25.12.2012 Views

la metallurgia italiana - Gruppo Italiano Frattura

la metallurgia italiana - Gruppo Italiano Frattura

la metallurgia italiana - Gruppo Italiano Frattura

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Memorie >><br />

Alluminio e leghe<br />

CORRELATION BETWEEN<br />

MICROSTRUCTURE AND<br />

MECHANICAL PROPERTIES<br />

OF Al-Si CAST ALLOYS<br />

F. Grosselle, G. Timelli, F. Bonollo, A. Tiziani, E. Del<strong>la</strong> Corte<br />

The influence of microstructure and process history on mechanical behaviour of cast Al-Si alloys is reported.<br />

In the present work, the EN-AC 46000 and 46100 aluminium alloys have been gravity cast using a stepbar<br />

permanent mould, with a range of thickness going from 5 to 20 mm. Metallographic and image analysis<br />

techniques have been used to quantitatively examine the microstructural parameters of the α-Al phase<br />

and eutectic Silicon. Microstructure has been also corre<strong>la</strong>ted with the results coming from the numerical<br />

simu<strong>la</strong>tion of the casting process. The results show that SDAS and length of eutectic silicon particles increase<br />

with section thickness, and consequently mechanical properties decrease.<br />

KEYWORDS: aluminium alloys; EN-AC 46000; EN-AC 46100; SDAS; eutectic Si; microstructure; numerical<br />

simu<strong>la</strong>tion; permanent mould casting<br />

INTRODUCTION<br />

Mechanical properties of Al-Si cast alloys depend on several microstructural<br />

parameters. Grain size, secondary dendrite arm<br />

spacing (SDAS), distribution of phases, the presence of secondary<br />

phases or intermetallic compounds, the morphology of silicon<br />

particles (size, shape and distribution) and, finally, defects p<strong>la</strong>y a<br />

key role in the determination of the e<strong>la</strong>stic and p<strong>la</strong>stic behaviour<br />

of aluminium alloys [1-3].<br />

In general, castings having a finer microstructure (quantitatively<br />

described by low SDAS values), induced by high solidification<br />

rate, show better mechanical properties. Many corre<strong>la</strong>tions between<br />

mechanical behaviour (UTS, YS, elongation) and SDAS can be<br />

found in literature [3-4]. It is worth mentioning that, on industrial<br />

production, the control of solidification rate (and therefore the<br />

SDAS values) is quite difficult to achieve [5], as consequence of<br />

the geometrical complexity and of the different wall thickness in<br />

the real-shaped casting. For this reason, reference castings are frequently<br />

employed when the solidification rate has to be accurately<br />

controlled and different microstructures have to be achieved. Therefore,<br />

in these castings, the solidification conditions can be set up<br />

by varying the thickness and the material of the mould, as well as<br />

Fabio Grosselle, Giulio Timelli, Franco Bonollo, Alberto Tiziani<br />

Dipartimento di Tecnica e Gestione dei Sistemi Industriali<br />

DTG, Università di Padova, Stradel<strong>la</strong> S. Nico<strong>la</strong>, 3 I-36100 Vicenza,<br />

Italia (Email: grosselle@gest.unipd.it;<br />

Tel. 00 39 0444 99 87 54; Fax No. 00 39 0444 99 88 89)<br />

Emilia Del<strong>la</strong> Corte<br />

Enginsoft Spa, via Giambellino 7, I-35129 Padova, Italia<br />

(Email: e.del<strong>la</strong>corte@enginsoft.it; Tel. 00 39 049 77 05 311)<br />

the sample size [3,6]. In this way, the factors affecting SDAS, the<br />

re<strong>la</strong>tionship between SDAS and mechanical properties of cast aluminium<br />

alloys can be easily better assessed and these information<br />

can be subsequently transferred to real-shaped casting.<br />

On the other hand, it is well known that SDAS is not the only factor<br />

affecting the mechanical behaviour of an alloy. For instance,<br />

the deformation behaviour of cast aluminium alloys is also affected<br />

by eutectic Si particles and intermetallic compounds which<br />

determine the initiation and the evolution of fracture [7-8]. In particu<strong>la</strong>r,<br />

for defect free castings, tensile fracture is initiated by cleavage<br />

of either brittle intermetallic particles or eutectic Si particles.<br />

The cleavage cracks are mainly perpendicu<strong>la</strong>r to the macroscopic<br />

principal strain, regardless of the particle orientation. P<strong>la</strong>telet particles<br />

with their length perpendicu<strong>la</strong>r to the tensile direction break<br />

because of cleavage along their length [9-10]. Therefore, it is easy<br />

to hypothesize that the fracture mechanism depends on the size<br />

and shape of Si or Fe-rich brittle phases. In detail, <strong>la</strong>rge and acicu<strong>la</strong>r<br />

particles are deleterious for mechanical properties reducing<br />

elongation to fracture and ultimate tensile strength [9].<br />

In un-modified Al–Si cast alloys, the eutectic Si particles have a<br />

coarse, acicu<strong>la</strong>r and polyhedral morphology and the final mechanical<br />

properties of an alloy is characterized by their distribution<br />

in the microstructure. It was established that the size distribution<br />

of eutectic Si particles follows the lognormal distribution [8]. The<br />

probability density function of the three-parameters lognormal distribution<br />

can be written as:<br />

(1)<br />

where d is the diameter of Si particles, τ the threshold, σ the shape<br />

and μ is the scale parameter.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 25


Alluminio e leghe


Alloy<br />

EN-AC<br />

46000<br />

EN-AC<br />

46100<br />

Memorie >><br />

Al<br />

Bal.<br />

Bal.<br />

Si<br />

8.8<br />

10.8<br />

s<br />

Tab. 1<br />

Chemical composition of the alloys studied in the<br />

present work (wt.%).<br />

Composizione chimica delle leghe analizzate nel presente studio (wt.%).<br />

The tensile specimens were 100-mm long, 20-mm wide, and 3-mm<br />

thick, with a gage length of 30 mm and a width of 10 mm, according<br />

to ASTM-B577.<br />

The tensile tests were done on a computer controlled tensile testing<br />

machine. The crosshead speed used was 2 mm/min (strain<br />

rate~10 -3 s -1 ). The strain was measured using a 25-mm extensometer.<br />

At least three specimens were tested for each zone. When the<br />

experimental data differed by more than 5 pct, another tensile specimen<br />

was tested.<br />

The samples cut from the cross section of the gage length were<br />

mechanically prepared to a 1-µm finish with diamond paste and,<br />

finally, polished with a commercial fine silica slurry for metallographic<br />

investigations. Microstructural analysis was carried out<br />

using an optical microscope and quantitatively analyzed using<br />

an image analyzer. To quantify the microstructural features, the<br />

image analysis was focused on the secondary dendrite arm spacing<br />

(SDAS), and on the size and aspect ratio of the eutectic silicon<br />

particles. Size is defined as the equivalent circle diameter (d); the<br />

aspect ratio (α) is the ratio of the maximum to the minimum Ferets.<br />

To obtain a statistical average of the distribution, a series of at least<br />

10 photographs of each specimen were taken; each measurement<br />

included more than 1000 particles. The secondary phases, such<br />

as the Mg 2 Si and CuAl 2 particles, and the iron-rich intermetallics<br />

were excluded from the measurements and further analysis. Average<br />

SDAS values were obtained using the linear intercept method,<br />

which involves measuring the distances between secondary<br />

dendrite arms along a line normal to the dendrite arms.<br />

Casting simu<strong>la</strong>tion<br />

The MAGMASOFT® v4.6 (2007) commercial software, with its<br />

module for gravity die casting, was used for numerically simu<strong>la</strong>ting<br />

the filling and solidification behaviour of analysed castings.<br />

The characteristics of the software used in this study are as follows:<br />

- ease of physical interpretation of various steps of algorithms;<br />

- conservation of physical properties;<br />

- reduction of solving time.<br />

Basic governing equations of the software are continuity equation,<br />

Navier–Stoke’s equation, energy equation and volume of fluid<br />

(VoF) method for the free surface movement during the die filling.<br />

The numerical code employs the finite volume approach to convert<br />

differential equations into algebraic ones and solve them on<br />

a rectangu<strong>la</strong>r grid. The CAD model of the step casting was drawn<br />

and imported in the simu<strong>la</strong>tion software where a controlled volume<br />

mesh of 132000 cells for the die cavity was automatically<br />

generated by the software. The initial conditions for numerical<br />

simu<strong>la</strong>tion were defined to reproduce the casting parameters. The<br />

pouring temperature was set at 720°C, while, for the die, the temperature<br />

for the first cycle was assumed to be at a uniform temperature<br />

of 250°C. In the subsequent cycles, the initial temperature<br />

in the die is taken to be the predicted temperature distribution at<br />

Cu<br />

3.0<br />

1.8<br />

Fe<br />

0.8<br />

0.8<br />

Mg<br />

0.21<br />

0.13<br />

Alluminio e leghe<br />

Mn<br />

0.26<br />

0.18<br />

Ni<br />

0.087<br />

0.089<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 27<br />

Ti<br />

0.039<br />

0.046<br />

Zn<br />

0.90<br />

1.29<br />

Others<br />

0.05<br />

0.05<br />

the end of the previous cycle. A number of 10–15 cycles were taken<br />

after the start up to reach a quasi-steady-state temperature in<br />

the die. The thermal conductivity of the die varied in the range of<br />

33.4–31.5 W/mK, in the working temperature range of 450–520°C.<br />

The other physical constants and properties of the die and the alloys,<br />

and their evolution with temperature, were chosen among<br />

those present in the software database, as well as the heat transfer<br />

coefficients (HTC), taking into account affecting parameters, like<br />

the type and thickness of coating, and the pouring temperature. To<br />

define the whole set of boundary conditions in the model, the process<br />

parameters (e.g. regarding the filling and cooling cycle) and<br />

the cycle time, acquired from the casting process, were imported<br />

in the software, increasing the reliability of numerical simu<strong>la</strong>tion.<br />

Virtual thermocouples were inserted in the different zones of the<br />

die in order to control the temperature profiles and to compare<br />

these values with the real ones. Solidification time was assessed<br />

via numerical simu<strong>la</strong>tion code in order to predict the final microstructure<br />

of the casting. The mechanical properties of the aluminium<br />

cast alloy were predicted by using the newly developed<br />

add-on module to the simu<strong>la</strong>tion software [12].<br />

RESULTS AND DISCUSSION<br />

In Fig. 4, typical microstructures of the step castings are reported<br />

with reference to the different step, which varies in a range<br />

of thickness between 5 to 20 mm. While Fig. 4a shows the as-cast<br />

microstructure of EN-AC 46000 alloy, in Fig. 4b the microstructure<br />

of EN-AC 46100 alloy is presented. The microstructure of the step<br />

castings analysed consists of a primary phase, α-Al solid solution,<br />

which precipitates from the liquid as the primary phase in the form<br />

of dendrites. The as-cast Al–9Si–3Cu alloy (EN-AC 46000) shows<br />

primary α-Al grains in the matrix of the eutectic structure (Fig. 4a).<br />

The eutectic structure is a mixture of the α-Al and eutectic silicon<br />

phase. The eutectic silicon can be seen in the interdendritic regions.<br />

The Al–11Si–2Cu alloy (EN-AC 46100) shows the mixed structure<br />

of the α-Al grains and eutectic (Fig. 4b). Moreover, the addition of<br />

silicon increased the fraction of the eutectic in the interdendritic<br />

region. Intermetallics compounds, such as Fe- and Cu-rich intermetallics,<br />

were also observed. A low level of microdefects, in the<br />

form of microshrinkage, was found in the specimens analysed.<br />

The scale of microstructure in different zones of the castings was<br />

characterized by means of SDAS measurements and then corre<strong>la</strong>ted<br />

with mechanical properties. These data are further described.<br />

Fig. 4 presents calcu<strong>la</strong>ted solidification times, from numerical simu<strong>la</strong>tion,<br />

with the corresponding microstructure within step castings<br />

of EN-AC 46000 and 46100 alloys. A general coarsening of<br />

microstructure occurs in thicker regions, quantified by SDAS values,<br />

as the result of the increased solidification time in both alloys.<br />

For every section thickness, the SDAS values were higher in the<br />

samples extracted from the inner section than the specimens from<br />

the external one.<br />

Simi<strong>la</strong>r values of SDAS and solidification time for the two alloys<br />

were obtained as consequence of simi<strong>la</strong>r thermal properties.<br />

Solidification times were also estimated by means of SDAS measurements<br />

using equation [13]:


Alluminio e leghe


Alloy<br />

EN-AC 46000<br />

EN-AC 46100<br />

Memorie >><br />

Section<br />

A.i<br />

B.i<br />

C.e<br />

C.i<br />

D.e<br />

D.i<br />

A.i<br />

B.i<br />

C.e<br />

C.i<br />

D.e<br />

D.i<br />

SDAS (μm)<br />

16.4 (0.8)<br />

23.9 (1.8)<br />

23.5 (1.0)<br />

30.8 (0.9)<br />

25.0 (1.3)<br />

32.5 (1.9)<br />

18.6 (2.4)<br />

22.4 (1.6)<br />

26.8 (1.8)<br />

32.8 (1.3)<br />

26.9 (1.9)<br />

35.3 (2.1)<br />

Calcu<strong>la</strong>ted solidification time (s)<br />

14<br />

40<br />

38<br />

82<br />

46<br />

95<br />

20<br />

33<br />

55<br />

98<br />

56<br />

120<br />

Simi<strong>la</strong>r behaviour of the eutectic Si size was observed in the EN-<br />

