Meccanica Magazine n.3
Meccanica Magazine, a year of the Department of Mechanical Engineering of Politecnico di Milano “in print”. Our research, achievements, culture, and a glance to the future.
Meccanica Magazine, a year of the Department of Mechanical Engineering of Politecnico di Milano “in print”. Our research, achievements, culture, and a glance to the future.
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
meccanica magazine
Meccanica Magazine
Periodico Annuale
meccanica magazine
Direttore Responsabile
Marco Bocciolone
Responsabile Editoriale
Riccardo Casati
meccanica magazine
2
Meccanica Magazine, un anno
del Dipartimento di Meccanica
del Politecnico di Milano “in
stampa”. La nostra ricerca, i nostri
risultati, la nostra cultura e il
nostro sguardo verso il futuro.
Comitato Editoriale
Marina Carulli
Ali GÖkhan Demir
Alessandra Di Palo
Andrea Manes
Paolo Schito
Gisella Tomasini
Emanuele Zappa
Editore e Proprietario
Politecnico di Milano - Dipartimento di Meccanica
Meccanica Magazine, a year of
the Department of Mechanical
Engineering of Politecnico di
Milano “in print”. Our research,
achievements, culture, and a
glance to the future.
Dipartimento di Meccanica
via La Masa, 1 - Milano
www.mecc.polimi.it
meccpolimi
Pubblicazione annuale n.3
Febbraio 2022
Registrazione presso il Tribunale
di Milano n° 238 del 06/11/2019
Stampa: Editoria Grafica
Colombo - Valmadrera (LC)
03
Meccanica Magazine è realizzato
in collaborazione con:
Francesca Brambilla Comunicazione
meccanica magazine
3
Governance
Head of Department: Prof. Marco Bocciolone
Deputy Head: Prof. Bianca Maria Colosimo
Head of Administration: Dr. Alessandro Tosi Giorcelli
Scientific Commission
Prof. Marco Bocciolone
Prof. Bianca Maria Colosimo
meccanica magazine
4
Facts and Figures
Prof. Massimiliano Gobbi (Coordinator)
Prof. Gaetano Cascini
Prof. Alfredo Cigada
Prof. Giorgio Colombo
Prof. Roberto Corradi
Prof. Marco Giglio
Prof. Carlo Mapelli
Prof. Michele Monno
Prof. Giovanni Moroni
Prof. Paolo Pennacchi
Prof. Bortolino Saggin
Prof. Maurizio Vedani
Department Board
Prof. Marco Bocciolone
Prof. Bianca Maria Colosimo
Prof. Francesco Braghin: international affairs
Prof. Riccardo Casati: communication and Alumni
Prof. Francesco Ferrise: culture, sport, equal opportunities, social responsibility
Prof. Stefano Foletti: young researchers, research lines and department interactions
Prof. Stefano Manzoni: education
Prof. Barbara Previtali: “Department of Excellence” and “Competence Center Made” projects
Dr. Alessandro Tosi Giorcelli
Research Lines
Dynamics and Vibration of Mechanical Systems and Vehicles: Head Prof. Roberto Corradi
Machine and Vehicle Design: Head Prof. Marco Giglio
Manufacturing and Production Systems: Head Prof. Giovanni Moroni
Materials: Head Prof. Maurizio Vedani
Measurements and Experimental Techniques: Head Prof. Bortolino Saggin
Methods and Tools for Products Design: Head Prof. Giorgio Colombo
Faculty and Staff (as of December 2021)
Full Professors: 36
Associate Professors: 53
Assistant Professors: 34
Research fellows (not PhD): 63
PhD Candidates: 219
Technical and administrative staff: 47
Facts and Figures
Advisory Board
Roberto Beltrame: Managing Director at Microelettrica Scientifica and CEO at KBRSI (Knorr-Bremse
Rail System Italia)
Paolo Braghieri: Business Owner at G.B.C. s.a.
Lorena Capoccia: CEO and Board Member at Sicme Motori
Paolo Cederle: Italian Executive Chairman and Country Manager at Everis SpA
Lucia Chierchia: Managing Partner at Gellify
Alessio Facondo: CEO at Fimer S.p.A
Marco Fainello: CTO at Danisi Engineering and Executive Director at Addfor SpA
Tommaso Ghidini: Head of the Structures, Mechanisms and Materials Division at TEC-MS Mechanical
Department, ESA - European Space Agency
Paolo Manzoni: Co-Founder NEGOCO Srl - QUIGO
Bartolomeo Pescio: SVP, Head BU Nordics atYara International
Andrea Zanella: Global Marketing Director at Kedrion Biopharma and Vice Chairman at Dianax Srl
Department of Excellence
The Department of Mechanical Engineering is one of the 180 “Departments of Excellence” selected in
January 2018 by Italian MIUR, Ministry of Education, University and Research. Chosen among over 750
competing departments, DMEC will benefit of a five-year dedicated funding for recruitment of faculty
and staff, infrastructures and education, linked to the development of the project Lis4.0 Lightweight
and Smart Structures for Industry 4.0.
Rankings
In 2021 our Department achieved the 15th position in the world, 6th in Europe and 1st in Italy according
to QS World University Ranking by Subject – Mechanical, Aeronautical and Manufacturing Engineering.
National and international research projects
28 H2020 EU-funded projects currently active
39 Other European/National/Regional projects currently active
meccanica magazine
5
0,12
0,06
0,01
1,31
1,21
Fundings
FUNDING [M€]
1,95
2,08
2,01
2,37
2,24
4,05
8,36
7,78
8,15
9,27
2018 (JAN-DEC) 2019 (JAN-DEC) 2020 (JAN-DEC) 2021 (JAN-NOV)
YEAR
Private
Public and similar UE Teaching
Patents / Inventions Publications and Conferences
289
meccanica magazine
346
9
240
235
21
260
230
34
11
187
12
35
171
8
21
6
6
4
5
6
3
2017 2018 2019 2020
International journal paper National journal paper
International conference paper
National conference paper International book contribution
20
29
11
12
23
15
29
44
12
24
36
2017 2018 2019 2020
Inventions DMEC
Patents DMEC
Total
meccanica magazine
7
SCARICANDO LA VERSIONE DIGITALE DELLA RIVISTA TROVERAI
A PARTIRE DA PAGINA 128 ANCHE LE PUBBLICAZIONI DEL NOSTRO
DIPARTIMENTO.
DOWNLOAD THE DIGITAL ISSUE OF THE MAGAZINE TO CHECK THE LIST
OF THE ARTICLES PUBLISHED BY OUR DEPARTMENT (FROM P.128).
La parola al Direttore
Non quia difficilia sunt non audemus,
sed quia non audemus difficilia sunt.
Lucio Anneo Seneca
Epistulae morales ad Lucilium
Marco Bocciolone
Direttore del Dipartimento di Meccanica
meccanica magazine
ITA
Care Amiche, Cari Amici,
è con grande piacere che scrivo queste righe in occasione dell’usci-
ENG
Dear Friends,
It is my greatest pleasure to write these few words as falls the publi-
9
ta del terzo numero di Meccanica Magazine.
shing of the third issue of Meccanica Magazine.
Ripercorrendo nella memoria quello che è stato l’anno trascorso mi
As I remembered what we lived in the past year, this quotation of
è venuta in mente questa frase di Seneca: “Non quia difficilia sunt
Seneca just came to my mind: “Non quia difficilia sunt non audemus,
non audemus, sed quia non audemus difficilia sunt.”
sed quia non audemus difficilia sunt.”
Audere, difficilia – saper osare per superare le avversità: verbo e so-
Audere, difficilia - be able to dare to overcome challenges: a verb
stantivo che parafrasano/materializzano il tanto usato e forse abu-
and a noun that explain/make tangible the overused - or even abu-
sato concetto di resilienza; anche quest’anno abbiamo dovuto es-
sed - meaning of resilience. This year as in 2020, because the pan-
sere resilienti perché la pandemia non ha mollato la sua presa dalle
demic was still a burden on our daily life and community, we had to
nostre vite e dalle nostre comunità; per quanto ci riguarda ha ancora
be resilient. Concerning our community, it still radically affected the
fortemente influito sull’organizzazione e sulla logistica dell’attività
organisation and logistics of the teaching activities (lectures, lab
didattica (lezioni, esercitazioni, laboratori, esami) ma l’esperienza
activities, exams). However, the know-how acquired in 2020 made us
acquisita dal 2020 ci ha resi “resilienti” e credo che siamo stati in
“resilient” and, I believe, able to deliver the courses to our students
grado di offrire ai nostri studenti una didattica all’altezza della tradi-
meeting the standards of Politecnico as per our tradition.
zione del Politecnico.
Audere, difficilia - willing to dare in order to put the heart at ease as
Audere, difficilia – voler osare per buttare il cuore oltre l’ostacolo:
you leave the obstacles behind.
di fatto è quello che ci chiede l’essere ricercatori, osare a guardare
As a matter of fact, this is what it means to be a researcher: to dare
oltre quello che a prima vista non si vede e non si comprende ma
to look beyond what you may not see or understand at first, but you
solo si intuisce e appare difficile, mettendoci passione e curiosità;
may only imagine and might appear difficult, facing it with passion
gli indicatori DMEC sulla ricerca (valore dell’autofinanziamento, nu-
and curiosity. The research parameters at DMEC (value of self-fun-
mero delle pubblicazioni, iscritti ai corsi di dottorato, …) certificano
ding, number of published articles, number of PhD students) are
anche per il 2021 l’estrema vivacità della comunità del Dipartimento
proof of how vibrant the community of the Department of Mechani-
di Meccanica sul fronte della ricerca di base e applicata sia in ambito
cal Engineering was in 2021 in terms of classic and applied research,
nazionale sia in quello internazionale.
both nationally and internationally.
Con queste le premesse mi sento di poter consapevolmente aude-
Based on these assumptions, I honestly believe I can audere to be
re ad essere ottimista e avere la certezza che le difficilia saranno
optimistic as I am sure that difficilia will be peacefully and efficiently
serenamente affrontate e efficacemente superate anche nel 2022.
faced even in 2022.
COSTRUZIONE
DI MACCHINE
E VEICOLI
meccanica magazine
10
ITA
Membro della Commissione Scientifica
Prof. Massimiliano Gobbi
La sezione di Costruzione di Macchine e Veicoli svolge attività di ricerca
legate alla progettazione di sistemi con un ampio spettro di
applicazioni. Negli ultimi anni sono stati aperti nuovi filoni di ricerca
su aspetti legati a monitoraggio strutturale, modellazione avanzata
in condizioni estreme, studi di materiali e metamateriali multifunzionali,
creazione di un simulatore dinamico di guida integrato con
i sistemi di misura del laboratorio LaST, modellazione di materiali
compositi e incollaggi, tecniche NDT, progettazione ottimale di
motori elettrici, progettazione bio-inspired, etc.; questo anche
attraverso una stretta collaborazione con enti industriali e istituzionali.
Il laboratorio integrato di Lis4.0 ha consentito l’acquisizione
di nuove apparecchiature. Il nuovo simulatore dinamico di guida,
operativo da fine 2020, ha permesso di sviluppare attività di ricerca
relative alla Human Machine Interface e alla qualità percepita di
componenti di veicoli (digital-twin). Sempre rimanendo nell’ambito
strumentazione, si segnala la nascita laboratorio HSR (High Strain
Rate) e l’acquisizione di una nuova unità di Cold Spray ad alta pressione.
Sono stati potenziati e sviluppati gli approcci legati a metodologie
avanzate di Health Monitoring, Big Data Analytics, Machine
Learning e Artificial Intelligence nello studio di sistemi meccanici,
con immediate ricadute nella progettazione e produzione di prodotti
industriali. La mobilità e il training internazionale è promosso
attraverso progetti di PhD congiunti con altre università e PhD industriali.
Sono già attivi due dottorati congiunti con Northwestern
Polytechnical e TU Delft. Sono attivi progetti EU sui temi propri della
sezione: ATLAS, IP4MaaS, Al@EDGE, ThermoDust.
ENG
Machine and Vehicle Design Research Line carries out research
activities focused on the design of systems with a broad range of
applications. In the past few years, new research opportunities
opened up on topics related to SHM (Structural Health Monitoring),
advanced modelling under extreme conditions, investigations
into multifunctional materials and metamaterials, creation
of a dynamic driving simulator integrated with the measurement
systems available in the LaST laboratory, composite materials
and bonding modelling, NDT techniques, optimal electric motors
design, bio-inspired design, and so on. Strong co-operations with
Institutions and companies are active on these topics.
The integrated Lis4.0 lab enabled the acquisition of new equipment.
Operational since the end of 2020, the new dynamic driving
simulator allowed the development of new research activities on
Human Machine Interfaces and quality perception of vehicle components
(digital-twin). We also launched a new HSR (High Strain
Rate) Lab and installed a new High-Pressure Cold Spray unit. Moreover,
we implemented and developed approaches on advanced
SHM methods, Big Data Analytics, Machine Learning and AI (Artificial
Intelligence) to investigate mechanical systems, immediately
applied to the design and production of industrial products. We
also enhance international mobility and training, thanks to PhD
Joint Programmes in collaboration with Universities and Industries.
Two PhD Joint Programmes are active with Northwestern
Polytechnical and TU Delft. Last but not least, many EU projects
are active on specific topics: ATLAS, IP4MaaS, Al@EDGE and
ThermoDust.
MATERIALI PER
APPLICAZIONI
MECCANICHE
ITA
Membro della Commissione Scientifica
Prof. Carlo Mapelli
L’ambito di ricerca della sezione interessa la progettazione e la simulazione
di nuovi processi di produzione, lo sviluppo di materiali
e la definizione delle modifiche indotte sui materiali dai processi
di trasformazione e dalle condizioni di utilizzo, in un’ottica di valutazione
della loro sostenibilità, secondo un orizzonte che comprende
la sintesi del materiale, l’utilizzo del componente, fino allo
smaltimento e al riciclo del materiale stesso.
I materiali di riferimento sono le leghe metalliche strutturali, ferrose
e non ferrose, spesso studiate ed ottimizzate in un’ottica
di lightweight design, per mettere a punto materiali, processi e
prodotti finalizzati ad una maggiore sostenibilità. In parallelo si
affrontano temi sulla sintesi di nuovi materiali, non solo metallici,
ma anche ceramici o compositi, con specifiche proprietà funzionali
e strutturali. Un ulteriore tema di ricerca molto rilevante per la
Sezione risiede nella capacità di modellazione dei materiali e dei
processi produttivi.
Da quest’anno è stato possibile introdurre tecniche di didattica innovativa,
soprattutto alla laurea magistrale. Le attività di ricerca
sono proseguite con regolarità e quest’anno hanno iniziato il loro
percorso sette nuovi studenti di dottorato grazie a borse finanziate
sia da aziende sia dal MIUR e una di queste è legata PNRR.
Nel 2022, con l’ovvio auspicio di poter riconsolidare in modo stabile
le attività in presenza e le relazioni con l’estero, prenderanno
avvio nuovi progetti finanziati EU e importanti collaborazioni con
partner industriali.
ENG
The research topics of our Research Line deal with the design
and simulation of new production processes, development of
materials and definition of the variations originating from the
transformation processes to usage conditions of the materials.
The aim is to evaluate their level of sustainability in terms of
material design, use of the components, material disposal and
recycling. In particular, these activities concern ferrous and
non-ferrous structural alloys usually studied for their optimisation
in terms of lightweight design and to define materials, processes
and products with improved sustainability. Alongside our
research activities include the design of innovative non-metal,
ceramic and composite materials with specific functional and
structural features. Another important topic covered is the modelling
of both materials and manufacturing processes.
Moreover, starting this year, we implemented more innovative
teaching techniques, especially in courses for postgraduates.
On the other hand, our research activities were carried out regularly
as seven new PhD students joined our PhD programme
with scholarships offered by private companies and by the Italian
Ministry of Education, University and Research (MIUR) - one of
which was funded through the PNRR funds. In 2022, as our hopes
rely on the possibility to return permanently to participate in
person and re-establish our relationships with foreign partners,
the activities of new European Projects and collaboration with
industrial partners will take off.
meccanica magazine
11
MECCANICA
DEI SISTEMI
meccanica magazine
12
ITA
Membro della Commissione Scientifica
Prof. Paolo Pennacchi
Le aspettative hanno sempre diretto i comportamenti umani e
l’ambiente. Inteso in senso più ampio, li hanno da sempre vincolati.
Queste considerazioni filosofiche spiegano in qualche modo
come le attività che verranno intraprese dalla Sezione di Meccanica
dei Sistemi nell’immediato futuro siano influenzate non solo
da una lunga storia e tradizione di ricerca, ma anche da nuovi temi
proposti dalle più recenti politiche europee (quali ad esempio
quelle volte a rendere i sistemi energetici e di mobilità più sostenibili,
intelligenti, sicuri, resilienti, competitivi ed efficienti) e dagli
obiettivi del Piano Nazionale di Ripresa e Resilienza (PNRR), e, in
egual misura, imposti dalle recenti emergenze sociali, sanitarie
ed infrastrutturali. La Sezione mantiene la sua struttura articolata
su più aree tematiche (Condition Monitoring, Diagnostics and Prognostics,
Mechatronics and Robotics, Railway Engineering, Road
Vehicle Dynamics and Control, Rotordynamics, Sound and Vibration,
Sports Engineering, Wind Engineering and Wind Energy) tra
di loro interagenti attraverso una struttura organizzativa flessibile
ed efficiente, che favorisce l’interazione e la cross-fertilizzazione
di idee e permette sinergie e proattività. Per rendere più concreta
questa visione del futuro, oltre a perseguire una politica di continuo
arricchimento e rinnovamento dell’infrastruttura sperimentale
di laboratorio e di simulazione numerica, abbiamo investito nelle
risorse umane, con la presa di servizio di 2 nuovi ricercatori e di 2
professori associati che vanno a completare l’organico composto
da 40 docenti e oltre 80 ricercatori a tempo determinato (assegnisti
e dottorandi).
ENG
Expectations have always influenced human behaviour and the
environment. Even constrained them, looking from a different
and deeper perspective. These philosophical thoughts somehow
explain why the research activities that the Dynamics and Vibration
Research Line will carry out in the immediate future
are driven by both a long history and tradition in Research and
inspired by new topics, resulting from the latest enforced European
policies (such as making energy and mobility systems
more sustainable, intelligent, safe, resilient, competitive, and
efficient), the objectives set by the National Recovery and Resilience
Plan (PNRR) and, equally, imposed by recent social, health
and infrastructural emergencies. The Research Line maintains
its structure divided into several thematic areas (Condition Monitoring,
Diagnostics and Prognostics, Mechatronics and Robotics,
Railway Engineering, Road Vehicle Dynamics and Control,
Rotordynamics, Sound and Vibration, Sports Engineering, Wind
Engineering and Wind Energy). Each area interacts thanks to a
flexible and efficient organizational structure, favouring interaction
and cross-fertilization of ideas while allowing synergies
and proactivity. To make its vision more concrete, pursuing a policy
of continuous enrichment and renewal of the experimental
laboratory and numerical simulation infrastructure, we decided
to invest in human resources. The newly-hired 2 new researchers
and 2 associate professors complete our staff made of 40 Full
Professors and over 80 temporary researchers fellows (postdocs
and PhD students).
MISURE
E TECNICHE
SPERIMENTALI
ITA
Membro della Commissione Scientifica
Prof. Alfredo Cigada
L’attività di ricerca verte sullo sviluppo e qualificazione di strumenti
e tecniche di misura per applicazioni in nuovi settori, vista
la natura ampiamente multidisciplinare del gruppo.
Le attività trainanti riguardano nuovi sensori. Questi sono sviluppati
per lo spazio, con la partecipazione a missioni che saranno
avviate nel 2022 (Exomars, HERA). Vi sono i sensori per la salute,
nell’ambito del progetto ERC sui trattamenti ablativi dei tumori e
per la riabilitazione. Ampie le ricerche su sistemi di misura per l’industria,
che vanno dai sistemi IIoT alle strategie per la gestione di
grandi moli di dati secondo le più moderne tecniche di Intelligenza
Artificiale, anche sul sensore. Attenzione è poi dedicata alle misure
di vibrazioni, sul corpo umano, le macchine, le strutture: per il
loro controllo con materiali intelligenti o come strumento diagnostico
per il monitoraggio strutturale. I principali ambiti applicativi
sono stadi, edifici alti, ponti e beni culturali.
L’utilizzo di sistemi di visione per le misure, statiche e dinamiche,
in ambito industriale, civile, medicale, anche da droni, e le misure
acustiche completano il quadro delle attività in corso e da proseguire
nel 2022.
ENG
Our research activities are about the development and qualification
of new instruments and techniques to be applied in many
fields, considering high-level multidisciplinarity as the leading
feature of our research group. Our main activity involve new sensors.
They are developed for space applications, as we will be
taking part in missions starting in 2022 (Exomars, HERA). Sensors
for medical applications are also developed, specifically for
the activities of an ERC project for tumour ablation therapy and
physical medicine and rehabilitation. Several research activities
focus on measurement instrumentation for industrial applications,
from IIoT systems to managements strategies for big data,
according to the latest AI techniques, also on board the sensors.
Another trend is vibration measurements on human bodies, machines,
and structures: the aim is to control them via smart materials
or diagnostic instruments for Structural Health Monitoring
(SHM). Most applications are for stadia, tall buildings, bridges,
and cultural heritage.
Moreover, our research activities involve vision systems and drones
to carry out static and dynamic measurements in industrial,
civil and medical fields. Acoustic measurements complete the
overview of the activities currently being carried out by our Research
Line, which will continue in 2022.
meccanica magazine
13
PROGETTO
E DISEGNO
DI MACCHINE
meccanica magazine
14
ITA
Membro della Commissione Scientifica
Prof. Gaetano Cascini
Nel corso del 2021, la sezione di Disegno e Progetto delle Macchine
ha integrato il suo organico di 11 docenti con 3 nuovi ricercatori. A
questi si aggiungono oltre 20 fra dottorandi e postdoc che contribuiscono
alle attività di ricerca e di didattica. Nel complesso, la
sezione si distingue per la giovane età media dei suoi componenti
e per la dinamicità dei temi di ricerca trattati.
Il gruppo ha da sempre fatto leva su competenze ICT specialistiche
a supporto dello sviluppo prodotto quali Realtà Virtuale e
Aumentata, Digital Human-Modelling, sistemi di Knowledge Management
e di Intelligenza Artificiale, tecnologie di Fabbricazione
Additiva ecc. seguendo l’impronta data dal Prof. Umberto Cugini
tristemente scomparso proprio in quest’ultimo anno. L’anno 2021
è stato marcato da un’altra tragica scomparsa, quella del giovane
collega Prof. Francesco Rosa che proprio alla progettazione di
componenti da realizzare mediante fabbricazione additiva ha dedicato
i suoi ultimi studi.
Alle competenze tecnologiche il gruppo ha inoltre sempre accompagnato
un attento studio dei fattori umani, dagli aspetti psicologici
e cognitivi nella progettazione e nell’uso di artefatti, delle implicazioni
nelle attività collaborative in presenza e da remoto.
A questi si aggiunge una sempre maggiore attenzione al tema della
sostenibilità, con una delle nuove posizioni dedicate al design
for circularity ed uno spazio più ampio alla progettazione sostenibile
negli insegnamenti di laurea triennale e magistrale.
ENG
In 2021, our Research Team added 3 more researchers to the 11
Full and Associate Professors. Moreover, around 20 PhD students
and research fellows give their contribution in carrying out research
and teaching activities. Overall, the main features of our
Research Line are the young age on average of our members and
the dynamical topics covered by our research.
Following the steps of Prof. Cugini, who sadly passed away at the
beginning of the year, our group always leveraged on advanced
competencies on ICT technologies for product development,
such as Augmented (AR) and Virtual Reality (VR), Digital Human-Modelling,
Knowledge Management and AI systems, Additive
Manufacturing, etc. Unfortunately, another dreadful event
marked our 2021. Our young colleague Prof. Francesco Rosa, who
covered the design of components produced via additive manufacturing
in his latest research studies, passed away.
Along with technological skills, the group pays close attention to
human factors, from the psychological and cognitive aspects linked
to the design and usage of artefacts to the impact of in-person
and online collaborative activities.
Moreover, grows the attention on sustainability as one of the new
researchers will work on design for circularity; as well, sustainable
design has become a topic covered more and more in our
undergraduate and postgraduate courses.
TECNOLOGIE
MECCANICHE
E PRODUZIONE
ITA
Membro della Commissione Scientifica
Prof. Michele Monno
Oltre che come secondo anno di convivenza con la pandemia, il
2021 sarà ricordato per l’attivazione di Horizon Europe, il nuovo
programma quadro della UE che mette al centro dell’attenzione le
ricadute della ricerca e dell’innovazione sulla qualità della vita e del
lavoro dei cittadini. Per le difficoltà nella didattica ed anche nella
ricerca, si è trattato dunque di un anno di transizione nel quale alcuni
progetti attivi si sono avvicinati alla conclusione mentre cresce
l’interesse verso nuovi obiettivi. Tra questi, particolare rilievo
assume l’impiego di tecniche di modellazione e di analisi dei dati
per la manutenzione predittiva di macchinari e di sistemi di produzione
con importanti coinvolgimenti per tutte le tecnologie di
trasformazione di materie prime e semilavorati in prodotti finiti, e
quindi per la quasi totalità delle attività di ricerca sviluppate presso
la sezione Tecnologie Meccaniche e Produzione del DMEC. Tale
evoluzione, che incrocia le tematiche proposte dal Cluster 4 “Digital
Industry and Space”di HEU, si lega ad una inarrestabile spinta
verso la digitalizzazione del manifatturiero che, a livello globale,
riguarda larga parte delle attività industriali e che, per il nostro
Paese si prospetta come una rivoluzione particolarmente divisiva
– tra aziende che ne trarranno vantaggio ed aziende che verranno
espulse dal mercato – e, nell’ambito della stessa impresa, tra addetti
che, per propensione/cultura/età, riusciranno a rimanere al
passo e chi, per gli stessi vincoli, ne sarà escluso. Una riflessione
sui contenuti di alcuni insegnamenti sarà conseguenza diretta.
ENG
In addition to being our second year of coexistence with the pandemic,
2021 will be remembered for the activation of Horizon
Europe, the new EU framework program that focuses on the effects
of research and innovation on the quality of life and work of
citizens. Due to the difficulties in teaching and also in research,
it was therefore a transitional year in which some active projects
were nearing completion while interest in new objectives grew.
Among these, particular importance assumes the use of modelling
and data analysis techniques for the predictive maintenance
of machinery and production systems with important involvement
for all technologies of transformation of raw materials and
semi-finished into finished products, and therefore for almost
all of the research activities developed in the Manufacturing and
Production Systems research line of the DMEC. This evolution,
which crosses the themes proposed by the HEU Cluster 4 “Digital
Industry and Space”, is linked to an unstoppable run towards the
manufacturing digitalization which, on a global level, concerns a
large part of industrial activities and, for our country, seems to
be a particularly divisive revolution - between companies that will
benefit from it and companies that will be expelled from the market
- and, within the same company, between employees who, by
propensity/culture/age, will be able to keep up and who, for the
same constraints, it will be excluded. A reflection on the contents
of some teachings will be a direct consequence.
meccanica magazine
15
Progetto MISTICO:
monitoraggio di materiali compositi
mediante network di nanotubi
al carbonio
meccanica magazine
ITA
I materiali compositi stanno progressivamente sostituendo i più
tradizionali materiali metallici, anche in applicazioni safety-critical,
grazie alle eccellenti proprietà meccaniche, quali un miglior rapporto
forza-peso e rigidezza-peso, nonché ad una maggiore resistenza
catori. Il team, guidato dal Prof. Claudio Sbarufatti nel ruolo di principal
investigator, raccoglie un background di esperienze da diverse
sezioni del Dipartimento: la sezione di Costruzione di Macchine e
Veicoli (Prof. Claudio Sbarufatti e Flavia Libonati) per le tecniche di
16
alla corrosione, alle proprietà ignifughe ed ai costi ridotti del ci-
monitoraggio strutturale, il degrado dei materiali e lo studio di ma-
clo-vita. Tuttavia, in presenza di impatti e carichi di compressione, i
teriali nanocompositi; la sezione di Misure (Dr. Diego Scaccabaroz-
materiali compositi sono soggetti a complessi meccanismi di cedi-
zi) per la progettazione dei sensori e l’ottimizzazione dell’analisi dei
mento, tra cui l’insorgere di cricche nella matrice e delaminazioni.
segnali; la sezione di Meccanica dei Sistemi (Prof. Simone Cinque-
Tali fenomeni sono peraltro strettamente legati alla configurazione
mani) per lo sviluppo di materiali intelligenti e tecniche di controllo
del materiale e alla sua condizione di utilizzo, fattori che rendono la
strutturale.
previsione dell’integrità strutturale particolarmente aleatoria, tra-
L’idea alla base di MISTICO è quella di sfruttare le proprietà multi-
ducendosi in un possibile aumento dei costi operativi, nello speci-
funzionali dei materiali nanocompositi epossidici rinforzati con na-
fico di manutenzione.
noparticelle di carbonio al fine di creare una struttura self-sensing.
Ad oggi, molteplici studi si sono dedicati all’implementazione di si-
Questa è in grado di percepire potenziali meccanismi di deteriora-
stemi di monitoraggio strutturale, tipicamente basati sull’installa-
mento all’interno del materiale stesso attraverso la misurazione
zione di sensori permanenti in grado di fornire un flusso continuo
di informazioni circa l’integrità della struttura monitorata. Tali dati
sono processati da algoritmi di elaborazione del segnale e intelligenza
artificiale per il rilevamento, la valutazione e la prognosi del
danno durante la vita operativa di un componente o di una parte
strutturale. Tuttavia, nella maggior parte dei casi riportati in letteratura
scientifica, la diagnosi e prognosi strutturale è basata sulla
misura di variabili esclusivamente locali (per esempio, di deformazione)
correlabili alle caratteristiche del danno ma richiedono un numero
elevato di sensori per sopperire alla natura locale della misura.
Ciò comporterebbe un significativo aumento del peso, annullando il
vantaggio dell’utilizzo di materiali compositi.
Per superare questi limiti, il Dipartimento di Ingegneria Meccanica
del Politecnico di Milano ha avviato il progetto di ricerca MISTICO
(Monitoring of composite material structures with carbon nanotubes
- 2016-2019), inserito nel quadro del programma Giovani Ricer-
della sua piezoresistenza, rinnovando il concetto di sensor network.
L’aggiunta di nanotubi di carbonio (CNTs) nella matrice del materiale
composito ha un duplice effetto. In primo luogo, si nota un aumento
della resistenza a fatica poiché i nanotubi, a livello microstrutturale,
tendono a connettere le superfici di frattura nella matrice, limitandone
la propagazione, come mostrato in figura.
In secondo luogo, aggiungendo una quantità limitata di nanotubi
di carbonio nella resina di un materiale composito, quest’ultima di
per sé non conduttiva, il materiale assume proprietà piezo-resistive
che possono appunto essere utilizzate per il rilevamento di anomalie,
tramutando il materiale stesso in un sensore ed eliminando
la necessità di doverne installare di esterni. La figura mostra come
l’effetto tunnel e il contatto tra i nanotubi di carbonio favoriscono il
passaggio di corrente nella struttura. In caso di danno, per esempio
a seguito di un impatto, la distribuzione dei nanotubi vicino all’area
danneggiata cambia, così come la distanza relativa tra di essi. Ciò si
tradurrà in una variazione di impedenza elettrica e, quindi, di tensione
misurata mentre una corrente costante attraversa il materiale.
L’approccio è stato inizialmente verificato su provini in materiale
composito rinforzati con fibra di vetro e soggetti a carichi di rottura
(come mostrato in figura), identificando la presenza di micro-danneggiamenti
validati per mezzo di misurazioni effettuate con termocamera.
In seguito, i nanotubi di carbonio sono stati distribuiti
su una pellicola adesiva e usati per monitorare lo scollamento di un
giunto strutturale soggetto a carichi di fatica (come mostrato in figura),
dimostrando come il metodo sia applicabile non solo per individuare
il danno ma anche per identificare la variazione di carico
su tutto il provino. Infine, sono stati realizzati test d’impatto a bassa
velocità su provini in materiale composito rinforzato con fibra di
vetro e nanotubi di carbonio, correlando i segnali acquisiti direttamente
dal materiale durante l’impatto con la forza e lo spostamento
misurati, come in figura. Ciò ha permesso di verificare la possibilità
di poter allo stesso tempo identificare l’insorgere di delaminazioni
durante l’impatto e monitorare le vibrazioni post-impatto subite dal
provino stesso.
Grazie ai promettenti risultati ottenuti, il team dedicherà la ricerca
futura a migliorare la solidità dell’approccio, facendo leva sull’ottimizzazione
del processo tecnologico di realizzazione al fine di ottenere
misure ripetibili ed aprire la strada ad una potenziale applicazione
nell’ambito del controllo strutturale.
meccanica magazine
17
meccanica magazine
18
ENG
Self-sensing of composite materials based on a network of carbon
nanotubes: the MISTICO project
Composite materials are increasingly replacing traditional metallic
materials even in safety-critical structures, due to their excellent
specific mechanical properties, i.e. higher strength-to-weight and
stiffness-to-weight ratios, as well as due to their improved resistance
to corrosion, their fire-retardant properties, and the reduced
lifecycle costs. However, especially in the case of out-of-plane
(impact) and compression loads, composite materials are subjected
to complex degradation mechanisms including, for example, matrix
cracking and delamination. This behaviour strongly depends on the
material configuration and the operating condition, thus making damage
evolution less predictable, and potentially turning into increased
operative costs for maintenance.
A lot of research is devoted to the implementation of structural
health monitoring systems, typically based on the installation of
permanent sensors providing a continuous stream of data. Signal
processing and artificial intelligence algorithms are then used for
detection, assessment, and prognosis of damage during the operative
life of a component or a structural part. However, on one hand,
the application of dense sensor networks over structures often
induces significant weight increase hampering the advantage of
adopting composite materials; on the other hand, many sensor technologies
only provide a local measure of some variables (e.g. the
strain) that are correlated with damage features.
To overcome these limitations, the Department of Mechanical engineering
of Politecnico di Milano, in the framework of the Young
Researcher program, has funded the research project MISTICO (Monitoring
of composite material structures with carbon nanotubes -
2016-2019). The project team, led by Prof. Claudio Sbarufatti as Principal
Investigator, combines the background experience in different
research lines within the department, including Machine and Vehicle
Design (Proff. Claudio Sbarufatti and Flavia Libonati) for structural
health monitoring, damage degradation and nanocomposites, Measurements
(Dr. Diego Scaccabarozzi), for sensor design and signal
processing optimisation and Dynamics and Vibration (Prof. Simone
Cinquemani), for smart materials and structural control.
The ground idea of MISTICO is that of exploiting the multifunctional
properties of epoxy-based nanocomposites reinforced with carbon
nanoparticles to create a composite self-sensing structure. This is
capable of detecting potential deterioration mechanisms within the
material by a measure of its piezo-resistivity, potentially revolutionizing
the concept of sensor network design. Adding carbon nanotubes
(CNTs) into the matrix of composite material can have a dual
effect. First, an increase of the fatigue life is noticed as nanotubes
tend to “bridge” the crack edges limiting its evolution, as depicted
in figure. Second, the addition of a very small quantity of CNTs into
the non-conductive resin will provide piezo-resistive properties that
can be exploited for self-sensing, without the installation of any sensor
but turning the bulk material into a sensor itself. The latter concept
is depicted in figure: tunnelling effect and contact among the
CNTs allow the current flowing through the structure. When damage
occurs, the CNTs distribution around the damage area changes,
as the relative distance between the CNTs. Therefore, if a constant
DC current is imposed, a change in the voltage will be noticed close
to the damaged area, e.g. before and after the occurrence of an
impact, which is related to the piezo-resistive variation across the
specimen.
The approach has been first verified on fiber-reinforced composite
specimens subjected to tensile loading as shown in figure, where the
onset of micro damages was detected and validated with measurements
by a thermal camera. Secondly, CNTs have been sprayed on a
film adhesive and used to monitor debonding on a lap joint subject to
fatigue loads as shown in figure, proving the method is suitable not
only to identify damage but also to capture the load variation across
the specimen. Thirdly, low-velocity impact tests were implemented
to correlate the signals from multiple channels on a single composite
plate specimen doped with multi-walled CNTs with the simultaneous
measures of displacement and forces (as shown in figure),
proving the possibility of identifying the delamination onset during
damage and the dynamic oscillation after impact occurrence.
Thanks to the very promising results obtained, future activity by the
team is devoted to the increase of robustness of the approach, leveraging
the optimisation of the manufacturing process to obtain
repeatable performance, thus paving the way towards potential implementation
of self-sensing for structural control.
Progetto Custodian:
il ruolo di DMEC
ITA
Il progetto Custodian, acronimo per “Customized photonics devices
for defectless laser-based manufacturing”, è un Progetto EU finanziato
nel quadro dell’azione Research and Innovation di Horizon 2020
(H2020-ICT-2018-2020) per il periodo 2018-2021.
Il tema centrale della ricerca riguarda la definizione dei più opportuni
cicli termici in grado di mitigare la formazione di difetti di processo
in alcune leghe tipicamente riconosciute come critiche per i processi
laser. Si fa riferimento a specifiche leghe base Nichel per il tema
dell’additive manufacturing ed a particolari acciai inossidabili per la
saldatura laser.
Una volta stabiliti i cicli termici ideali per i materiali e processi, questi
vengono “tradotti” con il supporto di accurate simulazioni numeriche
in adatte strategie di apporto termico, con l’ausilio di dispositivi di
beam splitting e beam shaping sviluppati ad hoc da partner industriali
specializzati. La sezione Materiali del Dipartimento di Meccanica
è stata coinvolta nel progetto per le competenze necessarie alla
definizione dei cicli termici ottimali e della verifica dell’efficacia delle
soluzioni implementate.
ENG
The Custodian project: the role played by DMEC
The Custodian project (the acronym stands for Customized Photonics
Devices For Defectless Laser-Based Manufacturing) is one of the
EU projects funded within the framework Research and Innovation
Program Horizon 2020 (H2020-ICT-2018-2020) for the years 2018-
2021.
The main research activity involves defining the optimal temperature
cycles required to limit occurring process defects in some critical
alloys during laser processing. In particular, the project focused on
some high-strength Nickel-based alloys used in additive manufacturing
and on some specific type of stainless steel used in laser welding.
Once identified, the ideal temperature cycles for both materials
and processes are translated into specific strategies for heat input
delivery supported by numerical simulations, exploiting beam splitting
and beam shaping strategies, and using devices developed ad
hoc by qualified industrial partners.
The Materials Research Group of our Department was directly involved
in the Custodian project for its expertise, which is needed to
identify the optimal temperature cycles and verify the efficiency of
the implemented solutions.
meccanica magazine
19
Progetto VITAE:
nuove strategie per la
valorizzazione sostenibile del
patrimonio archeologico in Eritrea
meccanica magazine
20
ITA
È ufficialmente partito il progetto VITAE “sustainable valorisation of
the eritrean heritage adulis archaeological site project” promosso
e finanziato dall’Agenzia Italiana per la Cooperazione allo Sviluppo
(AICS) e dal Ministero per gli Affari Esteri e la Cooperazione Internazionale
(MAECI). L’obiettivo specifico del progetto è di valorizzare
l’impatto della ricerca archeologica a lungo termine e legarla alla
promozione dello sviluppo sostenibile a livello locale usando il sito
archeologico Adulis in Eritrea come banco di prova.
Due sono i pilastri della ricerca:
• dal punto di vista archeologico: un approccio interdisciplinare con
l’uso prevalente di tecniche non invasive come la fotogrammetria e
la geomatica;
• dal punto di vista delle operazioni in situ: la progettazione e la realizzazione
di un parco archeologico sperimentale in cui la salvaguardia
delle testimonianze culturali è direttamente legata alla protezione
dell’ambiente attraverso l’utilizzo di energie rinnovabili e la
gestione sostenibile delle risorse idriche e della mobilità.
Con il raggiungimento del suo obiettivo specifico, l’azione progettuale
contribuirà ad ideare nuove strategie di sviluppo sostenibile
nella valorizzazione patrimonio culturale. L’azione porterà alla creazione
di valore socio-economico e culturale. Lo schema sta prendendo
forma dalla comprensione del potenziale delle civiltà passate
a supporto della risoluzione dei problemi della società attuale e suggerirà
alternative attuabili per la pianificazione territoriale, creando
condizioni di vita migliori per le persone e contemporaneamente
preservando il pianeta e le sue risorse.
Principali attività e relativi risultati attesi
In base a questa analisi dei problemi, i risultati principali per le azioni
proposte sono quattro:
• COMPRENSIONE E ANALISI DEL CONTESTO TERRITORIALE
Completamento della valutazione a tutto tondo del contesto territoriale
dal punto di vista ambientale e culturale.
• IL PARCO NATURALE E ARCHEOLOGICO SOTENIBILE ADULIS
Apertura del parco naturale e archeologico sostenibile Adulis, primo
nel suo genere in tutta l’Africa Subsahariana e dotato delle giuste infrastrutture
per provvedere energia, acqua, accessibilità e mobilità.
• IL SITO ARCHEOLOGICO ADULIS: SCAVI, CONOSCIENZA E TUTELA
Messa a punto e adozione di un approccio metodologico sostenibile
per la realizzazione degli scavi e per la gestione del sito archeologico
Adulis.
• EMPOWERMENT E BUILDING CAPACITY, GOOD PRACTICE
Messa a disposizione di una squadra di una nuova generazione di
funzionari e ricercatori sul territorio in grado di assicurare padronanza
e sostenibilità a lungo termine del processo.
Il progetto è multi- e inter-disciplinare e vede come attori il Dipartimento
di Architettura e Studi Urbani (prof. Susanna Bortolotto,
arch. Nelly Cattaneo, in collaborazione con la prof.ssa Serena Massa
dell’Università Cattolica del Sacro Cuore di Milano), il Dipartimento
di Ingegneria Civile e Ambientale (proff. Alberto Guadagnini, Matteo
Colombo), il Dipartimento di Energia (proff. Fabio Inzoli, Emanuela
Colombo, Riccardo Mereu) e Dipartimento di Ingegneria Meccanica
(proff. Marco Bocciolone, Emanuele Zappa e Simone Cinquemani).
Il progetto è coordinato da DMEC ed ha un valore di 2.3 M€ di cui 1,97
M€ finanziati direttamente da AICS.
ENG
VITAE Project: new strategies for a sustainable valorisation of
the Eritrean heritage
Sponsored and founded by AICS (Italian Agency for Development
Cooperation) of the MAECI (Italian Ministry of Foreign Affairs and
International Cooperation), VITAE - sustainable valorisation of the
eritrean heritage adulis archaeological site project - has officially kicked
off. The specific objective of this project is to boost the impact
of long-term archaeological research and link it to the promotion of
sustainable development at local level using the Adulis Archaeological
Site in Eritrea as a test case.
The research activities rely on two pillars:
• from the archaeological perspective: an interdisciplinary model
with the prevalent use of remote sensing and non-invasive techniques,
such as photogrammetry and geomatic;
• from the point of view of in situ activities: designing and creating
a sustainable archaeological park, in which the preservation of cultural
testimonies is linked to the protection of the environment by
renewable energy and sustainable management of water supplies
and mobility.
By achieving its specific objective, the action will contribute to the
overall aim of this project to design new strategies of heritage sustainable
development.
The action will lead to the achievement of socio economic and cultural
value. This pattern will come from understanding the potential
of past civilization to support problem solving for the present society
and suggest viable alternatives for territorial planning, creating
better lives for the people, while preserving the planet and its
resources.
Main activities and related expected outcomes
Based on this problem analysis, four are the main results of the proposed
action:
• TERRITORIAL CONTEXT KNOWLEDGE AND ANALYSIS
A Comprehensive assessment of the territorial context from the
cultural and environmental perspective is completed.
• ADULIS SUSTAINABLE ARCHAEOLOGICAL AND NATURAL PARK
The Adulis Sustainable Archaeological and Natural Park is open as
the first of its kind in Sub Saharan Africa and equipped with the right
infrastructure to provide energy, water, accessibility and mobility.
• ADULIS ARCHAEOLOGICAL SITE: EXCAVATION, KNOWLEDGE AND
PRESERVATION
A sustainable methodological approach to site excavation and management
is set up and applied to Adulis Archaeological Site.
• EMPOWERMENT AND CAPACITY BUILDING, GOOD PRACTICES
A new generation of officers and researchers is available within the
country to assure ownership and long-term sustainability of the process.
The inter and multi-disciplinary project involves partners like the
Department of Architecture and Urban Studies (Prof. Susanna Bortolotto,
the architect Nelly Cattaneo, in collaboration with Prof. Serena
Massa from the Università Cattolica del Sacro Cuore di Milano),
the Department of Civil and Environmental Engineering (Prof. Alberto
Guadagnini, Prof. Matteo Colombo), the Department of Energy
(Prof. Fabio Inzoli, Prof. Emanuela Colombo, Prof. Riccardo Mereu)
and the Department of Mechanical Engineering (Prof. Marco Bocciolone,
Prof. Emanuele Zappa, Prof. Simone Cinquemani).
Coordinated by DMEC, the project values 2.3 million euros, of which
1.97 million euros granted directly by AICS.
meccanica magazine
21
meccanica magazine
22
ITA
Monitoraggio
strutturale di ponti
ferroviari:
collaborazione tra DMEC e RFI
Il monitoraggio strutturale rappresenta un fattore chiave nei sistemi
di gestione delle infrastrutture in termini di sicurezza e affidabilità,
e assume una valenza ulteriore quando le opere prese in considerazione
rivestono un ruolo di primo piano nei sistemi di trasporto di
persone e merci. Si tratta infatti di strutture che impattano in modo
profondo sulle attività economiche (ma anche sulle dinamiche sociali
e più in generale sulla valenza complessiva) del territorio nel quale
sono inserite: è questo il caso, in particolare, delle infrastrutture ferroviarie,
che rappresentano uno dei principali vettori per il trasporto
nazionale e internazionale.
La ricerca che il Dipartimento di Meccanica e il Dipartimento di Ingegneria
Civile e Ambientale stanno attualmente portando avanti per
Rete Ferroviaria Italiana si inserisce in questo contesto, con l’obiettivo
di realizzare lo studio e la messa in opera di tre differenti sistemi
di monitoraggio strutturale, applicati a tre diverse tipologie di ponte.
Il progetto, coordinato da Marco Belloli, docente presso il Dipartimento
di Meccanica, prevede la creazione di prototipi che servano
da benchmark per la progettazione e realizzazione di sistemi di monitoraggio
e per definire la loro interazione con i gemelli digitali dei
manufatti, in modalità compatibili con le architetture e i protocolli di
telecomunicazione propri del committente.
In accordo con RFI sono stati selezionati tre ponti appartenenti alla
DT di Venezia come dimostratori paradigmatici, perché ben rappresentativi
delle diverse tipologie di manufatto che fanno parte del patrimonio
del committente: ponte di Livenza, travata metallica; ponte
della Priula, ad arco in cls; ponte di Piave, ad impalcato in cemento
armato.
ENG
DMEC and RFI working together on structural health monitoring
of railway bridges
Structural Health Monitoring (SHM) represents a key factor in infrastructure
management systems, with particular reference to their
safety and reliability. It assumes further relevance when the bridges
considered are leading elements in the carriage of people and goods.
These structures, in fact, usually have a profound impact not
only on the economic activities of the environment considered,
but also on the social and overall value. This applies in particular to
railway infrastructures, being one of the main carriers for national
and international transport.
Within this regard, the Departments of Mechanical Engineering and
of Civil and Environmental Engineering of Politecnico di Milano are
currently developing a research activity in collaboration with RFI -
Rete Ferroviaria Italiana, with the aim of carrying out the study and
implementation of three different structural monitoring systems,
adopted in three different types of bridges. The project, coordinated
by Marco Belloli, full professor at MeccPolimi, foresees the realization
of prototypes that will serve as benchmarks for the design
and implementation of monitoring systems on the whole railway
network; it will also define their interaction with the digital twins of
the considered structures, complying with the customer’s own IT
architectures and protocols.
In agreement with RFI, the research group selected three bridges
belonging to the Venice DT railway line as paradigmatic demonstrators,
as they were considered representative of the customer’s
diverse assets: Livenza brige, metal girder; Priula bride, arched concrete;
Piave bridge, with reinforced concrete deck.
meccanica magazine
23
Al via il progetto
ATLAS
meccanica magazine
24
ITA
La Commissione Europea, nell’ambito del programma Horizon
2020-SPACE, ha finanziato con 3 milioni di euro il progetto, coordinato
dal Dipartimento di Meccanica del Politecnico di Milano (Prof. Mario
Guagliano), “ATLAS” (Advanced Design of High Entropy Alloys Based
Materials for Space Propulsion, GA n. 101004172), che punta a sviluppare
nuovi materiali in grado di assicurare proprietà superiori in condizioni
ambientali estreme, consentendo un importante avanzamento
nella progettazione e costruzione dei propulsori spaziali.
Uno dei maggiori problemi legati a queste missioni è, infatti, la necessità
di realizzare sistemi capaci di lavorare senza cedimenti in
ambienti estremi, con temperature variabili da valori profondamente
sottozero a picchi termici di centinaia di gradi. In particolare, i sistemi
di propulsione sono severamente sollecitati e necessitano di dimensionamenti
adeguati a resistere in tali condizioni, il che non va nella
stessa direzione del massimo contenimento dei pesi. La soluzione a
questo problema è lo sviluppo di materiali ad hoc, capaci di coniugare
le diverse proprietà richieste e mantenerle in ambienti estremi, quali
quelli in cui le missioni spaziali si svolgono.
Il progetto ATLAS vuole dare una risposta a questi problemi e si pone
come obiettivo lo sviluppo di nuovi materiali, basati sulle leghe ad alta
entropia (High Entropy Alloys, HEA), in grado di coniugare, in condizioni
estreme, bassa densità, alta resistenza e duttilità, resistenza all’ossidazione,
buone proprietà a fatica e al creep.
Le HEA sono una classe di materiali relativamente nuova che si propone
di sostituire le superleghe per applicazioni estreme, grazie a
proprietà superiori a queste ultime. Tuttavia, la loro applicazione non
ha ancora avuto un reale seguito a causa di aspetti ancora irrisolti, ai
quali ATLAS ambisce a dare una risposta, e rimuovere i motivi che ancora
limitano l’impiego di questi materiali.
Attraverso un approccio multidisciplinare, reso possibile dalla complementarità
dei partner, si intende progettare e realizzare leghe ad
alta entropia e materiali compositi con le HEA come matrice e materiali
ceramici come rinforzo, in grado di ottimizzare le proprietà richieste
per l’applicazione in camere di combustione di propulsori spaziali.
I passi previsti per arrivare a questo ambizioso risultato sono: definizione
e classificazione delle proprietà di interesse, progettazione
delle leghe HEA attraverso approcci multiscala e multidisciplinari, definizione
delle soluzioni ibride/composite attraverso la combinazione
di HEA con materiali ceramici e/o con compositi a matrice ceramica
per creare materiali funzionali leggeri, resistenti in temperatura.
Per la costruzione di rivestimenti e componenti con tali materiali si
utilizzeranno due tecniche di manifattura additiva tra loro diverse e
complementari; una di natura termica (PBD, Powder Bed Fusion), l’altro
di natura dinamica, il Cold Spray.
Il ruolo del Dipartimento di Meccanica, oltre a quello di coordinare il
progetto, si concentra proprio sull’applicazione del Cold Spray. Questo
processo sfrutta il fenomeno dell’adesione delle polveri allo stato solido,
ottenuto accelerando il flusso di polveri a velocità supersoniche
superiori a un valore critico. Oltre questo limite si attiva il fenomeno di
adesione per effetto delle elevate deformazioni plastiche e dell’elevata
velocità di deformazione, costruendo, per strati successivi, rivestimenti
superficiali o pezzi tridimensionali. La sfida è particolarmente
ambiziosa, in quanto sono rari i tentativi fatti per depositare con il
Cold Spray le HEA, e ancora nessuno si è cimentato con compositi a
base di HEA.
Sarà, quindi, di grande interesse seguire la messa a punto dei parametri
di processo ottimali e i risultati, le proprietà che i nuovi materiali
mostreranno, la loro applicazione su un propulsore spaziale curato da
uno dei partner e il confronto con quanto ottenuto con le altre tecnologie
studiate.
Oltre al Politecnico, il consorzio include il Deutsches Zentrum fÜr Luft
und Raumfahrt (DLR), ben noto centro di ricerca aerospaziale tedesco,
l’Università di Derby (UK), e le SME ad alto contenuto tecnologico
Arceon (NL), Dawn Aerospace (NL), Questek Europe (SE), Tisics (UK).
YourscienceBC (UK) si occuperà della disseminazione dei risultati.
ENG
Launching the Atlas Project!
Within the programme Horizon2020-SPACE, the European Commission
issued 3 million euros to fund the ATLAS project, coordinated by
the Department of Mechanical Engineering of Politecnico di Milano
(prof. Mario Guagliano). “ATLAS” - Advanced Design of High Entropy
Alloys Based Materials for Space Propulsion (GA n. 101004172) – aims
at developing new materials capable of ensuring high-performing
properties in extreme environmental conditions, allowing a considerable
step forward in designing and construction of space propulsion
systems. In fact, one of the major problems linked to these missions
is to create systems able to perform without yielding in extreme environments
with sudden temperature variations, rising from below zero
to more than hundreds degrees. In particular, the space propulsion
systems work under severe stress conditions and need adequate design
to resist these conditions, which doesn’t necessarily meet the
requirements to maximise weight reduction. The solution to this problem
is to develop ad hoc materials that combine all requested properties
and maintain them in extreme environments, namely the ones
typical of space exploration missions.
The ATLAS project aims at solving such problems. Its objective is to
develop new materials made of High Entropy Alloys (HEA) capable of
enduring harsh conditions by combining low density, high resilience,
high ductility, high oxidation resistance, good mechanical properties
under stress and creep. HEAs are part of a relatively new class of materials
aimed at replacing superalloys in harsh applications, thanks to
their higher-performing properties. However, they haven’t been widely
applied yet because of some unsolved issues. Finding a solution
is precisely what the ATLAS team ambitiously aims to do and, in so
doing, also wiping out all reasons still limiting the usage of these materials.
By the multidisciplinary approach taken thanks to the involved
partners complementing one-another, the team wants to design and
produce high entropy alloys and composite materials with a HEA matrix
and ceramic materials as reinforcement, allowing to optimize the
requested properties for their application into the combustion chambers
of space propulsion systems.
The planned steps to reach such ambitious results are: defining and
classifying the properties of interest; designing HEAs with multi-scales
and multidisciplinary approaches; defining hybrid/composite solutions
by combining HEAs with ceramic materials and/or ceramic
matrix composites to create functional, light and high-temperature
resistant materials. Using these materials for coatings and manufactory
of components requires two different and complementary additive
manufacturing techniques: Powder Bed Fusion (PBD), a thermal
nature process, and Cold Spay, a dynamic process.
Other than coordinating the project, DMEC focuses on Cold Spray
applications. This process exploits the phenomenon of adhesion of
solid powders obtained by accelerating the powder spray rate to a
supersonic speed, higher than its critical value. Overcoming this limit
activates the phenomenon because of the severe plastic deformations
occurring and the high strain rate, building through more layers
of superficial coatings and 3D pieces. It is indeed a highly-ambitious
challenge because the attempts to use cold spray on HAS are very
few, and nobody has yet tried on HEA composites.
