26.12.2012 Views

Ageing Testing Procedures on Lithium Batteries in an International ...

Ageing Testing Procedures on Lithium Batteries in an International ...

Ageing Testing Procedures on Lithium Batteries in an International ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INL/CON-10-19698<br />

PREPRINT<br />

<str<strong>on</strong>g>Age<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Procedures</str<strong>on</strong>g> <strong>on</strong> <strong>Lithium</strong><br />

<strong>Batteries</strong> <strong>in</strong> <strong>an</strong><br />

Internati<strong>on</strong>al<br />

Collaborati<strong>on</strong> C<strong>on</strong>text<br />

25 th World Battery, Hybrid <strong>an</strong>d Fuel Cell<br />

Electric Vehicle Symposium &<br />

Exhibiti<strong>on</strong><br />

Mario C<strong>on</strong>te<br />

Fiorent<strong>in</strong>o Valerio C<strong>on</strong>te<br />

Ira D. Bloom<br />

Kenji Morita<br />

Tomohiko Ikeya<br />

Jeffrey R. Belt<br />

November 2010<br />

This is a prepr<strong>in</strong>t of a paper <strong>in</strong>tended for publicati<strong>on</strong> <strong>in</strong> a journal or<br />

proceed<strong>in</strong>gs. S<strong>in</strong>ce ch<strong>an</strong>ges may be made before publicati<strong>on</strong>, this<br />

prepr<strong>in</strong>t should not be cited or reproduced without permissi<strong>on</strong> of the<br />

author. This document was prepared as <strong>an</strong> account of work<br />

sp<strong>on</strong>sored by <strong>an</strong> agency of the United States Government. Neither<br />

the United States Government nor <strong>an</strong>y agency thereof, or <strong>an</strong>y of<br />

their employees, makes <strong>an</strong>y warr<strong>an</strong>ty, expressed or implied, or<br />

assumes <strong>an</strong>y legal liability or resp<strong>on</strong>sibility for <strong>an</strong>y third party’s use,<br />

or the results of such use, of <strong>an</strong>y <strong>in</strong>formati<strong>on</strong>, apparatus, product or<br />

process disclosed <strong>in</strong> this report, or represents that its use by such<br />

third party would not <strong>in</strong>fr<strong>in</strong>ge privately owned rights. The views<br />

expressed <strong>in</strong> this paper are not necessarily those of the United<br />

States Government or the sp<strong>on</strong>sor<strong>in</strong>g agency.


EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

<str<strong>on</strong>g>Age<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>Procedures</str<strong>on</strong>g> <strong>on</strong> <strong>Lithium</strong> <strong>Batteries</strong> <strong>in</strong> <strong>an</strong> Internati<strong>on</strong>al<br />

Collaborati<strong>on</strong> C<strong>on</strong>text<br />

Mario C<strong>on</strong>te, 1 Fiorent<strong>in</strong>o Valerio C<strong>on</strong>te, 2 Ira D. Bloom, 3<br />

Kenji Morita, 4 Tomohiko Ikeya, 5 <strong>an</strong>d Jeffrey R. Belt 6<br />

1Energy Storage Systems, Technical Unit “Adv<strong>an</strong>ced Technologies for Energy <strong>an</strong>d Industry”, Nati<strong>on</strong>al Agency for<br />

New Technologies, Energy <strong>an</strong>d Susta<strong>in</strong>able Ec<strong>on</strong>omic Development, S. Maria di Galeria (Rome), 00123, Italy<br />

E-mail: mario.c<strong>on</strong>te@enea.it<br />

2 Electric Drive Technologies, Mobility Department, AIT Austri<strong>an</strong> Institute of Technology, Österreichisches<br />

Forschungs- und Prüfzentrum Arsenal Ges.m.b.H., Gief<strong>in</strong>ggasse 2 (Vienna), Austria<br />

E-mail: valerio.c<strong>on</strong>te@ait.ac.at<br />

3 Arg<strong>on</strong>ne Nati<strong>on</strong>al Laboratory (ANL), 9700 South Cass Avenue, Arg<strong>on</strong>ne, IL 60439 USA<br />

E-mail: ira.bloom@<strong>an</strong>l.gov<br />

4 Perform<strong>an</strong>ce Research FC-EV Research Divisi<strong>on</strong>, Jap<strong>an</strong> Automobile Research Institute (JARI),<br />

2530 Karima, Tsukuba, Ibaraki 305-08 22, Jap<strong>an</strong><br />

E-mail: kmorita@jari.or.jp<br />

5 Central Research Institute of Electric Power Industry (CRIEPI),<br />

2-6-1 Nagasaka, Yokosukashi K<strong>an</strong>agawaken 240-0196, Jap<strong>an</strong><br />

E-mail: ikeya@criepi.denken.or.jp<br />

6 Idaho Nati<strong>on</strong>al Laboratory (INL), 2525 North Frem<strong>on</strong>t, Idaho Falls, ID 83415 USA<br />

E-mail: jeffrey.belt@<strong>in</strong>l.gov<br />

Abstract— The widespread <strong>in</strong>troducti<strong>on</strong> of electrically-propelled vehicles is currently part of m<strong>an</strong>y political strategies<br />

<strong>an</strong>d <strong>in</strong>troducti<strong>on</strong> pl<strong>an</strong>s. These new vehicles, r<strong>an</strong>g<strong>in</strong>g from limited (mild) hybrid to plug-<strong>in</strong> hybrid to fully-battery<br />

powered, will rely <strong>on</strong> a new class of adv<strong>an</strong>ced storage batteries, such as those based <strong>on</strong> lithium, to meet different<br />

technical <strong>an</strong>d ec<strong>on</strong>omical targets. The test<strong>in</strong>g of these batteries to determ<strong>in</strong>e the perform<strong>an</strong>ce <strong>an</strong>d life <strong>in</strong> the various<br />

applicati<strong>on</strong>s is a time-c<strong>on</strong>sum<strong>in</strong>g <strong>an</strong>d costly process that is not yet well developed. There are m<strong>an</strong>y examples of parallel<br />

test<strong>in</strong>g activities that are poorly coord<strong>in</strong>ated, for example, those <strong>in</strong> Europe, Jap<strong>an</strong> <strong>an</strong>d the US. These costs <strong>an</strong>d efforts<br />

may be better leveraged through <strong>in</strong>ternati<strong>on</strong>al collaborati<strong>on</strong>, such as that possible with<strong>in</strong> the framework of the<br />

