s under alkal<strong>in</strong>e treatment.<br />
Thermal Treatment<br />
Despite <strong>the</strong> biocompatible nature of bioplastics, <strong>the</strong> degradation of PLA <strong>in</strong> <strong>the</strong><br />
environment is not easy because, under ambient conditions, PLA <strong>in</strong> soil or sewage is<br />
resistant <strong>to</strong> microbial attack. Thermophilic (50-60°C) <strong>system</strong>s have a faster throughput<br />
with faster biogas production per unit of feeds<strong>to</strong>ck <strong>and</strong> digester volume. However, <strong>the</strong><br />
capital costs of <strong>the</strong>rmophilic <strong>system</strong>s are far higher, more energy is needed <strong>to</strong> heat <strong>the</strong>m,<br />
<strong>and</strong> <strong>the</strong>y generally require more management.<br />
Figure 8 <strong>in</strong>dicates that 60% m<strong>in</strong>eralization of PLA <strong>to</strong>ok place <strong>in</strong> anaerobic aquatic<br />
conditions at 37°C <strong>in</strong> 100 days, while at 52 o C, 60% was m<strong>in</strong>eralized <strong>in</strong> 40 days. This<br />
shows that <strong>the</strong>rmophilic temperature is <strong>the</strong> key parameter affect<strong>in</strong>g <strong>the</strong> biodegradation<br />
rate of PLA.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
21<br />
Figure 8: M<strong>in</strong>eralization of PLA <strong>in</strong> Anaerobic condition at 37C & 52C (Itavaara et al. 2002)<br />
Ultraviolet Irradiation<br />
Ultraviolet irradiation at a wavelength of 254 mm (UV-C) can break <strong>the</strong> long cha<strong>in</strong>s of PLA<br />
beverage cups <strong>and</strong> reduce <strong>the</strong> average molecular weight (Jeon & Kim 2013). The<br />
exposure of PLA <strong>waste</strong> <strong>to</strong> UV-C radiation be<strong>for</strong>e compost<strong>in</strong>g will <strong>in</strong>crease <strong>the</strong> rate of PLA<br />
degradation.<br />
Dairy & <strong>Waste</strong>water Inoculation<br />
Anaerobic microbial <strong>in</strong>oculum was derived from an anaerobic <strong>waste</strong>water treatment<br />
facility, <strong>and</strong> that dairy manure can be used <strong>for</strong> test<strong>in</strong>g of PLA degradation. The dairy<br />
<strong>waste</strong>water sludge was Act<strong>in</strong>omadura, a good source of microbial consortia. The amount<br />
of <strong>in</strong>oculum was equivalent <strong>to</strong> 10% of <strong>the</strong> volume of <strong>the</strong> solution. Figure 9 shows a<br />
schematic diagram of PLA degradation under UV-C irradiation followed by Soil Burial,<br />
Dairy <strong>Waste</strong>water Sludge (DWS), <strong>and</strong> P. geniculate WS3 additions<br />
(Pattanasuttichonlakul 2018). UV-C irradiation decreased <strong>the</strong> molecular weight of PLA<br />
as compared <strong>to</strong> UV-A <strong>and</strong> UV-B.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
22<br />
Figure 9: Schematic Diagram of PLA Degradation <strong>and</strong> Soil Burial<br />
UV-C-treated PLA sheets are buried <strong>in</strong> <strong>the</strong> soil with DWS <strong>and</strong> P. geniculata WS3<br />
additions. P. geniculata WS3 <strong>and</strong> some microorganisms <strong>in</strong> DWS, adhered <strong>to</strong> <strong>the</strong> PLA<br />
surface, excreted PLA-degrad<strong>in</strong>g enzymes. The PLA-degrad<strong>in</strong>g enzyme is absorbed or<br />
localized on <strong>the</strong> PLA surface (Bubpachat et al., 2018). The PLA degradation process<br />