Besides, it will be of great interest to follow the definition of the optimal
parameters and results, defining the properties the new materials
will show, seeing their application on a space propulsion system
by one of our partners, and confronting the obtained results with
other technologies being studied. Other than Politecnico di Milano,
the consortium includes the Deutsches Zentrum fÜr Luft und Raumfahrt
(DLR), a well-known German Aerospace Research Centre, the
University of Derby (UK), and a few highly-specialised technical SMEs:
Arceon (NL), Dawn Aerospace (NL), Questek (SE), Tisics (UK). YourscienceBC
(UK) will handle the dissemination of the results.
meccanica magazine
25
DriSMi:
il simulatore di guida del
Politecnico di Milano
meccanica magazine
26
ITA
Il Politecnico di Milano ha presentato la prima installazione al mondo
di DiM400, il modello più innovativo di simulatore di guida ad oggi esistente
sul mercato, cofinanziato da Regione Lombardia e progettato
e ingegnerizzato da VI-grade.
Si tratta di un’acquisizione di valore fondamentale per la ricerca scientifica
in ambito automotive, perché da oggi l’Ateneo avrà uno strumento
unico per lo sviluppo della mobilità sostenibile. Il simulatore di guida
servirà per la progettazione e costruzione di nuovi veicoli ecologici,
per lo sviluppo di componenti con impiego innovativo di materiali, per
le applicazioni relative alla dinamica del veicolo, l’ottimizzazione dei
consumi, per verificare il funzionamento di sistemi di sicurezza attiva
(ADAS), per applicazioni di connessione tra veicoli ed infrastrutture e
per applicazioni di guida autonoma. Anche lo sviluppo del motorsport
sostenibile sarà possibile. Il sistema, costato 5 milioni di euro di cui 2
milioni finanziati da Regione Lombardia, è stato installato nel nostro
Campus di Bovisa, e rappresenta la punta di diamante di un progetto
promosso da Cluster Lombardo della Mobilità. Un progetto che ha l’obiettivo
di creare un Polo al servizio delle aziende automotive del cluster
regionale lombardo, quarto a livello europeo.
Ma lasciamo la parola al Rettore Prof. Ferruccio Resta e ai colleghi
DMEC Prof. Giampiero Mastinu e Prof. Federico Cheli che tanto hanno
fatto per raggiungere questo traguardo.
Prof. Ferruccio Resta - Rettore: Le infrastrutture sperimentali e i
laboratori d’avanguardia sono elementi essenziali per la ricerca internazionale
e lo sviluppo con le imprese. Attraverso l’installazione del simulatore,
il Politecnico di Milano si confronta con alcune delle maggiori
realtà a livello internazionale, contribuendo a rendere l’area di Bovisa
un ecosistema dell’innovazione in chiave europea. Questa è la dimensione
alla quale punta l’Ateneo per affrontare le grandi sfide dei prossimi
anni, prima fra tutte quella della mobilità.
Prof. Giampiero Mastinu: L’idea di promuovere un simulatore di guida
al PoliMi è venuta quasi per caso. Il Presidente del Cluster Lombardo
della Mobilità (CLM) mi chiamò e amabilmente mi ‘costrinse’ ad intervenire
ad una cena ‘importante’ a Brescia: parlando con un collega
accademico discutemmo di come promuovere le attività di ricerca e
sviluppo a favore delle aziende di componentistica automotive. Un simulatore
di guida sembrò essere una buona proposta. Nella successiva
assemblea generale del Cluster Lombardo della Mobilità (novembre
2017) presentai il progetto INRIMOS. Raccogliemmo subito adesioni
alla iniziativa da parte di importanti aziende lombarde. Individuai subito
in VI-grade un potenziale fornitore eccellente, benché il prodotto
di punta fosse solo un progetto, non ancora realizzato. Con il Rettore
decidemmo di giocare la carta della installazione di un simulatore unico
ed originale. Ovviamente il simulatore del PoliMi sarebbe stata una
risorsa per molte ricerche su differenti campi, per quanto riguarda
specificamente i temi della Sezione Costruzione di Macchine e Veicoli:
Costruzione di Veicoli, Ottimizzazione tramite Intelligenza Artificiale,
Lightweight Construction, Affidabilità e tanti altri. Seguirono una serie
di attività di promozione del progetto INRIMOS, sia da parte del CLM, sia
da parte del PoliMi. Dovevamo convincere i funzionari ed i politici della
Regione della bontà della idea. Abbiamo trovato in Regione Lombardia,
presso l’assessorato alla Istruzione, Università, Ricerca, Innovazione e
Semplificazione una sensibilità assolutamente non comune per i temi
automotive a noi cari e molto rilevanti per la economia lombarda. Per
portare avanti una iniziativa tanto complessa, era necessaria una condivisione
degli sforzi, anche economici. Ne parlai con i colleghi, prima
il prof. Gobbi, poi il prof. Cheli. Tutti convenimmo di procedere con la
proposta. Senza il supporto dei colleghi, il simulatore non si sarebbe
mai concretizzato.
Prof. Federico Cheli: La passione per i veicoli e per la guida è sicuramente
alla base dell’attività di ricerca portata avanti da un gruppo di
ragazzi (più o meno giovani) della sezione di Meccanica dei Sistemi.
Negli anni abbiamo acquisito sempre più esperienza nella modellazione
del veicolo e dei suoi componenti, nella sperimentazione e, in tempi
più recenti, nello sviluppo di sistemi di controllo attivi e per la guida
autonoma. Ricerche volte a migliorare le prestazioni, la sicurezza, l’affidabilità
e l’efficienza dei veicoli che utilizziamo tutti i giorni. Ma, nonostante
in questi anni abbiamo sviluppato modelli sempre più precisi
ed affidabili, un elemento è sempre rimasto piuttosto aleatorio e “ostico”.
La persona alla guida di un veicolo è l’elemento più complesso da
descrivere attraverso modelli matematici e, incidentalmente, è quello
più importante. Siamo diversi per carattere, attitude alla guida, riflessi.
L’ottimizzazione della risposta del veicolo, particolarmente per quanto
attiene ai sistemi di guida autonoma, non può prescindere dalle reazioni
di chi guida. La loro accettazione da parte degli utenti richiede degli
studi molto precisi in cui non può mancare l’elemento umano. DriSMi
rappresenta lo stato dell’arte dei simulatori di guida dinamici: offre un
ambiente di simulazione estremamente realistico ed immersivo in cui
la persona sperimenta direttamente le reazioni di un veicolo ai suoi comandi.
È quindi quello che mancava e che ci consentirà di progettare i
veicoli dei prossimi anni dove elementi come elettrificazione, connettività
e guida autonoma verranno ritagliati sull’utente stesso.
Il DriSMi potrà essere utile per potenziare la didattica innovativa di diversi
corsi della Laurea in Ingegneria Meccanica. Gli studenti Formula
SAE e Shell-Eco Marathon potranno giovarsi di un sistema non disponibile
in molte altre sedi universitarie.
meccanica magazine
27
meccanica magazine
28
ENG
DriSMi – the driving simulator of Politecnico di Milano
Politecnico di Milano has just presented the first installation of
DiM400 in the world. Co-sponsored by Regione Lombardia and designed
and engineered by VI-grade, DiM400 is the most innovative
driving simulator existing on the market today. Acquiring the simulator
represents a milestone for automotive scientific research,
considering that, from now on, the University owns a unique tool to
develop sustainable mobility. The driving simulator will be used: to
design and build new eco-friendly vehicles, to develop components
using innovative materials, for applications about vehicle dynamics,
to optimise consumptions, to verify that the Advanced Driver-Assistance
Systems (ADAS) work properly, for applications connecting
vehicles and infrastructures, and for applications of autonomous
driving. Moreover, it will make sustainable motorsport possible. This
5-million euro system, in which Regione Lombardia invested 2 million
euros, has been installed in our Bovisa campus and is the main
asset of a project enhanced by Cluster Lombardo della Mobilità. The
objective of this project is to create a centre - the fourth in Europe -
accessible to all automotive companies part of the Lombardy region
cluster. Here follow the words of the rector Ferruccio Resta and our
DMEC colleagues Prof. Giampiero Mastinu and Prof. Federico Cheli,
which made an enormous effort to reach such incredible goal.
The Rector, Prof. Ferruccio Resta said: “Experimental infrastructures
and cutting-edge laboratories are key elements of international
research and business development. Installing the driving simulator
will allow Politecnico di Milano to have an open discussion with some
of the most important international players, meanwhile turning Bovisa
into a European innovation ecosystem. That is how the University
aims to tackle the challenges of the future, mobility first of all”.
Regione Lombardia, namely the Department of Education, University,
Research, Innovation, and Simplification, was particularly caring
about automotive research themes, which are remarkable for both us
and the economy of Lombardy. To pursue such a complicated task, it
was necessary to share resources, especially funds. I also discussed
with my colleagues Prof. Gobbi and Prof. Cheli, and everyone agreed
on bringing forward the proposal. Without their support, none of this
today would have been possible”.
Prof. Federico Cheli added: “Our passion for vehicles and driving are
the foundations on which relies the research activities carried out
by a group of (young and less younger) fellows of the Dynamics and
Vibrations Research Line. Over the years, we gained experience in
modelling vehicles and their components, experimenting, and, more
recently, developing active control systems and autonomous driving.
Our research aims at improving the performance, safety, reliability,
and efficiency of the vehicles we use daily. However, even though in
the past few years we developed more precise and reliable models,
there is still an element that remains uncertain and “tricky”. The person
behind the wheel is the most difficult to describe through math
models but definitely the most important. Optimising the vehicle
responsiveness, particularly when it comes to self-driving vehicles,
can not ignore the driver’s reactions. Being accepted by their users
requires specific research that must include the human factor. Dri-
SMi is the state of the art of dynamic driving simulators: it offers a
high-realistic and immersive simulation environment where the person
directly experiences the vehicle’s response to its commands. It is
what was missing and will allow in the following years to design vehicles
with their electrification, connectivity, and autonomous driving
customized on their users”.
meccanica magazine
29
Prof. Giampiero Mastinu explained: “The idea of promoting a driving
simulator at PoliMi occurred by chance. The president of the Cluster
Lombardo della Mobilità (CLM) called me one day and kindly persuaded
me to participate in a very important dinner in Brescia. I was
talking with an academic colleague discussing how to promote R&D
activities in automotive companies. The driving simulator sounded
like a great idea. On the occasion of the next CLM assembly (November
2017), I presented the project INRIMOS. Many important Lombardy
companies immediately endorsed the initiative. Sooner than later, I
realised VI-grade could be an excellent supplier, even though the product
was merely a project still far from its accomplishment. In agreement
with our rector, we decided to bet on the installation of a unique
and original simulator. Surely the PoliMi simulator would also be a
resource for research activities in many different fields, but mostly
addresses the research themes of the Machine and Vehicle Design
Research Line: Vehicle construction, AI optimisation, Lightweight
Construction, Reliability, and so much more. Later followed a series
of promotional events for the INRIMOS project, sponsored by CLM and
PoliMi. We had to convince administrative officers and regional politicians
that this was indeed a good idea. Surprisingly, it turned out that
The DriSMi could also be useful to boost innovative teaching for
our Mechanical Engineering Undergraduate and Postgraduate Programmes.
The Formula SAE and Shell-Eco Marathon teams can profit
from a system that is not available in many other Universities.
Metodi progettuali per la nuova
generazione di eliche navali:
il progetto NextProp
meccanica magazine
30
ITA
Nel dicembre 2020 si è tenuto online l’incontro di partenza del progetto
“NextProp” (Next Generation of Propellers). NextProp è un
progetto Ad Hoc R&T sotto l’egida dell’Agenzia Europea per la Difesa
(European Defence Agency). Le attività vengono supervisionate, a
livello delle singole nazioni dai relativi Ministeri della Difesa: il Ministero
della Difesa della Repubblica Italiana, il Ministero della Difesa
del Regno di Norvegia e il Ministero della Difesa Nazionale della Repubblica
di Polonia.
L’obiettivo principale del progetto è quello di sviluppare e realizzare
software di modellazione idro-elastico e tool di progettazione
richiesti per definire la prossima generazione di eliche navali con
basso livello di emissione sonora. Nel progetto saranno valutati modelli
avanzati per materiali innovativi per il settore, come i materiali
compositi; tali modelli saranno integrati in metodi numerici e permetteranno
di progettare eliche innovative in materiale composito.
La progettazione di eliche navali contempla una vasta gamma di
aspetti, in particolare l’efficienza, il peso, la resistenza nel tempo,
i costi e il livello di emissione sonora. La possibilità di usare materiali
compositi per questo tipo di componenti potrebbe consentire
il miglioramento di molti di questi aspetti, nello specifico il peso e
il livello di emissione sonora. Il programma di lavoro include la fluidodinamica
computazionale (CFD - Computational Fluid Dynamics),
analisi strutturali agli elementi finiti (FEA - Finite Element Analysis),
l’interazione fluido-struttura (FSI - Fluid–Structure Interaction) e
modelli più teorici. I modelli saranno validati attraverso prove sperimentali
su prototipi sia a livello di singoli profili che di eliche.
All’obiettivo principale si aggiungono una serie di obiettivi secondari
legati alle eliche navali: migliorare l’attuale capacità di comprensione
dei meccanismi primari di produzione e propagazione del suono;
migliorare la prestazione di eliche in composito focalizzandosi
sui criteri di progettazione e produzione; studiare l’integrazione di
sensori nel componente in ottica di un programma di manutenzione
basata sull’effettivo stato del componente (CBM – Condition-Based
Monitoring); migliorare le metodologie di test e i set-up sperimentali.
Il progetto è coordinato da Forsvarets Forskningsinstitutt (Istituto di
Ricerca per la Difesa della Norvegia) e vede l’ampia partecipazione
di industrie e centri di ricerca: FiReCo (Norvegia), Light Structures
(Norvegia), SINTEF Ocean AS (Norvegia), Centro per gli Studi di Tecnica
Navale – CETENA S.p.A., (Italia), Consiglio Nazionale delle Ricerche
– Istituto di Ingegneria del Mare (CNR-INM, Italia), Politecnico
di Milano (Italia), Polish Naval Academy (Polonia).
Il Politecnico di Milano partecipa al progetto grazie al coinvolgimento
della squadra di ricerca del Dipartimento di Ingegneria Meccanica
guidata dal Prof. Andrea Manes e dal Prof. Marco Giglio. Le principali
competenze messe in gioco dal team di ricerca sono nel campo della
modellazione strutturale di materiali compositi in condizioni di carico
estreme. Il contributo principale verrà offerto nell’ambito della
caratterizzazione delle proprietà meccaniche dei materiali coinvolti,
grazie a prove sperimentali, e nell’ambito della modellazione strutturale
numerica non lineare. L’ampia variabilità delle proprietà meccaniche
e dei parametri di progettazione, legati ai materiali compositi,
rende fondamentale la definizione e l’utilizzo di metodi di progettazione
basati su modelli e analisi per la definizione di eliche navali innovative.
Nel contempo tali metodi di progettazione permetteranno
anche una miglior comprensione dei materiali compositi in questo
ambito di utilizzo.
ENG
Design methods for the next generation of naval propellers:
NextProp project
Kick-off meeting of “NextProp” (Next Generation of Propellers)
project has been held in remote December 2020. NextProp is an Ad
Hoc R&T Project with European Defence Agency (EDA) serving as
the Contracting Authority. The Contributing Members to the Project
under this Contract are the Ministry of Defence of the Italian Republic,
the Ministry of Defence of the Kingdom of Norway and the Minister
of National Defence of the Republic of Poland.
The main objective of the Project under this Contract is to develop
and establish the required hydro-elastic software and design tools
for the modelling of next generation low noise naval propellers. Advanced
models for new and modern materials, such as composite
materials, will be integrated in the numerical tools, to aid the design
of innovative composite propellers. Naval propeller design involves
a wide range of aspects, including efficiency, weight, durability,
cost, and signature. The emerging field of composite propellers
has the potential to improve several of these aspects, in particular
weight and signature. The work program include computational fluid
dynamics (CFD), finite element analysis (FEA), fluid-structure interaction
(FSI), and theoretical models. The models will be validated
through controlled prototype experiments on a generic foil and a
typical propeller.
A number of secondary goals follow from the main objective: improve
the current understanding of the primary mechanisms for sound
generation and propagation; improve the competence on composite
propellers with focus on manufacturing and design of such propellers;
study integration of sensors as part of a condition-based
maintenance program; and improve test methods and the experimental
set-up for modern propellers.
The project is coordinated by Forsvarets Forskningsinstitutt
(Norwegian Defence Research Establishment) (Norway) with large
partecipation of industrial and research entities:
FiReCo (Norway), Light Structures (Norway), SINTEF Ocean AS
( Norway), Centro per gli Studi di Tecnica Navale – CETENA S.p.A.,
(Italy), Consiglio Nazionale delle Ricerche – Istituto di Ingegneria del
Mare (CNR-INM, Italy), Politecnico di Milano (Italy), Polish Naval Academy
(Poland).
Politecnico di Milano will participate to the project by a research
team inside Department of Mechanical Engineering lead by Prof.
Andrea Manes and Prof. Marco Giglio. Key expertise of the research
team for the project are in the fields of structural modelling of
composite materials under extreme loading conditions. Main contribution
will be in the area of material testing and characterization
and nonlinear structural numerical modelling. The wide range of
material properties and design parameters related to composite
materials also points to modelling capabilities as crucial in the propeller
design process, and in the understanding of the behavior of
proposed composite material designs.
meccanica magazine
31
meccanica magazine
32
ITA
La propagazione di onde e vibrazioni in strutture meccaniche è fondamentale
per applicazioni di rilevanza tecnologica, tra cui i controlli
non-distruttivi e il monitoraggio strutturale, che sono applicazioni
con forte impatto sulla sicurezza ed affidabilità delle infrastrutture.
Oggigiorno la ricerca si focalizza sullo sviluppo di nuove strategie per
l’identificazione di difettosità e cricche in strutture, specialmente per
quelle applicazioni in cui l’ispezione visiva o le tecniche di controllo più
convenzionali non sono pratiche o non possono essere impiegate per
il monitoraggio real-time.
Monitoraggio
strutturale basato
sulla propagazione di
onde meccaniche
A questo scopo, il Dipartimento di Meccanica del Politecnico di Milano
ha in atto un’attività di ricerca in collaborazione con RFI – Rete Ferroviaria
Italiana. L’attività si focalizza sull’analisi della propagazione di
onde meccaniche lungo i binari a frequenze sonore ed ultrasoniche,
con il fine di identificare cricche e difetti che possono essersi nucleati
nel tempo a causa di molteplici fattori come corrosione e fatica, per
fare alcuni esempi. Mentre esistono metodi affermati per studiare e
caratterizzare questi fenomeni a livello di laboratorio, l’implementazione
in campo è stata più sfuggente ed è più sfidante dal punto di
vista pratico. La campagna sperimentale è situata a Bologna e consiste
in una rotaia equipaggiata con un sito di input, dove più patch
piezoelettriche sono state incollate rigidamente sulla rotaia per generare
un’onda. Molteplici sensori piezoelettrici sono invece situati a
distanze differenti dall’input per misurare le onde trasmesse e riflesse.
È atteso che la storia temporale di riflessione e trasmissione delle
onde possa essere utilizzata per prevedere la rottura o la nucleazione
di cricche nelle rotaie, o più in generale in strutture meccaniche.
Allo stato di avanzamento attuale dell’attività, la riflessione e trasmissione
delle onde senza presenza di difetti è stata acquisita con successo
fino a 350 m dalla sorgente di input. I prossimi step prevedono
la realizzazione di tipologie differenti di difetti e sull’impatto che essi
avranno sul comportamento dinamico della rotaia.
L’attività è coordinata dal Prof. Giorgio Diana, professore emerito, e
dal Prof. Francesco Braghin, professore ordinario al Dipartimento di
Meccanica del Politecnico di Milano.
ENG
Guided wave based health monitoring of rails
Elastic wave propagation and vibrations are fundamental in applications
technologically relevant, including the nondestructive evaluation
and structural health monitoring, which have a strong impact
on infrastructure safety and reliability. Indeed, the current research
activities focus on finding novel strategies to detect imperfections
and cracks in infrastructures, especially for the applications based
on visual inspection or more conventional strategies less-practical
or not-usable in real-time monitoring.
To this end, the Department of Mechanical Engineering of Politecnico
di Milano is carrying out research activities in collaboration with
RFI – Rete Ferroviaria Italiana. The activities focus on the analysis
of wave propagation in railway systems at sonic and ultrasonic frequencies
to detect cracks and defects developed over time due to
multiple causes, such as corrosion and fatigue, among others. While
there are established tools to study and characterize such phenomena
at laboratory level, the on-field implementation has been so
far elusive from the practical perspective.
The experimental campaign is located in Bologna and consist in a
railway system equipped with one input site, in which a set of smart
piezoelectric devices is bonded on the rail to generate a wave. Several
output sites are then placed at difference distances from the
input in order to measure the transmitted and reflected waves. It
is expected that the scattering pattern contains information about
defect size and coordinate. This, in combination with a suitable management
system can be employed as a new platform to foresee
failures in railway systems or, in general, in mechanical and civil
structures.
At the current progress of the activity, the reflection pattern without
the presence of defects has been successfully acquired up to a distance
of 350 m from the input source. The following steps are thus
focused on the generation of different types of defects and on the
study of their influence on the dynamic behavior of the rail.
The activity is coordinated by Prof. Giorgio Diana, emeritus professor,
and Prof. Francesco Braghin, full professor at the Department
of Mechanical Engineering of Politecnico di Milano.
meccanica magazine
33
CIRC-eV
Sviluppo tecnologico e catene di
processo innovative per il recupero
di componenti da veicoli elettrici
post-uso
meccanica magazine
34
ITA
Il laboratorio interdipartimentale CIRC-eV “Fabbrica Circolare per i
Veicoli Elettrici del Futuro” raccoglie competenze dai Dipartimenti di
Meccanica (Coordinatore), Energia, Chimica, Ambientale, Elettronica
e Gestionale per supportare l’industria manifatturiera nel recupero e
riuso ad alto valore aggiunto di materiali e funzioni da componenti di
veicoli ibridi ed elettrici post-uso, favorendo l’introduzione di nuovi
modelli di economia circolare per una transizione sostenibile all’e-mobility.
L’industria automobilistica, la più importante industria manifatturiera
in Europa che offre posti di lavoro a 12 milioni di persone con un fatturato
di circa 780 miliardi di euro e un valore aggiunto di 140 miliardi,
sta subendo una fondamentale trasformazione relativa alla transizione
dai tradizionali veicoli con motore a combustione interna (ICEV -
Internal Combustion Engine Vehicles) a veicoli elettrici (EV - Electric
Vehicles) e ibridi (HEV - Hybrid Electric Vehicles). Nel 2020, il numero
di vendite di auto ibride in Italia è più che triplicato rispetto all’anno
precedente e quadruplicato quello delle elettriche [Fonte dati: UN-
RAE]. Si stima inoltre che entro il 2040 le vendite mondiali di veicoli
elettrici ed ibridi supereranno quelle dei veicoli con motore a combustione
interna.
Questa rivoluzione è accompagnata da una trasformazione fondamentale
nella progettazione dell’auto, caratterizzata da un’evoluzione
sostanziale dei componenti e dei materiali critici della vettura.
Ad esempio, le batterie agli ioni di litio (LiB – Lithium Ion Batteries),
elemento fondante dei veicoli elettrici, costituiscono il 35-50% del
loro costo complessivo, mentre le componenti meccatroniche, l’elettronica
intelligente ed i sensori ne sono divenuti componenti imprescindibili
e predominanti. Si stima altresì che i materiali compositi ed
i tecnopolimeri trovino applicazioni sempre più massicce nei veicoli
elettrici e ibridi con l’obiettivo di mitigare l’aumento di peso dovuto alle
batterie e all’elettronica, senza comprometterne la sicurezza e le prestazioni
meccaniche.
Opportunità e nuove sfide: la missione di CIRC-eV
Il sostanziale cambiamento nella progettazione del prodotto porta,
allo stesso tempo, una sfida per il trattamento di post-uso del prodotto
ed una grande opportunità per nuove imprese orientate all’economia
circolare, interessando in tal modo l’intera filiera del settore automobilistico.
Le attuali pratiche di gestione dei prodotti a fine vita nel
settore automobilistico sono dominate dal riciclo e solo una piccola
parte dei componenti post-uso viene rigenerata e riutilizzata come
ricambi nel mercato postvendita, ovvero unità di controllo e componenti
meccatronici. Il mercato è regolato dalla direttiva CE [2000/53/
CE] relativa ai veicoli a fine vita (ELV - End-of-Life Vehicles) che fissa
gli obiettivi per il recupero e riuso dei materiali. Sebbene questi obiettivi
siano soddisfatti nella maggior parte degli Stati membri europei,
la transizione in corso verso veicoli elettrici e ibridi potrebbe seriamente
minare il raggiungimento di tali obiettivi in futuro. Attualmente,
la mancanza di soluzioni di trattamento post-uso sostenibili per le
componenti critiche di veicoli elettrici e veicoli ibridi costituisce un
serio ostacolo all’e-mobility ed è necessario progettare e verificare
una nuova e sistemica strategia circolare per l’intera filiera.
La missione del Laboratorio CIRC-eV “Fabbrica Circolare per i Veicoli
Elettrici del Futuro” è lo sviluppo di un nuovo concetto di Fabbrica Circolare
per supportare l’industria manifatturiera nel recupero e riuso
ad alto valore aggiunto di materiali e funzioni da componenti di veicoli
ibridi ed elettrici post-uso, favorendo l’introduzione di nuovi modelli di
economia circolare per una transizione sostenibili all’e-mobility.
Prodotti e sfide tecnologiche
CIRC-eV sarà il primo laboratorio europeo dedicato al concetto di
Fabbrica Circolare, integrando funzioni di disassemblaggio, testing,
riassemblaggio e riciclo dei materiali nella stessa struttura, per progettare
e rendere possibili nuove soluzioni di economia circolare sostenibile
per il settore dell’e-mobility. CIRC-eV sarà equipaggiato con
le tecnologie abilitanti fondamentali (KET – Key Enabling Technologies)
per implementare tali funzioni, concentrandosi, nella sua prima
configurazione, sul componente più critico per un’e-mobility sostenibile,
ovvero le batterie agli ioni di litio.
Il pacco batteria è il componente più importante di un veicolo ibrido
(HEV) o elettrico (BEV), poiché garantisce la potenza e la capacità necessarie
al motore. Nonostante esso sia il componente più impattante
sull’intera spesa per i costi dei materiali, attualmente la tecnologia
agli ioni di Litio è ritenuta, di comune accordo dalla comunità scientifica
che da quella industriale, la migliore alternativa per le applicazioni
a breve e medio termine nel settore della mobilità. Grazie a un mix
di alta densità energetica, alta efficienza, lunga durata e affidabilità,
le batterie agli ioni di litio costituiranno la principale fonte di energia
nella mobilità elettrica per almeno i prossimi 10 anni. Indipendentemente
dalle sue dimensioni, una cella agli ioni di litio ha una tensione
nominale di 3,6 V - 3,8 V. Per questo motivo, la tensione finale del pacco,
che per i veicoli elettrici è quasi sempre maggiore di 300 V, deve
essere raggiunta tramite la connessione in serie di stringhe di celle.
Inoltre, molte delle celle commerciali agli ioni di litio non possono
fornire le capacità richieste dal veicolo per un’adeguata autonomia e
pertanto le celle sono usualmente collegate, al livello gerarchico più
basso, in stringhe in parallelo atte ad aumentare la capacità globale.
Particolarità fondamentale delle celle agli ioni litio è, fra le altre, la
curva di degradazione elettrochimica e dunque prestazionale, che è
sbilanciata ed unica per ogni cella, e restituisce, dopo un ciclo di vita
che può variare fra gli 8 e i 10 anni, un pacco batteria le cui celle sono
contraddistinte da uno stato di salute (SOH - state-of-health) diverso
per ciascuna.
CIRC-eV: obiettivi, focus di ricerca
L’obiettivo specifico di CIRC-eV sarà dimostrare la fattibilità tecnica
ed economica della catena di processo circolare rappresentata in Figura
2 (Catena di processo circolare CIRC-eV per batterie agli ioni di litio.
I passaggi funzionali in blu sono integrati nel laboratorio CIRC-eV):
i moduli batteria subiscono una prima fase di caratterizzazione, dopodiché
le singole celle vengono liberate attraverso un processo di disassemblaggio
automatizzato, selettivo, non distruttivo ed intelligente.
Le proprietà elettriche residue di ciascuna cella vengono stimate
attraverso il testing elettrochimico con tecnologie all’avanguardia
(EIS - Electrochemical Impedance Spectroscopy). Le celle con proprietà
residue non adeguate ad un loro riutilizzo subiscono pretrattamenti
meccanici per liberare e concentrare i materiali target. Questo
agevola e rende più efficiente e sostenibile il riciclo idro-metallurgico
a valle. Le celle con buone proprietà residue vengono ri-assemblate in
batterie second life.
Le macro-sfide a livello tecnico del laboratorio CIRC-eV sono legate
ai seguenti aspetti:
• Progettazione e sviluppo di un processo e un sistema di disassemblaggio
delle celle sicuro ed economico, con l’adeguato livello di flessibilità
atto a gestire l’elevata varietà di tipologie di batterie.
• Definizione di metodi e procedure per valutare lo stato di salute delle
celle, caratterizzarne le modalità di degradazione e stimarne la vita
utile residua, consentendone l’applicazione in moduli second life con
prestazioni certificate.
• Sviluppo di sistemi di supporto decisionale knowledge-based e data-driven
volti ad indirizzare le batterie all’applicazione secondaria più
adeguata e ad assicurarne la configurazione adatta tramite opportuni
sistemi di controllo (BMS - Battery Management System), soddisfando
i requisiti specifici richiesti e le condizioni post-uso.
• Progettazione e sviluppo di un pretrattamento meccanico selettivo
per raccogliere e separare gli ossidi metallici (Black Mass), con l’obiettivo
di supportare il riciclo dei materiali chiave attraverso successivi
trattamenti chimici.
meccanica magazine
35
Per questi particolari prodotti, la strategia più interessante è legata al
remanufacturing e al riutilizzo delle celle disassemblate. Quelle dotate
di adeguate proprietà residue, infatti, saranno reimpiegate in applicazioni
second-life stazionarie sfruttando un approccio cross-settoriale:
pacchi batteria rigenerati potranno ad esempio essere sfruttati
per lo stoccaggio di energia in impianti da fonti rinnovabili o all’interno
di ambienti abitativi (casa, ufficio). Al contrario, quelle celle che non
mantengono proprietà post-uso sufficienti ad applicazioni secondarie
saranno destinate al riciclo con l’obiettivo di recuperare i materiali
ad alto valore aggiunto. Lo sviluppo delle fondamentali tecnologie
abilitanti e dei sistemi di supporto decisionale per la combinazione di
entrambe le soluzioni tecnologiche consentirà di scegliere la strategia
migliore per la gestione delle batterie post-uso, sbloccando così
un processo di commercio circolare per i veicoli elettrici.
L’impianto pilota CIRC-eV sosterrà attività di ricerca ed innovazione
multidisciplinari, mirate a risolvere queste sfide sviluppando tecnologie
ad elevato potenziale per il trasferimento industriale e la società
nel suo insieme.
Il Dipartimento di Meccanica è capofila dell’iniziativa, coordinata dal
Prof. Marcello Colledani, ed ospita CIRC-eV presso l’edificio B23. Il
team di ricerca inoltre annovera anche le competenze dei Dipartimento
di Energia, Dipartimento di Ingegneria Civile e Ambientale, Dipartimento
di Elettronica, Informazione e Bioingegneria, Dipartimento di
Chimica, Materiali e Ingegneria Chimica “Giulio Natta” e Dipartimento
di Ingegneria Gestionale.
meccanica magazine
36
ENG
Innovative technologies and process chains for post-use e-mobility
components
The inter-departmental Laboratory CIRC-eV “Circular Factory for the
Electrified Vehicles of the Future” merges competences from the
Mechanical (coordinator), Energy, Chemical, Environment, Electronics
and Management departments to support the manufacturing
industry in the high added-value recovery and reuse of materials and
functions from electric and hybrid electric vehicles, enhancing the
introduction of innovative circular economy business models for a
sustainable transition to e-mobility.
The automotive industry, the most important manufacturing industry
in Europe providing jobs to 12 million people with a turnover
of about € 780 billion Euro and a value added of 140 billion, is
undergoing a fundamental transformation pervaded by the transition
from traditional Internal Combustion Engine Vehicles (ICEV)
to Electric (EV) and Hybrid (HEV) vehicles. In 2020, the number of
hybrid electric vehicles sold in Italy more than tripled with respect
to the year before. Sells of full electric vehicles have been four times
the ones of 2019 [source: UNRAE]. It is also predicted that from
2040, the number of electric and hybrid vehicles sold will be higher
than internal combustion ones.
This revolution is accompanied by a fundamental transformation in
the car design, featuring a substantial evolution in the critical car
components and materials. For example, Lithium-Ion Battery (LiB –
Lithium Ion Batteries) packs constitute one the most important car
components, making up 35%-50% of the cost of the EVs. Moreover,
mechatronics, smart electronics and sensors are predominant
components in EVs and HEVs. Furthermore, composite materials
and techno-polymers are expected to find more and more massive
application in EVs and HEVs with the objective to mitigate the car
weight increase caused by batteries and electronics, without compromising
in safety and mechanical performance.
Opportunities and challenges: the CIRC-eV mission
The substantial change in product design brings at the same time
a challenge for post-use product treatment and a huge opportunity
for new circular economy-oriented businesses, affecting the entire
automotive value-chain. Current waste management practices in
automotive are dominated by recycling and only a small fraction of
components is remanufactured and re-used as spares in the aftermarket,
namely control units and mechatronic components. The
market is regulated by the ELV (End-of-Life Vehicles) legislation
EC Directive [2000/53/EC] fixing targets for re-use and material
recovery. Although these targets are met in most of the European
member states, the ongoing transition to EVs and HEVs and the related
new product design may seriously undermine the achievement
of these targets in the future. Currently, the lack of a sustainable
post-use treatment routes for EVs and HEVs critical components
constitutes a serious barrier to e-mobility and a new disruptive circular
strategy needs to be designed and demonstrated.
The mission of the CIRC-eV Laboratory is to develop a new concept
of Circular Factory to support the manufacturing industry in the recovery
and reuse of functions and value from post-use Hybrid and
Electric Vehicles, boosting the introduction of new circular economy
models for sustainable e-mobility.
Products and technological challenges
The CIRC-eV will be the first European Lab dedicated to the concept
of Circular Factory, integrating disassembly, testing, reassembly
and material recycling functions in the same facility, to design and
demonstrate new sustainable circular economy solutions for the
e-mobility sector. CIRC-eV will integrate the key enabling technologies
to implement these functions, focusing, in its first configuration,
on the most critical component for sustainable e-mobility,
namely Li-Ion Batteries.
The battery pack is the most important component of a hybrid (HEV)
or full electric vehicle (EV), since it has to guarantee the power and
capacity needed by the electric motors. For both HEVs and EVs, the
battery pack is the most impacting component on the whole bill of
material costs. There is general agreement, both in the scientific
and industrial communities, to consider the lithium ion (Li-Ion) battery
technology as the state-of-the-art best application for current
production as well as for short and middle term future applications
in the mobility sector. For its mix of high energy density, high efficiency,
long lifespan and reliability, Li-Ion batteries will be the dominant
power source technology in electric mobility for at least the
next 10 years. Regardless its dimension, a Li-Ion battery cell has a
nominal voltage of 3.6 V – 3.8 V. For this reason, the final voltage of
the pack, which for EVs is almost always greater than 300 V, has to
be achieved by the series assembly of cell strings. Moreover, many
of the commercial Li-Ion cells can’t provide the energy capacity to
achieve the needed final autonomy, for this reason, very often, at
the lowest hierarchical level cells are connected in parallel strings to
increase the capacity.
A fundamental peculiarity if lithium-ion cells is their electrochemical
degradation curve, which is unbalanced and unique for each cell
and, after a lifecycle which can vary from eight to ten years, returns a
battery pack whose cells are characterized by a unique state-of-health
(SOH), different for each one.
The most interesting strategy for automotive LiBs is related to the
remanufacturing and re-use of the disassembled cells with proper
residual characteristics into second-life stationary applications
exploiting a cross-sectorial approach, for example dedicated to the
storage in renewable energy installations or within living environments
(home, office). On the contrary, those battery cells that do not
maintain sufficient post-use properties suitable to a second-life application
are sent to recycling with the objective to recover high-value
materials for re-use. The development of the key enabling technologies
and decision support systems to combine both strategies
will make it possible to achieve a sustainable strategy for post-use
management of automotive Li-Ion batteries, thus unlocking a circular
business for electric vehicles.
CIRC-eV: objectives, research focus
The specific goal of CIRC-eV is to demonstrate the technical and
economic feasibility of the circular process chain presented in Fig.2
(CIRC-eV circular process-chain for Li-Ion Batteries. The functional
steps in blue are integrated in the CIRC-eV Lab): battery modules
undergo a first characterization phase. Then single cells are disassembled
exploiting an automated, selective, non-destructive and
intelligent process. The residual electric properties of each cell are
estimated through innovative technologies (EIS - Electrochemical
Impedance Spectroscopy). Cells without residual properties suitable
for reuse are mechanically pre-treated to release and sort the
target materials. This facilitates and increases the efficiency of the
downstream hydrometallurgical recycling process. Cells with appropriate
residual properties are reassembled in second-life battery
modules.
The macro technical challenges of the CIRC-eV Lab are related to:
• Design and development of a safe and cost-effective battery cells
disassembly process and system, with the required level of flexibility,
enabling to handle a large variety of battery designs.
• Definition of methods and procedures to estimate the State of Health
(SoH) and characterize the degradation modes and the residual
useful life of battery cells to enable their application in second-life
modules with certified performance.
• Development of knowledge-based and data-driven decision support
systems to select and configure second-life battery modules
and their Battery Management System (BMS) depending on the
specific second-use requirements and the post-use conditions of
re-usable cells.
• Design and development of a selective mechanical pre-treatment
to gather and separate the black mass, with the objective to support
the recycling of key materials through downstream chemical treatments.
The CIRC-eV pilot plant will support multi-disciplinary research and
innovation activities targeted to these technical challenges with
high technology transfer potentials to the industry and the society
as a whole.
The Department of Mechanical Engineering is leader of the initiative,
coordinated by Prof. Marcello Colledani, and hosts CIRC-eV in the
B23 building. The research team also includes the competences of
the Energy Department, the Department of Civil and Environmental
Engineering, the Department of Electronics, Information and Bioengineering,
the Department of Chemistry, Materials and Chemical
Engineering “Giulio Natta” and the Department of Management, Economics
and Industrial Engineering.
meccanica magazine
37
Mechanical
Treatment
Chemical
Treatment
Materials
certification
Critical raw
materials
(Co, Li), Metals
(AI, Cu) and
Polymers.
E-mobility
Li-Ion battery
pack
Pack Collection
and dismantling
Module
characterization
Module
disassembly
Cell testing and
characterization
Remanufacturing
Module
Re-assembly
Module
certification
Second-life
stationery
system
(renewable
energy, home,
office)
Installata presso DMEC una
nuova unità di Cold Spray
meccanica magazine
38
ITA
È stata recentemente installata presso i laboratori del Dipartimento
di Meccanica una unità di Cold Spray ad alta pressione Impact Innovations
5/8 sotto la responsabilità scientifica del Prof. Mario Guagliano.
Il cold spray, o spruzzatura a freddo, è una tecnica di deposizione delle
polveri che, a differenza delle altre tecnologie, non sfrutta l’energia
termica ma l’energia cinetica e non richiede, quindi, la fusione delle
polveri. Infatti, il processo di cold spray si basa sull’accelerare le polveri
metalliche a velocità supersoniche, superiori a un valore critico,
per le quali, grazie alla elevata velocità di deformazione plastica
e a meccanismi microstrutturali ancora oggetto di dibattito in sede
scientifica, si attiva il fenomeno della adesione allo stato solido. Attraverso
tale meccanismo le polveri che impattano il substrato rimangono
adese e formano progressivamente un rivestimento con spessore
crescente. L’unica proprietà richiesta affinché l’adesione abbia luogo
è che il materiale sia deformabile plasticamente e presenti, quindi,
caratteristiche di duttilità. Ciò rende il cold spray particolarmente attraente
in quanto applicabile a alla gran parte dei metalli.
In Figura 1 è schematicamente illustrato il processo: un gas precompresso
e preriscaldato viene immesso in un condotto di De Laval e
alimenta il flusso di polveri nelle condizioni desiderate per ottenere
l’adesione al substrato e costruire progressivamente uno strato con
spessore che non presenta limitazioni. Il processo ben si presta, quindi,
alla generazione sia di sottili rivestimenti superficiali sia alla costruzione
di pezzi massivi. Il cold spray presenta molte caratteristiche
che lo rendono interessante in diversi settori e ne stanno estendendo
l’applicazione: ad esempio, l’elevato tasso di deposizione, unitamente
al fatto che non c’è bisogno di camere in atmosfera controllata, lo
rendono adatto come processo di manifattura additiva, anche per
pezzi di grandi dimensioni e materiali sensibili alla temperatura. La
possibilità di miscelare polveri differenti, metalliche e non metalliche,
permette inoltre lo sviluppo di nuovi materiali con proprietà funzionalizzate.
È poi possibile metallizzare superfici polimeriche senza alcun
processo chimico. Inoltre, è una tecnica che permette di riparare pezzi
danneggiati, localmente o in maniera diffusa, ripristinando o migliorando
le proprietà iniziali. Per tale motivo ben si colloca nei processi di
remanufacturing e di sensorizzazione dei componenti, in ottica Industria
4.0. “Il mio gruppo di ricerca - dice il prof. Guagliano – si occupa
di cold spray ormai da diversi anni, dapprima per la simulazione del
processo e la sua ottimizzazione in funzione del materiale, poi per la
caratterizzazione sperimentale delle proprietà dei rivestimenti e pezzi
ottenuti con il cold spray. Abbiamo coordinato un progetto europeo
con tredici partner, tra cui Airbus, per l’applicazione del cold spray per
la riparazione di elementi strutturali in campo aeronautico. In questo
progetto ci siamo occupati della caratterizzazione meccanica di elementi
strutturali danneggiati e riparati con il cold spray, evidenziando
la possibilità di ripristinare le originali prestazioni dei componenti.
Recentemente abbiamo avviato, con la supervisione della dott.ssa
Sara Bagherifard, ricerche per valutare le proprietà di materiali bimodali
spruzzati con il cold spray e per applicazioni di additive manufacturing.
L’installazione dell’impianto 5/8 presso il Dipartimento di
Meccanica, permette di completare le nostre competenze sull’argomento
e di allargare il cerchio dei programmi di ricerca e delle collaborazioni
in cui possiamo dare il nostro contributo.” Al riguardo, è
da poco iniziato il progetto ATLAS (Advanced Design of High Entropy
Alloys Based Materials for Space Propulsion), finanziato nell’ambito
del programma EC-H2020, in cui il Prof. Guagliano è coordinatore. Il
Progetto si occuperà di sviluppare e caratterizzare il processo di cold
spray per la deposizione di polveri HEAs (High Entropy Alloys) per migliorare
prestazioni ed efficienza dei propulsori spaziali di prossima
generazione. Inoltre, è arrivato a metà tragitto il progetto COSMEC
(Cold Spray of Metal-to-Composite, responsabile Prof.ssa Chiara
Colombo), finanziato dal MIUR nell’ambito dei progetti di ricerca di
interesse nazionale (PRIN). Sono anche iniziate le attività di ricerca
con Lucchini RS Group per valutare l’impiego del cold spray in ambito
ferroviario per la deposizione di rivestimenti anticorrosione e di riparazione
di componenti danneggiati. Infine, il gruppo di ricerca, con
Sara Bagherifard, Chiara Colombo, Asghar Heydari e alcuni studenti
PhD, sta anche studiando l’applicazione del cold spray per progettare
materiali bimodali con proprietà funzionalizzate e per la generazione
di rivestimenti a porosità controllata, per protesi ortopediche, al fine
di facilitarne l’osseointegrazione.
meccanica magazine
39
meccanica magazine
40
ENG
A new cold spray unit installed at dmec
A new high-pressure Impact Innovations 5/8 cold spray unit has
been recently installed in our labs at the Department of Mechanical
Engineering, with Prof. Mario Guagliano as scientific supervisor.
Cold Spray is a powder deposition technique exploiting kinetic energy.
It differs from other technologies because it doesn’t use thermal
energy to melt the powder.
Indeed, the cold spray process is based on the supersonic acceleration
of the metal powder over the critical value. Even though the
matter is still discussed within the scientific community, the high
strain rate of plastic deformation and microstructural mechanisms
allow the adhesion phenomenon to occur when the powder in its
solid state. Through this mechanism the powder adheres when colliding
with the substrate and progressively create a thicker coating.
Materials able to undergo plastic deformation, meaning it must be
ductile, is the only requirement for adhesion to occur. Cold spray
turns out to be very appealing since it finds its application to most
of the metals.
Picture 1 represents a schematic illustration of the process: a
pre-compressed and heated gas is injected in a de Laval nozzle to
maintain the powder flux to its optimal conditions, so to adhere to
the substrate and gradually build a layer without limits of thickness.
This process can benefit both to the creation of thin coatings and to
the manufacturing of bulk components.
The cold spray has features that make it appealing for diverse industries,
and its applications are increasing. For example, the high
rate of deposition and the lack of needing a controlled atmosphere
chamber make it also suitable for additive manufacturing to produce
massive components along with temperature-sensitive materials.
On the other hand, it also allows mixing different powders, like
metal and non-metal, to create materials with customised features
according to its functions. It also allows metallising polymeric surfaces
without undergoing any chemical process.
Moreover, it allows to repair locally or widespread fractured pieces
to reset and improve their original properties. For this reason, it
turns out to be excellent in re-manufacturing and sensoring components
in the Industry 4.0 framework.
“My research group – said Prof. Guagliano – has been working with
cold spray for several years now. We started by simulating and optimising
the process according to the material. Later on, we moved
to experimental customisation of the coating properties and components
manufactured by cold spray. Along with other 13 partners,
including Airbus, we also coordinated a European Project to apply
cold spray when repairing aeronautical structural components. In
particular, we dealt with the mechanical characterisation of damaged
components and repaired via cold spray, underling whether
possible to reset the original performance status of components.”
“We recently started new research activities supervised by PhD.
Sara Bagherifard, on bimodal materials obtained with cold spray and
by additive manufacturing applications” – he added. “The installation
of the 5/8 plant at the Department of Mechanical Engineering allows
us to complete the competence we have on this matter and to increase
the number of research projects and collaborations to which we
can give our contribution”.
As a matter of fact, the project ATLAS (Advanced Design of High Entropy
Alloys Based Materials for Space Propulsion) has just started,
coordinated by Prof. Guagliano and founded through the programme
EC-H2020. The project objective is to develop and customise
the cold spray process for HEAs (High Entropy Alloys), which should
improve the performance and efficiency of the next generation of
space propulsion systems.
Moreover, sponsored by MIUR as part of the project relevant at
a domestic level (PRIN), the project COSMEC (Cold Spray of Metal-to-Composite,
scientific manager Prof. Chiara Colombo) has reached
its midterm.
New activities with Lucchini RS Group have also just started to evaluate
the usage of cold spray in the railway field to repair damaged
structural components and develop controlled porosity coatings for
orthopaedic implants to facilitate osseointegration.
Finally, the research group, with Sara Bagherifard, Chiara Colombo,
Asghar Heydari and some PhD students, is also studying the application
of cold spray to design bimodal materials with functionalized
properties and for the generation of controlled porosity coatings for
orthopedic prostheses, in order to facilitate osseointegration.
Progetto
Interreg TRIBUTE:
ITA
Si è svolto venerdì 12 febbraio il kick-off meeting del progetto TRIBU-
TE (“inTegRated and Innovative actions for sustainaBle Urban mobiliTy
upgrade”), un progetto Interreg transnazionale ADRION per la cooperazione
territoriale Europea nella regione Adriatico-Ionica.
Il progetto, selezionato nell’ambito della seconda call dell’asse 3 (trasporti)
del programma ADRION, durerà 30 mesi e terminerà a Giugno
2023.
per una mobilità urbana più equa
ed inclusiva nella regione
adriatico-ionica
TRIBUTE intende affrontare le sfide della mobilità urbana, poste dalla
rapida diffusione delle nuove tecnologie e dai cambiamenti socioeconomici
e demografici, attraverso l’utilizzo di strumenti innovativi (living
lab) per l’individuazione di piani di azioni integrate per la mobilità
sostenibile, nelle 8 città partner del progetto: Milano (IT), Maribor (SI),
Lubiana (SI), Zagabria (HR), Patrasso (GR), Novi Sad (RS), Sarajevo (BiH)
and Podgorizza (MN). A tal fine, TRIBUTE seguirà un approccio partecipativo
(cosiddetto a “quadrupla elica”) che coinvolgerà istituzioni,
imprese, accademia e cittadini nell’individuazione e nella sperimentazione
di soluzioni in linea con i nuovi comportamenti di viaggio e i
fabbisogni di infrastrutture e servizi di mobilità nelle città.
Il Dipartimento di Meccanica del Politecnico di Milano fornirà il supporto
per lo sviluppo di otto azioni pilota (una per ogni partner di progetto)
che riguarderanno sistemi di trasporto a chiamata customizzati per
utenze deboli (anziani e diversamente abili), sistemi di informazione
all’utenza del trasporto pubblico, ciclo-mobilità e veicoli elettrici, sistemi
di gestione integrata del trasporto urbano in presenza di grandi
eventi. I risultati di tali sperimentazioni permetteranno di definire una
strategia transnazionale per promuovere una mobilità più equa e inclusiva
nelle agende urbane delle città della Regione Adriatico-Ionica.
Coordinatore del progetto: Prof. Pierluigi Coppola DMEC
ENG
TRIBUTE Interreg Project for innovative and inclusive urban mobility
in the adriatic-ionian region
The kick-off meeting of the TRIBUTE (“inTegRated and Innovative
actions for sustainaBle Urban mobiliTy upgrade”) project took place
on the 12th of February 2021. TRIBUTE is a transnational Interreg
ADRION project to enhance European Territorial Cooperation (ETC)
in the Adriatic-Ionian region. Selected under the second call for axis
3 (transportation) of the ADRION programme, this project will last 30
months and will end in June 2023.TRIBUTE aims to face the challenges
related to urban mobility, which rise with the spreading of new
technologies and the occurring socio-economic and demographic
changes, by using innovative tools (living lab) to identify integrated
action plans to support sustainable mobility in the eight cities: Milano
(IT), Maribor (SI), Ljubljana (SI), Zagreb (HR), Patras (GR), Novi Sad (RS),
Sarajevo (BiH) and Podgorica (MN). Therefore, TRIBUTE will adopt a
participatory approach (the ‘quadruple helix’ approach) engaging administrations,
enterprises, academics, and citizens in order to identify
and to test new solutions for urban mobility that meet new travel
habits and behaviours, and the needs of our cities. The Department
of Mechanical Engineering of Politecnico di Milano will support the
development of 8 pilot actions (one per each project partner) about:
Demand-Responsive Transport Systems for vulnerable users (elderly
and disabled); Advanced travellers Information systems for public
transportation, cycling mobility, and electric vehicles; integrated management
systems for urban transportation for occurring big events.
The results of these experiments will allow defining a transnational
strategy to boost equity and inclusion in the urban mobility agendas
of the cities of the Adriatic-Ionian region.
Scientific manager of the project: Prof. Pierluigi Coppola DMEC
meccanica magazine
41
MetaMAT-Lab
meccanica magazine
42
ITA
Il laboratorio interdipartimentale MetaMAT-Lab nasce nel 2017 dalla
sinergia tra i dipartimenti di Meccanica (DMEC), Energia (DENG), Matematica
(DMAT), Elettronica Informazione e Bioingegneria (DEIB) e Design
con l’intento di combinare le competenze specifiche nello studio
dei metamateriali.
Combinando opportunamente composizione chimica e geometria
realizzativa, i metamateriali consentono di estendere lo spettro di
proprietà fisiche dei materiali tradizionali e di ottenere proprietà elettromagnetiche,
acustiche, termiche e meccaniche non esistenti in
natura. Sono quindi adatti a tutte quelle applicazioni in cui le proprietà
fisiche dei materiali convenzionali costituiscono un vincolo attivo nella
fase di progettazione di un componente.
Centralità del MetaMAT-Lab è l’unione trasversale di competenze multidisciplinari
finalizzata allo studio e alla comprensione del comportamento
fisico e meccanico dei metamateriali, alla ricerca di nuove
possibilità applicative e alla realizzazione concettuale di componenti.
In questo contesto, il Dipartimento di Meccanica contribuisce attivamente
alla caratterizzazione meccanica dei metamateriali, tramite
attività sperimentali e numeriche e focalizzandosi sulla resistenza
statica (monoassiale e multiassiale), a fatica e alla frattura. Queste attività
sono affiancate da analisi di conformità della geometria tramite
tomografia computerizzata e analisi ottiche.
Il laboratorio è impegnato sia sul fronte della ricerca accademica, sia
sul fronte della ricerca industriale. Recentemente, ha svolto diverse
collaborazioni con importanti partner industriali nella realizzazione
di componenti aeronautici e aerospaziali con specifiche richieste di
proprietà meccaniche, termiche e di permeabilità. Scambiatori di calore
a fluido, deoilers, heat pipes e staffe di supporto con funzione di
isolamento termico (domanda di brevetto per invenzione industriale
nr. 102020000024331) sono alcuni esempi.
Attrezzatura a disposizione del laboratorio:
• Macchina di prova Deben per micro-campioni (capacità 5kN)
• Macchina di prova Instron E10000 ElectroPuls (capacità 10 kN), per
prove statiche e a fatica con camera ambientale (temperatura: - 100
°C/+ 350 °C).
• Microscopici ottici per analisi di correlazione di immagini digitali (Digital
Image Correlation, DIC) per monitorare lo stato di deformazione
dei campioni durante i test
• Sistema DIC Aramis GOM, per la misura dinamica di coordinate, spostamenti
e deformazioni superficiali tridimensionali
• Sistema per il rilievo della conduzione termica su piccoli campioni
con un range da 0.0005 m2K/W fino a 0.05 m2K/W, con prova secondo
tecnica Heat Flow Meter
• Micro-fresatrice per lavorazione prototipi antenne RF e PCB
workstations.
Servizi offerti:
• Realizzazione di campioni mediante diverse tecniche (lavorazioni additive
per materiali metallici e polimerici e microfusione)
• Misura delle proprietà meccaniche statiche a trazione e compressione
• Misura della resistenza a fatica e della resistenza a frattura
• Misura delle micro-geometria del campione tramite tomografia e ricostruzione
di un modello solido
• Misura della conducibilità termica del campione
• Misura delle proprietà elettromagnetiche del campione
• Simulazioni multi-fisica su geometria ricostruita
• Ottimizzazione topologica della micro-geometria per raggiungere
target di proprietà meccaniche e termiche.
Personale coinvolto:
Prof. Stefano Beretta, Prof. Stefano Foletti, Ing. Marco Pisati, Ing.