Internati<strong>on</strong>al Energy Agency. Here, a new effort is under development that will establish st<strong>an</strong>dardized, accelerated<br />

test<strong>in</strong>g procedures <strong>an</strong>d will allow battery test<strong>in</strong>g org<strong>an</strong>izati<strong>on</strong>s to cooperate <strong>in</strong> the <strong>an</strong>alysis of the result<strong>in</strong>g data. This<br />

paper reviews the present state-of-the-art <strong>in</strong> accelerated life test<strong>in</strong>g <strong>in</strong> Europe, Jap<strong>an</strong> <strong>an</strong>d the US. The exist<strong>in</strong>g test<br />

procedures will be collected, compared <strong>an</strong>d <strong>an</strong>alyzed with the goal of <strong>in</strong>ternati<strong>on</strong>al collaborati<strong>on</strong>. EVS25 Copyright.<br />

Keywords— lithium batteries, battery test<strong>in</strong>g procedures, electric vehicles, hybrid-electric vehicles, plug-<strong>in</strong> hybridelectric<br />

vehicles<br />

1. Background <strong>an</strong>d Introducti<strong>on</strong><br />

The widespread <strong>in</strong>troducti<strong>on</strong> of electrically-propelled<br />

vehicles is nowadays part of m<strong>an</strong>y political strategies <strong>an</strong>d<br />

<strong>in</strong>troducti<strong>on</strong> pl<strong>an</strong>s, which clearly state the social <strong>an</strong>d<br />

envir<strong>on</strong>mental needs <strong>an</strong>d the <strong>in</strong>dustrial opportunities.<br />

These new vehicles, which r<strong>an</strong>ge from hybrid electric<br />

(HEV) to plug-<strong>in</strong> hybrid electric (PHEV) to pure electric<br />

(EV), will rely <strong>on</strong> a new class of adv<strong>an</strong>ced storage<br />

batteries, which are able to meet different technical <strong>an</strong>d<br />

ec<strong>on</strong>omical goals. The behavior of these new storage<br />

systems will be tailored for the specific requirements for<br />

the given applicati<strong>on</strong>. This will ensure that the<br />

perform<strong>an</strong>ce characteristics, cycle life <strong>an</strong>d cost will be<br />

similar to those of c<strong>on</strong>venti<strong>on</strong>al vehicles. In particular, the<br />

durability of the batteries must be comparable with the<br />

expected life of the vehicle for c<strong>on</strong>sumer accept<strong>an</strong>ce.<br />

<strong>Lithium</strong> (Li) battery technology, because of its high<br />

energy density <strong>an</strong>d high specific energy, is <strong>on</strong>e of the most<br />

promis<strong>in</strong>g c<strong>an</strong>didates for vehicle applicati<strong>on</strong>s. The<br />

development of these electrochemical storage systems is<br />

underway <strong>in</strong> large public <strong>an</strong>d private programs. Their<br />

pr<strong>in</strong>ciple objectives are to elim<strong>in</strong>ate or m<strong>in</strong>imize the<br />

pr<strong>in</strong>cipal hurdles impact<strong>in</strong>g lithium-based batteries: safety,<br />

cycle <strong>an</strong>d calendar life <strong>an</strong>d costs. Subst<strong>an</strong>tial progress has<br />

been made <strong>in</strong> Li technology, with m<strong>an</strong>y cell chemistries<br />

<strong>an</strong>d designs <strong>an</strong>d other eng<strong>in</strong>eer<strong>in</strong>g soluti<strong>on</strong>s be<strong>in</strong>g<br />

proposed. All are based <strong>on</strong> the use of Li as the ma<strong>in</strong> active<br />

material. However, the perform<strong>an</strong>ce versus time <strong>an</strong>d


temperature behavior <strong>an</strong>d the degradati<strong>on</strong> mech<strong>an</strong>isms of<br />

these systems are not fully understood. M<strong>an</strong>y test<strong>in</strong>g<br />

programs are be<strong>in</strong>g carried out to improve the general<br />

underst<strong>an</strong>d<strong>in</strong>g of these battery systems, which, <strong>in</strong> turn, will<br />

improve cell design <strong>an</strong>d fabricati<strong>on</strong> <strong>an</strong>d battery <strong>in</strong>tegrati<strong>on</strong><br />

<strong>in</strong>to the vehicle.<br />

Battery test<strong>in</strong>g, <strong>in</strong> general, <strong>an</strong>d, <strong>in</strong> particular, of Li<br />

batteries, to determ<strong>in</strong>e the perform<strong>an</strong>ce <strong>an</strong>d life<br />

characteristics <strong>in</strong> the various applicati<strong>on</strong>s is a timec<strong>on</strong>sum<strong>in</strong>g<br />

<strong>an</strong>d costly process that is not yet well<br />

developed. M<strong>an</strong>y research org<strong>an</strong>izati<strong>on</strong>s <strong>in</strong> m<strong>an</strong>y countries<br />

are work<strong>in</strong>g <strong>on</strong> aspects of test<strong>in</strong>g <strong>an</strong>d have amassed a large<br />

amount of data already. The data are normally acquired<br />

us<strong>in</strong>g different test<strong>in</strong>g methods <strong>an</strong>d may not be readily<br />

compared. In additi<strong>on</strong>, some of the data are not widely<br />

available. This has limited the availability of detailed<br />

<strong>in</strong>formati<strong>on</strong>. Hence, it c<strong>an</strong> be very difficult to obta<strong>in</strong> data,<br />

which could be used by battery developers <strong>an</strong>d end users,<br />

such as system <strong>in</strong>tegrators <strong>an</strong>d electric vehicle<br />

m<strong>an</strong>ufacturers.<br />

There are m<strong>an</strong>y examples of parallel test<strong>in</strong>g activities<br />

that are poorly coord<strong>in</strong>ated. For example, <strong>in</strong> Europe, the<br />

“<strong>Lithium</strong> <strong>Batteries</strong> Evaluati<strong>on</strong> <strong>an</strong>d Research – Accelerated<br />

Life Test Directi<strong>on</strong>” Program <strong>in</strong>volved six Europe<strong>an</strong><br />

test<strong>in</strong>g <strong>in</strong>stitutes <strong>an</strong>d was work<strong>in</strong>g up to mid-2006 to<br />

<strong>in</strong>vestigate the degradati<strong>on</strong> mech<strong>an</strong>isms of a few Li cells<br />

that were available at that time. In the US, some nati<strong>on</strong>al<br />

laboratories are carry<strong>in</strong>g out test<strong>in</strong>g activities to support Li<br />

research <strong>an</strong>d adv<strong>an</strong>ced technology development. In Jap<strong>an</strong>,<br />

JARI <strong>an</strong>d CRIEPI are test<strong>in</strong>g Li cells <strong>an</strong>d batteries for<br />

research <strong>an</strong>d to def<strong>in</strong>e st<strong>an</strong>dards.<br />

The Internati<strong>on</strong>al Energy Agency (IEA) is <strong>an</strong><br />

aut<strong>on</strong>omous body that was established <strong>in</strong> November 1974<br />

with<strong>in</strong> the framework of the Org<strong>an</strong>izati<strong>on</strong> for Ec<strong>on</strong>omic<br />

