la metallurgia italiana - Gruppo Italiano Frattura
la metallurgia italiana - Gruppo Italiano Frattura
la metallurgia italiana - Gruppo Italiano Frattura
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
Memorie >><br />
Alluminio e leghe<br />
CORRELATION BETWEEN<br />
MICROSTRUCTURE AND<br />
MECHANICAL PROPERTIES<br />
OF Al-Si CAST ALLOYS<br />
F. Grosselle, G. Timelli, F. Bonollo, A. Tiziani, E. Del<strong>la</strong> Corte<br />
The influence of microstructure and process history on mechanical behaviour of cast Al-Si alloys is reported.<br />
In the present work, the EN-AC 46000 and 46100 aluminium alloys have been gravity cast using a stepbar<br />
permanent mould, with a range of thickness going from 5 to 20 mm. Metallographic and image analysis<br />
techniques have been used to quantitatively examine the microstructural parameters of the α-Al phase<br />
and eutectic Silicon. Microstructure has been also corre<strong>la</strong>ted with the results coming from the numerical<br />
simu<strong>la</strong>tion of the casting process. The results show that SDAS and length of eutectic silicon particles increase<br />
with section thickness, and consequently mechanical properties decrease.<br />
KEYWORDS: aluminium alloys; EN-AC 46000; EN-AC 46100; SDAS; eutectic Si; microstructure; numerical<br />
simu<strong>la</strong>tion; permanent mould casting<br />
INTRODUCTION<br />
Mechanical properties of Al-Si cast alloys depend on several microstructural<br />
parameters. Grain size, secondary dendrite arm<br />
spacing (SDAS), distribution of phases, the presence of secondary<br />
phases or intermetallic compounds, the morphology of silicon<br />
particles (size, shape and distribution) and, finally, defects p<strong>la</strong>y a<br />
key role in the determination of the e<strong>la</strong>stic and p<strong>la</strong>stic behaviour<br />
of aluminium alloys [1-3].<br />
In general, castings having a finer microstructure (quantitatively<br />
described by low SDAS values), induced by high solidification<br />
rate, show better mechanical properties. Many corre<strong>la</strong>tions between<br />
mechanical behaviour (UTS, YS, elongation) and SDAS can be<br />
found in literature [3-4]. It is worth mentioning that, on industrial<br />
production, the control of solidification rate (and therefore the<br />
SDAS values) is quite difficult to achieve [5], as consequence of<br />
the geometrical complexity and of the different wall thickness in<br />
the real-shaped casting. For this reason, reference castings are frequently<br />
employed when the solidification rate has to be accurately<br />
controlled and different microstructures have to be achieved. Therefore,<br />
in these castings, the solidification conditions can be set up<br />
by varying the thickness and the material of the mould, as well as<br />
Fabio Grosselle, Giulio Timelli, Franco Bonollo, Alberto Tiziani<br />
Dipartimento di Tecnica e Gestione dei Sistemi Industriali<br />
DTG, Università di Padova, Stradel<strong>la</strong> S. Nico<strong>la</strong>, 3 I-36100 Vicenza,<br />
Italia (Email: grosselle@gest.unipd.it;<br />
Tel. 00 39 0444 99 87 54; Fax No. 00 39 0444 99 88 89)<br />
Emilia Del<strong>la</strong> Corte<br />
Enginsoft Spa, via Giambellino 7, I-35129 Padova, Italia<br />
(Email: e.del<strong>la</strong>corte@enginsoft.it; Tel. 00 39 049 77 05 311)<br />
the sample size [3,6]. In this way, the factors affecting SDAS, the<br />
re<strong>la</strong>tionship between SDAS and mechanical properties of cast aluminium<br />
alloys can be easily better assessed and these information<br />
can be subsequently transferred to real-shaped casting.<br />
On the other hand, it is well known that SDAS is not the only factor<br />
affecting the mechanical behaviour of an alloy. For instance,<br />
the deformation behaviour of cast aluminium alloys is also affected<br />
by eutectic Si particles and intermetallic compounds which<br />
determine the initiation and the evolution of fracture [7-8]. In particu<strong>la</strong>r,<br />
for defect free castings, tensile fracture is initiated by cleavage<br />
of either brittle intermetallic particles or eutectic Si particles.<br />
The cleavage cracks are mainly perpendicu<strong>la</strong>r to the macroscopic<br />
principal strain, regardless of the particle orientation. P<strong>la</strong>telet particles<br />
with their length perpendicu<strong>la</strong>r to the tensile direction break<br />
because of cleavage along their length [9-10]. Therefore, it is easy<br />
to hypothesize that the fracture mechanism depends on the size<br />
and shape of Si or Fe-rich brittle phases. In detail, <strong>la</strong>rge and acicu<strong>la</strong>r<br />
particles are deleterious for mechanical properties reducing<br />
elongation to fracture and ultimate tensile strength [9].<br />
In un-modified Al–Si cast alloys, the eutectic Si particles have a<br />
coarse, acicu<strong>la</strong>r and polyhedral morphology and the final mechanical<br />
properties of an alloy is characterized by their distribution<br />
in the microstructure. It was established that the size distribution<br />
of eutectic Si particles follows the lognormal distribution [8]. The<br />
probability density function of the three-parameters lognormal distribution<br />
can be written as:<br />
(1)<br />
where d is the diameter of Si particles, τ the threshold, σ the shape<br />
and μ is the scale parameter.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 25
Alluminio e leghe
Alloy<br />
EN-AC<br />
46000<br />
EN-AC<br />
46100<br />
Memorie >><br />
Al<br />
Bal.<br />
Bal.<br />
Si<br />
8.8<br />
10.8<br />
s<br />
Tab. 1<br />
Chemical composition of the alloys studied in the<br />
present work (wt.%).<br />
Composizione chimica delle leghe analizzate nel presente studio (wt.%).<br />
The tensile specimens were 100-mm long, 20-mm wide, and 3-mm<br />
thick, with a gage length of 30 mm and a width of 10 mm, according<br />
to ASTM-B577.<br />
The tensile tests were done on a computer controlled tensile testing<br />
machine. The crosshead speed used was 2 mm/min (strain<br />
rate~10 -3 s -1 ). The strain was measured using a 25-mm extensometer.<br />
At least three specimens were tested for each zone. When the<br />
experimental data differed by more than 5 pct, another tensile specimen<br />
was tested.<br />
The samples cut from the cross section of the gage length were<br />
mechanically prepared to a 1-µm finish with diamond paste and,<br />
finally, polished with a commercial fine silica slurry for metallographic<br />
investigations. Microstructural analysis was carried out<br />
using an optical microscope and quantitatively analyzed using<br />
an image analyzer. To quantify the microstructural features, the<br />
image analysis was focused on the secondary dendrite arm spacing<br />
(SDAS), and on the size and aspect ratio of the eutectic silicon<br />
particles. Size is defined as the equivalent circle diameter (d); the<br />
aspect ratio (α) is the ratio of the maximum to the minimum Ferets.<br />
To obtain a statistical average of the distribution, a series of at least<br />
10 photographs of each specimen were taken; each measurement<br />
included more than 1000 particles. The secondary phases, such<br />
as the Mg 2 Si and CuAl 2 particles, and the iron-rich intermetallics<br />
were excluded from the measurements and further analysis. Average<br />
SDAS values were obtained using the linear intercept method,<br />
which involves measuring the distances between secondary<br />
dendrite arms along a line normal to the dendrite arms.<br />
Casting simu<strong>la</strong>tion<br />
The MAGMASOFT® v4.6 (2007) commercial software, with its<br />
module for gravity die casting, was used for numerically simu<strong>la</strong>ting<br />
the filling and solidification behaviour of analysed castings.<br />
The characteristics of the software used in this study are as follows:<br />
- ease of physical interpretation of various steps of algorithms;<br />
- conservation of physical properties;<br />
- reduction of solving time.<br />
Basic governing equations of the software are continuity equation,<br />
Navier–Stoke’s equation, energy equation and volume of fluid<br />
(VoF) method for the free surface movement during the die filling.<br />
The numerical code employs the finite volume approach to convert<br />
differential equations into algebraic ones and solve them on<br />
a rectangu<strong>la</strong>r grid. The CAD model of the step casting was drawn<br />
and imported in the simu<strong>la</strong>tion software where a controlled volume<br />
mesh of 132000 cells for the die cavity was automatically<br />
generated by the software. The initial conditions for numerical<br />
simu<strong>la</strong>tion were defined to reproduce the casting parameters. The<br />
pouring temperature was set at 720°C, while, for the die, the temperature<br />
for the first cycle was assumed to be at a uniform temperature<br />
of 250°C. In the subsequent cycles, the initial temperature<br />
in the die is taken to be the predicted temperature distribution at<br />
Cu<br />
3.0<br />
1.8<br />
Fe<br />
0.8<br />
0.8<br />
Mg<br />
0.21<br />
0.13<br />
Alluminio e leghe<br />
Mn<br />
0.26<br />
0.18<br />
Ni<br />
0.087<br />
0.089<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 27<br />
Ti<br />
0.039<br />
0.046<br />
Zn<br />
0.90<br />
1.29<br />
Others<br />
0.05<br />
0.05<br />
the end of the previous cycle. A number of 10–15 cycles were taken<br />
after the start up to reach a quasi-steady-state temperature in<br />
the die. The thermal conductivity of the die varied in the range of<br />
33.4–31.5 W/mK, in the working temperature range of 450–520°C.<br />
The other physical constants and properties of the die and the alloys,<br />
and their evolution with temperature, were chosen among<br />
those present in the software database, as well as the heat transfer<br />
coefficients (HTC), taking into account affecting parameters, like<br />
the type and thickness of coating, and the pouring temperature. To<br />
define the whole set of boundary conditions in the model, the process<br />
parameters (e.g. regarding the filling and cooling cycle) and<br />
the cycle time, acquired from the casting process, were imported<br />
in the software, increasing the reliability of numerical simu<strong>la</strong>tion.<br />
Virtual thermocouples were inserted in the different zones of the<br />
die in order to control the temperature profiles and to compare<br />
these values with the real ones. Solidification time was assessed<br />
via numerical simu<strong>la</strong>tion code in order to predict the final microstructure<br />
of the casting. The mechanical properties of the aluminium<br />
cast alloy were predicted by using the newly developed<br />
add-on module to the simu<strong>la</strong>tion software [12].<br />
RESULTS AND DISCUSSION<br />
In Fig. 4, typical microstructures of the step castings are reported<br />
with reference to the different step, which varies in a range<br />
of thickness between 5 to 20 mm. While Fig. 4a shows the as-cast<br />
microstructure of EN-AC 46000 alloy, in Fig. 4b the microstructure<br />
of EN-AC 46100 alloy is presented. The microstructure of the step<br />
castings analysed consists of a primary phase, α-Al solid solution,<br />
which precipitates from the liquid as the primary phase in the form<br />
of dendrites. The as-cast Al–9Si–3Cu alloy (EN-AC 46000) shows<br />
primary α-Al grains in the matrix of the eutectic structure (Fig. 4a).<br />
The eutectic structure is a mixture of the α-Al and eutectic silicon<br />
phase. The eutectic silicon can be seen in the interdendritic regions.<br />
The Al–11Si–2Cu alloy (EN-AC 46100) shows the mixed structure<br />
of the α-Al grains and eutectic (Fig. 4b). Moreover, the addition of<br />
silicon increased the fraction of the eutectic in the interdendritic<br />
region. Intermetallics compounds, such as Fe- and Cu-rich intermetallics,<br />
were also observed. A low level of microdefects, in the<br />
form of microshrinkage, was found in the specimens analysed.<br />
The scale of microstructure in different zones of the castings was<br />
characterized by means of SDAS measurements and then corre<strong>la</strong>ted<br />
with mechanical properties. These data are further described.<br />
Fig. 4 presents calcu<strong>la</strong>ted solidification times, from numerical simu<strong>la</strong>tion,<br />
with the corresponding microstructure within step castings<br />
of EN-AC 46000 and 46100 alloys. A general coarsening of<br />
microstructure occurs in thicker regions, quantified by SDAS values,<br />
as the result of the increased solidification time in both alloys.<br />