Matteo Gavazzoni, Ing. Laura Boniotti
ENG
MetaMAT-Lab
The inter-departmental MetaMAT-Lab was born in 2017 thanks to the
collaboration among the Department of Mechanical Engineering,
the Department of Energy, the Department of Electronics, Information
and Bioengineering, and the Department of Design to share
specific knowledge on metamaterials.
By combining their chemical composition and geometry, metamaterials
allow the extension of the range of the physical properties of
ordinary materials and the creation of materials with electromagnetic,
acoustic, thermal, and mechanical properties that do not exist
in nature. Therefore, they happen to be perfect for such applications
where conventional materials represent an active constraint when
designing a new component.
At the heart of the MetaMAT-Lab lays the cross-cutting convergence
of multidisciplinary skills to study and understand the physical
and mechanical behaviour of metamaterials, search for new possible
applications and conceptual designs of components. Within this
context, the Department of Mechanical Engineering plays an active
role in characterising the mechanical behaviour of metamaterials
through experimental and numerical activities, focusing on fatigue,
fracture and (mono and multi-axial) static resistance. Along with
these activities, researchers also carry out conformity analysis of
geometry through CT (computed tomography) and optical analysis.
The Lab is involved in both academic and industrial research activities.
We recently collaborated with different industrial partners
to create aeronautical and aerospace components with specific
mechanical, thermal and permeability properties. Here some examples:
heat exchangers, deoilers, heat pipes, and isostatic mounting
device for thermal insulation (patent for industrial invention application
n°102020000024331).
Lab equipment:
• Deben micro-samples testing machine (capacity 5kN);
• Instron E10000 testing machine (capacity 10kN) for static and fatigue
tests with environmental chamber (temperature - 100 °C/+ 350 °C);
• Optical microscopes to carry out Digital Image Correlation (DIC)
analysis to monitor the strain of samples during tests;
• DIC Aramis GOM system to dynamic measure of coordinates, displacements,
and 3D superficial strain;
• Thermal conduction detection system on small samples from
0.0005 m2K/W to 0.05 m2K/W tested with the Heat Flow Meter technique;
• Micro-milling to machine RF and PCB aerial prototypes;
• Workstations.
Offered services:
• Sample creation through diverse techniques (additive manufacturing
for metals, polymers, and micro-founded materials);
• Measurement of static mechanical properties through tension and
compression;
• Measurement of fatigue and damage strength;
• Measurement of the microgeometry of the samples via tomography
and reconstruction of the solid model;
• Measurement of the electromagnetic properties of the sample;
• Multiphysics simulations on reconstructed geometry;
• Topologic optimization of the micro-geometry to reach the thermal
and mechanical target properties.
Involved Faculty Members:
Prof. Stefano Beretta, Prof. Stefano Foletti, Dr. Marco Pisati, Dr.
Matteo Gavazzoni, Dr. Laura Boniotti
meccanica magazine
43
Un nuovo approccio
alla progettazione:
il laboratorio “Bio-Inspired Systems”
meccanica magazine
44
ITA
Nei primi anni del 1500 Leonardo da Vinci scriveva il suo “Codice sul
volo degli uccelli”. L’osservazione delle uniche creature all’epoca in
grado di solcare il cielo suggeriva al genio italiano quali caratteristiche
avrebbe dovuto avere una ipotetica macchina in grado, finalmente, di
far volare un uomo. L’Aquila meccanica, in realtà, non prese mai il volo,
ma fu il punto di partenza per lo sviluppo di macchine che, qualche
secolo più avanti, ci avrebbero permesso di spostarci velocemente da
una parte all’altra del globo. Nonostante Leonardo non abbia potuto
sperimentare la soddisfazione di sollevarsi da terra come un uccello,
certamente possiamo dire che la sua opera ingegnosa fu la prima
macchina bio-ispirata della storia.
Da quel giorno, l’osservazione della Natura e la rielaborazione delle
soluzioni da essa adottate per lo sviluppo di idee innovative ha visto
un susseguirsi di interessanti storie di successo. Dal progettista Eiji
Nakatsu che rivoluzionò l’aerodinamica dei treni ad alta velocità prendendo
spunto dal profilo di alcuni uccelli acquatici, fino a George de
Mestral che inventò il velcro prendendo spunto da dei piccoli fiori che
rimanevano tenacemente ancorati ai suoi pantaloni quando andava a
caccia.
Solo pochi decenni fa, nel 1969, Otto H. Schmitt coniò il termine Biomimetics
per formalizzare un approccio alla progettazione che imitasse
(mimesis) la vita (bios). Negli ultimi anni, il tema di ricerca legato
al Bioinspired Design ha suscitato grande interesse sia nel mondo
accademico, che in quello industriale, per l’enorme potenzialità che
esso offre nella risoluzione di problemi difficilmente approcciabili con
le tradizionali tecniche di progettazione.
L’approccio “bioinspired” o “bio-ispirato”, punta infatti a progettare e
sviluppare nuove soluzioni tecnologiche prendendo ispirazione dalla
Natura. L’obiettivo è raggiunto attraverso l’osservazione delle caratteristiche
morfologiche e funzionali dei modelli biologici, lo studio dei
materiali, delle capacità sensoriali, decisionali e comportamentali.
All’osservazione segue la capacità di intuire i principi alla base di tale
funzionamento, di modellarne i tratti essenziali e di declinare tali caratteri
in applicazioni tecniche utili alla soluzione di un problema.
L’interesse ad approfondire questa disciplina ha portato alla nascita
del laboratorio sperimentale “Bioinspired Systems” presso il campus
di Lecco. Per il Prof. Simone Cinquemani: “E’ uno spazio dedicato alla
ricerca con una connotazione fortemente multidisciplinare, con una
chiara origine meccanica, ma con una vocazione ad accogliere e sviluppare
competenze nei settori dell’architettura, del design, della bioingegneria,
della biologia e delle neuroscienze”.
Attualmente le attività di ricerca sviluppate nel laboratorio sono focalizzate
su applicazioni di robotica. Più nel dettaglio, le attività riguardano
lo sviluppo di robot autonomi in grado di muoversi in ambienti
terrestri e acquatici con un interesse a sviluppare soluzioni caratterizzate
da elevata efficienza, manovrabilità e capacità di muoversi in ambienti
non strutturati. Attività fortemente multidisciplinari che hanno
richiesto competenze non solo meccaniche, ma anche elettroniche,
fluidodinamiche e in ambito biologico. Parallelamente, la ricerca è
indirizzata su tematiche di manipolazione e di interazione dei robot
con operatori umani. In questo campo, la cosiddetta “soft-robotics” ha
introdotto nuovi approcci per la progettazione di artefatti biomimetici
in grado di imitare la naturale capacità delle strutture biologiche di
adattarsi all’ambiente circostante grazie alla loro elevata cedevolezza.
Il laboratorio collabora strettamente con il gruppo di ricerca di “Micro-
BioRobotics” dell’IIT coordinato dalla Dott.ssa Barbara Mazzolai con il
quale si stanno sviluppando sinergie in ambiti di ricerca e di didattica.
A settembre partirà infatti la prima edizione del corso di dottorato
“Bioinspired systems”, già preceduto dal corso “Bioinspired robotics”,
di natura più divulgativa, inserito nel percorso “Passion in Action”.
ENG
A new design approach: DMEC presents the “Bio-Inspired Systems”
Lab
In the first years of the XVI century, Leonardo da Vinci wrote the
“Codex on the Flight of Birds”. Observing the only creatures capable
of going to the sky suggested to the Italian genius which characteristics
should have a piece of machinery finally allowing men to fly.
Truth be told, the mechanic eagle never really took off but, for sure,
became the starting point to design some centuries later machines
allowing us to travel fast around the globe. Even though Leonardo
never felt the satisfaction to “fly like a bird”, he for sure designed the
first bio-inspired machine in history.
From that moment on, observing Nature and re-thinking its applied
solutions to think of innovative ideas led to many success stories.
Like the one of the designer Eiji Nakatsu, who radically transformed
the aerodynamic of high-speed trains inspired by some aquatic
birds. Or, the one of George de Mestral, who invented Velcro getting
the input from small burdock seeds clinging to his trousers when
hunting.
Just a few decades ago - precisely in 1969 - Otto H. Schmitt coined
the word “Biomimetics” to standardise the new design approach imitating
(mimesis) life (bios). During the past few years, the research
topics linked to Bioinspired Design caught the interest of the academic
and industrial worlds because of the enormous potential in
offering solutions to hard-solving problems by adopting a traditional
design approach.
The “bioinspired” approach aims at designing new technological
solutions inspired by nature. Reaching the objective is possible by
observing the morphological and functional features of biosystems,
studying materials, sensing, deciding and behavior abilities. Nevertheless,
to reach the next level it is necessary to understand the
basic principles that make these systems operate, customize their
essential features, and transform them into several different technical
problem-solving applications.
The interest to know further the discipline led to creating the experimental
“Bioinspired Systems” Lab, located on our campus in Lecco.
Prof. Simone Cinquemani explained: “it is a space devoted to multidisciplinary
research activities, originating in mechanics leaning
towards including architecture, design, bioengineering, biology, and
neuroscience”.
The lasts lab activities focus on robotic applications. In particular,
the activities aim at developing autonomous robots able to move
on the grounds and underwater, putting an extra effort into coming
up with highly efficient and easy to maneuvers solutions able
to move in hostile environments. These are highly multidisciplinary
activities that require not only skills in mechanics but also electrical
engineering, fluid dynamics, and biology. At the same time, the
research activities also focus on topics such as robot manipulation
and human interaction. Therefore, what is known as “soft-robotics”
introduces in this field new viable approaches to design biomedical
devices that imitate the natural ability of bio-systems to adapt to the
surrounding environment, thanks to their compliance.
Our lab researchers closely cooperate with the “MicroBioRobotics”
IIT research group, coordinated by Dr. Barbara Mazzolai and with
whom we are creating new teaching and research synergies. Moreover,
the first edition of the “Bioinspired systems” PhD course will
start next September, on the same path as the previous dissemination
“Bioinspired robotics” course part of the Passion In Action
initiative.
meccanica magazine
45
Progetto “Tech Bus”:
l’innovazione ci guida verso una
mobilità urbana assistita e connessa
meccanica magazine
46
ITA
Il Comune di Milano, Atm e il Politecnico di Milano, insieme a Vodafone
e IBM, hanno presentato il progetto TECH BUS, il primo filobus
sviluppato attraverso un innovativo progetto di ricerca sulla mobilità
che implementa tecnologie cloud ibride per la guida assistita e connesso
alla rete 5G.
Si tratta del primo step del percorso verso la guida autonoma con
l’obiettivo di elevare ancora di più i livelli di regolarità e sicurezza del
trasporto pubblico locale.
TECH BUS è uno dei primi risultati del progetto sviluppato nell’ambito
del JRL, Joint Research Lab per la mobilità urbana: un’iniziativa
di ricerca per una Milano sempre più città intelligente e green, sperimentando
una mobilità connessa, elettrica e semi-autonoma e lavorando
in partnership con i leader in ricerca, tecnologia e trasporti
con l’obiettivo di migliorare l’integrazione e la sicurezza degli spostamenti
dei cittadini e dei visitatori della città.
Il primo TECH BUS guidato dall’innovazione sarà in circolazione sulla
linea filoviaria 90/91: i sensori intelligenti a bordo, sfruttando la
comunicazione V2I (Vehicle-to-Infrastructure) permetteranno al
mezzo di dialogare costantemente lungo il percorso con i semafori
e l’infrastruttura stradale, contribuendo a creare un ecosistema di
mobilità cooperativa in cui le tecnologie permettono di migliorare la
sicurezza stradale e un domani porteranno alla nuova frontiera della
guida autonoma.
Un team di ricercatori, ingegneri e tecnici del JRL ha installato a bordo
del filobus Atm strumentazioni sofisticate che consentono grazie
alla rete 5G e alle Interfacce applicative, basate sulla piattaforma di
integrazione aperta IBM Watson IoT, il dialogo e uno scambio continuo
di informazioni tra veicolo e infrastrutture stradali.
In questa prima fase del progetto si stanno raccogliendo dati per la
messa a punto di sistemi cooperativi di guida assistita basati su sistemi
V2I che verranno testati su una prima serie di use cases:
• Precedenza semaforica (indicazione di “onda verde” al conducente)
• Gestione degli incroci e le informazioni sul traffico
• Controllo delle fermate (conteggio passeggeri)
Il responsabile di progetto lato DMEC Federico Cheli racconta:
“DMEC ha curato la sensorizzazione del veicolo e sta collaborando
con gli altri partner del progetto alla messa a punto del sistema di
comunicazione V2I e dei sistemi di guida assista cooperativi che ne
traggono vantaggio. Ad esempio, in relazione al primo use-case, si
sta mettendo a punto un algoritmo che suggerisce al guidatore del
filobus quale velocità tenere per sincronizzarsi all’onda verde semaforica,
sulla base delle informazioni provenienti dai dispositivi posti
sull’infrastruttura, così da migliorare il comfort dei passeggeri e l’efficienza
del servizio.”
ENG
The “Tech Bus” project: innovation for an assisted and connected
urban mobility
Comune di Milano, ATM and Politecnico di Milano, along with Vodafone
and IBM, recently presented the TECH BUS project about the
very first trolleybus developed during an innovative research project
on mobility implementing cloud hybrid technologies supporting assisted
driving and connected to the 5G network.
This represents the first step towards fully autonomous driving in
the framework of the Joint Research Lab (JRL) for Urban Mobility. A
research project to make Milan smarter and greener, experimenting
on a connected, eclectic and semi-autonomous mobility working
with partners leader in research, technology and transportation to
improve the integration and security of people and tourists moving
around the city.
The first innovation-driven trolleybus will travel on route 90/91. The
smart sensors onboard will exploit the V2I (Vehicle to Infrastructure)
communication, which will allow a constant dialogue between the
bus and the traffic lights and the road infrastructures. This interaction
will contribute to creating a cooperative mobility ecosystem
where technologies improve road safety and a step closer towards
the new frontier of fully autonomous driving of tomorrow.
The team - made of researchers, engineers, and technicians of the
JRL -has recently installed onboard an ATM trolleybus the sophisticated
equipment. Thanks to the 5G network and applicative interactive
user interfaces based on the open integration platform IBM
Watson IoT, this equipment allows the dialogue and continuous information
exchange between the vehicle and the road infrastructure.
During this first phase, the team has collected data to develop assisted
driving cooperative systems based on V2I communication to be
tested via a series of use cases:
• Communication with traffic lights (notify a green wave to the bus
driver);
• Crossroads monitoring;
• Bus stop control (number of passengers).
Prof. Federico Cheli, head of the DMEC part of the project, explained:
“DMEC was in charge of the vehicle sensorization. At the moment,
we are working along with our partners of the project to develop V2I
communication systems, which will later support cooperative intelligent
transport systems for driver assistance.
For example: about the first use case, we are working on an algorithm
that, by processing the information collected from the devices
installed on the infrastructures, suggests to the bus driver the running
speed to “catch” the traffic lights green wave to offer a more
efficient and comfortable service to the passengers”.
meccanica magazine
47
Stampa di rame
puro abilitata
grazie al processo BMD
meccanica magazine
48
ITA
Produrre componenti in rame puro dalla geometria complessa
è adesso possibile grazie al processo BMD utilizzato dal sistema
Studio System+ installato al Dipartimento di Meccanica. Con il
rame puro si amplia la gamma di materiali disponibili in dipartimento,
che comprende gli acciai inossidabili 17-4 PH e AISI 316L.
I componenti vengono stampati attraverso un processo di estrusione
del feedstock polimerico che viene poi lavato e sinterizzato
in forno sotto l’azione lavante e protettiva di un mix di gas (Argon
più un 3% di Idrogeno). Questo permette di raggiungere una bassa
porosità (<3-4%) e delle eccellenti proprietà conduttive pari
a circa l’85% della conduttività (valore IACS) del rame lavorato.
Grazie ad un ugello del diametro di 0.25mm, la risoluzione della
stampa garantisce la possibilità di produrre geometrie finissime
e componenti sinterizzati di elevata precisione che possono arrivare
a dimensioni che superano i 150 mm e un peso superiore
al chilogrammo. Tra le più interessanti applicazioni di stampa 3D
di rame puro per l’industria pesante e prodotti di largo consumo
si trovano i radiatori, gli scambiatori di calore, i motori elettrici, i
componenti per le reti elettriche e i componenti per l’utensileria. Il
gruppo di ricerca guidato dalla Prof.ssa Colosimo sta al momento
lavorando sul progetto di nuovi componenti che integrino strutture
alleggerite ad alte prestazioni (basate su reticoli lattice di tipo
“Strut” e “TPMS” – Triply Periodic Minimal Surface), con un’attenzione
particolare alle canalizzazioni interne per il raffreddamento
conformale, difficilmente realizzabili con tecniche manifatturiere
tradizionali. Inoltre, si stanno conducendo ulteriori attività di ricerca
che studiano il possibile impiego di questi componenti in
rame stampato 3D in applicazioni spaziali.
ENG
Pure copper 3d printing at dmec through bmd process
Copper printing enabled with the Studio System+ installed at DMEC
at Polimi. Pure Copper expands the currently available material portfolio
including 17-4 Ph Steel and 316L steel. The research group led
by Prof. Colosimo is now testing new high-performance designs
components made of copper, that support the incorporation of lightweight
structures or internal conformal cooling channels not
achievable with traditional manufacturing, to improve heat transfer.
Research is also conducted to study the applicability of these 3d
printed components for spatial application.
Manufacturing parts featuring complex geometries and made by
pure copper is now possible with the BMD process implemented in
the Studio System+ system installed at DMEC Pure Copper expands
the currently available material portfolio including 17-4 Ph Steel and
316L steel. The parts are printed by using feedstock extrusion process
and then are debound and sintered in furnace using a gas mix of
Argon+3%Hydrogen, reaching low porosity and excellent conductive
properties. Thanks to the 0.25 mm nozzle diameter, the achievable
printing resolution guarantees the printability of fine features and
highly accurate components, that can be bigger than 150 mm and
1kg in sintered state. Heat sinks, Heat Exchangers, Electrical Motor
and Power-Grid components or Tooling components are among the
most interesting 3D printing applications of pure copper for heavy
industries and consumer products. The research group led by prof.
Colosimo is now testing new high-performance designs components
made of copper, that support the incorporation of lightweight
structures or internal conformal cooling channels not achievable
with traditional manufacturing, to improve heat transfer. Research
is also conducted to study the applicability of these 3D printed components
for spatial application.
meccanica magazine
49
The Blue Growth Farm
Project
meccanica magazine
50
ITA
Dal giugno 2018 un team di ricercatori del Dipartimento di Meccanica
del Politecnico di Milano è impegnato all’interno del progetto europeo
“The Blue Growth Farm Project”, finanziato nel programma Horizon
2020. Il progetto prevede la realizzazione di un modello scalato
1 a 15 di una piattaforma offshore multifunzione per l’acquacoltura in
mare aperto e la produzione di energia dal vento e dai moti ondosi.
Il Politecnico è in particolare incaricato di progettare e costruire una
turbina eolica in scala che deve essere installata sulla piattaforma
galleggiante, deve riprodurre le stesse funzionalità di un generatore
a scala naturale e deve funzionare in condizioni meteo-marine non
controllabili. Negli ultimi mesi il progetto è giunto alla sua fase finale:
l’integrazione di tutte le tecnologie sulla piattaforma, il varo del modello
e l’inizio della campagna sperimentale.
La mattina del 26 febbraio 2021 la turbina eolica di progettazione Polimi
è arrivata al porto di Reggio Calabria per essere integrata sulla
piattaforma, giunta via nave da Ancona nei giorni immediatamente
precedenti. La piattaforma è costituita da un cassone di acciaio di
forma rettangolare lungo 14 metri e largo 10, con un’altezza di 2 metri
e con un pescaggio di 1,8. Il centro della piattaforma è occupato da
una vasca comunicante con l’esterno, progettata per ospitare le reti
dell’acquacoltura. Uno dei lati corti dal cassone ospita una batteria di
wave energy converters, che nel modello a scala naturale produrranno
energia dal moto ondoso. La turbina eolica, alta 8 metri e con un
rotore di 7 metri di diametro, è stata assemblata sulla banchina del
porto e nella stessa giornata la torre di acciaio è stata fissata sullo
scafo del galleggiante; immediatamente dopo è stato integrato anche
l’armadio contenente i sistemi di alimentazione elettrica, controllo e
monitoraggio necessari a mettere in funzione il generatore eolico.
A questo punto l’intero prototipo è stato calato nelle acque del porto
di Reggio per provarne il corretto galleggiamento. In seguito all’esito
positivo della verifica una gru a pontone ha finalmente trasportato la
piattaforma nel suo luogo definitivo di ormeggio, a circa sessanta metri
dalle coste di Reggio Calabria, nelle acque di pertinenza del NOEL
(Natural Ocean Engineering Laboratory), il laboratorio naturale di ingegneria
marittima dell’università Mediterranea di Reggio Calabria.
Durante le giornate del 27 e del 28 febbraio il prototipo è stato varato e
ancorato al fondo del mare con quattro ancore.
Nel mese di aprile 2021 è iniziata la campagna sperimentale, che fornisce
dati preziosi per la comprensione e il miglioramento delle tecnologie
offshore per la produzione di risorse sostenibili dagli oceani.
É di particolare interesse lo studio della dinamica del galleggiante, di
come questa sia influenzata dalla presenza dall’estrazione dell’energia
dal moto ondoso e dal funzionamento del generatore eolico. Inoltre è
allo studio la capacità del galleggiante di attutire il moto ondoso nella
vasca interna, così da permettere l’allevamento di pesci.
La turbina eolica rappresenta invece un modello unico per il miglioramento
delle tecnologie legate alla produzione di energia eolica su
galleggiante. Come prima cosa è interessante stabilire l’efficacia di
logiche di controllo che abbiano come obiettivo ad esempio la massimizzazione
della potenza estratta o la riduzione dei carichi dinamici
agenti sul prototipo. Inoltre, la sensoristica installata sulla turbina
permette di svolgere un monitoraggio continuo sui carichi agenti sulle
pale e sulla torre, nonché dei livelli di vibrazioni a cui è sottoposta una
macchina di questo genere.
meccanica magazine
51
meccanica magazine
52
ENG
The Blue Growth Farm Project
Since 2018 a group of researchers of the Department of Mechanical
Engineering has been involved in the European project called “THE
BLUE GROWTH FARM PROJECT”, founded by the Horizon 2020 Programme.
The project revolves around creating a model of a multipurpose
offshore platform scaled 1 to 15 for open-sea aquaculture
and wind/wave energy production. The role of Politecnico was to
design and build a scaled wind turbine to be installed on a floating
platform to perform as a full scale generator and work under unpredictable
environmental conditions. Over the past few months, the
project reached almost its final stage: the platform was integrated
with all technologies, the model launched, and the experimental
campaign took off.
In the morning of February 26th, the turbine designed at POLIMI reached
the harbour of Reggio Calabria to be installed on the platform,
shipped from Ancona a few days before. The platform is a fourteen-meter
long and ten-meter wide rectangular steel caisson of the
height of two meters and with a draft of 1.8. Inside there is a big basin
communicating with the open sea designed to contain the nets
for aquaculture. On one of the short sides of the caisson there is a
row of wave energy converters meant to produce wave power in the
full scale model. The eight-meter tall wind turbine, with a rotor diameter
of seven meters , was assembled on the pier and, on the same
day, the steel tower was fixed on the floater hull; afterwards, the
integration of the electrical cabinet with the power supply, control
and monitoring systems necessary to operate the wind power generator.
Once assembled, the floating stability of the prototype got
tested by putting it into the waters of the harbour of Reggio. After
the testing, a crane barge transported the installation to the correct
mooring site about sixty meters from the shore of Reggio Calabria
in the waters supervised by the Natural Ocean Engineering Laboratory
(NOEL) of the Mediterranea University of Reggio Calabria. On
the 27th and 28th of February, the prototype was launched and was
anchored to the seabed with four anchors.
Last April started the experimental campaign, which provides crucial
data to understand and improve offshore technologies to get
sustainable resources from the oceans. Studying the dynamic
behaviour of the floater is of particular interest, especially how wave
energy harvesting and the operating wind turbine affect it. Moreover,
it is also under evaluation the ability of the floater to reduce the
wave motions inside the basin to allow fish farming.
Besides, the wind turbine is a unique model that might lead to improving
the technologies linked to wind energy production on floaters.
Firstly, it is interesting to evaluate the efficiency of the control logics
with the objective to maximize the power of the energy harvested
and reduce the dynamic loads affecting the prototype. Moreover,
the sensors installed on the turbine allow continuous monitoring of
both the loads acting on the rotor blades and tower and the level of
the vibrations to which such machinery is exposed.
meccanica magazine
53
Conclusione del progetto
triennale Erasmus+ ELPID
meccanica magazine
54
ITA
Il progetto Erasmus+ ELPID (E-Learning Platform for Innovative product
Development) è finalmente giunto a conclusione dopo 3 anni
di iniziative educative di successo che hanno coinvolto più di cento
studenti provenienti da 4 nazioni. Il Politecnico di Milano (Italia), assieme
all’Università di Lubiana (Slovenia) e all’Università Tecnica di
Vienna (Austria), con il coordinamento dell’Università di Zagabria ed
il supporto tecnico del suo Centro computazionale SRCE (Croazia), ha
cominciato a lavorare sulle questioni riguardanti il blended learning
(apprendimento misto) molto prima dello scoppio della pandemia da
COVID-19 avvenuto ad inizio 2020.
Infatti era ancora la seconda metà del 2018 quando l’agenzia nazionale
croata per il programma Erasmus+ decise di finanziare la proposta
di progetto presentata dal consorzio, con lo scopo di sviluppare una
piattaforma di e-learning capace di coniugare modalità di insegnamento
tradizionali (lezioni frontali, ex-cathedra) con l’approccio pedagogico
del Project Based Learning (PBL) in un contesto internazionale
finalizzato allo sviluppo di prodotti innovativi. Il kick-off meeting del
progetto si tenne a Zagabria nel novembre dello stesso anno e nessuno
dei partecipanti poteva lontanamente prevedere che in quella
riunione stavano anticipando e prefigurando soluzioni a molte delle
problematiche che il mondo dell’educazione avrebbe avuto la necessità
di affrontare a circa un anno e mezzo di distanza.
La piattaforma di e-learning ha subito progressivi cambiamenti durante
i tre anni del progetto, assieme all’approccio educativo che ne
prevede l’utilizzo. Mentre, da una parte, lo svolgimento di lezioni tradizionali
ha richiesto minimi aggiustamenti rispetti ai contenuti erogati
ed alle modalità di interazione docente/studente, con un semplice
spostamento delle lezioni dalla modalità in presenza a quella in remoto;
le attività collaborative che i team di studenti hanno dovuto svolgere
hanno richiesto al consorzio l’integrazione di diversi applicativi e
strumenti metodologici disponibili on line per raggiungere i risultati di
apprendimento attesi.
Durante il primo anno del progetto, durante il secondo semestre
dell’anno accademico 2018/2019, circa 40 studenti di ingegneria meccanica
(triennali e magistrali) provenienti dalle quattro università hanno
avuto la possibilità di collaborare a distanza su un vero progetto
industriale proposto da Bosch Siemens Hausgeräte Slovenia (BSH
Nazarje). Gli studenti hanno lavorato per sviluppare un cestino per la
raccolta differenziata che fosse innovativo ed intelligente. La prima
versione prototipale della piattaforma di e-learning si appoggiava
a Moodle, usato in combinazione con strumenti per la modellazione
CAD e la prototipazione virtuale delle soluzioni. Inoltre, Adobe Connect
era lo strumento privilegiato per l’erogazione delle lezioni e per
la comunicazione a distanza tra i membri del team di progetto nelle
varie attività da svolgere, mentre un sistema per lo storage dei file su
cloud permetteva agli studenti di scambiare informazioni e contenuti
con facilità. Dopo un intero semestre di collaborazione a distanza, gli
studenti hanno finalmente avuto la possibilità di incontrarsi personalmente
a Lubiana per uno workshop in presenza e per una visita all’impianto
produttivo di BSH a Nazarje, dove hanno presentato la loro soluzione
di fronte al top management dell’azienda.
Nell’anno accademico 2019/2020, poco prima dello scoppio della pandemia
da COVID-19, un nuovo gruppo di 40 studenti, 10 da ciascuna
delle quattro università partner, ha partecipato alla seconda edizione
del corso ELPID basato su Project Based Learning. Si sono incontrati
per la prima volta con un evento in presenza, organizzato dal Prof. Gaetano
Cascini e dall’Ing. Niccolò Becattini del Dipartimento di Meccanica,
presso il campus del Polo Territoriale di Lecco del Politecnico di
Milano, una settimana dopo la metà di febbraio. In quella sede gli studenti
internazionali hanno avuto modo di familiarizzare gli uni con gli
altri e frequentare un breve ciclo di lezioni dal vivo, tenute dai professori
provenienti dalle quattro università partner. Gli studenti, suddivisi
in 5 team da 8 persone ciascuno, hanno cominciato a collaborare
sotto la supervisione di coach delle 4 università per fare pratica con
i metodi e gli strumenti da utilizzare per tutto il resto del semestre.
Anche in questo caso, gli studenti ELPID hanno avuto la possibilità
di cimentarsi su dei veri progetti industriali. Electrolux Innovation
Factory e la sua divisione Open Innovation (Porcia, PN, Italia), in collaborazione
con Elettrotecnica Rold (Nerviano, MI, Italia), ha proposto
agli studenti di cimentarsi in una gara di progettazione su due temi
progettuali. Nello specifico, i 5 team di studenti si sono sfidati nella
progettazione di un sistema innovativo per lo svolgimento della fase
di asciugatura in una lavastoviglie e di un sistema per lavatrice capace
di sanificare l’acqua dell’ultimo risciacquo e renderla disponibile per
un ciclo successivo. L’evento in presenza della durata di una settimana,
posizionato all’inizio del semestre ELPID, ha agevolato le attività
tra gli studenti che, beneficiando di una piattaforma di e-learning
rinnovata ed arricchita, hanno dimostrato una maggiore coesione e
più frequenti opportunità di collaborazione, potenzialmente stimolati
dall’isolamento e dalle condizioni dettate dalla pandemia. Per il 2020,
infatti, la piattaforma è stata infatti arricchita da strumenti di comunicazione
aggiornati che gli studenti hanno comunque avuto modo di
utilizzare nelle rispettive università di provenienza per le loro lezioni
tradizionali (i.e. Microsoft Teams), così come ulteriori strumenti online
idonei a completare quelli già messi a disposizione durante il primo
anno di attività. Nello specifico gli studenti hanno potuto organizzare
il proprio lavoro attraverso l’uso di spazi condivisi di lavoro (e.g.
lavagne e bacheche) su Miro, assegnare task di progetto con Trello e
sfruttare strumenti di messaggistica istantanea come chat di gruppo
su WhatsApp o simili. Le restrizioni ancora attive al termine del semestre
ELPID non hanno permesso lo svolgimento dell’evento finale pianificato
preso la sede dell’Electrolux Innovation Factory a Porcia. Per
questo l’evento si è comunque svolto in remoto, con la partecipazione
dei quadri e della dirigenza della compagnia, dove il team che ha prodotto
l’idea più innovativa e convincente è stato proclamato vincitore
della sfida di progettazione da parte dell’azienda.
Per l’edizione 2020/21 del corso ELPID, il consorzio ha dovuto continuare
ad erogare le lezioni e, parimenti, permettere lo svolgimento
delle attività di collaborazione tra studenti in remoto, sempre a causa
delle restrizioni dovute alla pandemia da COVID. Questo significa
che per questa edizione gli studenti dalle 4 nazioni non hanno avuto
la possibilità di svolgere in presenza l’evento di avvio di una settimana,
il cui svolgimento era pianificato a Vienna, replicando l’esperienza
di successo registrata l’anno precedente presso il campus di Lecco.
Con la stessa struttura di strumenti integrati che ha costituito la piattaforma
nell’anno precedente, gli studenti hanno collaborato sin dai
primi giorni in modalità remota, svolgendo le attività di socializzazione
a distanza. Per lo workshop iniziale, infatti, gli studenti hanno potuto
cominciare a costruire lo spirito di gruppo con i membri del proprio
team collaborando e sfidando gli altri a sfuggire da una escape room
online nel più breve tempo possibile, girando assieme per le strade di
Vienna in un tour virtuale guidato dai coach di TU Wien e condividendo
l’ora dell’aperitivo, brindando assieme su Gather.Town. Come per l’anno
precedente, anche nel 2020/21 gli studenti si sono cimentati in una
gara progettuale proposta da Siemens Mobility Austria. Hanno dovuto
riprogettare gli interni di un treno metropolitano, focalizzandosi su
una specifica area geografica che avevano facoltà di scegliere. Così
come successo nel 2019 e nel 2020, anche in questa edizione l’azienda
che ha proposto la gara di progettazione ha fornito un robusto supporto
agli studenti attraverso tutto il semestre, con sessioni di revisione
progettuale frequenti che hanno permesso ai team di studenti
di familiarizzare con un contesto professionale. Infine, lo scorso 9
giugno, tutti gli studenti si sono riuniti per lo workshop finale con Siemens
Mobility Austria. In questa occasione hanno presentato i propri
concept di prodotto e le relative simulazioni, per poi ricevere la valutazione
finale della compagnia che ha sancito anche il team vincitore
della gara di progettazione.
Dopo 3 anni di esperienza, il consorzio può dire di aver completamente
raggiunto con successo gli obiettivi prefissati per il temine del progetto:
la piattaforma di e-learning, presentata come un set integrato
di strumenti e materiali educativi sviluppati ad hoc per attività di
Project Based Learning in contesti di sviluppo di prodotti innovativi, è
adesso disponibile sul sito web di ELPID per le finalità educative della
comunità scientifica interessata. Tuttavia, il risultato raggiunto più
importante è l’elevatissima soddisfazione di tutti gli studenti che hanno
partecipato all’attività. Tutti hanno riferito di aver vissuto un’incredibile
opportunità che gli ha permesso di conoscere persone diverse,
diverse culture, fare pratica con l’inglese e “sporcarsi le mani” in un
vero ambiente industriale con aziende di grande rilievo nei rispettivi
settori produttivi e, sopra tutto, trovare nuovi amici attraverso l’Europa.
meccanica magazine
55
meccanica magazine
56
ENG
The ELPID Erasmus+ project
The Erasmus+ project ELPID (E-Learning Platform for Innovative
product Development) has finally come to its conclusion after three
successful years of education initiatives that involved more than
one hundred students from 4 countries. Politecnico di Milano (Italy),
together with the University of Ljubljana (Slovenia) and Technische
Universitaet Wien (Austria), under the coordination of the University
of Zagreb (Croatia) and the technical support by SRCE - its Computing
Center, started working on the issues of blended learning long
before the outbreak of the COVID-19 pandemic at the beginning of
2020.
Indeed, it was about the end of 2018 when the Croatian national
agency for the Erasmus+ program awarded the consortium with
the grant to set up an e-learning platform to combine the traditional
ex-cathedra teaching and Problem-Based Learning (PBL) for innovative
product development in an international context. The kickoff
meeting took place in Zagreb in November 2018 and none of the participants
could by far foresee that they were somehow going to anticipate
most of the issues that the world of education needed to face
because of the social restrictions enforced due to the pandemic a
year and a half later.
The e-learning platform progressively changed over the three years
of the project, along with the related educational approach. If delivering
ex-cathedra lectures required just few adjustments on contents
and modalities of teacher/student interaction, as they simply
shifted from live to remote lectures, it wasn’t the same for collaborative
activities of teams of students. Since they were held in a remote
setting, the consortium had to integrate different online tools and
methodological instruments in order to achieve the desired learning
outcomes.During the first year of the project, second semester of
AY 2018/2019, approximately 40 mechanical engineering students
(both graduate and undergraduate) from the four universities had
the chance to collaborate from home on a real industrial project
proposed by Bosch Siemens Hausgeräte Slovenia (BSH Nazarje).
They worked on the development of an innovative and smart waste
bin that facilitate recycling. The early version of the e-learning platform
relied on Moodle, used in combination of CAD modeling tools
for the virtual prototyping of solutions, on Adobe Connect to deliver
lectures and for distant communication in project activities and on
a cloud-based repository for file sharing. After a whole semester of
remote collaboration, the students finally had the chance to meet
all together in Ljubljana for a live workshop and a factory visit at the
plant of BSH in Nazarje, where they presented their solution in front
of the top management of the plant.
In the academic year 2019/2020, right before the COVID-19 outbreak,
a new group of 40 students, 10 from each partner university, enrolled
in the second edition of the PBL-based ELPID class. They met
for a live event organized by Prof. Gaetano Cascini and Ass. Prof.
Niccolò Becattini, held at the Lecco Campus for one week after
the mid of February. There, the international students familiarized
with each other and attended live lectures on design methods
and tools held by university professors from the different involved
institutions. The students, in 5 teams of 8 members, started collaborating
under the supervision of academic coaches to practice
the design methods and tools they had to work with for the whole
semester. For the second year of ELPID, as well, the students had
the chance to address real industrial projects. Electrolux Innovation
Factory and its Open Innovation division (Porcia, PN, Italy), in collaboration
with Elettrotecnica Rold (Nerviano, Milano, Italy), provided
the students with two project themes presented as a design challenge.
Specifically, the 5 teams competed against each other for the
design of an innovative system for the drying phase in a domestic
dishwasher and a system to clean up the rinsing water of a washing
machine and make it suitable for reuse in other washing cycles. The
one-week live event at the beginning of the semester facilitated the
activities between students that, with a partially renewed and enriched
e-learning platform demonstrated a stronger cohesion and
more frequent opportunities of collaborations, potentially triggered
by the conditions and the isolation set by the COVID pandemic. This
year the platform was, in fact, enriched by updated communication
tools that students also had the chance to use during their standard
classes (i.e. Microsoft Teams) as well as additional online tools that
complemented the ones already made available during the first year
of activities. In detail, students organized their work on shared whiteboards
with Miro, planned and assigned tasks with Trello and use
instant messaging systems (e.g. WhatsApp group chats or similar).
The restrictions still in place at the end of the semester did not allow
the student to participate to the final event planned at the Electrolux
Innovation Factory in Porcia, but the event took place online in
front of the top management of the company, where the best team
received a special mention as winner of the design challenge.
For the edition 2020/21 of the ELPID course, the consortium still
had to deliver lectures and allow students to collaborate in the PBL
setting under the constrained setting due to the COVID pandemic.
This means that the students from the four countries did not have
the chance to kick off the class with a one-week long live meeting
in Wien, to replicate the extremely positive experience introduced
in 2020 in Lecco. With the same structure of integrated tools
constituting the e-learning platform used in the previous year, the
students started collaborating since the very first days remotely,
with additional opportunities for socialization. The students started
building the team spirit playing together and challenging the others
with an online escape room, running a virtual visit of the city of Wien
and sharing the time of the happy hour with a virtual toast from their
home on Gather.Town. As for the previous year, the teams participated
a design challenge proposed by Siemens Mobility Austria. They
had to redesign the interior elements of an urban metro train, focusing
on a specific geographical area they had the freedom to choose.
As it happened in 2019 and 2020, also in the last edition the company
involved in the challenge provided a strong support to students
for the whole duration of the semester, with frequent design review
meetings that enabled the international teams of students to familiarize
with a professional context. Eventually, last June 9th, all the
students gathered for the virtual final workshop with the company,
to present their concepts and the related simulations and receive
the final company evaluation, which decided the team winning the
design challenge.
After three years of experience, the consortium fully addressed the
initial targets they planned to achieve at the end of the project: the
platform, presented as in integrated set of tools and educational
materials tailored for Project Based Learning in innovative product
development contexts, becomes available to the scientific and educational
community on the ELPID website. However, the most important
result achieved is the extremely high satisfaction of all the
students that participated in the activities. All of them mention this
as an extremely valuable opportunity to know different people, different
cultures, practice English and get their hands dirty in a real
industrial environment with top companies in their respective industrial
sectors and, above all, find new friends across Europe!
meccanica magazine
57
MeccE guarda al futuro
meccanica magazine
58
ITA
“MeccE” è un team di studenti del Politecnico di Milano che partecipa
alla competizione Shell Eco-Marathon. L’obiettivo è quello di
realizzare un veicolo ad altissima efficienza energetica, in grado di
percorrere il maggior numero di chilometri consumando il minor
quantitativo di energia.
Il veicolo, progettato e realizzato interamente dagli studenti del
team, compete nella categoria “urban concept” alimentazione elettrica
a batteria ed è chiamato “Leto”. Leto è stato realizzato nel 2019
e, alla sua prima apparizione alla Shell Eco Marathon Europe, ha conquistato
il quarto posto con una prestazione di 184 km/kWh, a soli 2
km/kWh dal podio.
La pandemia di Covid-19 ha fermato la competizione in pista per
i due anni successivi. Nonostante ciò, il team ha proseguito, tra le
numerose difficoltà, il lavoro di sviluppo sul proprio veicolo. In questo
periodo vi è stata un’intensa attività di test sul veicolo al fine di
migliorare e ottimizzare la strategia di gara. In parallelo, numerosi
componenti sono stati riprogettati impiegando metodi di ottimizzazione
strutturale, al fine di minimizzarne la massa e massimizzarne
la rigidezza. La principale area di intervento ha riguardato il gruppo
mozzo-ruota del veicolo: la progettazione ottima dei mozzi e dei cerchi
ha portato una diminuzione della massa del 30% rispetto ai componenti
esistenti. Ulteriori interventi di alleggerimento sono stati effettuati
sulla carenatura e sulle portiere, portando ad una riduzione
di oltre il 10% della massa complessiva del veicolo.
Nella speranza di tornare alle competizioni in pista nella stagione
2022, il team ha eseguito intense sessioni di test per messa a punto
ed ulteriore miglioramento della vettura, con l’obiettivo di conquistare
il podio alla prossima competizione della Shell Eco Marathon
Europe e di guadagnarsi la qualificazione alla “Driver World Championship”,
competizione riservata ai primi tre classificati delle competizioni
continentali (Shell Eco Marathon America, Shell Eco Marathon
Asia e Shell Eco Marathon Europe).
I referenti accademici del Team sono il Prof Gianpiero Mastinu, Il
Prof. Massimiliano Gobbi e il Dr. (RTDA) Federico Ballo.
ENG
MeccE: whatever the future holds
“MeccE” is one of the student teams of Politecnico di Milano competing
in the Shell Eco-Marathon competition. The objective is to create
a high-efficiency vehicle able to run a longer distance with lower
energy consumption. Designed and produced entirely by the student
members of the team, the vehicle, named LETO, competes for the
category “urban concept battery-electric” vehicles. Leto was created
in 2019 and ranked fourth during his first participation at the Shell
Eco Marathon Europe with a performance of 184 km/kWh, differing
from the top-three performance only by 2 km/kWh.
The spread of the Covid-19 pandemic forced the teams to stop competing
on track for the two following years. Nevertheless, despite
all difficulties, the team kept working on the development of their
vehicle. During this time, the team intensively carried out tests on
the vehicle to improve and optimise the racing strategy. Meanwhile,
many components were re-designed, implementing methods for
structural optimisation to reduce their mass and maximise their stiffness.
The greatest intervention area was on the hub-wheel subsystem:
the optimal design of the hub and wheel rim brought to a 30%
mass reduction compared to existing components. Extra actions to
reduce the weight were taken on the fairing and car doors, leading to
a mass reduction of the entire vehicle higher than 10%. Hoping to get
back on track for the 2022 season, the team has carried out intensive
test sessions to assess and provide additional improvements on the
racing car. The aim is to win the next European Shell Eco-Maraton
competition and qualify for the Driver World Championship competition,
where only the best three cars of each of the 3 continental competitions
(Shell Eco-Marathon America, Shell Eco-Marathon Asia e
Shell Eco-Marathon Europe) can race.
The scientific coordinators of the team are Prof Gianpiero Mastinu,
Prof. Massimiliano Gobbi and the researcher Federico Ballo.
meccanica magazine
59
3D Bioprinting:
la nuova frontiera dell’Additive
Manufacturing per la ricerca
biomedica e farmaceutica
meccanica magazine
60
ITA
Il bioprinting è un campo di ricerca multidisciplinare che combina tecnologie
all’avanguardia derivate dall’ Additive Manufacturing, dalla biologia
e dalle scienze dei materiali per creare tessuti viventi. L’interesse
verso la possibilità di riprodurre costrutti biologici con geometrie e
funzioni che imitano quelle dei tessuti viventi è stimolato dal bisogno
sempre crescente di una medicina personalizzata, uno dei principali
obiettivi medici della società del futuro.
Così, nel contesto attuale della ricerca biomedica, il bioprinting sta
guadagnando una crescente attenzione da parte di aziende, università
e istituti di ricerca. La letteratura scientifica in questo campo sta
aumentando esponenzialmente, e anche il Politecnico di Milano sta
portando il suo contributo alla crescita di questo settore. A questo
scopo è stata istituita una nuova collaborazione tra il Dipartimento di
Ingegneria Meccanica e il Dipartimento di Ingegneria Chimica, grazie
al laboratorio “3D Cell lab” guidato dai Prof. Bianca Maria Colosimo e
Prof. Davide Moscatelli.
Le principali applicazioni del 3D bioprinting si possono trovare nella
ricerca di base della biologia cellulare, nella produzione di modelli di
tessuto per la sperimentazione di farmaci e nel campo della medicina
rigenerativa per la futura sostituzione di tessuti e organi per combattere
la carenza di organi da donatore.
L’interesse per il 3D bioprinting sta guadagnando slancio negli ultimi
anni non solo nel mondo accademico ma anche nel mercato. Sempre
più aziende si stanno dedicando al 3D bioprinting, quadro completato
da un fiorente panorama di start-up e spin-off, sia aziendali che universitarie.
La letteratura brevettuale sta esplodendo e si stanno sempre
più diffondendo anche nuove tecnologie e i biomateriali innovativi
adatti al bioprinting.
Il bioprinting potrebbe diventare un nuovo paradigma per la biofabbricazione
dei tessuti e il Politecnico di Milano ha adottato tutte le
principali tecnologie attualmente disponibili: bioprinter basate sulla
deposizione ad ugelli per il bioprinting ad estrusione o inkjet, e bioprinter
che sfruttano i processi di fotopolimerizzazione. Per quanto
riguarda quest’ultima classe di tecnologie, il Politecnico di Milano, in
collaborazione con la Regione Lombardia, sta per installare una delle
prime bioprinter con risoluzione micrometrica e alta velocità per creare
una nuova generazione di tessuti vascolarizzati, in grado cioè di
fornire alle cellule il nutrimento necessario per sopravvivere in tutti i
punti del costrutto biologico.
Nell’ambito del progetto, grazie al trasferimento delle conoscenze
acquisite nel campo dell’additive manufacturing, il Dipartimento di
Ingegneria Meccanica sarà incaricato di migliorare le tecniche di sensorizzazione,
monitoraggio, controllo e ottimizzazione di processo.
Le attività di ricerca saranno coadiuvate dal Dipartimento di Ingegneria
Chimica, che esplorerà lo sviluppo di nuovi biomateriali innovativi
adatti allo scopo.
Con i risultati ottenuti, il Politecnico di Milano potrà contribuire alla
ricerca in quest’ambito proponendo soluzioni innovative che combinano
le tecnologie di 3D printing con i big data e machine learning per
ottenere nuovi tessuti vascolarizzati di nuova generazione.
ENG
3D Bioprinting: the new frontier of Additive Manufacturing for
biomedical and pharmaceutical research
Bioprinting is a multidisciplinary research field combining state-ofthe-art
technologies from additive manufacturing, biology and material
sciences to create living tissues. The interest towards the possibility
of reproducing bioconstructs with geometries and functions
that mimic living tissues ones is boosted by the ever-increasing
need for personalized medicine, one of the main medical objectives
of the society of the future.
Thus, within the actual biomedical research context, bioprinting is
gaining increasing attention from companies, universities, and research
institutes. Scientific literature in this field is exponentially
increasing, and also the Politecnico di Milano is bringing its contribution
to the growth of this sector. For this purpose has been
established a new collaboration between the Mechanical Engineering
Department and the Chemical Engineering Department, with
the joint “3D Cell Lab” co-founded by Prof. Bianca Maria Colosimo
and Prof. Davide Moscatelli.
The main applications of 3D bioprinting can be found in cell biology
research, in the production of tissue models for drug testing and in
the field of regenerative medicine for future replacement of tissues
and organs for fighting the donor organ shortage.
Interest in 3D bioprinting has been gaining momentum in recent years
not only in the academia but also in the market. Numerous 3D
bioprinting companies are welcoming the market as well as startups,
spin-offs and subsidiaries. The patent literature is exploding
and new technologies and innovative biomaterials suitable for bioprinting
are becoming more and more widespread.
Bioprinting could become a new paradigm for the biofabrication
of tissues and the Politecnico di Milano has adopted all the major
technologies currently available to keep up: technologies based on
nozzle-deposition for extrusion-based and inkjet-based bioprinting,
and technologies based on vat photopolymerization processes. Regarding
the last class of optical-based technologies, the Politecnico
di Milano, in collaboration with Lombardy region, is about to install
one of the first bioprinter with micrometric resolution and high speed
based on two-photon polymerization printing process to create
a new generation of vascularized tissues to allow cell survival in any
location of the bioprinted construct.
Within the project, thanks to the transfer of knowledge gained in the
additive manufacturing field, the Mechanical Engineering Department
will be in charge of developing new solutions for in-situ data
sensing, process optimization monitoring and control fostering the
convergence between manufacturing, big data mining for biomedical
research.
Research activities will be also adjuvanted by the Chemical Engineering
Department, which will explore the possibility of studying
innovative biomaterials.
With the results obtained, the Politecnico di Milano will be able to
contribute to research proposing new methods and solutions for
producing a new generation of vascularized bioprinted tissues which
will boost research in this area.
meccanica magazine
61
Progetto Sblink
vincitore del bando ricercatori
DMEC nell’ambito delle attività
del progetto Lis4.0
meccanica magazine
62
ITA
Bando Ricercatori – di Stefano Foletti, Delegato in Giunta alle Politiche
“giovani”
L’iniziativa del Dipartimento di Meccanica “Bando Ricercatori” vuole
finanziare attività di ricerca proposte, coordinate e svolte dai ricercatori.
Si configura, in termini di partecipazione, come un bando competitivo
in cui il proponente, in qualità di responsabile scientifico, deve
identificare l’argomento di studio e dar vita ad un gruppo di ricerca, facendo
convergere diverse competenze. Il requisito fondamentale per
la partecipazione al bando è dunque l’interdisciplinarità e lo scopo è
quello di creare sinergie tra i ricercatori delle varie Sezioni del Dipartimento
di Meccanica ma anche di coinvolgere quelli di altre Università
italiane o estere. Per l’edizione 2020 si è deciso di sostenere progetti
di ricerca legati alle tematiche identificate in Lis4.0 (Lightweight and
Smart Structures for Industry 4.0), progetto finanziato dal MIUR nel
quadro dell’iniziativa “Dipartimenti di Eccellenza”. La sfida è stata raccolta
da quattro ricercatori che hanno saputo dar vita a una proposta
costruendo, attorno ad un’idea, un vero e proprio gruppo di ricerca
con competenze trasversali: Stefano Arrigoni con il progetto “Intelligent
Transportation Services for POLIMI (ITS 4 POLIMI), Marta Gandolla
con il progetto “Smart Bio-inspired Link (SBLINK)”, Ali Gökhan Demir
con il progetto “Laser Induced Forward Transfer based micro to nanometric
multimaterial Additive Manufacturing (LIFT4AM)” e Michele
Vignati con il progetto “Independently driven vehicles dynamics and
control (iWD)”. “Un’iniziativa riuscita”, questa l’opinione comune della
Commissione Giudicatrice che ha avuto il non facile compito di decidere
quale progetto finanziare, data la qualità, l’organizzazione e l’interdisciplinarità
di tutte le proposte ricevute. La selezione, effettuata
sulla base dei criteri di valutazione e dei punteggi indicati a bando, ha
visto vincitore il progetto SBLINK.
Il progetto SBLINK – di Marta Gandolla, Direttore Scientifico
Il “Bando Ricercatori” è stata in primis l’opportunità di creare una rete
di collaborazione tra colleghi all’interno del Dipartimento, specialmente
per me che ho iniziato a Settembre 2020. Il team che lavora al
progetto SBLINK è fortemente multidisciplinare e formato da persone
con solide conoscenze su tecnologie abilitanti diverse e complementari
(Biomeccanica, Design, Materiali, Manufacturing, sensoristica e
Monitoraggio). Il team è composto da me, Marta Gandolla, e altri quattro
giovani ricercatori del Dipartimento di Meccanica del Politecnico
di Milano: Luca Patriarca, Paolo Parenti, Diego Scaccabarozzi e Niccolò
Becattini. Inoltre, il team gode del supporto di una commissione
esterna composta da docenti internazionali esperti del settore.
La maggior parte delle invenzioni, come un tempo fu la ruota, sono
state progettate per ridurre lo sforzo e contemporaneamente migliorare
la produttività e garantire la sicurezza. I Disturbi Muscoloscheletrici
(DMS) legati al lavoro, che colpiscono in particolar modo
la regione lombare, sono la principale causa di infortuni sul lavoro e
rappresentano i costi che gravano maggiormente per l’affiancamento
al lavoratore a causa della ridotta produttività. La pandemia di Covid19
ne ha aumentato l’insorgenza. Prendersi cura dei pazienti ha inciso
particolarmente nell’insorgenza di dolori lombari in coloro che forniscono
assistenza professionalmente e non. Nei magazzini delle grandi
catene di distribuzione, si è verificato un aumento significativo di lavoratori
a rischio con il crescere dell’e-commerce. Il progetto SBLINK
accetta la sfida che ha come obiettivo quello di eseguire una caratterizzazione
della spina dorsale durante un movimento target e definirne
un ambiente di simulazione per testare l’effetto di queste soluzioni
sulla parte lombare umana, ottenute grazie a tecnologie abilitanti.
Seguirà lo sviluppo di un primo prototipo fisico del simulatore concettualmente
formato da tre strati interconnessi che trovano ispirazione
nella modalità di funzionamento della regione lombare dell’uomo.
Lo STRATO OSSEO costituisce funzionalmente il supporto strutturale.
Questo strato sarà composto di mattoncini simili in struttura alle
vertebre, dotate di specifiche caratteristiche meccaniche per il supporto
del peso a livello lombare, grazie a piccole deformazioni e alla
struttura bio-ispirata con specifiche caratteristiche meccaniche che
si adattano al livello della fatica da sopportare.
Lo STRATO SPINALE funzionalmente connette gli elementi dello strato
osseo. La spina dorsale permetterà l’interconnessione tra I mattoncini
che compongono lo strato osseo.
Lo STRATO PERCETTIVO rappresenta funzionalmente l’abilità dei recettori
del corpo umano di mappare il livello di stress meccanico.
Lo strato percettivo permetterà la mappatura costante delle effettive
condizioni di stress a livello della spina dorsale.