Co-operati<strong>on</strong> <strong>an</strong>d Development to provide credible,<br />

bal<strong>an</strong>ced, objective <strong>in</strong>formati<strong>on</strong> <strong>on</strong> energy issues <strong>an</strong>d<br />

technologies to its member countries. The IEA does not<br />

seek to advocate particular technologies, <strong>on</strong>ly to report<br />

objectively <strong>on</strong> them. As part of the IEA activity, <strong>an</strong><br />

Implement<strong>in</strong>g Agreement for Hybrid <strong>an</strong>d Electric Vehicles<br />

was started <strong>in</strong> 1993. Its goal was to produce <strong>an</strong>d<br />

dissem<strong>in</strong>ate bal<strong>an</strong>ced, objective <strong>in</strong>formati<strong>on</strong> about<br />

adv<strong>an</strong>ced vehicle technologies, <strong>in</strong>clud<strong>in</strong>g electric, hybrid<br />

<strong>an</strong>d fuel cell vehicles. It is a work<strong>in</strong>g group of<br />

Governments <strong>an</strong>d research org<strong>an</strong>izati<strong>on</strong>s of member<br />

countries of the IEA. Currently, Austria, Belgium,<br />

C<strong>an</strong>ada, Denmark, F<strong>in</strong>l<strong>an</strong>d, Fr<strong>an</strong>ce, Irel<strong>an</strong>d, Italy, the<br />

Netherl<strong>an</strong>ds, Spa<strong>in</strong>, Sweden, Switzerl<strong>an</strong>d, Turkey, the<br />

United K<strong>in</strong>gdom <strong>an</strong>d the United States of America are<br />

actively participat<strong>in</strong>g <strong>in</strong> this Implement<strong>in</strong>g Agreement.<br />

Internati<strong>on</strong>al co-operati<strong>on</strong> presents m<strong>an</strong>y adv<strong>an</strong>tages:<br />

the comparis<strong>on</strong> of data from different countries would be<br />

simplified; the <strong>in</strong>formati<strong>on</strong> would be complete <strong>an</strong>d would<br />

c<strong>on</strong>ta<strong>in</strong> feedback <strong>on</strong> technology trends; test<strong>in</strong>g resources<br />

could be better used; <strong>an</strong>d the producti<strong>on</strong> of test<strong>in</strong>g<br />

st<strong>an</strong>dards could be accelerated. Indeed, with a comm<strong>on</strong><br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

st<strong>an</strong>dard, data collecti<strong>on</strong> <strong>an</strong>d report<strong>in</strong>g would be directly<br />

comparable.<br />

This paper represents the first step <strong>in</strong> the <strong>in</strong>ternati<strong>on</strong>al<br />

collaborati<strong>on</strong>, the collecti<strong>on</strong> of the battery perform<strong>an</strong>ce<br />

<strong>an</strong>d life test procedures used <strong>in</strong> the US, Jap<strong>an</strong> <strong>an</strong>d Europe.<br />

Once the procedures have been collected, they will be<br />

<strong>an</strong>alyzed <strong>an</strong>d compared, search<strong>in</strong>g for comm<strong>on</strong> themes. If<br />

necessary, some test methods will be compared<br />

experimentally by perform<strong>in</strong>g those tests <strong>on</strong> a comm<strong>on</strong><br />

battery <strong>in</strong> the labs <strong>in</strong>volved. The goal of the experiment is<br />

two-fold. The first is to directly compare the results from<br />

<strong>on</strong>e lab to <strong>an</strong>other (i.e., to “calibrate” the labs). The<br />

sec<strong>on</strong>d is to determ<strong>in</strong>e if <strong>on</strong>e test method stresses the<br />

battery more th<strong>an</strong> the others. If this is found, then the<br />

experimental results will also show how large the<br />

difference is.<br />

2. Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g><br />

2.1 Battery Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g> <strong>in</strong> the US 1<br />

Battery perform<strong>an</strong>ce <strong>an</strong>d life test<strong>in</strong>g <strong>in</strong> the US is<br />

applicati<strong>on</strong>-driven. The current focus is <strong>on</strong> three<br />

applicati<strong>on</strong>s: HEVs, PHEVs <strong>an</strong>d EVs. However, for the<br />

sake of simplicity, <strong>on</strong>ly the test methods for the PHEV <strong>an</strong>d<br />

EV applicati<strong>on</strong>s at the pre-competitive stage will be<br />

discussed. The general philosophy beh<strong>in</strong>d the tests is to<br />

obta<strong>in</strong> enough data <strong>in</strong> a limited amount of time to gauge<br />

the perform<strong>an</strong>ce of the battery <strong>an</strong>d ag<strong>in</strong>g characteristics<br />

without exhaust<strong>in</strong>g it. Thus, the procedures used employ<br />

accelerated ag<strong>in</strong>g techniques. A test, itself, c<strong>on</strong>sists of<br />

three parts: characterize the perform<strong>an</strong>ce of the battery;<br />

age it under c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s for a period of time; <strong>an</strong>d<br />

measure ch<strong>an</strong>ges <strong>in</strong> perform<strong>an</strong>ce by repeat<strong>in</strong>g porti<strong>on</strong>s of<br />

the characterizati<strong>on</strong> tests. These last tests are also known<br />

as reference perform<strong>an</strong>ce tests or RPTs.<br />

2.1.1 PHEV <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g><br />

PHEV battery development for the US Adv<strong>an</strong>ced<br />

Battery C<strong>on</strong>sortium (USABC) 2 is focused <strong>on</strong> def<strong>in</strong><strong>in</strong>g the<br />

appropriate battery targets for several different platforms<br />

<strong>an</strong>d the development of st<strong>an</strong>dard test procedures to<br />

validate battery perform<strong>an</strong>ce with respect to the battery<br />

targets. The Battery Test M<strong>an</strong>ual for Plug-In Hybrid<br />

Electric Vehicles [1] def<strong>in</strong>es a series of tests to<br />

characterize aspects of the perform<strong>an</strong>ce or life behavior of<br />

batteries for PHEV applicati<strong>on</strong>s. Tests are def<strong>in</strong>ed based<br />

<strong>on</strong> the Vehicle Technologies Program targets for plug-<strong>in</strong><br />

hybrid electric vehicles, though it is <strong>an</strong>ticipated these tests<br />

may be generally useful for test<strong>in</strong>g other energy storage<br />

devices for plug-<strong>in</strong> hybrid vehicles. Although the test<br />

procedures are directly applicable to complete battery<br />

systems, most c<strong>an</strong> also be applied to the test<strong>in</strong>g of<br />

modules, cells or sub-scale cells with appropriate scal<strong>in</strong>g.<br />

1<br />

The work at Arg<strong>on</strong>ne <strong>an</strong>d Idaho was performed under the auspices of<br />

the US Department of Energy, Office of Vehicle Technologies, Hybrid<br />

<strong>an</strong>d Electric Systems, under C<strong>on</strong>tract Nos. DE-AC02-06CH11357 <strong>an</strong>d<br />

DE-AC07-05ID14517, respectively.<br />

2<br />

The USABC c<strong>on</strong>sists of Ford, General Motors, Chrysler <strong>an</strong>d the US<br />

Department of Energy.