AC 46100 alloy.<br />

The impact of the solidification time on the aspect ratio of eutectic<br />

Si particles is negligible, as shown in Fig. 5b. Every step shows<br />

simi<strong>la</strong>r distributions of the aspect ratio of the eutectic Si particles.<br />

The irregu<strong>la</strong>r growth mechanism of un-modified eutectic Si particles<br />

confirms to be independent from the solidification rate, at<br />

least for the range of solidification rate investigated [14].<br />

Generally, the distributions of the aspect ratio of the eutectic Si<br />

particles in EN-AC 46100 alloy show simi<strong>la</strong>r behaviour.<br />

The corre<strong>la</strong>tion between solidification time and Si particles parameters<br />

is reported in Fig. 6. For both alloys, the average diameter<br />

increases significantly by increasing the solidification time from 20<br />

to 40 seconds, while for longer times the values are steady in the<br />

range of 6.5 to 7 µm (Fig. 6a). On the other side, the aspect ratio<br />

seems to be independent from the solidification time (Fig. 6b), as<br />

previously demonstrated by means of the distribution plots in Fig.<br />

5b.<br />

Contrary, a re<strong>la</strong>tionship can be found between the aspect ratio and<br />

the Si content. If the Si amount is increased from 9 wt.% in the<br />

EN-AC 46000 alloy to 11 wt.% and EN-AC 46100 alloy, the aspect<br />

ratio of eutectic Si particles increases, indicating a more intense<br />

growing along the main axis direction of the Si particles.<br />

In Tab. 3, the results of the mechanical investigation are shown.<br />

The values of the standard deviation confirm the presence of a<br />

low amount of microdefects, which affect the mechanical properties.<br />

However, no macrodefects were observed through the X-ray<br />

investigation.<br />

If A.i and D.i sections are considered and compared, a reduction<br />

of 23 and 15% in UTS and 71 and 54% in elongation to fracture is<br />

observed for the EN-AC 46000 and 46100 alloys respectively, as a<br />

consequence of the different microstructure scale. In the EN-AC<br />

46000 alloy, the UTS varies from 167 to 218 MPa and the elongation<br />

to fracture from 0.4 to 1.4%, while the change is in the range<br />

of 160 to 188 MPa for UTS and from 0.6 to 1.3% for elongation to<br />

fracture, in the EN-AC 46100 alloy. On the other hand, the solidi-<br />

Alluminio e leghe<br />

Equivalent Diameter, d (μm)<br />

5.3 (1.8)<br />

6.4 (3.0)<br />

6.4 (2.7)<br />

6.8 (3.1)<br />

7.4 (3.8)<br />

6.8 (3.3)<br />

5.5 (1.8)<br />

6.2 (2.6)<br />

6.7 (2.9)<br />

7.6 (3.8)<br />

6.7 (2.9)<br />

6.8 (3.0)<br />

Aspect Ratio, α<br />

3.0 (1.5)<br />

2.9 (1.6)<br />

2.9 (1.3)<br />

2.7 (1.4)<br />

3.0 (1.5)<br />

3.1 (1.4)<br />

4.0 (2.0)<br />

3.7 (2.0)<br />

3.6 (1.8)<br />

3.1 (1.7)<br />

4.0 (2.0)<br />

4.1 (2.3)<br />

s<br />

Tab. 2<br />

Average values of SDAS, equivalent diameter and aspect ratio of eutectic silicon particles obtained from different sections<br />

of the step castings (standard deviation in parentheses); solidification times, calcu<strong>la</strong>ted with a numerical simu<strong>la</strong>tion approach, are<br />

also reported. Data refer to EN-AC 46000 and 46100 alloys.<br />

Valori medi di SDAS, del diametro equivalente e del rapporto d’aspetto per le particelle di silicio eutettico, ottenuti dalle diverse sezioni<br />

del getto a gradini (i valori di deviazione standard in parentesi); sono inoltri riportati i valori del tempo di solidificazione per le varie zone,<br />

calco<strong>la</strong>ti mediante <strong>la</strong> simu<strong>la</strong>zione di processo. I dati si riferiscono alle leghe EN-AC 46000 e 46100.<br />

s<br />

Fig. 6<br />

Variation in (a) equivalent diameter and (b)<br />

aspect ratio of eutectic silicon particles as function of<br />

solidification time.<br />

Variazione dei valori di (a) diametro equivalente e (b) del<br />

rapporto d’aspetto delle particelle di silicio eutettico in<br />

funzione del tempo di solidificazione.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 29<br />

a<br />

b


Alluminio e leghe


CONCLUSIONS<br />

Memorie >><br />

The effects of microstructural parameters such as SDAS, size and<br />

morphology of eutectic silicon particles on mechanical properties<br />

of EN-AC 46000 and 46100 alloys have been investigated. In addition,<br />

the validation of the results provided by a numerical simu<strong>la</strong>tion<br />

approach has been performed. Based on the results obtained in<br />

the present study, the following conclusions can be drawn.<br />

- The equivalent diameter and the aspect ratio of eutectic Si particles<br />

follow three-parameter lognormal distributions.<br />

- While the distribution of the equivalent diameter depends on solidification<br />

time, the distribution of the aspect ratio is less sensible,<br />

indicating the irregu<strong>la</strong>r growing mechanism of un-modified eutectic<br />

silicon.<br />

- The average size of eutectic silicon particles is simi<strong>la</strong>r in both EN-<br />

AC 46000 and 46100 alloys, while the aspect ratio of EN-AC 46100<br />

is higher, probably due to higher Si content.<br />

- The mechanical properties, i.e. the UTS and elongation to fracture,<br />

depend on SDAS and on the aspect ratio of the eutectic Si particles,<br />

which seems an alloy-re<strong>la</strong>ted parameters. Increasing the SDAS and<br />

the aspect ratio values, the UTS and the elongation to fracture decrease.<br />

- The difference in the mechanical properties of the two alloys is the<br />

consequence of different chemical composition. Higher Cu and Mg<br />

contents in the EN-AC 46000 alloy allows to increase the YS, while<br />

a lower Si amount permits to enhance the ductility, reaching higher<br />

a<br />

b<br />

s<br />

Fig. 8<br />

Average (a) UTS and (b) elongation to fracture as a<br />

function of the combined parameter SDAS x Aspect ratio;<br />

coefficient of determination, R2, are given. Data refer to EN-<br />

AC 46000 and 46100 alloys.<br />

Valori medi di (a) UTS e (b) allungamento a rottura in funzione del<br />

prodotto tra SDAS e rapporto d’aspetto. E’ inoltre riportato in<br />

coefficiente di determinazione, R2. I dati si riferiscono alle leghe<br />

EN-AC 46000 e EN-AC 46100.<br />

Alluminio e leghe<br />

s<br />

Fig. 9<br />

Comparison between experimental and simu<strong>la</strong>ted<br />

mechanical properties in EN-AC 46000 step casting. The<br />

images refer to (a) YS, (b) UTS and (c) elongation to fracture.<br />

Confronto tra i valori delle proprietà meccaniche ottenuti<br />

sperimentalmente e mediante simu<strong>la</strong>zione di processo per il<br />

getto co<strong>la</strong>to con lega EN-AC 46000. Le immagini si riferiscono a<br />

(a) YS, (b) UTS e (c) allungamento a rottura.<br />

UTS and elongation to fracture values than the EN-AC 46100 alloy.<br />

- Since numerical simu<strong>la</strong>tion results reproduce the experimental<br />

data with a good accuracy, it can be stated that numerical simu<strong>la</strong>tion<br />

is a useful tool for the reduction of time and costs in the design<br />

stage.<br />

- The present investigation has been carried out on un-modified<br />

gravity cast alloys; in the case of higher cooling rate, modification<br />

or heat treatment, attention should be also paid to the size of eutectic<br />

Si particle, as a parameter affecting the mechanical behaviour.<br />

ACKNOWLEDGMENTS<br />

The European Project NADIA- New Automotive components<br />

Designed for and manufactured by Intelligent processing of light<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 31<br />

a<br />

b<br />

c


Alluminio e leghe


Memorie >><br />

Alluminio e leghe<br />

ANALISI DELL’EVOLUZIONE<br />

MICROSTRUTTURALE DURANTE IL<br />

PROCESSO DI ESTRUSIONE DELLA LEGA<br />

AA6060 MEDIATE SIMULAZIONI FEM<br />

M. El Mehtedi, L. Donati, S. Spigarelli, L. Tomesani<br />

La previsione del<strong>la</strong> microstruttura finale dopo l’estrusione delle leghe di alluminio è un argomento che ha<br />

suscitato un grande interesse negli ultimi anni, visto che le proprietà meccaniche e <strong>la</strong> qualità degli estrusi<br />

sono fortemente dipendenti dall’evoluzione e del tipo di microstruttura. Questo <strong>la</strong>voro pone come obiettivo<br />

lo studio dell’evoluzione microstrutturale del<strong>la</strong> lega di alluminio AA6060 durante l’estrusione, mediate<br />

simu<strong>la</strong>zioni FEM utilizzando il Codice Deform 3D. Allo scopo di determinare i coefficienti dei modelli<br />

di ricristallizzazione da inserire nel codice FEM, sono state prodotte delle prove sperimentali mediante<br />

l’estrusione inversa di coppe a diverse temperature e velocità di deformazione. Dall’analisi metallografica<br />

dei campioni estrusi è stato possibile determinare i coefficienti del modello dinamico di ricristallizzazione in<br />

dotazione al codice FEM Deform 3D. Le coppe sono state successivamente trattate termicamente in forno per<br />

far avvenire <strong>la</strong> ricristallizzazione statica, e sono stati determinati i coefficienti del modello di ricristallizzazione<br />

statica. Una volta convalidati i modelli, si è passato al<strong>la</strong> simu<strong>la</strong>zione del processo reale di estrusione di una<br />

billetta cilindrica. L’evoluzione del<strong>la</strong> microstruttura presenta delle zone con dei grani allungati ed altre con dei<br />

grani ricristallizzati con fenomeni di accrescimento. I risultati delle simu<strong>la</strong>zioni sono stati confrontati con le<br />

microstrutture delle billette estruse, mostrando una buona corrispondenza.<br />

PAROLE CHIAVE: alluminio e leghe, estrusione, deformazioni p<strong>la</strong>stiche, simu<strong>la</strong>zione numerica, processi<br />

INTRODUZIONE<br />

I modelli di previsione del<strong>la</strong> microstruttura hanno suscitato un<br />

grande interesse da parte delle industrie negli ultimi anni, specialmente<br />

per quanto riguarda le leghe leggere ove le proprietà<br />

meccaniche sono fortemente dipendenti dal<strong>la</strong> microstruttura<br />

finale [1,2]. Inoltre è ben noto come <strong>la</strong> dimensione del grano e<br />

<strong>la</strong> precipitazione di fasi secondarie influenzano diversi aspetti<br />

del prodotto finale, quali, ad esempio, l’effetto estetico, <strong>la</strong> resistenza<br />

a trazione, <strong>la</strong> formabilità, <strong>la</strong> resistenza a fatica e a corrosione.<br />

La struttura a grana fine è partico<strong>la</strong>rmente richiesta<br />

specialmente quando il prodotto viene sottoposto ad elevati<br />

carichi di fatica oppure viene messo in opera in atmosfera corrosiva<br />

[3,4]. Le proprietà meccaniche dei profi<strong>la</strong>ti in alluminio<br />

sono fortemente legate all’evoluzione del<strong>la</strong> microstruttura du-<br />

M. El Mehtedi, S. Spigarelli<br />

Dipartimento di Meccanica, Università Politecnica delle Marche,<br />

60131 Ancona, Italia - e-mail: elmehtedi@univpm.it<br />

L. Donati, L. Tomesani<br />

DIEM, Università degli studi di Bologna, 40136 Bologna, Italia<br />

rante tutto il ciclo produttivo, dal<strong>la</strong> billetta prodotta per fusione<br />

fino al ciclo di invecchiamento per le leghe da trattamento<br />

termico [5]; precipitati intermetallici grosso<strong>la</strong>ni, zone libere<br />

da precipitati (Precipitate Free Zones), <strong>la</strong> distribuzione e le dimensioni<br />

dei grani, l’ingrossamento del grano rappresentano<br />

alcuni problemi legati all’evoluzione microstrutturale delle<br />

leghe di alluminio che possono indurre ad un prodotto finito<br />

povero dal punto di vista meccanico. L’ottenimento del<strong>la</strong> microstruttura<br />

ottimale si è spesso basato sull’esperienza tramandata<br />

e solo di recente l’interesse verso i processi di simu<strong>la</strong>zione<br />