Riducendo e modificando il carico muscoloscheletrico, i dispositivi
come SBLINK potrebbero ridurre l’insorgenza di malattie lavorative e
ridurre i costi legati alla salute e della mancata produttività associati
ai disturbi dovuti alla ripetitività dei gesti lavorativi.
meccanica magazine
63
meccanica magazine
64
ENG
Sblink is the winning project of DMEC call for researchers in the
framework of the Lis4.0 project
Call for Researchers – by Stefano Foletti, member of the Board in
charge of Youth policies
The “Call for Researchers” initiative of the Department of Mechanical
Engineering aims to promote research activities suggested, coordinated
and carried out by researchers themselves. It is a competitive
call for which the candidate, also the scientific director of the
project, must choose a research topic and pick a research team to
bring diverse skills to the table. Interdisciplinarity is the main application
requirement as the goal is to make researchers from different
DMEC Research Lines cooperate while involving other Italian
and foreign Universities. The 2020 edition aimed to sponsor the
projects liked to the topics falling under the Lis4.0 - Lightweight
and Smart Structures for Industry 4.0 - a project financed by MIUR
(Italian Ministry for Education, University and Research) in the framework
of the Department of Excellence initiative. Four are the researchers
who took the challenge and brought to life a proposal by
building a research team with traversal skills around a single idea:
Stefano Arrigoni, presenting the Intelligent Transportation Services
for POLIMI (ITS 4 POLIMI) project; Marta Gandolla, presenting
the Smart Bio-inspired Link (SBLINK) project; Ali Gökhan Demir,
presenting the Laser-Induced Forward Transfer based micro to nanometric
multi-material Additive Manufacturing (LIFT4AM) project;
and Michele Vignati, presenting the Independently driven vehicles’
dynamics and control (iWD) project. Despite having the difficult task
to select which project to sponsor, given the quality and high level of
organisation and interdisciplinarity of all proposals, the Evaluation
Committee claimed it was “a huge success”. According to the criteria
indicated in the call, the Committee appointed the SBLINK project
as the winner.
SBLINK PROJECT – by Marta Gandolla, scientific director
The “Call for Researchers” project call was at first the opportunity to
network between peers in the Department, especially for me, since
I arrived in September 2020. The SBLINK project is conducted
by a multidisciplinary team with strong background in different and
complementary enabling technologies (Biomechanics, Design, Materials,
Manufacturing, Sensing and Monitoring). We are five young
researchers of the Mechanical Department of Politecnico di Milano
– Luca Patriarca, Paolo Parenti, Diego Scaccabarozzi e Niccolò
Becattini, and myself – supported by an external advisory board of
international acknowledged professors.
Most of the human inventions, such as the wheel back in time, were
designed to reduce fatigue, while increasing productivity and assuring
safety at the same time. Work-related musculoskeletal disorders
are the leading cause of occupational injuries and represent
the largest burden for worker-compensation costs and reduced productivity,
with most incidence in the lumbar region. Covid-19 pandemic
has even increased this effect. Patients’ assistance produced a
huge incidence of low-back pain in formal and informal caregivers.
Another example of high-risk workers may be those employed in logistics
warehouses, which are known as a booming area of employment
associated with e-commerce.
The SBLINK project accepts the challenge, with the aim of performing
a characterization of the spinal column during target movement,
and definition of a simulation environment where to test the
effect of assistive technologies solutions on human low-back. We
will then realize the physical prototype of a SBLINK demonstrator,
conceptually composed by three interconnected layers, which are
bio-inspired by the human lumbar region from a functional point of
view.
The BONE layer functionally represents the effective structural support.
The BONE layer will be composed by vertebras-like small brick
elements with specific mechanical characteristics aimed at sustaining
the loadings at lumbar level, with small deformation, bio-inspired
in terms of structure with different mechanical characteristics
depending on the stress to be supported.
The SPINAL COLUMN layer functionally represents the link between
the BONE layer elements. The SPINAL COLUMN layer will deal with
the interconnection between the brick elements composing the
BONE layer.
The PERCEPTION layer functionally represents the ability of the human
body receptors to map the level of mechanical stress.
The PERCEPTION LAYER will enable the constant mapping of the
effective stress conditions at spine level.
By reducing or modifying musculoskeletal loading, devices such as
SBLINK can decrease the incidence of workplace injury and reduce
the burden of healthcare and lost productivity costs associated with
occupationally caused repetitive use injuries.
Droni, realtà immersiva e aumentata,
Internet of Things
ITA
La connettività a larghissima banda, bassa latenza ed elevata affidabilità
della tecnologia 5G amplia enormemente il panorama delle
possibili applicazioni: il 5G rappresenta infatti la tecnologia abilitante
per l’interconnessione capillare e pervasiva sia di dispositivi
digitali personali che di dispositivi IoT, consentendo lo sviluppo di
applicazioni che possono trasformare gli ambienti sociali, produttivi,
commerciali e pubblici in luoghi “smart” in grado di interagire con
gli utenti in modo semplice e naturale.
BASE-5G (Broadband InterfAces and services for Smart Environments
enabled by 5G technologies) è uno dei 33 vincitori del bando
di Regione Lombardia “Call Hub Ricerca e Innovazione” e prevede
lo sviluppo di diversi ambienti intelligenti, in grado di offrire servizi
avanzati e personalizzati a cittadini, imprese e pubblica amministrazione.
Il progetto BASE-5G, avviato a gennaio 2020, si pone 3 macro-obiettivi:
• Progettazione di servizi avanzati basati su ambienti intelligenti
• Integrazione verticale della tecnologia 5G con piattaforme IoT per il
supporto di servizi avanzati
• Sviluppo di interfacce semplici e fruibili per l’utente finale.
Tali obiettivi sono declinati in 5 ambiti applicativi: Smart City and
Smart Campus, Smart Mobility and Vehicles, Smart Logistics, Smart
Learning e Sport and Leisure events.
Il Dipartimento di Meccanica, insieme ai Dipartimenti di Design e di
Ingegneria Gestionale, a Vodafone e AKKA, è impegnato nell’ambito
Smart Mobility and Vehicles con l’obiettivo di:
• Migliorare l’esperienza del guidatore e dei passeggeri attraverso lo
studio e lo sviluppo di sistemi avanzati di interazione uomo-macchina
per la sicurezza e l’intrattenimento
• Progettare in maniera innovativa lo spazio abitativo del veicolo
sfruttante le potenzialità della rete 5G
• Sviluppare sistemi di sicurezza attiva cooperativi mediante una
maggiore automatizzazione del veicolo e la sua interazione attiva
con l’ambiente circostante
In questa prima fase del progetto, dalla durata complessiva di 30
mesi, si stanno definendo gli scenari e le applicazioni che meglio dimostrino
i vantaggi della tecnologia 5G. Seguiranno lo sviluppo e la
validazione di questi scenari in ambienti reali e/o realistici.
ENG
BASE-5G PROJECT: drones, immersive and augmented reality,
internet of things
The 5G technologies with their wide-broadband, ultra-low latency,
and ultra-high reliability offer an extensive range of new possible
applications. 5G deep-coverage and ultra-connectivity among personal
and IoT devices are essential elements to develop new applications
making social, production, business, and local administrative
environments more smart and capable of interacting with their
users in simple and natural ways.
BASE-5G (Broadband Interfaces and services for Smart Environments
enabled by 5G technologies) is one of the 33 winners of the
call for projects “Call Hub Ricerca e Innovazione” of Regione Lombardia.
This call for projects aims to develop different smart environments
that can offer citizens, enterprises, and local administration
advanced and customized services.
Officially started in January 2020, BASE-5G has three main goals:
• To provide new advanced services that fit in smart environments;
• To favor vertical interaction between 5G technologies and IoT platforms
which will support such services;
• To develop user interfaces that are simple and user-friendly.
These goals find their implementation in 5 different applications:
Smart City and Smart Campus, Smart Mobility and Vehicles, Smart
Logistics, Smart Learning, e-Sport, and Leisure events.
In collaboration with Vodafone, AKKA, the Department of Design and
the Department of Management, Economics and Industrial Engineering,
the Department of Mechanical Engineering of Politecnico di
Milano is contributing in the field of Smart Mobility and Vehicles to
address the following goals:
• Improve driver and passenger’s experience in terms of safety and
entrainment by designing and developing advanced human-car interaction
systems;
• Design innovative car cockpits capable of exploiting 5G technologies;
• Develop new interactive safety systems by making the vehicle more
autonomous and improving its interaction with the external environment.
The project development will last 30 months. In this first phase, researchers
are defining the best scenarios and the best applications
that better show the advantages of 5G, later developed and translated
into more realistic environments.
meccanica magazine
65
Il nuovo laboratorio
interdipartimentale
High Strain Rate
meccanica magazine
66
ITA
Il laboratorio High Strain Rate è diventato operativo nel 2021 e opera
nel contesto dei laboratori Interdipartimentali. HSR offre competenze
e strumentazioni sul tema del comportamento di materiali e componenti
alle alte velocità di deformazione e vede coinvolti i seguenti
Dipartimenti: Meccanica, Scienze e Tecnologie Aerospaziali, Civile e
Ambientale, Elettronica-Informazione e Bioingegneria.
In particolare, le attività offerte dal laboratorio sono focalizzate sulla
caratterizzazione dinamica di materiali e strutture di varia natura,
con utilizzo nell’ambito dell’ingegneria meccanica, civile, aeronautica
ed elettronica. Tra queste vi è la possibilità di effettuare prove ad
impatto di strutture in materiale polimerico, composito, metallico e
cementizio, eventualmente con la presenza di sensori. Tra le strumentazioni
disponibili si evidenzia la nuova macchina del tipo Drop-
Tower che permette di effettuare prove di caratterizzazione di estrema
importanza in ambiente controllato e con una serie di dispositivi
atti a misurare rilevanti grandezze fisiche legate all’impatto. Il sistema
rappresenta un importante strumento di ricerca nella definizione di
metodi di progettazione avanzati per condizioni di carico estreme. La
possibilità di avere uno strumento che permetta di eseguire prove di
impatto ripetibili e misurabili con estrema accuratezza, consente di
poter disporre di un passaggio intermedio di validazione (nella definizione
di metodi predittivi) tra la calibrazione del materiale e prove
full scale. In particolare, lo strumento si presta molto bene per una
attività legata alla valutazione del danno provocato da impatti a bassa
velocità.
Attrezzatura a disposizione del laboratorio:
• Drop Tower per prove d’impatto a caduta progettata per fornire energie
fino a 700 J. Il sistema è in grado di acquisire le principali grandezze
fisiche in gioco con una frequenza di campionamento fino a 3.5
MHz. È possibile utilizzare masse di impatto fino a qualche decina di
kg con forze massime misurabili dell’ordine di 90 kN. La strumentazione
è munita di differenti percussori strumentati è in grado di eseguire
prove secondo gli standard EN 12390-1/EN 12390-5, ASTM 7136, ASTM
3763, ISO 6603, ISO 8256.
• Macchina di trazione veloce ad inversione. La macchina, inserita
all’interno di una ulteriore torre di caduta, permette di effettuare prove
di trazione veloce (velocità afferraggi 10 m/s energia >30 kJ).
• Cannone per prove di impatto 1. Masse da 20g a 150 g. Dimensioni
fino a 50 mm di diametro. Velocità fino a 200 m/s.
• Cannone per prove di impatto 2. Masse da fino a 2 kg. Dimensioni fino
a 120 mm di diametro. Velocità fino a 200 m/s.
• 3 sistemi di acquisizione Strainbook. Frequenze di campionamento
1Mhz aggregato. 8 canali ciascuno. Condizionamento di segnale per
trasduttori di pressione, accelerazione e deformazione.
• Videocamera ad alta velocità.
Servizi offerti:
• Prove secondo gli standard EN 12390-1/EN 12390-5, ASTM 7136,
ASTM 3763, ISO 6603, ISO 8256
• Prove di impatto ad alta e bassa velocità su coupon e su componenti
Il Dipartimento di Meccanica ha parte attiva nel laboratorio attraverso
il prof. Andrea Manes e i membri del suo gruppo di ricerca sulla tematica
“Structural integrity under extreme loading conditions”. In particolare,
il gruppo è attivo da diversi anni nella definizione di metodi
di simulazione predittivi per progettare strutture sottoposte a carichi
estremi quali, impatti, esplosioni, grandi deformazioni, rotture, etc.
All’interno del gruppo di ricerca, collaborano al laboratorio HSR i dottorandi
Mohammad Rezasefat Balasbaneh, Álvaro González Jiménez,
Luca Lomazzi e Alessandro Vescovini.
ENG
High Strain Rate: a new interdepartmental lab
The High Strain Rate Lab started operating in 2021 and is included in
the interdepartmental lab network. HRS offers skills and equipment
about material and component behaviour under high-speed deformation
(i.e. high strain rate). The Departments involved are the Department
of Mechanical Engineering, the Department of Aerospace
Science and Technology, the Department of Civil and Environmental
Engineering and the Department of Electronics, Information and
Bioengineering.
In particular, the activities offered at the Lab focus on the dynamic
characterisation of different types of materials and structures operative
in the fields of mechanical, civil, aeronautical, and electronics
engineering. More specifically, it is also possible – among others – to
carry out impact tests on structures made of polymeric, composite,
metallic, and cementitious materials, possibly through sensors.
Among the available equipment, a new Drop-Tower machine to carry
out characterisation tests of extreme relevance in controlled environments
and with a series of measurement systems able to monitor
impact-related physical quantities. The system is an important
research instrument when defining advanced design methods for
extreme loading conditions. The possibility to have an instrument
allowing to carry out repeatable impact tests, as well as with a high-accuracy
level of measurements, might turn into having an intermediate
level (in the definition of predictive methods), between the
material calibration phase and full-scale tests. More precisely, the
instrument is highly indicated to carry out activities to evaluate the
damage caused by low-velocity impacts.
• 3 Strainbook acquisition systems. Sample frequency aggregated 1
MHz. Each has eight channels. Signal conditioning for pressure, acceleration,
and deformation.
• High-speed camera.
Offered services:
• Testing according to the following standards: EN 12390-1/EN
12390-5, ASTM 7136, ASTM 3763, ISO 6603, ISO 8256;
• Low and high-speed impact testing on coupons and components.
The Department of Mechanical Engineering plays an active role in
the lab activities thanks to Prof. Andrea Manes and his research
group working on “Structural integrity under extreme loading conditions”.
More specifically, the group is involved in defining predictive
methods to design structures subjected to extreme loadings
like impacts, explosions, extensive deformations, failure, and more.
Here’s the list of our Ph.D. students part of the research group and
active in HSR: Mohammad Rezasefat Balasbaneh, Álvaro González
Jiménez, Luca Lomazzi and Alessandro Vescovini.
meccanica magazine
67
Lab equipment:
• Drop Tower to carry out drop weight impact tests designed up to
700 J of impact energy. The system measures the main physical
quantities involved with a sampling frequency up to 3.5 MHz. It is
possible to use weights of about ten kg with impact forces of about
90 kN. The equipment includes several instrumented strikers that
can carry out tests according to the following standards: EN 12390-
1/EN 12390-5, ASTM 7136, ASTM 3763, ISO 6603, ISO 8256.
• Reversal High-speed tensile testing machine. Also included in a
drop tower, the machine allows to carry out high-speed tensile tests
(speed 10 m/s power >30 kJ).
• Gun for impact testing 1. Masses from 20 kg to 150 g. Size up to 50
mm in diameter. Speed limit to 200 m/s.
• Gun for impact testing 2. Masses up to 2 kg. Size up to 120 mm in
diameter. Speed limit to 200 m/s.
FiberEUse:
dal progetto europeo all’esposizione
della Design Week
meccanica magazine
68
ITA
Il progetto FiberEUse - New circular economy solutions for the reuse
of end-of-life fiber reinforced composites, coordinato da Prof. Marcello
Colledani del Dipartimento di Meccanica del Politecnico di Milano,
finanziato dall’Unione Europea nell’ambito del programma Horizon
2020, rappresenta la realtà di una transizione sostenibile all’economia
circolare nell’ambito dei materiali compositi rinforzati con fibra di vetro
e fibra di carbonio. Coinvolgendo 21 partner provenienti da 7 stati
europei, nei suoi 4 anni di durata il progetto si è posto come obiettivo
quello di dimostrare su larga scala la fattibilità di implementare nuove
catene del valore circolari basate sul riuso dei materiali provenienti da
prodotti a fine vita.
Il focus è quello dei materiali compositi, largamente impiegati in diversi
settori dell’industria manifatturiera, come il settore di produzione
delle pale eoliche, quello delle costruzioni, dell’automotive, del
trasporto (specialmente quello navale), fino ad arrivare agli articoli
sportivi. L’utilizzo di questi materiali è in costante crescita (con un
tasso che va dal 2% per i materiali in fibra di vetro fino al 10-12% per
quelli in fibra di carbonio) ma, al contempo, non esistono attualmente
soluzioni robuste per il trattamento dei prodotti a fine vita, che vengono
così conferiti ed accumulati in discarica. Una transizione verso
un’economia circolare permette di trasformare questi rifiuti in una
risorsa preziosa, diminuendo il loro impatto ambientale e, al contempo,
generando rilevanti benefici economici. Attraverso lo sviluppo e
l’ottimizzazione di processi innovativi lungo l’intera catena del valore,
dal disassemblaggio (sia delle grandi infrastrutture che dei prodotti
di consumo), al riciclo meccanico, al riciclo termico, al resizing, al design
(ed al codesign), fino al riprocessamento ed al reinserimento dei
materiali, è possibile ottenere nuovi prodotti circolari, in particolare
sfruttando un approccio cross-settoriale in cui il materiale riciclato da
un prodotto a fine vita viene reinserito in un nuovo prodotto ad alto
valore aggiunto che richiede caratteristiche meccaniche inferiori.
Il risultato finale del progetto FiberEUse è rappresentato da più di 15
dimostratori da 8 demo-case in diversi settori (in particolare quelli automotive,
delle costruzioni, design, arredamento ed articoli sportivi)
basati sul remanufacturing ed il riuso di materiale riciclato da pale eoliche
e componenti di aeroplani, sviluppando nuove tecnologie e design
di prodotto innovativi, implementando in aggiunta una piattaforma
cloud-based per facilitare il collegamento fra i vari attori della filiera.
Questi dimostratori sono stati il cuore dell’installazione presente alla
Design Week 2021 che si è tenuta dal 4 all’11 settembre. Presso lo spazio
di Superstudio Più in via Tortona 27, il visitatore è stato guidato
attraverso un percorso di forte impatto visivo che partiva dai prodotti
a fine vita, passando per il materiale riciclato, fino ad arrivare ad una
collezione di numerosi oggetti e componenti che esemplificano il potenziale
di un approccio circolare applicato a questo settore. Interagendo
con l’ambiente circostante, il visitatore ha potuto toccare con
mano prodotti di design, ondulati per tetti industriali (che possono
essere utilizzati anche all’interno per creare dei giochi di luce e colore
di forte impatto), elementi d’arredo, sci, componenti automotive, fino
ad arrivare ad un’intera piattaforma innovativa per macchine elettriche,
sedili inclusi, sempre considerando sia l’aspetto funzionale che
quello economico (applicando fino in fondo il concetto di economia
circolare).
ENG
FiberEUse: from the european project to the Design Week exhibition
The Horizon 2020 FiberEUse (New circular economy solutions for
the reuse of end-of-life fiber reinforced composites) project, coordinated
by Prof. Marcello Colledani of the Department of Mechanical
Engineering of Politecnico di Milano, represents the reality of a
sustainable transition to circular economy in composite materials,
mainly based on glass fibers and carbon fibers reinforcements. Involving
21 partners from 7 European Countries, in 4 years the project
aimed to demonstrate at large scale the feasibility of the implementation
of new circular value-chains based on the reuse of end-of-life
fiber reinforced composites.
These materials are widely used in several manufacturing sectors
as wind energy, construction, automotive, transportation, sanitary,
design and aerospace. Even if the usage of composite materials is
constantly increasing, with a growth rate from 2% of glass fibers
fibres reinforced plastics (GFRP) up to 10-12% for carbon fibres fibers
reinforced plastics (CFRP), no robust and reliable solutions for
the treatment of End-of-Life products are currently present on the
market, leading to disposal in landfill. A transition to circular economy
allows to transform this waste into a precious resource, reducing
the environmental impact and, in the meanwhile, generating
relevant economic benefits. Through the development and optimization
of innovative processes along the entire value-chain, from
disassembly (both of large infrastructures and small products), to
mechanical and thermal recycling, resizing, design and codesign,
reprocessing and reinsertion of materials, it is possible to obtain
new circular products. To enable it, the exploitation of cross-sectorial
approach is fundamental, in which materials recovered from an
End-of-Life product is reinserted in a new product with lower mechanical
characteristics with high-added value.
The final result of the project is represented by more than 15 demonstrators
from 8 demo-cases in different sectors (automotive,
construction, design, sanitary and sports equipment) based on remanufacturing
and reuse of recycled materials from wind blades,
aerospace components and industrial scraps, thanks to the development
and optimization of innovative technologies and design of
products, also implementing a cloud-based platform to enable the
link among all the actors of the value-chain.
These demonstrators constituted the core of the installation at
Milan Design Week 2021 from 4th to 11th of September. During this
event, in the Superstudio Più space in via Tortona 27, the visitors
were guided through a path with high visual impact, starting from a
real amount of End-of-Life products, through recycled material to a
collection of products and components showing the potential to apply
a circular approach in this sector. Interacting with the surrounding
environment, the visitors were able to touch with their hands
design products, corrugated sheets for industrial roots (also used as
walls creating high impacting light effects), furniture elements, skis,
automotive components up to an innovative car platform for electric
vehicles (including seats), always considering both functional and
economical effect (really applying circular economy concept).
meccanica magazine
69
meccanica magazine
70
ITA
Dynamis PRC quarti
a Varano e ospiti
dell’esposizione Museo
Storico Alfa Romeo
Dopo lo stop causa pandemia, il Team Dynamis PRC è tornato in pista Il duro lavoro degli studenti del Politecnico di Milano è stato premiato
nel 2021 e questa volta con il primo prototipo elettrico: DP12evo.
da ben due su quattro “Sponsor Awards”:
Il team ha gareggiato nell’ edizione italiana della Formula SAE tenutasi • GEICO TAIKISHA Top Coating Award per prototipo in gara con il migliore
rivestimento esterno della vettura in termini di rifinitura, inno-
a Varano de’ Melegari, Parma.
Organizzato secondo le restrizioni anti Covid-19, l’evento si è svolto in vazione e materiali utilizzati.
modalità ibrida. Mentre le prove statiche, quali Business Plan Presentation,
Cost event e Design event, si sono svolte online, è stato possitrols,
Methods and Architecture Award per aver sviluppato l’impianto
• TEORESI Best Electronics Development Process: Innovative Conbile
svolgere le prove dinamiche in loco, a patto che partecipasse un elettrico del veicolo con il miglior design innovativo.
numero limitato di componenti per ogni team in gara per un massimo Entusiasti per i risultati ottenuti e consapevoli di poterne raggiungere
di 8 persone.
di migliori, il team Dynamis PRC è già al lavoro per progettare e sviluppare
il prototipo per la prossima stagione: DP13e.
Questa competizione ha sempre visto il Politecnico di Milano tra i suoi
più grandi protagonisti. Di fatto il Team Dynamis PRC è salito sul gradino
più alto del podio nell’edizione 2019 per la categoria COMBUSTION una nuova collaborazione tra il team e il Museo Storico Alfa Romeo.
Stagione 2021-22 che è già iniziata con il botto, segnata dall’inizio di
con il prototipo DP11.
Una novità assoluta.
Dynamis PRC, nonostante si sia dedicato allo sviluppo di un prototipo
interamente elettrico da meno di un anno, si è imposto come miporanea,
presso la propria sede ad Arese, che esplora e racconta an-
Il Museo Storico Alfa Romeo ha deciso di allestire una mostra temglior
team italiano della competizione ottenendo il quarto posto nella che la realtà del territorio. Una realtà che in meno di un ventennio si è
classifica genarle Overall Electric. Grandi soddisfazioni sono arrivate sviluppata ed è cresciuta fino a raggiungere risultati importantissimi,
nelle prove statiche nelle quali il prototipo ha ottenuto il primo posto quali il team Dynamis PRC, la “squadra corse” del Politecnico di Milano.
Il team, composto da studenti di vari Corsi di Studio, dal 2004 ad
nella categoria Business Plan Presentation e la medaglia di bronzo
nella categoria Cost Event. “ In realtà siamo molto soddisfatti anche oggi ha all’attivo la costruzione di 14 monoposto e 31 gare disputate in
del risultato ottenuto nelle prove dinamiche” – ha spiegato il team leader
Alberto Testa – “dato che nell’endurance, ovvero nella gara finale, 2006), DP7 (anno 2015), DP9 (anno 2017) e DP11 (anno 2019), offre una
7 diversi Paesi. La mostra, dove sono esposti i prototipi 574 BT (anno
abbiamo non solo concluso il percorso ma abbiamo anche tenuto un panoramica sull’evoluzione del team, che dagli iniziali 12 membri è
buon passo gara”.
passato agli oltre 100 di oggi, che segue ogni aspetto legato al progetto
e ha raggiunto ottimi risultati a livello nazionale e internazionale.
Tuttavia la lista di riconoscimenti non finisce qui.
La mostra temporanea, della durata prevista di 6 mesi, è stata inaugurata
il 22 ottobre 2021.
ENG
Dynamis PRC ranks fourth in Varano and showcases at the exhibition
hosted by the Museo storico Alfa Romeo
After the break due to pandemics, the Dynamis PRC Team is back in
the race in 2021 and, this time, with its first electric prototype. The
team raced in the Italian edition of Formula SAE held in Varano de’
Melegari, Parma.
The event, organized in compliance with the Covid-19 restrictions,
was a blended one. The static tests, such as Business Plan Presentation,
Cost Event and Design Event, were held online while dynamic
tests were held on-site, provided that only a limited number of members
– for a maximum of 8 people - for each competing team did join.
Politecnico di Milano has always been a front runner in this competition.
In fact, Team Dynamis PRC took first place with the DP11 prototype
competing in the COMBUSTION category in 2019.
Despite having started developing a full-electric car prototype just
one year ago, Dynamis PRC finished the race as the best Italian
team, conquering the fourth place in the Overall Electric ranking.
Extremely satisfying were the results of the static tests, where our
prototype triumphed in the Business Plan Presentation category
and won the bronze medal in the Cost Event category. “To be honest,
we are also very proud of what we have accomplished in the dynamic
tests” - explained the team leader Alberto Testa. “In the endurance
race, the final one, we not only crossed the finish line but we also
kept a good race pace”.
Moreover, the list of rewards does not end here. Our PoliMi students’
hard work paid off since they also won two of the four “Sponsor
Awards”.
GEICO TAIKISHA Top Coating Award, having raced with the vehicle
with the best coating in terms of design, materials and finish.
TEORESI Best Electronics Development Process: Innovative Controls,
Methods and Architecture Award, having developed the most
innovative design of the electric system of the vehicle.
Happy for the obtained results and aware of having what it takes to
achieve even better ones, the Dynamis PRC team is already working
to design and develop a new prototype for the upcoming season:
DP13e.
In fact, this 2021-22 Season has already started in the best way possible,
marked by the beginning of a new collaboration between the
team and the Museo Storico Alfa Romeo. An absolute first.
The Museo Storico Alfa Romeo has decided to host a temporary
exhibition at the museum (Arese) to explore and witness the local
reality. A territory that in less than twenty years developed and flourished
so much to achieve very important results, like the creation
of the Dynamis PRC team, one of the “racing teams” of Politecnico
di Milano. The team, made of students attending diverse programmes,
since 2004 has built 14 single-seater cars and raced 31 times
in 7 different countries. The exhibition, where the prototypes 574 BT
(2006), DP7 (2015), DP9 (2017) and DP11 (2019) are displayed, shows
how the team evolved over time, growing from the 12 founding members
to the current over 100 members. A team that can take care of
every aspect of the project and that also achieved excellent results,
both at national and international level.
The opening of the temporary exhibition, lasting 6 months, occurred
on October 22nd, 2021.
meccanica magazine
71
IamSPACE
Italy for Additive Manufacturing
in Space
meccanica magazine
72
ITA
L’ Additive Manufacturing (AM) sta cambiando profondamente il modo
in cui i componenti per le applicazioni spaziali sono progettate e prodotte.
Quasi tutti i principali stakeholder dell’industria spaziale stanno
valutando le potenzialità dell’AM per migliorare le prestazioni dei loro
prodotti in termini di migliore rapporto rigidità-peso, integrazione di
nuove funzionalità, nuovi materiali, ecc. Sebbene oggi gran parte delle
applicazioni AM siano limitate ai componenti non critici, l’industria
spaziale mira ad estendere l’adozione dell’AM ad applicazioni strutturali
e mission-critical, ma la qualifica delle parti strutturali realizzate in
AM richiede una serie di test molto costosa e dispendiosa in termini di
tempo, sia su campioni che su parti full-scale. Tuttavia, questo non è
ancora sufficiente per garantire che le parti prodotte in seguito siano
accettabili. A causa dell’impossibilità di testare un numero sufficiente
di pezzi per garantire i rigorosi requisiti di affidabilità, è fondamentale
determinare il limite massimo di difetto accettabile per la condizione
di servizio più grave (fatica o statica) di un determinato componente ai
fini della sua ispezione e qualificazione. Allo stesso tempo, l’industria
spaziale sta esaminando l’adozione di nuove tecniche di qualifica rapida
per ridurre i tempi ei costi di sviluppo del prodotto. IamSPACE è
un progetto finanziato dall’Agenzia Spaziale Europea (ESA) che si inserisce
in questo quadro e mira ad affrontare in modo sinergico queste
due sfide che attualmente stanno impedendo l’adozione dell’AM su più
larga scala:
• Nella prima parte (fase 1, guidata dal Prof. Stefano Beretta del Politecnico
di Milano), il progetto svilupperà, testerà e convaliderà una
metodologia per caratterizzare gli effetti di alcuni difetti specifici AM
sottoposti a carichi statici elevati e stabilire le dimensioni massime
dei difetti accettabili attraverso metodi della meccanica della frattura.
• La seconda parte (fase 2, guidata dalla Prof.ssa Bianca M. Colosimo
del Politecnico di Milano) del progetto riguarda la riduzione degli sforzi
di ispezione non distruttiva e di misurazione ex-situ nella produzione
additiva di componenti spaziali mission-critical sottoposti ad elevati
carichi statici tramite lo sviluppo e la validazione di un metodo di
monitoraggio di processo (PMM). La produzione additiva strato per
strato offre nuove opportunità per la raccolta di dati in linea tramite
sensori installati in-situ che possono essere utilizzati per tenere sotto
controllo il processo, identificare instabilità e rilevare l’insorgenza di
difetti. Questo apre a nuove strategie di qualifica che possono trarre
vantaggio dai dati raccolti in-situ. A tal fine, il progetto IamSPACE
mira a mettere insieme una rete di eccellenze composta da aziende e
centri di ricerca con strutture, capacità e attrezzature all’avanguardia
nel campo dell’AM. Il progetto IamSPACE, sotto la guida della Prof.ssa
Bianca M. Colosimo del Politecnico di Milano, main contractor, riunisce
un consorzio di sei importanti aziende italiane e istituti di ricerca
sull’AM per applicazioni spaziali. Due utilizzatori finali del processo
(Leonardo e Avio) focalizzati su diversi tipi di prodotto (componenti
strutturali e di propulsione spaziale) porteranno l’attenzione del progetto
sulle sfide dei componenti mission-critical prodotti in modo
additivo con prestazioni target e materiali diversi (leghe a base di
alluminio e nichel). Due università (Politecnico di Milano e Politecnico
di Torino) guideranno le attività di ricerca con i loro team di alto
livello e di fama internazionale impegnati su temi quali: materiali AM,
valutazione strutturale dei prodotti AM e su monitoraggio in-situ dei
processi AM. Il consorzio comprende anche uno dei principali produttori
italiani di sistemi AM a letto di polvere (Prima Industrie) per aiutare
nella sensorizzazione del processo e nella creazioni di soluzioni per
la prossima generazione di macchine AM per applicazioni spaziali. La
Fondazione E. Amaldi (FEA) completa il team con la sua esperienza nel
focus di ricerca a lungo termine sulle sfide AM per lo spazio.
Il progetto IamSPACE è un progetto biennale iniziato nel luglio del
2020 e la cui conclusione è prevista per luglio 2022. Il progetto ha già
prodotto i suoi primi risultati, tra cui:
• La creazione di un catalogo dei difetti aggiornato per i processi di
fusione a letto di polvere
• Due approfondimenti sullo stato dell’arte sui temi principali del progetto:
- Metodi di valutazione strutturale per AM
- Metodi di monitoraggio del processo
Nei prossimi mesi sarà completata la produzione di campioni di verifica
ad hoc utilizzando le strutture del consorzio per fornire dati di
test e validazione per i metodi attualmente in fase di sviluppo sia per
la fase 1 che per la fase 2. Si prevede che i metodi sviluppati all’interno
di IamSPACE verranno implementati in progetti futuri per lo sviluppo
di nuovi componenti spaziali mission-critical, dando una nuova spinta
all’utilizzo dell’AM nell’industria spaziale.
ENG
IamSPACE: Italy for Additive Manufacturing in Space
Additive Manufacturing (AM) is deeply changing the way in which parts
for space applications are designed and manufactured. Almost
every major stakeholder within the space industry is assessing the
potential of AM to enhance the performance of their products in terms
of improved stiffness-to-weight ratio, novel embedded functionalities,
new materials, etc. Although a large part of AM applications
today is limited to non-critical components, the space industry is
aiming to extend the adoption of AM to structural and mission-critical
applications, but the qualification of AM structural parts needs a
very costly and time-consuming series of tests, on both samples and
full-scale parts. However, this is still not sufficient to guarantee that
following parts will be acceptable. Due to the impossibility to test a
sufficient number of parts to ensure the strict reliability requirements,
it is crucial to determine the maximum acceptable defect limit for
the most severe service condition (fatigue or static) of a given component
for the sake of its inspection and qualification. At the same
time, the space industry is looking into the adoption of novel rapid
qualification techniques to decrease the product development time
and costs. IamSPACE is a project funded by the European Space
Agency (ESA) that fits within this framework and aims at tackling in a
synergic way these two challenges that are currently preventing the
widespread adoption of AM:
• In the first part (phase 1, lead by Prof. Stefano Beretta of Politecnico
di Milano), the project will develop, test and validate a methodology
to characterize the effects of AM specific defects under severe static
loads and set maximum acceptable defect sizes through fracture
mechanics methods.
• The second part (phase 2, lead by Prof. Bianca M. Colosimo of Politecnico
di Milano) of the project regards the reduction of non-destructive
inspection and ex-situ measurement efforts in the
additive production of highly loaded mission-critical space components
through the development and validation of a process monitoring
method (PMM). The layerwise production paradigm of AM enables
novel opportunities for in-line data gathering via in-situ sensors that
can be used to keep under control the process, identify unstable states
and detect the onset of flaws in part. This opens to new qualification
strategies that can take advantage of in-situ gathered data.
For this purpose, the IamSPACE project aims at putting together an
excellence network composed by companies and research centers
with state-of-the-art facilities, capacities and equipment in the field
of AM. The IamSPACE project, under the lead of Prof. Bianca M. Colosimo
of Politecnico di Milano, main contractor, gathers a consortium
of six top Italian companies and research Institutions in AM for Space
applications. Two end-users (Leonardo and Avio) focusing on different
product types (space structural and propulsion components)
will bring the project attention to challenges of mission critical components
additively produced with different target performances and
using different materials (Aluminum and Nickel-based alloys). Two
universities (Politecnico di Milano and Politecnico di Torino) will be
driving the research activities with their top-level and internationally
renowned research teams on AM materials, AM process challenges,
structural assessment of AM products and in-situ monitoring of AM
processes. The consortium also includes one of the top Italian producers
of powder bed AM systems (Prima Industrie) to aid in process
sensing and in the creation of solutions for the upcoming generation
of AM machines for space applications. Fondazione E. Amaldi (FEA)
completes the team with its expertise on long-term research focus
on AM challenges for Space.
The IamSPACE project is a two-years project that started in July of
2020 and it is planned to close in July 2022. The project has already
produced its first results, including:
• The establishment of an updated defect catalogue for powder bed
fusion processes
• Two in-depth state-of-the-art reviews on the main topics of the
project:
- Structural assessment methods for AM
- Process monitoring methods
In the upcoming months, the production of ad-hoc verification samples
will be completed using the consortium facilities to provide test
and validation data for the methods that are currently under development
for both phase 1 and phase 2. The methods developed within
IamSPACE are planned to be implemented in future projects for the
development of new mission-critical space components, giving a
new push forward to the application of AM to space industry.
meccanica magazine
73
FOR INDUSTRY 4.0
THE TECHNOLOGICAL
CHALLENGES
ENABLING TECHNOLOGIES
(INDUSTRY 4.0)
Progetto Lis4.0
74
ITA
Smart metal additive
manufacturing for
functionalized 4D structures
For the development of sensorized
AM processes, intelligent materials
with innovative features.
Smart structures in
Intervista a Barbara Previtali,
composite material
For 3D-printed smart free-form
responsabile profiles in high-performance long-
del WP1
fiber composites.
1. Di cosa si occupa il WP1 nell’ambito del Lis4.0? Quali sono le principali
sfide Meta-structures
che affronta?
Artificially created structures with
Il WP1
new
-
characteristics
Smart metal
given
additive
by their
manufacturing per strutture 4D funzionalizzate
geometry that è il can primo be developed dei WP del in progetto Lis4.0 (LIghtweight and
Smart different structures dimensional for industry scales. 4.0). Nel WP1 il tema generale del progetto
Lis4.0, ovvero lo studio di strutture lightweight e smart, integrate,
progettate, realizzate e sensorizzate usando i paradigmi di I4.0
nel settore della mobilità sostenibile è dedicato ai processi Additive
Manufacturing. L’Additive Manufacturing (AM) difatti abilita una nuova
progettazione, che integrando materiali leggeri, con funzionalità
ottimizzate e prestazioni elevate, assicurate anche dall’assenza di difetti
attraverso Autonomous il monitoraggio Systems di processo, consente la realizzazione
For the transport of people with
di componenti
drive systems
non
based
solo
on new
più
highresolution
riguarda localization impatto systems, ambientale and e consumo di risorse.
performanti ma anche più sostenibili per
quanto
Le sfide human-machine del WP1, pertanto, interaction. riguardano tutti gli steps che portano a
questa nuova famiglia di prodotti leggeri, funzionalizzati e smart realizzati
attraverso AM: progettazione, materiali e loro prestazioni, processi
zero-defect grazie al monitoraggio e qualifica.
2. Quale è lo stato delle tecniche di progettazione collegate all’AM?
L’AM è un insieme di processi e tecnologie nuove che liberano i progettisti
LIGHT di AND prodotto HEAVY da MOTORWAY moltissimi dei vincoli dettati dai processi manifatturieri
più RAILWAY tradizionali. Per fare un esempio molto MEANS semplificato
OF TRANSPORT allo stato solido, ma anche sfruttando SPACEla transizione solido/liquido di
non solo grazie ai tradizionali meccanismi di conduzione e convezione
ENERGY
NAVAL
AND INTERMODAL INFRASTRUCTURES
pensiamo ad un componente del telaio di un’auto elettrica. Pensiamo alcune fasi in essi presenti. L’aggiunta BIOMEDICAL
AEREONAUTICAL
di questo meccanismo ulteriore
di asportazione del calore rende gli scambiatori più performanti e
di volerlo progettare e poi realizzare a spessore variabile, ovvero molto
robusto dove deve resistere a carichi sia statici, sia dinamici, sia a consente di ridurne le dimensioni con evidenti vantaggi in termini
APPLICATIONS (TRANSPORT AND MOBILITY)
OTHER SECTORS WITH SIGNIFICANT IMPACT
di
urto e più sottile o leggero dove deve solo sostenere la copertura della
carrozzeria. Realizzare questo componente mediante processi tradizionali
richiede o lo stampaggio di più parti di diverso spessore, per
poi saldarle, o la fusione in stampi molto complessi. Al contrario con
processi AM può essere ottenuto di singolo pezzo a spessore variabile
o ancor meglio densità variabile, senza che questa libertà di progettazione
a spessore variabile abbia un impatto sui costi di produzione.
Innovative materials: metal matrix composites, “smart”
metals, meta-materials, hybrid and functionalized
materials.
Advanced and smart manufacturing technologies:
Additive Manufacturing, Micro Manufacturing, integration
of sensors for on-site and in-line monitoring and control.
New design criteria: topological and multi-criteria
optimization, maintenance on demand,
eco-design approach.
New simulation techniques: spatial and temporal multiscale,
multi-physics, damage modeling.
Alla domanda dovrei rispondere con franchezza sottolineando come
le tecniche di progettazione siano mature da lungo tempo, più di
Smart structures and components: integrated sensors
and actuators, distributed sensors, IoT, low-power and
self-powered sensors.
quanto lo siano i processi AM. Si prendano ad esempio tutti gli strumenti
di ottimizzazione topologica. Non sono strumenti recenti, sono
strumenti oggi resi molto potenti dalle possibilità e dai gradi di libertà
offerti dalla tecnologia AM. Tuttavia, abbiamo bisogno che il progettista
conosca e disponga di una nuova metrica ed ontologia che gli
consenta di progettare forme, funzioni, estetiche nuove amplificando
Innovative strategies for assembly, diagnostics,
prognostics, communication and localization,
autonomous driving.
le potenzialità date dall’AM ma senza cadere nelle trappole dei limiti
che anche le tecnologie AM hanno. Per questo nel WP1 studiamo uno
strumento di design for AM, che consenta la progettazione di prodotto
ottenibile mediate AM e che anticipi ed includa nel processo di progettazione
le regole per la produzione AM.
3. Ci sono dei materiali che state studiando e che giudicate promet-
Big data analytics: data mining, intelligent data fusion,
statistical monitoring and robust product / process
tenti per specifiche applicazioni?
optimization.
Una parte fondamentale del WP1 è dedicata ai nuovi materiali e alle
nuove polveri. Non posso raccontare qui per ragioni di spazio tutto ciò
che si sta indagando. Mi limiterò a fare alcuni esempi. Per cominciare,
stiamo studiando materiali a transizione di fase che applicati alla
realizzazione di scambiatori di calore permettono di asportare calore
alleggerimento del componente. Come secondo esempio possiamo
considerare l’applicazione delle tecnologie additive ai materiali piezoceramici.
Per questa famiglia di materiali il processo di stampa
più adatto è il Binder Jetting, e nel progetto si è partiti dalla sintesi di
polveri di diversi materiali e si è arrivati alla realizzazione di forme difficilmente
ottenibili con i processi tradizionali a meno di ingenti spese
nella realizzazione degli stampi (Fig.1 - Esempio).
Considerando più in generale l’ampia famiglia delle tecnologie additive,
le polveri di partenza sono uno dei principali responsabili della
buona realizzazione del processo di stampa. Per questa ragione, nel
progetto, ampio spazio è riservato alla analisi delle proprietà della polvere
che ne caratterizzano la processabilità. Sono state proposte alcune
composizioni appositamente progettate per la stampa additiva
e si è valutato anche come e in che quantità sia possibile riciclare parte
della polvere coinvolta nel processo di stampa, ma non fusa, così da
avere un processo maggiormente sostenibile ed ecologico.
4. Quali sono i processi AM innovativi che state sperimentando? E
con quali risultati?
Grazie a Lis4.0 il Dipartimento ha arricchito la sua dotazione hardware
di due nuovi sistemi di stampa. Il primo sistema, Studio System+
di Desktop Metal (Fig.2 - Fase di stampa BMD di feedstock metallico
mediante testa di estrusione (componente: manifold, materiale: 316L,
ugello di estrusione: 0.4mm), è basato sul principio, sviluppato in collaborazione
col Massachusetts Institute of Technology, della stampa
mediante estrusione di feedstock metallico (Bound Metal Deposition,
BMD). La deposizione della geometria 3D sfrutta la presenza nel composto
metallico del legante polimerico, mentre la densificazione del
metallo avviene mediante successiva sinterizzazione in forno. Grazie
a questo è possibile ottenere componenti in materiali difficili da
stampare mediante tecniche a fusione, come il rame o gli acciai per
utensili (un esempio di stampa in rame è mostrato in Fig.3 - Parti sinterizzate
in rame puro ottenute mediante tecnica BMD (componenti:
filtri con riempimento a lattice tipo diamante, materiale: rame puro,
ugello di estrusione: 0.25mm)).
Il secondo sistema è una stampante SLM (Selective Laser Melting),
principio sicuramente più consolidato ma con funzionalità uniche
e non commerciali. Si tratta difatti di un sistema di stampa aperto,
ovvero che consente di testare soluzioni innovative, come l’utilizzo
di una sorgente laser modulabile nel tempo, ovvero che può lavorare
in modalità sia pulsata sia continua, o modulabile nello spazio, ovvero
che varia la distribuzione di potenza da gaussiana a multimodo. È
possibile poi strumentare il sistema, integrando diversi sensori di processo
(termocamera off-axis, camera NIR – Near InfraRed - coassiale,
sensore di vibrazione della racla, etc.) e coordinare l’azione dei sensori
con la movimentazione del fascio laser e della racla. In questo modo
si abilita il sensing, il monitoraggio ed eventualmente il controllo durante
la stampa. Un esempio di risultato ottenuto con il sistema SLM
open è la stampa di micro-lattici in Zn puro in Fig. 4 (Strutture lattice
in lega di Zinco stampati mediante tecnologia SLM con strategie di
scansione innovative (spessore delle strutture inferiore a 0,2 mm)),
una lega difficile da processare laser vista la sua bassa temperatura
di vaporizzazione, ottenuta attraverso il controllo del singolo impulso
laser.
5. L’intelligenza artificiale è uno strumento ormai pervasivo; come
trova applicazione nell’AM?
Grazie al paradigma di produzione strato su strato, i processi AM permettono
un livello completamente nuovo di accesso a misure in tempo
reale durante la realizzazione di ogni singolo strato del prodotto. È
infatti possibile acquisire grandi quantità di dati attraverso una varietà
di sensori, tra cui fotocamere e termocamere, per tutta la durata del
processo. È qui che l’intelligenza artificiale gioca un ruolo chiave, in
quanto permette di elaborare questa grande mole di dati, complessi e
variegati, permettendo al sistema di identificare, in modo automatico
e tempestivo, condizioni anomale e instabilità di processo, anticipando
il riconoscimento di difetti nella parte in produzione. Permette inoltre
di intervenire, quando possibile, con azioni correttive e adattative,
per ridurre gli scarti e migliorare qualità e produttività degli impianti.
Lo studio di nuove soluzioni di intelligenza artificiale e analisi di dati
complessi è uno dei temi di ricerca del progetto Lis4.0, che trova applicazione
in processi AM a letto di polvere e basati su estrusione di
materiale.
6. Avete in previsione lo sviluppo di prototipi che rappresentino risultati
dei vostri studi, specialmente nel settore automotive, argomento
principale di Lis4.0?
Uno dei prototipi che stiamo studiando nel WP1 è la camicia di raffreddamento
per un motore elettrico in-wheel della vettura sviluppata
dal team DynamiS per la Formula SAE. Questo componente è stato
progettato per essere prodotto in lega di alluminio tramite SLM ed è
caratterizzato dall’utilizzo di strutture “lattice” per migliorare le caratteristiche
di scambio termico. Allo stato attuale della ricerca le strutture
TPMS (triply periodic minimal surface), ed in particolare la struttura
giroide, sembrano offrire le migliori prestazioni in base ai risultati
ottenuti con analisi numeriche di fluidodinamica (CFD). Tramite il sistema
SLM open di Lis4.0 poi si è ottimizzato il processo SLM in una
modalità di stampa innovativa, che permette l’ottenimento di pareti
molto sottili e di geometrie a sbalzo che non necessitano di supporti.
In questo modo le geometrie ottime delle strutture giroidi risultato
della simulazione CFD sono state realizzate e testate (un’immagine
della struttura soggetta ai test è mostrata in Fig. 5 - Esempio di struttura
giroide stampata SLM in alluminio sottoposta a test meccanico).
meccanica magazine
75
Progetto Lis4.0
76
ENG
Lis4.0 project: interview with Barbara Previtali, head of WP1
1. What is the WP1 of the Lis4.0 project about, and which are the
main challenges it must face?
The WP1 - Smart metal additive manufacturing for functionalised
4D structures is the first of the WPs of the Lis4.0 (LIghtweight and
Smart structures for industry 4.0) project. The general theme of the
Lis4.0 project, which is to investigate lightweight and smart structures
to be integrated, designed, created and equipped with sensors
according to the I4.0 paradigms concerning sustainable mobility,
is covered in the WP1 through Additive Manufacturing processes.
In fact, Additive Manufacturing (AM) enables a new way to design,
which involves using lightweight, optimised and high-performance
materials without defects thanks to the process monitoring
systems, and creating components that are high-performing and
more eco-friendly in terms of environmental impact and resource
consumption. Therefore, the challenges of the WP1 are related to
the AM processes considering all its steps namely, design, material
performance, zero-defect processing via monitoring leading to the
creation of lightweight, functionalised and smart products.
2. What is the status of the design techniques for AM?
AM involves a series of new processes and technologies that free
product designers from many of the limitations imposed by conventional
manufacturing processes. For example, think about one component
of an electric car chassis. Assume that we want to produce
the chasis with a variable thickness, making it thicker wherever it
must resist static and dynamic loads or collisions and thinner or lighter
where only the parts act as a cover to the rest of the car body.
Producing this component through conventional processes requires
stamping and welding of sheet metal parts according to their
thickness, or through casting using highly complex moulds. On the
other hand, AM processes enable to produce the single component
with variable thickness and even variable density, knowing this will
not impact the production costs.
Honestly, these design techniques have been mature for a long time,
longer than the AM processes themselves. The proof is in the many
available instruments for topology optimisation. The design tools
are not completely new but their exploitation to take advantage of
opportunities offered by the AM technology is more recent. However,
it is required that the designers know and can access new metrics
and ontology in order to design new shapes, functions, aesthetics
by increasing the possibilities given by AM. This can allow an
AM based product design process aware of the design for AM rules
starting from the design phase.
Materials), when used in heat exchangers, allow removing the heat
both through conventional thermal conduction mechanisms and solid-state
convection but also exploiting solid/liquid phase transformation.
This additional system to remove the heat allows to improve
the performance of the heat exchangers and also to reduce their dimensions,
which turns out to be an advantage in terms of the weight
of the component. Another example is the application of additive
technologies for piezoceramic materials. For this category of materials,
the most suitable printing technique is Binder Jetting. Within
the project, we studied the synthesis of different powder feedstock
and eventually got to create shapes hardly obtainable by conventional
processes without having to face the high cost to produce the
moulds. It can be highlighted that within the big family of additive
manufacturing technologies, the powder feedstocks play a crucial
role on the success of the printing process. For this reason, the
project deeply focuses on the analysis of the powder characteristics
that has a direct link with the processability. We suggested some
combinations designed ad hoc specifically for additive manufacturing
and evaluated how and in which quantity it is possible to recycle
part of the used powder involved in the printing process, in order to
make the whole process more sustainable and eco-friendly.
FIG. 1
4. Which are the innovative AM processes currently studied? Which
are the results?
Thanks to the Lis4.0 project, the Department expanded its collection
of equipment by adding two new printing systems. The first
one, Desktop Metal Studio System, is based on the extrusion of metallic
feedstocks called Bound Metal Deposition (BMD).
3. Are you examining materials that you feel may be promising for
specific applications?
A fundamental aspect of WP1 is new materials and powders. Given
the limited available space, I cannot provide all the details about
what we are currently investigating. Nevertheless, I will give some
examples. Firstly, we are investigating how PCMs (Phase Changing
FIG. 2
The approach is based on a principle developed by the company in
collaboration with the MIT – Massachusetts Institute of Technology.
The deposition of the 3D geometry exploits the presence of polymeric
binder inside the metal compound, meanwhile, the densification
of the metal occurs by sintering in a furnace. This makes it possible
to obtain components with materials that are hard to print by melting
techniques, such as copper and tools steels (fig. 3: example of a
printed copper component).
5. Nowadays, AI is everywhere. How does it apply to AM?
Thanks to the layer-by-layer production paradigm, AM processes
allow a new level of access to real-time measurements during the
creation of each produced layer. In fact, it is possible to acquire an
enormous amount of data thanks to many sensors, among which visible
range and thermographic cameras, throughout the entire process.
AI plays a crucial role since it allows to elaborate such amount
of complex and diverse data so that the system can immediately and
automatically identify extraordinary and unstable conditions. This
way defects can be detected during the production phase. By applying
the required corrections and adjustments we reduce scrap
generation and improve the overall productivity. Investigating new
AI and complex data analysis solutions is one of the goals of the
Lis4.0 project, which find their application in powder bed and extrusion-based
AM processes.
FIG. 3
The second is an SLM system, working on a well-established principle
but with unique and non-commercial features. It is an open AM
system, allowing to test innovative solutions like a laser source with
temporal and spatial beam shaping capabilities. Hence, the system
can operate with continuous wave or pulsed wave emission, and the
beam shape can be regulated from a Gaussian distribution to a multimodal
one. Moreover, it is possible to further equip the system with
in-situ monitoring sensors (off-axis thermographic camera, coaxial
near infrared camera, recoater vibration sensor) and coordinate
their acquisitions with the beam or recoated movement. We are able
to develop online monitoring and process control solutions this way.
Fig.4 shows an example of one of the results obtained with the open
SLM system. We see highly detailed microlattices in a Zn-alloy, very
difficult to process by a laser given its low vaporization temperature.
We obtained such details by controlling precisely the energy release
of every single laser impulse.
6. Do you plan on developing prototypes that will demonstrate the
results of your work, especially in the automotive industry, as per
one of the main topics covered in Lis4.0?
One of the prototypes under investigation in WP1 is the cooling jacket
for the in-wheel electric motor developed by our Dynamis PRC
Team for the annual FORMULA SAE competition. Designed to be
produced in steel by SLM, the cooling jacket is characterised by the
implementation of lattice structures to improve the heat exchange.
Our current research showed that the TPMS (triply periodic minimal
surface) structures in general, and the gyroid type in particular
seem to perform better based on the results obtained via Computational
Fluid Dynamics (CFD) analysis. Thanks to the open SLM system
of the Lis4.0 project, we optimised a new innovative printing
technique that allows producing extremely thin walls and overhang
geometries without supports. Thanks to this approach, the gyroid
structures optimised through the CFD simulation were successfully
printed and tested (image of a structure undergoing a test).
meccanica magazine
77
FIG. 5
FIG. 4
geometry that can be developed in
different dimensional scales.
and actuators, distributed sensors, IoT, low-power and
self-powered sensors.
Progetto Lis4.0
78
ITA
Autonomous Systems
For the transport of people with
drive systems based on new highresolution
localization systems, and
human-machine interaction.
Intervista LIGHT AND HEAVY MOTORWAYa Stefano Melzi,
RAILWAY
MEANS OF TRANSPORT
professore coinvolto nel WP4
NAVAL
1. Di cosa si occupa il WP4 nell’ambito del Lis4.0? Quali sono le principali
sfide che affronta?
Il WP4 di Lis4.0 è incentrato sullo sviluppo e applicazione di tecnologie
innovative per la mobilità sostenibile delle persone. In particolare, la
ricerca si propone di progettare sistemi per la guida assistita (ADAS) e
per la guida autonoma connessa, attraverso lo sviluppo di algoritmi di
automazione e la creazione di un sistema di comunicazione tra veicoli
e infrastruttura (V2X).
Parallelamente, il WP4 analizza e verifica l’impatto di tecnologie innovative
impiegate per la realizzazione dei veicoli, valutando l’introduzione
di materiali con un migliore rapporto tra peso e resistenza
e maggiori capacità di assorbimento di energia. Tutte le attività del
WP4 sono svolte tenendo sempre presente il ruolo centrale della persona
che si traduce nell’attenzione al comfort e allo sviluppo di interfacce
HMI.