Vehicle Technologies Program Energy Storage Targets<br />

are the primary driv<strong>in</strong>g force for the test procedures <strong>an</strong>d<br />

methods def<strong>in</strong>ed <strong>in</strong> this m<strong>an</strong>ual. These targets are outl<strong>in</strong>ed<br />

<strong>in</strong> Table 1 for m<strong>in</strong>imum PHEV battery, medium PHEV<br />

battery, <strong>an</strong>d maximum PHEV battery perform<strong>an</strong>ce. This<br />

table of targets is the primary basis for the test m<strong>an</strong>ual.<br />

Establish<strong>in</strong>g or verify<strong>in</strong>g battery perform<strong>an</strong>ce <strong>in</strong><br />

comparis<strong>on</strong> to these targets is a pr<strong>in</strong>cipal objective of the<br />

test procedures def<strong>in</strong>ed <strong>in</strong> the m<strong>an</strong>ual. The <strong>in</strong>tended<br />

vehicle platform for the m<strong>in</strong>imum PHEV battery target is a<br />

sport utility vehicle with a vehicular mass of 2000 kg with<br />

<strong>an</strong> equivalent electric r<strong>an</strong>ge of 10 miles (16 km); the<br />

medium PHEV battery target is a car with a vehicular<br />

mass of 1600 kg with <strong>an</strong> equivalent electric r<strong>an</strong>ge of 20<br />

miles (32 km); <strong>an</strong>d the maximum PHEV battery target is a<br />

car with a vehicular mass of 1500 kg with <strong>an</strong> equivalent<br />

electric r<strong>an</strong>ge of 40 miles (64 km).<br />

The m<strong>an</strong>ual def<strong>in</strong>es two operati<strong>on</strong>al modes for plug-<strong>in</strong><br />

hybrid electric vehicles, charge-deplet<strong>in</strong>g (CD) <strong>an</strong>d<br />

charge-susta<strong>in</strong><strong>in</strong>g (CS). CD mode is <strong>in</strong>tended to allow the<br />

vehicle to operate <strong>in</strong> electric mode (propulsi<strong>on</strong> <strong>an</strong>d<br />

accessories powered by the electric drive <strong>an</strong>d <strong>on</strong>board<br />

electric energy storage), with a net decrease <strong>in</strong> battery<br />

state-of-charge (SOC). 3 CS mode (propulsi<strong>on</strong> <strong>an</strong>d<br />

accessories are powered by the electric drive <strong>an</strong>d/or<br />

eng<strong>in</strong>e) allows the vehicle to operate <strong>in</strong> hybrid mode with<br />

a relatively c<strong>on</strong>st<strong>an</strong>t battery state-of-charge. This PHEV<br />

operati<strong>on</strong> philosophy is shown <strong>in</strong> Figure 1.<br />

Extended R<strong>an</strong>ge Electric Vehicle<br />

Operati<strong>on</strong> Modes<br />

SOC<br />

Eng<strong>in</strong>e Off<br />

=ChargeDepleti<strong>on</strong><br />

Eng<strong>in</strong>e-Generator <strong>on</strong> (off)<br />

= Charge Susta<strong>in</strong><strong>in</strong>g<br />

Charge Deplet<strong>in</strong>g<br />

Usable Energy<br />

Figure 1: PHEV operati<strong>on</strong> philosophy.<br />

Electric <strong>on</strong>-board charger<br />

for (electric) grid power<br />

PHEV<br />

Charge<br />

Target<br />

} UECS<br />

The test procedures described <strong>in</strong> the m<strong>an</strong>ual are<br />

<strong>in</strong>tended for use over a broad r<strong>an</strong>ge of devices at various<br />

stages of developmental maturity. The applicati<strong>on</strong> of the<br />

procedures is further complicated by the existence of three<br />

different sets of perform<strong>an</strong>ce targets. The approach taken<br />

for these procedures is to def<strong>in</strong>e a small set of test profiles<br />

based <strong>on</strong> the overall vehicle characteristics, <strong>in</strong>dependent of<br />

the size or capability of the device to be tested. These<br />

profiles are specified <strong>in</strong> terms of the characteristics of<br />

vehicle power dem<strong>an</strong>d. They c<strong>an</strong> be used <strong>in</strong> various<br />

comb<strong>in</strong>ati<strong>on</strong>s, with the appropriate scal<strong>in</strong>g factors, to<br />

def<strong>in</strong>e specific perform<strong>an</strong>ce or cycle life tests for cells,<br />

modules or battery systems. Each profile is def<strong>in</strong>ed with<strong>in</strong><br />

the respective procedure described, because there is<br />

essentially a <strong>on</strong>e-to-<strong>on</strong>e relati<strong>on</strong>ship between test profiles<br />

<strong>an</strong>d test procedures.<br />

3 %SOC <strong>an</strong>d percent depth of discharge (%DOD) are used<br />

<strong>in</strong> this document. %SOC=100-%DOD.<br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