<strong>in</strong>volves chemical <strong>and</strong> enzymatic hydrolysis. Qi, et al. (2017) recommend <strong>the</strong> process of<br />
UV-C irradiation <strong>and</strong> <strong>the</strong> addition of DWS <strong>and</strong> P. geniculata WS3, as <strong>the</strong>se offer an<br />
efficient method <strong>for</strong> accelerat<strong>in</strong>g PLA degradation under aerobic soil burial conditions.<br />
Need <strong>for</strong> an Accelerat<strong>in</strong>g Agent (i.e. GBX)<br />
There is no need <strong>to</strong> add an accelerat<strong>in</strong>g agent <strong>for</strong> PLA & food <strong>waste</strong> feeds<strong>to</strong>ck. If any<br />
specific k<strong>in</strong>d of <strong>in</strong>dustrial <strong>waste</strong> is treated, <strong>the</strong>n it may need an accelerat<strong>in</strong>g agent, such<br />
as Inoculum from WWTP or dairy. This report recommends runn<strong>in</strong>g <strong>the</strong> process as<br />
naturally as possible.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
23<br />
Feeds<strong>to</strong>ck Quantity, Methane <strong>and</strong> Hydrogen<br />
Production<br />
It is estimated that 10 <strong>to</strong> 12 <strong>to</strong>ns/d (one collection compac<strong>to</strong>r truck) of food <strong>waste</strong> with 8<br />
<strong>to</strong> 10% contam<strong>in</strong>ation (wet/wet basis) <strong>and</strong> 80% of <strong>the</strong> contam<strong>in</strong>ation be<strong>in</strong>g bioplastics<br />
(<strong>the</strong> rest conventional plastics <strong>and</strong> o<strong>the</strong>rs) can produce about 70 Nm3/h of biogas. This<br />
is <strong>the</strong> amount of biogas needed <strong>to</strong> produce 200 kg/day of hydrogen. The focus is on 200<br />
kg of H2 because this is <strong>the</strong> smallest size of commercially available packaged <strong>and</strong><br />
conta<strong>in</strong>erized biomethane re<strong>for</strong>m<strong>in</strong>g <strong>system</strong>s. The design parameters <strong>for</strong> AD are as<br />
follows: HRT of 24days, digester volume of 500 m 3 , <strong>and</strong> <strong>organic</strong> load<strong>in</strong>g rate of 4.3 kg<br />
VSS/m 3 per day. (Anargia)<br />
There is ano<strong>the</strong>r design approach <strong>for</strong> small-scale distribution facilities that would produce<br />
100 <strong>to</strong> 1500 kg of hydrogen per day at <strong>fuel</strong><strong>in</strong>g stations. For 200 kg per day of hydrogen,<br />
<strong>the</strong> biogas flow rate should be 120 cfm at 60% methane (172,000 cuft per day). To<br />
produce that amount of biogas, <strong>the</strong> digester’s <strong>organic</strong> load<strong>in</strong>g would need <strong>to</strong> be 28,800<br />
lbs per day of COD (<strong>based</strong> on ~6 cubic feet per lbs of COD). Food <strong>waste</strong> <strong>and</strong> 10% PLA<br />
must blend <strong>and</strong> make a slurry (feed material blend) with 100,000 mg/L COD or 35,000<br />
gallons of feed material (attached biogas yields). SMR Technology is widely used <strong>to</strong><br />
generate hydrogen because of its per<strong>for</strong>mance <strong>and</strong> cost-efficiency (Tasser).<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
24<br />
Consistency of <strong>Waste</strong> from Employer<br />
Figure 10: Bio<strong>based</strong> Product Labels, Cali<strong>for</strong>nia Organics Recycl<strong>in</strong>g Council<br />