For every section thickness, the SDAS values were higher in the<br />
samples extracted from the inner section than the specimens from<br />
the external one.<br />
Simi<strong>la</strong>r values of SDAS and solidification time for the two alloys<br />
were obtained as consequence of simi<strong>la</strong>r thermal properties.<br />
Solidification times were also estimated by means of SDAS measurements<br />
using equation [13]:
Alluminio e leghe
Alloy<br />
EN-AC 46000<br />
EN-AC 46100<br />
Memorie >><br />
Section<br />
A.i<br />
B.i<br />
C.e<br />
C.i<br />
D.e<br />
D.i<br />
A.i<br />
B.i<br />
C.e<br />
C.i<br />
D.e<br />
D.i<br />
SDAS (μm)<br />
16.4 (0.8)<br />
23.9 (1.8)<br />
23.5 (1.0)<br />
30.8 (0.9)<br />
25.0 (1.3)<br />
32.5 (1.9)<br />
18.6 (2.4)<br />
22.4 (1.6)<br />
26.8 (1.8)<br />
32.8 (1.3)<br />
26.9 (1.9)<br />
35.3 (2.1)<br />
Calcu<strong>la</strong>ted solidification time (s)<br />
14<br />
40<br />
38<br />
82<br />
46<br />
95<br />
20<br />
33<br />
55<br />
98<br />
56<br />
120<br />
Simi<strong>la</strong>r behaviour of the eutectic Si size was observed in the EN-<br />
AC 46100 alloy.<br />
The impact of the solidification time on the aspect ratio of eutectic<br />
Si particles is negligible, as shown in Fig. 5b. Every step shows<br />
simi<strong>la</strong>r distributions of the aspect ratio of the eutectic Si particles.<br />
The irregu<strong>la</strong>r growth mechanism of un-modified eutectic Si particles<br />
confirms to be independent from the solidification rate, at<br />
least for the range of solidification rate investigated [14].<br />
Generally, the distributions of the aspect ratio of the eutectic Si<br />
particles in EN-AC 46100 alloy show simi<strong>la</strong>r behaviour.<br />
The corre<strong>la</strong>tion between solidification time and Si particles parameters<br />
is reported in Fig. 6. For both alloys, the average diameter<br />
increases significantly by increasing the solidification time from 20<br />
to 40 seconds, while for longer times the values are steady in the<br />
range of 6.5 to 7 µm (Fig. 6a). On the other side, the aspect ratio<br />
seems to be independent from the solidification time (Fig. 6b), as<br />
previously demonstrated by means of the distribution plots in Fig.<br />
5b.<br />
Contrary, a re<strong>la</strong>tionship can be found between the aspect ratio and<br />
the Si content. If the Si amount is increased from 9 wt.% in the<br />
EN-AC 46000 alloy to 11 wt.% and EN-AC 46100 alloy, the aspect<br />
ratio of eutectic Si particles increases, indicating a more intense<br />
growing along the main axis direction of the Si particles.<br />
In Tab. 3, the results of the mechanical investigation are shown.<br />
The values of the standard deviation confirm the presence of a<br />
low amount of microdefects, which affect the mechanical properties.<br />
However, no macrodefects were observed through the X-ray<br />
investigation.<br />
If A.i and D.i sections are considered and compared, a reduction<br />
of 23 and 15% in UTS and 71 and 54% in elongation to fracture is<br />
observed for the EN-AC 46000 and 46100 alloys respectively, as a<br />
consequence of the different microstructure scale. In the EN-AC<br />
46000 alloy, the UTS varies from 167 to 218 MPa and the elongation<br />
to fracture from 0.4 to 1.4%, while the change is in the range<br />
of 160 to 188 MPa for UTS and from 0.6 to 1.3% for elongation to<br />
fracture, in the EN-AC 46100 alloy. On the other hand, the solidi-<br />
Alluminio e leghe<br />
Equivalent Diameter, d (μm)<br />
5.3 (1.8)<br />
6.4 (3.0)<br />
6.4 (2.7)<br />
6.8 (3.1)<br />
7.4 (3.8)<br />
6.8 (3.3)<br />
5.5 (1.8)<br />
6.2 (2.6)<br />
6.7 (2.9)<br />
7.6 (3.8)<br />
6.7 (2.9)<br />
6.8 (3.0)<br />
Aspect Ratio, α<br />
3.0 (1.5)<br />
2.9 (1.6)<br />
2.9 (1.3)<br />
2.7 (1.4)<br />
3.0 (1.5)<br />
3.1 (1.4)<br />
4.0 (2.0)<br />
3.7 (2.0)<br />
3.6 (1.8)<br />
3.1 (1.7)<br />
4.0 (2.0)<br />
4.1 (2.3)<br />
s<br />
Tab. 2<br />
Average values of SDAS, equivalent diameter and aspect ratio of eutectic silicon particles obtained from different sections<br />
of the step castings (standard deviation in parentheses); solidification times, calcu<strong>la</strong>ted with a numerical simu<strong>la</strong>tion approach, are<br />
also reported. Data refer to EN-AC 46000 and 46100 alloys.<br />
Valori medi di SDAS, del diametro equivalente e del rapporto d’aspetto per le particelle di silicio eutettico, ottenuti dalle diverse sezioni<br />
del getto a gradini (i valori di deviazione standard in parentesi); sono inoltri riportati i valori del tempo di solidificazione per le varie zone,<br />
calco<strong>la</strong>ti mediante <strong>la</strong> simu<strong>la</strong>zione di processo. I dati si riferiscono alle leghe EN-AC 46000 e 46100.<br />
s<br />
Fig. 6<br />
Variation in (a) equivalent diameter and (b)<br />
aspect ratio of eutectic silicon particles as function of<br />
solidification time.<br />
Variazione dei valori di (a) diametro equivalente e (b) del<br />
rapporto d’aspetto delle particelle di silicio eutettico in<br />
funzione del tempo di solidificazione.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 29<br />
a<br />
b
Alluminio e leghe
CONCLUSIONS<br />
Memorie >><br />
The effects of microstructural parameters such as SDAS, size and<br />
morphology of eutectic silicon particles on mechanical properties<br />
of EN-AC 46000 and 46100 alloys have been investigated. In addition,<br />
the validation of the results provided by a numerical simu<strong>la</strong>tion<br />
approach has been performed. Based on the results obtained in<br />
the present study, the following conclusions can be drawn.<br />
- The equivalent diameter and the aspect ratio of eutectic Si particles<br />
follow three-parameter lognormal distributions.<br />
- While the distribution of the equivalent diameter depends on solidification<br />
time, the distribution of the aspect ratio is less sensible,<br />
indicating the irregu<strong>la</strong>r growing mechanism of un-modified eutectic<br />
silicon.<br />
- The average size of eutectic silicon particles is simi<strong>la</strong>r in both EN-<br />
AC 46000 and 46100 alloys, while the aspect ratio of EN-AC 46100<br />
is higher, probably due to higher Si content.<br />
- The mechanical properties, i.e. the UTS and elongation to fracture,<br />
depend on SDAS and on the aspect ratio of the eutectic Si particles,<br />
which seems an alloy-re<strong>la</strong>ted parameters. Increasing the SDAS and<br />
the aspect ratio values, the UTS and the elongation to fracture decrease.<br />
- The difference in the mechanical properties of the two alloys is the<br />
consequence of different chemical composition. Higher Cu and Mg<br />
contents in the EN-AC 46000 alloy allows to increase the YS, while<br />
a lower Si amount permits to enhance the ductility, reaching higher<br />
a<br />
b<br />
s<br />
Fig. 8<br />
Average (a) UTS and (b) elongation to fracture as a<br />
function of the combined parameter SDAS x Aspect ratio;<br />
coefficient of determination, R2, are given. Data refer to EN-<br />
AC 46000 and 46100 alloys.<br />
Valori medi di (a) UTS e (b) allungamento a rottura in funzione del<br />
prodotto tra SDAS e rapporto d’aspetto. E’ inoltre riportato in<br />
coefficiente di determinazione, R2. I dati si riferiscono alle leghe<br />
EN-AC 46000 e EN-AC 46100.<br />
Alluminio e leghe<br />
s<br />
Fig. 9<br />
Comparison between experimental and simu<strong>la</strong>ted<br />
mechanical properties in EN-AC 46000 step casting. The<br />
images refer to (a) YS, (b) UTS and (c) elongation to fracture.<br />
Confronto tra i valori delle proprietà meccaniche ottenuti<br />
sperimentalmente e mediante simu<strong>la</strong>zione di processo per il<br />
getto co<strong>la</strong>to con lega EN-AC 46000. Le immagini si riferiscono a<br />
(a) YS, (b) UTS e (c) allungamento a rottura.<br />
UTS and elongation to fracture values than the EN-AC 46100 alloy.<br />
- Since numerical simu<strong>la</strong>tion results reproduce the experimental<br />
data with a good accuracy, it can be stated that numerical simu<strong>la</strong>tion<br />
is a useful tool for the reduction of time and costs in the design<br />
stage.<br />
- The present investigation has been carried out on un-modified<br />
gravity cast alloys; in the case of higher cooling rate, modification<br />
or heat treatment, attention should be also paid to the size of eutectic<br />
Si particle, as a parameter affecting the mechanical behaviour.<br />
ACKNOWLEDGMENTS<br />
The European Project NADIA- New Automotive components<br />
Designed for and manufactured by Intelligent processing of light<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 31<br />
a<br />
b<br />
c
Alluminio e leghe
Memorie >><br />
Alluminio e leghe<br />
ANALISI DELL’EVOLUZIONE<br />
MICROSTRUTTURALE DURANTE IL<br />
PROCESSO DI ESTRUSIONE DELLA LEGA<br />
AA6060 MEDIATE SIMULAZIONI FEM<br />
M. El Mehtedi, L. Donati, S. Spigarelli, L. Tomesani<br />
La previsione del<strong>la</strong> microstruttura finale dopo l’estrusione delle leghe di alluminio è un argomento che ha<br />
suscitato un grande interesse negli ultimi anni, visto che le proprietà meccaniche e <strong>la</strong> qualità degli estrusi<br />
sono fortemente dipendenti dall’evoluzione e del tipo di microstruttura. Questo <strong>la</strong>voro pone come obiettivo<br />
lo studio dell’evoluzione microstrutturale del<strong>la</strong> lega di alluminio AA6060 durante l’estrusione, mediate<br />
simu<strong>la</strong>zioni FEM utilizzando il Codice Deform 3D. Allo scopo di determinare i coefficienti dei modelli<br />
di ricristallizzazione da inserire nel codice FEM, sono state prodotte delle prove sperimentali mediante<br />
l’estrusione inversa di coppe a diverse temperature e velocità di deformazione. Dall’analisi metallografica<br />
dei campioni estrusi è stato possibile determinare i coefficienti del modello dinamico di ricristallizzazione in<br />
dotazione al codice FEM Deform 3D. Le coppe sono state successivamente trattate termicamente in forno per<br />
far avvenire <strong>la</strong> ricristallizzazione statica, e sono stati determinati i coefficienti del modello di ricristallizzazione<br />
statica. Una volta convalidati i modelli, si è passato al<strong>la</strong> simu<strong>la</strong>zione del processo reale di estrusione di una<br />
billetta cilindrica. L’evoluzione del<strong>la</strong> microstruttura presenta delle zone con dei grani allungati ed altre con dei<br />
grani ricristallizzati con fenomeni di accrescimento. I risultati delle simu<strong>la</strong>zioni sono stati confrontati con le<br />
microstrutture delle billette estruse, mostrando una buona corrispondenza.<br />
PAROLE CHIAVE: alluminio e leghe, estrusione, deformazioni p<strong>la</strong>stiche, simu<strong>la</strong>zione numerica, processi<br />
INTRODUZIONE<br />
I modelli di previsione del<strong>la</strong> microstruttura hanno suscitato un<br />
grande interesse da parte delle industrie negli ultimi anni, specialmente<br />
per quanto riguarda le leghe leggere ove le proprietà<br />
meccaniche sono fortemente dipendenti dal<strong>la</strong> microstruttura<br />
finale [1,2]. Inoltre è ben noto come <strong>la</strong> dimensione del grano e<br />
<strong>la</strong> precipitazione di fasi secondarie influenzano diversi aspetti<br />
del prodotto finale, quali, ad esempio, l’effetto estetico, <strong>la</strong> resistenza<br />
a trazione, <strong>la</strong> formabilità, <strong>la</strong> resistenza a fatica e a corrosione.<br />
La struttura a grana fine è partico<strong>la</strong>rmente richiesta<br />
specialmente quando il prodotto viene sottoposto ad elevati<br />
carichi di fatica oppure viene messo in opera in atmosfera corrosiva<br />
[3,4]. Le proprietà meccaniche dei profi<strong>la</strong>ti in alluminio<br />
sono fortemente legate all’evoluzione del<strong>la</strong> microstruttura du-<br />
M. El Mehtedi, S. Spigarelli<br />
Dipartimento di Meccanica, Università Politecnica delle Marche,<br />
60131 Ancona, Italia - e-mail: elmehtedi@univpm.it<br />
L. Donati, L. Tomesani<br />
DIEM, Università degli studi di Bologna, 40136 Bologna, Italia<br />
rante tutto il ciclo produttivo, dal<strong>la</strong> billetta prodotta per fusione<br />
fino al ciclo di invecchiamento per le leghe da trattamento<br />
termico [5]; precipitati intermetallici grosso<strong>la</strong>ni, zone libere<br />
da precipitati (Precipitate Free Zones), <strong>la</strong> distribuzione e le dimensioni<br />
dei grani, l’ingrossamento del grano rappresentano<br />
alcuni problemi legati all’evoluzione microstrutturale delle<br />
leghe di alluminio che possono indurre ad un prodotto finito<br />