è significativamente aumentato.<br />

La ricristallizzazione nelle leghe di alluminio è stata studiata<br />

in maniera molto approfondita negli ultimi decenni, soprattutto<br />

per gli aspetti legati al comportamento di queste leghe<br />

durante <strong>la</strong> deformazione a caldo [7,8], ma non esiste nessun <strong>la</strong>voro<br />

fornisce delle equazioni affidabili oppure dei coefficienti<br />

da utilizzare nei sistemi di simu<strong>la</strong>zione con gli elementi finiti.<br />

Durante tutto il processo termo-meccanico avvengono diversi<br />

meccanismi metallurgici come <strong>la</strong> ricristallizzazione statica<br />

(SRX), ricristallizzazione dinamica (DRX), <strong>la</strong> ricristallizzazione<br />

geometrica dinamica (GDRX), <strong>la</strong> crescita dei grani ed infine <strong>la</strong><br />

precipitazione di fasi secondarie [9,10]. Durante il processo di<br />

<strong>la</strong>vorazione delle leghe di alluminio ed in partico<strong>la</strong>re le leghe<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 33


Alluminio e leghe


Memorie >><br />

t – tempo (sec); d 0 – diametro iniziale del grano (μm); d – diametro<br />

del grano (μm); d rex – diametro del grano ricristallizzato<br />

(μm); d ave – diametro medio del grano (μm); X –frazione in<br />

volume ricristallizzata (X drx dinamica, per X=0 non è avvenuta<br />

ricristallizzazione; per X=1, <strong>la</strong> struttura è al 100% ricristallizzata);<br />

ε - deformazione reale; ε c – deformazione critica (al di<br />

sopra del<strong>la</strong> quale inizia <strong>la</strong> ricristallizzazione dinamica); ε p – deformazione<br />

di picco (corrispondente al valore massimo di tensione);<br />

ε 0.5 – deformazione al 50% ricristallizzato; έ - velocità di<br />

deformazione (sec-1); t 0.5 – tempo al 50% ricristallizzato (sec);<br />

a 1–10 – coefficienti del materiale ottenuti sperimentalmente; h 1–8<br />

, n 1–8 e m 1–9 sono gli esponenti del grano, del<strong>la</strong> deformazione e<br />

del<strong>la</strong> velocità di deformazione rispettivamente; Q 1–8 – energie<br />

di attivazione; β d - kd sono dei coefficienti del materiale ottenuti<br />

sperimentalmente.<br />

PROCEDURE SPERIMENTALI E DISCUSSIONE<br />

Prima fase-prove di <strong>la</strong>boratorio<br />

Nel<strong>la</strong> prima fase, è stata messa a punto una procedura sperimentale<br />

allo scopo di valutare <strong>la</strong> distribuzione e <strong>la</strong> grandezza<br />

dei grani dopo deformazione del<strong>la</strong> lega AA6060 ricevuta allo<br />

stato di omogeneizzazione con <strong>la</strong> seguente composizione chimica<br />

(% peso):<br />

Grazie al<strong>la</strong> strumentazione mostrata in Fig. 1, sono state prodotte<br />

delle coppe a spessore variabile mediante estrusione inversa<br />

alle temperature 250, 350, 450 e 550° C con diverse velocità<br />

di traversa 0.1 e 5 mm/sec.<br />

Le condizioni di prova sono state scelte per ottenere una deformazione<br />

locale compresa tra 0-3.88 con una velocità di deformazione<br />

0-5 s-1; <strong>la</strong> temperatura dei campioni era tipica dei<br />

processi di estrusione al livello industriale. Lo stampo ed il<br />

campione sono stati scaldati in un forno a resistenza e <strong>la</strong> temperatura<br />

del campione veniva control<strong>la</strong>ta mediante termocoppia<br />

a contatto. I campioni sono stati spenti in acqua immediatamente<br />

dopo deformazione per conservare <strong>la</strong> microstruttura<br />

inalterata. I campioni deformati sono stati tagliati, inglobati e<br />

lucidati; per l’osservazione al microscopio ottico con luce po<strong>la</strong>rizzata,<br />

i campioni sono stati attaccati elettroliticamente con<br />

l’attacco Barker, infine è stata effettuata un’analisi accurata<br />

del<strong>la</strong> distribuzione e del<strong>la</strong> grandezza dei grani. In parallelo,<br />

è stato simu<strong>la</strong>to tutto il processo sperimentale di deformazione<br />

mediante simu<strong>la</strong>tore di elementi finiti FEM Deform 3D allo<br />

scopo di valutare <strong>la</strong> distribuzione del<strong>la</strong> deformazione e <strong>la</strong> velocità<br />

di deformazione in tutti i campioni. Grazie al confron-<br />

s<br />

Fig. 1<br />

Strumentazione dell’estrusione inversa.<br />

Inverse extrusion equipment.<br />

Alluminio e leghe<br />

Lega<br />

AA6060<br />

Temperatura<br />

250° C<br />

350° C<br />

450° C<br />

550° C<br />

n8 -0.364<br />

-0.985<br />

-0.722<br />

-0.420<br />

m8 -0.213<br />

-0.105<br />

-0.084<br />

0.046<br />

s<br />

Tab. 1<br />

Coefficienti ottenuti dell’equazione (5).<br />

Regressed coefficienst of equation (5).<br />

a8 1.93E+15<br />

7.22E+12<br />

1.34E+11<br />

8.26E+09<br />

to delle misurazioni sperimentali dei grani con le condizioni<br />

locali di deformazione sono stati ricavati i diversi coefficienti<br />

del modello di ricristallizzazione dinamica: a 2 =0.05, ε 0.5 =0.15,<br />

a 5 =0.15, β d =1 kd=1, a 10 =1, n 8 , m 8 , a 8 (Tab. 1), h 5 =n 5 =m 5 =Q 5 =0.<br />

Una più ampia e dettagliata descrizione del<strong>la</strong> procedura di calcolo<br />

dei coefficienti è riportata da Donati et.al. [13].<br />

La microstruttura del materiale allo stato di fornitura è costituita<br />

da grani ben definiti ed equiassici con un diametro medio<br />

di circa 135 μm decorati da grosse particelle lungo il bordo<br />

di grano; si nota inoltre <strong>la</strong> presenza di composti intermetallici<br />

all’interno dei grani. La Fig. 2a mostra <strong>la</strong> distribuzione del<strong>la</strong><br />

microstruttura nei campioni deformati, si nota <strong>la</strong> presenza di<br />

grani fortemente allungati in prossimità del punzone dove<br />

il valore stimato del<strong>la</strong> deformazione è 2.5-3.88, mentre nelle<br />

zone vicine allo stampo si ha una struttura meno deformata<br />

e più equiassica con valori del<strong>la</strong> deformazione minori a 0.8;<br />

si evidenzia una riduzione nello spessore dei grani passando<br />

dal<strong>la</strong> zona vicina al punzone da 20-50 μm fino al<strong>la</strong> zona a contatto<br />

dello stampo con valori di 80-110 μm. Questa diminuzione<br />

è dovuta al tipo di deformazione che ha subito il materiale<br />

(lungo <strong>la</strong> direzione assiale), mentre solo in alcune piccole zone<br />

si vede l’effetto del<strong>la</strong> ricristallizzazione geometrica dinamica<br />

(GDRX) che ha generato nuovi grani senza nucleazione; infatti,<br />

i grani sono fortemente deformati lungo <strong>la</strong> direzione di<br />

estrusione e quando lo spessore del grano raggiunge quello<br />

del sottograno si formano questi nuovi grani equiassici.<br />

Confrontando i risultati sperimentali delle dimensioni dei<br />

grani e <strong>la</strong> loro distribuzione con i dati forniti da modello di<br />

previsione FEM (fig.2b) lungo tutta <strong>la</strong> sezione dei campioni,<br />

si ha un errore medio di circa il 12% con una massima deviazione<br />

del 57%, conseguendo un interessante accordo con i dati<br />

sperimentali, come riportato in [13]. La maggior deviazione si<br />

trova alle basse temperature di deformazione e nel<strong>la</strong> zona alta<br />

delle coppe dove un non perfetto centraggio del punzone (nelle<br />

prove sperimentali) potrebbe indurre a delle deformazioni<br />

non omogenee producendo degli spessori diversi.<br />

Seconda fase - Trattamento termico<br />

In questa seconda fase, sono stati trattati termicamente 8 campioni<br />

in forno a 550°C per 30 minuti; tali campioni, raffreddati<br />

in aria, successivamente sono stati riportati a 180°C per 10<br />

ore. Seguendo <strong>la</strong> stessa procedura del<strong>la</strong> prima fase, i campioni<br />

sono stati preparati per l’analisi metallografica per <strong>la</strong> misura<br />

del diametro medio del grano. Fig. 3 mostra <strong>la</strong> presenza di<br />

grani equiassici in tutti i campioni trattati, si nota <strong>la</strong> completa<br />

ricristallizzazione statica ed un aumento del diametro medio<br />

del grano; in partico<strong>la</strong>re si nota una crescita dei grani nei campioni<br />

deformati alle basse velocità ed alle alte temperature,<br />

e a temperature superiori a 450°C siamo in presenza di una<br />

crescita abnorme dei grani nel<strong>la</strong> zona interna del bicchierino<br />

(PCG) (Fig. 3-c). A 350°C il diametro medio del grano va da<br />

155 μm vicino al punzone fino a 220 μm sul fondo del bicchiere<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 35


Alluminio e leghe


Memorie >><br />

s<br />

Fig. 4<br />

Mostra alcune billette estruse a 0.3 mm/s.<br />

the billets extruded at 0.3 mm/s.<br />

del<strong>la</strong> billetta in uscita iniziava immediatamente a raffreddarsi<br />

mentre <strong>la</strong> parte rimasta all’interno del container rimaneva<br />

ancora calda fino al<strong>la</strong> totale estrazione. Vista l’impossibilità di<br />

raffreddare immediatamente <strong>la</strong> billetta dopo l’estrusione si è<br />

tenuto conto durante le successive analisi sia del<strong>la</strong> ricristallizzazione<br />

statica (dovuta al<strong>la</strong> prolungata permanenza a circa<br />

450°C) sia dell’accrescimento del grano. Il carico massimo<br />

raggiunto durante <strong>la</strong> fase di estrusione era di 3MN. Il flusso<br />

del materiale e <strong>la</strong> struttura cristallina sono stati analizzati in<br />

tutte le zone del<strong>la</strong> billetta, poiché l’estrusione è stata fermata al<br />

raggiungimento del 50% dell’altezza del<strong>la</strong> billetta come corsa<br />

del punzone (Fig. 4).<br />

Le billette sono state tagliate lungo un piano di simmetria e<br />

preparate per le macro e micro analisi; come si vede in Fig. 5,<br />

<strong>la</strong> macro struttura dimostra una morfologia diversa dei grani<br />

a seconda <strong>la</strong> posizione in cui si trovano. Sono state individuate<br />

4 zone:<br />

zona I, detta zona morta; in questa zona il materiale non subisce<br />

scorrimento né deformazioni significative all’avanzare del<br />

pistone (esclusa <strong>la</strong> fase iniziale del processo).<br />

La microstruttura nel<strong>la</strong> zona (A1) (Fig.<br />

5), è dominata da grani equiassici con un<br />

diametro medio 110 μm, non si evidenzia<br />

presenza di ricristallizzazione né fenomeni<br />

di accrescimento vista <strong>la</strong> quasi assenza<br />

del<strong>la</strong> deformazione.<br />

Zona II, in cui il materiale subisce un forte<br />

scorrimento; i grani sono sottoposti a<br />

una deformazione di taglio a causa delle<br />

condizioni al contorno. I grani nel<strong>la</strong> zona<br />

(A2) risultano molto deformati ed allungati<br />

lungo le linee di flusso del materiale<br />

ed orientati verso il foro di uscita del<strong>la</strong><br />

matrice, hanno lunghezza media 320 μm<br />

e spessore medio di 54 μm, con un valore<br />

del diametro medio equivalente di circa<br />

120 μm. Non risultano fenomeni significativi<br />

di ricristallizzazione e di crescita dei<br />

grani deformati.<br />

Zona III; al contrario del<strong>la</strong> zona II il ma-<br />

s<br />

Fig. 6<br />

analisi EBSD del<strong>la</strong> zona (A5).<br />

EBSD analysis of (A5) location.<br />

Alluminio e leghe<br />

s<br />

Fig. 5<br />

Macro e micro analisi lungo una sezione del<strong>la</strong><br />

billetta estrusa.<br />

Macro and micro analysis of the extruded rest.<br />

teriale scorre direttamente verso il foro di uscita del<strong>la</strong> matrice,<br />

e i grani vengono semplicemente tras<strong>la</strong>ti fino al foro di uscita;<br />

il materiale in questa zona è soggetto ad elevata pressione<br />

idrostatica ed elevata temperatura, mentre <strong>la</strong> deformazione e<br />