● Reduction <strong>and</strong> Segregation at source by plac<strong>in</strong>g color-coded b<strong>in</strong>s<br />
● Connect with restaurants, supermarkets, or food & PLA-generat<strong>in</strong>g commercial<br />
sec<strong>to</strong>rs<br />
● Implement<strong>in</strong>g effective biological treatment <strong>for</strong> <strong>the</strong> develop<strong>in</strong>g range of PLAs will<br />
require clear certification <strong>and</strong> label<strong>in</strong>g schemes<br />
● An effective collection <strong>system</strong> should accept only 100% biodegradable products<br />
(not all bio<strong>based</strong> products are biodegradable; Figure 10 shows <strong>the</strong> widely<br />
recognized labels which demonstrate compliance with ASTM D6400 & ASTM<br />
D6866, respectively)<br />
● Tipp<strong>in</strong>g fees - The best practice of establish<strong>in</strong>g long-term off-take contracts are<br />
with guarantees <strong>for</strong> quantity <strong>and</strong> composition <strong>to</strong> secure project f<strong>in</strong>anc<strong>in</strong>g<br />
Recommendations & Workplace Practices<br />
● Buy products from certified 100% pure PLA products e.g. Ingeo, Nature Works,<br />
<strong>and</strong> ask <strong>the</strong>m <strong>for</strong> certification of 100% biodegradation<br />
● Separation of <strong>waste</strong> <strong>in</strong> different b<strong>in</strong>s <strong>for</strong> different k<strong>in</strong>ds of <strong>waste</strong>, such as<br />
recyclable, l<strong>and</strong>fill, <strong>organic</strong> wet, <strong>organic</strong> dry, <strong>and</strong> PLA (used spoons, dishes, <strong>and</strong><br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
25<br />
o<strong>the</strong>r cutlery) with <strong>the</strong> list of materials or pho<strong>to</strong>graphs <strong>to</strong> identify appropriate <strong>waste</strong><br />
placement<br />
● Spread awareness on <strong>the</strong> benefits of <strong>waste</strong> separation - reduces cost, treatment,<br />
energy, <strong>and</strong> labor<br />
Conclusion<br />
The purpose of this project is <strong>to</strong> study <strong>and</strong> recommend potential solutions through an<br />
analysis of corporate <strong>waste</strong> management options <strong>in</strong> Plano, Texas, focus<strong>in</strong>g on an<br />
anaerobic digester or o<strong>the</strong>r applicable technologies <strong>to</strong> be used <strong>for</strong> several possible<br />
benefits: greenhouse gas reduction, diversion from l<strong>and</strong>fill, economic value, <strong>and</strong> <strong>the</strong><br />
potential <strong>to</strong> <strong>create</strong> a <strong>fuel</strong><strong>in</strong>g source <strong>for</strong> hydrogen-powered vehicles.<br />
The m<strong>in</strong>imum requirements of feeds<strong>to</strong>ck <strong>for</strong> a digester are 10 <strong>to</strong>ns a day equat<strong>in</strong>g <strong>to</strong><br />
~3650 <strong>to</strong>ns of feeds<strong>to</strong>ck annually. If one corporation produces 1.5 million lbs (769 <strong>to</strong>ns)<br />
annually leav<strong>in</strong>g a deficit of 3650 <strong>to</strong>ns <strong>and</strong> <strong>the</strong> City of Plano collects approximately 30,000<br />
<strong>to</strong>ns of yard <strong>waste</strong> annually with a breakdown of 1,915 <strong>to</strong>ns a month, a partnership with<br />
<strong>the</strong> City of Plano would guarantee <strong>the</strong> m<strong>in</strong>imum feeds<strong>to</strong>ck <strong>to</strong> susta<strong>in</strong> <strong>the</strong> anaerobic activity<br />