povero dal punto di vista meccanico. L’ottenimento del<strong>la</strong> microstruttura<br />
ottimale si è spesso basato sull’esperienza tramandata<br />
e solo di recente l’interesse verso i processi di simu<strong>la</strong>zione<br />
è significativamente aumentato.<br />
La ricristallizzazione nelle leghe di alluminio è stata studiata<br />
in maniera molto approfondita negli ultimi decenni, soprattutto<br />
per gli aspetti legati al comportamento di queste leghe<br />
durante <strong>la</strong> deformazione a caldo [7,8], ma non esiste nessun <strong>la</strong>voro<br />
fornisce delle equazioni affidabili oppure dei coefficienti<br />
da utilizzare nei sistemi di simu<strong>la</strong>zione con gli elementi finiti.<br />
Durante tutto il processo termo-meccanico avvengono diversi<br />
meccanismi metallurgici come <strong>la</strong> ricristallizzazione statica<br />
(SRX), ricristallizzazione dinamica (DRX), <strong>la</strong> ricristallizzazione<br />
geometrica dinamica (GDRX), <strong>la</strong> crescita dei grani ed infine <strong>la</strong><br />
precipitazione di fasi secondarie [9,10]. Durante il processo di<br />
<strong>la</strong>vorazione delle leghe di alluminio ed in partico<strong>la</strong>re le leghe<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 33
Alluminio e leghe
Memorie >><br />
t – tempo (sec); d 0 – diametro iniziale del grano (μm); d – diametro<br />
del grano (μm); d rex – diametro del grano ricristallizzato<br />
(μm); d ave – diametro medio del grano (μm); X –frazione in<br />
volume ricristallizzata (X drx dinamica, per X=0 non è avvenuta<br />
ricristallizzazione; per X=1, <strong>la</strong> struttura è al 100% ricristallizzata);<br />
ε - deformazione reale; ε c – deformazione critica (al di<br />
sopra del<strong>la</strong> quale inizia <strong>la</strong> ricristallizzazione dinamica); ε p – deformazione<br />
di picco (corrispondente al valore massimo di tensione);<br />
ε 0.5 – deformazione al 50% ricristallizzato; έ - velocità di<br />
deformazione (sec-1); t 0.5 – tempo al 50% ricristallizzato (sec);<br />
a 1–10 – coefficienti del materiale ottenuti sperimentalmente; h 1–8<br />
, n 1–8 e m 1–9 sono gli esponenti del grano, del<strong>la</strong> deformazione e<br />
del<strong>la</strong> velocità di deformazione rispettivamente; Q 1–8 – energie<br />
di attivazione; β d - kd sono dei coefficienti del materiale ottenuti<br />
sperimentalmente.<br />
PROCEDURE SPERIMENTALI E DISCUSSIONE<br />
Prima fase-prove di <strong>la</strong>boratorio<br />
Nel<strong>la</strong> prima fase, è stata messa a punto una procedura sperimentale<br />
allo scopo di valutare <strong>la</strong> distribuzione e <strong>la</strong> grandezza<br />
dei grani dopo deformazione del<strong>la</strong> lega AA6060 ricevuta allo<br />
stato di omogeneizzazione con <strong>la</strong> seguente composizione chimica<br />
(% peso):<br />
Grazie al<strong>la</strong> strumentazione mostrata in Fig. 1, sono state prodotte<br />
delle coppe a spessore variabile mediante estrusione inversa<br />
alle temperature 250, 350, 450 e 550° C con diverse velocità<br />
di traversa 0.1 e 5 mm/sec.<br />
Le condizioni di prova sono state scelte per ottenere una deformazione<br />
locale compresa tra 0-3.88 con una velocità di deformazione<br />
0-5 s-1; <strong>la</strong> temperatura dei campioni era tipica dei<br />
processi di estrusione al livello industriale. Lo stampo ed il<br />
campione sono stati scaldati in un forno a resistenza e <strong>la</strong> temperatura<br />
del campione veniva control<strong>la</strong>ta mediante termocoppia<br />
a contatto. I campioni sono stati spenti in acqua immediatamente<br />
dopo deformazione per conservare <strong>la</strong> microstruttura<br />
inalterata. I campioni deformati sono stati tagliati, inglobati e<br />
lucidati; per l’osservazione al microscopio ottico con luce po<strong>la</strong>rizzata,<br />
i campioni sono stati attaccati elettroliticamente con<br />
l’attacco Barker, infine è stata effettuata un’analisi accurata<br />
del<strong>la</strong> distribuzione e del<strong>la</strong> grandezza dei grani. In parallelo,<br />
è stato simu<strong>la</strong>to tutto il processo sperimentale di deformazione<br />
mediante simu<strong>la</strong>tore di elementi finiti FEM Deform 3D allo<br />
scopo di valutare <strong>la</strong> distribuzione del<strong>la</strong> deformazione e <strong>la</strong> velocità<br />
di deformazione in tutti i campioni. Grazie al confron-<br />
s<br />
Fig. 1<br />
Strumentazione dell’estrusione inversa.<br />
Inverse extrusion equipment.<br />
Alluminio e leghe<br />
Lega<br />
AA6060<br />
Temperatura<br />
250° C<br />
350° C<br />
450° C<br />
550° C<br />
n8 -0.364<br />
-0.985<br />
-0.722<br />
-0.420<br />
m8 -0.213<br />
-0.105<br />
-0.084<br />
0.046<br />
s<br />
Tab. 1<br />
Coefficienti ottenuti dell’equazione (5).<br />
Regressed coefficienst of equation (5).<br />
a8 1.93E+15<br />
7.22E+12<br />
1.34E+11<br />
8.26E+09<br />
to delle misurazioni sperimentali dei grani con le condizioni<br />
locali di deformazione sono stati ricavati i diversi coefficienti<br />
del modello di ricristallizzazione dinamica: a 2 =0.05, ε 0.5 =0.15,<br />
a 5 =0.15, β d =1 kd=1, a 10 =1, n 8 , m 8 , a 8 (Tab. 1), h 5 =n 5 =m 5 =Q 5 =0.<br />
Una più ampia e dettagliata descrizione del<strong>la</strong> procedura di calcolo<br />
dei coefficienti è riportata da Donati et.al. [13].<br />
La microstruttura del materiale allo stato di fornitura è costituita<br />
da grani ben definiti ed equiassici con un diametro medio<br />
di circa 135 μm decorati da grosse particelle lungo il bordo<br />
di grano; si nota inoltre <strong>la</strong> presenza di composti intermetallici<br />
all’interno dei grani. La Fig. 2a mostra <strong>la</strong> distribuzione del<strong>la</strong><br />
microstruttura nei campioni deformati, si nota <strong>la</strong> presenza di<br />
grani fortemente allungati in prossimità del punzone dove<br />
il valore stimato del<strong>la</strong> deformazione è 2.5-3.88, mentre nelle<br />
zone vicine allo stampo si ha una struttura meno deformata<br />
e più equiassica con valori del<strong>la</strong> deformazione minori a 0.8;<br />
si evidenzia una riduzione nello spessore dei grani passando<br />
dal<strong>la</strong> zona vicina al punzone da 20-50 μm fino al<strong>la</strong> zona a contatto<br />
dello stampo con valori di 80-110 μm. Questa diminuzione<br />
è dovuta al tipo di deformazione che ha subito il materiale<br />
(lungo <strong>la</strong> direzione assiale), mentre solo in alcune piccole zone<br />
si vede l’effetto del<strong>la</strong> ricristallizzazione geometrica dinamica<br />
(GDRX) che ha generato nuovi grani senza nucleazione; infatti,<br />
i grani sono fortemente deformati lungo <strong>la</strong> direzione di<br />
estrusione e quando lo spessore del grano raggiunge quello<br />
del sottograno si formano questi nuovi grani equiassici.<br />
Confrontando i risultati sperimentali delle dimensioni dei<br />
grani e <strong>la</strong> loro distribuzione con i dati forniti da modello di<br />
previsione FEM (fig.2b) lungo tutta <strong>la</strong> sezione dei campioni,<br />
si ha un errore medio di circa il 12% con una massima deviazione<br />
del 57%, conseguendo un interessante accordo con i dati<br />
sperimentali, come riportato in [13]. La maggior deviazione si<br />
trova alle basse temperature di deformazione e nel<strong>la</strong> zona alta<br />
delle coppe dove un non perfetto centraggio del punzone (nelle<br />
prove sperimentali) potrebbe indurre a delle deformazioni<br />
non omogenee producendo degli spessori diversi.<br />
Seconda fase - Trattamento termico<br />
In questa seconda fase, sono stati trattati termicamente 8 campioni<br />
in forno a 550°C per 30 minuti; tali campioni, raffreddati<br />
in aria, successivamente sono stati riportati a 180°C per 10<br />
ore. Seguendo <strong>la</strong> stessa procedura del<strong>la</strong> prima fase, i campioni<br />
sono stati preparati per l’analisi metallografica per <strong>la</strong> misura<br />
del diametro medio del grano. Fig. 3 mostra <strong>la</strong> presenza di<br />
grani equiassici in tutti i campioni trattati, si nota <strong>la</strong> completa<br />
ricristallizzazione statica ed un aumento del diametro medio<br />
del grano; in partico<strong>la</strong>re si nota una crescita dei grani nei campioni<br />
deformati alle basse velocità ed alle alte temperature,<br />
e a temperature superiori a 450°C siamo in presenza di una<br />
crescita abnorme dei grani nel<strong>la</strong> zona interna del bicchierino<br />
(PCG) (Fig. 3-c). A 350°C il diametro medio del grano va da<br />
155 μm vicino al punzone fino a 220 μm sul fondo del bicchiere<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 35
Alluminio e leghe
Memorie >><br />
s<br />
Fig. 4<br />
Mostra alcune billette estruse a 0.3 mm/s.<br />
the billets extruded at 0.3 mm/s.<br />
del<strong>la</strong> billetta in uscita iniziava immediatamente a raffreddarsi<br />
mentre <strong>la</strong> parte rimasta all’interno del container rimaneva<br />
ancora calda fino al<strong>la</strong> totale estrazione. Vista l’impossibilità di<br />
raffreddare immediatamente <strong>la</strong> billetta dopo l’estrusione si è<br />
tenuto conto durante le successive analisi sia del<strong>la</strong> ricristallizzazione<br />
statica (dovuta al<strong>la</strong> prolungata permanenza a circa<br />
450°C) sia dell’accrescimento del grano. Il carico massimo<br />
raggiunto durante <strong>la</strong> fase di estrusione era di 3MN. Il flusso<br />
del materiale e <strong>la</strong> struttura cristallina sono stati analizzati in<br />
tutte le zone del<strong>la</strong> billetta, poiché l’estrusione è stata fermata al<br />
raggiungimento del 50% dell’altezza del<strong>la</strong> billetta come corsa<br />
del punzone (Fig. 4).<br />
Le billette sono state tagliate lungo un piano di simmetria e<br />
preparate per le macro e micro analisi; come si vede in Fig. 5,<br />
<strong>la</strong> macro struttura dimostra una morfologia diversa dei grani<br />
a seconda <strong>la</strong> posizione in cui si trovano. Sono state individuate<br />
4 zone:<br />
zona I, detta zona morta; in questa zona il materiale non subisce<br />
scorrimento né deformazioni significative all’avanzare del<br />
pistone (esclusa <strong>la</strong> fase iniziale del processo).<br />
La microstruttura nel<strong>la</strong> zona (A1) (Fig.<br />
5), è dominata da grani equiassici con un<br />
diametro medio 110 μm, non si evidenzia<br />
presenza di ricristallizzazione né fenomeni<br />
di accrescimento vista <strong>la</strong> quasi assenza<br />
del<strong>la</strong> deformazione.<br />
Zona II, in cui il materiale subisce un forte<br />
scorrimento; i grani sono sottoposti a<br />
una deformazione di taglio a causa delle<br />
condizioni al contorno. I grani nel<strong>la</strong> zona<br />
(A2) risultano molto deformati ed allungati<br />
lungo le linee di flusso del materiale<br />
ed orientati verso il foro di uscita del<strong>la</strong><br />
matrice, hanno lunghezza media 320 μm<br />
e spessore medio di 54 μm, con un valore<br />
del diametro medio equivalente di circa<br />
120 μm. Non risultano fenomeni significativi<br />
di ricristallizzazione e di crescita dei<br />
grani deformati.<br />
Zona III; al contrario del<strong>la</strong> zona II il ma-<br />
s<br />
Fig. 6<br />
analisi EBSD del<strong>la</strong> zona (A5).<br />
EBSD analysis of (A5) location.<br />
Alluminio e leghe<br />
s<br />
Fig. 5<br />
Macro e micro analisi lungo una sezione del<strong>la</strong><br />
billetta estrusa.<br />
Macro and micro analysis of the extruded rest.<br />
teriale scorre direttamente verso il foro di uscita del<strong>la</strong> matrice,<br />
e i grani vengono semplicemente tras<strong>la</strong>ti fino al foro di uscita;<br />
il materiale in questa zona è soggetto ad elevata pressione<br />
idrostatica ed elevata temperatura, mentre <strong>la</strong> deformazione e<br />
<strong>la</strong> velocità di deformazione aumentano man mano che il materiale<br />
si avvicina al foro di uscita. All’uscita (A5), il materiale<br />
presenta una struttura composta da grani ricristallizzati con<br />
un diametro medio di 50 μm, ma persiste <strong>la</strong> presenza di grani<br />
fortemente allungati di spessore medio pari a circa 100 μm,<br />
come si vede anche in modo chiaro dall’analisi EBSD fatta nel<strong>la</strong><br />
stessa zona (A5), mostrata in Fig. 6.<br />
Infine, nel<strong>la</strong> zona IV (zona di uscita dallo stampo), a causa<br />
dell’influenza dei valori elevatissimi di tutti i parametri del<br />
processo visti finora, <strong>la</strong> struttura si presenta abbastanza complessa;<br />