<strong>la</strong> velocità di deformazione aumentano man mano che il materiale<br />

si avvicina al foro di uscita. All’uscita (A5), il materiale<br />

presenta una struttura composta da grani ricristallizzati con<br />

un diametro medio di 50 μm, ma persiste <strong>la</strong> presenza di grani<br />

fortemente allungati di spessore medio pari a circa 100 μm,<br />

come si vede anche in modo chiaro dall’analisi EBSD fatta nel<strong>la</strong><br />

stessa zona (A5), mostrata in Fig. 6.<br />

Infine, nel<strong>la</strong> zona IV (zona di uscita dallo stampo), a causa<br />

dell’influenza dei valori elevatissimi di tutti i parametri del<br />

processo visti finora, <strong>la</strong> struttura si presenta abbastanza complessa;<br />

al centro valgono le condizioni descritte per <strong>la</strong> zona<br />

(A5), mentre vicino al<strong>la</strong> superficie, siamo in presenza di una<br />

corona composta da grani completamente ricristallizzati con<br />

una crescita abnorme (A4) con dei grani che raggiungono i<br />

1300 μm di diametro medio. Questo fenomeno è causato dalle<br />

condizioni estreme di deformazione, velocità di deformazione,<br />

elevato attrito (che causa un aumento del<strong>la</strong> temperatura<br />

nel<strong>la</strong> zona periferica) e di raffreddamento. Lo stesso fenomeno<br />

è stato osservato nelle prove fatte sui bicchierini nel<strong>la</strong> fase pre-<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 37


Alluminio e leghe


Memorie >><br />

simu<strong>la</strong>re un processo reale di estrusione. Dal confronto tra i risultati<br />

sperimentali e quelli delle simu<strong>la</strong>zioni, risulta che i dati<br />

delle simu<strong>la</strong>zioni hanno una buona concordanza con quelli<br />

sperimentali, eccetto che nelle zone periferiche dove appaiono<br />

fenomeni di accrescimento del grano, che dimostrano una<br />

carenza del codice.<br />

RIFERIMENTI BIBLIOGRAFICI<br />

1] T. Sheppard, 2006. Prediction of structure during shaped<br />

extrusion and subsequent static recrystallisation during the<br />

solution soaking operation, Journal of Materials Processing<br />

Technology vol.177, pp. 26–35.<br />

2] A.R. Bandar, S. R. C<strong>la</strong>ves, J. Lu, K. Matous, W. Z. Misiolek,<br />

A. M. Maniatty 2004 “Microstructural Evaluation of 6xxx Aluminum<br />

Alloys for Computer-Simu<strong>la</strong>ted Texture Prediction”,<br />

Aluminum Extrusion Technology Seminar ET 2004, Or<strong>la</strong>ndo,<br />

vol 1, pp169-176.<br />

3] B. Dixon, “Extrusion of 2xxx and 7xxx alloys”, Aluminum<br />

Extrusion Technology Seminar, Chicago,2000, vol1, pp281-<br />

2940.<br />

4] T. Sheppard, “Development of structure recrystallization kinetics<br />

and prediction of recrystallised <strong>la</strong>yer thickness in some<br />

Al-alloys”, Aluminum Extrusion Technology Seminar, Chicago,1996,<br />

vol1, pp163-170.<br />

5] J.M.C. Mol, J. van de Langkruis, J.H.W. de Wit and S. van<br />

der Zwaag “An integrated study on the effect of pre- and<br />

post-extrusion heat treatments and surface treatment on the<br />

filiform corrosion properties of an aluminium extrusion alloy”<br />

Corrosion Science, Volume 47, Issue 11, November 2005, Pages<br />

2711-2730<br />

6] F. J. Humphreys, M. Hatherly “Recrystallization and Re<strong>la</strong>ted<br />

Annealing Phenomena” Pergamon Press Inc, Oxford, 1995<br />

ISBN 978-0080418841<br />

ANALYSIS OF THE MICROSTRUCTURAL EVOLUTION<br />

DURING HOT EXTRUSION OF AA6060 BY MEANS<br />

OF FEM SIMULATION<br />

Keywords: FEM, recrystallization, extrusion, aluminium<br />

alloy<br />

In this work an experimental methodology to evaluate the prediction of<br />

recrystallized structures in aluminum extrusion was presented and validated.<br />

In the first part of the work an experimental procedure to investigate<br />

the evolution of recrystallization in aluminum alloys is presented<br />

and discussed. Several cups, obtained by means of inverse extrusion, were<br />

produced at different temperatures and process speeds. The specimens<br />

were analyzed in order to examine the grain size distribution. The coefficients<br />

for dynamic recrystallization models were obtained by regression<br />

ABSTRACT<br />

Alluminio e leghe<br />

7] Gourdet, S. Montheillet, F. “Experimental study of the recrystallization<br />

mechanism during hot deformation of aluminium”<br />

Materials Science and Engineering A: Structural Materials:<br />

Properties, Microstructure and Processing, v 283, n 1-2,<br />

May, 2000, p 274-288<br />

8] J. G. Byrne, Recovery, Recrystallization, and Grain Growth,<br />

(New York: MacMillman, 1965), 93-109.<br />

9] R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D.<br />

Juul Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. Mc-<br />

Queen and A. D. Rollett “Current issues in recrystallization:<br />

a review” Materials Science and Engineering A, Volume 238,<br />

Issue 2, 15 November 1997, Pages 219-274<br />

10] T. Pettersen, B. Holmedal, E. Nes, “Microstructure development<br />

during hot deformation of aluminum to <strong>la</strong>rge strains”<br />

Metallurgical and Materials Transactions A: Physical Metallurgy<br />

and Materials Science, v 34, n 12, December, 2003, p 2737-<br />

2744<br />

11] J. Fluhrer, “DEFORMTM 3D User’s Manual Version 6.0”<br />

Scientific Forming Technologies Corporation, 2006<br />

12] G. Shen, S.L Semiatin, and R. Shivpuri, “Modeling Microstructure<br />

Development during the Forging of Waspaloy”,<br />

Metallurgical and Materials Transactions A, 26A (1995), 1795-<br />

1803.<br />

13] L. Donati, J. Dzwonczyk, J. Zhou, L. Tomesani “Microstructure<br />

prediction of hot-deformed aluminum alloys” accepted<br />

for publication on Key Engineering Materials (Proceedings of<br />

Extrusion Workshop and Benchmark 2007), Trans Tech (2007);<br />

14] T. Sheppard, Metallurgical Aspects of Direct and Indirect<br />

Extrusion, Proc. of the 4th Aluminum Extrusion Technology<br />

Seminar, (1984), 107-124<br />

15] M. Schikorra, L. Donati, L. Tomesani, M. Kleiner “The role<br />

of friction in the extrusion of AA6060 aluminum alloy, process<br />

analysis and monitoring”, Journal of Materials Processing<br />

Technology, 191 (2007) pp. 288–292.<br />

analysis after thermo-mechanical FEM simu<strong>la</strong>tions of the experiments<br />

realized with the code Deform 3D. A complete set of coefficients was regressed<br />

for the avai<strong>la</strong>ble microstructure evolution models inside the code<br />

environment. The specimens were then heated in a furnace and cooled<br />

in order to reproduce static recrystallization of the material. The grain<br />

distribution was examined and the coefficients for the equation for static<br />

recrystallization prediction were regressed, too. In the second part of the<br />

work the extrusion of a round-shaped profile is described and the grain<br />

size distribution on the profile and on the billet rest is analyzed. The obtained<br />

models were applied to the real extrusion of a round profile and a<br />

comparison between experimental measurements and simu<strong>la</strong>tion results<br />

was performed. The simu<strong>la</strong>ted results were in very good agreement with<br />

experimental data, except in zones where peripheral coarse grain and<br />

grain growth appeared. Here, a further investigation effort and specific<br />

modeling equations are required.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 39


Memorie >><br />

Acciaio<br />

PRECIPITATION STRENGTHENING<br />

PRODUCED BY THE FORMATION<br />

IN FERRITE OF Nb CARBIDES<br />

M. A. Altuna, A. Iza-Mendia, I. Gutierrez<br />

A Nb microalloyed steel has been thermomechanically processed at <strong>la</strong>boratory through the use of p<strong>la</strong>ne strain<br />

compression sequences followed by simu<strong>la</strong>ted coiling. Tensile samples have been machined from the obtained<br />

specimens in order to investigate the effect of different variables: recrystallisation or accumu<strong>la</strong>ted strain before<br />

transformation, holding in austenite and coiling temperature on the final mechanical behaviour. Transmission<br />

electron microscopy observation of the precipitates has been carried out after coiling at different temperatures.<br />

It has been shown that when Nb remains in solution in austenite after hot deformation, it can precipitate in<br />

ferrite, leading to an important strengthening effect which is directly re<strong>la</strong>ted to the concentration of Nb in<br />

solution before transformation and coiling temperature.<br />

KEYWORDS: thermomechanical processing, niobium, coiling, precipitation strengthening, ferrite, microstructure,<br />

tensile<br />

INTRODUCTION<br />

Niobium de<strong>la</strong>ys austenite recrystallization during hot rolling<br />

interpass times due to solute drag when being in solution and<br />

also as a consequence of carbonitride strain induced precipitation<br />

[1,2,3]. These two phenomena result in a final ferrite<br />

grain refinement [4,5,6,7]. Precipitates formed in austenite<br />

are subjected to a re<strong>la</strong>tively fast coarsening and lose part of<br />

their potential efficiency as ferrite strengtheners. Precipitation<br />

of Nb in ferrite is expected to be significantly finer and<br />

contribute to increase the tensile properties. Although extensive<br />

investigations have been carried out to characterize Nb<br />

(C,N) precipitation in austenite, there are fewer studies concerning<br />

precipitation of NbC in ferrite. Additionally, there are<br />

some controversial results, depending on the source. Some<br />

authors c<strong>la</strong>im that when some Nb is left in solution after hot<br />

working, precipitation can take p<strong>la</strong>ce during the coiling [8,9],<br />

while others consider that homogeneous precipitation of<br />

NbC is suppressed below about 700ºC [10,11] and that there<br />

is no precipitation of Nb during coiling [12,13].<br />

The purpose of this investigation was to study the eventual<br />

precipitation of Nb in ferrite during coiling and in the case of<br />

precipitation to estimate its contribution to the strength.<br />

EXPERIMENTAL<br />

An industrial Nb-steel [14] with composition: 0.06C - 0.35Si<br />

M. A. Altuna, A. Iza-Mendia, I. Gutierrez<br />

CEIT and TECNUN (Univ. Navarra), Donostia-San Sebastián, Spain<br />

Paper presented at the 3rd International Conference<br />

Thermomechanical Processing of Steels, organised by AIM; Padova,<br />

10-12 September 2008<br />

- 1Mn - 0.05Al - 0.0056N - 0.056Nb - 0.002Ti (wt-%) has been<br />

the base for the present work. Multipass thermomechanical<br />

p<strong>la</strong>ne strain compression tests were performed after reheating<br />

the specimens at 1250ºC for 15 minutes in order to assure<br />

the total dissolution of Nb, followed by fast cooling to<br />

the deformation temperature.<br />

Two different deformation sequences were applied in order<br />

to condition the austenite. The thermal cycle of the former<br />

sequence is shown schematically in Fig. 1. One deformation<br />

pass was applied at 1100ºC at a strain rate of 1 s -1 and<br />

a strain ε=0.3, followed by holding time at the same temperature<br />

during 20s in order to ensure the recrystallization<br />

s<br />

Fig. 1<br />

Example of the thermal cycle applied for onepass<br />

deformation sequence plus coiling.<br />

Esempio di ciclo termico, per sequenza di deformazione a<br />

passaggio singolo seguito da avvolgimento.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 41


Acciaio


Memorie >><br />

s<br />

Fig. 4<br />

Ferrite-pearlite microstructures obtained after<br />

two-pass deformation sequence and coiling at different<br />

temperatures. The microstructure of the reference<br />

test (1h at 870ºC) is also shown for comparison.<br />

Microstrutture di ferrite – perlite ottenute dopo una<br />

sequenza di deformazione a due passaggi e avvolgimento<br />

a diverse temperature. A fini comparativi viene mostrata<br />

anche <strong>la</strong> microstruttura delle prove di riferimento (1h a<br />

870ºC).<br />

650ºC, leading to some polygonal ferrite being formed at prior<br />

austenite grain boundaries.<br />

Subsequent fast cooling to 500ºC and simu<strong>la</strong>ted coiling at this<br />

temperature leads to some acicu<strong>la</strong>r ferrite and finally pearlite<br />

produces from the carbon enriched austenite.<br />

The microstructures obtained at different coiling temperatures<br />

after a two-pass deformation sequence, are shown in Fig. 4.<br />

Ferrite-pearlite microstructures are obtained at coiling temperatures<br />

between 750 and 600ºC. As can clearly be seen, the application<br />

of the second deformation pass produces a significant<br />

refinement of the final microstructure which can be attributed<br />

to the accumu<strong>la</strong>ted strain in austenite before transformation.<br />