of bacteria <strong>and</strong> <strong>the</strong> production of methane gas <strong>to</strong> meet <strong>the</strong> energy needs of <strong>the</strong> plant.<br />
Secur<strong>in</strong>g a reliable feeds<strong>to</strong>ck supply is fundamental <strong>to</strong> profitable AD <strong>and</strong> if feeds<strong>to</strong>cks are<br />
<strong>to</strong> be bought from a third party, secur<strong>in</strong>g a long-term contract on acceptable terms is<br />
critical. Partnerships with o<strong>the</strong>r corporations’ supplies of feeds<strong>to</strong>ck would be beneficial <strong>for</strong><br />
<strong>the</strong> environment <strong>and</strong> establishment of challenges like recycl<strong>in</strong>g-<strong>based</strong> <strong>society</strong> <strong>and</strong><br />
<strong>system</strong>s <strong>for</strong> Plano, TX. However, <strong>the</strong> risk associated with wet <strong>organic</strong> <strong>waste</strong> quality from<br />
corporations would not be reliable <strong>to</strong> run a digester constantly throughout <strong>the</strong> year.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
26<br />
Additional partnerships are advisable <strong>based</strong> on <strong>the</strong> bus<strong>in</strong>ess model <strong>for</strong> CR&R, Inc. The<br />
success of this endeavor would <strong>in</strong>crease with <strong>in</strong>dustry partners who specialize <strong>in</strong><br />
anaerobic digestion technology ma<strong>in</strong>tenance like Esenmann, biogas upgrad<strong>in</strong>g<br />
technology like Greenlane Biogas, biogas polish<strong>in</strong>g technology like Sysadvance,<br />
renewable natural gas distribution with <strong>the</strong> City of Plano or a private sec<strong>to</strong>r gas company,<br />
<strong>and</strong> subcontrac<strong>to</strong>rs <strong>for</strong> operations <strong>and</strong> project management like JRMA who specialize <strong>in</strong><br />
<strong>waste</strong> management <strong>and</strong> <strong>waste</strong> <strong>to</strong> energy process<strong>in</strong>g.<br />
Future Scope<br />
Possible locations of sort<strong>in</strong>g, pre-treatment, <strong>and</strong> digester are corporation’s available<br />
space, a transfer station, or a separate facility near <strong>the</strong> l<strong>and</strong>fill.<br />
Ideally, <strong>to</strong> reduce process<strong>in</strong>g <strong>and</strong> labor costs at <strong>the</strong> site, <strong>the</strong> digester plant could be<br />
located near an exist<strong>in</strong>g MRF (Material Recovery Facility) or l<strong>and</strong>fill. Additionally, this<br />
could reduce <strong>the</strong> cost of transportation <strong>and</strong> ma<strong>in</strong>tenance while also elim<strong>in</strong>at<strong>in</strong>g <strong>the</strong><br />
requirement <strong>for</strong> a permit <strong>to</strong> transport <strong>the</strong> <strong>waste</strong>. The plant will also need a food process<strong>in</strong>g<br />
<strong>system</strong> (shredder or separa<strong>to</strong>r) <strong>in</strong> a 50 sq. ft. build<strong>in</strong>g. The overall footpr<strong>in</strong>t would also<br />
<strong>in</strong>clude <strong>the</strong> gas treatment <strong>system</strong> <strong>and</strong> hydrogen SMR re<strong>for</strong>mer.<br />
Due <strong>to</strong> <strong>the</strong> restrictions of COVID-19 guidel<strong>in</strong>es, this report will benefit from fur<strong>the</strong>r analysis<br />