al centro valgono le condizioni descritte per <strong>la</strong> zona<br />
(A5), mentre vicino al<strong>la</strong> superficie, siamo in presenza di una<br />
corona composta da grani completamente ricristallizzati con<br />
una crescita abnorme (A4) con dei grani che raggiungono i<br />
1300 μm di diametro medio. Questo fenomeno è causato dalle<br />
condizioni estreme di deformazione, velocità di deformazione,<br />
elevato attrito (che causa un aumento del<strong>la</strong> temperatura<br />
nel<strong>la</strong> zona periferica) e di raffreddamento. Lo stesso fenomeno<br />
è stato osservato nelle prove fatte sui bicchierini nel<strong>la</strong> fase pre-<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 37
Alluminio e leghe
Memorie >><br />
simu<strong>la</strong>re un processo reale di estrusione. Dal confronto tra i risultati<br />
sperimentali e quelli delle simu<strong>la</strong>zioni, risulta che i dati<br />
delle simu<strong>la</strong>zioni hanno una buona concordanza con quelli<br />
sperimentali, eccetto che nelle zone periferiche dove appaiono<br />
fenomeni di accrescimento del grano, che dimostrano una<br />
carenza del codice.<br />
RIFERIMENTI BIBLIOGRAFICI<br />
1] T. Sheppard, 2006. Prediction of structure during shaped<br />
extrusion and subsequent static recrystallisation during the<br />
solution soaking operation, Journal of Materials Processing<br />
Technology vol.177, pp. 26–35.<br />
2] A.R. Bandar, S. R. C<strong>la</strong>ves, J. Lu, K. Matous, W. Z. Misiolek,<br />
A. M. Maniatty 2004 “Microstructural Evaluation of 6xxx Aluminum<br />
Alloys for Computer-Simu<strong>la</strong>ted Texture Prediction”,<br />
Aluminum Extrusion Technology Seminar ET 2004, Or<strong>la</strong>ndo,<br />
vol 1, pp169-176.<br />
3] B. Dixon, “Extrusion of 2xxx and 7xxx alloys”, Aluminum<br />
Extrusion Technology Seminar, Chicago,2000, vol1, pp281-<br />
2940.<br />
4] T. Sheppard, “Development of structure recrystallization kinetics<br />
and prediction of recrystallised <strong>la</strong>yer thickness in some<br />
Al-alloys”, Aluminum Extrusion Technology Seminar, Chicago,1996,<br />
vol1, pp163-170.<br />
5] J.M.C. Mol, J. van de Langkruis, J.H.W. de Wit and S. van<br />
der Zwaag “An integrated study on the effect of pre- and<br />
post-extrusion heat treatments and surface treatment on the<br />
filiform corrosion properties of an aluminium extrusion alloy”<br />
Corrosion Science, Volume 47, Issue 11, November 2005, Pages<br />
2711-2730<br />
6] F. J. Humphreys, M. Hatherly “Recrystallization and Re<strong>la</strong>ted<br />
Annealing Phenomena” Pergamon Press Inc, Oxford, 1995<br />
ISBN 978-0080418841<br />
ANALYSIS OF THE MICROSTRUCTURAL EVOLUTION<br />
DURING HOT EXTRUSION OF AA6060 BY MEANS<br />
OF FEM SIMULATION<br />
Keywords: FEM, recrystallization, extrusion, aluminium<br />
alloy<br />
In this work an experimental methodology to evaluate the prediction of<br />
recrystallized structures in aluminum extrusion was presented and validated.<br />
In the first part of the work an experimental procedure to investigate<br />
the evolution of recrystallization in aluminum alloys is presented<br />
and discussed. Several cups, obtained by means of inverse extrusion, were<br />
produced at different temperatures and process speeds. The specimens<br />
were analyzed in order to examine the grain size distribution. The coefficients<br />
for dynamic recrystallization models were obtained by regression<br />
ABSTRACT<br />
Alluminio e leghe<br />
7] Gourdet, S. Montheillet, F. “Experimental study of the recrystallization<br />
mechanism during hot deformation of aluminium”<br />
Materials Science and Engineering A: Structural Materials:<br />
Properties, Microstructure and Processing, v 283, n 1-2,<br />
May, 2000, p 274-288<br />
8] J. G. Byrne, Recovery, Recrystallization, and Grain Growth,<br />
(New York: MacMillman, 1965), 93-109.<br />
9] R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D.<br />
Juul Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. Mc-<br />
Queen and A. D. Rollett “Current issues in recrystallization:<br />
a review” Materials Science and Engineering A, Volume 238,<br />
Issue 2, 15 November 1997, Pages 219-274<br />
10] T. Pettersen, B. Holmedal, E. Nes, “Microstructure development<br />
during hot deformation of aluminum to <strong>la</strong>rge strains”<br />
Metallurgical and Materials Transactions A: Physical Metallurgy<br />
and Materials Science, v 34, n 12, December, 2003, p 2737-<br />
2744<br />
11] J. Fluhrer, “DEFORMTM 3D User’s Manual Version 6.0”<br />
Scientific Forming Technologies Corporation, 2006<br />
12] G. Shen, S.L Semiatin, and R. Shivpuri, “Modeling Microstructure<br />
Development during the Forging of Waspaloy”,<br />
Metallurgical and Materials Transactions A, 26A (1995), 1795-<br />
1803.<br />
13] L. Donati, J. Dzwonczyk, J. Zhou, L. Tomesani “Microstructure<br />
prediction of hot-deformed aluminum alloys” accepted<br />
for publication on Key Engineering Materials (Proceedings of<br />
Extrusion Workshop and Benchmark 2007), Trans Tech (2007);<br />
14] T. Sheppard, Metallurgical Aspects of Direct and Indirect<br />
Extrusion, Proc. of the 4th Aluminum Extrusion Technology<br />
Seminar, (1984), 107-124<br />
15] M. Schikorra, L. Donati, L. Tomesani, M. Kleiner “The role<br />
of friction in the extrusion of AA6060 aluminum alloy, process<br />
analysis and monitoring”, Journal of Materials Processing<br />
Technology, 191 (2007) pp. 288–292.<br />
analysis after thermo-mechanical FEM simu<strong>la</strong>tions of the experiments<br />
realized with the code Deform 3D. A complete set of coefficients was regressed<br />
for the avai<strong>la</strong>ble microstructure evolution models inside the code<br />
environment. The specimens were then heated in a furnace and cooled<br />
in order to reproduce static recrystallization of the material. The grain<br />
distribution was examined and the coefficients for the equation for static<br />
recrystallization prediction were regressed, too. In the second part of the<br />
work the extrusion of a round-shaped profile is described and the grain<br />
size distribution on the profile and on the billet rest is analyzed. The obtained<br />
models were applied to the real extrusion of a round profile and a<br />
comparison between experimental measurements and simu<strong>la</strong>tion results<br />
was performed. The simu<strong>la</strong>ted results were in very good agreement with<br />
experimental data, except in zones where peripheral coarse grain and<br />
grain growth appeared. Here, a further investigation effort and specific<br />
modeling equations are required.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 39
Memorie >><br />
Acciaio<br />
PRECIPITATION STRENGTHENING<br />
PRODUCED BY THE FORMATION<br />
IN FERRITE OF Nb CARBIDES<br />
M. A. Altuna, A. Iza-Mendia, I. Gutierrez<br />
A Nb microalloyed steel has been thermomechanically processed at <strong>la</strong>boratory through the use of p<strong>la</strong>ne strain<br />
compression sequences followed by simu<strong>la</strong>ted coiling. Tensile samples have been machined from the obtained<br />
specimens in order to investigate the effect of different variables: recrystallisation or accumu<strong>la</strong>ted strain before<br />
transformation, holding in austenite and coiling temperature on the final mechanical behaviour. Transmission<br />
electron microscopy observation of the precipitates has been carried out after coiling at different temperatures.<br />
It has been shown that when Nb remains in solution in austenite after hot deformation, it can precipitate in<br />
ferrite, leading to an important strengthening effect which is directly re<strong>la</strong>ted to the concentration of Nb in<br />
solution before transformation and coiling temperature.<br />
KEYWORDS: thermomechanical processing, niobium, coiling, precipitation strengthening, ferrite, microstructure,<br />
tensile<br />
INTRODUCTION<br />
Niobium de<strong>la</strong>ys austenite recrystallization during hot rolling<br />
interpass times due to solute drag when being in solution and<br />
also as a consequence of carbonitride strain induced precipitation<br />
[1,2,3]. These two phenomena result in a final ferrite<br />
grain refinement [4,5,6,7]. Precipitates formed in austenite<br />
are subjected to a re<strong>la</strong>tively fast coarsening and lose part of<br />
their potential efficiency as ferrite strengtheners. Precipitation<br />
of Nb in ferrite is expected to be significantly finer and<br />
contribute to increase the tensile properties. Although extensive<br />
investigations have been carried out to characterize Nb<br />
(C,N) precipitation in austenite, there are fewer studies concerning<br />
precipitation of NbC in ferrite. Additionally, there are<br />
some controversial results, depending on the source. Some<br />
authors c<strong>la</strong>im that when some Nb is left in solution after hot<br />
working, precipitation can take p<strong>la</strong>ce during the coiling [8,9],<br />
while others consider that homogeneous precipitation of<br />
NbC is suppressed below about 700ºC [10,11] and that there<br />
is no precipitation of Nb during coiling [12,13].<br />
The purpose of this investigation was to study the eventual<br />
precipitation of Nb in ferrite during coiling and in the case of<br />
precipitation to estimate its contribution to the strength.<br />
EXPERIMENTAL<br />
An industrial Nb-steel [14] with composition: 0.06C - 0.35Si<br />
M. A. Altuna, A. Iza-Mendia, I. Gutierrez<br />
CEIT and TECNUN (Univ. Navarra), Donostia-San Sebastián, Spain<br />
Paper presented at the 3rd International Conference<br />
Thermomechanical Processing of Steels, organised by AIM; Padova,<br />
10-12 September 2008<br />
- 1Mn - 0.05Al - 0.0056N - 0.056Nb - 0.002Ti (wt-%) has been<br />
the base for the present work. Multipass thermomechanical<br />
p<strong>la</strong>ne strain compression tests were performed after reheating<br />
the specimens at 1250ºC for 15 minutes in order to assure<br />
the total dissolution of Nb, followed by fast cooling to<br />
the deformation temperature.<br />
Two different deformation sequences were applied in order<br />
to condition the austenite. The thermal cycle of the former<br />
sequence is shown schematically in Fig. 1. One deformation<br />
pass was applied at 1100ºC at a strain rate of 1 s -1 and<br />
a strain ε=0.3, followed by holding time at the same temperature<br />
during 20s in order to ensure the recrystallization<br />
s<br />
Fig. 1<br />
Example of the thermal cycle applied for onepass<br />
deformation sequence plus coiling.<br />
Esempio di ciclo termico, per sequenza di deformazione a<br />
passaggio singolo seguito da avvolgimento.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 41
Acciaio
Memorie >><br />
s<br />
Fig. 4<br />
Ferrite-pearlite microstructures obtained after<br />
two-pass deformation sequence and coiling at different<br />
temperatures. The microstructure of the reference<br />
test (1h at 870ºC) is also shown for comparison.<br />
Microstrutture di ferrite – perlite ottenute dopo una<br />
sequenza di deformazione a due passaggi e avvolgimento<br />
a diverse temperature. A fini comparativi viene mostrata<br />
anche <strong>la</strong> microstruttura delle prove di riferimento (1h a<br />
870ºC).<br />
650ºC, leading to some polygonal ferrite being formed at prior<br />
austenite grain boundaries.<br />
Subsequent fast cooling to 500ºC and simu<strong>la</strong>ted coiling at this<br />
temperature leads to some acicu<strong>la</strong>r ferrite and finally pearlite<br />
produces from the carbon enriched austenite.<br />
The microstructures obtained at different coiling temperatures<br />
after a two-pass deformation sequence, are shown in Fig. 4.<br />
Ferrite-pearlite microstructures are obtained at coiling temperatures<br />
between 750 and 600ºC. As can clearly be seen, the application<br />
of the second deformation pass produces a significant<br />
refinement of the final microstructure which can be attributed<br />
to the accumu<strong>la</strong>ted strain in austenite before transformation.<br />
The volume fraction of ferrite and mean linear intercept are<br />
shown in Tab. 1 for the different tests. Pearlite is in the range<br />
3-7% whereas ferrite grain size varies with the applied conditions.<br />
Decreasing the coiling temperatures produces some<br />
grain refinement for the one-pass deformation sequence, passing<br />
from 33 μm when coiling is performed at 750ºC to 23 μm<br />
at 600ºC. The effect of the coiling temperature on the ferrite<br />
grain size when applying a two pass deformation sequence is<br />