The volume fraction of ferrite and mean linear intercept are<br />

shown in Tab. 1 for the different tests. Pearlite is in the range<br />

3-7% whereas ferrite grain size varies with the applied conditions.<br />

Decreasing the coiling temperatures produces some<br />

grain refinement for the one-pass deformation sequence, passing<br />

from 33 μm when coiling is performed at 750ºC to 23 μm<br />

at 600ºC. The effect of the coiling temperature on the ferrite<br />

grain size when applying a two pass deformation sequence is<br />

negligible leading to a value around 14 μm.<br />

Holding the specimen during 1h at 870ºC has a small effect on<br />

the ferrite grain size after one-pass deformation sequence, but<br />

gives higher grain sizes after two-pass.<br />

Tensile data have been plotted in Fig. 5 as a function of coiling<br />

temperature for the two deformation sequences. The reference<br />

tests have been identified by R. It is evident that the<br />

decrease of the coiling temperature has a strengthening effect,<br />

excepting for the case in which a 1h holding at 870ºC was applied<br />

before cooling to the coiling temperature. The difference<br />

in yield stress between the two materials coiled at 650ºC with<br />

Acciaio<br />

s<br />

Fig. 5<br />

Mechanical behaviour, as a function of the<br />

coiling temperature. R= reference test (1h at 870ºC):<br />

a) 1 deformation pass and b) two deformation pass<br />

sequences.<br />

Comportamento meccanico, in funzione del<strong>la</strong><br />

temperatura di avvolgimento. R = prova di riferimento<br />

(1h a 870ºC): a) un passaggio di deformazione e b) due<br />

passaggi di deformazione.<br />

s<br />

Fig. 6<br />

Model predictions [15] for the precipitation of<br />

Nb in austenite at 870ºC considering precipitation on a<br />

recrystallized austenite or strain induced precipitation.<br />

Previsioni da modello [15] per <strong>la</strong> precipitazione di Nb<br />

in austenite a 870°C considerando <strong>la</strong> precipitazione<br />

su austenite ricristallizzata o precipitazione indotta da<br />

deformazione.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 43


Acciaio


Memorie >><br />

s<br />

Fig. 10<br />

TEM image of a thin foil showing fine<br />

precipitates homogeneously distributed in ferrite.<br />

1-pass sequence and coiling at 600ºC.<br />

Immagine TEM di una <strong>la</strong>mina sottile che mostra<br />

precipitati fini distribuiti omogeneamente nel<strong>la</strong> ferrite.<br />

Sequenza di deformazione a passaggio singolo,<br />

permanenza 1h a 870ºC e raffreddamento a 650ºC.<br />

temperature goes in agreement with the observed increase of<br />

the density of fine precipitates in ferrite. The size of the precipitates<br />

has been determined from TEM images obtained on<br />

thin foils. The particle size distributions for different processing<br />

conditions are shown in Fig. 11. Only particles with sizes<br />

lower than 20 nm have been taken into consideration for this<br />

quantification.<br />

The finest precipitation has been observed in the sample<br />

coiled at 750ºC, leading to a mean value of 6 nm, with about<br />

40% of the precipitates with sizes in the range 4-6 nm. The<br />

coarsest particles are observed in the specimen held during<br />

1h at 870ºC and coiled at 650ºC. In this case, the mean particle<br />

size is around 10nm. In the specimen coiled at 600ºC,<br />

around the 55% of the precipitates have sizes between 6 and<br />

8 nm, but an important fraction of particles are over this<br />

range. The result is a mean precipitate size of about 9 nm. It<br />

has to be mentioned that was not always possible to obtain<br />

a dark field image of the precipitates because quite often the<br />

contribution of the precipitates to the diffraction pattern was<br />

quite weak. As a consequence, the obtained particle sizes are<br />

probably slightly overestimated.<br />

Nb microalloying is generally used to condition the austenite<br />

by thermomechanical processing and obtain fine ferrite<br />

grain sizes leading to improved mechanical properties. In<br />

addition to this, it is generally accepted that Nb in solution<br />

in austenite leads to some strengthening of the final microstructure<br />

that cannot be attributed to the ferrite grain size<br />

refinement. However, there is some controversy when trying<br />

to exp<strong>la</strong>in the metallurgical mechanism which is responsible<br />

of this strengthening. Some authors attribute it to a high dislocation<br />

density at the interior of the non-polygonal ferrite<br />

grains usually observed in Nb containing steels, while others<br />

attribute it to precipitation.<br />

In the present case, the ferrite microstructure is re<strong>la</strong>tively<br />

coarse because the deformation sequences were designed<br />

aiming to investigate the eventual precipitation of Nb in ferrite<br />

over reaching austenite refinement. Some ferrite grains<br />

Acciaio<br />

s<br />

Fig. 11<br />

Particle size distributions obtained by TEM<br />

after one-pass deformation sequence a) 1h at<br />

870ºC+coiling at 650ºC, b) coiling at 750ºC and c)<br />

coiling at 600ºC. Only particles with sizes lower than<br />

20 nm have been considered.<br />

Distribuzioni del<strong>la</strong> dimensione delle particelle ottenute<br />

mediante TEM dopo sequenza di deformazione a<br />

passaggio singolo a) 1h a 870ºC + raffreddamento a<br />

650ºC, b) avvolgimento a 750°C e c) avvolgimento a<br />

600°C. Sono state considerate solo le particelle con<br />

dimensioni inferiori a 20 nm.<br />

present irregu<strong>la</strong>r shapes while others are polygonal. This is<br />

true for all the processing conditions, including the one in<br />

which the holding in austenite before coiling has produced<br />

an important precipitation before transformation. This indicates<br />

that even a low fraction of Nb in solution is able to<br />

produce non-polygonal grains.<br />

TEM observations do not indicate the presence of a high volume<br />

fraction of dislocations, but clearly demonstrate precipi-<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 45<br />

a<br />

b<br />

c


Acciaio


Memorie >><br />

AKCNOWLEDGEMENTS<br />

This work has been carried out with a financial grant from<br />

the Research Fund for Coal and Steel of the European Community<br />

and from the Programa de Acciones Complementarias<br />

CICYT MAT2004-0048-E, Ministerio de Educación y<br />

Ciencia, Spain. The authors would like to acknowledge L.<br />

Mujica, S. Martin for performing Thermomechanical testing<br />

and to C. Iparraguirre for her contribution to TEM work.<br />

REFERENCES<br />

1] B. DUTTA, C. M. SELLARS, Materials Science and Technology,<br />

3, (1987), p. 197.<br />

2] W. J. LIU, J. J. JONAS, Metallurgical Transactions A, 20A,<br />

(1989), p. 689.<br />

3] R. ABAD, A. I. FERNANDEZ, B. LOPEZ, J. M. RODRIGU-<br />

EZ-IBABE, ISIJ International, 41, (2001), p. 1373.<br />

4] E. J. PALMIERE, C. I. GARCIA, A. J. DEARDO, Metallurgical<br />

and Materials Transactions A, 27A, (1996), p. 951.<br />

5] O. KWON, A. J. DEARDO, Acta Metallurgica et Materialia,<br />

39, (1991), p. 529.<br />

6] Q. B. YU, Z. D. WANG, X. H. LIU, G. D. WANG, Materials<br />

Science and Engineering A, 379A, (2004), p. 384.<br />

7] S. YAMAMOTO, C. OUCHI, T. OSUKA, “Thermomechanical<br />

processing of microalloyed austenite”, Ed. A.J. DeArdo,<br />

G.A. Ratz, P.J. Wray, The Metallurgical Society of AIME,<br />

Warrendale, PA, (1982), p. 613.<br />

8] R. D. K. MISRA, H. NATHANI, J. E. HARTMANN, F. SICILI-<br />

ANO, Materials Science and Engineering A, 394A, (2005), p. 339.<br />

MIGLIORAMENTO DELLE CARATTERISTICHE<br />

MECCANICHE MEDIANTE PRECIPITAZIONE<br />

PRODOTTO DALLA FORMAZIONE DI CARBURI DI Nb<br />

NELLA FERRITE<br />

Parole chiave: acciaio, processi, precipitazione<br />

Un acciaio microlegato al Nb è stato trasformato termomeccanicamente<br />

in <strong>la</strong>boratorio attraverso sequenze di compressione p<strong>la</strong>nare seguite<br />

da avvolgimento simu<strong>la</strong>to. Da questo materiale sono stati ricavati<br />

provini di trazione mediante <strong>la</strong>vorazione dei pezzi ottenuti, al fine di<br />

ABSTRACT<br />

Acciaio<br />

9] S. SHANMUGAM, N. K. RAMISETTI, R. D. K. MISRA,<br />

T. MANNERING, D. PANDA, S. JANSTO, Materials Science<br />

and Engineering A, 460A, (2007), p. 335.<br />

10] A. J. DEARDO, International Materials Reviews, 48,<br />

(2003), p. 371.<br />

11] T. SAKUMA, R. W. K. HONEYCOMBE, Metal Science,<br />

18, (1984), p. 449.<br />

12] V. THILLOU, M. HUA, C. I. GARCIA, C. PERDRIX, A. J.<br />

DEARDO, Materials Science Forum, 284-286, (1998), p. 311.<br />

13] H. J. KESTENBACH, S. S. CAMPOS, J. GALLEGO, E.<br />

V. MORALES, Metallurgical and Materials Transactions A,<br />

34A, (2003), p. 1013.<br />

14] I. GUTIERREZ, M. A. ALTUNA, G. PAUL, S.V. PARK-<br />

ER, J. H. BIANCHI, P. VESCOVO, C. MESPLONT, M. WO-<br />

JCICKI, R. KAWALLA ‘ Mechanical Property Models for<br />

high strength complex microstructures (MEPMO), RFCS<br />

project, contract number: RFS-CR-03009. Draft final report,<br />

march (2007).<br />

15] B. López, MOFIPRE model, CEIT internal Report,<br />

(2007).<br />

16] F.B. PICKERING, Materials Science and Engineering, Ed.<br />

R.W. Cahn, P. Haasen, E.J. Kramer, Vol. 7, Constitution and<br />

Properties of Steels, Ed. F.B. Pickering, VCH, (1993), p. 47.<br />

17] E. OROWAN, “Internal stresses in metals and alloys”,<br />

Ed. The Institute of Metals, (1948), London, p. 451.<br />

18] M. F. ASHBY, Acta Metallurgica, 14, (1966), p. 679.<br />

19] T. GLADMAN, “The Physical Metallurgy of Microalloyed<br />

Steels”, Ed. The Institute of Materials, (1997), London.<br />

20] P. BUESSLER, P. MAUGIS, O. BOUAZIZ, J.-H. SCHMITT,<br />

Iron and Steelmaker, 30, (2003), p. 33.<br />

studiare l’effetto delle diverse variabili sul comportamento meccanico<br />

finale:<br />

ricristal<strong>la</strong>zione o tensioni accumu<strong>la</strong>te prima del<strong>la</strong> trasformazione,<br />

permanenza in campo austenitico e a temperatura di avvolgimento.<br />

Dopo l’avvolgimento a differenti temperature è stata effettuata l’osservazione<br />

dei precipitati al microscopio elettronico a trasmissione.<br />

È stato dimostrato che, quando il Nb rimane in soluzione nell’ austenite<br />

dopo deformazione a caldo, può precipitare nel<strong>la</strong> ferrite, portando ad<br />

un importante effetto di miglioramento delle caratteristiche meccaniche<br />

che è direttamente collegato al<strong>la</strong> concentrazione di Nb in soluzione<br />

prima del<strong>la</strong> trasformazione e del<strong>la</strong> temperatura di avvolgimento.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 47


Memorie >><br />

Acciaio<br />

EFFECT OF PRE-STRAINING AND<br />

BAKE HARDENING<br />

ON THE MICROSTRUCTURE<br />

AND MECHANICAL PROPERTIES<br />

OF CMnSi TRIP STEELS<br />

L.C. Zhang, I.B. Timokhina, A. La Fontaine, S.P. Ringer, P.D. Hodgson, E.V. Pereloma<br />