Le attività del WP4 gravitano attorno ad un veicolo dimostratore: si
tratta di un pullmino elettrico a zero emissioni per il trasporto di una
decina di persone che stiamo trasformando in uno shuttle urbano a
guida autonoma.
Gli obiettivi del progetto sono numerosi e ambiziosi e ci troviamo di
fronte a diverse sfide: innanzitutto stiamo sviluppando l’architettura
di controllo del veicolo per implementare logiche che portino ad una
progressiva automatizzazione delle operazioni di guida del veicolo,
comprensive di feature basate sulla connettività V2X. In secondo luogo,
abbiamo sviluppato e stiamo implementando modelli matematici
per valutare l’effetto dell’installazione di componenti alleggeriti su
prestazioni e autonomia e l’impatto di materiali ad alto assorbimento
di energia di deformazione sulla sicurezza passiva. Infine, stiamo costruendo
un’interfaccia uomo-macchina innovativa che consenta agli
utenti di maturare fiducia nel sistema di guida autonomo attraverso
la condivisione delle informazioni che esso impiega per guidare il veicolo
e la comunicazione delle azioni che intraprenderà negli istanti
successivi.
AEREONAUTICAL
APPLICATIONS (TRANSPORT AND MOBILITY)
Innovative strategies for assembly, diagnostics,
prognostics, communication and localization,
autonomous driving.
Big data analytics: data mining, intelligent data fusion,
statistical monitoring and robust product / process
optimization.
AND INTERMODAL INFRASTRUCTURES
2. Quali soluzioni di comunicazione/connettività e localizzazione
sono necessarie a supporto delle logiche di controllo di un sistema
veicolare autonomo?
Questa domanda non ha una risposta semplice: in ambito industriale
ed accademico esistono differenti visioni e linee di pensiero in merito.
Infatti vi sono gruppi di ricerca e aziende che lavorano su sistemi
di localizzazione basati principalmente sul solo utilizzo delle telecamere
(principalmente per limitare i costi) mentre altri utilizzano una
ridondanza di sensori oltre alle telecamere (dai lidar, ai radar, agli ultrasuoni)
processando molti più dati ed eseguendo sensor-fusion per
ottenere risultati più robusti. Dal punto di vista della connettività la
comunità scientifica ed industrial si divide nuovamente in gruppi di
ricerca che sostengono come la connettività V2I e V2V ad alta velocità
ed affidabilità, ottenuta ad esempio tramite il 5G, sia essenziale per
raggiungere I più alti livelli di automazione in sicurezza, mentre altri
sostengono che il singolo veicolo debba essere completamente autosufficiente
come il pilota umano per limitare il più possibile rischi di
cybersecurity. Il nostro prototipo presenta in questo senso una moltitudine
di sensori ridondati e la possibilità di ricevere ed inviare informazioni
proprio allo scopo di comparare e valutare le diverse soluzioni
implementative.
3. Per un’integrazione il più possibile naturale ed immediata con gli
utilizzatori del veicolo e gli utenti esterni, oltre che per migliorare
gli aspetti di sicurezza, quali aspetti di interazione uomo-macchina
avete investigato?
ENERGY
SPACE
BIOMEDICAL
OTHER SECTORS WITH SIGNIFICANT IMPACT
L’interazione con un veicolo autonomo per il trasporto pubblico pone
diversi interrogativi circa la possibilità da parte degli utenti di richiedere
informazioni e di poter impartire istruzioni di controllo. Mentre in
un veicolo tradizionale queste attività sono spesso delegate al conducente,
in questo caso la sua assenza potrebbe creare disagi e soprattutto
risultare pericolosa in caso di emergenza. Bisogna inoltre tener
presente che gli utenti di un mezzo pubblico possono avere diverse
esigenze e richiedere supporto specifico.
Per questo motivo è stato necessario sviluppare un’interfaccia che
potesse supportare le esigenze di utenti eterogenei e questo ha richiesto
l’implementazione di un sistema di interazione che stimoli diversi
aspetti sensoriali dell’essere umano. Il sistema sviluppato sfrutta
principalmente i canali di comunicazione audio video ed integra
un dispositivo di interazione senza contatto con feedback tattile ad
ultrasuoni che, tramite il riconoscimento di specifici gesti delle mani,
abilita diverse funzionalità del mezzo. Oltre all’interazione all’interno
del veicolo si sono analizzate diverse modalità di comunicazione verso
l’esterno. È fondamentale, infatti, che il veicolo possa dare chiara
evidenza delle proprie intenzioni di manovra e allertare gli utenti in
caso di pericolo. In questo caso si è scelto di sfruttare i dispositivi
attualmente installati sul mezzo codificandone opportunamente il
comportamento.
4. Come avete combinato, nei vostri studi, le attività sperimentali in
campo con gli sviluppi in ambiente simulato?
Le tre macro-attività del WP4 seguono percorsi differenti legati in
parte alle loro particolarità e in parte alla situazione sanitaria 2020
che ha spinto ad anticipare alcune attività numeriche rispetto a quelle
sperimentali. L’attività relativa all’impiego di tecnologie innovative nel
veicolo dimostratore viene svolta quasi esclusivamente per via numerica:
è stato sviluppato un modello modulare dello shuttle, comprensivo
di motore elettrico, batterie e logica di controllo della velocità per
prevedere l’autonomia del veicolo in funzione della massa complessiva
e della sua missione, definita in termini di distanza tra le fermate
e profilo di velocità tra le stesse. Le altre due attività hanno come
naturale obiettivo la realizzazione del veicolo dimostratore con tutte
le funzionalità previste. L’architettura di controllo del pullmino è stata
definita e testata in ambiente simulato. Sono stati condotti test per
acquisire i segnali dai sensori installati sul veicolo (telecamera, lidar,
GPS) integrando le informazioni degli stessi per ricostruire l’ambiente
in cui questo si muove. Al momento stiamo realizzando una rete
semaforica portatile che useremo sul campo per testare la comunicazione
del veicolo con l’infrastruttura. Per quanto concerne invece
l’interfaccia uomo macchina, l’intero sistema di interazione è stato
implementato e validato in ambiente di realtà virtuale.
Questo ha permesso di esplorare diverse soluzioni tecniche al fine di
identificare quella più adatta per l’implementazione sul dimostratore
fisico. Il sistema di interazione così sviluppato verrà implementato nei
prossimi mesi sul veicolo per una successiva validazione sul campo
5. Quali sono i principali risultati dei vostri studi sulle logiche di guida
autonoma che avete integrato nella piattaforma sperimentale costituita
dal dimostratore del progetto Lis4.0?
Allo stato attuale abbiamo lavorato alla definizione di una architettura
informatica modulare per l’acquisizione delle informazioni provenienti
da tutti i sensori presenti sul veicolo prototipale e che ne riporti i risultati
in un sistema di riferimento comune fissato con il frame del veicolo.
Tale architettura permette ai diversi sistemi di elaborazioni montati
sul veicolo di poter accedere alle informazioni in ogni momento ed
elaborarle secondo necessità. È stata inoltre realizzata una modalità
di comunicazione digitale tra pc di controllo e sistema PLC montato
sul veicolo per consentire la movimentazione del mezzo mediante una
comunicazione bidirezionale CAN. È invece in via di sviluppo la realizzazione
di un sistema di comunicazione tra l’architettura del prototipo
ed una infrastruttura esterna mediante rete mobile (attualmente 4G)
allo scopo di rendere disponibili informazioni dall’ambiente (es. semafori)
all’interno del veicolo. L’adattamento delle logiche di controllo
progettate in simulazione alla piattaforma del veicolo sono in corso:
esse consentiranno di percepire l’ambiente circostante, decidere le
azioni da compiere e inviare gli input di controllo al sistema di attuazione.
meccanica magazine
79
ENG
What is the WP4 of the Lis4.0 project about? Which are the challenges
it must face?
The WP4 of the Lis4.0 project deals with developing and applying
innovative technologies for the sustainable mobility of people. In
particular, the research aims to design Advanced Driver-Assistance
Systems (ADAS) and systems for Connected Automated Driving
(CAD) by developing automation algorithms and communication systems
among vehicles and infrastructures (V2X). At the same time,
the WP4 aims to analyse and verify the impact of those innovative
technologies implemented in vehicle construction as well as consider
the possibility of introducing new materials with a better weight-resistance
ratio and improved level of energy absorption. All
WP4 activities are carried out keeping in mind the central role of
people, which translates into paying attention to comfort and developing
HMI interfaces.
All WP4 activities revolve around a demonstrator vehicle: a small
zero-emission eclectic bus to transfer about ten people currently
being turned into a self-driving urban shuttle. The objectives of the
project are various and ambitious. And so are the challenges it faces.
First of all, we are developing the architecture of the control
system of the vehicle based on the implementation of dynamics leading
progressively to the complete automation of the driving operations
of the vehicle. These are typical features of V2X connectivity
here included. Secondly, we are implementing mathematical
models developed to evaluate how the installed lightened components
affect both the performance and battery life of the vehicle
and the effect on passive safety of materials with a higher level of
deformation energy absorption. Finally, we are creating an innovative
human-machine interface for users to build their trust in the
autonomous driving system because it shares the information used
Progetto Lis4.0
80
ENG
to move the vehicle around and communicates the actions to take
every step of the way.
2. Which communication/connectivity and localisation solutions
are required to support the approach to control a self-driving system?
This question has no easy answer. At the industrial and academic
level coexist diverse visions and ideas on the matter. Many research
groups and companies are working merely on video-only localisation
systems (mainly to reduce the costs). Instead, others use
an exaggeration of sensors along with cameras (lidar, radar, ultrasound),
which results in having to process a higher quantity of data
and perform sensor-fusions to obtain more reliable results. Moreover,
both the scientific and industrial communities are divided on
connectivity as well. Some research groups support high-reliable
V2I and V2V connections, for example through the 5G network, which
they believe are essential to reach safely the maximum level of
automation. Some others believe the vehicle must be as completely
autonomous, at least just as human pilots are, to limit all cybersecurity
risks. As per what was just described, our prototype is overloaded
with sensors. Consequently, it has just as many opportunities to
receive and send data with the goal to compare and evaluate several
solutions to implement.
3. Other than improving safety, what are other human-machine interaction
aspects you are now investigating to allow the most natural
integration between users and external subjects?
Interaction with a self-driving vehicle used as public transportation
poses many questions about if and how users can ask for information
and give orders. In conventional vehicles, the driver is the person in
charge of carrying out those activities. But in cases where the driver
is missing, problems might occur and a self-driving vehicle can
become dangerous during emergencies. Moreover, it is to remember
that public transportation users may have different needs and
require specific support. Therefore, we developed an interface able
to address the requests of diverse users, meaning having to implement
an interaction system that stimulates several human sensorial
aspects. The developed system exploits mainly communication via
audio-video channels but it is integrated with a contactless device
with ultrasonic tactile feedback that activates features of the vehicle
by recognising specific hand gestures. As well as the interaction
inside the vehicle, other ways to communicate with the external environments
got explored. In fact, it is vital the vehicle is able to clearly
show its intention of movement and warn users when in danger.
In this case, the decision was to use the devices already installed on
the vehicle but with their behaviour conveniently encoded.
health situation started in 2020 that forced us to anticipate some
numerical activities over experiments. The activities related to the
use of innovative technologies on the vehicle are carried out exclusively
via numerical simulations: we developed a modular model of
the shuttle, including eclectic motor, batteries and speed control logic
to foresee its battery life according to the overall mass and mission,
defined in terms of distance and travel speed between each
stop. The other two activities logically aim to build the prototype
complete with all the planned features. The control system of the
bus was defined and tested through a simulator. Tests were carried
out to collect signals from the installed sensors (camera, lidar, GPS),
integrated with other sensor-collected information to recreate the
environment where it moves around. At the moment, we are working
on a portable traffic light network to bring on-site to test how
the vehicle and the infrastructure communicate. About human-machine
interaction, the whole interaction system was implemented
and validated through a virtual reality environment. VR allowed us to
explore different technical solutions to identify the one that better
suits the physical prototype. The fully-developed interaction system
will be implemented on the vehicle during the following months to be
validated on-site later.
5. Which are the most relevant results of your activities on self-driving
dynamics implemented on the experimental platform built
with the simulator of the Lis4.0 project?
We are currently designing a modular computing system to collect
information from onboard sensors of the prototype and report the
results to a referral system fixed on the vehicle frame. This architecture
allows the different elaboration systems on the vehicle to
constantly access and elaborate information according to what is
needed. We also created a digital communication system between
the control computer and PLC system onboard to enable the movement
of the bus via bidirectional CAN communication. On the other
hand, we are currently developing a communication system between
the architecture of the prototype and an external infrastructure
via mobile data (currently 4G) to make information from the environment
available to the vehicle. We are now also implementing
the control dynamics designed via simulation to the platform on the
existing vehicle: this will enable us to improve the perception of the
surrounding environment, decide which actions to take and send
new control inputs to the actuating system.
4. During the activities, how did you combine physical experiments
with the development through environment simulations?
The main three WP4 macro-activities follow different paths on the
one hand linked to their features. And, on the other, linked to the
meccanica magazine
81
meccanica magazine
82
DMEC LABS
meccanica magazine
83
3D Vision
3D acquisition through active and
passive systems and measurement
systems integration
meccanica magazine
84
Description:
3D Vision Lab is part of the Measurement and Experimental Techniques
area, in the Mechanical Engineering Department. Our expertise
focuses on non-contact measurement techniques, with particular
interest in the application of 2D and 3D techniques for computer
vision. A key characteristic of is the capability of designing both innovative
machine vision hardware and novel algorithms for the data
analysis. We cooperate with both academic and industrial partners
to develop new solutions, working prototypes or products ready for
the market.
High flexibility of the inspection techniques is guaranteed also by
the UAVs equipped with 2D and 3D vision system developed in this
laboratory.
References:
ABB, National Instruments, Milan A.C., ISS, Steriline Robotics, North
Sails, Politecnico di Milano Wind tunnel.
Instruments & Facilities:
• Industrial cameras (Hyperspectral Cameras, Near InfraRed cameras,
High Dynamic Range cameras, High Speed cameras, Industrial
smart cameras).
• Lighting solutions to enhance 2D vision-based measurements.
• Stereoscopic systems to perform 3D measurements.
• Structured Light and Time of Flight sensors for dense 3D point
clouds reconstructions.
• Triangulation sensors for profile analyses
• Lenses for dimensional measurements of components
Activities:
Industrial applications
• Development of AI based systems for 3D object recognitions.
• Development of Hyperspectral machine vision systems for food industry
• Development of stereoscopic vision systems for robotic applications.
• Data fusion between NIR and HDR cameras for thermal analyses.
• Development of industrial solutions for high-temperature 2D and 3D
vision applications
• Implementation of algorithms for image processing.
• Development of embedded vision solutions for supporting human
operators.
meccanica magazine
85
Sports
• Dense point cloud reconstructions and geometrical analysis of sail
shapes both in wind tunnel and in full scale conditions.
• Particle images velocimetry (PIV) with high-speed cameras in wind
tunnel.
• Motion analysis and gesture recognition for post traumatic rehabilitation.
• Measurement of cyclist biomechanics in wind tunnel tests.
Additive Manufacturing
3D printing of metals, ceramics,
polymers and biomaterials
meccanica magazine
86
Description:
The research activities carried out in this lab span across different
fundamental and applied disciplines, both using experimental and
computational methods. The lab is equipped with several facilities
for Additive Manufacturing of metals, including Laser Powder
Bed Fusion, Electron Beam Melting, Directed Energy Deposition
of wires and powders, Binder Jetting, and Cold Spray, systems for
bioprinting and for building large structures with fibre-reinforced
composites and polymers. Our research mainly focuses on design
methods for additive manufacturing, development of new materials
and technological solutions, process monitoring, structural/functional
design, post-process treatments, and testing of materials
and components.
Certifications:
•Test “Stockbridge Type Dampers Dynamic Characterisation”
(ISO9001:2008 certification).
• Test “Stockbridge Type Dampers Effectiveness Test” (ISO9001:2008
certification).
References:
BLM group, Fonderia Maspero SrL, Marposs SpA, Sapio SPA, Titalia
SpA, Ansaldo Group, Leonardo Helicopters, Ferrari, Lucchini, GE
Avio.
Instruments & Facilities:
• Renishaw AM250 laser powder bed fusion system, featuring a build
volume of 250 mm × 250 mm × 300 mm
• 3D-NT open laser powder bed fusion system, featuring a build volume
of ø150 mm x 150 mm and 250W Yb:Glass nLIGHT fiber laser with
temporal and spatial beam shaping capability, coaxial and off-axis
monitoring, high temperature preheating
• In-house built LPBF prototypes. Penelope with in-situ monitoring
and defect correction system. Powderful with multi-material depo-
sition capability. Grisù with preheating temperatures up to 1000°C.
• ExOne Innovent+ Binder Jetting system with a build volume of 160 mm
x 65 mm x 65 mm
• Laser - Directed Energy Deposition system with 3 kW IPG fiber laser,
two-cylinder powder feeder, coaxial powder deposition head, coaxial
wire deposition head and ABB anthropomorphic robots with tilting/
rotating table
• Trumpf Powerweld micro laser metal wire deposition (µLMWD) system
with 250 W pulsed wave Nd:YAG laser and lateral wire feeder
• Arcam A2 electron beam melting system with 3500 W beam power,
build volume of 210 mm x 210 mm x 350 mm and 8000 m/s maximum
scan speed
• High-pressure Cold Spray System Impact Innovations 5/8, pre-heating
gas Nitrogen, max gas pressure 50 bar, max gas temperature
800°C, water-cooled nozzle, max powder deposition rate 10 kg/h
• Desktop Metal Studio System+ Bound Metal Deposition (BMD) system
for metal parts with parts up to 150 mm height and 1kg weight sintered
state using 0.25 mm nozzle diameter
• Efesto flexible extrusion based additive manufacturing system
• Lumen X and BioX for bioprinting
• Facility for big area additive manufacturing (BAAM) of fibre-reinforced
composites
• Equipment for mixing, milling, sieving and handling of powder
• Malvern Morphologi 4 automated imaging system for particle characterization
• Freeman Technology FT4 Powder Rheometer for flowability characterization
of metal powder
• 3D X-Ray CT-Scan microtomography equipment that can be operated
with X-ray energies from 10 to 160 keV, in a volume of diameter 15 cm
and height 22 cm
• Materialise Magics to repair/modify 3D models, generate lattice
structures and prepare the builds.
ro-waste AM
• Machine learning, artificial intelligence and statistical methods for
product and process data analysis in Industry 4.0
Development and characterization of alloys for AM
• Design of new alloys for AM
• Characterization of microstructure and physical properties, mechanical
testing (static and dynamic) of AM processed materials
• Design of thermal and mechanical treatments for AM alloys
• Investigation on surface coating and surface finishing of AM parts
Characterization of AM products
• Non-destructive testing of AM parts by X-ray CT-microtomography
• Structural Assessment of complex parts under service conditions
• Static and fatigue test for performance evaluation of full-scale parts
meccanica magazine
87
Activities:
Design and optimization of structural and functional parts produced by
Additive Manufacturing techniques
• Design for Additive Manufacturing: structural/functional design and
optimization of parts and systems
• Light-Weight Design: system inertia reduction with Topological Optimization
and Lattice Structures
• Geometrical restoring and structural repair by cold spray
Process and product optimization, monitoring and control
• Process development and optimization for AM of metals and composites
• Process modeling and simulations by analytical and numerical
methods and experimental validation
• In-situ and In-line monitoring based on big data (signals, images, video-images)
using optical and mechanical systems for Additive Manufacturing
• Closed-loop process control and in-situ defect correction for ze-
Advanced Manufacturing
Laboratory
High performance manufacturing solutions
for Industry 4.0
meccanica magazine
88
Description:
The Advanced Manufacturing Laboratory is equipped with stateof-the-art
research facilities with industrial, prototypal, and experimental
systems, testing and characterization equipment as well
as dedicated software packages. In the laboratory, the complete
material transformation phases are represented from process to its
qualification to the complete production system. Process feasibility,
optimization, and control as well as production systems design
and performance enhancements are covered within the research.
References:
ABB, Alcar Ruote SA, Ansaldo Energia, ASI, ATS Team3D, ATV, Baker
Hughes, BLM Group, Camozzi Ingersoll Machine tools, Carel, CGTech,
CSM Rina, Comau, ESA, GE Avio Aero, Hitachi Rail, Huawei, IMA
Automation ATOP, Intermac, Kern, Kyocera, Lima Corporate, MCM,
R.F. Celada, Saipem, Sandvik Coromant, Siemens, Sovema, Standex,
Technoprobe, Tenova, Trumpf, Yasda, WatAJet
Instruments & Facilities:
• BLM Group Adige Sys LC5 combined laser sheet and tube cutting
system with 6 kW fiber laser
• BLM Group Alfetta flexible robotic laser welding cell with 6 kW fiber
laser and wobbler head
• Lasers for e-mobility cell for remote welding, stripping, cleaning,
and ablation solutions with 1 kW single mode fiber, 100 W green, and
50 W ns-pulsed fiber lasers
• Laser Induced Forward Transfer system for high precision multimaterial
additive manufacturing
• Laser micromachining cell with high power fs, ps, and ns pulsed
laser sources
• Qilin hand-held laser welding system with 3kW fiber laser
• Yasda YMC 650 + RT20 High precision 5 axis CNC machining centre
• KERN EVO Ultra precision 5 axis CNC machining centre
• The Digital Twin Lab for physical simulation of production systems
• Tecnocut IDRO 1740 water Jet cutting system with Flow intensifier
pump up to 380 MPa
• Alicona Infinite Focus micro coordinate measurement system (resolution
up to 10 nm)
• Zeiss Prismo 5 VAST MPS HTG coordinate measuring machine (E0,M-
PE = 2,0 + L/300 μm)
• North Star Imaging NSI X25 micro computed tomography system
• FLIR X690Xsc MWIR high speed thermal camera with acquisition rate
up to 20.000 fps
• Additive manufacturing systems (see “Additive manufacturing” brochure
for more details)
meccanica magazine
89
Activities:
The research topics include the following:
• Additive manufacturing process improvement, monitoring, control,
and novel solutions
• Advanced machining and machine tools
• Deformation of metals with conventional and flexible tools
• De-manufacturing systems for circular economy
• Geometric product specification and verification
• In-situ process monitoring and intelligent data analysis
• MI_crolab – Micro Machining Laboratory
• Performance evaluation and optimization of manufacturing systems
• SITEC - Laboratory for Laser Applications including cutting, welding,
microprocessing, cladding, heat treatment
• Virtual manufacturing and simulations of manufacturing processes
• Water Jet Lab for process improvement and novel solutions
Cable Dynamics Lab
Experimental tests for the evaluation
of the dynamic properties of cables,
dampers, spacers
meccanica magazine
90
Description:
The knowledge of the cable and damping devices mechanical properties
allows to correctly estimate, through numerical models, the
overhead transmission line dynamic response to the wind excitation.
In particular, conductor self-damping together with damper
dynamic stiffness and spacer-damper stiffness and damping properties
are evaluated through laboratory tests and are used in the
numerical models both to assess the conductor + damping devices
dynamic performance and to optimise the damping devices design.
The laboratory allows both customized tests and standard tests
carried out according to the main International Standards.
Certifications:
•Test “Stockbridge Type Dampers Dynamic Characterisation”
(ISO9001:2008 certification).
• Test “Stockbridge Type Dampers Effectiveness Test” (ISO9001:2008
certification).
References:
Enel, Terna, EDF (France), NTDC (Pakistan), Statnett (Norway), ESB
(Ireland),De Angeli Prodotti, TRATOS, LS Cables (Korea), Salvi/Dervaux
(France), Damp/Mosdorfer (Austria), Cariboni/Alstom, Fratelli
Bertolotti, Gorla Morsetterie, Arruti (Spain), SA-RA Energy (Turkey)
Instruments & Facilities:
• 50m long laboratory span
• Programmable Logic Control (PLC)
• Gearing Watson electro-dynamical shaker + amplifier (V617/DSA4-
8k).
• Unholtz&Dickie electro-dynamical shaker + amplifier (SA15-S452).
• B&K 1050 controller.
• Electromechanical actuator UNIMEC TP7010 MBD with electrical
motor 7.5kW 750rpm (conductor tensile load control)
• N. 5 current suppliers TDK Lambda GEN25-400-3P400 (50kW total
power) (conductor heating - thermal tests)
• Load cell U10M/250kN + HBM Scout 55 ( conductor tensile load
measurement)
• Kistler 30 kN piezoelectric load cells.
• Piezo-accelerometers B&K 4508 with power amplifiers PCB
480E09.
• Strain gauges and conditioning modules.
• Laser transducers and other displacement transducers
• Temperature sensors
• Various sizes hydraulic actuators and load cells + MTS Flex Test
Digital Controllers
meccanica magazine
91
Activities:
Cable self-damping test
• Decay Method.
• Power Method.
• Inverse Standing Wave Ratio.
Cable + suspension clamp fatigue test
High temperature conductors thermal tests
• linear coefficient of thermal expansion
• Sag curve/knee-point temperature
Stockbridge dampers dynamic performances
• damper characteristic curve (Mechanical impedance/Dynamic
stiffness with Imposed constant speed or constant displacement)
• damper effectiveness test
Spacer-dampers dynamic characterization
• Stiffness and damping properties
• Stiffness and damping properties at high and low temperature
• Aeolian vibrations and subspan oscillations fatigue tests
• Simulated short circuit test
• Slip test
Electric Drives
Laboratory of electrical drives and
power electronics for industrial and
automotive applications
meccanica magazine
92
Description:
The laboratory of electrical drives and power electronics can test
electric motors, power converter and control system both for industrial
application (traction, grid interface) and automotive applications
(hybrid and full electric vehicles).
Thanks to two different test rigs electric drive of a power up to 100
kW and torque up to 1500 Nm can be tested. In the laboratory, battery
cell life test and identification test can also be performed.
Thanks to our expertise, customized (high-efficiency) power
electronics hardware based either on silicon and wide-bandgap
semiconductors can be developed according to the customer requirements.
Moreover, wired or wireless solutions for condition monitoring of
power electronics equipment are available.
References:
ABB, Siemens, Ansaldo, HSD, CIFA, OEMER, Nice, Bosch Rexroth,
Ferrari, Piusi, Whirpool, Skema, Lucchini RS, Fimer
Instruments & Facilities:
• 100kW Motor test bench (2500Nm/6500 rpm).
• Regenerative Motor Test Bench (35Nm/7500rpm) with PC based
Data Acquisition and Control system and Power Analyzer Yokogawa
PZ4000.
• Power Supply Units (1500W): 600V-2.5A; 300V-15A, 12,5V-120A.
• E4360A Modular Solar Array Simulator Mainframe, E4362A Solar
Array Simulator DC Module, 130V, 5A, 600W.
• dSpace Real-Time board for electrical drives prototyping.
• Electrolyzer for Hydrogen production.
• Active load for battery cells testing.
• Scopes, Current probes, Insulated Voltage probes, Industrial
Electrical Drives, Laboratory Power Supplies.
• Development system for Embedded hardware and software (microchip,
Freescale, TI, STM) and Static Converters.
• 30kW IGBT-based three-level T-type three-phase converter with sensing
interface (ETH, CAN, UART)
• 35kW IGBT-based H-bridge two-level converter module with sensing
interface (aimed to modular connection towards MMC topologies)
• 20kW SiC-MOSFET-based two-level three-phase converter with sensing
interface (ETH, CAN, UART)
• Modular LCL-filter with distributed sensors and related interface
(ETH)
• Teaching kits for university students and/or academic initiatives: motor-control
kit (BLDC, IM), power conversion kit (DC-DC, PV, MPPT)
Activities:
HSD AC motors High efficiency Electric Motor Testing
• No load test and magnetizing curve.
• Parameters identification test.
• Load test, efficiency measurement and thermal behavior.
• Full speed test in field weakening condition.
• Test on ac induction and ac permanent magnet synchronous motor.
Solar Simulator
• MPP Validation.
• Solar Inverter Tests-Rig.
Methods to achieve enhanced reliability of power electronic systems
• Reliability model of most fragile components of power electronic
equipment used in traction drives and grid interface
• Development of wired or wireless solutions (e.g. BLE) for condition
monitoring of power electronics equipment
• Development of customized (high-efficiency) power electronics hardware
based either on silicon and wide-bandgap semiconductors.
meccanica magazine
93
Electric drive test for household application
• Parameters identification test.
• Load test, efficiency measurement and thermal behavior.
• Full speed test in field weakening condition.
• Test on ac permanent magnet synchronous motor with vector sensorless
control.
Battery life cicle test
• Rated current charge/discharge test for cell capacity identification.
• Life test under rated condition.
• Life test under variable current and temperature condition.
• Equivalent Electric circuit identification test.
Battery Power Electric drive for hybrid electric vehicle test
• Traction curve identification.
• Regenerative Braking test.
• Drive cycle test.
• Overall efficiency measurement.
Small PEM Fuel Cell (<1.5 kW) Test bench
• Equivalent Electric circuit identification test.
• Parameters identification test.
• Load test, efficiency measurement and thermal behavior.
LAMBDA Lab
Measurements for biomedical applications
Fiber optic and image-based solutions
for measurements
meccanica magazine
94
Description:
The Lambda Lab (Laboratory of Measurements for Biomedical Applications)
is part of the Measurement and Experimental Techniques
area. The main research fields of the group are based on fiber
optic and image-based measurements for biomedical applications,
along with light-based approaches for minimally invasive therapy
and monitoring. The Lambda Lab develops innovative and experimental
solutions for thermometry in biological tissues undergoing
laser and nanoparticles-enhanced photothermal treatments. The
team works on novel algorithms for temperature-based therapy
control, and in the field of hyperspectral imaging for biomedical
applications. A new research line is developed in the field of biomechanical
monitoring for health and sport activities.
References:
European Research Council (ERC), Fondazione Cariplo and Regione
Lombardia, Ministry of University and Research (MUR).
Instruments & Facilities:
• Interrogators for multipoint fiber optic sensing, static and dynamic
full-spectrum analysis, in the ranges 800-900 nm and 1460-1620 nm
• Core Alignment Fusion Splicer for optical fibers splicing
• Fiber Bragg Grating sensors with custom-made features
• Laser sources operating within the therapeutic window (808-1064
nm) in both continuous and non-continuous modes
• Enclosure and systems for laser safety
• Infrared imaging for contactless thermal field measurements
• Hyperspectral camera working in the range 400-1000 nm (VIS-NIR)
• Thermal property analyzer
• 3D printer
• Workstation
• Magneto-inertial measurement units
• Power meter, thermopile and thermocouples
• Different laser applicators (200-300-400-600 µm) and collimators for
contact and contactless target irradiation
Activities:
Thermometry for biomedical applications
• Temperature measurement in tissues undergoing thermal ablation
procedures
• Sensors-based temperature measurements
• Infrared thermometry
• Diagnostic imaging for thermometry (Magnetic Resonance Thermometry)
meccanica magazine
95
Measurements for photothermal therapy
• Thermal characterization of nanoparticles-embedded phantoms
• Measurement of thermal properties of biological tissues
• Hyperspectral-based estimation of biological thermal damage
• FEM analysis
Fiber optic-based measurements
• Thermometry for biomedical applications
• Shape sensing, strain for prosthetic devices
Other expertise
• Experience with cell cultures and in vivo models (accredited)
• FEM analysis and Monte Carlo-based simulations of laser-tissue interaction
• Biomechanical monitoring for health and sport activities
LaST- Laboratory for safety
of transport systems
Ground vehicle design and testing,
focusing on active safety
meccanica magazine
96
Description:
Main activities of the Laboratory involve testing and modelling of
vehicle systems with emphasis on suspension systems, tyres, braking
systems, drivelines of conventional or electric vehicles. NVH,
durability, thermal and mechanical performances are derived either
experimentally or by numerical simulations. The measurement of
the parameters affecting the vehicle dynamics, e.g. vehicle inertia
properties, is performed by original and dedicated test rigs. Patented
load cells and measuring hubs are available. The measurement
and simulation of vehicle ride comfort is one of the key competences
of the Laboratory.
Certifications:
Measurement of the mass properties of a rigid body by means of
InTensino. ISO 9001:2008.
References:
Brembo, Daimler, Evobus, Fiat Powertrain, Ferrari Automobili, Fiat
Chrysler Automobiles, Ford USA, Honda RD America, IDIADA, IVECO,
Lamborghini Automobili, Maserati Automobili, SameDeutz-Fahr,
Toyota Motor Europe.
Instruments & Facilities:
• InTenso test rig: measurement of the mass properties of full vehicles.
• InTensino test rig: measurement of the mass properties of rigid
bodies up to 400 kg.
• RuotaVia test rig: twin drum providing a rolling contact surface for
tyre or suspension or driveline test and development.
• Measuring hubs: measurement of the forces acting at the tyre
contact patch.
• (Special patented) 6 axis load cells: measurement of forces for
NVH or durability purposes.
• MaRiCo dummy: objective measurement of the ride comfort of vehicles.
• BRAD: measurement of the forces acting both at the brake and at the
tire-ground interface.
• VeTyT (Velo Tyre Test rig) for the mechanical caractherisation of bycicles
tyres.
Activities:
IInTenso+
• Measurement of the Centre of Gravity location of full vehicles.
• Measurement of the Inertia Tensor of full vehicles.
The rig is composed by a ‘carrying system’ (usually a steel cage), which
bears the body under test; three rods connect the carrying system to
an external fixed frame. The rods are connected to the frame and to
the carrying system by low-friction Hooke joints. A load cell is fitted on
each rod. The orientation of the rods is measured by means of 6 absolute
17 bit encoders positioned on the upper Hooke joint. The Centre
of Gravity location and the Inertia Tensor are computed knowing the
angular acceleration of the carrying system and the forces acting on it.
InTensino+
• Measurement of the Centre of Gravity location of rigid bodies up to
500 kg.
• Measurement of the Inertia Tensor of rigid bodies up to 500 kg.
The rig is composed by a ‘carrying system’ which bears the body under
test; three rods connect the carrying system to an external fixed frame.
The rods are connected to the frame and to the carrying system by
low-friction Hooke joints. A load cell is fitted on each rod. The orientation
of the rods is measured by means of 6 absolute 13 bit encoders
positioned on the upper Hooke joint. The Centre of Gravity location and
the Inertia Tensor are computed knowing the angular acceleration of
the carrying system and the forces acting on it.
RuotaVia
• Design and testing of tyres.
• Design and testing of suspension systems.
• Design and testing of powertrains.
• NVH measurements.
The RuotaVia rig is composed by a horizontal axis steel drum, providing
a running contact surface for wheels. An asynchronous motor+neuro
controlled inverter drives the drum up to 400 km/h.
Measuring Wheels/Hubs
• Measurement of the forces acting at the tyre contact patch, custom
design.
The measuring hubs are based on a statically determined three cantilever/spoke
structure replacing the wheel centre. Strain gauges are
fitted on each spoke. The statically determined connection consist of
three spherical joints with an additional degree of freedom along the
axis of the spokes. A telemetry system has been designed and employed
to transmit the force signals to a data storage unit.
Instrumented Steering Wheel
The Instrumented Steering Wheel can measure the forces and the moments
applied by the driver at each hand. The ISW has a carbon fibre
composite structure and is equipped with two special six-axis load
cells. Six force transducers are placed inside the handles to detect
the grip forces exerted by each hand.
MaRiCo Dummy
• Objective measurement of vehicles ride comfort.
• Comparison between different seats.
The dummy can reproduce the vertical and longitudinal accelerations
at the body-seat interfaces that would be respectively sensed by a human
subject. It can be adjusted to simulate different human subjects,
from 5 percentile to 95 percentile, and to accommodate to different
seats configuration. The dummy has a vibrating mass moving along
the spine axis. An adjustable magnetic damper controls the motion of
such a mass.
BRAD
The test bench is composed by a rotating steel drum, which provides
a rolling contact surface for a pneumatic tire. The brake under test in
connected to the pneumatic tyre spindle. The vertical load is applied
to the wheel and brake by means of a pneumatic spring. A two-stage
flywheel configuration has been chosen. The test rig can be used to
study the interaction between brakes and tires near wheel locking.
VeTyT
• Measurement of lateral force.
• Measurement of self-aligning torque.
The VeTyT can be employed to test a wide range of bicycle tyres with
different wheel sizes, from 16” to 29” diameter. The system consists of
a rigid frame that allows a wheel to be steered and cambered. Tests
can be performed either on a drum or on a flat surface.
meccanica magazine
97
Material analysis
Physical, chemical, thermal,
microstructural and surface
characterization of materials
meccanica magazine
98
Description:
The laboratory is equipped with analytical instruments and testing
devices for the investigation of material properties. Optical and
electron microscopes equipped with EDX and EBSD detectors are
available for microstructure and failure analysis. Thermal, physical
and chemical properties of materials are characterized by a
set of analytical instruments, including a dilatometer, a laser-flash
analyzer, a differential scanning calorimeter, an optical emission
spectrometer, an oxygen and nitrogen analyzer, and a platform for
the analysis of thermoelectric properties of materials. Properties
of material surfaces and coatings are investigated by a pin-on-disk
tribometer, a scratch tester, and an instrumented microhardness
tester.
References:
Brembo, Ferrari, Avio, Sandvik, Tenaris Dalmine.
Instruments & Facilities:
• Zeiss Sigma 500 Field Emission Scanning Electron Microscope
equipped by the Oxford Ultimax 65 Energy Dispersive X-ray Analysis
(EDS) and the Oxford C-NANO Electron Backscattered Diffraction
(EBSD) detectors
• Zeiss EVO 50XVP Thermionic Scanning Electron Microscope with
the Oxford Inca Energy 200 X-ray microanalysis (EDS) detector
• Nikon Eclipse LV150NL light optical microscope
• Rigaku SmartLab SE powder X-Ray diffractometer for qualitative
and quantitative phase analysis. The instrument is equipped with a
Eulerian cradle for stress and texture analysis
• StressTech X3000 X-Ray diffractometer for nondestructive measurement
of residual stresses and retained austenite in crystalline
materials. It also allows analysis of large mechanical components
including in-situ applications, eg. pipelines and bridges
• Setaram DSC / GTA thermal analysis system equipped with furnace
and rods for temperature cycles of up to 800 and 1600°C
• OES Bruker Q4 Tasman 130. Analyzable matrix: Fe, Al, Ni, Ti. Bulk samples.
Minimum sample size = 25x25x0.5 mm
• LECO Oxygen and Nitrogen analyzer
• Vertical Dilatometer Linseis V75 with temperature ranges RT-900°C
and RT 1600°C
• Laser Flash Analyzer Linseis LFA 1000/1600 for direct measurements
of thermal diffusivity and indirect measurements of thermal conductivity
in the temperature range RT-1600°C
• Seeback/TE Linseys LZT 1100. Combined LFA (thermal diffusivity) and
LSR (Seebeck and resistivity) for cylindrical (up to 6 mm in diameter
and max. 23 mm long), prismatic (2 to 5 mm rectangular and max. 23
mm long) and button-shape (from Ø12.7 to Ø25.4 mm) samples. Maximum
temperature 1100 °C under He atmosphere
• CSM pin-on-disk tribometer
• CSM Microindenter instrumented microhardness (loads from 0,01 to
10 N) and scratch tester (load range 0.3 - 30 N)
• Foerster Sigmatest eddy current instrument that measures the
electrical conductivity of non-ferromagnetic metals electrical resistivity
measurements
Heat flow probes, specifically the high-temperature FCR-200-M-K
supplied by Wuntronic GmbH, with max service temperature 550°C
and max heat flux range 15,800 W/(m2K), sensitivity 560 (W/m2)/mV
• Multimeter 7.5 digits Keithley
meccanica magazine
99
Activities:
• Microstructure investigation, failure analysis and quality control by
optical and scanning electron microscopy. Texture analysis of crystalline
materials by EBSD and XRD
• Chemical analysis by OES, EDX and LECO
• Analysis of phases and residual stresses by X-ray diffraction
• Thermal analysis by dilatometer, laser flash analyzer and differential
scanning calorimetry
• Wear tests by pin on disk tribometer and analysis of coating adhesion
by scratch tester
Material Testing
Static and dynamic tests on materials
and small components
meccanica magazine
100
Description:
The laboratory is equipped with several resonant and universal testing
machines for static and dynamic tests on metallic, composite
and advanced materials. Each testing machine features extensometers
with different gage lengths and temperature ranges, along
with 2D and 3D measurement systems. Furnaces and environmental
chambers are available to perform tests at low and high temperature.
References:
Ansaldo Energia S.p.A., Avio Aero, Brembo S.p.A., ENI S.p.A., Ferrari
S.p.A., Leonardo S.p.A., Radici S.p.A., SACMI, Tenaris.
Instruments & Facilities:
• MTS809 servohydraulic triaxial machine. Ranges: ±250 kN axial;
±2000 Nm torsional; 100 MPa pressure.
• MTS servohydraulic monoaxial machines. Max. force range: from
± 15 kN to ±250 kN.
• Instron electrodynamic testing machine. Max. force: 10 kN.
• MTS electromechanical machines. Max. force range: from ± 2 kN
to ±150 kN.
• Rumul Cracktronic resonant testing machines. Max flexural and
torsional moment:160 Nm.
• Rumul Testronic resonant testing machine. Range: ± 100 kN.
• Italsigma 2TM831 rotary bending machines.Max bending moment:
35 Nm.
• Creep-Fatigue and Crack Growth testing machines. Max load 12
kN. Max temperature 1200°C.
• Induction heaters. Max temperature: 1200°C.
• Furnace MTS 653.01. Max temperature: 1400°C.
• Environmental chamber with built-in controller MTS. Temperature:
-128/+315°C.
• Fixtures and extensometers for fracture mechanics. Temperature
range: -100/+1200°C.
• Extensometers for tensile and LCF tests. Gage length: 8/50 mm.
Temperature: -40/+1200°C.
• GOM Aramis 3D 12M measurement system. Camera resolution:
4096x3000 pixels.
• Creep testing machines, stress relaxation, cyclic creep testing frames.
Max load 30 kN, Max temperature 1100°C.
Activities:
Static and dynamic tests on materials and small components.
• Tensile and compression static tests according to international standards
or customized in order to fulfill the customer needs.
• High cycles fatigue (HCF) and low cycles fatigue tests (LCF). Temperature
range: -40/+1000°C.
• Dynamic tests with customized load spectra.
• Static and dynamic tests for the characterization of the components
(e.g. stiffness).
• Further kinds of test (e.g. flexural, shear) or test conditions (temperature,
standard) can be arranged upon request.
Fracture mechanics
• KIc determination according to ASTM E399.
• JIc determination according to ASTM E1820.
• Measurement of Fatigue Crack Growth Rates according to ASTM E647
and under customized load spectra.
• Temperature range for Fracture mechanics tests: -100/+1000°C.
In collaboration with the interdepartmental laboratory HSR, it is also
possible to perform dynamic characterization tests according to the
ASTM D7136, D3763, ISO 6603, ISO 8256 standards.
Creep, Creep Crack Growth and Creep-Fatigue Crack Growth tests
• Creep strain analysis through extensometry of round section specimens
at high temperature.
• Crack initiation and propagation analysis of pre-cracked C(T) specimens
through potential drop system at high temperature.
• Crack initiation and propagation analysis of pre-cracked C(T) specimens
in a creep-fatigue interaction context.
meccanica magazine
101
Multi axial tests
• Biaxial and triaxial static tests, applied by means of three independent
controlled actions: axial (max 250 kN), torsional (max 2200 Nm),
pressure (max 100 MPa).
• Biaxial and triaxial low cycle fatigue tests (LCF). Tests can be performed
under strain control.
• Biaxial high temperature low cycle fatigue tests (LCF) up to 1000°C.
• Axial-torsional high cycles fatigue (HCF) tests. Axial and torsional
axial can be applied either in phase or out of phase.
• Dynamic tests with customized load spectra.
Tests on polymeric, composite and advanced materials
• Static tests on composite materials according to ASTM standards
(e.g. D6671, D5379, D6484, D695, D3410) and ISO (e.g. 14126, 14129).
• Static tests on polymeric materials according to ASTM (e.g. D3039,
D3518, D638) and ISO 527.
• Low cycles fatigue tests (LCF) and High cycles fatigue (HCF), e.g. ISO
13003
• Other kinds of test (e.g. ISO 178, ASTM D7274) or test conditions (high/
low temperature, standard) can be arranged upon request.
• Adhesive testing (static e.g. ISO 14130, ISO 15024 and fatigue).
Instruments & Facilities:
• Electrodynamic shakers - max force 25 kN @ 3.5 kHz.
• Several tens of sensors for mechanical and thermal measurements,
especially vibrations and NVH
• Different data acquisition systems
• 3D Digital Image Correlation (DIC) systems for 3D strain field remeccanica
magazine
102
Measuring devices and
calibration
Experimental characterization of
mechanical and civil structures with
innovative techniques
Description:
The laboratory facilities (more than 1200 sensors, calibration and
loading devices) allow performing static and dynamic tests on elements
with scales ranging from millimeters to hundreds of meters,
as well as acoustic tests on components and assemblies. Vision-based
measuring devices allow the 3D motion estimation and
the reconstruction of shape and strain conditions. Fit for purpose
measurement systems can be developed according to the customers’
requests.
Accredited Staff:
NDT qualification complying with EN 473, ISO 9712 and SNT-TC-1° in
testing by electrical resistance strain gauges (Level 1 and Level 2).
NDT qualification complying with UNI EN ISO 9712:2012 (RINA
RC/C.14 directive) – method Acoustics and Vibration (Level 3).
Certifications:
Accredited laboratory for acceleration transducer calibration: Settore
Accelerometria of Politecnico di Milano, Laboratorio Accreditato
di Taratura LAT 104.
References:
ABB, AgustaWestland, Comune di Milano, Veneranda Fabbrica del
Duomo di Milano, Leonardo SpA, ASI (Agenzia Spaziale Italiana), ESA
(European Space Agency), STMicroelectronics.
construction.
• 3D vision-based scanners with customized working volume.
• Infrared imaging for contactless thermal field measurements and
non-destructive defect detection.
• Scanning Laser-Doppler vibrometer for non-contact vibration measurement
and modal analysis of mechanical systems.
• Industrial cameras and lenses for vision-based measurements
• Hyperspectral Imaging System
• Thermo-vacuum chamber for characterization of components
between -180 and 200°C.
• Instrumentation for mechanical, thermal and acoustic measurements.
Activities:
Large/small structure dynamic testing and monitoring
Structural Health Monitoring of bridges, stadia, high rise buildings
railway, tie-rods and cultural heritage
Experimental and Operational Modal analyses.
Long-term continuous structures monitoring.
New sensing systems for civil and industrial engineering
Human-structure interaction
Vision-based measuring systems
3D measurements with drone-carried vision devices.
Contactless measurement of strain field for mechanical analysis.
Failure analysis of civil structures and concrete beams.
Remote monitoring of bridges vibration by means of vision devices.
Dynamic measurement of structures vibration, including harsh environment
measurements like helicopter blades tracking during operation.
Measurements for space
Development of FTIR spectrometers for remote sensing.
Development of opto-mechanical systems for space application.
Characterization of mechanical systems in cryogenic conditions.
Qualification of components for space applications.
meccanica magazine
103
Artistic and historical landmarks monitoring and protection
Historical and artistic structures monitoring.
Statue vibration and seismic isolation.
Long-term continuous monitoring.
Vibration control and monitoring with smart materials
Vibration mitigation through smart approaches (e.g. piezoelectric
shunt, shape memory alloys)
Structural monitoring through smart materials
Acoustic testing and analyses
Noise source identification through microphone arrays
Sound quality, synthesis and Psycho-acoustic analyses
Vibro-acoustic correlations and path analyses (e.g. TPA, component-based
TPA, substructuring)
Non-destructive tests
Experimental and simulation means for
non destructive testing and structural
health monitoring
meccanica magazine
104
Description:
Research and applicative activities on non-destructive testing and
structural health monitoring of structural materials and components
are performed both experimentally and numerically. Traditional
and advanced techniques are applied, while innovative ones are
developed. In-service monitoring and prognostics are studied and
applied, as well
Certified NDT personnel:
• Level 2 and 3 Liquid Penetrant Testing (PT) according to ISO 9712
• Level 2 and 3 Magnetic Particles Testing (MT) according to ISO 9712
and including the extension for
Railway Maintenance according to the Italian Regulation
• Level 2 and 3 Ultrasonic Testing (UT) according to ISO 9712 and including
the extension for Railway
Maintenance according to the Italian Regulation
• Level 2 and 3 Visual Testing (VT) according to ISO 9712 and including
the extension for Railway
Maintenance according to the Italian Regulation
Tests accredited according to ISO 17025:
Liquid penetrants testing
References:
ALSTOM Ferroviaria S.p.A., AnsaldoBreda S.p.A., ATM S.p.A., Autostrade
per l’Italia S.p.A., Brembo S.p.A., CIFA S.p.A., Cromodora
Wheels S.p.A., Deutsche Bahn AG, ENI S.p.A., GE Avio S.r.l., Hitachi
Rail S.p.A., ITA S.p.A., Italcertifer S.p.A., ITER Organization, Loptex
S.r.l., Lucchini RS S.p.A., Pojazdy Szynowe Pesa Bydgoszcz SA,
Radici Novacips S.p.A., RFI S.p.A., SAIPEM S.p.A., Siemens S.p.A.,
Spasciani S.p.A., Tenaris/Dalmine S.p.A., Titagarh Firema S.p.A.
Instruments & Facilities:
• Harfang X32 phased array ultrasonic flaw detector with 2.25, 5 and 10
MHz probes. Encoders for C-Scan mapping
• Eddify M2M Mantis phased array ultrasonic flaw detector with 2.25
and 5 MHz probes. TOFD, conventional ultrasonic channels and TFM
functionalities are available, as well
• RDG500 and RDG2500 conventional ultrasonic flaw detectors with
straight, twin, angled and creeping probes
• Innerspec Temate Powerbox H EMAT ultrasonic flaw detector with
permanent magnets and coils for different beam forming opportunities
• Specific equipment for implementing and managing Lamb and guided
ultrasonic waves
• Vallen AMSY-6 acoustic emission unit (8-channels). Managed by the
PoliNDT interdepartmental lab
• Nortec 1000S+ eddy current flaw detector with probes working at a
500-2000 Hz frequency range
• NSI X25 x-ray micro-computed tomography scanner. Managed by the
AMALA interdepartmental lab
• Electromagnetic yokes and permanent magnets for colour contrast
and fluorescent magnetic particles (calibration blocks, luxmeter, radiometer,
UV lights, ASME probe, gaussmeter)
• Colour contrast and fluorescent liquid penetrants (calibration blocks,
luxmeter, radiometer, UV lights, thermocouples, chronometer)
• Lenses, mirrors and dedicated white and black lights for visual testing
• CIVAnde specific software package for NDT simulations (ultrasonic
testing, eddy current testing, radiographic testing and x-ray computed
tomography)
• AST X-Stress 3000 portable X-ray diffractometer
• Equipment for holographic interferometry and for transmission and
reflection photo-elasticity
composite and polymeric
components
• Definition of an innovative way to induce a single anti-symmetric propagation
mode of Lamb waves
• Analysis of the reflection and transmission of Lamb waves through
artificial delaminations in composite laminates
• Analysis of the reflection and transmission of Lamb waves through
natural defects, obtained by low energy impacts, in composite laminates
Structural health monitoring by acoustic emission:
• In-service monitoring of railway axles by means of acoustic emission
• In-service monitoring of adhesive bonded joints by means of acoustic
emission
• Comparison of acoustic emission response with optical, micro-computed
tomography scans and ultrasonic NDT approaches during crack
propagation tests
• Comparison of acoustic emission response with low frequency vibrations
during crack propagation tests
• Post-processing and interpretation of acoustic emission data by machine
learning and artificial intelligence
Eddy current testing of corrosion-fatigue phenomena:
• Experimental eddy current measurements of developing corrosion-fatigue
damage in small-scale
specimens and full-scale components
• Correlation between damage and eddy current response at different
stages of corrosion-fatigue life
• Numerical simulations of eddy current response at different stages
of corrosion-fatigue life
meccanica magazine
105
Activities:
Experimental and numerical characterization of NDT capabilities:
• Characterization of experimental “Probability of Detection” curves for
different NDT methods
• Characterization of numerical “Model Assisted Probability of Detection”
and “Multi-Parameter
Probability of Detection” curves for different NDT methods
• Interaction between NDT capabilities and the damage tolerant design
approach
Traditional and advanced ultrasonic testing of materials and components:
• Phased array monitoring of fatigue crack propagation in adhesive
bonded composite lap-joints
• TOFD inspection of welded and seamless metallic pipes
• Guided waves monitoring of pipes and rails
• Residual stress measurements in railway wheels by EMAT
• Application of creeping waves to coarse grain metals
Structural health monitoring by ultrasonic Lamb waves:
• Determination and characterization of dispersion curves in metallic,
Process metallurgy and
simulation
Experimental facilities and simulation
software for process metallurgy
meccanica magazine
106
Description:
Numerical and experimental investigations on metallurgical processes
are carried out by means of simulation software and lab-scale
process facilities, including a set of muffle furnaces that can operate
up to 1700°C in ambient or inert atmosphere, a melting resistance
furnace, a rolling mill and a hot extrusion system for small billets
and tubes. Equipment for handling, mixing and milling of metallic
and ceramic powder are also available to researchers.
References:
Tenaris Dalmine, Siemens, Brembo, SMS-INNSE, Prysmian.
Instruments & Facilities:
• Thermocalc Software SUNLL licence for computational thermodynamics
with DICTRA (Diffusion-Controlled phase TRAnsformation)
and PRISMA (precipitation reactions) software modules are
available to research in the Academic version. Thermodynamic and
mobility databases are available for Fe, Al and Ni-based alloys.
• Procast PRO-CT-01 with the following modules: GUI (VTS-CE-28),
Thermal 2 core, Fluidynamic 2 core, Semisolid 2 core, Irradiation
2 core.
• Deform DEFORMTM Premier, educational licence, version 11.3 with
the following modules: Forming express, GeoTool, Integrated 2D3D,
Inategrated Manufacturing, Inverse Heat, Material Suite.
• Nabertherm melting furnace (temperature up to 1700°C, in ambient
or inert atmospheres), internal diameter = 120, height = 130
mm, max load 2 kg.
• Carbolite tube furnace (temperature up to 1050°C, in ambient or
inert atmospheres). Internal diameter = 75 mm, uniform heated length
= 540 mm.
• Carbolite HRF 722D (temperature up to 750 °C), 220x200x495 mm.
• Carbolite GPC 12/36 (temperature up to 1200 °C), 250x320x450 mm.
• Lenton UAF 14/27 (temperature up to 1400 °C in ambient or inert atmospheres),
290x270x340.
• OAM rolling mill (symmetric and asymmetric operation mode, cylinders
of 150 mm diameter, speed: 0-20 rpm).
• MTS Exceed E45 equipped with induction coil, dies and plungers for
cold and hot extrusion of small billets and tubes and for compaction
of powder.
• Retsch M400 ball mill system equipped with steel and alumina jars
and balls.