negligible leading to a value around 14 μm.<br />
Holding the specimen during 1h at 870ºC has a small effect on<br />
the ferrite grain size after one-pass deformation sequence, but<br />
gives higher grain sizes after two-pass.<br />
Tensile data have been plotted in Fig. 5 as a function of coiling<br />
temperature for the two deformation sequences. The reference<br />
tests have been identified by R. It is evident that the<br />
decrease of the coiling temperature has a strengthening effect,<br />
excepting for the case in which a 1h holding at 870ºC was applied<br />
before cooling to the coiling temperature. The difference<br />
in yield stress between the two materials coiled at 650ºC with<br />
Acciaio<br />
s<br />
Fig. 5<br />
Mechanical behaviour, as a function of the<br />
coiling temperature. R= reference test (1h at 870ºC):<br />
a) 1 deformation pass and b) two deformation pass<br />
sequences.<br />
Comportamento meccanico, in funzione del<strong>la</strong><br />
temperatura di avvolgimento. R = prova di riferimento<br />
(1h a 870ºC): a) un passaggio di deformazione e b) due<br />
passaggi di deformazione.<br />
s<br />
Fig. 6<br />
Model predictions [15] for the precipitation of<br />
Nb in austenite at 870ºC considering precipitation on a<br />
recrystallized austenite or strain induced precipitation.<br />
Previsioni da modello [15] per <strong>la</strong> precipitazione di Nb<br />
in austenite a 870°C considerando <strong>la</strong> precipitazione<br />
su austenite ricristallizzata o precipitazione indotta da<br />
deformazione.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 43
Acciaio
Memorie >><br />
s<br />
Fig. 10<br />
TEM image of a thin foil showing fine<br />
precipitates homogeneously distributed in ferrite.<br />
1-pass sequence and coiling at 600ºC.<br />
Immagine TEM di una <strong>la</strong>mina sottile che mostra<br />
precipitati fini distribuiti omogeneamente nel<strong>la</strong> ferrite.<br />
Sequenza di deformazione a passaggio singolo,<br />
permanenza 1h a 870ºC e raffreddamento a 650ºC.<br />
temperature goes in agreement with the observed increase of<br />
the density of fine precipitates in ferrite. The size of the precipitates<br />
has been determined from TEM images obtained on<br />
thin foils. The particle size distributions for different processing<br />
conditions are shown in Fig. 11. Only particles with sizes<br />
lower than 20 nm have been taken into consideration for this<br />
quantification.<br />
The finest precipitation has been observed in the sample<br />
coiled at 750ºC, leading to a mean value of 6 nm, with about<br />
40% of the precipitates with sizes in the range 4-6 nm. The<br />
coarsest particles are observed in the specimen held during<br />
1h at 870ºC and coiled at 650ºC. In this case, the mean particle<br />
size is around 10nm. In the specimen coiled at 600ºC,<br />
around the 55% of the precipitates have sizes between 6 and<br />
8 nm, but an important fraction of particles are over this<br />
range. The result is a mean precipitate size of about 9 nm. It<br />
has to be mentioned that was not always possible to obtain<br />
a dark field image of the precipitates because quite often the<br />
contribution of the precipitates to the diffraction pattern was<br />
quite weak. As a consequence, the obtained particle sizes are<br />
probably slightly overestimated.<br />
Nb microalloying is generally used to condition the austenite<br />
by thermomechanical processing and obtain fine ferrite<br />
grain sizes leading to improved mechanical properties. In<br />
addition to this, it is generally accepted that Nb in solution<br />
in austenite leads to some strengthening of the final microstructure<br />
that cannot be attributed to the ferrite grain size<br />
refinement. However, there is some controversy when trying<br />
to exp<strong>la</strong>in the metallurgical mechanism which is responsible<br />
of this strengthening. Some authors attribute it to a high dislocation<br />
density at the interior of the non-polygonal ferrite<br />
grains usually observed in Nb containing steels, while others<br />
attribute it to precipitation.<br />
In the present case, the ferrite microstructure is re<strong>la</strong>tively<br />
coarse because the deformation sequences were designed<br />
aiming to investigate the eventual precipitation of Nb in ferrite<br />
over reaching austenite refinement. Some ferrite grains<br />
Acciaio<br />
s<br />
Fig. 11<br />
Particle size distributions obtained by TEM<br />
after one-pass deformation sequence a) 1h at<br />
870ºC+coiling at 650ºC, b) coiling at 750ºC and c)<br />
coiling at 600ºC. Only particles with sizes lower than<br />
20 nm have been considered.<br />
Distribuzioni del<strong>la</strong> dimensione delle particelle ottenute<br />
mediante TEM dopo sequenza di deformazione a<br />
passaggio singolo a) 1h a 870ºC + raffreddamento a<br />
650ºC, b) avvolgimento a 750°C e c) avvolgimento a<br />
600°C. Sono state considerate solo le particelle con<br />
dimensioni inferiori a 20 nm.<br />
present irregu<strong>la</strong>r shapes while others are polygonal. This is<br />
true for all the processing conditions, including the one in<br />
which the holding in austenite before coiling has produced<br />
an important precipitation before transformation. This indicates<br />
that even a low fraction of Nb in solution is able to<br />
produce non-polygonal grains.<br />
TEM observations do not indicate the presence of a high volume<br />
fraction of dislocations, but clearly demonstrate precipi-<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 45<br />
a<br />
b<br />
c
Acciaio
Memorie >><br />
AKCNOWLEDGEMENTS<br />
This work has been carried out with a financial grant from<br />
the Research Fund for Coal and Steel of the European Community<br />
and from the Programa de Acciones Complementarias<br />
CICYT MAT2004-0048-E, Ministerio de Educación y<br />
Ciencia, Spain. The authors would like to acknowledge L.<br />
Mujica, S. Martin for performing Thermomechanical testing<br />
and to C. Iparraguirre for her contribution to TEM work.<br />
REFERENCES<br />
1] B. DUTTA, C. M. SELLARS, Materials Science and Technology,<br />
3, (1987), p. 197.<br />
2] W. J. LIU, J. J. JONAS, Metallurgical Transactions A, 20A,<br />
(1989), p. 689.<br />
3] R. ABAD, A. I. FERNANDEZ, B. LOPEZ, J. M. RODRIGU-<br />
EZ-IBABE, ISIJ International, 41, (2001), p. 1373.<br />
4] E. J. PALMIERE, C. I. GARCIA, A. J. DEARDO, Metallurgical<br />
and Materials Transactions A, 27A, (1996), p. 951.<br />
5] O. KWON, A. J. DEARDO, Acta Metallurgica et Materialia,<br />
39, (1991), p. 529.<br />
6] Q. B. YU, Z. D. WANG, X. H. LIU, G. D. WANG, Materials<br />
Science and Engineering A, 379A, (2004), p. 384.<br />
7] S. YAMAMOTO, C. OUCHI, T. OSUKA, “Thermomechanical<br />
processing of microalloyed austenite”, Ed. A.J. DeArdo,<br />
G.A. Ratz, P.J. Wray, The Metallurgical Society of AIME,<br />
Warrendale, PA, (1982), p. 613.<br />
8] R. D. K. MISRA, H. NATHANI, J. E. HARTMANN, F. SICILI-<br />
ANO, Materials Science and Engineering A, 394A, (2005), p. 339.<br />
MIGLIORAMENTO DELLE CARATTERISTICHE<br />
MECCANICHE MEDIANTE PRECIPITAZIONE<br />
PRODOTTO DALLA FORMAZIONE DI CARBURI DI Nb<br />
NELLA FERRITE<br />
Parole chiave: acciaio, processi, precipitazione<br />
Un acciaio microlegato al Nb è stato trasformato termomeccanicamente<br />
in <strong>la</strong>boratorio attraverso sequenze di compressione p<strong>la</strong>nare seguite<br />
da avvolgimento simu<strong>la</strong>to. Da questo materiale sono stati ricavati<br />
provini di trazione mediante <strong>la</strong>vorazione dei pezzi ottenuti, al fine di<br />
ABSTRACT<br />
Acciaio<br />
9] S. SHANMUGAM, N. K. RAMISETTI, R. D. K. MISRA,<br />
T. MANNERING, D. PANDA, S. JANSTO, Materials Science<br />
and Engineering A, 460A, (2007), p. 335.<br />
10] A. J. DEARDO, International Materials Reviews, 48,<br />
(2003), p. 371.<br />
11] T. SAKUMA, R. W. K. HONEYCOMBE, Metal Science,<br />
18, (1984), p. 449.<br />
12] V. THILLOU, M. HUA, C. I. GARCIA, C. PERDRIX, A. J.<br />
DEARDO, Materials Science Forum, 284-286, (1998), p. 311.<br />
13] H. J. KESTENBACH, S. S. CAMPOS, J. GALLEGO, E.<br />
V. MORALES, Metallurgical and Materials Transactions A,<br />
34A, (2003), p. 1013.<br />
14] I. GUTIERREZ, M. A. ALTUNA, G. PAUL, S.V. PARK-<br />
ER, J. H. BIANCHI, P. VESCOVO, C. MESPLONT, M. WO-<br />
JCICKI, R. KAWALLA ‘ Mechanical Property Models for<br />
high strength complex microstructures (MEPMO), RFCS<br />
project, contract number: RFS-CR-03009. Draft final report,<br />
march (2007).<br />
15] B. López, MOFIPRE model, CEIT internal Report,<br />
(2007).<br />
16] F.B. PICKERING, Materials Science and Engineering, Ed.<br />
R.W. Cahn, P. Haasen, E.J. Kramer, Vol. 7, Constitution and<br />
Properties of Steels, Ed. F.B. Pickering, VCH, (1993), p. 47.<br />
17] E. OROWAN, “Internal stresses in metals and alloys”,<br />
Ed. The Institute of Metals, (1948), London, p. 451.<br />
18] M. F. ASHBY, Acta Metallurgica, 14, (1966), p. 679.<br />
19] T. GLADMAN, “The Physical Metallurgy of Microalloyed<br />
Steels”, Ed. The Institute of Materials, (1997), London.<br />
20] P. BUESSLER, P. MAUGIS, O. BOUAZIZ, J.-H. SCHMITT,<br />
Iron and Steelmaker, 30, (2003), p. 33.<br />
studiare l’effetto delle diverse variabili sul comportamento meccanico<br />
finale:<br />
ricristal<strong>la</strong>zione o tensioni accumu<strong>la</strong>te prima del<strong>la</strong> trasformazione,<br />
permanenza in campo austenitico e a temperatura di avvolgimento.<br />
Dopo l’avvolgimento a differenti temperature è stata effettuata l’osservazione<br />
dei precipitati al microscopio elettronico a trasmissione.<br />
È stato dimostrato che, quando il Nb rimane in soluzione nell’ austenite<br />
dopo deformazione a caldo, può precipitare nel<strong>la</strong> ferrite, portando ad<br />
un importante effetto di miglioramento delle caratteristiche meccaniche<br />
che è direttamente collegato al<strong>la</strong> concentrazione di Nb in soluzione<br />
prima del<strong>la</strong> trasformazione e del<strong>la</strong> temperatura di avvolgimento.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 47
Memorie >><br />
Acciaio<br />
EFFECT OF PRE-STRAINING AND<br />
BAKE HARDENING<br />
ON THE MICROSTRUCTURE<br />
AND MECHANICAL PROPERTIES<br />
OF CMnSi TRIP STEELS<br />
L.C. Zhang, I.B. Timokhina, A. La Fontaine, S.P. Ringer, P.D. Hodgson, E.V. Pereloma<br />
The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were<br />
studied in two CMnSi TRansformation-Induced P<strong>la</strong>sticity (TRIP) steels with different microstructures after<br />
intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised<br />
by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe<br />
and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength<br />
increase with some reduction in ductility after pre-straining and bake hardening treatment. The<br />
following main microstructural changes are responsible for the observed mechanical behaviours: a decrease<br />
in the volume fraction of retained austenite, an increase in the dislocation density and the formation of<br />
cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite<br />
regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and<br />
martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was<br />
analysed.<br />
KEYWORDS: transformation-induced p<strong>la</strong>sticity steel, retained austenite, bake hardening, mechanical behaviour,<br />
microstructure, three-dimensional atom probe<br />
INTRODUCTION<br />
In order to reduce weight and save energy, there has been<br />
an increasing interest in application of high strength<br />
steels for car structural components. As one of the<br />
advanced high strength steels, transformation-induced<br />
p<strong>la</strong>sticity (TRIP) steels have attracted the attention of both<br />
the steelmaking and automotive industries over the <strong>la</strong>st<br />
L.C. Zhang, E.V. Pereloma<br />
School of Mechanical, Materials and Mechatronics Engineering,<br />
Faculty of Engineering, University of Wollongong, Wollongong,<br />
NSW 2522, Australia<br />
I.B. Timokhina, P.D. Hodgson<br />
Centre for Material and Fibre Innovation, Faculty of Science and<br />
Technology, Deakin University, Geelong, Victoria 3217, Australia<br />
A. La Fontaine, S.P. Ringer<br />
Australian Key Centre for Microscopy & Microanalysis, The<br />
University of Sydney, NSW 2006, Australia<br />
Paper presented at the 3rd International Conference<br />
Thermomechanical Processing of Steels, organised by AIM, Padova,<br />
10-12 september 2008<br />
two decades. TRIP steels consisting of a complex<br />
multiphase microstructure (polygonal ferrite, carbide-free<br />