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were<br />

studied in two CMnSi TRansformation-Induced P<strong>la</strong>sticity (TRIP) steels with different microstructures after<br />

intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised<br />

by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe<br />

and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength<br />

increase with some reduction in ductility after pre-straining and bake hardening treatment. The<br />

following main microstructural changes are responsible for the observed mechanical behaviours: a decrease<br />

in the volume fraction of retained austenite, an increase in the dislocation density and the formation of<br />

cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite<br />

regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and<br />

martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was<br />

analysed.<br />

KEYWORDS: transformation-induced p<strong>la</strong>sticity steel, retained austenite, bake hardening, mechanical behaviour,<br />

microstructure, three-dimensional atom probe<br />

INTRODUCTION<br />

In order to reduce weight and save energy, there has been<br />

an increasing interest in application of high strength<br />

steels for car structural components. As one of the<br />

advanced high strength steels, transformation-induced<br />

p<strong>la</strong>sticity (TRIP) steels have attracted the attention of both<br />

the steelmaking and automotive industries over the <strong>la</strong>st<br />

L.C. Zhang, E.V. Pereloma<br />

School of Mechanical, Materials and Mechatronics Engineering,<br />

Faculty of Engineering, University of Wollongong, Wollongong,<br />

NSW 2522, Australia<br />

I.B. Timokhina, P.D. Hodgson<br />

Centre for Material and Fibre Innovation, Faculty of Science and<br />

Technology, Deakin University, Geelong, Victoria 3217, Australia<br />

A. La Fontaine, S.P. Ringer<br />

Australian Key Centre for Microscopy & Microanalysis, The<br />

University of Sydney, NSW 2006, Australia<br />

Paper presented at the 3rd International Conference<br />

Thermomechanical Processing of Steels, organised by AIM, Padova,<br />

10-12 september 2008<br />

two decades. TRIP steels consisting of a complex<br />

multiphase microstructure (polygonal ferrite, carbide-free<br />

bainite, retained austenite and martensite) offer an excellent<br />

combination of strength (700–1000 MPa) and ductility<br />

(30–40% total elongation) [1]. The interaction of the multiple<br />

phases present in the microstructure during deformation<br />

and the strain-induced transformation of the metastable<br />

retained austenite to martensite [2,3] are thought to<br />

be responsible for these mechanical properties. At present,<br />

several studies have been undertaken to investigate the<br />

effect of the chemical composition and processing parameters<br />

of TRIP steel sheets [2,4,5], because these are the two<br />

main factors that can affect the volume fraction and stability<br />

of the retained austenite in TRIP steels.<br />

On the contrary, little work has been conducted on the<br />

variations of the mechanical properties and microstructures<br />

during the paint baking of deformed panel parts<br />

of TRIP steel sheets. When the steels are used for outer<br />

body parts and subjected to the paint baking cycle, additional<br />

strengthening of approximately 100–200 MPa<br />

arises from bake hardening and results in good shape<br />

fix-ability and improved dent and crash resistance [6].<br />

Recently, research on bake hardening of intercritically an-<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 49


Acciaio


RESULTS<br />

Memorie >><br />

A. Mechanical properties<br />

The mechanical properties of the steels in both as-received<br />

and PS/BH state are given in Fig. 1 and Tab. 2. Both steels<br />

exhibited a good combination of strength and ductility<br />

in the as-received condition with higher values of<br />

strength and ductility for TRIP01 steel compared with the<br />

TRIP02 (Tab. 2). In this state both steels showed a continuous<br />

yielding behaviour (Fig. 1). A continuous exponential<br />

decrease was distinct in the strain-hardening rate curves<br />

for both steels (Figs. 2 (a) and (b)). After the PS/BH treatment,<br />

both steels demonstrated a yield-point phenomenon<br />

on the stress-strain curves. After yield point elongation, the<br />

Acciaio<br />

Steel Conditions UTS (MPa) YS (MPa) Total El (%) Uniform El (%) BH response (MPa)<br />

TRIP01 as-received 880 ± 15 608 ± 20 40 ± 2<br />

30 ± 2<br />

N/A<br />

4 % P S / B H 891 ± 15 803 ± 20 29 ± 2<br />

21 ± 2<br />

82 ± 2<br />

TRIP02 as-received 795 ± 10 520 ± 10 31 ± 2<br />

27 ± 3<br />

N/A<br />

5 % P S / B H 810 ± 8 735 ± 5 27 ± 2<br />

21 ± 3<br />

60 ± 3<br />

UTS: ultimate tensile strength, YS: yield strength, Total El: total elongation, Uniform El: uniform elongation, BH response:<br />

bake hardening response.<br />

s<br />

Tab. 2<br />

Mechanical properties of the investigated TRIP steels after different processing.<br />

Proprietà meccaniche degli acciai TRIP investigati dopo i diversi processi.<br />

s<br />

Fig. 2<br />

Variations of the strain hardening rate with the<br />

true strain of the (a) TRIP01 and (b) TRIP02 steels.<br />

Variazioni del<strong>la</strong> velocità di incrudimento con <strong>la</strong> sollecitazione<br />

negli acciai (a) TRIP01 e (b) TRIP02.<br />

s<br />

Fig. 3<br />

Optical micrographs of the (a) TRIP01 and (b)<br />

TRIP02 steels after PS/BH treatment.<br />

Micrografie ottiche degli acciai (a) TRIP01 e (b) TRIP02<br />

dopo trattamento di PS/BH.<br />

flow stress started to increase until necking occurred.<br />

The strain-hardening rate curve of the TRIP02 steel<br />

after PS/BH treatment still showed a continuous exponential<br />

decrease (Fig. 2(b)). On the contrary, the<br />

strain-hardening rate of the TRIP01 steel after PS/BH<br />

treatment decreased sharply to negative values and<br />

then started to increase at around 6.5% true strain (Fig.<br />

2(a)). As seen from Tab. 2, the PS/BH treatment led to a significantly<br />

higher yield strength (~200 MPa) and a slightly<br />

higher ultimate tensile strength (~15 MPa) in both steels.<br />

However, the total elongation decreased by ~11% and ~4%<br />

for the TRIP01 and the TRIP02 steels, respectively, and the<br />

uniform elongations reduced by ~9% for TRIP01 and ~6%<br />

for the TRIP02. Both TRIP steels disp<strong>la</strong>yed a noticeable<br />

bake-hardening response (~82 and ~60 MPa for the<br />

TRIP01 and the TRIP02, respectively).<br />

B. Microstructural features<br />

Optical micrographs revealed that both TRIP steels showed<br />

a complex multiphase microstructure (Fig. 3). In the as-received<br />

condition, the microstructure of the TRIP01 steel consisted<br />

of ~ 30 ± 3% polygonal ferrite (PF), ~56 ± 3% bainite,<br />

~10 ± 3% retained austenite (RA) with an average carbon<br />

content of 1.21 ± 0.04 wt.% and the remaining of martensite.<br />

The polygonal ferrite grain size was 3 ± 1.5 μm. The TRIP02<br />

steel contained ~70 ± 3% polygonal ferrite and ~20 ± 3% retained<br />

austenite with an average carbon content of 1.20 ±<br />

0.05 wt.%. The remaining small volume fraction contained<br />

martensite and bainite. The average size of polygonal ferrite<br />

grains was 4 ± 1.5 μm. The volume fraction of retained<br />

austenite decreased from ~10% in as-received condition<br />

to ~8% in PS/BH state for the TRIP01 and from ~20%<br />

in the as-received condition to ~12% in the PS/BH state<br />

for the TRIP02 steel. In addition, the PS/BH treatment led to<br />

an increase in carbon content of retained austenite to 1.28 ±<br />

0.04 wt.% (TRIP01) and 1.30 ± 0.03 wt.% (TRIP02). It is noted<br />

that bainitic ferrite grains in the TRIP02 were predominantly<br />

long and parallel <strong>la</strong>ths while those in the TRIP01 steel had<br />

random orientation.<br />

Fig. 4 illustrated a more detailed microstructure of the<br />

steels after different processing. The microstructure in the<br />

as-received state was composed of polygonal ferrite, carbide-free<br />

bainite, retained austenite and martensite (Figs.<br />

4 (a) and (b)). After the PS/BH treatment, a lot of dislocations<br />

were observed in the polygonal ferrite, as seen<br />

from Figs. 4 (c) and (d). The most affected regions of<br />

PF grains were in the vicinity of martensite or retained<br />

austenite crystals, as denoted by the b<strong>la</strong>ck arrows. At the<br />

same time, the formation of dislocation cells in the polygo-<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 51


Acciaio


Steel<br />

TRIP01<br />

TRIP02<br />

Memorie >><br />

Phase<br />

Polygonal ferrite<br />

Bainitic ferrite after PS/BH<br />

Martensite<br />

Polygonal ferrite<br />

Retained austenite<br />

Bainite Bainitic ferrite<br />

Retained austenite<br />

of both steels was detected: (i) carbon-depleted region with<br />

an average carbon content of between 0.003 at.% and 0.02<br />

at.% (Figs. 6 and 7), (ii) a carbon-enriched region with average<br />

carbon content of between 3 at.% and 5.5 at.% (Fig. 7),<br />

and (iii) a volume or region, which can be described as a<br />

mixture of carbon-enriched (5.10 ± 0.20 at.%) and carbondepleted<br />

(0.20 ± 0.03 at.%) regions (Fig. 7). A summary<br />

of their major elemental concentrations is given in Tab.<br />

3. Therefore, from this the first region was polygonal<br />

Concentration<br />

C<br />

< 0.003<br />

0.11±0.01<br />

3.22±0.01<br />

0.02±0.01<br />

4.60±0.02<br />

0.20±0.03<br />

5.10±0.20<br />

Acciaio<br />

s<br />

Tab. 3<br />

Concentrations of the major alloying elements (at.%) in the phases of as-received steels, except where indicated<br />

otherwise, determined using APT and calcu<strong>la</strong>ted based on the number of atoms.<br />

Concentrazioni dei maggiori elementi alliganti (at.%) nelle fasi degli acciai come ricevuti, ad eccezione di dove diversamente indicato,<br />

determinati utilizzando APT e calco<strong>la</strong>ti sul<strong>la</strong> base del numero di atomi.<br />

s<br />

Fig. 7<br />

(a) Carbon atom map of as-received<br />

TRIP02 sample showing bainitic ferrite and<br />

retained austenite and (b) C, Mn and Si compositional<br />

profiles across along green (nearly horizontal) line of<br />

selected box shown in (a).<br />

Mappa dell’atomo di carbonio del campione di acciaio<br />

TRIP02 come ricevuto che mostra ferrite bainitica e<br />

austenite residua e (b) profili di composizione di C, Mn<br />

e Si lungo <strong>la</strong> linea verde (quasi orizzontale) del riquadro<br />

selezionato mostrato in (a).<br />

ferrite, the second retained austenite or martensite, and<br />

the third region was bainite, where the carbon-rich region<br />

was retained austenite/martensite and the carbondepleted<br />

region was bainitic ferrite. In both steels the<br />

Si content of polygonal ferrite was higher than the<br />

nominal Si content while the Mn content was lower (Tab.<br />

3). In addition, small iron carbide particles appeared in<br />

the as-received TRIP01 steel (Fig. 6). As shown in the APT<br />

map of the as-received TRIP02 steel (Fig. 7), the retained<br />

austenite crystals may appear in bainite, which had<br />

a p<strong>la</strong>te-like shape with a thickness of 16 ± 2 nm (Fig. 7)<br />

and contained a high carbon content (Tab. 3). The bainitic<br />

ferrite was characterised by a significantly higher carbon<br />

content (~0.2 at.%), lower Si content (~2.8 at.%) and higher<br />

Mn level (~1.5 at.%) than polygonal ferrite (Tab. 3). The bainitic<br />

ferrite in the TRIP01 steel after PS/BH treatment had<br />

higher than expected Si content (Tab. 3). This might be associated<br />

with the decomposition of bainitic ferrite during<br />

bake hardening resulting in the formation of iron carbides<br />

and rejection of Si back into the BF matrix (Fig. 8).<br />

After the PS/BH treatment, the formation of Cottrell atmospheres<br />

at dislocations in the polygonal ferrite and bainitic<br />

ferrite was evident from the atom probe maps (Figs. 8). The<br />

rod-like shape of carbon segregation to dislocations is clear<br />

from two atom maps taken in perpendicu<strong>la</strong>r directions<br />

(Figs. 8 (b) and (c)). It is also clear from Fig. 8 (a) that C segregation<br />

was non-uniform along the dislocations forming<br />

a complex tangle, with the formation of iron carbides at<br />

dislocation intersections. The carbon concentration in the<br />

core of the atmosphere reached up to ~7 at.%. At the same<br />

time, concentration profiles across the coarsest carbides<br />

revealed a carbon content at the centre of ~21 at.% which<br />

is close to the level in Fe 3 C. Carbon segregations to the<br />

particu<strong>la</strong>r p<strong>la</strong>ne in the coarse retained austenite crystals<br />

were observed in the TRIP02 after PS/BH (Fig. 9 (a)).<br />

The angle between the saturated p<strong>la</strong>nes was ±35°. The<br />

compositional profiles across these p<strong>la</strong>nes showed the<br />

carbon enrichment to 7±0.08 at.%, while Si and Mn concentrations<br />

were simi<strong>la</strong>r to the matrix composition (Fig. 9 (b)).<br />

DISCUSSION<br />

Si<br />

4.02±0.01<br />

3.30±0.1<br />

3.61±0.01<br />

3.90±0.03<br />

3.90±0.05<br />

2.80±0.02<br />

4.40±0.05<br />

Both steels showed continuous yielding in the as-received<br />

condition, while they exhibited a yield-point phenomenon<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 53<br />