Table 1: Energy Storage System Perform<strong>an</strong>ce Targets for<br />

PHEVs (c<strong>on</strong>densed).<br />

Characteristics<br />

at EOL (End-of-<br />

Life)<br />

Equivalent<br />

Electric R<strong>an</strong>ge<br />

Peak Discharge<br />

Pulse Power (2<br />

sec /10 s)<br />

Peak Regen<br />

Pulse Power (10<br />

Max. ) Current -<br />

10s<br />

Available<br />

Energy for CD<br />

Mode, 10-kW<br />

Available<br />

Energy for CS<br />

Mode, 10-kW<br />

M<strong>in</strong>imum<br />

Efficiency<br />

Unit<br />

Miles<br />

(km)<br />

M<strong>in</strong><br />

PHEV<br />

Battery<br />

10<br />

(16)<br />

Med<br />

PHEV<br />

Battery<br />

20<br />

(32)<br />

Max<br />

PHEV<br />

Battery<br />

40<br />

(64)<br />

kW 50/45 45/37 46/38<br />

kW 30 25 25<br />

A 300 300 300<br />

kWh 3.4 5.8 11.6<br />

kWh 0.5 0.3 0.3<br />

% 90 90 90<br />

Cold cr<strong>an</strong>k<strong>in</strong>g<br />

power at -30°C kW 7 7 7<br />

CD Life Cycle 5,000 5,000 5,000<br />

CS HEV Cycle Cycles 300,000 300,000 300,000<br />

Calendar Life, Year 15 15 15<br />

Max System Wt kg 60 70 120<br />

Max System<br />

Volume<br />

Liter 40 46 80<br />

Max Voltage Vdc 400 400 400<br />

M<strong>in</strong> Voltage Vdc >0.55 � >0.55� >0.55 �<br />

Vmax Vmax Vmax<br />

Maximum Selfdischarge<br />

Wh/day 50 50 50<br />

Maximum<br />

System<br />

Recharge Rate<br />

Temp R<strong>an</strong>ge<br />

Survival Temp<br />

R<strong>an</strong>ge<br />

Suggested Total<br />

Energy<br />

Maximum<br />

System<br />

kW<br />

1.4<br />

(120V/<br />

15A)<br />

°C -30 to +52<br />

°C -46 to +66<br />

1.4<br />

(120V/<br />

15A)<br />

-30 to<br />

+52<br />

-46 to<br />

+66<br />

1.4<br />

(120V/<br />

15A)<br />

-30 to +52<br />

-46 to +66<br />

kWh 5.6 8.7 17.0<br />

$ $1,700 $2,200 $3,400<br />

For PHEV battery test<strong>in</strong>g, characterizati<strong>on</strong> tests<br />

establish the basel<strong>in</strong>e perform<strong>an</strong>ce <strong>an</strong>d may <strong>in</strong>clude static<br />

capacity, hybrid pulse-power characterizati<strong>on</strong> (see Figure<br />

2 for test profile), self-discharge, cold cr<strong>an</strong>k<strong>in</strong>g, thermal<br />

perform<strong>an</strong>ce, <strong>an</strong>d efficiency tests. Life test<strong>in</strong>g establishes<br />

behavior over time at various temperatures, states of


charge <strong>an</strong>d other stress c<strong>on</strong>diti<strong>on</strong>s <strong>an</strong>d <strong>in</strong>cludes both cycle<br />

life (see Figures 3 <strong>an</strong>d 4 for CD <strong>an</strong>d CS test profiles,<br />

respectively) <strong>an</strong>d calendar life test<strong>in</strong>g. RPTs are<br />

performed every 600 h, 600 h <strong>an</strong>d 30,000 cycles for the<br />

calendar <strong>an</strong>d two cycle life tests, respectively.<br />

Rel. Current<br />

Peak Discharge Power, W<br />

1.25<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

DISCHARGE<br />

REGEN<br />

-1<br />

0 10 20 30<br />

Time <strong>in</strong> Profile, s<br />

40 50 60<br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

Power, kW<br />

30<br />

Discharge<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

Charg e<br />

-25<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time <strong>in</strong> Profile, s<br />

Figure 4: PHEV CS profile (m<strong>in</strong>imum PHEV battery).<br />

Figure 2: Hybrid pulse-power test profile. This profile is<br />

executed at every 10% DOD.<br />

be used with <strong>an</strong>y battery technology at various maturity<br />

levels. As <strong>in</strong>dicated <strong>in</strong> Table 2, as the technology matures,<br />

the goals ch<strong>an</strong>ge. The m<strong>an</strong>ual c<strong>on</strong>ta<strong>in</strong>s procedures to<br />

characterize m<strong>an</strong>y facets of battery behavior, r<strong>an</strong>g<strong>in</strong>g from<br />

60000<br />

vibrati<strong>on</strong> resp<strong>on</strong>se to life. For the purposes of this paper,<br />

50000<br />

Discharge<br />

the discussi<strong>on</strong> will be limited to those procedures that are<br />

40000<br />

30000<br />

necessary to characterize the electrochemical perform<strong>an</strong>ce<br />

<strong>an</strong>d life of a battery. The life of a battery c<strong>an</strong> be further<br />

divided <strong>in</strong>to calendar <strong>an</strong>d cycle life. Both will be<br />

20000<br />

discussed further below. Table 2: USABC EV battery<br />

10000<br />

goals.<br />

0<br />

-10000<br />

Parameter<br />

Target<br />

Mid-Term L<strong>on</strong>g Term<br />

-20000<br />

Power density, W/L 460 600<br />

-30000<br />

Charge<br />

Specific power (discharge; 300 400<br />

-40000<br />

0 50 100 150 200<br />

Time <strong>in</strong> Profile, s<br />

250 300 350 80% DOD for 30 sec),<br />

W/kg<br />

Figure 3: PHEV CD profile. Start<strong>in</strong>g from about 90% SOC, this<br />

profile is repeated until the scaled, goal CD energy is removed.<br />

Specific power (regen; 20%<br />

DOD for 10 sec), W/kg<br />

Energy density at C/3 rate,<br />

150<br />

230<br />

200<br />

300<br />

2.1.2 EV <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g><br />

Wh/L<br />

Specific energy at C/3 rate, 150 200<br />

The goals for EV battery development were orig<strong>in</strong>ally Wh/kg<br />

based <strong>on</strong> <strong>an</strong> improved, dual-shaft electric propulsi<strong>on</strong> Specific Energy:Specific 2:1 2:1<br />

(IDSEP) v<strong>an</strong> [2, 3, 4, 5], which was similar <strong>in</strong> size <strong>an</strong>d Power ratio<br />

weight to a m<strong>in</strong>iv<strong>an</strong>. The IDSEP v<strong>an</strong> weighed about 2400 Total pack size, kWh 40 40<br />

kg <strong>an</strong>d the battery system weight for the v<strong>an</strong> was about Life, years 10 10<br />

700 kg [2]. By us<strong>in</strong>g the ratio of the battery power needed Cycle life (80% DOD), 1,000 1,000<br />

to propel the vehicle to vehicle weight, the target vehicle cycles<br />

was scaled to a four-passenger, compact car which<br />

weighed about 1800-2000 kg, <strong>in</strong>clud<strong>in</strong>g the battery system<br />

[2, 3, 4, 5]. By us<strong>in</strong>g a mathematical model of the vehicle,<br />

the battery development goals shifted from be<strong>in</strong>g based <strong>on</strong><br />

the vehicle weight to be<strong>in</strong>g based <strong>on</strong> battery weight <strong>an</strong>d<br />

volume. The goals for EV battery development were<br />

established by the USABC <strong>an</strong>d are given <strong>in</strong> Table 2 [6].<br />