• Adler Powder mixer and sieving facilities.
meccanica magazine
107
Activities:
• Simulation of metallurgical processes and heat treatments
• Laboratory casting of metallic alloys
• Rolling of metals at room and high temperatures
• Hot extrusion of small billets and tubes
• Hot and cold compaction of powder
• High energy ball milling of metal and ceramic powder
• Powder handling, mixing and sieving
Railway Engineering
Experimental tests of rail vehicle and
infrastructure sub-systems
meccanica magazine
108
Description:
The laboratory provides a series of specifically test-rig designed
for testing and characterization of several sub-systems of both,
rail vehicle (axle, pantograph, bogie frame) and rail infrastructures
(sleepers, insulated rail joints, fastening system). The variety of general-purpose
hydraulic actuators and the great number of measurement
devices allows the laboratory to realize custom designed
setups for testing great number of rail subcomponents such as
springs, silent blocks, air spring. Moreover, the laboratory can perform
in-line testing for the assessment of both dynamic behaviour,
comfort and aerodynamic of vehicles according to several European
standard.
Certifications:
The laboratory meets the requirements of ISO/IEC 17025:2017. The
following test are officially accredited by the Italian accreditation
body ACCREDIA:
• Static tests on bogie frames, axleboxes and bolsters (EN
13749:2021).
• Fatigue testing of full-scale axles (EN 13261:2020).
• Homologation tests for fastening system (EN 13146:2021).
• Homologation tests for concrete sleepers (EN 13230:2016).
• Measurement of the friction coefficient between pantograph contact
strips and contact wire of overhead line and measurement of
wear rate for contact wire and pantograph contact strips (RFI-DMA-
IM.LA\ST TE65 del 2004).
• Train aerodynamic loads in open air: slipstream effects on passengers
on platform and on workers trackside, head pressure pulse and
maximum pressure variations in tunnels (TSI HS LOCPAS, 2014).
Certified tests ISO 9001:2008 (Italcert):
• Dynamic Interaction between pantograph and overhead contact
line: calibration of the measurement system (EN50317, RFI/DI/TC.TE/
ST.TE 74D).
Accredited Staff ISO 9712:
ST - Strain Testing Level 1 and 2
Dye penetrant inspection Level 2 and 3
Magnetic particle inspection Level 2 and 3
Instruments & Facilities:
• Bogie test-rig: reconfigurable test-rig for the testing of bogie frame,
bolster and other vehicle components.
• Dynamometric wheelset test-rig: characterization and calibration of
dynamometric wheelset.
• Pantograph test-rig: hardware in the loop device for the characterization
of instrumented pantograph.
• Axle test-rig: study of the rotating bending fatigue and crack propagation
phenomena on axles.
• Collector strips test-rig: testing on collector strips reproducing the
real in-line conditions.
• Sleeper test-rig: test rig equipped with 1000 kN dynamic actuator for
homologation tests on main typology of sleepers.
• Insulated rail joints testing machine: custom designed bi-axial machine
for testing of insulated rail joints.
• The laboratory can rely on a great number of measurement instruments
calibrated, signal conditioner and acquisition systems.
Activities:
Structural rail components testing
• Performs static, dynamic and fatigue tests on railway bogies and/or
their components according to the international standard EN 13749.
• Reconfigurable layout to allow the housing of all types of bogies currently
in circulation on railways, metro, and tramways.
• Possibility to control simultaneously a variable number of hydraulic
actuators (up to 14) with different ranges of applicable loads up to a
maximum of 1000kN.
Pantograph characterization
• Allows the characterisation of pantographs reproducing the dynamic
interaction with the catenary.
• Possibility to replicate the stagger geometry and pantograph velocity.
• Separate application of the loads in vertical direction for the two collector
stripes.
• Real time hardware in the loop control to simulate the real interaction
between the pantograph and a simulated catenary.
Rotating bending fatigue on axles
• Imposes a variable load to the central section of the axle while rotating
reproducing the conditions needed for axles fatigue testing.
• Maximum rotation speed 600rpm.
• Maximum load 250kN with the possibility to impose load spectra to
the axle.
• Possibility to run tests in harsh environmental conditions to reproduce
corrosion effects.
Insulated rail joints testing
• Biaxial testing facility for the simultaneous application of longitudinal
tractive sand vertical loads.
• Maximum longitudinal load 1000 kN and maximum vertical load 500
kN.
• Possibility to measure displacements and deformation along the specimen
under test.
Collector stripes test
• Performs wear tests on collector stripes reproducing the at best the
real condition encountered in service.
• Maximum tension applicable 1200A.
• Maximum relative speed between collector stripes and overhead
power line up to 210km/h.
• Reproduction of the wind cooling effects, and the load imposed by
the pantograph springs.
Dynamometric wheelset characterization
• Static characterization a wheelset or, more in general a bogie, properly
instrumented to measure the contact forces.
• Real boundary conditions both at the contact interface (UIC60 cant
angle 1/20) and at the axle-boxes (mounting on the test-rig of the entire
bogie).
• Direct measurement of the three components of the contact forces
acting on each wheel.
• High variety of applicable loads (up to 150 kN per wheel in vertical, 40
kN in lateral and 20kN in longitudinal direction) and their combinations.
meccanica magazine
109
Reverse Engineering
Computer Vision and Reverse Engineering
meccanica magazine
110
Description:
The Computer Vision and Reverse Engineering laboratory is specialized
in the Reverse Engineering pipeline for study, research and
industrial applications: 3D devices calibration and characterization,
3D acquisition and processing, redrawing of CAD models based on
3D data. The 3D capturing equipment permits to acquire industrial
components, structures, Cultural Heritage objects with a wide range
of geometries, sizes and materials.
References:
The laboratory has contributed to the production of reality-based
3D models for the following patrons:
• Scuola Normale Superiore di Pisa
• Comune di Milano - Castello Sforzesco
• Comune di Milano - Civico Museo Archeologico
Instruments & Facilities:
3D Scanners:
• Konica Minolta Vivid 9i
• GOM Atos
• NextEngine Ultra HD
• Artec Leo
• EviXscan 3D Heavy Duty Quadro 3D
• Structure Sensor
Coordinate Measuring System:
• Microscribe MX digitizer system
Professional Cameras:
• Sony
• Canon
Activities:
Camera calibration for photogrammetry and 3D Vision
• Radial distortions assessment.
• Tangential distortion assessment.
• Affine distortion assessment.
Active 3D range sensors characterization (Triangulation and TOF/PS)
according to Committee E57 draft ASTM
• Global uncertainty assessment.
• Precision assessment.
• Accuracy assessment.
3D acquisition and modelling based on:
• Traditional photogrammetry with sparse clouds.
• SFM/Image matching with dense clouds/meshes.
• Triangulation based laser scanning and dense mesh generation.
• TOF/PS laser scanning and dense mesh generation.
• CAD drawing on 3D data gathered manually or automatically.
3D models optimization for Virtual Navigation
• Mesh optimization.
• Texturing/Displacement mapping.
• 3D segmentation.
meccanica magazine
111
Test of mechanical
components
Static and dynamic tests on real
components or structures
meccanica magazine
112
Description:
The laboratory is equipped with multi-range servohydraulic actuators
and other facilities to perform tests on full-scale components
and structures. The equipment includes servo-controllers, load
cells, electrodynamic shakers, modular constraint systems, various
transducers (pressure, temperature, displacement, acceleration,
strain, acoustic waves, etc.), with dedicated signal conditioners and
acquiring systems. A novel micro-compression device, compatible
with a synchrotron, is available for multi-scale mechanical testing.
The laboratory is supported by modelling capabilities (mainly numerical
FE and CFD models) in order to replicate and extend experimental
activities by means of “virtual tests” (predictive models).
Certifications:
The laboratory is compliant with Leonardo Helicopters quality standard
requirements.
Tests on aeronautical components also for certification purpose
(FAA) have been carried out in the laboratory.
References:
Leonardo Helicopters, Cifa, ENI, Pirelli, Ferrari.
Instruments & Facilities:
• Special set-ups for full-scale component testing:
Servo-hydraulic actuators (max force 1000 kN).
Electrodynamic shakers (max force 25 kN).
Controllers for servo-hydraulic actuators: single and multichannel
(MTS 407, MTS Flex Test IIm, MTS Aero GT, MTS Flex Test SE, etc.).
Constraint systems with treaded holes or grooves and steel beams
to build customized frames for full-scale tests.
• Other equipment and devices:
Load cells.
Displacement transducers.
Rotation transducers.
Pressure and temperature transducers.
Accelerometers.
Systems for data analysis.
Systems for strain measurements.
Optical fiber interrogator with Military Standard environmental qualification
(MIL-STD 810G).
Multi-channel oscilloscopes.
Micro compression device suitable for small samples’ testing and compatible
with synchrotron facility
Dynamical characterization of components
• Tests to analyze the dynamical behavior (frequency response, mechanical
impedance, fatigue resistance, etc.) of components and systems
using electromechanical shakers.
• Development of control systems for vibrations on “Smart structures”.
Activities:
Single and multi-actuator tests on mechanical components and large-scale
structures
• Fatigue tests to define the life of a component.
• Application of a load spectrum to simulate a real stress condition.
• Static and dynamic tests to verify the integrity of components and
large-scale structures subjected to the real operating conditions.
• Detection and monitoring of crack propagation during a fatigue test
(non-destructive methods, microscope, crack gauges, etc.).
• Determination of the influence of several technological parameters
on the fatigue resistance.
• Laboratory testing of structural health and usage monitoring systems
under varying load and environmental conditions
• On-platform testing
meccanica magazine
113
Fatigue tests for biomedical applications and multi-scale mechanical
characterization of biological tissues
• Static and fatigue tests to verify the resistance of limb prosthesis.
• Performance optimization of leg prosthesis for sportive applications.
•Static tests performed outside and inside a synchrotron to determine
meso and micro characteristics of biological tissues.
•Detection of microdamage mechanisms.
Gear fatigue tests: Tooth Bending Fatigue, Contact Fatigue (pitting
and micropitting), vibration and noise, efficiency, contact pattern and
torsional stiffness tests on gears and gear reducers. Several experimental
devices are available:
CENIT 2, a power-recirculating test rig suitable for gear contact fatigue
(i.e. pitting), scuffing and bending fatigue tests on running gears
Schenck mechanical resonance pulsator for tooth root bending fatigue
tests with a STBF (Single Tooth Bending Fatigue) approach.
VIBRU, Motor / brake test rig up to 100 kW, reconfigurable on plates, for
measurements of Transmission Error and Noise
Electric power recirculation test rig, DC motor and brake, 30 kW, 3,000
rpm reconfigurable on plates
Vehicle Dynamics
Measurement, testing, development, and
validation of vehicle dynamics models,
state estimators, and control
algorithms.
meccanica magazine
114
Description:
Main activities of the Laboratory are focused on testing, modelling
and control of vehicles, with particular attention to suspensions, tires,
braking systems, drivelines of conventional, hybrid or electric
vehicles, control systems for active safety and performance, ADAS
and autonomous vehicle control logics. The laboratory offers facilities
and expertise for setting up road tests on the complete vehicle
or indoor tests on single components. Commercial and innovative
stability control systems (ESP, ABS, EBD, etc.) can be tested with
a dedicated test rig based on hardware-in-the-loop technique. Our
dynamic driving simulator (DRISMI) offers the possibility to insert
the driver in the loop to better understand and tune ADAS and autonomous
driving control algorithms.
References:
Pirelli Tyres, Ferrari Auto, FIAT, CRF (Centro Ricerche FIAT), Bridgestone,
Tenaris Dalmine, CIFA, Marelli, Autoliv, Brembo, TRW, SAME,
Maserati Auto, CRA-ISMA, Nokian Tyres, Kymko, MV Agusta, Lamborghini
Auto.
Instruments & Facilities:
• Dynamic driving simulator
• Hybrid/electric power train full-scale and components full active
test bench.
• Vehicle prototypes, fully instrumented and with autonomous driving
capability.
• Vehicle logger and analyzers
• Wind tunnel
Activities:
ADAS and autonomous driving prototypes
• Vehicle dynamics test.
• Validation of numerical vehicle models.
• Validation of state estimators.
• Testing of ADAS and autonomous driving control strategies
• Testing of autonomous driving state estimation and environment
sensing
Several vehicle prototypes are available in our laboratories. Vehicles
are equipped with sensors to measure the vehicle state (accelerometers,
gyros, GPS, optical speed sensor and others) and to sense the
surrounding environment (camera, lidars, radars, etc.). Vehicles are
also actuated, and full autonomous driving control strategies are tested
and compared. Vehicle teleoperation is another activity we are
currently working on.
Characterization of spring and damper
• Characterization of spring and damper.
• Evaluation of behavior with different active control logics.
Our laboratories host test benches designed for the testing of suspensions
components. Static and dynamic characterization of springs
(coil springs, leaf springs etc.) and dampers (viscous dampers, magnetorheological
dampers etc.) can be carried out. The force developed as
function of deformation, speed, and other variables, in case of active
or semi-active components, can thus be determined. Test bench can
be easily adapted a series of different geometries.
Dynamic Driving Simulator
• Driver in the loop
Testing with dynamic Driving Simulator of Politecnico di Milano (DRI-
SMI: www.drismi.polimi.it): set-up of the virtual models of a vehicle
and its components, creation of scenarios in terms of road network
(urban road, country road, highway) and interaction with other road
users like other vehicles or pedestrian, measurement of the driver’s
physiological response (eye tracking, skin potential, hear rate), data
analysis.
Vehicle Aerodynamics
• Drag
• Crosswind
• Noise
The availability of the large wind tunnel (GVPM) is suitable for automotive
applications, in particular truck and motorcycle aerodynamics.
The aerodynamics studies are carried out also with CFD, using a HPC
infrastructure, for the analysis, among others, of vehicle wheel aerodynamics
and aero-acoustic noise.
Tire modeling
• contact forces
• wear
• noise and vibration
The group works on the modeling, design, and testing of tire performance,
wear, and acoustical emissions. The research group also help
to develops advanced and intelligent systems like the cybertire.
Noise and Vibration
• Tyre rolling noise
• Tyre dynamics
• Vehicle comfort
• Cabin interior noise
The research group works on the development and experimental validation
of predictive models suitable for supporting noise and vibration
mitigation in vehicles. The research topics cover both exterior noise
issues and vibration/acoustic comfort inside the vehicle.
meccanica magazine
115
Heavy and agricultural vehicles
• Rollover analysis
Numerous studies are conducted on the modelling and rollover analyses
of heavy vehicles as well as agricultural vehicles under different
load condition. Crosswind effect is studied also considering the interaction
with driver. Active systems for reducing rollover risk are studied
like active suspensions and active rear wheel steering.
Hybrid/Electric vehicle power train testing
• Battery cell characterization and testing
• Detection of motor characteristics (nameplate).
• Performance analysis of a complete powertrain.
In our laboratories two test benches for the testing of hybrid/electric
vehicle power trains are available ranging from small (from 7 kW) to
high power trains (up to 200kW and 1300Nm). All electric quantities
both on the electric motor, the power electronics, and the battery cells
can be assessed for measuring the efficiency, the operating range,
and the control behavior. Also, regenerative braking tests can be performed.
Virtual prototyping
& human modelling lab
State-of-the-art VR/AR, haptics,
3d human modeling technologies
meccanica magazine
116
Description:
The Virtual Prototyping & Human Modelling Lab is a research and
teaching laboratory equipped with state-of-the-art technologies
and tools for Virtual and Augmented Reality, Haptics and Digital Human
Modelling. The Lab is focused on developing multisensory interactive
virtual prototypes for design review, simulation and testing
purposes, real-time rendering on high performing workstations,
modelling of human body and organs for ergonomics, human-machine
interaction, bioengineering and medicine.
Instruments & Facilities:
Immersive Displays:
• Cyviz - VIZ3D
• Large screen (3,4x2,1m) with Barco F80-4K12 4K UHD stereoscopic
projector
Head Mounted Displays for Augmented Reality (AR):
• Microsoft HoloLens 1&2
• Magic Leap 1
Head Mounted Displays for Virtual Reality (VR):
• Oculus Quest 2
• HTC Vive Pro Eye
• Varjo VR1
Motion tracking systems:
• VICON 460
• A.R.T. Tracking System
• OptiTrack V100:R2
• OptiTrack V120:Trio
• Microsoft Kinect 1&2
• Microsoft Azure Kinect
• UltraLeap Leap Motion
Eye-tracking systems:
• Nvisor ST HMD
• Pupil labs Core
• Tobii Pro Glasses 3
Bio signal acquisition systems:
• ProComp Infiniti
• LWT3 Raw Power 0.9 surfaceElectroMyoGraphy (sEMG)
• EMOTIV EPOC ElectroEncephaloGram (EEG) Headset
• ANTneuro eego sports 128 pro ElectroEncephaloGram (EEG) and
ElectroMyoGraphy (EMG) headset
Haptic Systems:
• Haption Virtuose 6D35-45 (6 DOF device)
• MOOG Haptic Master (3 DOF robot)
• 3D Systems PHANToM desktop (6 DOF device)
• Manus VR (glove)
• WeArt Touch Diver (wearable)
• Ultraleap Stratos Explore (mid-air haptics)
• Haptic-based simulation and training of maintenance operations (assembly/disassembly).
Digital Human Modelling
• 3D models of organs or systems from .dicom files
• VR/AR applications for diagnosis/simulations of surgeries, prosthesis
design
• VR/AR for ergonomics, human-machine interaction
• 3D segmentation.
meccanica magazine
117
Equipment for physical prototyping:
• Ultimaker S3 (FDM 3D Printer)
• Utimaker S5 (FDM 3D Printer)
• Delta Wasp 4070 (FDM 3D Printer)
• Formlabs Form 3B (SLA 3D Printer)
• Laser Engraver and Cutter
In-House Developed Systems:
• Multi vehicle virtual simulators (car, excavator)
• Spatial Augmented Reality (SAR) system - SPARK
• Multi-camera recording system for design activities monitoring
Activities:
Interactive Virtual Prototyping
• Product design review.
• Multisensory virtual prototypes.
• Interactive prototypes of industrial products.
• Haptic interaction with virtual products.
Monitoring and Maintenance
• Augmented Reality for diagnostic and prognostic.
• Augmented Reality for remote product maintenance.
meccanica magazine
118
meccanica magazine
119
Dipartimento di Meccanica
via Giuseppe La Masa, 1 - Milano
www.mecc.polimi.it
meccpolimi
Per rimanere sempre aggiornati
sulle novità del Dipartimento
iscriviti alla newsletter.
Subscribe to our newsletter
to receive the latest news and
remain updated.
meccanica magazine
121
NEWS
meccanica magazine
122
IL PROGETTO GAP DEL DMEC
HA RAGGIUNTO IL SINCRO-
TRONE ELETTRA (TS)
La ricerca, condotta da
un team interdisciplinare
coordinato dalla prof. Laura
Vergani ed attivamente
seguito dalla dottoranda
Federica Buccino, mira
alla comprensione del
danneggiamento osseo
alla micro-scala. Questo
rappresenta un aspetto
innovativo e di cruciale
rilevanza per la diagnosi
precoce dell’osteoporosi e
di patologie ossee rare.
GAP PROJECT OF THE DMEC
REACHES ELETTRA SYN-
CHROTRON IN TRIESTE
The research, conducted
by an interdisciplinary team
coordinated by Prof. Laura
Vergani and actively followed
by the Ph.D. candidate Federica
Buccino, focuses on the
investigation of human bone
damage at the micro-scale.
This is a crucial point in
order to provide an early diagnosis
of osteoporosis and
rare bone pathologies, that
still represent an evident
burden in our society.
BANDO RICERCATORI DMEC:
SELEZIONATO IL PROGETTO
SBLINK PRESENTATO DA
MARTA GANDOLLA
È stato decretato il progetto
vincitore del Bando Ricercatori
promosso da DMEC
per sostenere la partecipazione
dei ricercatori del
Dipartimento alla ricerca
multidisciplinare e incentivare
la produttività scientifica
di qualità.
Per questa edizione DMEC
sostiene progetti di ricerca
sulle tematiche identificate
in LIS4.0. Sulla base della
graduatoria finale, il progetto
SBLINK (“Smart Bio-inspired
Link”) ha ottenuto il finanziamento.
--
DMEC CALL FOR RESE-
ARCHERS: THE SBLINK
PROJECT SUBMITTED BY
MARTA GANDOLLA
The Scientific Commission
just announced the winner
of the Call for Researchers,
sponsored by DMEC to
support the Department’s
researchers to get involved
in multidisciplinary research
and encourage quality scientific
productivity. Through
this edition of the call, DMEC
decided to support research
projects on topics related to
LIS4.0; according to the final
ranking, the SBLINK (“Smart
Bio-inspired Link”) project
is among the winners of the
research funds.
POLIMI ANCORA LA MIGLIO-
RE TRA LE UNIVERSITÀ ITA-
LIANE SECONDO L’ULTIMO
QS WORLD RANKINGS
Polimi figura nella top 20
delle migliori università del
mondo per Ingegneria &
Tecnologia. Inoltre, secondo
la classifica per disciplina, il
Politecnico è quindicesima
tra le migliori università del
mondo per Ingegneria Meccanica,
Aeronautica e della
Produzione.
--
POLIMI STILL THE TOP
ITALIAN UNIVERSITY,
ACCORDING TO THE LATEST
QS WORLD RANKINGS
Polimi is listed among the top
20 Universities in the world
in Engineering & Technology.
Moreover, in the ranking by
subject, Politecnico di Milano
ranks 15th among the top
universities for “Mechanical,
Aeronautical & Manufacturing”
Engineering.
LA SEZIONE MATERIALI
DMEC COINVOLTA NEL
PROGETTO I.FAST PER LE
“TECNOLOGIE AVANZATE
PER GLI ACCELERATORI”
Nei primi mesi del 2021 ha
avuto avvio il progetto I.FAST.
Lo scopo generale del progetto,
coordinato dal CERN, è
quello di sviluppare ricerca di
lungo termine per una nuova
generazione di acceleratori
di particelle più sostenibili,
adatti anche a soddisfare
la crescente domanda di
infrastrutture per le scienze
applicate, la medicina e altre
applicazioni sociali.
--
THE MATERIALS RESEARCH
LINE OF DMEC INVOLVED
IN I.FAST FOR RESEARCH
ACTIVITIES CONCERNING
ADVANCED ACCELERATOR
TECHNOLOGIES
During the first months of
2021, the I.FAST project.
Coordinated by CERN, the
project aims to carry out
research activities that,
in the long term, will allow
developing sustainable particle
accelerators. They will
eventually satisfy the growing
demand for infrastructures
for applied sciences,
healthcare and other social
applications.
NEWS
MECHENG: ONLINE IL
NUOVO SITO DEL CORSO
DI STUDI DI INGEGNERIA
MECCANICA
SAVE THE DATE - “TECHNO-
LOGICAL INNOVATIONS FOR
THE PRECISION MEDICINE
OF TOMORROW”
IL NOSTRO ALUMNO SIMONE
ROMANO RICEVE IL PREMIO
INTERNAZIONALE JAAP
SCHIJVE
CRESDET: ISTRUZIONE
E FORMAZIONE DIGITALE
RESISTENTI AGLI SCENARI
DI CRISI
Lanciato qualche settimana
fa, al link www.mecheng.
polimi.it è possibile visitare il
nuovo sito del Corso di Studi
di Ingegneria Meccanica.
Un sito dinamico, colorato
e interattivo con pagine dedicate
alla didattica, ai piani
di studi e alle risorse per gli
studenti futuri e iscritti.
--
MECHENG: THE NEW WEB-
SITE OF THE MECHANICAL
ENGINEERING PROGRAMME
IS ONLINE
Launched a few weeks ago,
at the link www.mecheng.
polimi.it, it is possible to visit
the website of the Mechanical
Engineering Programme.
A dynamic, colourful, and
interactive website complete
with pages on teaching,
study plans, and recourses
for future and current
students.
“Technological innovations
for the precision medicine
of tomorrow” è il titolo del
workshop organizzato per
il prossimo 10 Giugno 2021
presso il Dipartimento di
Meccanica del Politecnico
di Milano. Il focus dell’evento
sarà l’approfondimento dei
recenti sviluppi della medicina
di precisione associati
all’innovazione tecnologica
emergente. L’evento, organizzato
dalla prof. Paola
Saccomandi, Professore
Associato del Politecnico di
Milano, e dalla dottoranda
Martina De Landro, è sponsorizzato
dall’Ambasciata di
Francia in Italia e dall’Istituto
Francese d’Italia.
--
SAVE THE DATE - “TECHNO-
LOGICAL INNOVATIONS FOR
THE PRECISION MEDICINE
OF TOMORROW”
On June 10th, 2021, the
Department of Mechanical
Engineering of Politecnico
di Milano will host the
online event “Technological
innovations for the precision
medicine of tomorrow.”
During the workshop, the
recent advances in precision
medicine assured by innovation
will be discussed.
The event is organized by
prof. Paola Saccomandi
- Associate Professor at
Politecnico di Milano - and
Martina De Landro - PhD
student - and sponsored by
the Institute Francais and by
the Ambassade de France
en Italie.
Il Dott. Romano è stato
insignito del premio Jaap
Schijve Award 2021 per
i Giovani Ricercatori. Il
premio, istituito dal Royal
Netherlands Aerospace Centre
(NLR) e dal Dipartimento
di Aerospaziale della Delft
University of Technology, ha
l’obiettivo di promuovere lo
studio della resistenza alla
fatica e alla rottura delle
strutture degli aeromobili.
--
THE JAAP SCHIJVE AWARD
TO OUR ALUMNO SIMONE
ROMANO
Dr Romano has been
awarded the 2021 Jaap
Schijve Award for Young
Researchers. This award
has been established by
the Royal Netherlands
Aerospace Centre NLR and
the Faculty of Aerospace
Engineering of Delft University
of Technology (NL)
to promote the discipline of
Aircraft Structural Fatigue
and Damage Tolerance.
Il 23 Aprile, con il relativo
kick-off meeting, ha preso
il via il progetto Erasmus+
CResDET: un progetto che
si pone l’obiettivo di stilare
delle linee guida adattabili
a diversi contesti educativi
in potenziali situazioni di
crisi o di digital divide, con
un accento particolare
sui corsi di progettazione
ingegneristica e sulle
relative attività pratiche di
tipo collaborativo.
--
CRESDET: CRISIS-RESI-
STANT DIGITAL EDUCATION
AND TRAINING
On April 23rd, with a remote
kick-off meeting, the
Erasmus+ CResDET project
started: it aims at creating
guidelines for educators
to address similar crisis or
situations characterized by
digital divide, with a particular
focus on engineering
design education and the
related practice, including
student co-design.
meccanica magazine
123
NEWS
NUOVO ACCORDO TRA IL
POLITECNICO E STMICROE-
LECTRONICS
SCANSIONI 3D ANCHE IN
AMBIENTI OSTILI GRAZIE AL
PROGETTO 3DYNAMIC4.0
DMEC SI ARRICCHISCE DI UN
NUOVO LABORATORIO SUL-
LA FLUIDICA INTELLIGENTE
FESTIVAL DELL’INGEGNERIA
| 10-12 SETTEMBRE 2021 –
CAMPUS BOVISA
meccanica magazine
124
Il Dipartimento di Meccanica,
insieme ai Dipartimenti di
Fisica e Chimica, DICA e
DEIB, sarà parte attiva del
nuovo centro di ricerca
congiunto sui materiali avanzati
per sensori (STEAM) che
nascerà grazie all’accordo di
collaborazione quinquennale
siglato pochi giorni fa da
POLIMI e STMicroelectronics
alla presenza del Ministro
dello Sviluppo Economico
Giancarlo Giorgetti.
--
NEW AGREEMENT BETWE-
EN POLITECNICO AND
STMICROELECTRONICS
The Department of Mechanical
Engineering, in collaboration
with the Department
of Physics, the Department
of Chemistry, Materials and
Chemicals, DICA and DEIB,
will play an active role in the
new Joint Research Centre
on advanced materials
for sensors (STEAM), born
thanks to the recently signed
agreement for a five-year
collaboration between
POLIMI and STMicroelectronics
under the attentive
watch of Giancarlo Giorgetti,
Minister for the Economic
Development.
Sviluppato nell’ambito del
progetto 3DYNAMIC4.0
(3D Dynamic Image-based
Measurements in Industry
4.0) finanziato dal MIUR,
il drone strumentato è
stato appena completato
di tutta la strumentazione
e sta svolgendo i primi test
di volo. L’obiettivo del drone
prototipale è di permettere
di effettuare scansioni 3D,
elaborare vaste porzioni,
valutare danni e potenziali
pericoli di qualsiasi elemento,
partendo da alcuni test
sulle strutture in cemento,
senza che vi siano rischi per
gli operatori.
--
3D SCANNING EVEN IN HAR-
SH ENVIROMENTS THANKS
TO 3DYNAMIC4.0 PROJECT
The instrumented drone
developed in the ambit of
the 3DYNAMIC4.0 project,
funded by the Italian Ministry
of University and Research,
is now fully equipped and it
is performing the first flight
tests.
The goal of the prototype
drone is to allow you to allow
3D scanning, reconstruct
large portions, assess the
damage and potential dangers
of any type of targets
(starting with some tests on
concrete structures) without
risks for operators.
In collaborazione con
Fluid-o-Tech e STMicroelectronics,
nasce presso il
Dipartimento di Meccanica
del Politecnico di Milano
un nuovo laboratorio per la
messa a punto di soluzioni
tecnologiche innovative nel
campo della sensoristica
senza contatto. L’ obiettivo è
quello di creare uno spazio in
cui ci sia uno scambio fluido
e continuo di conoscenze
ingegneristiche, meccaniche,
elettroniche, ottiche e
sull’intelligenza artificiale.
Nel nuovo laboratorio
verranno quindi sviluppati
know-how, tecnologie e dispositivi
nel campo della fluidica
digitale per applicazioni
industriali, food & beverage e
dispositivi medicali.
--
A NEW LAB ON FLUIDIC
INTELLIGENCE CREATED
AT DMEC
In partnership with Fluid-o-Tech
and STMicroelectronics,
the Department
of Mechanical Engineering
announces the creation of a
new lab to develop innovative
technological solutions
in the field of non-contact
sensors.
The objective is to build a
common space where to dynamically
and continuously
exchange knowledge about
mechanical engineering,
electronics, optics and
artificial intelligence.
The new laboratory will
further develop know-how,
technologies and devices
in the field of digital fluidics
for industrial applications,
food & beverage and medical
devices.
Il Politecnico di Milano presenta
la Prima Edizione del
Festival dell’Ingegneria.
Una tre giorni di incontri,
lezioni, laboratori aperti e
spettacoli in cui i visitatori
potranno vivere un’esperienza
immersiva nel mondo
dell’Ingegneria guidati
da docenti, dottorandi e
ricercatori che condivideranno
con grandi e piccoli
la loro vita nei laboratori
del Politecnico di Milano, i
traguardi già raggiunti nel
campo della ricerca e le
sfide ancora da vincere,
con uno sguardo puntato
sempre verso il futuro delle
tecnologie.
--
ENGINEERING FESTIVAL |
SEPTEMBER 10-12TH, 2021 –
BOVISA CAMPUS
Politecnico di Milano presents
the first edition of the
Engineering Festival.
Three days of meetings,
courses, free-access labs,
and events during which
visitors can dive into the
engineering world guided
by teachers, PhD students
and researchers. The elder
and the youngest equally will
join them to discover their
daily life inside the POLIMI
labs and learn about the
accomplishments and the
yet-to-be-faced challenges
of their research, always
looking at the future of
technologies.
NEWS
IL TEAM DYNAMIS PRE-
SENTA IL SUO PROTOTIPO
ELETTRICO DP12EVO
DMEC PRESENTA LE PRIME
DUE DOTTORANDE DEL
PROGRAMMA CON LA SJTU
MOTOSTUDENT VI EDITION:
IL SUCCESSO DELLA MOTO
ELETTRICA NYX
UNA PARTE DEL NOSTRO
DIPARTIMENTO IN MOSTRA
ALLA BIENNALE DI VENEZIA
Formula Student Netherlands
2021, tenutasi ad
Assen dal 4 all’8 luglio 2021
è stata la prima gara a cui
il team Dynamis/DMEC ha
partecipato con il prototipo
elettrico DP12evo.
Obiettivo della trasferta
erano esclusivamente
le “prove statiche” dove
sono stati raggiunti ottimi
risultati. Infatti, il team ha
ottenuto - per il secondo
anno consecutivo - la prima
posizione per il Business
Plan e piazzamenti di rilievo
nelle categorie Design e Cost
Event.
--
DYNAMIS TEAM PRESENTS
ITS ELECTRIC PROTOTYPE
DP12EVO
Held in Assen from the 4th to
the 8th of July 2021, Formula
Student Netherlands 2021
was the first race the team
Dynamis of DMEC took part
in with their first electric
prototype DP12evo. The
objective of the trip was to
participate in the “static tests”
in which the team achieved
great results. In fact, the
team ranked first - for the
second year in a row - in the
Business Plan category and
reached impressive ranking
positions in the Desing and
Cost Event categories.
Tra giugno e luglio hanno
conseguito il titolo di Dottore
di Ricerca le prime due
dottorande coinvolte in un
accordo di doppio dottorato
con Shanghai Jiao Tong University,
firmato nel 2018.
Ci congratuliamo con Ziwei
Lin e Ling Liu per il notevole
traguardo raggiunto, dopo
un percorso di cinque anni
di cui due trascorsi presso il
nostro Dipartimento.
--
DMEC FIRST TWO PHD
GRADUATES OF THE JOINT
PROGRAMME WITH SJTU
Between last June and July,
the first two PhD students
taking part in the Double PhD
Programme in collaboration
with the Shanghai Jiao Tong
University signed in 2018
were awarded their PhD.
Congratulations to Ziwei Lin
and Ling Liu for the impressive
result achieved after
their five-year programmes,
two of which were spent at
DMEC.
Si è chiusa domenica 18 la VI
edizione della competizione
Motostudent che ha visto tra
i protagonisti anche il team
del Dipartimento di Meccanica
POLIMI MOTORCYCLE
FACTORY.
Tanti i successi raggiunti dal
team con il primo prototipo
elettrico NYX: migliore top
speed con una velocità
massima di 200 km/h, primo
posto nella gara di accelerazione
e premio come miglior
progetto industriale.
Nonostante i problemi tecnici
che non hanno permesso
al prototipo Petrol di correre
la gara finale, i ragazzi del
team sono tornati a casa
orgogliosi dei traguardi raggiunti
e pronti ad affrontare
le nuove sfide del futuro.
--
MOTOSTUDENT VI EDITION:
A SUCCESS FOR THE NYX
ELECTRIC MOTORCYCLE
On Sunday, the 18th of July
the VI Edition of the Motostudent
competition ended,
seeing the team POLIMI
MOTORCYCLE FACTORY of
the Department of Mechanical
Engineering among
the participants. The team
obtained many successful
results with the electric NYX
prototype: best top speed
reaching the maximum speed
of 200 km/h, first place
in the acceleration category
and first prize won for Best
Industrial Project.
Even though the Petrol
prototype couldn’t take part
to the final race due to some
technical issues, our team
members came back home
full of pride for their achievements
and ready to face the
new challenges ahead.
DMEC è ospitato presso
gli spazi della 17ª edizione
di Biennale di Venezia
Architettura con una
esposizione che illustra il
progetto H2020 “TheBlue-
GrowthFarm”. La mostra
è stata inaugurata il 10
Settembre e sarà aperta
fino al 21 Novembre 2021
presso lo Squero Castello.
Nell’esposizione sono
presenti 7 progetti internazionali,
che studiano
l’impatto della sostenibilità
sul design, l’architettura e
la tecnologia.
--
A PART OF OUR DEPART-
MENT ON DISPLAY AT THE
VENICE BIENNALE
DMEC is currently part
of the 17th International
Architecture Exhibition – La
Biennale di Venezia with
an exhibition dedicated to
the H2020 project called
“TheBlueGrowthFarm”. The
opening of the exhibition
was last September 10th
and will be hosted at Squero
Castello until November 21st,
2021. The exhibition involves
7 international projects
studying how sustainability
affects design, architecture
and technology.
meccanica magazine
125
NEWS
meccanica magazine
126
CONGRATULAZIONI AI PRIMI
LAUREATI MAGISTRALI IN
MOBILITY ENGINEERING!
Leticia Bala, Luigi Castagna,
Diego Franceschini, Manuel
Manzoni, Irene Motta e
Cristiano Gabriele Rombolà
sono i primi laureati magistrali
del nuovo corso di
studi in Mobility Engineering.
Un ringraziamento
speciale va ai 19 partner che
hanno supportato i nostri
studenti non solo nelle
attività didattiche, ma anche
organizzando seminari e
visite tecniche, proponendo
tesi in collaborazione con le
aziende, offrendo tirocini e
borse di studio.
--
CONGRATULATIONS TO OUR
FIRST POSTGRADUATES IN
MOBILITY ENGINEERING!
Leticia Bala, Luigi Castagna,
Diego Franceschini, Manuel
Manzoni, Irene Motta e
Cristiano Gabriele Rombolà
are the first postgraduate of
the new Programme in Mobility
Engineering. A special
thanks to our 19 partners,
who provided their support
to our students for all
teaching activities, including
seminars, hosted technical
visits, presented in-company
theses, offered internships
and scholarships.
SWITCH2PRODUCT: 4 PRO-
GETTI DMEC TRA I PRIMI 45
SELEZIONATI
Sono stati da poco annunciati
i primi 45 progetti selezionati
per l’edizione 2021
della call Switch2Product.
Quattro tra questi vedono il
coinvolgimento diretto del
Dipartimento di Meccanica:
ARTI (Digital Renaissance for
Cultural and Natural Heritage),
EtherARt, CHIRO e Food
E-box. Equilibrium modified
atmosphere packaging a
casa tua.
--
POLIMIREHAMOVE TEAM TO
THE DIGITAL CYBATHLON
Just announced the first 45
selected projects competing
in the 2021 edition of the
call Switch2Product. Four
of them directly involve the
Department of Mechanical
Engineering: ARTI (Digital
Renaissance for Cultural and
Natural Heritage), EtherARt,
CHIRO and Food E-box. Equilibrium
modified atmosphere
packaging a casa tua.
ALUMNI DMEC PREMIATI
DALLA FONDAZIONE UCIMU
PER LE MIGLIORI TESI DI
LAUREA
Fondazione UCIMU mette in
palio premi per tesi di laurea
o relazioni di tirocinio e
laurea magistrale inerenti
al manifatturiero meccanico.
Sabato 9 ottobre, lo
Speakers’ Corner di EMO
Milano ha ospitato la cerimonia
di premiazione della
45esima edizione dei Premi
UCIMU. Le tesi vincitrici
hanno riguardato un’ampia
gamma di applicazioni di
ingegneria meccanica e
manifatturiera.
--
DMEC ALUMNI AWARDED BY
THE UCIMU FOUNDATION
FOR THE BEST DEGREE
THESES
Fondazione UCIMU awards
graduation prizes for Internship
reports or Master’s
Thesis on topics related to
mechanical engineering and
manufacturing. On Sunday,
October 9th, EMO Speakers’
Corner in Milan hosted the
award ceremony of the 45th
edition of UCIMU Prizes. The
winning theses dealt with a
variety of Mechanical Engineering
and Manufacturing
applications.
DYNAMIS PRC QUARTI A VA-
RANO E OSPITI DELL’ESPO-
SIZIONE MUSEO STORICO
ALFA ROMEO
Dopo lo stop causa pandemia,
il Team Dynamis PRC
è tornato in pista e questa
volta con il primo prototipo
elettrico: DP12evo. Il team
ha gareggiato nell’ultima
edizione italiana della
Formula SAE tenutasi a
Varano de’ Melegari, Parma.
Dynamis PRC, nonostante
si sia dedicato allo sviluppo
di un prototipo interamente
elettrico da meno di un
anno, si è imposto come
miglior team italiano della
competizione ottenendo il
quarto posto nella classifica
genarle Overall Electric.
E mentre si festeggiano i
riconoscimenti ottenuti, il
team è già al lavoro per il
nuovo prototipo DP13e. La
stagione 2021-2022 si prospetta
molto interessante
per il nostro team in quanto
hanno appena stretto una
collaborazione con il Museo
Storico Alfa Romeo.
--
DYNAMIS PRC RANKS
FOURTH IN VARANO AND
SHOWCASES AT THE
EXHIBITION HOSTED BY
THE MUSEO STORICO ALFA
ROMEO
After the break due to
pandemics, the Dynamis
PRC Team is back in the race
and, this time, with its first
electric prototype. The team
raced in the latest Italian
edition of Formula SAE held
in Varano de’ Melegari, Parma.
Despite having started
developing a full-electric
car prototype just one year
ago, Dynamis PRC finished
the race as the best Italian
team, conquering the fourth
place in the Overall Electric
ranking. While the team
celebrates the obtained
rewards, students are already
working on the new DP13e
prototype for the upcoming
season. The same that
involves the team as a guest
of the temporary exhibition
hosted by Museo Storico Alfa
Romeo.
NEWS
DMEC IN ERITREA: L’INCON-
TRO TRA INGEGNERIA E
ARCHEOLOGIA
Nell’ambito del Progetto:
Sustainable Valorization of
the Eritrean Heritage Adulis
Archaeological Site (VITAE),
a inizio novembre 2021 si
è tenuta una missione in
Eritrea di uno gruppo di
ricercatori DMEC; il team è
stato impegnato nella formazione
di operatori eritrei,
un gruppo di 33 studenti di
archeologia, ingegneria e
chimica, in particolare per
quanto riguarda le tecniche
di scansione 3D dei reperti
e la creazione di prototipi
virtuali degli stessi.
--
DMEC IN ERITREA: WHEN
ENGINEERING MEETS
ARCHAEOLOGY
A group of researchers
of Politecnico di Milano,
involved in the activities
of the VITAE (Sustainable
Valorisation of the Eritrean
Heritage Adulis Archaeological
Site) project started last
November 2021, just came
back from Eritrea. During
their stay, our team engaged
in a training activity to make
local operators - a group
of 33 made of archaeology,
engineering and chemistry
students - acquire 3D scanning
techniques and skills
in the creation of virtual
prototypes of the archaeological
remains.
DMEC CON LA GVP ALL’E-
VENTO FOCUS LIVE
Dal 11 al 14 novembre si è
tenuto presso il museo della
Scienza e della Tecnica Leonardo
Da Vinci l’evento Focus
LIVE presso il quale DMEC in
collaborazione con la Galleria
del vento ha intrattenuto
i visitatori con i racconti
della ricerca e delle prove
strutturali realizzate presso
la struttura legate a costruzioni
iconiche della Città
di Milano: Bosco Verticale,
torre dell’Unicredit, ecc.
--
DMEC WITH WIND TUNNEL
AT THE FOCUS LIVE EVENT
From the 11th to the 14th
of November, the Museo
della Scienza e della Tecnica
Leonardo Da Vinci hosted
the Focus LIVE event. DMEC,
along with Wind Tunnel,
organised an exhibition
to share stories linked to
our research activities and
structural tests carried out
on iconic buildings of the
City of Milan: Bosco Vericale,
Unicredit skyscraper, etc.
TENUTO PRESSO DMEC
IL PRIMO WORKSHOP SUL
PROGETTO LIS4.0
È con piacere che annunciamo
il successo del primo
evento tenutosi presso
DMEC per condividere i
risultati delle attività di
ricerca legate al progetto
LIS4.0. Ricercatori, assegnisti
e dottorandi hanno
minuziosamente illustrato ai
loro colleghi gli esperimenti
condotti e i risultati raggiunti
dall’avvio del progetto. Ogni
presentazione ha portato
feedback interessanti,
trasformandosi in un momento
di condivisione molto
stimolante.
Grazie a tutti coloro che
hanno preso parte sia in
presenza che online.
--
THE FIRST WORKSHOP
ABOUT THE LIS4.0 PROJECT
HELD AT DMEC
Proud to announce the success
of the first event held at
DMEC to share the results of
the research activities of the
LIS4.0 project. Researchers,
research fellows and PhD
students carefully explained
to their colleagues the experiments
they carried out and
what they’ve accomplished
since the beginning of the
project. Each presentation
gave impressive feedback,
turning into a very inspiring
moment.
Thank you to everyone who
took part in the event, both
in-person and online.
DMEC TRA I VINCITORI DEL
BANDO PRIN
DMEC si è aggiudicato un
finanziamento nel contesto
dei bandi PRIN (Progetti di
Rilevante Interesse Nazionale,)
posizionandosi 5° sui 373
partecipanti della sezione
PE8 (Products and Processes
Engineering). Polimi è parte
di un consorzio che include
UniCusano, Tor Vergata e
Università di Genova.
--
DMEC AMONG THE WINNERS
OF A PRIN GRANT
DMEC received a Research
Project of Relevant National
Interest (PRIN) grant, ranking
5th out of 373 applicants
within the PE8 (Products
and Processes Engineering)
section of the scheme. PoliMi
is part of a consortium including
UniCusano, Tor Vergata
and University of Genoa.
meccanica magazine
127
DMEC Publications
January 2021
meccanica magazine
128
E. Maleki, N. Maleki, A. Fattahi, O. Unal, M. Guagliano, S. Bagherifard, Mechanical characterization and
interfacial enzymatic activity of AISI 316L stainless steel after surface nanocrystallization Surface and
Coatings Technology, 405, art. no. 126729
S. Gao, S. Chatterton, Naldi L., P. Pennacchi, Ball bearing skidding and over-skidding in large-scale
angular contact ball bearings: Nonlinear dynamic model with thermal effects and experimental results,
Mechanical Systems and Signal Processing, 147, art. no. 107120.
E. Maleki, N. Maleki, A. Fattahi, O. Unal, M. Guagliano, S. Bagherifard, Mechanical characterization and
interfacial enzymatic activity of AISI 316L stainless steel after surface nanocrystallization, Surface and
Coatings Technology, 405, art. no. 126729.
D. Liu, D. Liu, M. Guagliano, X. Xu, K. Fan, S. Bagherifard,Contribution of ultrasonic surface rolling
process to the fatigue properties of TB8 alloy with body-centered cubic structure, Journal of Materials
Science and Technology, 61, pp. 63-74.
F. Defant, P. Albertelli, A novel harmonic solution for chatter stability of time periodic systems, Journal
of Sound and Vibration, 490, art. no. 115719.
G.W. Scurati, M. Bertoni, S. Graziosi, F. Ferrise, Exploring the use of virtual reality to support
environmentally sustainable behavior: A framework to design experiences, Sustainability (Switzerland),
13 (2), art. no. 943, pp. 1-20.
M. De Landro, I. Espíritu García-Molina, M. Barberio, E.Felli, V. Agnus, M. Pizzicannella, M. Diana, E.Zappa,
P. Saccomandi, Hyperspectral imagery for assessing laser-induced thermal state change in liver,
Sensors (Switzerland), 21 (2), art. no. 643, pp. 1-19.
Z. Lin, A. Matta, S. Du, A budget allocation strategy minimizing the sample set quantile for initial
experimental design, IISE Transactions, 53 (1), pp. 39-57.
P. Pennacchi, S. Chatterton, A. Vania, D. Massocchi, Definition of damage indices for railway axle
bearings: Results of long-lasting tests, Machines, 9 (1), art. no. 12, pp. 1-17.
A. De Rosa, R. Kulkarni, A. Qazizadeh, M. Berg, E. Di Gialleonardo, A. Facchinetti, S. Bruni, S., Monitoring
of lateral and cross level track geometry irregularities through onboard vehicle dynamics measurements
using machine learning classification algorithms, Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit, 235 (1), pp. 107-120.
E. Maleki, S. Bagherifard, M. Bandini, M. Guagliano, Surface post-treatments for metal additive
manufacturing: Progress, challenges, and opportunities, Additive Manufacturing, 37, art. no. 101619.
F. Belelli, R. Casati, M. Riccio, A. Rizzi, M.Y. Kayacan, M. Vedani, Development of a novel high-temperature
al alloy for laser powder bed fusion, Metals, 11 (1), art. no. 35, pp. 1-12.
F. Sausto, G. Marchese, E. Bassini, M. Calandri, S. Biamino, D. Ugues, S. Foletti, S. Beretta, Anisotropic
mechanical and fatigue behaviour of Inconel718 produced by SLM in LCF and high-temperature
conditions, Fatigue and Fracture of Engineering Materials and Structures, 44 (1), pp. 271-292.
M. Giuranna, P. Wolkenberg, D. Grassi, A. Aronica, S. Aoki, D. Scaccabarozzi, B. Saggin, V. Formisano,
The current weather and climate of Mars: 12 years of atmospheric monitoring by the Planetary Fourier
Spectrometer on Mars Express, Icarus, 353, art. no. 113406.
E.R. Delgado Ramírez, J.E. Perez Ipiña, E.M. Castrodeza, Analysis of the S pb
method for geometries
where η pl
depends on a/W, Engineering Fracture Mechanics, 241, art. no. 107416.
J. Wójcicki, T. Tolio, G. Bianchi,Cross-level model of a transfer machine energy demand using a twomachine
generalized threshold representation, Journal of Manufacturing Systems, 58, pp. 44-58.
G. Lugaresi, V.V. Alba, A. Matta, Lab-scale Models of Manufacturing Systems for Testing Real-time
Simulation and Production Control Technologies, Journal of Manufacturing Systems, 58, pp. 93-108.
Cited 1 time.
V.V. Krishna, D. Jobstfinke, S. Melzi, M. Berg, An integrated numerical framework to investigte the
running safety of overlong freight trains, Proceedings of the Institution of Mechanical Engineers, Part F:
Journal of Rail and Rapid Transit, 235 (1), pp. 47-60.
G. Zong, H. Ren, H.R. Karimi, Event-Triggered Communication and Annular Finite-Time H∞ Filtering for
Networked Switched Systems, IEEE Transactions on Cybernetics, 51 (1), art. no. 9162476, pp. 309-317.
N. Robuschi, C. Zeile, S. Sager, F. Braghin, Multiphase mixed-integer nonlinear optimal control of hybrid
electric vehicles, Automatica, 123, art. no. 109325.
X. Gong, N. Geng, Y. Zhu, A. Matta, E. Lanzarone, A Matheuristic Approach for the Home Care Scheduling
Problem with Chargeable Overtime and Preference Matching, IEEE Transactions on Automation
Science and Engineering, 18 (1), art. no. 9268951, pp. 282-298.
D. Chadefaux, A.P. Moorhead, P. Marzaroli, S. Marelli, E. Marchetti, M. Tarabini, Vibration transmissibility
and apparent mass changes from vertical whole-body vibration exposure during stationary and
propelled walking, Applied Ergonomics, 90, art. no. 103283.
C. Ren, S. He, X. Luan, F. Liu, H.R. Karimi, Finite-Time L<inf>2</inf>-Gain Asynchronous Control
for Continuous-Time Positive Hidden Markov Jump Systems via T-S Fuzzy Model Approach, IEEE
Transactions on Cybernetics, 51 (1), art. no. 9113242, pp. 77-87.
B. Jiang, H.R. Karimi, S. Yang, C. Gao, Y. Kao, Observer-Based Adaptive Sliding Mode Control for
Nonlinear Stochastic Markov Jump Systems via T-S Fuzzy Modeling: Applications to Robot Arm Model,
IEEE Transactions on Industrial Electronics, 68 (1), art. no. 8960531, pp. 466-477.
J. Liu, T. Yin, D. Yue, H.R. Karimi, J. Cao, Event-Based Secure Leader-Following Consensus Control
for Multiagent Systems with Multiple Cyber Attacks, IEEE Transactions on Cybernetics, 51 (1), art. no.
9003516, pp. 162-173.
C. Re, S. He, X. Luan, F. Liu, H.R. Karimi, Finite-Time L2-Gain Asynchronous Control for Continuous-
Time Positive Hidden Markov Jump Systems via T-S Fuzzy Model Approach (2021) IEEE Transactions on
Cybernetics, 51 (1), art. no. 9113242, pp. 77-87.
X. Huo, H.R. Karimi, X. Zhao, B. Wang, G. Zong, Adaptive-Critic Design for Decentralized Event-Triggered
Control of Constrained Nonlinear Interconnected Systems Within an Identifier-Critic Framework (2021)
IEEE Transactions on Cybernetics.
D. Zhang, Y. Chen, F. Guo, H.R. Karimi, H. Dong, Q. Xuan, A New Interpretable Learning Method for Fault
Diagnosis of Rolling Bearings (2021) IEEE Transactions on Instrumentation and Measurement, 70, art.
no. 9290108.
E. Maleki, N. Maleki, A. Fattahi, O. Unal, M. Guagliano, S. Bagherifard, Mechanical characterization and
interfacial enzymatic activity of AISI 316L stainless steel after surface nanocrystallization (2021) Surface
and Coatings Technology, 405, art. no. 126729.
F. Tessarolo, et al, Testing surgical face masks in an emergency context: The experience of italian
laboratories during the COVID-19 pandemic crisis (2021) International Journal of Environmental
Research and Public Health, 18 (4), art. no. 1462, pp. 1-19.
G. Battista, G. Herold, E. Sarradj, P. Castellini, P. Chiariotti, IRLS based inverse methods tailored to
volumetric acoustic source mapping (2021) Applied Acoustics, 172, art. no. 107599.
N. Riboldi, G.W. Scurati, F. Ferrise, M. Bordegoni, S, Pedrini, Improving maintenance services through
virtual reality (2021) Manufacturing In The Era Of 4th Industrial Revolution: A World Scientific Reference
(In 3 Volumes), pp. 49-72.
F. Cadini, L. Lomazzi, M. Ferrater Roca, C. Sbarufatti, M. Giglio, Neutralization of temperature effects
in damage diagnosis of MDOF systems by combinations of autoencoders and particle filters (2021)
Mechanical Systems and Signal Processing, 162, art. no. 108048.
W. Terkaj, Q. Qi, M. Urgo, P.J. Scott, X. Jiang, Multi-scale modelling of manufacturing systems using
ontologies and delta-lenses (2021) CIRP Annals, 70 (1), pp. 361-364.
S. Petrò, G Moroni, Statistics-based decision rules for the ISO 10360 series of standard tests (2021) CIRP
Annals, 70 (1), pp. 423-426.
A. Gilioli F. Cadini, L. Abbiati, G.A.G. Solero, M. Fossati, A. Manes, L. Carnelli, C. Lazzari, S, Cardamone,
M. Giglio, Finite element modelling of a parabolic trough collector for concentrated solar power (2021)
Energies, 14 (1), art. no. 209.
M. Vignati, E. Sabbioni, A cooperative control strategy for yaw rate and sideslip angle control combining
torque vectoring with rear wheel steering (2021) Vehicle System Dynamics.
V.V. Krishna, D. Jobstfinke, S. Melzi, M. Berg, An integrated numerical framework to investigate the
running safety of overlong freight trains (2021) Proceedings of the Institution of Mechanical Engineers,
Part F: Journal of Rail and Rapid Transit, 235 (1), pp. 47-60.
Li, Z., Zhai, J., Karimi, H.R. Adaptive finite-time super-twisting sliding mode control for robotic
manipulators with control backlash (2021) International Journal of Robust and Nonlinear Control, 31 (17),
pp. 8537-8550.
S.S. Christensen, S. Manzoni, M. Vanali, A. Cigada, A. Brandt, Quantitative Study on the Modal Parameters
Estimated Using the PLSCF and the MITD Methods and an Automated Modal Analysis Algorithm (2021)
Conference Proceedings of the Society for Experimental Mechanics Series, pp. 159-168.
F. Ballo, M. Carboni, G. Mastinu, G. Previati, Wires for spring construction: full scale fatigue experimental
tests (2021) Meccanica.