Mn<br />

1.26±0.01<br />

1.44±0.04<br />

2.28±0.01<br />

0.90±0.03<br />

1.02±0.03<br />

1.50±0.02<br />

1.20±0.03


Acciaio


Memorie >><br />

phenomenon in TRIP02 is associated with the increase of<br />

the number of mobile dislocations due to the generation of<br />

the new ones. This difference in steels behaviour is due to<br />

the main microstructural difference of both steels. As seen<br />

from Fig. 3, there was about 70% polygonal ferrite in the<br />

TRIP02, in which numerous new dislocations easily formed<br />

during pre-straining, as well as during tensile testing<br />

of pre-strained and bake-hardened samples. There was<br />

much less polygonal ferrite (~30%) and much more bainite<br />

(~56%) in TRIP01, which was not as susceptible to prestraining<br />

as PF and in which the formation of Cottrell<br />

atmospheres took p<strong>la</strong>ce [4].<br />

CONCLUSIONS<br />

A pre-straining and bake hardening treatment led to a significant<br />

strength increase in CMnSi TRIP steels with some<br />

reduction in ductility. The observed effects of pre-straining<br />

and bake hardening on the mechanical behaviour of the<br />

steels were associated with the main changes in<br />

their microstructure: microstructural changes in polygonal<br />

ferrite, such as an increase in the dislocation density and<br />

the formation of cell substructure, a localized increase of<br />

the dislocation density in the polygonal ferrite regions adjacent<br />

to martensite and the formation of fine precipitation<br />

in bainite and martensite. It was concluded that the<br />

observed yield point phenomenon was due to dislocation<br />

unlocking in the TRIP01 steel, which contained bainite as a<br />

dominant phase. Contrarily, formation of new mobile dislocations<br />

was the reason for the yield drop in TRIP02 steel,<br />

in which polygonal ferrite was a major phase.<br />

ACKNOWLEDGEMENT<br />

The authors would like to acknowledge the support<br />

of the Ford Motor Company and Australian Research<br />

EFFETTO DI PRE-TENSIONAMENTO E BAKE-<br />

HARDENING SULLA microstruttura E SULLE<br />

PROPRIETA’ MECCANICHE E DI UN ACCIAIO TRIP<br />

CMnSi<br />

Parole chiave: acciaio, deformazioni p<strong>la</strong>stiche, proprietà<br />

Nel <strong>la</strong>voro sono stati studiati gli effetti di pre-tensionamento e bake<br />

hardening sul comportamento meccanico e sui cambiamenti microstrutturali<br />

in due acciai CMnSi TRIP (TRansformation-Induced P<strong>la</strong>sticity)<br />

con diverse microstrutture dopo ricottura intercritica. L’acciaio TRIP,<br />

prima e dopo i processi di pre-tensionamento e bake-hardening, sono<br />

stati caratterizzati mediante diffrazione a raggi X, microscopia ottica,<br />

microscopia elettronica a trasmissione, sonda atomica tridimensionale e<br />

Acciaio<br />

Council (ARC) Linkage scheme. We also acknowledge the<br />

technical assistance from the AMMNF.<br />

REFERENCES<br />

ABSTRACT<br />

1] Y. SAKUMA, O. MATSUMURA and H. TAKECHI, Metall.<br />

Mater. Trans. A 22 (1991), p.489.<br />

2] P.J. JACQUES, J. LADRIÈRE and F. DELANNY, Metall.<br />

Mater. Trans. A, 32 (2001), p.2759.<br />

3] V.F. ZACKAY, E.R. PARKER, D. FAHR and R. BUSH,<br />

Trans. ASM, 60 (1967), p.252.<br />

4] B.C. DE COOMAN, Curr. Opin. Solid State Mater. Sci. 8<br />

(2004), p.285.<br />

5] D.V. EDMONDS, K. HE, F.C. RIZZO, B.C. DE COOMAN,<br />

D.K. MATLOCK, and J.G. SPEER, Mater. Sci. Eng. A 438-<br />

440 (2006), p.25.<br />

6] L.J. BAKER, S.R. DANIEL and J.D. PARKER, Mater. Sci.<br />

Tech. 18 (2002), p. 355.<br />

7] I.B. TIMOKHINA, P.D. HODGSON and E.V. PERELO-<br />

MA, Metall. Mater. Trans. A 38 (2007), p.2442.<br />

8] A.K. DE, S. VANDEPUTTE and B.C. DE COOMAN,<br />

Scripta Mater. 44 (2001), p.695.<br />

9] B.D. CULLITY, Elements of X-ray diffraction, Addison-<br />

Wesley, London (1978) p.411.<br />

10] D.J. DYSON and B. HOLMES, Iron Steel Inst. 208 (1970),<br />

p.469.<br />

11] P.B. HIRSCH, R.B. NICHOLSON, A. HOWIE, D.W. PA-<br />

SHLEY and M.J. WHELAN, Electron microscopy of thin<br />

crystals, Butterworths, London (1965), p. 51.<br />

12] M.K. MILLER, Atom Probe Tomography, in: Handbook<br />

of Microscopy for Nanotechnology, eds. N. YAO and Z.L.<br />

WANG, Kluwer Academic Press, New York (2005), p.236.<br />

13] E.V. PERELOMA, I.B. TIMOKHINA, M.K. Miller and<br />

P.D. HODGSON, Acta Mater. 55 (2007), p.2587.<br />

14] D. KALISH and M. COHEN, Mater. Sci. Eng. 6 (1970),<br />

p. 156.<br />

prove a trazione. Entrambi gli acciai hanno mostrato comportamento discontinuo<br />

allo snervamento e un significativo aumento del<strong>la</strong> resistenza<br />

neccanica con una riduzione del<strong>la</strong> duttilità dopo il trattamento di pretensionamento<br />

e bake-hardening. I seguenti principali cambiamenti microstrutturali<br />

sono responsabili dei comportamenti meccanici osservati<br />

una diminuzione del<strong>la</strong> frazione in volume di austenite residua, un aumento<br />

del<strong>la</strong> densità delle dislocazioni e <strong>la</strong> formazione di una sottostruttura<br />

a celle nel<strong>la</strong> ferrite poligonale, una maggiore densità di dislocazioni<br />

localizzata nelle regioni a ferrite poligonale adiacenti al<strong>la</strong> martensite o<br />

all’austenite residua, una precipitazione di carburi di ferro nel<strong>la</strong> bainite<br />

e nel<strong>la</strong> martensite.<br />

Infine è stato analizzato il meccanismo re<strong>la</strong>tivo al<strong>la</strong> fenomenologia connessa<br />

al limite di snervamento osservato in entrambi gli acciai dopo<br />

trattamento.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 55


Memorie >><br />

Metallurgia delle polveri<br />

MATHEMATICAL MODELING<br />

OF HEAT TREATING<br />

POWDER METALLURGY STEEL<br />

COMPONENTS<br />

V. S. Warke, M. M. Makhlouf<br />

A mathematical model to predict the response of powder metallurgy steels to heat treatment is presented<br />

and discussed. The model is based on modification of commercially avai<strong>la</strong>ble software that was originally<br />

developed for wrought alloys so that it can account for the effect of porosity. An extensive database had to be<br />

developed specifically for PM steels and includes porosity- and temperature-dependent phase transformation<br />

kinetics, and porosity- and temperature-dependent phase-specific mechanical, physical, and thermal properties.<br />

This extensive database has been developed for FL-4065 PM steel and has been used in the model to predict<br />

dimensional change, distortion, and type and quantity of metallurgical phases that develop in a typical PM<br />

component upon heat treatment. The model predictions are compared to measured values and are found to be in<br />

excellent agreement with them.<br />

KEYWORDS: powder metallurgy, modelling, steel, heat treatment<br />

INTRODUCTION<br />

Components that are manufactured by the powder metallurgy<br />

process (PM) experience considerable changes during heat<br />

treatment. These include changes in their mechanical properties,<br />

dimensions, magnitude and sense of residual stresses, and<br />

metallurgical phase composition. Since most of the quality assurances<br />

criteria that these components have to meet include<br />

prescribed minimum mechanical properties and compliance<br />

with dimensional tolerances, it is necessary for producers of<br />

PM components to be able to accurately predict these changes<br />

in order to take appropriate measures to insure the production<br />

of parts that meet the required specifications. Several software<br />

packages that are capable of predicting the heat treatment response<br />

of wrought steels are avai<strong>la</strong>ble commercially [1-3], but<br />

none of them can predict the response of PM components. In<br />

this work, we developed a finite element-based model to predict<br />

the response of PM steels to heat treatment. The model is<br />

based on a modification of the commercially avai<strong>la</strong>ble software<br />

DANTE [3]. DANTE is comprised of a set of user-defined subroutines<br />

and can be linked to the finite element solver ABAQUS.<br />

Virendra S. Warke, Makhlouf M. Makhlouf<br />

Department of Mechanical Engineering - Worcester Polytechnic<br />

Institute - Worcester, MA 01609<br />

Paper presented at the International Conference<br />

“Innovation in heat treatment for industrial competitiveness”,<br />

organised by AIM, Verona, 7-9 May<br />

The DANTE subroutines contain a mechanics module, a phase<br />

transformation module, and a diffusion module that are coupled<br />

to a stress/disp<strong>la</strong>cement solver, a thermal solver, and a<br />

mass diffusion solver, respectively. A block diagram showing<br />

the combined DANTE/ABAQUS model is shown in Fig. 1. The<br />

model requires an extensive database, which includes temperature-<br />

and porosity-dependent phase transformation kinetics,<br />

and temperature- and porosity-dependent phase-specific mechanical,<br />

physical, and thermal properties of the steel. We de-<br />

s<br />

Fig. 1<br />

Solution procedure for the DANTE/ABAQUS<br />

model.<br />

Procedura di soluzione per il modello DANTE/ABAQUS.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 57


Metallurgia delle polveri


Memorie >><br />

s<br />

Fig. 4<br />

Measured strain vs. time for the austenite to<br />

bainite transformation at different isothermal holding<br />

temperatures.<br />

Misura del<strong>la</strong> deformazione in funzione del tempo per <strong>la</strong><br />

trasformazione da austenite a bainite durante trattamenti<br />

isotermi a temperature diverse.<br />

s<br />

Fig. 6<br />

TTTP diagram for 90% and 100% density FL-<br />

4605 PM steel plotted for the austenite to bainite and<br />

the austenite to martensite transformations.<br />

Diagramma TTTP per densità 90% e 100% dell’acciaio<br />

FL- 4605 PM tracciato per le trasformazioni da austenite<br />

a bainite e da austenite a martensite.<br />

hibit transformation p<strong>la</strong>sticity, i.e., p<strong>la</strong>stic flow caused by change<br />

in the re<strong>la</strong>tive proportions of the various metallurgical phases in<br />

the microstructure brought about by the phase transformation.<br />

We used Low Stress Di<strong>la</strong>tometry in order to characterize this<br />

transformation-induced p<strong>la</strong>sticity in FL-4605 PM steel. The procedure<br />

entails applying an external compressive static load to<br />

a standard specimen in a Gleeble machine just before the start<br />

of the transformation. We chose the magnitude of the applied<br />

load such that the magnitude of the resulting stress is less than<br />

the flow stress of austenite at the temperature of application of<br />

the load. We performed transformation induced p<strong>la</strong>sticity measurements<br />

on samples of three densities (90%, 95%, and 100% of<br />

the theoretical density of the material) for each of the austenite<br />

to martensite and the austenite to bainite transformations.<br />

Metallurgia delle polveri<br />

s<br />

Fig. 5<br />

Measured strain vs. temperature at different<br />

cooling rates during continuous cooling transformation<br />

measurements.<br />

Misura del<strong>la</strong> deformazione in funzione del<strong>la</strong> temperatura<br />

per velocità di raffreddamento differenti durante le<br />

misure di trasformazione in raffreddamento continuo.<br />

s<br />

Fig. 7<br />

True stress vs. true strain curve for austenite<br />

measured at three different temperatures for samples<br />

with 90% density at 1 s-1 strain rate.<br />

Curva sollecitazione vs. deformazione per austenite,<br />

misurata a tre temperature diverse per campioni con<br />

densità 90% e velocità di deformazione 1 s-1 .<br />

Fig. 8 (a) and Fig. 8(b) show the measured di<strong>la</strong>tation data for<br />

the 100% density sample at three the different applied stresses<br />

during the austenite to bainite and the austenite to martensite<br />

transformations, respectively. We performed simi<strong>la</strong>r measurements<br />

on samples with 90 % and 95% of theoretical density and<br />

used a fitting routine to fit this data to mathematical equations<br />

that were then used to create a transformation induced p<strong>la</strong>sticity<br />

database.<br />

MODEL CONSTRUCTION AND MATHEMATICAL<br />

SIMULATIONS<br />

The capabilities of the model are demonstrated using the test<br />

part shown in Fig. 9. The dimensions of the part are summarized<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 59