The test procedures were developed based <strong>on</strong> these goals.<br />

Power <strong>an</strong>d capacity<br />

degradati<strong>on</strong>, % of rated<br />

Operat<strong>in</strong>g envir<strong>on</strong>ment<br />

20<br />

-40 to 50<br />

20<br />

The test procedures described <strong>in</strong> the m<strong>an</strong>ual are me<strong>an</strong>t<br />

to be <strong>in</strong>dependent of the device be<strong>in</strong>g tested. Thus, they<br />

c<strong>an</strong><br />

o C<br />

(20%<br />

perform<strong>an</strong>ce<br />

loss; 10%<br />

desired)<br />

-40 to 85 o Normal recharge time, h 6<br />

C<br />

3 to 6<br />

Fast recharge time<br />

Sell<strong>in</strong>g price (10,000 units<br />

@40 kWh), $/kWh<br />

20-70%<br />

SOC <strong>in</strong>


% Max. Power<br />

60<br />

40<br />

Charge<br />

20<br />

0<br />

-20<br />

-40<br />

Discharge<br />

-60<br />

-80<br />

-100<br />

-120<br />

0 60 120 180<br />

Time, s<br />

240 300 360<br />

Figure 5: Dynamic Stress Test Profile. The maximum discharge<br />

power peak is scaled to 80% of the peak power available at 80%<br />

depth of discharge.<br />

The <strong>in</strong>itial characterizati<strong>on</strong> c<strong>on</strong>sists of measur<strong>in</strong>g its<br />

capacity <strong>an</strong>d energy density under c<strong>on</strong>st<strong>an</strong>t-current (i.e., at<br />

C/3, C/2 <strong>an</strong>d C/1 rates) c<strong>on</strong>diti<strong>on</strong>s <strong>an</strong>d by us<strong>in</strong>g the<br />

dynamic stress-test profile (DST, see Fig. 5), its selfdischarge<br />

rate, <strong>an</strong>d its peak power (see Fig. 6). From the<br />

data generated dur<strong>in</strong>g the peak power test, the power<br />

capability of the battery is def<strong>in</strong>ed as the m<strong>in</strong>imum value<br />

calculated from Equati<strong>on</strong>s (1), (2), <strong>an</strong>d (3),<br />

Current, arb. arb. arb. arb. units<br />

Base current<br />

Test current<br />

0 15 30 45<br />

Time, s<br />

60 75 90<br />

Figure 6: Profile used to measure peak power at every<br />

10%DOD. The arrows <strong>in</strong>dicate the po<strong>in</strong>ts for measur<strong>in</strong>g voltage<br />

(V) <strong>an</strong>d current (I). From these po<strong>in</strong>ts, R=�V/�I.<br />

P<br />

P � �V<br />

P<br />

n<br />

n<br />

n<br />

2 VIR�<br />

� �<br />

9 R<br />

� �<br />

I<br />

lim<br />

max<br />

V<br />

( V<br />

2<br />

free<br />

n<br />

IR�<br />

free<br />

R<br />

IR�<br />

free<br />

�V<br />

n<br />

lim<br />

� R � I<br />

n<br />

max<br />

),<br />

�� 1<br />

�2� where Pn is peak power at n% DOD, VIR-free is the iR<br />

corrected voltage at a given %DOD, Rn is resist<strong>an</strong>ce at<br />

n%DOD, Vlim is the limit<strong>in</strong>g discharge voltage <strong>an</strong>d Imax is<br />

the maximum current for the battery. The end-of-test<br />

occurs when the peak power at 80% DOD or the battery<br />

capacity decreases below 80% of its rated value. At that<br />

time, the plots of P80 calculated from Equati<strong>on</strong>s 1, 2, <strong>an</strong>d 3<br />

vs. time usually c<strong>on</strong>verge <strong>an</strong>d the measured power is<br />

reported.<br />

As menti<strong>on</strong>ed above, the life of a battery c<strong>an</strong> be<br />

measured <strong>in</strong> terms of its calendar life (a storage test, no<br />

cycl<strong>in</strong>g) or cycle life. Calendar life test<strong>in</strong>g c<strong>an</strong> be<br />

�� 3<br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

performed at m<strong>an</strong>y different %DOD <strong>an</strong>d temperatures.<br />

Typically, it is performed at low %DOD <strong>an</strong>d <strong>in</strong> the<br />

temperature r<strong>an</strong>ge of 25 to 60 o C. RPTs are performed<br />

every 28 days at 25 o C. Cycle life test<strong>in</strong>g uses the DST<br />

profile, scaled for the power characteristics <strong>an</strong>d repeated<br />

m<strong>an</strong>y times, to discharge the battery from 0 to 80% DOD,<br />

followed by recharg<strong>in</strong>g accord<strong>in</strong>g to the developer’s<br />

recommendati<strong>on</strong>s. Increas<strong>in</strong>g the temperature at which the<br />

battery is cycled will further <strong>in</strong>crease the rate of<br />

perform<strong>an</strong>ce decl<strong>in</strong>e. In <strong>an</strong> EV test, RPTs are c<strong>on</strong>ducted<br />

every 50 cycles at 25 o C.<br />

2.2 Battery Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g> <strong>in</strong> Jap<strong>an</strong><br />

S<strong>in</strong>ce 2007, JARI, CRIEPI <strong>an</strong>d Nati<strong>on</strong>al Institute of<br />

Adv<strong>an</strong>ced Industrial Science <strong>an</strong>d Technology (AIST) have<br />

been develop<strong>in</strong>g a cycle-life test (CLT) procedure for<br />

lithium-battery technology, which accounts for actual<br />

usage c<strong>on</strong>diti<strong>on</strong>s [7]. This development was c<strong>on</strong>ducted as<br />

part of the “Development of High-perform<strong>an</strong>ce Battery<br />

System for Next-generati<strong>on</strong> Vehicles (Li-EAD)” project<br />

[8] undertaken by New Energy <strong>an</strong>d Industrial Technology<br />

Development Org<strong>an</strong>izati<strong>on</strong> (NEDO) <strong>in</strong> Jap<strong>an</strong>. This secti<strong>on</strong><br />

discusses the rati<strong>on</strong>ale beh<strong>in</strong>d the more-recent CLT profile<br />

development <strong>in</strong> Jap<strong>an</strong>.<br />

2.2.1 Development Targets of the CLT Profile<br />

From the results us<strong>in</strong>g the exist<strong>in</strong>g CLT profile, the<br />

targets for the development of the profile were as follows.<br />

� The battery load should be based <strong>on</strong> that measured<br />

from the vehicle dur<strong>in</strong>g a tr<strong>an</strong>sient driv<strong>in</strong>g cycle<br />

(vehicle charge-discharge data, VCDD). This will<br />

allow the estimati<strong>on</strong> of perform<strong>an</strong>ce degradati<strong>on</strong>,<br />

which occurs dur<strong>in</strong>g driv<strong>in</strong>g.<br />

� The CLT profile should be universal <strong>an</strong>d not specific<br />

to a certa<strong>in</strong> nati<strong>on</strong> or regi<strong>on</strong>. Thus, the CLT profile<br />

was formulated us<strong>in</strong>g all the VCDDs of the subject<br />

vehicles driven accord<strong>in</strong>g to the emissi<strong>on</strong> <strong>an</strong>d fuel<br />

ec<strong>on</strong>omy certificati<strong>on</strong> test cycles of Jap<strong>an</strong>, the U.S.<br />