M. Ozdemir, V. Chatziioannou, J. Verlinden, G. Cascini, M. Pàmies-Vilà, Towards 3D printed saxophone
mouthpiece personalization: Acoustical analysis of design variations (2021) Acta Acustica, 5, art. no. 46.
A. Casaroli, M. Boniardi, R. Gerosa, B. Rivolta, Metallurgical Analysis as a Useful Method for Fire
Investigation: the Case of Galvanized Steel Sheets (2021) Fire Technology.
S.K. Gupta, H.A. Bruck, Y. Chen, V.N. Krovi, C. Schlenoff, M. Bordegoni, J. Ritchie, Manufacturing in the
era of 4th industrial revolution: A world scientific reference (In 3 Volumes) (2021) Manufacturing In The
Era Of 4th Industrial Revolution: A World Scientific Reference (In 3 Volumes), pp. 1-1001.
M.Bordegoni, S.K. Gupta, J.M. Ritchie, Introduction (2021) Manufacturing In The Era Of 4th Industrial
Revolution: A World Scientific Reference (In 3 Volumes), pp. 1-16.
D. Oboe, L. Colombo, C. Sbarufatti, M. Giglio, Shape Sensing with Inverse Finite Element Method on a
Composite Plate Under Compression Buckling (2021) Lecture Notes in Civil Engineering, 128, pp. 342-
351.
C. Sbarufatti, B. Patel, X.F. Sánchez-Romate, D. Scaccabarozzi, S. Cinquemani, A. Jiménez-Suárez, A.
Ureña, Self-sensing of CNT-Doped GFRP Panels During Impact and Compression After Impact Tests
(2021) Lecture Notes in Civil Engineering, 128, pp. 527-536.
A. Beligni, K. Kowalczyk, C. Sbarufatti, M. Giglio, An Impact Monitoring System for Aeronautical
Structures (2021) 127, pp. 636-646.
L. Colombo, D. Oboe, C. Sbarufatti, M. Giglio, Damage Identification by Inverse Finite Element Method on
Composite Structures Subject to Impact Damage (2021) 127, pp. 553-563.
M. Carboni, A. Bernasconi, Acoustic Emission Based Monitoring of Fatigue Damage in CFRP-CFRP
Adhesive Bonded Joints (2021) 127, pp. 605-615.
Z. Li, E. Gariboldi, Analysis of the applicability of effective thermophysical properties to composite phase
change materials (2021) Materials Science Forum, 1016 MSF, pp. 813-818.
C. Confalonieri, E. Gariboldi, Effect of different production processes on metallic composite phase
change materials for thermal energy storage (2021) Materials Science Forum, 1016 MSF, pp. 359-365.
X. Han, X. Zhao, H.R. Karimi, D. Wang, G. Zong, Adaptive Optimal Control for Unknown Constrained
Nonlinear Systems With a Novel Quasi-Model Network (2021) IEEE Transactions on Neural Networks and
Learning Systems.
M. Manzini, M. Urgo, An Approximate Approach for the Verification of Process Plans with an Application
to Reconfigurable Pallets (2021) Lecture Notes in Mechanical Engineering, pp. 105-120.
N. Frigerio, A. Matta, Energy Efficient State Control of Machine Tool Components: A Multi-sleep Control
Policy (2021) Lecture Notes in Mechanical Engineering, pp. 43-59.
A. Angius, M. Colledani, Lead Time Analysis of Manufacturing Systems with Time-Driven Rework
Operations (2021) Lecture Notes in Mechanical Engineering, pp. 153-167.
A. Cigada, F. Lucà, M. Malavisi, G. Mancini, Structural health monitoring of a damaged operating bridge:
Asupervised learning case study (2021) Conference Proceedings of the Society for Experimental
Mechanics Series, pp. 169-177.
P. Pennacchi, S. Chatterton, A. Vania, Diagnostics of Roller Bearings Faults During Long-Lasting Tests
(2021) Mechanisms and Machine Science, 91, pp. 687-698.
February 2021
E. Maleki, M.J. Mirzaali, M. Guagliano, S. Bagherifard, Analyzing the mechano-bactericidal effect of nanopatterned
surfaces on different bacteria species, Surface and Coatings Technology, 408, art. no. 126782.
D. Paloschi, K.A. Bronnikov, S. Korganbayev, A.A. Wolf, A. Dostovalov, P. Saccomandi, 3D Shape Sensing
with Multicore Optical Fibers: Transformation Matrices Versus Frenet-Serret Equations for Real-Time
Application, IEEE Sensors Journal, 21 (4), art. no. 9233257, pp. 4599-4609.
F. Zanelli, F. Castelli-Dezza, D. Tarsitano, M. Mauri, M.L. Bacci, G. Diana, Design and field validation of a
low power wireless sensor node for structural health monitoring†, Sensors (Switzerland), 21 (4), art. no.
1050, pp. 1-17.
D. Oboe, L. Colombo, C. Sbarufatti, M. Giglio, Shape sensing of a complex aeronautical structure with
inverse finite element method, Sensors (Switzerland), 21 (4), art. no. 1388, pp. 1-25.
P. Albertelli, M. Monno, Energy assessment of different cooling technologies in Ti-6Al-4V milling,
International Journal of Advanced Manufacturing Technology, 112 (11-12), pp. 3279-3306.
F. Sausto, L. Patriarca, S. Foletti, S. Beretta, E. Vacchieri, Strain localizations in notches for a coarsegrained
Ni-based superalloy: Simulations and experiments, 14 (3), art. no. 564, pp. 1-18.
S. Petrò, G. Moroni, A statistical point of view on the ISO 10360 series of standards for coordinate
measuring systems verification, Measurement: Journal of the International Measurement
Confederation, 172, art. no. 108937.
L. Colombo, D. Oboe, C. Sbarufatti, F. Cadini, S. Russo, M. Giglio, Shape sensing and damage identification
with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions,
Mechanical Systems and Signal Processing, 148, art. no. 107163.
R. Scazzosi, M. Giglio, A. Manes, Experimental and numerical investigation on the perforation resistance
of double-layered metal shield under high-velocity impact of armor-piercing projectiles, Materials, 14
(3), art. no. 626, pp. 1-20.
L. Caprio, A.G. Demir, B. Previtali, Nonintrusive estimation of subsurface geometrical attributes of
the melt pool through the sensing of surface oscillations in laser powder bed fusion, Journal of Laser
Applications, 33 (1), art. no. 012035.
H. Skyvulstad, T. Argentini, A. Zasso, O. Øiseth, Nonlinear modelling of aerodynamic self-excited forces:
An experimental study, Journal of Wind Engineering and Industrial Aerodynamics, 209, art. no. 104491.
R. Scazzosi, M. Giglio, A. Manes, Experimental and numerical investigation on the perforation resistance
of double-layered metal shields under high-velocity impact of soft-core projectiles, Engineering
Structures, 228, art. no. 111467.
L. Xu, S. Chatterton, P. Pennacchi, Rolling element bearing diagnosis based on singular value
decomposition and composite squared envelope spectrum, Mechanical Systems and Signal Processing,
148, art. no. 107174.
R. Casati, M. Coduri, S. Checchia, M. Vedani, Insight into the effect of different thermal treatment routes
on the microstructure of AlSi7Mg produced by laser powder bed fusion, Characterization, 172, art. no.
110881.
F. Bruzzo, G. Catalano, A.G. Demir, B. Previtali, Surface finishing by laser re-melting applied to robotized
laser metal deposition, Optics and Lasers in Engineering, 137, art. no. 106391.
G. Previati, Large oscillations of the trifilar pendulum: Analytical and experimental study, Mechanism
and Machine Theory, 156, art. no. 104157.
M. Jambor, D. Kajánek, S. Fintová, J. Bronček, B. Hadzima, M. Guagliano, S. Bagherifard, Directing
Surface Functions by Inducing Ordered and Irregular Morphologies at Single and Two-Tiered Length
Scales, Engineering Materials, 23 (2), art. no. 2001057.
L. Colombo, C. Sbarufatti, L. Dal Bosco, D. Bortolotti, M.Dziendzikowski, K. Dragan, F. Concli, M. Giglio,
Numerical and experimental verification of an inverse-direct approach for load and strain monitoring in
aeronautical structures, Structural Control and Health Monitoring, 28 (2), art. no. e2657.
S. Karimi, B. Mohammadikalakoo, P. Schito, Performance enhancement of single dielectric barrier
discharge flow control actuators by means of rear linking tunnels on a reference bluff body using CFD,
Journal of Wind Engineering and Industrial Aerodynamics, 209, art. no. 104488.
Z. Wang, J. Fu, A. Manes, Discrete fracture and size effect of aluminosilicate glass under flexural loading:
Monte Carlo simulations and experimental validation, Theoretical and Applied Fracture Mechanics, 111,
art. no. 102864.
L. Roveda, M. Magni, M. Cantoni, D. Piga, G. Bucca, Human–robot collaboration in sensorless assembly
task learning enhanced by uncertainties adaptation via Bayesian Optimization, Robotics and
Autonomous Systems, 136, art. no. 103711.
L. Wang, H.R. Karimi, Gu, J., Stability Analysis for Interval Type-2 Fuzzy Systems by Applying Homogenous
Polynomially Membership Functions Dependent Matrices and Switching Technique, IEEE Transactions
on Fuzzy Systems, 29 (2), art. no. 9237956, pp. 203-212.
A. Casaroli, M. Boniardi, R. Dalipi, L. Borgese, L.E. Depero, Procedure optimization of type 304 and 420B
stainless steels release in acetic acid, Food Control, 120, art. no. 107509.
S. Castagnet, C. Nadot-Martin, N. Fouchier, E. Conrado, A. Bernasconi, Fatigue life assessment in
notched injection-molded specimens of a short-glass fiber reinforced Polyamide 6 with different
injection gate locations, International Journal of Fatigue, 143, art. no. 105968.
S. Asadi, L. Bianchi, M. De Landro, S. Korganbayev, E. Schena, P. Saccomandi, Laser-induced
optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application,
Journal of Biophotonics, 14 (2), art. no. e202000161.
M. Zago, M. Tarabini, M.D. Spiga, C. Ferrario, F. Bertozzi, C. Sforza, M. Galli, Machine-learning based
determination of gait events from foot-mounted inertial units, Sensors (Switzerland), 21 (3), art. no. 839,
pp. 1-13.
J.D. Velazco-Garcia, N.V. Navkar, S. Balakrishnan, J. Abi-Nahed, K. Al-Rumaihi, A. Darweesh, A. Al-
Ansari, E.G. Christoforou, M. Karkoub, E.L. Leiss, P. Tsiamyrtzis, N.V. Tsekos, End-user evaluation of
software-generated intervention planning environment for transrectal magnetic resonance-guided
prostate biopsies, International Journal of Medical Robotics and Computer Assisted Surgery, 17 (1), pp.
1-12.
A. Beisenova, A. Issatayeva, Z. Ashikbayev, M. Jelbuldina, A. Aitkulov, V. Inglezakis, W. Blanc, P.
Saccomandi, C. Molardi, D. Tosi, Distributed sensing network enabled by high-scattering MgO-doped
optical fibers for 3d temperature monitoring of thermal ablation in liver phantom,(Switzerland), 21 (3),
art. no. 828, pp. 1-10.
G. Cosoli, A. Mobili, N. Giulietti, P. Chiariotti, G. Pandarese, F. Tittarelli, T. Bellezze, N. Mikanovic, G.M.
Revel, Performance of concretes manufactured with newly developed low-clinker cements exposed
to water and chlorides: Characterization by means of electrical impedance measurements (2021)
Construction and Building Materials, 271, art. no. 121546.
M. Pesenti, A. Antonietti, M. Gandolla, A. Pedrocchi, Towards a functional performance validation
standard for industrial low-back exoskeletons: State of the art review (2021) Sensors (Switzerland), 21
(3), art. no. 808, pp. 1-23.
M. Jambor, D. Kajánek, S. Fintová, J. Bronček, B. Hadzima, M. Guagliano, S. Bagherifard, Directing
Surface Functions by Inducing Ordered and Irregular Morphologies at Single and Two-Tiered Length
Scales(2021) Advanced Engineering Materials, 23 (2), art. no. 2001057.
N. Lecis, R. Beltrami, M. Mariani, Binder jetting 3D printing of 316 stainless steel: Influence of process
parameters on microstructural and mechanical properties (2021) Metallurgia Italiana, 113 (2), pp. 31-41.
P. Stabile, F. Ballo, G. Mastinu, M. Gobbi, An ultra-efficient lightweight electric vehicle—power demand
analysis to enable lightweight construction (2021) Energies, 14 (3), art. no. 766.
A. Cigada, F. Lucà, M. Malavisi, G. Mancini, A damage detection strategy on bridge external tendons
through long-time monitoring (2021) Conference Proceedings of the Society for Experimental Mechanics
Series, pp. 159-168.
meccanica magazine
129
meccanica magazine
130
P.N.C. Girotti, I. Königsrainer, U. Pastorino, A.L. Girotti, F. Rosa, Optimal chest wall prosthesis:
Comparative study of mechanical and functional behavior (2021) European Journal of Cardio-thoracic
Surgery, 59 (2), pp. 302-308.
F. Marchegiani, E. Noll, P. Riva, S.-H. Kong, P. Saccomandi, G. Vita, V. Lindner, I.J. Namer, J. Marescaux,
P. Diemunsch, M. Diana, Effects of Warmed and Humidified CO2 Surgical Site Insufflation in a Novel
Experimental Model of Magnetic Compression Colonic Anastomosis (2021) Surgical Innovation, 28 (1),
pp. 7-17.
S. Arrigoni, F. Braghin, F. Cheli, MPC trajectory planner for autonomous driving solved by genetic
algorithm technique (2021) Vehicle System Dynamics.
M. Khayyat, S. Arrigoni, F. Cheli, Development and simulation-based testing of a 5G-Connected
intersection AEB system (2021) Vehicle System Dynamics.
E. Vasileska, M. Pacher, B. Previtali, In-line monitoring of focus shift by kerf width detection with
coaxial thermal imaging during laser cutting (2021) International Journal of Advanced Manufacturing
Technology.
G. Diana, E. Sabbioni, C. Somaschini, D. Tarsitano, P. Cavicchi, M. Di Mario, L. Labbadia, Full-scale
derailment tests on freight wagons (2021) Vehicle System Dynamics.
March 2021
M. Cenedese, E. Belloni, F. Braghin, Interaction of Bragg scattering bandgaps and local resonators in
mono-coupled periodic structures, Journal of Applied Physics, 129 (12), art. no. 124501.
F. Belelli, R. Casati, F. Larini, M. Riccio, M. Vedani, Investigation on two Ti–B-reinforced Al alloys for Laser
Powder Bed Fusion, Materials Science and Engineering A, 808, art. no. 140944.
N. Frigerio, C.F.A. Cornaggia, A. Matta, An adaptive policy for on-line Energy-Efficient Control of machine
tools under throughput constraint N. Frigerio et al., Journal of Cleaner Production, 287, art. no. 125367.
G. Bianchi, S. Cinquemani, F. Resta, Bio-inspired design of an underwater robot exploiting fin undulation
propulsion, Applied Sciences (Switzerland), 11 (6), art. no. 2556.
Y. Xia, E. Riva, M.I.N. Rosa, G. Cazzulani, A. Erturk, F. Braghin, M. Ruzzene, Experimental Observation of
Temporal Pumping in Electromechanical Waveguides, Physical Review Letters, 126 (9), art. no. 095501.
S. Petrò, C. Reina, G. Moroni, X-ray CT-Based Defect Evaluation of Continuous CFRP Additive
Manufacturing, Journal of Nondestructive Evaluation, 40 (1), art. no. 7.
F. Buccino, C. Colombo, L.M. Vergani, A review on multiscale bone damage: From the clinical to the
research perspective, Materials, 14 (5), art. no. 1240, pp. 1-25.
G. Cazzulani, A. Silva, P. Pennacchi, Optimization of continuous sensor placement for modal analysis:
Application to an optical backscatter reflectometry strain sensor, Mechanical Systems and Signal
Processing, 150, art. no. 107242.
Z. Lin, N. Frigerio, A. Matta, S. Du, Multi-fidelity surrogate-based optimization for decomposed buffer
allocation problems, OR Spectrum, 43 (1), pp. 223-253.
G. Riccardo, B. Rivolta, C. Gorla, F. Concli, Cyclic behavior and fatigue resistance of AISI H11 and AISI H13
tool steels, Engineering Failure Analysis, 121, art. no. 105096.
N. Milan, P. Parenti, M. Annoni, M. Sorgato, G. Lucchetta, Innovative fabrication of diffractive surfaces
on plastic parts via textures micromilled on NiP injection moulds, International Journal of Advanced
Manufacturing Technology, 113 (5-6), pp. 1347-1359.
D. Ma, S. Campos Amico, M. Giglio, A. Manes, Effect of fibre bundle uncertainty on the tensile and shear
behaviour of plain-woven composites, Composite Structures, 259, art. no. 113440.
A. Chirico, G.W. Scurati, C. Maffi, S. Huang, S. Graziosi, F. Ferrise, A. Gaggioli, Designing virtual
environments for attitudes and behavioral change in plastic consumption: a comparison between
concrete and numerical information, Virtual Reality, 25 (1), pp. 107-121.
C. Ruzzo, S. Muggiasca, G. Malara, F. Taruffi, M. Belloli, M. Collu, L. Li, G. Brizzi, F. Arena, Scaling
strategies for multi-purpose floating structures physical modeling: state of art and new perspectives,
Applied Ocean Research, 108, art. no. 102487.
H. Ren, G. Zong, H.R. Karimi, Asynchronous Finite-Time Filtering of Markov Jump Nonlinear Systems and
Its Applications, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (3), art. no. 8681275,
pp. 1725-1734.
J. Chen, M. Guagliano, M. Shi, X. Jiang, H. Zhou, A comprehensive overview of bamboo scrimber and its
new development in China, European Journal of Wood and Wood Products, 79 (2), pp. 363-379.
H. Wan, X. Luan, H.R. Karimi, F. Liu, Dynamic Self-Triggered Controller Codesign for Markov Jump
Systems, IEEE Transactions on Automatic Control, 66 (3), art. no. 9086137, pp. 1353-1360.
Y. Lei, H.R. Karimi, L. Cen, X. Chen, Y. Xie, Processes soft modeling based on stacked autoencoders and
wavelet extreme learning machine for aluminum plant-wide application, Control Engineering Practice,
108, art. no. 104706.
Z. Zhang, L. Zheng, Z. Chen, L. Kong, H.R. Karimi, Mutual-Collision-Avoidance Scheme Synthesized
by Neural Networks for Dual Redundant Robot Manipulators Executing Cooperative Tasks, IEEE
Transactions on Neural Networks and Learning Systems, 32 (3), art. no. 9072323, pp. 1052-1066.
B. Jiang, H.R. Karimi, S. Yang, Y. Kao, C. Gao, Takagi-Sugeno Model-Based Reliable Sliding Mode Control
of Descriptor Systems with Semi-Markov Parameters: Average Dwell Time Approach, IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 51 (3), art. no. 8661740, pp. 1549-1558.
E. De Vita, M. De Landro, C. Massaroni, A. Iadicicco, P. Saccomandi, E. Schena, S. Campopiano, Fiber
Optic Sensors-Based Thermal Analysis of Perfusion-Mediated Tissue Cooling in Liver Undergoing Laser
Ablation, IEEE Transactions on Biomedical Engineering, 68 (3), art. no. 9126195, pp. 1066-1073.
K. Chaib-Draa, A. Zemouche, F. Bedouhene, R. Rajamani, Y. Wang, H.R. Karimi, T.M. Laleg-Kirati,
Finite-time estimation algorithms for LPV discrete-time systems with application to output feedback
stabilization, 125, art. no. 109436, .
A. Mantelli, A. Romani, R. Suriano, M. Diani, M. Colledani, E. Sarlin, S. Turri, M. Levi, Uv-assisted 3d
printing of polymer composites from thermally and mechanically recycled carbon fibers, Polymers, 13
(5), art. no. 726, pp. 1-15.
A. Abba, et al., The novel Mechanical Ventilator Milano for the COVID-19 pandemic, Physics of Fluids, 33
(3), art. no. 037122.
L. Benedetti, P. Borlenghi, M. D’Angelo, A. Menghini, G. Zonno, F. Ballio, M. Belloli, C. Gentile,
Multidisciplinary Investigations of a Steel–Concrete Composite Bridge (2021) Lecture Notes in Civil
Engineering, 156, pp. 793-807.
B. Liu, S. Bruni, Influence of individual wheel profiles on the assessment of running dynamics of a rail
vehicle by numerical simulation: a case study (2021) Vehicle System Dynamics.
F, Concli, L. Pierri, C. Sbarufatti, A model-based SHM strategy for gears-development of a hybrid FEManalytical
approach to investigate the effects of surface fatigue on the vibrational spectra of a backto-back
M. Gandolla, L. Niero, F. Molteni, F. Guanziroli, N.S. Ward, A. Pedrocchi, Brain plasticity mechanisms
underlying motor control reorganization: Pilot longitudinal study on post-stroke subjects (2021) Brain
Sciences, 11 (3), art. no. 329, pp. 1-17.
I. Maor, S. Asadi, S. Korganbayev, D. Dahis, Y. Shamay, E. Schena, H. Azhari, P. Saccomandi, I.S.
Weitz, Laser-induced thermal response and controlled release of copper oxide nanoparticles from
multifunctional polymeric nanocarriers (2021) Science and Technology of Advanced Materials, 22 (1), pp.
218-233.
L. Malagodi, E. Lanzarone, A. Matta, Home care vehicle routing problem with chargeable overtime and
strict and soft preference matching (2021) Health Care Management Science, 24 (1), pp. 140-159.
E. Di Gialleonardo, M. Santelia, S. Bruni, A. Zolotas, A simple active carbody roll scheme for hydraulically
actuated railway vehicles using internal model control (2021) ISA Transactions.
H. Yan, M. Grasso, K. Paynabar, B.M. Colosimo, Real-time detection of clustered events in video-imaging
data with applications to additive manufacturing (2021) IISE Transactions.
Z. Ashikbayeva, A. Aitkulov, M. Jelbuldina, A. Issatayeva, A. Beisenova, C. Molardi, P. Saccomandi, W.
Blanc, V.J. Inglezakis, D. Tosi, Gold nanoparticles-mediated laser ablation therapy monitored with optical
fibers sensing network in real time (2021) Progress in Biomedical Optics and Imaging - Proceedings of
SPIE, 11628, art. no. 116280Y.
K.A. Goggins, D. Chadefaux, M. Tarabini, M. Arsenault, W.B. Lievers, T. Eger, Four degree-of-freedom
lumped parameter model of the foot-ankle system exposed to vertical vibration from 10 to 60 Hz with
varying centre of pressure conditions (2021) Ergonomics, 64 (8), pp. 1002-1017.
April 2021
D. Oboe, L. Colombo, C. Sbarufatti, M. Giglio, Comparison of strain pre-extrapolation techniques for
shape and strain sensing by iFEM of a composite plate subjected to compression buckling, Composite
Structures, 262, art. no. 113587.
D. Ma, P. Verleysen, S. Chandran, M. Giglio, A. Manes, A modified peridynamic method to model the
fracture behaviour of nanocomposites, Engineering Fracture Mechanics, 247, art. no. 107614.
Z. Wang, D. Ma, T. Suo, Y. Li, A. Manes, Investigation into different numerical methods in predicting
the response of aluminosilicate glass under quasi-static and impact loading conditions, International
Journal of Mechanical Sciences, 196, art. no. 106286.
E. Maleki, O. Unal, M. Guagliano, S. Bagherifard, The effects of shot peening, laser shock peening and
ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718, Materials Science
and Engineering A, 810, art. no. 141029.
C. Cantoni, M. Gobbi, G. Mastinu, A. Meschini, S. Vicchi, Tire and Brake Interaction - A New Test Rig to
Study Wheel Locking, SAE Technical Papers.
N. Frigerio, L. Marzano, A. Matta, An Online Policy for Energy-Efficient State Control of Manufacturing
Equipment, IEEE Transactions on Automation Science and Engineering, 18 (2), art. no. 9308932, pp.
705-716.
F. Concli, L. Bonaiti, R. Gerosa, L. Cortese, F. Nalli, F. Rosa, C. Gorla, Bending fatigue behavior of 17-4 ph
gears produced by additive manufacturing, Applied Sciences (Switzerland), 11 (7), art. no. 3019.
M. Fossati, M. Pagani, M. Giglio, A. Manes, Fatigue crack propagation in a helicopter component
subjected to impact damage, Defence Technology, 17 (2), pp. 416-428.
P. Coppola, F. Silvestri, Gender inequality in safety and security perceptions in railway stations,
(Switzerland), 13 (7), art. no. 4007.
G. Lugaresi, A. Matta, Automated manufacturing system discovery and digital twin generation, Journal
of Manufacturing Systems, 59, pp. 51-66.
Z. Li, C. Confalonieri, E. Gariboldi, Numerical and experimental evaluation of thermal conductivity: An
application to al-sn alloys, Metals, 11 (4), art. no. 650.
J. Volpp, F. Belelli, R. Casati, Fluctuations of tracks and layers during aluminium laser powder-bed
fusion, Applied Sciences (Switzerland), 11 (7), art. no. 3132.
M. Berardengo, S. Manzoni, J. Høgsberg, M. Vanali, Vibration control with piezoelectric elements: The
indirect measurement of the modal capacitance and coupling factor, Mechanical Systems and Signal
Processing, 151, art. no. 107350.
S. Derosa, P. Nåvik, A. Collina, A. Rønnquist, Railway catenary tension force monitoring via the analysis
of wave propagation in cables, Proceedings of the Institution of Mechanical Engineers, Part F: Journal
of Rail and Rapid Transit, 235 (4), pp. 494-504.
Y. Tang, C. Li, A. Matta, Q. Chang, Special Issue on Intelligent Energy Solutions to Sustainable Production
and Service Automation, IEEE Transactions on Automation Science and Engineering, 18 (2), art. no.
9397468, pp. 615-617.
D.E. Quadrelli, R. Craster, M. Kadic, F. Braghin, Elastic wave near-cloaking, Extreme Mechanics Letters,
44, art. no. 101262.
X. Li, Z. Sun, Y. Tang, H.R. Karimi, Adaptive Event-Triggered Consensus of Multiagent Systems on
Directed Graphs, IEEE Transactions on Automatic Control, 66 (4), art. no. 9112274, pp. 1670-1685.
A.S. Vishwanath, K. Rane, J. Schaper, M. Strano, R. Casati, Rapid production of AZ91 Mg alloy by extrusion
based additive manufacturing process (2021) Powder Metallurgy, 64 (5), pp. 370-377.
G. Battista, P. Chiariotti, P. Milena, Castellini, C. Colangeli, K. Janssens, 3D acoustic mapping in
automotive wind tunnel: Algorithm and problem analysis on simulated data (2021) Applied Sciences
(Switzerland), 11 (7), art. no. 3241.
M. Sadeghi, L. Sartor, M. Rossi, A semantic-based access control mechanism for distributed systems
(2021) Proceedings of the ACM Symposium on Applied Computing, pp. 1864-1873.
S. Muggiasca, F. Taruffi, A. Fontanella, S. Di Carlo, M. Belloli, Aerodynamic and structural strategies for
the rotor design of a wind turbine scaled model (2021) Energies, 14 (8), art. no. 2119.
N. Giulietti, P. Chiariotti, G. Cosoli, A. Mobili, G. Pandarese, F. Tittarelli, G.M. Revel, Automated
measurement system for detecting carbonation depth: Image-processing based technique applied to
concrete sprayed with phenolphthalein (2021) Measurement: Journal of the International Measurement
Confederation, 175, art. no. 109142.
M.A. Farid, M. Strano, K. Rane, Optimization of process-property relations of 3D printed ceramics using
extrusion-based additive manufacturing (2021) ESAFORM 2021 - 24th International Conference on
Material Forming, art. no. 3723.
F. Perotti, M. Annoni, A. Calcante, M. Monno, V. Mussi, R. Oberti, Experimental study of abrasive waterjet
cutting for managing residues in no-tillage techniques (2021) Agriculture (Switzerland), 11 (5), art. no. 392.
G. Previati, M. Gobbi, F. Ballo, A sensitivity interpolation algorithm for the concurrent optimization of
bodies sharing a common design space (2021) Optimization and Engineering.
M. Zhang, E. Pastore, A. Alfieri, A. Matta, Buffer allocation problem in production flow lines: A new
Benders-decomposition-based exact solution approach (2021) IISE Transactions.
F. Taruffi, S. Di Carlo, S. Muggiasca, A. Fontanella, Numerical design of a floating offshore wind turbine
large scale model for control purposes (2021) Proceedings of the ASME 2021 3rd International Offshore
Wind Technical Conference, IOWTC 2021.
S. Di Carlo, A. Fontanella, A. Facchinetti, S. Muggiasca, F. Taruffi, M. Belloli, Experimental validation of
a wave elevation observer on a floating wind turbine model (2021) Proceedings of the ASME 2021 3rd
International Offshore Wind Technical Conference, IOWTC 2021.
A. Gruttadauria, S. Barella, A Guerra, Ni-Based CW6MC: Effect of the Internal Revert Recycle on the
Soundness of the Alloy (2021) International Journal of Metalcasting.
A. Collina, R. Corradi, E. Di Gialleonardo, Q Li, Nonlinear Model of an Embedded Rail System for the
Simulation of Train-Track Dynamic Interaction and the Analysis of Vibration Transmission (2021) Notes
on Numerical Fluid Mechanics and Multidisciplinary Design, 150, pp. 251-258.
A. Collina, R. Corradi, E. Di Gialleonardo, Q. Li, Analysis of the Effect of Running Speed and Bogie
Attitude on Rail Corrugation Growth in Sharp Curves (2021) Notes on Numerical Fluid Mechanics and
Multidisciplinary Design, 150, pp. 303-311.
X. Wang, B. Liu, E. Di Gialleonardo, I. Kovacic, S. Bruni, Application of semi-active yaw dampers for the
improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation
(2021) Vehicle System Dynamics.
May 2021
M.C. Magnanini, T.A.M. Tolio, Performance evaluation of asynchronous two-stage manufacturing lines
fabricating discrete parts (2021) CIRP Journal of Manufacturing Science and Technology, 33, pp. 488-
505.
A. Medolago, S.A Melzi, Flexible multi-body model of a surface miner for analyzing the interaction
between rock-cutting forces and chassis vibrations (2021) International Journal of Mining Science and
Technology, 31 (3), pp. 365-375.
L. Bianchi, S. Korganbayev, A. Orrico, M. De Landro, P. Saccomandi, Quasi-distributed fiber optic
sensor-based control system for interstitial laser ablation of tissue: Theoretical and experimental
investigations(2021) Biomedical Optics Express, 12 (5), pp. 2841-2858.
A. Cortés, X.F. Sánchez-Romate, A. Jiménez-Suárez, M. Campo, A. Esmaeili, A., C. Sbarufatti, A. Ureña,
S.G. Prolongo, Complex geometry strain sensors based on 3d printed nanocomposites: Spring, threecolumn
device and footstep-sensing platform (2021) Nanomaterials, 11 (5), art. no. 1106.
D.F. Redaelli, S.G. Barsanti, E. Biffi, F.A. Storm, G. Colombo, Comparison of geometrical accuracy
of active devices for 3D orthopaedic reconstructions (2021) International Journal of Advanced
Manufacturing Technology, 114 (1-2), pp. 319-342.
A. Mangia, B. Lenzo, E. Sabbioni, An integrated torque-vectoring control framework for electric vehicles
featuring multiple handling and energy-efficiency modes selectable by the driver(2021) Meccanica, 56
(5), pp. 991-1010.
S. Bagherifard, J. Kondas, S. Monti, J. Cizek, F. Perego, O. Kovarik, F. Lukac, F. Gaertner, M. Guagliano,
Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications
(2021) Materials and Design, 203, art. no. 109575,
H. Yu, F. Castelli-Dezza, F. Cheli, X, Tang, X. Hu, X. Lin, Dimensioning and Power Management of
Hybrid Energy Storage Systems for Electric Vehicles with Multiple Optimization Criteria (2021) IEEE
Transactions on Power Electronics, 36 (5), art. no. 9222355, pp. 5545-5556.
K. Rane, M.A. Farid, W. Hassan, M. Strano, Effect of printing parameters on mechanical properties of
extrusion-based additively manufactured ceramic parts (2021) Ceramics International, 47 (9), pp. 12189-
12198.
K. Sun, H.R. Karimi, J. Qiu, Finite-time fuzzy adaptive quantized output feedback control of triangular
structural systems (2021) Information Sciences, 557, pp. 153-169.
M. Bersani, S. Mentasti, P. Dahal, S. Arrigoni, M. Vignati, F. Cheli, M. Matteucci, An integrated algorithm
for ego-vehicle and obstacles state estimation for autonomous driving (2021) Robotics and Autonomous
Systems, 139, art. no. 103662
L. Cheng, A. Cigada, Z. Lang, E. Zappa, Y. Zhu, An output-only ARX model-based sensor fusion framework
on structural dynamic measurements using distributed optical fiber sensors and fiber Bragg grating
sensors(2021) Mechanical Systems and Signal Processing, 152, art. no. 107439
C. Guan, Z. Fei, H.R. Karimi, P. Shi, Finite-Time Synchronization for Switched Neural Networks via
Quantized Feedback Control (2021) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51
(5), art. no. 8732449, pp. 2873-2884.
D. Mombelli, G. Dall’Osto, C. Mapelli, A. Gruttadauria, S. Barella, Modeling of a Continuous Charging
Electric Arc Furnace Metallic Loss Based on the Charge Mix (2021) Steel Research International, 92 (5),
art. no. 2000580.
F. Alessio, M. Alessio, M. Vedani, R. Viganò, Novel concepts for the design of moulds and equipment for
expanded polymer bead foams (2021) Progress in Additive Manufacturing, 6 (2), pp. 339-346.
D. Cristiani, C. Sbarufatti, M. Giglio, Damage diagnosis and prognosis in composite double cantilever
beam coupons by particle filtering and surrogate modelling (2021) Structural Health Monitoring, 20 (3),
pp. 1030-1050.
J.M. Jarillo, J. Moreno, S. Alfi, S. Barcet, P. Bouvet, S. Bruni, S. Cervello, B. Costa, R. Licciardello, Novel
technology concepts and architecture for on-board condition-based monitoring of railway running gear:
The RUN2Rail vision(2021) Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail
and Rapid Transit, 2 35 (5), pp. 616-630.
M. Gavazzoni, I. Boniotti, S. Foletti, Influence of specimen size on the mechanical properties of
microlattices obtained by selective laser melting (2021) Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 235 (10), pp. 1774-1787.
A. Mangia, B. Lenzo, E. Sabbioni, An integrated torque-vectoring control framework for electric vehicles
featuring multiple handling and energy-efficiency modes selectable by the driver (2021) Meccanica, 56
(5), pp. 991-1010.
S. Bagherifard, J. Kondas, S. Monti, J. Cizek, F. Perego, O. Kovarik, F. Lukac, F. Gaertner, M. Guagliano,
Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications
(2021) Materials and Design, 203, art. no. 109575.
L. Bianchi, R. Mooney, Y. Cornejo, C. Hyde, E. Schena, J. Berlin, K. Aboody, P, Saccomandi, Fiber Bragg
Grating Sensors-based Thermometry of Gold Nanorod-enhanced Photothermal Therapy in Tumor Model
(2021) IEEE Sensors Journal.
C.A. Biffi, A. Tuissi, A.G. Demir, Martensitic transformation, microstructure and functional behavior of
thin-walled Nitinol produced by micro laser metal wire deposition (2021) Journal of Materials Research
and Technology, 12, pp. 2205-2215.
L. Li, M. Collu, Y. Gao, C. Ruzzo, F. Arena, F. Taruffi, S. Muggiasca, M. Belloli, Development and validation
of a coupled numerical model for offshore floating multi-purpose platforms (2021) Developments in
Renewable Energies Offshore - Proceedings the 4th International Conference on Renewable Energies
Offshore, RENEW 2020, pp. 274-281.
C. Ruzzo, A. Romolo, G. Malara, F. Arena, F. Taruffi, S. Muggiasca, M. Belloli, B. Bouscasse, J. Ohana, A.
Santoro, K. Aubriere, G. Brizzi, M. Collu, P. Corvaglia, F. Lagasco,
On the arrangement of two experimental activities on a novel multi-purpose floating structure concept
(2021) Developments in Renewable Energies Offshore - Proceedings the 4th International Conference on
Renewable Energies Offshore, RENEW 2020, pp. 291-302.
M. Freschi, M. Di Virgilio, G. Zanardi, M. Mariani, N. Lecis, G. Dotelli, Employment of micro- and Nano-WS2
structures to enhance the tribological properties of copper matrix composites (2021) Lubricants, 9 (5),
art. no. 53.
A. Medolago, S. Melzi, A flexible multi-body model of a surface miner for analyzing the interaction
between rock-cutting forces and chassis vibrations (2021) International Journal of Mining Science and
Technology, 31 (3), pp. 365-375.
J. Marconi, G. Bonaccorsi, D. Giannini, L. Falorni, F. Braghin, Exploiting Nonlinearities for Frequency-
Matched MEMS Gyroscopes Tuning (2021) INERTIAL 2021 - 8th IEEE International Symposium on Inertial
Sensors and Systems, Proceedings, art. no. 9430478.
S. Scrivano, T. Tolio, A Markov Chain model for the performance evaluation of manufacturing lines with
general processing times (2021) Procedia CIRP, 103, pp. 20-25.
M. De Landro, S. Korganbayev, K. Ambarki, J. Verde, H. Odeen, C. Giraudeau, P. Saccomandi, Magnetic
resonance-based measurement system: Comparison of 2D and 3D echo-planar imaging sequences
for thermometry application (2021) Conference Record - IEEE Instrumentation and Measurement
Technology Conference, 2021-May, art. no. 9460088.
G. Betta, D. Capriglione, M. Salone, D. Amata, C. Liguori, E. Zappa, Characterization of 3D Image-Based
Biometric Systems in Dynamic Acquisition Conditions (2021) Conference Record - IEEE Instrumentation
and Measurement Technology Conference, 2021-May, art. no. 9459917.
S. Turrisi, E. Zappa, A. Cigada, M.R. Vivanco, N.C. Avin, Effect of image acquisition and processing
meccanica magazine
131
meccanica magazine
132
parameters on the estimation of crowd-induced dynamic loading on stadium grandstands (2021)
Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2021-May, art.
no. 9460021.
R.L. Smith, M.M. Bersani, M. Rossi, P.S. Pietro, Improved Bounded Model Checking of Timed Automata
(2021) Proceedings - 2021 IEEE/ACM 9th International Conference on Formal Methods in Software
Engineering, FormaliSE 2021, pp. 97-110.
M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P. Pelliccione, S. Garcia, R. Caldas, T.J. Von
Oertzen, M. Wimmer, L. Berardinelli, M. Rossi, M.M. Bersani, G.S.Rodrigues, RoboMAX: Robotic Mission
Adaptation eXemplars (2021) Proceedings - 2021 International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2021, art. no. 9462005, pp. 245-251.
Z. Wang, A. Manes, Investigation of the biaxial flexural fracture of aluminosilicate glass by smeared fixed
crack method (2021) Procedia Structural Integrity, 33 (C), pp. 337-346.
A. Loffredo, N. Frigerio, E. Lanzarone, A. Matta, Energy-Efficient Control Policy for Parallel and Identical
Machines with Availability Constraint (2021) IEEE Robotics and Automation Letters.
K.D. Zamba, P. Tsiamyrtzis, Sequential detection framework for real-time biosurveillance based on
Shiryaev-Roberts procedure with illustrations using COVID-19 incidence data (2021) Sequential Analysis,
40 (2), pp. 149-169.
K. Bourazas, D. Kiagias, P. Tsiamyrtzis, Predictive Control Charts (PCC): A Bayesian approach in online
monitoring of short runs (2021) Journal of Quality Technology.
S. Muggiasca, S. Giappino, T. Argentini, A. Collina, A. Manenti, G. Diana, Wind Resistant Design of a Very
Large Observation Wheel (2021) Structural Engineering International.
June 2021
A. Fontanella, M. Al, J.W. van Wingerden, M. Belloli, Model-based design of a wave-feedforward control
strategy in floating wind turbines (2021) Wind Energy Science, 6 (3), pp. 885-901.
A. Mohammadi,L. Bianchi, S. Asadi, P. Saccomandi, Measurement of ex vivo liver, brain and pancreas
thermal properties as function of temperature (2021) Sensors, 21 (12), art. no. 4236
S. Sorti, C. Petrone, S. Russenschuck, F. Braghin, Metrological characterisation of rotating-coil
magnetometer systems (2021) Acta IMEKO, 10 (2), pp. 30-36.
G. Cazzulani, S. Cinquemani, L. Benedetti, M. Belloli, Load estimation and vibration monitoring of scale
model wind turbine blades through optical fiber sensors (2021) Engineering Research Express, 3 (2), art.
no. 025036,
R. Scazzosi, M. Giglio, A. Manes, Numerical simulation of high-velocity impact on fiber-reinforced
composites using MAT_162 (2021) Material Design and Processing Communications, 3 (3), art. no. E163.
M. Gobbi, C. Ferrario, M. Tarabini, G. Annino, N. Cau, M. Zago, P. Marzullo, S. Mai, M. Galli, P. Capodaglio,
Low-intensity whole-body vibration: A useful adjuvant in managing obesity? a pilot study (2021) Applied
Sciences (Switzerland), 11 (11), art. no. 5101.
O. Castillo, P.K. Muhuri, H. Mo, C. Li, R. Li, H.R. Karimi, Editorial on Special Issue: Trends and
Developments on Type-2 Fuzzy Sets and Systems(2021) International Journal of Fuzzy Systems, 23 (4),
pp. 1055-1056.
K. Sun, J. Qiu, H.R. Karimi, Y. Fu, Event-Triggered Robust Fuzzy Adaptive Finite-Time Control of
Nonlinear Systems with Prescribed Performance (2021) IEEE Transactions on Fuzzy Systems, 29 (6), art.
no. 9026974, pp. 1460-1471.
C. Jiménez-Peña, A. Lavatelli, R. Balcaen, E. Zappa, D. Debruyne, A Novel Contactless Bolt Preload
Monitoring Method Using Digital Image Correlation (2021) Journal of Nondestructive Evaluation, 40 (2),
art. no. 54.
W. Hassan, M.A. Farid, A. Tosi, K. Rane, M. Strano, The effect of printing parameters on sintered
properties of extrusion-based additively manufactured stainless steel 316L parts(2021) International
Journal of Advanced Manufacturing Technology, 114 (9-10), pp. 3057-3067.
E. Gariboldi, C., Confalonieri, M. Colombo, High temperature behavior of al-7si-0.4mg alloy with er and zr
additions (2021) Metals, 11 (6), art. no. 879
K. Sun, J. Qiu, H.R. Karimi, H. Gao, A Novel Finite-Time Control for Nonstrict Feedback Saturated
Nonlinear Systems with Tracking Error Constraint (2021) IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 51 (6), art. no. 8944301, pp. 3968-3979.
D. Scaccabarozzi, B. Saggin, Measurement of stress waves propagation in percussive drilling(2021)
Sensors, 21 (11), art. no. 3677.
J. Marconi,P. Tiso, D.E. Quadrelli,F. Braghin, A higher-order parametric nonlinear reduced-order model
for imperfect structures using Neumann expansion (2021) Nonlinear Dynamics, 104 (4), pp. 3039-3063.
J. Wang, R. Zou, B.M. Colosimo, W. Lu, L. Xu, X.J. Jiang, Characterisation of freeform, structured
surfaces in T-spline spaces and its applications (2021) Surface Topography: Metrology and Properties,
9 (2), art. no. 025003.
A.A. Oliver, M. Sikora-Jasinska, A.G. Demir, R.J. Guillory, Recent advances and directions in the
development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo
studies (2021) Acta Biomaterialia, 127, pp. 1-23.
V.G. Zaragoza, K. Rane, M. Strano, M., M. Monno, Manufacturing and performance of 3D printed plastic
tools for air bending applications (2021) Journal of Manufacturing Processes, 66, pp. 460-469.
G. Carasi, B. Yu, E. Hutten, H. Zurob, R. Casati, M. Vedani, Effect of Heat Treatment on Microstructure
Evolution of X38CrMoV5-1 Hot-Work Tool Steel Produced by L-PBF (2021) Metallurgical and Materials
Transactions A: Physical Metallurgy and Materials Science, 52 (6), pp. 2564-2575.
S. Cacace, Q. Semeraro, Improvement of SLM Build Rate of A357 alloy by optimizing Fluence (2021)
Journal of Manufacturing Processes, 66, pp. 115-124.
H.R. Karimi, Y. Lu, Guidance and control methodologies for marine vehicles: A survey (2021) Control
Engineering Practice, 111, art. no. 104785.
C. Huang, H.R. Karimi, Non-fragile H∞ control for LPV-based CACC systems subject to denial-of-service
attacks (2021) IET Control Theory and Applications, 15 (9), pp. 1246-1256.
Z. Li, E. Gariboldi, Review on the temperature-dependent thermophysical properties of liquid paraffins
and composite phase change materials with metallic porous structures (2021) Materials Today Energy,
20, art. no. 100642.
W. Qi, G. Zong, H.R. Karimi, SMC for Nonlinear Stochastic Switching Systems with Quantization (2021)
IEEE Transactions on Circuits and Systems II: Express Briefs, 68 (6), art. no. 9309384, pp. 2032-2036.
D. Ma, M. Giglio, A. Manes, Analysis of mesoscale modelling strategies for woven composites(2021)
Material Design and Processing Communications, 3 (3), art. no. E145.
C. Bruna-Rosso, J. Mergheim, B. Previtali, Finite element modeling of residual stress and geometrical
error formations in selective laser melting of metals(2021) Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 235 (11), pp. 2022-2038.
C.D. Liang, M.F. Ge, Z.W. Liu, Y.W. Wang, H.R. Karimi, Output Multiformation Tracking of Networked
Heterogeneous Robotic Systems via Finite-Time Hierarchical Control (2021) IEEE Transactions on
Cybernetics, 51 (6), art. no. 8990015, pp. 2893-2904.
I. Pavlidis, A. Khatri, P. Buddharaju, M. Manser, R. Wunderlich, E. Akleman, P. Tsiamyrtzis, Biofeedback
Arrests Sympathetic and Behavioral Effects in Distracted Driving (2021) IEEE Transactions on Affective
Computing, 12 (2), art. no. 8550705, pp. 453-465.
L.M. Hlaváč, M.P.G. Annoni, I.M. Hlaváčová, F. Arleo, F. Viganò, A. Štefek, Abrasive waterjet (AWJ) forces—
potential indicators of machining quality (2021) Materials, 14 (12), art. no. 3309.
F. Concli, C. Gorla, Dynamic modeling of gears: An innovative hybrid FEM-analytical approach (2021)
International Journal of Computational Methods and Experimental Measurements, 9 (2), pp. 117-125.
M.C. Magnanini, T.A.M. Tolio, A model-based Digital Twin to support responsive manufacturing systems
(2021) CIRP Annals, 70 (1), pp. 353-356. Cited 2 times.
A.J. Sabet, S. Gopalakrishnan, M. Rossi, F.A. Schreiber, L. Tanca, Preference Mining in the Travel Domain
(2021) 2021 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA
2021, pp. 358-365.
D. Paloschi, M. Bravi, S. Miccinilli, E. Schena, S. Sterzi, C. Massaroni, P. Saccomandi, Preliminary
analysis on the cervicothoracic angular velocity during forward bending and backward return task (2021)
2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 -
Proceedings, art. no. 9488521, pp. 330-334.
M. Turati, S. Franchi, G. Leone, M. Piatti, N. Zanchi, M. Gandolla, L. Rigamonti, P. Sacerdote, L. Rizzi, A.
Pedrocchi, R.J. Omeljaniuk, G. Zatti, A. Torsello, M. Bigoni, Resolvin E1 and Cytokines Environment in
Skeletally Immature and Adult ACL Tears (2021) Frontiers in Medicine, 8, art. no. 610866, .
P. Castellini, N. Giulietti, N. Falcionelli, A.F. Dragoni, P. Chiariotti, A neural network based microphone
array approach to grid-less noise source localization (2021) Applied Acoustics, 177, art. no. 107947.
M. Acerbi, R. Malvermi, M. Pezzoli, F. Antonacci, A. Sarti, R. Corradi, Interpolation of irregularly sampled
frequency response functions using convolutional neural networks (2021) ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, 2021-June, pp. 950-954.
F.C. Zefinetti, A. Vitali, D. Regazzoni, G. Colombo, Goalkeeper’s Performances Assessed with Action
Cameras Based Mocap System (2021) Advances in Intelligent Systems and Computing, 1206 AISC, pp.
259-266.
S. Korganbayev, A. Orrico, L. Bianchi, M. De Landro, A. Wolf, A. Dostovalov, P. Saccomandi, Feedbackcontrolled
thermal therapy of tissues based on fiber Bragg grating thermometers (2021) 2021 IEEE
International Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference
Proceedings, art. no. 9478749.
A. Orrico, L. Bianchi, S. Korganbayev, M. De Landro, P. Saccomandi, Controlled photothermal therapy
based on temperature monitoring: Theoretical and experimental analysis (2021) 2021 IEEE International
Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference Proceedings, art.
no. 9478671.
M.G. Naon, S. Marelli, A.P. Moorhead, B. Saggin, G. Moschioni, M. Tarabini, Development of a device to
impose medio-lateral whole-body vibration while walking (2021) 2021 IEEE International Symposium on
Medical Measurements and Applications, MeMeA 2021 - Conference Proceedings, art. no. 9478701.
S. Korganbayev, S. Asadi, I. Maor, E. Schena, H. Azhari, I.S. Weitz, P. Saccomandi, Measurement
of enhanced photothermal effects of CuO-encapsulated polymeric nanospheres (2021) 2021 IEEE
International Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference
Proceedings, art. no. 9478675.
D. Scaccabarozzi, B. Saggin, M. Magni, P. Valnegri, M.G. Corti, E. Palomba, A. Longobardo, F. Dirri, E.
Zampetti, Design of 3D printed holder for quartz crystal microbalances (2021) 2021 IEEE International
Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511667, pp. 715-
719.
P. Valnegri, B. Saggin, D. Scaccabarozzi, M.G. Corti, F. Capaccioni, G. Bellucci, G. Rinaldi, Comparison
of candidate mechanism concepts for a deployable space telescope (2021) 2021 IEEE International
Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511663, pp. 92-96.
M.G. Corti, D. Scaccabarozzi, B. Saggin, P. Valnegri, F. Esposito, F. Cozzolino, G. Mongelluzzo, Topology
optimization of the optical bench for the MicroMED dust analyzer (2021) 2021 IEEE International
Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511694, pp. 86-91.
M. Dziendzikowski, A. Kurnyta, A. Beligni, C. Sbarufatti, K. Dragan, M. Giglio, Low-velocity impact damage
detection of CFRP composite panel based on Transfer Impedance approach to Structural Health
Monitoring (2021) 2021 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2021
- Proceedings, art. no. 9511783, pp. 625-630.
D. Scaccabarozzi, B. Saggin, M.G. Corti, P. Valnegri, C. Pernechele, L. Lessio, L. Paoletti, L. Consolaro,
Preliminary structural design of PANCAM, a bifocal panoramic camera for planetary observation (2021)
2021 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings,
art. no. 9511701, pp. 311-316.
G. Mongelluzzo, G. Franzese, F. Cozzolino, F. Esposito, A.C. Ruggeri, C. Porto, C. Molfese, S. Silvestro,
C.I. Popa, D. Scaccabarozzi, B. Saggin, A. Martin-Ortega, I. Arruego, J.R. De Mingo, N.A. Santiuste, D.
Brienza, F. Cortecchia, J.P. Merrison, J.J. Iversen, Performance analysis of the microMED optical
particle counter in windy conditions (2021) 2021 IEEE International Workshop on Metrology for
AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511691, pp. 241-246.
G. Shuai, S. Chatterton, P. Pennacchi, A nonlinear dynamic model for the skidding and the over-skidding
in industry scale angular contact ball bearing (2021) 2021 7th International Conference on Condition
Monitoring of Machinery in Non-Stationary Operations, CMMNO 2021, art. no. 9467655, pp. 67-71.
L. Xu, S. Chatterton, P. Pennacchi, A Rolling Element Bearing Diagnosis Method Based on Singular Value
Decomposition and Squared Envelope Spectrum (2021) 2021 7th International Conference on Condition
Monitoring of Machinery in Non-Stationary Operations, CMMNO 2021, art. no. 9467527, pp. 47-51.
L. Roveda, M. Maroni, L. Mazzuchelli, L. Praolini, G. Bucca, D. Piga, Enhancing object detection
performance through sensor pose definition with bayesian optimization (2021) 2021 IEEE International
Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no.
9488517, pp. 699-703.
D.M. Fabris, A. Meldoli, R. Sala, P. Salina, M. Tarabini, Metrological characterization of measurement
systems through monte carlo simulations, design of experiments and robotic manipulation (2021)
2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 -
Proceedings, art. no. 9488485, pp. 561-565.
A. Baleani, P. Castellini, P. Chiariotti, N. Paone, D. Roccetti, L. Zampetti, M. Zannini, S. Zitti, Dimensional
measurements in production line: A comparison between a custom-made telecentric optical
profilometer and on-the-market measurement systems (2021) 2021 IEEE International Workshop on
Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no. 9488428, pp. 693-
698.
Y. Yao, P. Saccomandi, M. Tarabini, User-driven design and monitoring systems of limb prostheses:
Overview on the technology and on the gender-related aspects (2021) 2021 IEEE International Workshop
on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no. 9488488, pp.
313-318.
L. Bianchi, A. Orrico, S. Korganbayev, M. De Landro, P. Saccomandi, Two-dimensional temperature
feedback control strategy for thermal ablation of biological tissue (2021) 2021 IEEE International
Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no.
9488457, pp. 301-306.
C. Conese, F. Conti, S. Cinquemani, F.M. Bono, A. Zavalloni, M. Tarabini, Vibration analysis for condition
monitoring of an automatic press machine for thermoplastic polymers (2021) 2021 IEEE International
Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no.
9488525, pp. 270-274.
H. Giberti, F. La Mura, M. Tarabini, M. Camnasio, Characterization of a 6 degrees of freedom parallel robot
(2021) 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021
- Proceedings, art. no. 9488446, pp. 281-285.
S. Candidori, F. De Gaetano, K. Osouli, A. Re, P. Volonte, A.A. Zanini, S. Graziosi, M.L. Costantino, Fighting
maternal bleeding in low-resource settings: An analysis of design and measurement issues (2021)
2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 -
Proceedings, art. no. 9488502, pp. 324-329.
F. Conti, C. Conese, M. Colombo, L. Maggioni, G. Moschioni, M. Tarabini, Vibration signals for condition
based maintenance of hydraulic valves (2021) 2021 IEEE International Workshop on Metrology for
Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no. 9488499, pp. 259-263.
P.E. Todmal, S. Melzi, Characteristics Analyses of Innovative Crank-Lever Electromagnetic Damper
for Suspension System of an Off-Road Vehicle (2021) SAE International Journal of Passenger Cars -
Mechanical Systems, 14 (2).
A. Angius, A. Horváth, M. Urgo, A kronecker algebra formulation for markov activity networks with phasetype
distributions (2021) Mathematics, 9 (12), art. no. 1404.
T. Li, F. Cadini, C. Sbarufatti, Particle filter-based hybrid damage prognosis considering bias (2021)
COMPDYN Proceedings.