bainite, retained austenite and martensite) offer an excellent<br />
combination of strength (700–1000 MPa) and ductility<br />
(30–40% total elongation) [1]. The interaction of the multiple<br />
phases present in the microstructure during deformation<br />
and the strain-induced transformation of the metastable<br />
retained austenite to martensite [2,3] are thought to<br />
be responsible for these mechanical properties. At present,<br />
several studies have been undertaken to investigate the<br />
effect of the chemical composition and processing parameters<br />
of TRIP steel sheets [2,4,5], because these are the two<br />
main factors that can affect the volume fraction and stability<br />
of the retained austenite in TRIP steels.<br />
On the contrary, little work has been conducted on the<br />
variations of the mechanical properties and microstructures<br />
during the paint baking of deformed panel parts<br />
of TRIP steel sheets. When the steels are used for outer<br />
body parts and subjected to the paint baking cycle, additional<br />
strengthening of approximately 100–200 MPa<br />
arises from bake hardening and results in good shape<br />
fix-ability and improved dent and crash resistance [6].<br />
Recently, research on bake hardening of intercritically an-<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 49
Acciaio
RESULTS<br />
Memorie >><br />
A. Mechanical properties<br />
The mechanical properties of the steels in both as-received<br />
and PS/BH state are given in Fig. 1 and Tab. 2. Both steels<br />
exhibited a good combination of strength and ductility<br />
in the as-received condition with higher values of<br />
strength and ductility for TRIP01 steel compared with the<br />
TRIP02 (Tab. 2). In this state both steels showed a continuous<br />
yielding behaviour (Fig. 1). A continuous exponential<br />
decrease was distinct in the strain-hardening rate curves<br />
for both steels (Figs. 2 (a) and (b)). After the PS/BH treatment,<br />
both steels demonstrated a yield-point phenomenon<br />
on the stress-strain curves. After yield point elongation, the<br />
Acciaio<br />
Steel Conditions UTS (MPa) YS (MPa) Total El (%) Uniform El (%) BH response (MPa)<br />
TRIP01 as-received 880 ± 15 608 ± 20 40 ± 2<br />
30 ± 2<br />
N/A<br />
4 % P S / B H 891 ± 15 803 ± 20 29 ± 2<br />
21 ± 2<br />
82 ± 2<br />
TRIP02 as-received 795 ± 10 520 ± 10 31 ± 2<br />
27 ± 3<br />
N/A<br />
5 % P S / B H 810 ± 8 735 ± 5 27 ± 2<br />
21 ± 3<br />
60 ± 3<br />
UTS: ultimate tensile strength, YS: yield strength, Total El: total elongation, Uniform El: uniform elongation, BH response:<br />
bake hardening response.<br />
s<br />
Tab. 2<br />
Mechanical properties of the investigated TRIP steels after different processing.<br />
Proprietà meccaniche degli acciai TRIP investigati dopo i diversi processi.<br />
s<br />
Fig. 2<br />
Variations of the strain hardening rate with the<br />
true strain of the (a) TRIP01 and (b) TRIP02 steels.<br />
Variazioni del<strong>la</strong> velocità di incrudimento con <strong>la</strong> sollecitazione<br />
negli acciai (a) TRIP01 e (b) TRIP02.<br />
s<br />
Fig. 3<br />
Optical micrographs of the (a) TRIP01 and (b)<br />
TRIP02 steels after PS/BH treatment.<br />
Micrografie ottiche degli acciai (a) TRIP01 e (b) TRIP02<br />
dopo trattamento di PS/BH.<br />
flow stress started to increase until necking occurred.<br />
The strain-hardening rate curve of the TRIP02 steel<br />
after PS/BH treatment still showed a continuous exponential<br />
decrease (Fig. 2(b)). On the contrary, the<br />
strain-hardening rate of the TRIP01 steel after PS/BH<br />
treatment decreased sharply to negative values and<br />
then started to increase at around 6.5% true strain (Fig.<br />
2(a)). As seen from Tab. 2, the PS/BH treatment led to a significantly<br />
higher yield strength (~200 MPa) and a slightly<br />
higher ultimate tensile strength (~15 MPa) in both steels.<br />
However, the total elongation decreased by ~11% and ~4%<br />
for the TRIP01 and the TRIP02 steels, respectively, and the<br />
uniform elongations reduced by ~9% for TRIP01 and ~6%<br />
for the TRIP02. Both TRIP steels disp<strong>la</strong>yed a noticeable<br />
bake-hardening response (~82 and ~60 MPa for the<br />
TRIP01 and the TRIP02, respectively).<br />
B. Microstructural features<br />
Optical micrographs revealed that both TRIP steels showed<br />
a complex multiphase microstructure (Fig. 3). In the as-received<br />
condition, the microstructure of the TRIP01 steel consisted<br />
of ~ 30 ± 3% polygonal ferrite (PF), ~56 ± 3% bainite,<br />
~10 ± 3% retained austenite (RA) with an average carbon<br />
content of 1.21 ± 0.04 wt.% and the remaining of martensite.<br />
The polygonal ferrite grain size was 3 ± 1.5 μm. The TRIP02<br />
steel contained ~70 ± 3% polygonal ferrite and ~20 ± 3% retained<br />
austenite with an average carbon content of 1.20 ±<br />
0.05 wt.%. The remaining small volume fraction contained<br />
martensite and bainite. The average size of polygonal ferrite<br />
grains was 4 ± 1.5 μm. The volume fraction of retained<br />
austenite decreased from ~10% in as-received condition<br />
to ~8% in PS/BH state for the TRIP01 and from ~20%<br />
in the as-received condition to ~12% in the PS/BH state<br />
for the TRIP02 steel. In addition, the PS/BH treatment led to<br />
an increase in carbon content of retained austenite to 1.28 ±<br />
0.04 wt.% (TRIP01) and 1.30 ± 0.03 wt.% (TRIP02). It is noted<br />
that bainitic ferrite grains in the TRIP02 were predominantly<br />
long and parallel <strong>la</strong>ths while those in the TRIP01 steel had<br />
random orientation.<br />
Fig. 4 illustrated a more detailed microstructure of the<br />
steels after different processing. The microstructure in the<br />
as-received state was composed of polygonal ferrite, carbide-free<br />
bainite, retained austenite and martensite (Figs.<br />
4 (a) and (b)). After the PS/BH treatment, a lot of dislocations<br />
were observed in the polygonal ferrite, as seen<br />
from Figs. 4 (c) and (d). The most affected regions of<br />
PF grains were in the vicinity of martensite or retained<br />
austenite crystals, as denoted by the b<strong>la</strong>ck arrows. At the<br />
same time, the formation of dislocation cells in the polygo-<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 51
Acciaio
Steel<br />
TRIP01<br />
TRIP02<br />
Memorie >><br />
Phase<br />
Polygonal ferrite<br />
Bainitic ferrite after PS/BH<br />
Martensite<br />
Polygonal ferrite<br />
Retained austenite<br />
Bainite Bainitic ferrite<br />
Retained austenite<br />
of both steels was detected: (i) carbon-depleted region with<br />
an average carbon content of between 0.003 at.% and 0.02<br />
at.% (Figs. 6 and 7), (ii) a carbon-enriched region with average<br />
carbon content of between 3 at.% and 5.5 at.% (Fig. 7),<br />
and (iii) a volume or region, which can be described as a<br />
mixture of carbon-enriched (5.10 ± 0.20 at.%) and carbondepleted<br />
(0.20 ± 0.03 at.%) regions (Fig. 7). A summary<br />
of their major elemental concentrations is given in Tab.<br />
3. Therefore, from this the first region was polygonal<br />
Concentration<br />
C<br />
< 0.003<br />
0.11±0.01<br />
3.22±0.01<br />
0.02±0.01<br />
4.60±0.02<br />
0.20±0.03<br />
5.10±0.20<br />
Acciaio<br />
s<br />
Tab. 3<br />
Concentrations of the major alloying elements (at.%) in the phases of as-received steels, except where indicated<br />
otherwise, determined using APT and calcu<strong>la</strong>ted based on the number of atoms.<br />
Concentrazioni dei maggiori elementi alliganti (at.%) nelle fasi degli acciai come ricevuti, ad eccezione di dove diversamente indicato,<br />
determinati utilizzando APT e calco<strong>la</strong>ti sul<strong>la</strong> base del numero di atomi.<br />
s<br />
Fig. 7<br />
(a) Carbon atom map of as-received<br />
TRIP02 sample showing bainitic ferrite and<br />
retained austenite and (b) C, Mn and Si compositional<br />
profiles across along green (nearly horizontal) line of<br />
selected box shown in (a).<br />
Mappa dell’atomo di carbonio del campione di acciaio<br />
TRIP02 come ricevuto che mostra ferrite bainitica e<br />
austenite residua e (b) profili di composizione di C, Mn<br />
e Si lungo <strong>la</strong> linea verde (quasi orizzontale) del riquadro<br />
selezionato mostrato in (a).<br />
ferrite, the second retained austenite or martensite, and<br />
the third region was bainite, where the carbon-rich region<br />
was retained austenite/martensite and the carbondepleted<br />
region was bainitic ferrite. In both steels the<br />
Si content of polygonal ferrite was higher than the<br />
nominal Si content while the Mn content was lower (Tab.<br />
3). In addition, small iron carbide particles appeared in<br />
the as-received TRIP01 steel (Fig. 6). As shown in the APT<br />
map of the as-received TRIP02 steel (Fig. 7), the retained<br />
austenite crystals may appear in bainite, which had<br />
a p<strong>la</strong>te-like shape with a thickness of 16 ± 2 nm (Fig. 7)<br />
and contained a high carbon content (Tab. 3). The bainitic<br />
ferrite was characterised by a significantly higher carbon<br />
content (~0.2 at.%), lower Si content (~2.8 at.%) and higher<br />
Mn level (~1.5 at.%) than polygonal ferrite (Tab. 3). The bainitic<br />
ferrite in the TRIP01 steel after PS/BH treatment had<br />
higher than expected Si content (Tab. 3). This might be associated<br />
with the decomposition of bainitic ferrite during<br />
bake hardening resulting in the formation of iron carbides<br />
and rejection of Si back into the BF matrix (Fig. 8).<br />
After the PS/BH treatment, the formation of Cottrell atmospheres<br />
at dislocations in the polygonal ferrite and bainitic<br />
ferrite was evident from the atom probe maps (Figs. 8). The<br />
rod-like shape of carbon segregation to dislocations is clear<br />
from two atom maps taken in perpendicu<strong>la</strong>r directions<br />
(Figs. 8 (b) and (c)). It is also clear from Fig. 8 (a) that C segregation<br />
was non-uniform along the dislocations forming<br />
a complex tangle, with the formation of iron carbides at<br />
dislocation intersections. The carbon concentration in the<br />
core of the atmosphere reached up to ~7 at.%. At the same<br />
time, concentration profiles across the coarsest carbides<br />
revealed a carbon content at the centre of ~21 at.% which<br />
is close to the level in Fe 3 C. Carbon segregations to the<br />
particu<strong>la</strong>r p<strong>la</strong>ne in the coarse retained austenite crystals<br />
were observed in the TRIP02 after PS/BH (Fig. 9 (a)).<br />
The angle between the saturated p<strong>la</strong>nes was ±35°. The<br />
compositional profiles across these p<strong>la</strong>nes showed the<br />
carbon enrichment to 7±0.08 at.%, while Si and Mn concentrations<br />
were simi<strong>la</strong>r to the matrix composition (Fig. 9 (b)).<br />
DISCUSSION<br />
Si<br />
4.02±0.01<br />
3.30±0.1<br />
3.61±0.01<br />
3.90±0.03<br />
3.90±0.05<br />
2.80±0.02<br />
4.40±0.05<br />
Both steels showed continuous yielding in the as-received<br />
condition, while they exhibited a yield-point phenomenon<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 53<br />
Mn<br />
1.26±0.01<br />
1.44±0.04<br />
2.28±0.01<br />
0.90±0.03<br />
1.02±0.03<br />
1.50±0.02<br />
1.20±0.03
Acciaio
Memorie >><br />
phenomenon in TRIP02 is associated with the increase of<br />
the number of mobile dislocations due to the generation of<br />
the new ones. This difference in steels behaviour is due to<br />
the main microstructural difference of both steels. As seen<br />
from Fig. 3, there was about 70% polygonal ferrite in the<br />
TRIP02, in which numerous new dislocations easily formed<br />
during pre-straining, as well as during tensile testing<br />
of pre-strained and bake-hardened samples. There was<br />
much less polygonal ferrite (~30%) and much more bainite<br />
(~56%) in TRIP01, which was not as susceptible to prestraining<br />
as PF and in which the formation of Cottrell<br />
atmospheres took p<strong>la</strong>ce [4].<br />
CONCLUSIONS<br />
A pre-straining and bake hardening treatment led to a significant<br />
strength increase in CMnSi TRIP steels with some<br />
reduction in ductility. The observed effects of pre-straining<br />
and bake hardening on the mechanical behaviour of the<br />
steels were associated with the main changes in<br />
their microstructure: microstructural changes in polygonal<br />
ferrite, such as an increase in the dislocation density and<br />
the formation of cell substructure, a localized increase of<br />
the dislocation density in the polygonal ferrite regions adjacent<br />