<strong>an</strong>d Europe (i.e., JC08, UDDS <strong>an</strong>d NEDC).<br />

� The test procedure should be as simple as possible to<br />

enable the use of widely-available battery test<strong>in</strong>g<br />

equipment <strong>an</strong>d to facilitate the <strong>an</strong>alysis of the<br />

degradati<strong>on</strong> factors. Specifically, the m<strong>in</strong>imum<br />

durati<strong>on</strong> of CLT profile should be 2 sec<strong>on</strong>ds <strong>an</strong>d the<br />

CLT profile should c<strong>on</strong>sist of rect<strong>an</strong>gular waveforms<br />

<strong>an</strong>d the smallest number of steps.<br />

2.2.1 Profile Development<br />

Us<strong>in</strong>g the results available, the profile that captured the<br />

usage characteristics of a vehicle was very complex. It,<br />

therefore, needed to be simplified <strong>in</strong> order to meet our<br />

third development goal (vide supra). The method we used<br />

to simplify the profile is described below.<br />

2.2.1.1 Extracti<strong>on</strong> of Relev<strong>an</strong>t Parameters<br />

The follow<strong>in</strong>g six parameters were c<strong>on</strong>sidered import<strong>an</strong>t<br />

<strong>in</strong> the evaluati<strong>on</strong> of the cycle life of a battery.<br />

a) Imax : Max. current A<br />

or<br />

Pmax : Max. power W


) Qtot : Charge-discharge electricity Ah<br />

or<br />

Etot : Charge-discharge energy Wh<br />

c) RSOC : SOC r<strong>an</strong>ge of charge-discharge %<br />

d) trest : Rest time ratio %<br />

e) Hgen : Amount of heat generati<strong>on</strong> J<br />

f) Trise : Battery temperature rise � o C<br />

In a given CLT profile, the parameters a), b), c) <strong>an</strong>d d)<br />

relate to the structural ch<strong>an</strong>ges <strong>an</strong>d relaxati<strong>on</strong> of the<br />

electrode active materials. The parameters a), d), e) <strong>an</strong>d f)<br />

relate to the heat generati<strong>on</strong> <strong>an</strong>d rejecti<strong>on</strong> from the battery.<br />

From the viewpo<strong>in</strong>t the vehicle, the battery burden c<strong>an</strong><br />

be expressed <strong>in</strong> terms of electric power <strong>in</strong>stead of current.<br />

S<strong>in</strong>ce the voltage c<strong>an</strong> vary with Li battery chemistries, the<br />

current may be different even though the power has not<br />

ch<strong>an</strong>ged. C<strong>on</strong>sequently, power values were used to def<strong>in</strong>e<br />

the profile. The rati<strong>on</strong>ale for the selected parameters <strong>an</strong>d<br />

some of their def<strong>in</strong>iti<strong>on</strong>s are given below.<br />

a) With larger values of the maximum power, Pmax, the<br />

rate of perform<strong>an</strong>ce degradati<strong>on</strong> should <strong>in</strong>crease<br />

b) The charge-discharge energy, Etot, is def<strong>in</strong>ed <strong>in</strong><br />

Equati<strong>on</strong> 6.<br />

� � P(<br />

t)<br />

dt<br />

(6)<br />

Etot c) The r<strong>an</strong>ge of the state of charge (SOC), Rsoc, dur<strong>in</strong>g<br />

charg<strong>in</strong>g is c<strong>on</strong>st<strong>an</strong>t if the upper <strong>an</strong>d lower limits of<br />

SOC are def<strong>in</strong>ed dur<strong>in</strong>g a cycle life test.<br />

d) The def<strong>in</strong>iti<strong>on</strong> of the rest time ratio, trest, is given <strong>in</strong><br />

Equati<strong>on</strong> (7).<br />

trest � � t ( I � 0)<br />

tcycle<br />

,<br />

(7)<br />

where t(I=0) is the time dur<strong>in</strong>g the cycle where the<br />

current is off <strong>an</strong>d tcycle is the time required for <strong>on</strong>e<br />

cycle.<br />

e) The amount of heat generated, Hgen, is given <strong>in</strong><br />

Equati<strong>on</strong> (8). Assum<strong>in</strong>g that both the <strong>in</strong>ternal<br />

resist<strong>an</strong>ce, R, <strong>an</strong>d the voltage, V, are c<strong>on</strong>st<strong>an</strong>t<br />

throughout the charge-discharge process, Hgen c<strong>an</strong><br />

also be def<strong>in</strong>ed us<strong>in</strong>g P <strong>in</strong>stead of I.<br />

f) The ch<strong>an</strong>ge <strong>in</strong> the battery temperature is determ<strong>in</strong>ed<br />

by the bal<strong>an</strong>ce between Hgen, <strong>an</strong>d heat rejecti<strong>on</strong>, Hrad.<br />

As shown <strong>in</strong> Equati<strong>on</strong> (8), the value of Hgen is<br />

<strong>in</strong>tr<strong>in</strong>sic to the battery <strong>an</strong>d CLT profile. However,<br />

s<strong>in</strong>ce amount of heat rejected c<strong>an</strong> be variable <strong>an</strong>d is<br />

determ<strong>in</strong>ed by the ambient c<strong>on</strong>diti<strong>on</strong>s of the battery,<br />

Hrad was excluded from the CLT parameters.<br />

2<br />

2<br />

H gen � � R�I(<br />

t)<br />

� dt � a�<br />

�P( t)<br />

� dt (8)<br />

It is evident from the above that, to simplify a CLT<br />

profile for PHEV batteries, the time-averaged values of the<br />

four parameters, Pmax, Etot, trest, <strong>an</strong>d Hgen, must be equated<br />

to the VCDD.<br />

2.2.1.2 CLT Profile Simplificati<strong>on</strong> Method<br />

Based <strong>on</strong> the discussi<strong>on</strong> <strong>in</strong> the preced<strong>in</strong>g secti<strong>on</strong>s, the<br />

follow<strong>in</strong>g three steps were taken to simplify the CLT<br />

profile.<br />

1. Calculate the Average Values of the Certificati<strong>on</strong><br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

Driv<strong>in</strong>g Cycles from Jap<strong>an</strong>, the U.S., <strong>an</strong>d Europe<br />

To formulate a CLT profile capable of represent<strong>in</strong>g the<br />

42 total trips c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> the JC08, UDDS <strong>an</strong>d NEDC<br />

profiles <strong>in</strong> a s<strong>in</strong>gle profile, the average times of<br />