Metallurgia delle polveri


Memorie >><br />

a<br />

b<br />

s<br />

Fig. 10<br />

Coordinates of the circu<strong>la</strong>r hole before and<br />

after heat treatment. (a) Measured using a CMM. (b)<br />

Predicted by the model.<br />

Coordinate del foro circo<strong>la</strong>re prima e dopo trattamento<br />

termico. (a) Misurato mediante CMM. (b) Previsione del<br />

modello.<br />

FL-4605 PM steel component of configuration and dimensions<br />

simi<strong>la</strong>r to those used in the model.<br />

Sample production – We admixed AUTOMET 4601 steel powder<br />

with Asbury 1651 graphite powder to yield 0.5 wt% carbon<br />

in the final product. We added zinc sterate to the powder as a lubricant,<br />

then p<strong>la</strong>ced the admixed powder in a die and pressed it<br />

using 216 tons of pressure. We sintered the green parts at 1100°C<br />

for 30 minutes in a continuous sintering furnace under a controlled<br />

atmosphere and then we air-cooled them to room temperature.<br />

The average measured density of the parts was 95%<br />

of theoretical density with negligible variation within each part<br />

and from part to part.<br />

Heat treatment – The heat treatment cycle for the sintered parts<br />

consisted of furnace heating to 850°C, holding at this temperature<br />

for 20 minutes, and then quenching in oil with the parts<br />

p<strong>la</strong>ced in an upright position with their thinner section point-<br />

Metallurgia delle polveri<br />

s<br />

Fig. 11<br />

Change in radius at different locations around<br />

the circu<strong>la</strong>r hole as predicted by the model<br />

and as measured by a CMM.<br />

Variazione del raggio in diverse posizioni intorno ai fori<br />

circo<strong>la</strong>ri secondo <strong>la</strong> previsione del modello e misurato<br />

mediante CMM.<br />

s<br />

Fig. 12<br />

Section lines showing where cuts were made<br />

for measuring retained austenite.<br />

Linee di sezione che mostrano dove sono stati effettuati i<br />

tagli per misurare l’austenite residua.<br />

ing down. Twenty parts were heat treated in an internal quench<br />

batch furnace under an endothermic atmosphere with 0.5 wt.<br />

% carbon.<br />

In order to characterize the amount of distortion in the parts<br />

caused by the heat treatment we designed a fixture to hold the<br />

parts at the same location in a coordinate measurement machine<br />

(CMM). We measured the circu<strong>la</strong>r hole before and after<br />

heat treating the sample at locations around the periphery in 5°<br />

increments. We repeated the measurements at four depths along<br />

the thickness of the part and in each case we converted the xy<br />

measurement into a radius, r, and an angle θ at each measured<br />

point. We then normalized the radius by dividing it by the average<br />

radius before heat treatment. Fig. 10 and Fig. 11 compare the<br />

measured and model-predicted changes in dimensions of the<br />

central hole due to heat treatment.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 61


Metallurgia delle polveri


Memorie >><br />

Pressoco<strong>la</strong>ta<br />

DIE-CASTING: S.D.C. STEEL, A<br />

CONTINUOUS METALLURGIC INNOVATION<br />

TO MEET WITH THE PROBLEMS<br />

A. Grellier, F. Piana, G. Gay<br />

The S.D.C. steel grade has been especially designed for <strong>la</strong>rge-size toolings used in die-casting applications with<br />

the objective of increasing the fatigue resistance of the material and the tool life. A fundamental and integral<br />

approach has been undertaken to understand and measure the temperature and stress conditions at the surface<br />

during service, get a full multi-scale description of the steel microstructure and define the re<strong>la</strong>tionship between<br />

microstructure and its evolution and thermal fatigue resistance. The new grade with the associated optimised<br />

heat treatment offers superior mechanical properties and shows improved performance in its die-casting<br />

industrial applications.<br />

KEYWORDS: Die-casting, steel grade, microstructure, multi-scale observation, heat-treatment, hardenability, forging<br />

process modelling.<br />

INTRODUCTION<br />

For light alloys casting and more specifically pressure<br />

die-casting, the 5% chromium steel family grades (H11,<br />

X37CrMoV5, 1-2343) are widely used. Their performance<br />

measured by the total number of manufactured parts and<br />

the amount and cost of repair operations has been through<br />

the years increased by better casting process control and<br />

progress in the metallurgy and the heat treatment of the<br />

moulds. Higher hardness has a positive effect on tool life,<br />

but remains limited to guarantee a minimum toughness. A<br />

breakthrough was necessary in the metallurgical conception<br />

of the grade: beyond the measurement of conventional<br />

mechanical properties, our research program was focused<br />

on the global understanding of all the metallurgical and<br />

thermo-mechanical phenomenas involved. Hereafter are<br />

described some aspects of our scientific analysis, and the<br />

basic properties of the new improved S.D.C. steel.<br />

THERMOMECHANICAL LOCAL CONDITIONS OF<br />

THE WORKING SURFACE DURING SERVICE<br />

During parts production in the pressure die-casting process,<br />

the tool surface is submitted to thermal shocks at two times<br />

André Grellier<br />

Aubert&Duval - R&D Department – BP1<br />

F-63770 - Les Ancizes, France<br />

Fulvio Piana<br />

Aubert&Duval Italia-Viale Leonardo da Vinci 97-<br />

20090 Trezzano sul Naviglio (MI)<br />

Gérald Gay<br />

Aubert&Duval - Application Engineering Dpt.<br />

22 rue Henri Vuillemin B.P.63 – 92233- Gennevilliers<br />

within every cycle:<br />

- a hot shock when liquid metal is injected inside the<br />

mould<br />

- a cold shock when lubricant is sprayed on the surface.<br />

Temperature gradients induce high shear stresses at the surface<br />

of the material:<br />

- compression stresses during the hot shock which induce<br />

p<strong>la</strong>stic deformation in compression mode,<br />

- tension stresses during cold shock with associated p<strong>la</strong>stic<br />

deformation in tension mode and further crack initiation; at<br />

this stage, cracking may occur.<br />

In industrial conditions, the heat flux through the tool surface<br />

has been measured (Fig. 1) and the surface temperature<br />

s<br />

Fig. 1<br />

Typical thermal recording of one cycle during<br />

production of pressure-die cast parts.<br />

Registrazione tipica del<strong>la</strong> temperatura dello stampo in<br />

esercizio.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 63


Pressoco<strong>la</strong>ta


Memorie >><br />

sion Electron Microscopy in high resolution mode and with<br />

observations on replicas, X-Ray diffraction on precipitates<br />

extracted by chemical dissolution, and Small Angle Neutrons<br />

Scattering (SANS) has shown that precipitates of the<br />

5%Cr steels may be c<strong>la</strong>ssified in two families of sizes: about<br />

3 nm and 25/50 nm. Mechanical properties appear to be<br />

directly dependant from the density of the first family carbides<br />

of the (V,Mo)C type ; their density has been assessed<br />

to be about 1023/m 3 to 1024/m 3 .<br />

The new S.D.C. grade is derived from the 5% Cr standard<br />

steels with a nickel addition and a molybdenum and vanadium<br />

content adjustment in order to approach the perfect<br />

microstructure described before :<br />

- the combination of the effect of all elements, overall nickel<br />

and molybdenum, provides a very high hardenability:<br />

bainite features with wide ferrite <strong>la</strong>thes and elongated harmful<br />

carbides are avoided even on <strong>la</strong>rge parts corresponding<br />

to lower quench cooling rates,<br />

- martensite needles are small and dislocation density is<br />

high in the matrix,<br />

- the density of the nanometric (small size family) carbides<br />

has been carefully adjusted by the vanadium content -0.65%-<br />

for an austenising temperature of 1030°C.<br />

FINAL GENERAL PROPERTIES OF THE S.D.C.<br />

STEEL<br />

S.D.C. quenched from 1030°C shows a very high hardenability<br />

(Fig. 3). As the common annealing treatment of conventional<br />

5%Cr steels is not applicable to S.D.C., a specific cycle<br />

has been defined, which confers a hardness of less than 220<br />

HB suitable for rough machining. The microstructure (Fig.<br />

4) cannot be easily rated with conventional micrographic<br />

standard charts. Small-sized carbides are dispersed with a<br />

needle heredity distribution.<br />

The curve defining hardness as a function of tempering<br />

temperature (Fig. 5) is not very different from the standard<br />

s<br />

Fig. 4<br />

Microstructure in the annealed condition -<br />

original magnification: x500.<br />

Microstruttura in condizioni di tempra.<br />

Ingrandimento: x500.<br />

Pressoco<strong>la</strong>ta<br />

H11 reference. Charpy V impact test energy has been measured<br />

on a significative number of <strong>la</strong>rge size products in the<br />

conditions of industrial heat treatment and in conformity<br />

with NADCA Standard (Fig. 6). The results show an unusual<br />

homogeneity between specimens taken from the same<br />

p<strong>la</strong>ce in the block, between different positions in the block<br />

(core, near-surface…) and between different products. This<br />

steel is from far less sensitive that nickel-free grades to the<br />

s<br />

Fig. 5<br />

S.D.C. Hardness after tempering - Previous<br />

1030°C austenisation.<br />

Durezza dopo il trattamento di tempra. Previa<br />

austenitizzazione.<br />

s<br />

Fig. 6<br />

Charpy V impact test results on blocks in<br />

industrial heat treating conditions.<br />

Risultati dei test Charpy V, sui blocchi in condizioni di<br />

trattamento termico industriale.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 65


Pressoco<strong>la</strong>ta


Memorie >><br />

s<br />

Fig. 10<br />

Microstructure in the fully heat treated<br />

condition of a 1000x380 section - a) standard etch<br />

original magnification: x500; b) specific etching for<br />

grain size visualisation original magnification: x 100.<br />

Microstruttura nelle condizioni di trattamento termico<br />

del<strong>la</strong> sezione 1000 x 380 - a) incisione standard<br />

ingrandiamento: x 500; 10-b: incisione specifica<br />

per <strong>la</strong> visualizzazione del<strong>la</strong> dimensione del grano<br />

ingrandiamento: x 100.<br />

BEST PRACTICES FOR HEAT TREATING<br />

a<br />

b<br />

S.D.C. steel must be heat treated with simi<strong>la</strong>r equipment<br />

and procedures as common 5%Cr steels with the additional<br />

following instructions:<br />

- the austenisation temperature must be 1025/1030°C after<br />

a pre-heating in he 750/800°C range,<br />

- for best service performance, the target for hardness must<br />

be by 1 to 1.5 HRC more than the hardness of the reference<br />

5% Cr steel for the same application.<br />

- the first tempering must be at 550°C,<br />

- the final expected hardness is obtained by temperature<br />

adjustment of the following tempering cycles,<br />

Pressoco<strong>la</strong>ta<br />

- the full heat treatment may include two or three tempering<br />

steps; a third temper is recommended for very big<br />

blocks and if the temperature between quenching and<br />

first temper and between first and second temper has not<br />

reached a value below 100°C.<br />

- SDC is less sensitive than conventional 5%Cr steels to<br />

variations of gas pressure and gas flow during quenching.<br />

FIRST RESULTS IN PRODUCTION CONTEXT<br />

Moulds from different sizes have been produced and put<br />

in production inside several p<strong>la</strong>nts, with an initial hardness<br />

in the 44 to 49 HRC range. To-day, several of them<br />

have produced more than 100 000 units and none of them<br />

is considered as ruined, so a direct comparison for the total<br />

production of the mould is still not avai<strong>la</strong>ble.<br />

Nevertheless, results are considered as better than for reference<br />

steels of the H11 or low-Si H11 grades:<br />

- production before first crack detection: better from 15 to<br />

40%,<br />

- percentage of damaged surface for a given production<br />

amount: better from 15 to 35%,<br />

- maintenance operations: decrease from 20 to 80%,<br />

To-day, no drawback has been identified about repairing<br />

by welding, distortion, or catastrophic cracking during<br />

heat-treatment and service. Distortion during heat treatment<br />

appear to be less important than for c<strong>la</strong>ssic reference<br />

grades.<br />

Moreover, efforts have still to be done to adjust precisely<br />

the parameters of heat treating in partnership with every<br />

heat treating p<strong>la</strong>nt.<br />

CONCLUSIONS<br />

The S.D.C. steel is a new material for tools and more specifically<br />

die-casting moulds, with superior properties obtained<br />

as the result of the combination of several innovative<br />

actions:<br />

- a multi-scale approach for investigation in the microstructure,<br />

- a definition of an ideal microstructure by the understanding<br />

of re<strong>la</strong>tions between microstructure and its evolution<br />

under thermo-mechanical loading during service,<br />

- a new composition with a nickel addition and a precise<br />

adjustment of the ba<strong>la</strong>nce between hardening elements<br />

and nickel, with a low level of trace elements<br />

- a specific production route with an optimised forging<br />

and annealing process,<br />

- a heat treatment with an accurate definition of parameters<br />

for austenising and tempering.<br />

To-day, the S.D.C. toolings which have been put into production<br />

show an improved performance compared to reference<br />

materials. These results have to been confirmed;<br />

discussions and technical col<strong>la</strong>boration between all partners<br />

remain absolutely necessary to go ahead on the way<br />

of progress.<br />

REFERENCES<br />

1] G.DOUR, M. DARGUSH, C.DAVIDSON, A.NEF: Journal<br />

of Material Processing Technology 169 (2005),223-233<br />

2] DELAGNES D., REZAI-ARIA F., LEVAILLANT C.,<br />

GRELLIER A.,: Proc. of 5th International Conference on<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 67


Pressoco<strong>la</strong>ta

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!