to martensite and the formation of fine precipitation<br />
in bainite and martensite. It was concluded that the<br />
observed yield point phenomenon was due to dislocation<br />
unlocking in the TRIP01 steel, which contained bainite as a<br />
dominant phase. Contrarily, formation of new mobile dislocations<br />
was the reason for the yield drop in TRIP02 steel,<br />
in which polygonal ferrite was a major phase.<br />
ACKNOWLEDGEMENT<br />
The authors would like to acknowledge the support<br />
of the Ford Motor Company and Australian Research<br />
EFFETTO DI PRE-TENSIONAMENTO E BAKE-<br />
HARDENING SULLA microstruttura E SULLE<br />
PROPRIETA’ MECCANICHE E DI UN ACCIAIO TRIP<br />
CMnSi<br />
Parole chiave: acciaio, deformazioni p<strong>la</strong>stiche, proprietà<br />
Nel <strong>la</strong>voro sono stati studiati gli effetti di pre-tensionamento e bake<br />
hardening sul comportamento meccanico e sui cambiamenti microstrutturali<br />
in due acciai CMnSi TRIP (TRansformation-Induced P<strong>la</strong>sticity)<br />
con diverse microstrutture dopo ricottura intercritica. L’acciaio TRIP,<br />
prima e dopo i processi di pre-tensionamento e bake-hardening, sono<br />
stati caratterizzati mediante diffrazione a raggi X, microscopia ottica,<br />
microscopia elettronica a trasmissione, sonda atomica tridimensionale e<br />
Acciaio<br />
Council (ARC) Linkage scheme. We also acknowledge the<br />
technical assistance from the AMMNF.<br />
REFERENCES<br />
ABSTRACT<br />
1] Y. SAKUMA, O. MATSUMURA and H. TAKECHI, Metall.<br />
Mater. Trans. A 22 (1991), p.489.<br />
2] P.J. JACQUES, J. LADRIÈRE and F. DELANNY, Metall.<br />
Mater. Trans. A, 32 (2001), p.2759.<br />
3] V.F. ZACKAY, E.R. PARKER, D. FAHR and R. BUSH,<br />
Trans. ASM, 60 (1967), p.252.<br />
4] B.C. DE COOMAN, Curr. Opin. Solid State Mater. Sci. 8<br />
(2004), p.285.<br />
5] D.V. EDMONDS, K. HE, F.C. RIZZO, B.C. DE COOMAN,<br />
D.K. MATLOCK, and J.G. SPEER, Mater. Sci. Eng. A 438-<br />
440 (2006), p.25.<br />
6] L.J. BAKER, S.R. DANIEL and J.D. PARKER, Mater. Sci.<br />
Tech. 18 (2002), p. 355.<br />
7] I.B. TIMOKHINA, P.D. HODGSON and E.V. PERELO-<br />
MA, Metall. Mater. Trans. A 38 (2007), p.2442.<br />
8] A.K. DE, S. VANDEPUTTE and B.C. DE COOMAN,<br />
Scripta Mater. 44 (2001), p.695.<br />
9] B.D. CULLITY, Elements of X-ray diffraction, Addison-<br />
Wesley, London (1978) p.411.<br />
10] D.J. DYSON and B. HOLMES, Iron Steel Inst. 208 (1970),<br />
p.469.<br />
11] P.B. HIRSCH, R.B. NICHOLSON, A. HOWIE, D.W. PA-<br />
SHLEY and M.J. WHELAN, Electron microscopy of thin<br />
crystals, Butterworths, London (1965), p. 51.<br />
12] M.K. MILLER, Atom Probe Tomography, in: Handbook<br />
of Microscopy for Nanotechnology, eds. N. YAO and Z.L.<br />
WANG, Kluwer Academic Press, New York (2005), p.236.<br />
13] E.V. PERELOMA, I.B. TIMOKHINA, M.K. Miller and<br />
P.D. HODGSON, Acta Mater. 55 (2007), p.2587.<br />
14] D. KALISH and M. COHEN, Mater. Sci. Eng. 6 (1970),<br />
p. 156.<br />
prove a trazione. Entrambi gli acciai hanno mostrato comportamento discontinuo<br />
allo snervamento e un significativo aumento del<strong>la</strong> resistenza<br />
neccanica con una riduzione del<strong>la</strong> duttilità dopo il trattamento di pretensionamento<br />
e bake-hardening. I seguenti principali cambiamenti microstrutturali<br />
sono responsabili dei comportamenti meccanici osservati<br />
una diminuzione del<strong>la</strong> frazione in volume di austenite residua, un aumento<br />
del<strong>la</strong> densità delle dislocazioni e <strong>la</strong> formazione di una sottostruttura<br />
a celle nel<strong>la</strong> ferrite poligonale, una maggiore densità di dislocazioni<br />
localizzata nelle regioni a ferrite poligonale adiacenti al<strong>la</strong> martensite o<br />
all’austenite residua, una precipitazione di carburi di ferro nel<strong>la</strong> bainite<br />
e nel<strong>la</strong> martensite.<br />
Infine è stato analizzato il meccanismo re<strong>la</strong>tivo al<strong>la</strong> fenomenologia connessa<br />
al limite di snervamento osservato in entrambi gli acciai dopo<br />
trattamento.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 55
Memorie >><br />
Metallurgia delle polveri<br />
MATHEMATICAL MODELING<br />
OF HEAT TREATING<br />
POWDER METALLURGY STEEL<br />
COMPONENTS<br />
V. S. Warke, M. M. Makhlouf<br />
A mathematical model to predict the response of powder metallurgy steels to heat treatment is presented<br />
and discussed. The model is based on modification of commercially avai<strong>la</strong>ble software that was originally<br />
developed for wrought alloys so that it can account for the effect of porosity. An extensive database had to be<br />
developed specifically for PM steels and includes porosity- and temperature-dependent phase transformation<br />
kinetics, and porosity- and temperature-dependent phase-specific mechanical, physical, and thermal properties.<br />
This extensive database has been developed for FL-4065 PM steel and has been used in the model to predict<br />
dimensional change, distortion, and type and quantity of metallurgical phases that develop in a typical PM<br />
component upon heat treatment. The model predictions are compared to measured values and are found to be in<br />
excellent agreement with them.<br />
KEYWORDS: powder metallurgy, modelling, steel, heat treatment<br />
INTRODUCTION<br />
Components that are manufactured by the powder metallurgy<br />
process (PM) experience considerable changes during heat<br />
treatment. These include changes in their mechanical properties,<br />
dimensions, magnitude and sense of residual stresses, and<br />
metallurgical phase composition. Since most of the quality assurances<br />
criteria that these components have to meet include<br />
prescribed minimum mechanical properties and compliance<br />
with dimensional tolerances, it is necessary for producers of<br />
PM components to be able to accurately predict these changes<br />
in order to take appropriate measures to insure the production<br />
of parts that meet the required specifications. Several software<br />
packages that are capable of predicting the heat treatment response<br />
of wrought steels are avai<strong>la</strong>ble commercially [1-3], but<br />
none of them can predict the response of PM components. In<br />
this work, we developed a finite element-based model to predict<br />
the response of PM steels to heat treatment. The model is<br />
based on a modification of the commercially avai<strong>la</strong>ble software<br />
DANTE [3]. DANTE is comprised of a set of user-defined subroutines<br />
and can be linked to the finite element solver ABAQUS.<br />
Virendra S. Warke, Makhlouf M. Makhlouf<br />
Department of Mechanical Engineering - Worcester Polytechnic<br />
Institute - Worcester, MA 01609<br />
Paper presented at the International Conference<br />
“Innovation in heat treatment for industrial competitiveness”,<br />
organised by AIM, Verona, 7-9 May<br />
The DANTE subroutines contain a mechanics module, a phase<br />
transformation module, and a diffusion module that are coupled<br />
to a stress/disp<strong>la</strong>cement solver, a thermal solver, and a<br />
mass diffusion solver, respectively. A block diagram showing<br />
the combined DANTE/ABAQUS model is shown in Fig. 1. The<br />
model requires an extensive database, which includes temperature-<br />
and porosity-dependent phase transformation kinetics,<br />
and temperature- and porosity-dependent phase-specific mechanical,<br />
physical, and thermal properties of the steel. We de-<br />
s<br />
Fig. 1<br />
Solution procedure for the DANTE/ABAQUS<br />
model.<br />
Procedura di soluzione per il modello DANTE/ABAQUS.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 57
Metallurgia delle polveri
Memorie >><br />
s<br />
Fig. 4<br />
Measured strain vs. time for the austenite to<br />
bainite transformation at different isothermal holding<br />
temperatures.<br />
Misura del<strong>la</strong> deformazione in funzione del tempo per <strong>la</strong><br />
trasformazione da austenite a bainite durante trattamenti<br />
isotermi a temperature diverse.<br />
s<br />
Fig. 6<br />
TTTP diagram for 90% and 100% density FL-<br />
4605 PM steel plotted for the austenite to bainite and<br />
the austenite to martensite transformations.<br />
Diagramma TTTP per densità 90% e 100% dell’acciaio<br />
FL- 4605 PM tracciato per le trasformazioni da austenite<br />
a bainite e da austenite a martensite.<br />
hibit transformation p<strong>la</strong>sticity, i.e., p<strong>la</strong>stic flow caused by change<br />
in the re<strong>la</strong>tive proportions of the various metallurgical phases in<br />
the microstructure brought about by the phase transformation.<br />
We used Low Stress Di<strong>la</strong>tometry in order to characterize this<br />
transformation-induced p<strong>la</strong>sticity in FL-4605 PM steel. The procedure<br />
entails applying an external compressive static load to<br />
a standard specimen in a Gleeble machine just before the start<br />
of the transformation. We chose the magnitude of the applied<br />
load such that the magnitude of the resulting stress is less than<br />
the flow stress of austenite at the temperature of application of<br />
the load. We performed transformation induced p<strong>la</strong>sticity measurements<br />
on samples of three densities (90%, 95%, and 100% of<br />
the theoretical density of the material) for each of the austenite<br />
to martensite and the austenite to bainite transformations.<br />
Metallurgia delle polveri<br />
s<br />
Fig. 5<br />
Measured strain vs. temperature at different<br />
cooling rates during continuous cooling transformation<br />
measurements.<br />
Misura del<strong>la</strong> deformazione in funzione del<strong>la</strong> temperatura<br />
per velocità di raffreddamento differenti durante le<br />
misure di trasformazione in raffreddamento continuo.<br />
s<br />
Fig. 7<br />
True stress vs. true strain curve for austenite<br />
measured at three different temperatures for samples<br />
with 90% density at 1 s-1 strain rate.<br />
Curva sollecitazione vs. deformazione per austenite,<br />
misurata a tre temperature diverse per campioni con<br />
densità 90% e velocità di deformazione 1 s-1 .<br />
Fig. 8 (a) and Fig. 8(b) show the measured di<strong>la</strong>tation data for<br />
the 100% density sample at three the different applied stresses<br />
during the austenite to bainite and the austenite to martensite<br />
transformations, respectively. We performed simi<strong>la</strong>r measurements<br />
on samples with 90 % and 95% of theoretical density and<br />
used a fitting routine to fit this data to mathematical equations<br />
that were then used to create a transformation induced p<strong>la</strong>sticity<br />
database.<br />
MODEL CONSTRUCTION AND MATHEMATICAL<br />
SIMULATIONS<br />
The capabilities of the model are demonstrated using the test<br />
part shown in Fig. 9. The dimensions of the part are summarized<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 59
Metallurgia delle polveri
Memorie >><br />
a<br />
b<br />
s<br />
Fig. 10<br />
Coordinates of the circu<strong>la</strong>r hole before and<br />
after heat treatment. (a) Measured using a CMM. (b)<br />
Predicted by the model.<br />
Coordinate del foro circo<strong>la</strong>re prima e dopo trattamento<br />
termico. (a) Misurato mediante CMM. (b) Previsione del<br />
modello.<br />
FL-4605 PM steel component of configuration and dimensions<br />
simi<strong>la</strong>r to those used in the model.<br />
Sample production – We admixed AUTOMET 4601 steel powder<br />
with Asbury 1651 graphite powder to yield 0.5 wt% carbon<br />
in the final product. We added zinc sterate to the powder as a lubricant,<br />
then p<strong>la</strong>ced the admixed powder in a die and pressed it<br />
using 216 tons of pressure. We sintered the green parts at 1100°C<br />
for 30 minutes in a continuous sintering furnace under a controlled<br />
atmosphere and then we air-cooled them to room temperature.<br />
The average measured density of the parts was 95%<br />
of theoretical density with negligible variation within each part<br />
and from part to part.<br />
Heat treatment – The heat treatment cycle for the sintered parts<br />
consisted of furnace heating to 850°C, holding at this temperature<br />
for 20 minutes, and then quenching in oil with the parts<br />
p<strong>la</strong>ced in an upright position with their thinner section point-<br />
Metallurgia delle polveri<br />
s<br />
Fig. 11<br />
Change in radius at different locations around<br />
the circu<strong>la</strong>r hole as predicted by the model<br />
and as measured by a CMM.<br />