<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g areas.<br />
● <strong>Waste</strong> generation audit/quantity of <strong>waste</strong> generated by all <strong>the</strong> corporations from<br />
Plano area<br />
● The characteristics study of food <strong>waste</strong> generated <strong>in</strong> a cafeteria<br />
● Eng<strong>in</strong>eer<strong>in</strong>g design of an anaerobic digester, mass, <strong>and</strong> energy balance<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
27<br />
● Process flow diagram <strong>and</strong> facility layout of a proposed facility, requir<strong>in</strong>g work with<br />
an architect<br />
● Detailed cost estimation, <strong>in</strong>clud<strong>in</strong>g construction, commission<strong>in</strong>g, <strong>in</strong>stallation,<br />
fabrication, <strong>and</strong> O&M <strong>based</strong> on facility configurations<br />
● Required fund<strong>in</strong>g, <strong>in</strong>vestment structures, VPPA/PPA<br />
● Costs/revenues of operat<strong>in</strong>g an anaerobic digester, dem<strong>and</strong>-side target audience<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
28<br />
Appendix A<br />
DESIGN PARAMETERS<br />
APPROX. VALUES<br />
Solids Retention Time (SRT)<br />
Hydraulic retention Time<br />
Temperature<br />
pH<br />
Alkal<strong>in</strong>ity<br />
COD Load<strong>in</strong>g Rate<br />
VSS<br />
40 <strong>to</strong> 120 days<br />
5 <strong>to</strong> 12 hours<br />
Mesophilic 55°C (Favorable)<br />
7.0 - 7.1 Optimum<br />
2000 <strong>to</strong> 8000 mg/lit as CaCO3<br />
1 <strong>to</strong> 50 kg COD/m 3 .day<br />
22-24% of raw <strong>waste</strong><br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
29<br />
Works Cited<br />
Anargia - Fuel<strong>in</strong>g a susta<strong>in</strong>able world. https://www.anaergia.com/<br />
Ba<strong>to</strong>ri, V., Dan Akesson, Akram Zamani, Mohammad J. Taherzadeh, Anaerobic<br />
degradation of bioplastic: A review (2018), Swedish Center <strong>for</strong> Resource<br />
Recovery, University of Boras, Sweden.<br />
Biomass Resources <strong>in</strong> <strong>the</strong> United States. Union of Concerned Scientists. (2012).<br />
https://www.ucsusa.org/resources/biomass-resources-united-states.<br />
Bubpachat, T., Sombatsompop, N., <strong>and</strong> Prapagdee, B. (2018). “Isolation of two degrad<strong>in</strong>g<br />
bacteria <strong>and</strong> <strong>the</strong>ir roles on production of degrad<strong>in</strong>g enzymes <strong>and</strong> PLA<br />
biodegradability at mesophilic conditions,” Polymer Degradation <strong>and</strong> Stability 152,<br />
75-85. DOI: 10.1016/j.polymdegradstab.2018.03.023<br />
Davis G. & Song J. H. (2006). Biodegradable packag<strong>in</strong>g <strong>based</strong> on raw materials from<br />
crops <strong>and</strong> <strong>the</strong>ir impact on <strong>waste</strong> management. Industrial Crops <strong>and</strong> Products<br />
23(2), 147–161.<br />
<strong>Energy</strong> Efficiency & Renewable <strong>Energy</strong>, & Moriarty, K., Feasibility Study of Anaerobic<br />
Digestion of Food <strong>Waste</strong> <strong>in</strong> St. Bernard, Louisiana (2013). National Renewable<br />
<strong>Energy</strong> Labora<strong>to</strong>ry. https://www.nrel.gov/docs/fy13osti/57082.pdf.<br />
Hamad, K., Kaseem, M., Yang, H.W., Deri, F., & Ko, Y.G. (2015). Properties <strong>and</strong> medical<br />
applications of polylactic acid: A review. EXPRESS Polymer Letters 9(5), 435-455.<br />