M. Pacher, S. Strada, M. Tanelli, B. Previtali, S.M. Savaresi, Real-time velocity regulation for productivity
optimization in laser cutting (2021) IFAC-PapersOnLine, 54 (1), pp. 1230-1235.
G. Lugaresi, A. Matta, Automated digital twins generation for manufacturing systems: A case study
(2021) IFAC-PapersOnLine, 54 (1), pp. 749-754.
M.C. Magnanini, O. Melnychuk, A. Yemane, H. Strandberg, I. Ricondo, G. Borzi, M. Colledani, A digital
twin-based approach for multi-objective optimization of short-term production planning (2021) IFAC-
PapersOnLine, 54 (1), pp. 140-145.
G. Fogliazza, C. Arvedi, C. Spoto, L. Trappa, F. Garghetti, M. Grasso, B.M. Colosimo, Fingerprint analysis
for machine tool health condition monitoring (2021) IFAC-PapersOnLine, 54 (1), pp. 1212-1217.
A. Fontanella, M. Belloli, Model-inversion feedforward control for wave load reduction in floating
wind turbines (2021) Proceedings of the International Conference on Offshore Mechanics and Arctic
Engineering - OMAE, 9, art. no. V009T09A018.
S. Chatterton, P. Pennacchi, A. Vania, P.V. Dang, Optimization of an oil film journal bearing for
temperature reduction (2021) Proceedings of the ASME Turbo Expo, 9A-2021, art. no. V09AT24A023.
D. Yang, H.R. Karimi, K. Sun, CNN-based early classification of rotating machinery fault diagnosis (2021)
17th International Conference on Condition Monitoring and Asset Management, CM 2021.
B.M. Colosimo, M. Grasso, F. Garghetti, B. Rossi, Complex geometries in additive manufacturing: A new
solution for lattice structure modeling and monitoring (2021) Journal of Quality Technology.
B. Fu, S. Bruni, An examination of alternative schemes for active and semi-active control of vertical carbody
vibration to improve ride comfort (2021) Proceedings of the Institution of Mechanical Engineers,
Part F: Journal of Rail and Rapid Transit.
July 2021
L. Roveda, D. Riva, G. Bucca, D. Piga, External joint torques estimation for a position-controlled
manipulator employing an extended kalman filter, 2021 18th International Conference on Ubiquitous
Robots, UR 2021, art. no. 9494674, pp. 101-107.
F. Resta, Polytechnic culture: Ideas, values and opportunities, TECHNE, 21, pp. 58-60.
M. Zago, S. David, F. Bertozzi, C. Brunetti, A. Gatti, F. Salaorni, M. Tarabini, C. Galvani, C. Sforza, M. Galli,
Fatigue Induced by Repeated Changes of Direction in Élite Female Football (Soccer) Players: Impact on
Lower Limb Biomechanics and Implications for ACL Injury Prevention, Frontiers in Bioengineering and
Biotechnology, 9, art. no. 666841, .
I. Di Luch, M. Ferrario, D. Fumagalli, M. Carboni, M. Martinelli, Coherent fiber-optic sensor for ultraacoustic
crack emissions, Sensors, 21 (14), art. no. 4674.
A. Cauteruccio, E. Brambilla, M. Stagnaro, L.G. Lanza, D. Rocchi, Wind Tunnel Validation of a Particle
Tracking Model to Evaluate the Wind-Induced Bias of Precipitation Measurements, Water Resources
Research, 57 (7), art. no. e2020WR028766, .
E. Gariboldi, S. Spigarelli, High-temperature behavior of metals, Metals, 11 (7), art. no. 1128.
R. Andreotti, S. Abate, A. Casaroli, M. Quercia, R. Fossati, M.V. Boniardi, A simplified ale model for finite
element simulation of ballistic impacts with bullet splash – development and experimental validation,
Frattura ed Integrita Strutturale, 15 (57), pp. 223-245.
A.H. Astaraee, S. Bagherifard, S. Monti, M. Guagliano, Evaluating the homogeneity of surface features
induced by impact based surface treatments, Materials, 14 (13), art. no. 3476.
N. Sohrabi, M. Hamidi-Nasab, B. Rouxel, J. Jhabvala, A. Parrilli, M. Vedani, R.E. Logé, Fatigue performance
of an additively manufactured zr-based bulk metallic glass and the effect of post-processing, Metals, 11
(7), art. no. 1064.
N. Frigerio, A. Matta, Modelling the startup of machine tools for energy efficient multi-sleep control
policies, Journal of Manufacturing Systems, 60, pp. 337-349.
E. Lacroce, P. Saccomandi, F. Rossi, Can gold nanoparticles improve delivery performance of polymeric
drug-delivery systems?, Therapeutic Delivery, 12 (7), pp. 489-492.
L. Antonioli, A. Pella, R. Ricotti, M. Rossi, M.R. Fiore, G. Belotti, G. Magro, C. Paganelli, E. Orlandi, M.
Ciocca, G. Baroni, Convolutional neural networks cascade for automatic pupil and iris detection in ocular
proton therapy, Sensors, 21 (13), art. no. 4400.
M. Askarpour, L. Lestingi, S. Longoni, N. Iannacci, M. Rossi, F. Vicentini, Formally-based Model-Driven
Development of Collaborative Robotic Applications, Journal of Intelligent and Robotic Systems: Theory
and Applications, 102 (3), art. no. 59.
D. Vanerio, J. Kondas, M. Guagliano, S. Bagherifard, 3D modelling of the deposit profile in cold spray
additive manufacturing, Journal of Manufacturing Processes, 67, pp. 521-534.
M. Zago, N.F.M. Lecis, M. Vedani, I. Cristofolini, Dimensional and geometrical precision of parts produced
by binder jetting process as affected by the anisotropic shrinkage on sintering, Additive Manufacturing,
43, art. no. 102007.
D. Scaccabarozzi, C.A. Biffi, B. Saggin, M. Magni, P. Valnegri, J. Fiocchi, A. Tuissi, Design and testing
of selective laser melted structural component in AlSi9Cu3 alloy for a space dust analyser, Acta
Astronautica, 184, pp. 193-207.
R. Sorci, O. Tassa, A. Colaneri, A. Astri, D. Mirabile, S. Iwnicki, A.G. Demir, Design of an Innovative Oxide
Dispersion Strengthened Al Alloy for Selective Laser Melting to Produce Lighter Components for the
Railway Sector, Journal of Materials Engineering and Performance, 30 (7), pp. 5184-5194.
Z. Li, E. Gariboldi, Modelling the conditions for natural convection onset in open-cell porous Al/paraffin
composite phase change materials: Effects of temperature, paraffin type and metallic structure
geometry, International Journal of Heat and Mass Transfer, 173, art. no. 121279.
S. Bagherifard, R. Naderi Beni, D. Kajanek, R. Donnini, S. Monti, M.F. Molla, B. Hadzima, M. Guagliano,
Inclined and multi-directional surface impacts accelerate biodegradation and improve mechanical
properties of pure iron, Journal of the Mechanical Behavior of Biomedical Materials, 119, art. no. 104476.
P.J. Mistry, M.S. Johnson, S. Li, S. Bruni, A. Bernasconi, Parametric sizing study for the design of a
lightweight composite railway axle, Composite Structures, 267, art. no. 113851.
L. Di Pace, T. Beone, A. Di Donato, A. Astri, A. Colaneri, A. Cea, D. Mirabile, A.G. Demir, DEMO radioactive
wastes: Decarburization, recycling and reuse by additive manufacturing, Fusion Engineering and
Design, 168, art. no. 112439.
Q.Li, F. Ripamonti, R. Corradi, M. Caccialanza, Simulation of deterministic tyre noise based on a
monopole substitution model, Acoustics, 178, art. no. 108009.
X. Meng, Z. Wu, C. Gao, B. Jiang, H.R. Karimi, Finite-time projective synchronization control of variableorder
fractional chaotic systems via sliding mode approach, IEEE Transactions on Circuits and Systems
II: Express Briefs, 68 (7), art. no. 9340398, pp. 2503-2507.
A. Gruttadauria, S. Barella, C. Fiocchi, Mechanical Response of Ni-Based CU5MCuC Alloy to Different
Stabilization Thermal Treatments, International Journal of Metalcasting, 15 (3), pp. 829-838.
W. Ji, J. Qiu, H.R. Karimi, Y. Fu, New Results on Fuzzy Integral Sliding Mode Control of Nonlinear Singularly
Perturbed Systems, IEEE Transactions on Fuzzy Systems, 29 (7), art. no. 9067032, pp. 2062-2067.
meccanica magazine
133
meccanica magazine
134
M. Zago, N.F.M. Lecis, M. Vedani, I. Cristofolini, Dimensional and geometrical precision of parts
produced by binder jetting process as affected by the anisotropic shrinkage on sintering (2021) Additive
Manufacturing, 43, art. no. 102007.
S. Kalwar, M. Sadeghi, A.J. Sabet, A. Nemirovskiy, M. Rossi, SMART: Towards automated mapping
between data specifications (2021) Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, SEKE, 2021-July, pp. 429-436.
L. Bianchi, R. Mooney, Y.R. Cornejo, E. Schena, J.M. Berlin, K.S. Aboody, P. Saccomandi, Thermal analysis
of laser irradiation-gold nanorod combinations at 808 nm, 940 nm, 975 nm and 1064 nm wavelengths in
breast cancer model (2021) International Journal of Hyperthermia, 38 (1), pp. 1099-1110.
L. Fraccaroli, C. Gorla, F. Concli, Structural modelling of multilayer skis with an open source FEM
software (2021) WIT Transactions on Engineering Sciences, 133, pp. 27-38.
R. Malvermi, S. Gonzalez, M. Quintavalla, F. Antonacci, A. Sarti, J.A. Torres, R. Corradi, Feature-based
representation for violin bridge admittances (2021) Advances in Acoustics, Noise and Vibration - 2021
Proceedings of the 27th International Congress on Sound and Vibration, ICSV 2021.
L. Liu, R. Corradi, Z. Rao, Wave based method for vibro-acoustic analysis of a plate-cavity system
with elastically restrained plate and irregularly shaped cavity (2021) Advances in Acoustics, Noise and
Vibration - 2021 Proceedings of the 27th International Congress on Sound and Vibration, ICSV 2021.
F. Libonati, S. Graziosi, F. Ballo, M. Mognato, G. Sala, 3D-Printed Architected Materials Inspired by Cubic
Bravais Lattices (2021) ACS Biomaterials Science and Engineering.
F. Nonis, L. Ulrich, N. Dozio, F.G. Antonaci, E. Vezzetti, F. Ferrise, F. Marcolin, Building an Ecologically
Valid Facial Expression Database – Behind the Scenes (2021) Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12768
LNCS, pp. 599-616.
A. Esmaeili, C. Sbarufatti, K. Youssef, A. Jiménez-Suárez, A. Ureña, A.M.S. Hamouda, Enhanced tensile
strength, fracture toughness and piezoresistive performances of CNT based epoxy nanocomposites
using toroidal stirring assisted ultra-sonication (2021) Mechanics of Advanced Materials and Structures.
M. Vignati, M. Belloni, D. Tarsitano, E. Sabbioni, Optimal Cooperative Brake Distribution Strategy for
IWM Vehicle Accounting for Electric and Friction Braking Torques (2021) Mathematical Problems in
Engineering, 2021, art. no. 1088805.
E. Brambilla, P. Schito, C. Somaschini, D. Rocchi, Virtual homologation of high-speed trains in railway
tunnels: A new iterative numerical approach for train-tunnel pressure signature (2021) Proceedings of
the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit.
M. Bugatti, B.M.Colosimo, A new method for in-situ process monitoring of AM cooling rate-related
defects (2021) Procedia CIRP, 99, pp. 325-329.
S. Cacace, S. Giacomazzi, Q. Semeraro, Estimation of the accuracy of measurement of internal defects
in X-ray Computed Tomography (2021) Procedia CIRP, 99, pp. 284-289.
August 2021
M. Berardengo, S. Manzoni, O. Thomas, C. Giraud-Audine, L. Drago, S. Marelli, M. Vanali, The reduction
of operational amplifier electrical outputs to improve piezoelectric shunts with negative capacitance,
Journal of Sound and Vibration, 506, art. no. 116163.
S. Loffredo, S. Gambaro, L. Marin De Andrade, C. Paternoster, R. Casati, N. Giguère, M. Vedani, D.
Mantovani, Six-Month Long in Vitro Degradation Tests of Biodegradable Twinning-Induced Plasticity
Steels Alloyed with Ag for Stent Applications, ACS Biomaterials Science and Engineering, 7 (8), pp. 3669-
3682.
S.M. Tayyab, S. Chatterton, P. Pennacchi, Fault detection and severity level identification of spiral bevel
gears under different operating conditions using artificial intelligence techniques, Machines, 9 (8), art.
no. 173.
G. Cusimano, F. Casolo, An almost comprehensive approach for the choice of motor and transmission in
mechatronic applications: Torque peak of the motor, Machines, 9 (8), art. no. 159.
M. Rossi, P. Cerveri, Comparison of supervised and unsupervised approaches for the generation of
synthetic ct from cone-beam ct, Diagnostics, 11 (8), art. no. 1435.
F. Buccino, I. Aiazzi, A. Casto, B. Liu, M.C. Sbarra, G. Ziarelli, L.M. Vergani, S. Bagherifard, Down to the
bone: A novel bio-inspired design concept, Materials, 14 (15), art. no. 4226.
J. Fiocchi, C. Colombo, L.M. Vergani, A. Fabrizi, G. Timelli, A. Tuissi, C.A. Biffi, Heat treatments for stress
relieving alsi9cu3 alloy produced by laser powder bed fusion, Materials, 14 (15), art. no. 4184 .
A. Cauteruccio, E. Brambill, M. Stagnaro, L.G. Lanza, D. Rocchi, Erratum: Withdrawal notice to
Experimental evidence of the wind-induced bias of precipitation gauges using Particle Image
Velocimetry and particle tracking in the wind tunnel, Journal of Hydrology X, 12, art. no. 100094.
M. Vignati, N. Debattisti, M.L. Bacci, D. Tarsitano, A software-in-the-loop simulation of vehicle control
unit algorithms for a driverless railway vehicle, Applied Sciences (Switzerland), 11 (15), art. no. 6730.
D.Giannini, G. Bonaccorsi, F. Braghin, Rapid prototyping of inertial mems devices through structural
optimization, Sensors, 21 (15), art. no. 5064.
Z. Wang, T. Ren, T. Suo, A. Manes, Quasi-static and low-velocity impact biaxial flexural fracture of
aluminosilicate glass — An experimental and numerical study, Thin-Walled Structures, 165, art. no.
107939.
M. Murer, V. Furlan, G. Formica, S. Morganti, B. Previtali, F. Auricchio, Numerical simulation of particles
flow in Laser Metal Deposition technology comparing Eulerian-Eulerian and Lagrangian-Eulerian
approaches, Journal of Manufacturing Processes, 68, pp. 186-197.
L. Lomazzi, M. Giglio, A. Manes, Analytical and empirical methods for the characterisation of the
permanent transverse displacement of quadrangular metal plates subjected to blast load: Comparison
of existing methods and development of a novel methodological approach, International Journal of
Impact Engineering, 154, art. no. 103890.
U. Zerbst, G. Bruno, J.Y. Buffière, T. Wegener, T. Niendorf, T. Wu, X. Zhang, N. Kashaev, G. Meneghetti,
N. Hrabe, M. Madia, T. Werner, K. Hilgenberg, M. Koukolíková, R. Procházka, J. Džugan, B. Möller, S.
Beretta, A. Evans, R. Wagener, K. Schnabel, Damage tolerant design of additively manufactured metallic
components subjected to cyclic loading: State of the art and challenges, Progress in Materials Science,
121, art. no. 100786.
M. Mariani, R. Beltrami, P. Brusa, C. Galassi, R. Ardito, N. Lecis, 3D printing of fine alumina powders by
binder jetting, Journal of the European Ceramic Society, 41 (10), pp. 5307-5315.
S. Mariani, Q. Rendu, M. Urbani, C. Sbarufatti, Causal dilated convolutional neural networks for automatic
inspection of ultrasonic signals in non-destructive evaluation and structural health monitoring,
Mechanical Systems and Signal Processing, 157, art. no. 107748.
E. Maleki, G.H. Farrahi, K. Reza Kashyzadeh, O. Unal, M. Gugaliano, S. Bagherifard, Effects of
Conventional and Severe Shot Peening on Residual Stress and Fatigue Strength of Steel AISI 1060 and
Residual Stress Relaxation Due to Fatigue Loading: Experimental and Numerical Simulation, Metals and
Materials International, 27 (8), pp. 2575-2591.
M. Carnevale, I. La Paglia, P. Pennacchi, An algorithm for precise localization of measurements in rolling
stock-based diagnostic systems, Proceedings of the Institution of Mechanical Engineers, Part F:
Journal of Rail and Rapid Transit, 235 (7), pp. 827-839.
M. Bordegoni, M. Carulli, E. Spadoni, Multisensory VR for delivering training content to machinery
operators (2021) Proceedings of the ASME Design Engineering Technical Conference, 2, art. no.
V002t02a073
H. Singh, G. Cascini, C. McComb, Comparing design outcomes achieved by teams of expert and novice
designers through agent-based simulation (2021) Proceedings of the Design Society, 1, pp. 661-670.
Cited 1 time.
S.L.D.S. Vieira, M. Benedek, J.S. Gero, G. Cascini, S. Li, Brain activity of industrial designers in
constrained and open design: The effect of gender on frequency bands (2021) Proceedings of the Design
Society, 1, pp. 571-580.
E. Piñones, G. Cascini, G. Caruso, F. Morosi, Overcoming augmented reality adoption barriers in design:
A mixed prototyping content authoring tool supported by computer vision (2021) Proceedings of the
Design Society, 1, pp. 2359-2368.
T. Montecchi, N. Becattini, A modelling framework for data-driven design for sustainable behaviour in
human-machine interactions (2021) Proceedings of the Design Society, 1, pp. 151-160.
H. Singh, G. Cascini, C. McComb, Comparing virtual and face-to-face team collaboration: Insights from
an agent-based simulation (2021) Proceedings of the ASME Design Engineering Technical Conference,
6, art. no. V006T06A022.
J.A. Di Antonio, M. Longo, D. Zaninelli, F. Ferrise, A. Labombarda, MEMS-based measurements in
virtual reality: Setup an electric Vehicle (2021) 2021 56th International Universities Power Engineering
Conference: Powering Net Zero Emissions, UPEC 2021 – Proceedings.
F. Borghetti, C.G. Colombo, M. Longo, R. Mazzoncini, C. Somaschini, Development of a new urban line
with innovative trams(2021) WIT Transactions on the Built Environment, 204, pp. 167-178.
L. Bertoli, F. Caltanissetta, B.M. Colosimo, In-situ Quality Monitoring of Extrusion-based Additive
Manufacturing via Random Forests and clustering (2021) IEEE International Conference on Automation
Science and Engineering, 2021-August, pp. 2057-2062.
G. Lugaresi, A. Matta, Discovery and digital model generation for manufacturing systems with assembly
operations (2021) IEEE International Conference on Automation Science and Engineering, 2021-August,
pp. 752-757.
H. Singh, G. Cascini, C. Mccomb, Influencers in design teams: a computational framework to study
their impact on idea generation (2021) Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM, 35 (3), pp. 332-352.
P. Stabile, F. Ballo, M. Gobbi, G. Previati, Multi-objective structural optimization of vehicle wheels (2021)
Proceedings of the ASME Design Engineering Technical Conference, 1, art. no. V001T01A015, .
P. Bellani, M. Carulli, G. Caruso, Gestural interfaces to support the sketching activities of designers (2021)
Proceedings of the ASME Design Engineering Technical Conference, 2, art. no. v002t02a074.
G. Previati, M. Gobbi, Test bench for characterization and durability tests of motorbike clutches (2021)
Proceedings of the ASME Design Engineering Technical Conference, 1, art. no. V001T01A013, .
H. Singh, N. Becattini, G. Cascini, S. Škec, How familiarity impacts influence in collaborative teams?
(2021) Proceedings of the Design Society, 1, pp. 1735-1744.
S. Graziosi, G.W. Scurati, R. Parmose, A. Lecchi, M. Bordegoni, F. Ferrise, Bioinspired computational
design: A case study on a 3D-printed lamp based on the physalis alkekengi (2021) Proceedings of the
Design Society, 1, pp. 561-570.
M. Bordegoni, M. Carulli, E. Spadoni, Support users towards more conscious food consumption habits:
A case study (2021) Proceedings of the Design Society, 1, pp. 2801-2810.
S. Li, N. Becattini, G. Cascini, Correlating design performance to EEG activation: Early evidence from
experimental data (2021) Proceedings of the Design Society, 1, pp. 771-780.
N. Horvat, N. Becattini, S. Škec, Use of information and communication technology tools in distributed
product design student teams (2021) Proceedings of the Design Society, 1, pp. 3329-3338.
C. Sinigaglia, F. Braghin, S. Bandyopadhyay, M. Quadrelli, Optimal-transport-based control of particle
swarms for orbiting rainbows concept (2021) Journal of Guidance, Control, and Dynamics, 44 (11), pp.
2108-2117.
P. Coppola, L. Dell’Olio, F. Silvestri, Random-Parameters Behavioral Models to Investigate Determinants
of Perceived Safety in Railway Stations (2021) Journal of Advanced Transportation, 2021, art. no. 5530591.
R. Scimone, T. Taormina, B.M. Colosimo, M. Grasso, A. Menafoglio, P. Secchi, Statistical Modeling and
Monitoring of Geometrical Deviations in Complex Shapes With Application to Additive Manufacturing
(2021) Technometrics.
M. Asperti, M. Vignati, F. Braghin, Modelling of the Vertical Dynamics of an Electric Kick Scooter (2021)
IEEE Transactions on Intelligent Transportation Systems.
A. Cigada, E. Zappa, S. Paganoni, E. Giani, Protecting Pietà Rondanini against Environmental Vibrations
with Structural Restoration Works (2021) International Journal of Architectural Heritage.
September 2021
S. Sorti, C. Petrone, S. Russenschuck, F. Braghin Data-driven simulation of transient fields in air–coil
magnets for accelerators (2021) Nuclear Instruments and Methods in Physics Research, Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 1011, art. no. 165571.
S. Bruni, S. Dindar, S. Kaewunruen Editorial: Best Practices on Advanced Condition Monitoring of Rail
Infrastructure Systems, Volume II (2021) Frontiers in Built Environment, 7, art. no. 748846.
V. Zega, L. Martinelli, R. Casati, E. Zappa, G. Langfelder, A. Cigada, A. Corigliano A 3D Printed Ti6Al4V Alloy
Uniaxial Capacitive Accelerometer (2021) IEEE Sensors Journal, 21 (18), pp. 19640-19646.
M. Terrone, A. Ardeshiri Lordejani, J. Kondas, S. Bagherifard A numerical Approach to design and
develop freestanding porous structures through cold spray multi-material deposition (2021) Surface and
Coatings Technology, 421, art. no. 127423.
R. Luo, B. Liu, S. Qu A fast simulation algorithm for the wheel profile wear of high-speed trains
considering stochastic parameters (2021) Wear, 480-481, art. no. 203942.
D. Liu, D. Liu, J. Cui, X. Xu, K. Fan, A. Ma, Y. He, S. Bagherifard Deformation mechanism and in-situ TEM
compression behavior of TB8 titanium alloy with gradient structure (2021) Journal of Materials Science
and Technology, 84, pp. 105-115.
A. Fontanella, I. Bayati, R. Mikkelsen, M. Belloli, A. Zasso UNAFLOW: A holistic wind tunnel experiment
about the aerodynamic response of floating wind turbines under imposed surge motion (2021) Wind
Energy Science, 6 (5), pp. 1169-1190.
J.M. De Ponti, L. Iorio, E. Riva, R. Ardito, F. Braghin, A. Corigliano Selective Mode Conversion and Rainbow
Trapping via Graded Elastic Waveguides (2021) Physical Review Applied, 16 (3), art. no. 034028.
A. Scarpellini, V. Finazzi, P. Schito, A. Bionda, A. Ratti, A.G. Demir Laser powder bed fusion of a topology
optimized and surface textured rudder bulb with lightweight and drag-reducing design (2021) Journal of
Marine Science and Engineering, 9 (9), art. no. 1032.
F. Buccino, G. Martinoia, L.M. Vergani Torsion—resistant structures: A nature addressed solution (2021)
Materials, 14 (18), art. no. 5368.
E. Riva, G. Castaldini, F. Braghin Adiabatic edge-to-edge transformations in time-modulated elastic
lattices and non-Hermitian shortcuts (2021) New Journal of Physics, 23 (9), art. no. 093008.
F. Borghetti, C.G. Colombo, M. Longo, R. Mazzoncini, L. Cesarini, L. Contestabile, C. Somaschini 15-
min station: A case study in north italy city to evaluate the livability of an area (2021) Sustainability
(Switzerland), 13 (18), art. no. 10246.
A. Pourheidar, L. Patriarca, S. Beretta, D. Regazzi Investigation of fatigue crack growth in full-scale
railway axles subjected to service load spectra: Experiments and predictive models (2021) Metals, 11 (9),
art. no. 1427.
M. Pisati, M.G. Corneo, S. Beretta, E. Riva, F. Braghin, S. Foletti Numerical and experimental investigation
of cumulative fatigue damage under random dynamic cyclic loads of lattice structures manufactured by
laser powder bed fusion (2021) Metals, 11 (9), art. no. 1395.
T. Hauser, R.T. Reisch, S. Seebauer, A. Parasar, T. Kamps, R. Casati, J. Volpp, A.F.H. Kaplan Multi-
Material Wire Arc Additive Manufacturing of low and high alloyed aluminium alloys with in-situ material
analysis (2021) Journal of Manufacturing Processes, 69, pp. 378-390.
M. Rezasefat, D. Badel Torres, A. Gonzalez-Jimenez, M. Giglio, A. Manes A fast fracture plane orientation
search algorithm for Puck’s 3D IFF criterion for UD composites (2021) Materials Today Communications,
28, art. no. 102700.
H.R. Karimi Editorial: Special Issue on Automation in Mechatronic and Robotic Systems – Advanced
Perception, Planning and Control (2021) Transactions of the Institute of Measurement and Control, 43
(13), pp. 2885-2887.
R. Jones, O. Kovarik, S. Bagherifard, J. Cizek, J. Lang Damage tolerance assessment of AM 304L and
cold spray fabricated 316L steels and its implications for attritable aircraft
(2021) Engineering Fracture Mechanics, 254, art. no. 107916.
A.P. Moorhead, D. Chadefaux, M. Zago, S. Marelli, E. Marchetti, M. Tarabini Spatiotemporal gait parameter
changes due to exposure to vertical whole-body vibration
(2021) Gait and Posture, 89, pp. 31-37.
A. Cauteruccio, E. Brambilla, M. Stagnaro, L.G. Lanza, D. Rocchi Experimental evidence of the windinduced
bias of precipitation gauges using particle image velocimetry and particle tracking in the wind
tunnel (2021) Journal of Hydrology, 600, art. no. 126690.
Y. Lu, H.R. Karimi Variance-constrained resilient H∞ filtering for mobile robot localization under dynamic
event-triggered communication mechanism (2021) Asian Journal of Control, 23 (5), pp. 2064-2078.
E. Copertaro, F. Perotti, M. Annoni Operational vibration of a waterjet focuser as means for monitoring
its wear progression (2021) International Journal of Advanced Manufacturing Technology, 116 (5-6), pp.
1937-1949.
D. Marchisotti, E. Zappa Virtual simulation benchmark for the evaluation of simultaneous localization
and mapping and 3D reconstruction algorithm uncertainty (2021) Measurement Science and Technology,
32 (9), art. no. 095404.
M. Gandolla, S. Dalla Gasperina, V. Longatelli, A. Manti, L. Aquilante, M.G. D’Angelo, E. Biffi, E. Diella, F.
Molteni, M. Rossini, M. Gföhler, M. Puchinger, M. Bocciolone, F. Braghin, A. Pedrocchi An assistive upperlimb
exoskeleton controlled by multi-modal interfaces for severely impaired patients: development and
experimental assessment (2021) Robotics and Autonomous Systems, 143, art. no. 103822.
L. Kulinsky, M. Annoni, I. Fassi Special Issue on Remote Micro-and Nano-Manufacturing Science,
Engineering, and Education (2021) Journal of Micro and Nano-Manufacturing, 9 (3), .
J.C. Colombo-Pulgarín, C.A. Biffi, M. Vedani, D. Celentano, A. Sánchez-Egea, A.D. Boccardo, J.-P.
Ponthot Beta Titanium Alloys Processed By Laser Powder Bed Fusion: A Review (2021) Journal of
Materials Engineering and Performance, 30 (9), pp. 6365-6388.
D. Mombelli, G. Dall’Osto, G. Villa, C. Mapelli, S. Barella, A. Gruttadauria, L. Angelini, C. Senes, M. Bersani,
P. Frittella, R. Moreschi, R. Marras, G. Bruletti Study on the Pneumatic Lime Injection in the Electric Arc
Furnace Process: An Evaluation on the Performance Benefits (2021) Steel Research International, 92
(9), art. no. 2100083.
S. Gao, S. Chatterton, P. Pennacchi, F. Chu Behaviour of an angular contact ball bearing with threedimensional
cubic-like defect: A comprehensive non-linear dynamic model for predicting vibration
response (2021) Mechanism and Machine Theory, 163, art. no. 104376.
D. Yang, H.R. Karimi, K. Sun Residual wide-kernel deep convolutional auto-encoder for intelligent
rotating machinery fault diagnosis with limited samples (2021) Neural Networks, 141, pp. 133-144.
K. Matsuoka, H. Tanaka, K. Kawasaki, C. Somaschini, A. Collina Drive-by methodology to identify
resonant bridges using track irregularity measured by high-speed trains (2021) Mechanical Systems and
Signal Processing, 158, art. no. 107667.
J. Chen, L. Gu, W. Zhao, M. Guagliano Simulation of temperature distribution and discharge crater of
SiCp/Al composites in a single-pulsed arc discharge (2021) Chinese Journal of Aeronautics, 34 (9), pp.
37-46.
Y. Shi, N. Azzolin, A. Picardi, T. Zhu, M. Bordegoni, G. Caruso, A virtual reality-based platform to validate
hmi design for increasing user’s trust in autonomous vehicle (2021) Computer-Aided Design and
Applications, 18 (3), pp. 502-518.
A.P. Moorhead, D. Chadefaux, M. Zago, S. Marelli, E. Marchetti, M. Tarabini, Spatiotemporal gait
parameter changes due to exposure to vertical whole-body vibration (2021) Gait and Posture, 89, pp.
31-37.
A. Beligni, F. Cadini, C. Sbarufatti, M. Giglio, N. Cimminiello, P. Salvato, E. Monaco, F. Romano,
Investigation on low velocity impact damage identification with ultrasonic techniques under different
sensor network conditions (2021) IOP Conference Series: Materials Science and Engineering, 1024 (1),
art. no. 012027.
D. Milosavljevic, Q. Zhang, M. Moseneder, H. Zhu, N. Lecis, S. Cinquemani, F. Semperlotti, Progress on
the development of shape-memory-alloy metacomposites (2021) 36th Technical Conference of the
American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-
Energy-Economy, ASC 2021, 3, pp. 1838-1858.
G. Porpiglia, P. Schito, T. Argentini, A. Zasso, A numerical approach for the assessment of crosswind
effects on barrier-protected trains running on bridges (2021) IABSE Congress, Ghent 2021: Structural
Engineering for Future Societal Needs, pp. 233-240.
G. Diana, S. Stoyanoff, A. Allsop, L. Amerio, T. Argentini, M. Cid Montoya, V. de Ville, M.S. Andersen, T.
Wu, S. Hernández, J.Á. Jurado, I. Kavrakov, G. Larose, A. Larsen, G. Morgenthal, S. Omarini, D. Rocchi, M.
Svendsen, Super-long span bridge aerodynamics benchmark: Additional results for TG3.1 Step 1.2 (2021)
IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs, pp. 1982-1989.
G. Bianchi, A. Agoni, S. Cinquemani, Design of a pneumatic growing robot inspired to plants’ roots (2021)
Proceedings of ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems,
SMASIS 2021, art. no. V001T01A006.
G. Bianchi, I. Claudio, S. Cinquemani, Investigation of fluid-dynamic forces on an artificial cownose ray
fin (2021) Proceedings of ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent
Systems, SMASIS 2021, art. no. V001T01A009.
F. Deirmina, P.A. Davies, R. Casati, Effects of Powder Atomization Route and Post-Processing Thermal
Treatments on the Mechanical Properties and Fatigue Resistance of Additively Manufactured 18Ni300
Maraging Steel (2021) Advanced Engineering Materials
L. Lomazzi, F. Cadini, M. Giglio, A. Manes, Vulnerability assessment to projectiles: Approach definition
and application to helicopter platforms (2021) Defence Technology.
M.P. Limongelli, E. Manoach, S. Quqa, P.F. Giordano, B. Bhowmik, V. Pakrashi, A. Cigada, Vibration
Response-Based Damage Detection (2021) Springer Aerospace Technology, pp. 133-173.
N.O. Pinciroli Vago, M. Sacaj, M. Sadeghi, S. Kalwar, A. Vogelsang, M. Rossi, On the visualization of
semantic-based mappings (2021) CEUR Workshop Proceedings, 2939.
H. Singh, H. Nolte, N. Becattini, Pedagogical Approaches and Course Modality Affecting Students’ Selfefficacy
and Problem-Solving Attitudes in a TRIZ-Oriented Course (2021) IFIP Advances in Information
and Communication Technology, 635 IFIP, pp. 367-378.
A. Gruttadauria, S. Barella, C. Mapelli, D. Mombelli, Iron Making in Fornovolasco (Italy) at the End of
the Fifteenth Century, the Canecchio Furnace, and an Artifact Characterization (2021) Historical
Archaeology.
C. Caccamo, R. Eleftheriadis, M.C. Magnanini, D. Powell, Odd Myklebust, A Hybrid Architecture for the
Deployment of a Data Quality Management (DQM) System for Zero-Defect Manufacturing in Industry 4.0
(2021) IFIP Advances in Information and Communication Technology, 632 IFIP, pp. 71-77.
meccanica magazine
135
meccanica magazine
136
October 2021
L. Liu, F. Ripamonti, R. Corradi, Z. Rao The modified weighted residual formulation in the wave based
method for plate bending problems: A general formulation for different types of edge restraints (2021)
Journal of Sound and Vibration, 511, art. no. 116329.
R. Jamali, G. Battista, M. Martarelli, P. Chiariotti, D.S. Kunte, C. Colangeli, P. Castellini Objectivesubjective
sound quality correlation performance comparison of genetic algorithm based regression
models and neural network based approach (2021) Journal of Physics: Conference Series, 2041 (1), art.
no. 012015.
R.S.O. Dias, M. Martarelli, P. Chiariotti Lagrange multiplier state-space substructuring (2021) Journal of
Physics: Conference Series, 2041 (1), art. no. 012016.
L. Barricelli, S. Beretta Analysis of prospective SIF and shielding effect for cylindrical rough surfaces
obtained by L-PBF (2021) Engineering Fracture Mechanics, 256, art. no. 107983.
D. Scaccabarozzi, B. Saggin, M. Magni, M.G. Corti, E. Zampetti, E. Palomba, A. Longobardo, F.
Dirri Calibration in cryogenic conditions of deposited thin-film thermometers on quartz crystal
microbalances (2021) Sensors and Actuators, A: Physical, 330, art. no. 112878.
G. Diana, A. Manenti, S. Melzi Energy Method to Compute the Maximum Amplitudes of Oscillation Due to
Galloping of Iced Bundled Conductors (2021) IEEE Transactions on Power Delivery, 36 (5), pp. 2804-2813.
M. Bertolini, M. Rossoni, G. Colombo Operative workflow from ct to 3d printing of the heart: Opportunities
and challenges (2021) Bioengineering, 8 (10), art. no. 130.
S. Maffia, V. Finazzi, F. Berti, F. Migliavacca, L. Petrini, B. Previtali, A.G. Demir Selective laser melting
of NiTi stents with open-cell and variable diameter (2021) Smart Materials and Structures, 30 (10), art.
no. 105010.
F. Buccino, C. Colombo, D.H.L. Duarte, L. Rinaudo, F.M. Ulivieri, L.M. Vergani 2D and 3D numerical
models to evaluate trabecular bone damage (2021) Medical and Biological Engineering and Computing,
59 (10), pp. 2139-2152.
M. Bertolini, A. Brambilla, S. Dallasta, G. Colombo High-quality chest CT segmentation to assess the
impact of COVID-19 disease (2021) International Journal of Computer Assisted Radiology and Surgery,
16 (10), pp. 1737-1747.
M. Rezasefat, A. Gonzalez-Jimenez, M. Giglio, A. Manes Numerical study on the dynamic progressive
failure due to low-velocity repeated impacts in thin CFRP laminated composite plates (2021) Thin-Walled
Structures, 167, art. no. 108220.
S. Beretta More than 25 years of extreme value statistics for defects: Fundamentals, historical
developments, recent applications (2021) International Journal of Fatigue, 151, art. no. 106407.
J.D. Velazco-Garcia, N.V. Navkar, S. Balakrishnan, G. Younes, J. Abi-Nahed, K. Al-Rumaihi, A. Darweesh,
M.S.M. Elakkad, A. Al-Ansari, E.G. Christoforou, M. Karkoub, E.L. Leiss, P. Tsiamyrtzis, N.V. Tsekos.
Evaluation of how users interface with holographic augmented reality surgical scenes: Interactive
planning MR-Guided prostate biopsies (2021) International Journal of Medical Robotics and Computer
Assisted Surgery, 17 (5), art. no. e2290.
S. Pfeiffer, K. Florio, D. Puccio, M. Grasso, B.M. Colosimo, C.G. Aneziris, K. Wegener, T. Graule. Direct
laser additive manufacturing of high performance oxide ceramics: A state-of-the-art review (2021)
Journal of the European Ceramic Society, 41 (13), pp. 6087-6114.
L. Bonaiti, A.B.M. Bayoumi, F. Concli, F. Rosa, C. Gorla Gear root bending strength: A comparison
between single tooth bending fatigue tests and meshing gears (2021) Journal of Mechanical Design,
Transactions of the ASME, 143 (10), art. no. 103402.
M. Berardengo, S. Manzoni, O. Thomas, M. Vanali Guidelines for the layout and tuning of piezoelectric
resonant shunt with negative capacitances in terms of dynamic compliance, mobility and accelerance
(2021) Journal of Intelligent Material Systems and Structures, 32 (17), pp. 2092-2107.
C. Colombo, M. Sansone, L. Patriarca, L. Vergani Rapid estimation of fatigue limit for C45 steel by
thermography and digital image correlation (2021) Journal of Strain Analysis for Engineering Design, 56
(7), pp. 478-491.
J. Liu, T. Yin, J. Cao, D. Yue, H.R. Karimi Security Control for T-S Fuzzy Systems with Adaptive Event-
Triggered Mechanism and Multiple Cyber-Attacks (2021) IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 51 (10), pp. 6544-6554.
A.Eyvazian, S.A. Taghizadeh, A.M. Hamouda, F. Tarlochan, M. Moeinifard, M. Gobbi Buckling and crushing
behavior of foam-core hybrid composite sandwich columns under quasi-static edgewise compression
(2021) Journal of Sandwich Structures and Materials, 23 (7), pp. 2643-2670.
M. Ma, T. Wang, J. Qiu, H.R. Karimi, Adaptive Fuzzy Decentralized Tracking Control for Large-Scale
Interconnected Nonlinear Networked Control Systems (2021) IEEE Transactions on Fuzzy Systems, 29
(10), pp. 3186-3191.
A. Javadian Sabet, M. Rossi, F.A. Schreiber, L. Tanca,Towards learning travelers’ preferences in a
context-aware fashion (2021) Advances in Intelligent Systems and Computing, 1239 AISC, pp. 203-212.
A. Heydari Astaraee, C. Colombo, S. Bagherifard, Numerical Modeling of Bond Formation in Polymer
Surface Metallization Using Cold Spray (2021) Journal of Thermal Spray Technology, 30 (7), pp. 1765-1776.
E. Maleki, S. Bagherifard, M. Guagliano, Application of artificial intelligence to optimize the process
parameters effects on tensile properties of Ti-6Al-4V fabricated by laser powder-bed fusion (2021)
International Journal of Mechanics and Materials in Design.
M. Ahmadi, H.J. Kaleybar, M. Brenna, F. Castelli-dezza, M.S. Carmeli, Integration of distributed energy
resources and EV fast-charging infrastructure in high-speed railway systems (2021) Electronics
(Switzerland), 10 (20), art. no. 2555.
B. Li, Y. Lu, H.R. Karimi, Adaptive fading extended kalman filtering for mobile robot localization using a
doppler–azimuth radar (2021) Electronics (Switzerland), 10 (20), art. no. 2544.
M. De Landro, E. Felli, T. Collins, R. Nkusi, A. Baiocchini, M. Barberio, A. Orrico, M. Pizzicannella,
A. Hostettler, M. Diana, P. Saccomandi, Prediction of in vivo laser-induced thermal damage with
hyperspectral imaging using deep learning (2021) Sensors, 21 (20), art. no. 6934.
D. Paloschi, M. Bravi, E. Schena, S. Miccinilli, M. Morrone, S. Sterzi, P. Saccomandi, C. Massaroni,
Validation and assessment of a posture measurement system with magneto-inertial measurement
units (2021) Sensors, 21 (19), art. no. 6610.
S. Loffredo, S. Gambaro, F. Copes, C. Paternoster, N. Giguère, M. Vedani, D. Mantovani, Effect of silver
in thermal treatments of Fe-Mn-C degradable metals: Implications for stent processing (2021) Bioactive
Materials.
D. Farioli, M. Strano, F.B. Vangosa, V.G. Zaragoza, A. Aicardi, Rapid tooling for injection molding inserts
(2021) ESAFORM 2021 - 24th International Conference on Material Forming, art. no. 4186.
L. Lestingi, M. Askarpour, M.M. Bersani, M. Rossi, A Deployment Framework for Formally Verified
Human-Robot Interactions (2021) IEEE Access, 9, pp. 136616-136635.
M.H. Aref, A.-B.M. Youssef, I.H. Aboughaleb, A.A.R. Sharawi, A.A. Hussein, P. Saccomandi, Y.H. El-
Sharkawy, Imaging prospective study for commercial and in this issue: Spectral preprocessing
to compensate for packaging film / using neural nets to invert the prosail canopy model low-cost
hyperspectral imaging systems to evaluate thermal tissue effect on bovine liver samples(2021) Journal
of Spectral Imaging, 10, art. no. a5.
A. Abdelrahim, M. Aula, M. Iljana, T. Willms, T. Echterhof, S. Steinlechner, D. Mombelli, C. Mapelli, M.
Omran, S. Preiss, T. Fabritius, Suitability of Self-Reducing and Slag-Forming Briquettes for Electric Arc
Furnace Use Based on Laboratory Tests (2021) Steel Research International.
M.C. Magnanini, M. Colledani, O. Melnychuk, D. Caputo, Effect of work-force availability on manufacturing
systems operations of job shops (2021) Procedia CIRP, 103, pp. 152-157.
F. Morosi, G. Caruso, Configuring a VR simulator for the evaluation of advanced human–machine
interfaces for hydraulic excavators (2021) Virtual Reality.
S. Korganbayev, A. Orrico, L. Bianchi, D. Paloschi, A. Wolf, A. Dostovalov, P. Saccomandi, PID Controlling
Approach Based on FBG Array Measurements for Laser Ablation of Pancreatic Tissues (2021) IEEE
Transactions on Instrumentation and Measurement, 70.
S. Chatterton, P. Pennacchi, A. Vania, An unconventional method for the diagnosis and study of generator
rotor thermal bows (2021) Proceedings of the ASME Turbo Expo, 9B-2021, art. no. V09BT28A006.
B. Rivolta, R. Gerosa, C. Sala, F. Tavasci, L. Angelini, N. Bolognani, A. Panzeri, A. Parimbelli, Influence
of prior microstructure on the mechanical and microstructural properties of C–Mn–B steel after
spheroidizing annealing (2021) Ironmaking and Steelmaking, 48 (9), pp. 1013-1021.
November 2021
H. Khajehmirza, A. Heydari Astaraee, S. Monti, M. Guagliano, S. Bagherifard A hybrid framework to
estimate the surface state and fatigue performance of laser powder bed fusion materials after shot
peening (2021) Applied Surface Science, 567, art. no. 150758.
Y. Wei, H.R. Karimi Dynamic sliding mode control for nonlinear parameter-varying systems (2021)
International Journal of Robust and Nonlinear Control, 31 (17), pp. 8408-8419.
Z. Li, J. Zhai, H.R. Karimi Adaptive finite-time super-twisting sliding mode control for robotic
manipulators with control backlash (2021) International Journal of Robust and Nonlinear Control, 31 (17),
pp. 8537-8550.
M. Abdelwahed, S. Bengtsson, R. Casati, A. Larsson, S. Petrella, M. Vedani Effect of water atomization
on properties of type 4130 steel processed by L-PBF (2021) Materials and Design, 210, art. no. 110085.
A.Vescovini, L. Balen, R. Scazzosi, A.A.X. da Silva, S.C. Amico, M. Giglio, A. Manes Numerical investigation
on the hybridization effect in inter-ply S2-glass and aramid woven composites subjected to ballistic
impacts (2021) Composite Structures, 276, art. no. 114506.
D.E. Quadrelli, G. Cazzulani, S. La Riviera, F. Braghin, Acoustic scattering reduction of elliptical targets
via pentamode near-cloaking based on transformation acoustics in elliptic coordinates (2021) Journal of
Sound and Vibration, 512, art. no. 116396.
C. Confalonieri, E. Gariboldi, Al-Sn Miscibility Gap Alloy produced by Power Bed Laser Melting for
application as Phase Change Material (2021) Journal of Alloys and Compounds, 881, art. no. 160596.
J.M. De Ponti, L. Iorio, E. Riva, F. Braghin, A. Corigliano, R. Ardito, Enhanced Energy Harvesting of
Flexural Waves in Elastic Beams by Bending Mode of Graded Resonators (2021) Frontiers in Materials,
8, art. no. 745141.
N. Lecis, M. Mariani, R. Beltrami, L. Emanuelli, R. Casati, M. Vedani, A. Molinari Effects of process
parameters, debinding and sintering on the microstructure of 316L stainless steel produced by binder
jetting (2021) Materials Science and Engineering A, 828, art. no. 142108.
A.H. Astaraee, A. Salerno, S. Bagherifard, P. Carlone, H. Parmar, A. Astarita, A.Viscusi, C. Colombo,
Thermographic analysis of composite metallization through cold spray (2021) Metals, 11 (11), art. no. 1860.
D.E. Quadrelli, M.A. Casieri, G. Cazzulani, S. La Riviera, F. Braghin, Experimental validation of a broadband
pentamode elliptical-shaped cloak for underwater acoustics (2021) Extreme Mechanics Letters, 49, art.
no. 101526.
F. Belloli, A.G. Demir, B. Previtali, Understanding the deformation mechanisms of horizontal internal
channels during the LPBF of 18Ni300 maraging steel (2021) Journal of Manufacturing Processes, 71, pp.
237-248.
C. Mapelli, G. Villa, S. Barella, A. Gruttadauria, D. Mombelli, X. Veys, L. Duprez, JMAK model applied on
the κ-carbide precipitation in FeMnAlC steels (2021) Journal of Materials Research and Technology, 15,
pp. 3386-3398.
P. Rebesan, M. Ballan, M. Bonesso, A. Campagnolo, S. Corradetti, R. Dima, C. Gennari, G.A. Longo, S.
Mancin, M. Manzolaro, G. Meneghetti, A. Pepato, E. Visconti, M. Vedani, Pure molybdenum manufactured
by Laser Powder Bed Fusion: Thermal and mechanical characterization at room and high temperature
(2021) Additive Manufacturing, 47, art. no. 102277.
S. Muggiasca, F. Taruffi, A. Fontanella, S. Di Carlo, H. Giberti, A. Facchinetti, M. Belloli, Design of an
aeroelastic physical model of the DTU 10MW wind turbine for a floating offshore multipurpose platform
prototype (2021) Ocean Engineering, 239, art. no. 109837.
F. Cozzolino, G. Franzese, G. Mongelluzzo, C. Molfese, F. Esposito, A.C. Ruggeri, C. Porto, S. Silvestro, C.I
Popa, V. Mennella, D. Scaccabarozzi, B. Saggin, A.M.O. Rico, I. Arruego, J.R. De Mingo, N. Santiuste, D.
Brienza, F. Cortecchia, Techniques to verify the sampling system and flow characteristics of the sensor
MicroMED for the ExoMars 2022 Mission (2021) Measurement: Journal of the International Measurement
Confederation, 185, art. no. 110075.
L. Colombo, C. Sbarufatti, W. Zielinski, K. Dragan, M. Giglio, Numerical and experimental flight
verifications of a calibration matrix approach for load monitoring and temperature reconstruction and
compensation (2021) Aerospace Science and Technology, 118, art. no. 107074.
H.R. Karimi, Guest Editorial: Special issue on recent technological innovations in automation and control
systems for marine vehicles (2021) Control Engineering Practice, 116, art. no. 104928.
M. Mariani, I. Goncharov, D. Mariani, G.P. De Gaudenzi, A. Popovich, N. Lecis, M. Vedani Mechanical and
microstructural characterization of WC-Co consolidated by binder jetting additive manufacturing (2021)
International Journal of Refractory Metals and Hard Materials, 100, art. no. 105639.
Z. Sajedi, R. Casati, M.C. Poletti, R. Wang, F. Iranshahi, M. Vedani Comparative thermal fatigue behavior
of AlSi7Mg alloy produced by L-PBF and sand casting (2021) International Journal of Fatigue, 152, art.
no. 106424.
M. Grasso, A. Remani, A. Dickins, B.M. Colosimo, R.K. Leach In-situ measurement and monitoring
methods for metal powder bed fusion: An updated review (2021) Measurement Science and Technology,
32 (11), art. no. 112001.
L. Patriarca, W. Abuzaid, G. Carlucci, F. Belelli, R. Casati, Pseudoelasticity in FeMnNiAl shape memory
alloy lattice structures produced by Laser Powder Bed Fusion (2021) Materials Letters, 302, art. no.
130349.
K. Sun, J. Qiu, H.R. Karimi, Neural adaptive fault-tolerant finite-time control for nonstrict feedback
systems: An event-triggered mechanism (2021) Neural Networks, 143, pp. 377-385.
D. Ma, Á. González-Jiménez, M. Giglio, C.M. dos Santos Cougo, S.C. Amico, A. Manes. Multiscale
modelling approach for simulating low velocity impact tests of aramid-epoxy composite with nanofillers
(2021) European Journal of Mechanics, A/Solids, 90, art. no. 104286.
J. Chen, S. Yuan, C. Sbarufatti, X. Jin. Dual crack growth prognosis by using a mixture proposal particle
filter and on-line crack monitoring (2021) Reliability Engineering and System Safety, 215, art. no. 107758.
S. Petrò, L. Pagani, G. Moroni, P.J Scott, Conformance and nonconformance in segmentation-free X-ray
computed tomography geometric inspection (2021) Precision Engineering, 72, pp. 25-40.
M. Berardengo, S. Manzoni, M. Vanali, R. Bonsignori Enhancement of the broadband vibration attenuation
of a resistive piezoelectric shunt (2021) Journal of Intelligent Material Systems and Structures, 32 (18-19),
pp. 2174-2189.
X. Zhang, W. Zhou, H.R. Karimi, Y. Sun Finite-and Fixed-Time Cluster Synchronization of Nonlinearly
Coupled Delayed Neural Networks via Pinning Control (2021) IEEE Transactions on Neural Networks and
Learning Systems, 32 (11), pp. 5222-5231
C. Confalonieri, E. Gariboldi, Al-Sn Miscibility Gap Alloy produced by Power Bed Laser Melting for
application as Phase Change Material (2021) Journal of Alloys and Compounds, 881, art. no. 160596.
S. Cerfoglio, M. Galli, M. Tarabini, F. Bertozzi, C. Sforza, M, Zago, Machine learning-based estimation of
ground reaction forces and knee joint kinetics from inertial sensors while performing a vertical drop
jump (2021) Sensors, 21 (22), art. no. 7709.
K. Mahmood, T. Otto, V. Kuts, W. Terkaj, G. Modoni, M. Urgo, G. Colombo, G. Haidegger, P. Kovacs, J.
Stahre, Advancement in production engineering education through Virtual Learning Factory Toolkit
concept [Tootmisinseneride hariduse edendamine virtuaalse õppetehase tööriistakomplekti
kontseptsiooni kaudu] (2021) Proceedings of the Estonian Academy of Sciences, 70 (4), pp. 374-382.
L. Bonaiti, F. Rosa, P.M. Rao, F. Concli, C. Gorla, Gear root bending strength: statistical treatment of Single
Tooth Bending Fatigue tests results: Conference Proceedings [Zahnfußbiegefestigkeit: Statistische
Behandlung der Ergebnisse von den STBF-Versuchen] (2021) Forschung im Ingenieurwesen/
Engineering Research.
V. Longatelli, A. Pedrocchi, E. Guanziroli, F. Molteni, M. Gandolla, Robotic Exoskeleton Gait Training in
Stroke: An Electromyography-Based Evaluation (2021) Frontiers in Neurorobotics, 15, art. no. 733738.
J.M. De Ponti, E. Riva, F. Braghin, R. Ardito, Elastic three-dimensional metaframe for selective wave
filtering and polarization control (2021) Applied Physics Letters, 119 (21), art. no. 211903.
I. Ceroni, S. Ferrante, F. Conti, S.J. No, S.D. Gasperina, F. Dell’Eva, A. Pedrocchi, M. Tarabini, E. Ambrosini,
Comparing Fatigue Reducing Stimulation Strategies During Cycling Induced by Functional Electrical
Stimulation: a Case Study with one Spinal Cord Injured Subject (2021) Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology
Society. Annual International Conference, 2021, pp. 6394-6397.
G. Pomaranzi, O. Bistoni, P. Schito, L. Rosa, A. Zasso, Wind effects on a permeable double skin façade,
the eni head office case study (2021) Fluids, 6 (11), art. no. 415.
Q. Li, R. Corradi, , E. Di Gialleonardo, S. Bionda, A. Collina, Testing and modelling of elastomeric element
for an embedded rail system (2021) Materials, 14 (22), art. no. 6968.
M. Grasso, In situ monitoring of powder bed fusion homogeneity in electron beam melting (2021)
Materials, 14 (22), art. no. 7015.
L. Bernardini, M. Carnevale, A. Collina, Damage identification in warren truss bridges by two different
time–frequency algorithms (2021) Applied Sciences (Switzerland), 11 (22), art. no. 10605.
A.A. Shahid, J.S.V. Sesin, D. Pecioski, F. Braghin, D. Piga, L. Roveda, Decentralized multi-agent control
of a manipulator in continuous task learning (2021) Applied Sciences (Switzerland), 11 (21), art. no. 10227.
F. Borghetti, M. Longo, R. Mazzoncini, C. Somaschini, L. Cesarini, L. Contestabile, Relationship between
railway stations and the territory: Case study in LombardY - Italy for 15-min statioN (2021) International
Journal of Transport Development and Integration, 5 (4), pp. 367-378.
F. Tessarolo, et al., Measuring breathability and bacterial filtration efficie