Variazione del raggio in diverse posizioni intorno ai fori<br />
circo<strong>la</strong>ri secondo <strong>la</strong> previsione del modello e misurato<br />
mediante CMM.<br />
s<br />
Fig. 12<br />
Section lines showing where cuts were made<br />
for measuring retained austenite.<br />
Linee di sezione che mostrano dove sono stati effettuati i<br />
tagli per misurare l’austenite residua.<br />
ing down. Twenty parts were heat treated in an internal quench<br />
batch furnace under an endothermic atmosphere with 0.5 wt.<br />
% carbon.<br />
In order to characterize the amount of distortion in the parts<br />
caused by the heat treatment we designed a fixture to hold the<br />
parts at the same location in a coordinate measurement machine<br />
(CMM). We measured the circu<strong>la</strong>r hole before and after<br />
heat treating the sample at locations around the periphery in 5°<br />
increments. We repeated the measurements at four depths along<br />
the thickness of the part and in each case we converted the xy<br />
measurement into a radius, r, and an angle θ at each measured<br />
point. We then normalized the radius by dividing it by the average<br />
radius before heat treatment. Fig. 10 and Fig. 11 compare the<br />
measured and model-predicted changes in dimensions of the<br />
central hole due to heat treatment.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 61
Metallurgia delle polveri
Memorie >><br />
Pressoco<strong>la</strong>ta<br />
DIE-CASTING: S.D.C. STEEL, A<br />
CONTINUOUS METALLURGIC INNOVATION<br />
TO MEET WITH THE PROBLEMS<br />
A. Grellier, F. Piana, G. Gay<br />
The S.D.C. steel grade has been especially designed for <strong>la</strong>rge-size toolings used in die-casting applications with<br />
the objective of increasing the fatigue resistance of the material and the tool life. A fundamental and integral<br />
approach has been undertaken to understand and measure the temperature and stress conditions at the surface<br />
during service, get a full multi-scale description of the steel microstructure and define the re<strong>la</strong>tionship between<br />
microstructure and its evolution and thermal fatigue resistance. The new grade with the associated optimised<br />
heat treatment offers superior mechanical properties and shows improved performance in its die-casting<br />
industrial applications.<br />
KEYWORDS: Die-casting, steel grade, microstructure, multi-scale observation, heat-treatment, hardenability, forging<br />
process modelling.<br />
INTRODUCTION<br />
For light alloys casting and more specifically pressure<br />
die-casting, the 5% chromium steel family grades (H11,<br />
X37CrMoV5, 1-2343) are widely used. Their performance<br />
measured by the total number of manufactured parts and<br />
the amount and cost of repair operations has been through<br />
the years increased by better casting process control and<br />
progress in the metallurgy and the heat treatment of the<br />
moulds. Higher hardness has a positive effect on tool life,<br />
but remains limited to guarantee a minimum toughness. A<br />
breakthrough was necessary in the metallurgical conception<br />
of the grade: beyond the measurement of conventional<br />
mechanical properties, our research program was focused<br />
on the global understanding of all the metallurgical and<br />
thermo-mechanical phenomenas involved. Hereafter are<br />
described some aspects of our scientific analysis, and the<br />
basic properties of the new improved S.D.C. steel.<br />
THERMOMECHANICAL LOCAL CONDITIONS OF<br />
THE WORKING SURFACE DURING SERVICE<br />
During parts production in the pressure die-casting process,<br />
the tool surface is submitted to thermal shocks at two times<br />
André Grellier<br />
Aubert&Duval - R&D Department – BP1<br />
F-63770 - Les Ancizes, France<br />
Fulvio Piana<br />
Aubert&Duval Italia-Viale Leonardo da Vinci 97-<br />
20090 Trezzano sul Naviglio (MI)<br />
Gérald Gay<br />
Aubert&Duval - Application Engineering Dpt.<br />
22 rue Henri Vuillemin B.P.63 – 92233- Gennevilliers<br />
within every cycle:<br />
- a hot shock when liquid metal is injected inside the<br />
mould<br />
- a cold shock when lubricant is sprayed on the surface.<br />
Temperature gradients induce high shear stresses at the surface<br />
of the material:<br />
- compression stresses during the hot shock which induce<br />
p<strong>la</strong>stic deformation in compression mode,<br />
- tension stresses during cold shock with associated p<strong>la</strong>stic<br />
deformation in tension mode and further crack initiation; at<br />
this stage, cracking may occur.<br />
In industrial conditions, the heat flux through the tool surface<br />
has been measured (Fig. 1) and the surface temperature<br />
s<br />
Fig. 1<br />
Typical thermal recording of one cycle during<br />
production of pressure-die cast parts.<br />
Registrazione tipica del<strong>la</strong> temperatura dello stampo in<br />
esercizio.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 63
Pressoco<strong>la</strong>ta
Memorie >><br />
sion Electron Microscopy in high resolution mode and with<br />
observations on replicas, X-Ray diffraction on precipitates<br />
extracted by chemical dissolution, and Small Angle Neutrons<br />
Scattering (SANS) has shown that precipitates of the<br />
5%Cr steels may be c<strong>la</strong>ssified in two families of sizes: about<br />
3 nm and 25/50 nm. Mechanical properties appear to be<br />
directly dependant from the density of the first family carbides<br />
of the (V,Mo)C type ; their density has been assessed<br />
to be about 1023/m 3 to 1024/m 3 .<br />
The new S.D.C. grade is derived from the 5% Cr standard<br />
steels with a nickel addition and a molybdenum and vanadium<br />
content adjustment in order to approach the perfect<br />
microstructure described before :<br />
- the combination of the effect of all elements, overall nickel<br />
and molybdenum, provides a very high hardenability:<br />
bainite features with wide ferrite <strong>la</strong>thes and elongated harmful<br />
carbides are avoided even on <strong>la</strong>rge parts corresponding<br />
to lower quench cooling rates,<br />
- martensite needles are small and dislocation density is<br />
high in the matrix,<br />
- the density of the nanometric (small size family) carbides<br />
has been carefully adjusted by the vanadium content -0.65%-<br />
for an austenising temperature of 1030°C.<br />
FINAL GENERAL PROPERTIES OF THE S.D.C.<br />
STEEL<br />
S.D.C. quenched from 1030°C shows a very high hardenability<br />
(Fig. 3). As the common annealing treatment of conventional<br />
5%Cr steels is not applicable to S.D.C., a specific cycle<br />
has been defined, which confers a hardness of less than 220<br />
HB suitable for rough machining. The microstructure (Fig.<br />
4) cannot be easily rated with conventional micrographic<br />
standard charts. Small-sized carbides are dispersed with a<br />
needle heredity distribution.<br />
The curve defining hardness as a function of tempering<br />
temperature (Fig. 5) is not very different from the standard<br />
s<br />
Fig. 4<br />
Microstructure in the annealed condition -<br />
original magnification: x500.<br />
Microstruttura in condizioni di tempra.<br />
Ingrandimento: x500.<br />
Pressoco<strong>la</strong>ta<br />
H11 reference. Charpy V impact test energy has been measured<br />
on a significative number of <strong>la</strong>rge size products in the<br />
conditions of industrial heat treatment and in conformity<br />
with NADCA Standard (Fig. 6). The results show an unusual<br />
homogeneity between specimens taken from the same<br />
p<strong>la</strong>ce in the block, between different positions in the block<br />
(core, near-surface…) and between different products. This<br />
steel is from far less sensitive that nickel-free grades to the<br />
s<br />
Fig. 5<br />
S.D.C. Hardness after tempering - Previous<br />
1030°C austenisation.<br />
Durezza dopo il trattamento di tempra. Previa<br />
austenitizzazione.<br />
s<br />
Fig. 6<br />
Charpy V impact test results on blocks in<br />
industrial heat treating conditions.<br />
Risultati dei test Charpy V, sui blocchi in condizioni di<br />
trattamento termico industriale.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 65
Pressoco<strong>la</strong>ta
Memorie >><br />
s<br />
Fig. 10<br />
Microstructure in the fully heat treated<br />
condition of a 1000x380 section - a) standard etch<br />
original magnification: x500; b) specific etching for<br />
grain size visualisation original magnification: x 100.<br />
Microstruttura nelle condizioni di trattamento termico<br />
del<strong>la</strong> sezione 1000 x 380 - a) incisione standard<br />
ingrandiamento: x 500; 10-b: incisione specifica<br />
per <strong>la</strong> visualizzazione del<strong>la</strong> dimensione del grano<br />
ingrandiamento: x 100.<br />
BEST PRACTICES FOR HEAT TREATING<br />
a<br />
b<br />
S.D.C. steel must be heat treated with simi<strong>la</strong>r equipment<br />
and procedures as common 5%Cr steels with the additional<br />
following instructions:<br />
- the austenisation temperature must be 1025/1030°C after<br />
a pre-heating in he 750/800°C range,<br />
- for best service performance, the target for hardness must<br />
be by 1 to 1.5 HRC more than the hardness of the reference<br />
5% Cr steel for the same application.<br />
- the first tempering must be at 550°C,<br />
- the final expected hardness is obtained by temperature<br />
adjustment of the following tempering cycles,<br />
Pressoco<strong>la</strong>ta<br />
- the full heat treatment may include two or three tempering<br />
steps; a third temper is recommended for very big<br />
blocks and if the temperature between quenching and<br />
first temper and between first and second temper has not<br />
reached a value below 100°C.<br />
- SDC is less sensitive than conventional 5%Cr steels to<br />
variations of gas pressure and gas flow during quenching.<br />
FIRST RESULTS IN PRODUCTION CONTEXT<br />
Moulds from different sizes have been produced and put<br />
in production inside several p<strong>la</strong>nts, with an initial hardness<br />
in the 44 to 49 HRC range. To-day, several of them<br />
have produced more than 100 000 units and none of them<br />
is considered as ruined, so a direct comparison for the total<br />
production of the mould is still not avai<strong>la</strong>ble.<br />
Nevertheless, results are considered as better than for reference<br />
steels of the H11 or low-Si H11 grades:<br />
- production before first crack detection: better from 15 to<br />
40%,<br />
- percentage of damaged surface for a given production<br />
amount: better from 15 to 35%,<br />
- maintenance operations: decrease from 20 to 80%,<br />
To-day, no drawback has been identified about repairing<br />
by welding, distortion, or catastrophic cracking during<br />
heat-treatment and service. Distortion during heat treatment<br />
appear to be less important than for c<strong>la</strong>ssic reference<br />
grades.<br />
Moreover, efforts have still to be done to adjust precisely<br />
the parameters of heat treating in partnership with every<br />
heat treating p<strong>la</strong>nt.<br />
CONCLUSIONS<br />
The S.D.C. steel is a new material for tools and more specifically<br />
die-casting moulds, with superior properties obtained<br />
as the result of the combination of several innovative<br />
actions:<br />
- a multi-scale approach for investigation in the microstructure,<br />
- a definition of an ideal microstructure by the understanding<br />
of re<strong>la</strong>tions between microstructure and its evolution<br />
under thermo-mechanical loading during service,<br />
- a new composition with a nickel addition and a precise<br />
adjustment of the ba<strong>la</strong>nce between hardening elements<br />
and nickel, with a low level of trace elements<br />
- a specific production route with an optimised forging<br />
and annealing process,<br />
- a heat treatment with an accurate definition of parameters<br />
for austenising and tempering.<br />
To-day, the S.D.C. toolings which have been put into production<br />
show an improved performance compared to reference<br />
materials. These results have to been confirmed;<br />
discussions and technical col<strong>la</strong>boration between all partners<br />
remain absolutely necessary to go ahead on the way<br />
of progress.<br />
REFERENCES<br />
1] G.DOUR, M. DARGUSH, C.DAVIDSON, A.NEF: Journal<br />
of Material Processing Technology 169 (2005),223-233<br />
2] DELAGNES D., REZAI-ARIA F., LEVAILLANT C.,<br />
GRELLIER A.,: Proc. of 5th International Conference on<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> giugno 2009 67
Pressoco<strong>la</strong>ta