10.3144/expresspolymlett.2015.42<br />
Hawken, P. (2018). Drawdown: The most comprehensive plan ever proposed <strong>to</strong> roll back<br />
global warm<strong>in</strong>g. London: Pengu<strong>in</strong> Books.<br />
Hobbs, S., Parameswaran, P., Astmann, B., Devkota, J., & L<strong>and</strong>is, A. (2019). Anaerobic<br />
Co-digestion of Food <strong>Waste</strong> <strong>and</strong> Polylactic Acid: Effect of Pretreatment on<br />
Methane Yield <strong>and</strong> Solid Reduction. Advances <strong>in</strong> Materials Science <strong>and</strong><br />
Eng<strong>in</strong>eer<strong>in</strong>g 2019(2), 1-6. https://doi.org/10.1155/2019/4715904<br />
Itävaara, M., Karjomaa, S., & Sel<strong>in</strong>, J. (2002). Biodegradation of polylactide <strong>in</strong> aerobic<br />
<strong>and</strong> anaerobic <strong>the</strong>rmophilic conditions. Chemosphere 46, 879-885.<br />
https://doi.org/10.1016/S0045-6535(01)00163-1<br />
Jeon, H.J. & Kim, M.N. (2013). Biodegradation of poly(L-lactide) (PLA) exposed <strong>to</strong> UV<br />
irradiation by a mesophilic bacterium. Int. Biodeterior. Biodegrad. 85, 289-293.<br />
Karjomaa, S., Suortti, T., Lempiä<strong>in</strong>en, R., Sel<strong>in</strong>, J.-F., Itävaara, M. (1998). Microbial<br />
degradation of poly-(L-lactic acid)oligomers. Polym. Degradation Stability 59, 333–<br />
336.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
30<br />
Kolstad, J., V<strong>in</strong>k, E., De Wilde, B., & Debeer, L. (2012). Assessment of anaerobic<br />
degradation of Ingeo TM polylactides under accelerated l<strong>and</strong>fill conditions. Polymer<br />
Degradation <strong>and</strong> Stability 97(7), 1131-1141.<br />
https://doi.org/10.1016/j.polymdegradstab.2012.04.003<br />
Malik, A., Grohmann, E., & Alves, M. (2013). Management of Microbial Resources <strong>in</strong> <strong>the</strong><br />
Environment. Dordrecht: Spr<strong>in</strong>ger Ne<strong>the</strong>rl<strong>and</strong>s.<br />
Miller, R. (2005). The l<strong>and</strong>scape <strong>for</strong> biopolymers <strong>in</strong> packag<strong>in</strong>g. Miller Kle<strong>in</strong> Associates,<br />
Ltd.<br />
Moon, J. & Mi Yeon Kim (2016). Estimation of <strong>the</strong> Microbial Degradation of Biodegradable<br />
Polymer, PLA with a specific gas production rate.<br />
https://l<strong>in</strong>k.spr<strong>in</strong>ger.com/article/10.1007/s13233-016-4060-2<br />
Nielsen, B. & Petersen, G. (2000). Thermophilic anaerobic digestion <strong>and</strong> pasteurisation.<br />
Practical experience from Danish <strong>waste</strong>water treatment plants. Water Science &<br />
Technology 42(9), 65-72.<br />
OECD. (2008). Guidance Manual <strong>for</strong> <strong>the</strong> Control of Transboundary Movements of<br />
Recoverable <strong>Waste</strong>s. OECD Environment Direc<strong>to</strong>rate.<br />
https://www.oecd.org/env/<strong>waste</strong>/guidance-manual-control-transboundarymovements-recoverable-<strong>waste</strong>s.pdf.<br />
Pattanasuttichonlakul, W., Sombatsompop, N., & Prapagdee, B. (2018). Accelerat<strong>in</strong>g<br />
biodegradation of PLA us<strong>in</strong>g microbial consortium from dairy <strong>waste</strong>water sludge<br />
comb<strong>in</strong>ed with PLA-degrad<strong>in</strong>g bacterium. International Biodeterioration &<br />
Biodegradation 132, 74-83. https://doi.org/10.1016/j.ibiod.2018.05.014<br />
Qi, X., Ren, Y., & Wang, X. (2017). New advances <strong>in</strong> <strong>the</strong> biodegradation of Poly(lactic)<br />
acid. International Biodeterioration & Biodegradation, 117, 215–223.<br />
https://doi.org/10.1016/j.ibiod.2017.01.010<br />
Reeve, M.S., et al. (1994). Polylactide Stereochemistry: Effect on Enzymatic<br />
Degradability. Macromolecules 27, 825-831.<br />
Siparsky, G. L., Voorhees, K. J., Dorgan, J. R., & Schill<strong>in</strong>g, K. (1997). Water Transport <strong>in</strong><br />
Polylactic Acid (PLA), PLA/Polycaprolac<strong>to</strong>ne Copolymers, <strong>and</strong> PLA/Polyethylene<br />
Glycol Blends . Journal of Environmental Polymer Degradation, 5(3), 125–136.<br />
Song, J.H., R.J. Murphy, R. Narayan, <strong>and</strong> G.B. H. Davies. (2009). Biodegradable <strong>and</strong><br />
Compostable Alternatives <strong>to</strong> Conventional Plastics. Philosophical Transactions:<br />
Biological Science 364(1526).<br />
Schroepher, G.J., et al. (1955). The Anaerobic Contact Process as Applied <strong>to</strong><br />
Pack<strong>in</strong>ghouse <strong>Waste</strong>s. Sewage <strong>and</strong> Industrial <strong>Waste</strong>s 27(4), 460-486.<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA
31<br />
Tasser, Christian. Pr<strong>in</strong>cipal, Technology-<strong>in</strong>vestments organization, CA.<br />
Tchobanoglous, G. (2014). <strong>Waste</strong>water eng<strong>in</strong>eer<strong>in</strong>g: treatment <strong>and</strong> resource recovery.<br />
McGraw-Hill.<br />
U.S. <strong>Energy</strong> In<strong>for</strong>mation Adm<strong>in</strong>istration - EIA - Independent Statistics <strong>and</strong> Analysis.<br />
Biomass expla<strong>in</strong>ed - U.S. <strong>Energy</strong> In<strong>for</strong>mation Adm<strong>in</strong>istration (EIA). (2021, June 8).<br />
https://www.eia.gov/energyexpla<strong>in</strong>ed/biomass/.<br />
Wang, F., Hidaka, T., Tsuno, H., & Tsubota, J. (2012). Co-digestion of polylactide <strong>and</strong><br />
kitchen garbage <strong>in</strong> hyper<strong>the</strong>rmophilic <strong>and</strong> <strong>the</strong>rmophilic cont<strong>in</strong>uous anaerobic<br />
processes. Bioresource Technology, 112, 67–74.<br />
https://doi.org/10.1016/j.biortech.2012.02.064<br />
<strong>Waste</strong>water Eng<strong>in</strong>eer<strong>in</strong>g: Treatment <strong>and</strong> Resource Recovery 5th Edition by Inc. Metcalf<br />
& Eddy (Author), George Tchobanoglous (Author), H. Stensel (Author)<br />
Yagi, H., N<strong>in</strong>omiya, F., Funabashi, M., & Kunioka, M. (2012). Anaerobic Biodegradation<br />
of Poly (Lactic Acid) Film <strong>in</strong> Anaerobic Sludge. Journal of Polymers <strong>and</strong> <strong>the</strong><br />
Environment 20(3), 673-680. https://doi.org/10.1007/s10924-012-0472-z<br />
Yagi, H., N<strong>in</strong>omiya, F., Funabashi, M., & Kunioka, M. (2009). Anaerobic Biodegradation Tests<br />
of Poly(lactic acid) under Mesophilic <strong>and</strong> Thermophilic Conditions Us<strong>in</strong>g a New<br />
Evaluation System <strong>for</strong> Methane Fermentation <strong>in</strong> Anaerobic Sludge. International Journal<br />
of Molecular Sciences, 10(9), 3824–3835. https://doi.org/10.3390/ijms10093824<br />
Useful Websites:<br />
https://www.ntmwd.com/, https://www.ntmwd.com/facilities/<br />
www.ucsusa.org/Trash<strong>to</strong>Treasure<br />
https://www.epa.gov/sites/production/files/2020-07/documents/20-02-qa_0.pdf<br />
https://www.epa.gov/agstar<br />
https://archive.epa.gov/region9/<strong>organic</strong>s/web/html/<strong>in</strong>dex-2.html<br />
WASTE TO ENERGY<br />
PEDNEKAR, HARSHADA