“Trip+Idle” <strong>an</strong>d “Trip” <strong>in</strong> the three test cycles were<br />

calculated. As shown <strong>in</strong> Table 3, the average length of<br />

time for “Trip+Idle” was 89.4 sec<strong>on</strong>ds <strong>an</strong>d that of “Trip”<br />

was 67.7 sec<strong>on</strong>ds, add<strong>in</strong>g the three test cycles together. As<br />

shown <strong>in</strong> Figure 7, the average of the “Trip + Idle” times<br />

equaled the time of the CLT profile, <strong>an</strong>d the average of<br />

“Trip” times equaled that between vehicle start <strong>an</strong>d vehicle<br />

stop (i.e., from discharge start to charge end). The average<br />

vehicle speed was 29.89 km/h.<br />

2. VCDD Sort<strong>in</strong>g <strong>an</strong>d Compressi<strong>on</strong><br />

<str<strong>on</strong>g>Procedures</str<strong>on</strong>g> (1) <strong>an</strong>d (2) were used to compress data <strong>an</strong>d<br />

to formulate the target CLT profile. An example of this<br />

compressi<strong>on</strong> <strong>an</strong>d formulati<strong>on</strong> process is shown <strong>in</strong> Figure 9.<br />

Table 3: Average of three driv<strong>in</strong>g cycles<br />

����<br />

���������<br />

����������������<br />

� �� ������������<br />

� ����������������������������<br />

� ������������<br />

��<br />

� ���������������� ��<br />

���� ���� ���� ���� ����������<br />

��� ���� ���� ���� ����<br />

��� � ����� ������ ������ ������<br />

������� �� �� �� ��<br />

��� ����� ���� � ��� �� ��<br />

��� ���� ���� ���� ����<br />

��� ��� ����� ����� ����� �����<br />

� �������������������������� �� ���� ������� ����� �� ������������<br />

����������������� �� ���� �� � ���������������������� ����� �� ������������<br />

Vehicle�speed�(km/h)<br />

Trip�+�Idle:�90�s<br />

Trip:�68�s<br />

Time�(s)<br />

Figure 8: Schematic of average driv<strong>in</strong>g cycle<br />

(1) The VCDDs of JC08, UDDS <strong>an</strong>d NEDC were<br />

c<strong>on</strong>catenated, form<strong>in</strong>g a 3,755-sec<strong>on</strong>d-l<strong>on</strong>g power<br />

density vs. time dataset.<br />

(2) The dataset was then sorted by power density from<br />

large to small values, irrespective of driv<strong>in</strong>g pattern.<br />

The orig<strong>in</strong>al dataset was, thus, compressed <strong>in</strong>to 90sec<strong>on</strong>ds.<br />

3) Simplificati<strong>on</strong><br />

The target CLT profile was c<strong>on</strong>structed by apply<strong>in</strong>g the<br />

follow<strong>in</strong>g rules to the compressed data.<br />

(1) The wave profile must be rect<strong>an</strong>gular, <strong>an</strong>d the<br />

m<strong>in</strong>imum time for the profile must be at least 2<br />

sec<strong>on</strong>ds. Power density was used to <strong>in</strong>itially scale the<br />

profile.<br />

(2) There will be two steps, high power, PH, <strong>an</strong>d low<br />

power, PL, <strong>in</strong> each of the charge <strong>an</strong>d discharge halfcycles.<br />

Two-sec<strong>on</strong>d discharge <strong>an</strong>d charge data were<br />

extracted from each of the 3 test cycles for a total of<br />

6 sec<strong>on</strong>ds of VCDD. The average value of the 6sec<strong>on</strong>d<br />

total was then def<strong>in</strong>ed as the maximum power,<br />

Pmax.


Power density (W/kg)<br />

Power density (W/kg)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

Discharge<br />

Charge<br />

JC08<br />

� ��� ��� ��� ��� ���� ���� ����<br />

Time (s)<br />

Power density (W/kg)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

800<br />

600<br />

Discharge<br />

Add up <strong>an</strong>d sort<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

Downtime<br />

Compress<br />

Charge<br />

-800<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Time (s)<br />

Discharge<br />

Charge<br />

UDDS<br />

ICE driv<strong>in</strong>g<br />

� ��� ��� ��� ��� ���� ���� ����<br />

Time (s)<br />

Figure 9: Sort<strong>in</strong>g <strong>an</strong>d compressi<strong>on</strong> of VCDD<br />

Power density (W/kg)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

Discharge<br />

Charge<br />

NEDC<br />

ICE driv<strong>in</strong>g<br />

� ��� ��� ��� ��� ���� ���� ����<br />

Time (s)<br />

(3) By adjust<strong>in</strong>g the time ratio of the high <strong>an</strong>d low steps<br />

(tH : tL) <strong>an</strong>d the value of PL, Etot <strong>an</strong>d Hgen will be made<br />

as equal as possible to the compressed data without<br />

trest (Figure 10).<br />

(4) To match the time from the start of discharge to end<br />

of charge with that from the vehicle’s<br />

start<strong>in</strong>g/accelerati<strong>on</strong> to decelerati<strong>on</strong>/stopp<strong>in</strong>g (68<br />

sec<strong>on</strong>ds <strong>in</strong> this study), the data <strong>on</strong> the charge side<br />

will be moved forward. To match discharge data, the<br />

compressed data will be rearr<strong>an</strong>ged from <strong>in</strong>verted ‘L’<br />

to n<strong>on</strong>-<strong>in</strong>verted ‘L’ (Figure 11).<br />

Power density (W/kg)<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

PH = Pmax<br />

tH<br />

Charge<br />

Discharge<br />

PL<br />

tL<br />

0 10 20 30 40 50 60 70 80 90<br />

Time (s)<br />

Figure 10: Simplificati<strong>on</strong> of compressed data<br />

Power density (W/kg)<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

Discharge<br />

Charge<br />

Compressed<br />

Simplified<br />

0 10 20 30 40 50 60 70 80 90<br />

Time (s)<br />

Simplified<br />

Completed<br />

68s 22s<br />

Tr<strong>an</strong>sfer <strong>an</strong>d <strong>in</strong>vert<br />

Figure 11: Tr<strong>an</strong>sfer <strong>an</strong>d <strong>in</strong>vert of charge side data<br />

2.2.2 Formulati<strong>on</strong> of CLT Profiles<br />

2.2.2.1 Acquisiti<strong>on</strong> of VCDD<br />

VCDDs were acquired by the follow<strong>in</strong>g methods for the<br />

JC08, UDDS <strong>an</strong>d NEDC driv<strong>in</strong>g cycles:<br />

- HEV: The battery output was measured <strong>on</strong> a chassis<br />

dynamometer us<strong>in</strong>g a representative passenger car with a<br />

mass of 1,260 kg.�<br />

- EV <strong>an</strong>d PHEV: The battery output was calculated,<br />

assum<strong>in</strong>g a representative passenger car with a mass of<br />

1,250 kg.<br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

2.2.3 Generalizati<strong>on</strong> of CLT Profiles<br />

The CLT profiles developed above were based <strong>on</strong><br />

VCDDs of specific, electrically-propelled vehicles (EPVs).<br />

For greater utility, the CLT profiles must be generalized to<br />

all Li batteries. The generalizati<strong>on</strong> method is discussed<br />

below.<br />

2.2.3.1 Estimati<strong>on</strong> of Maximum Discharge Rate<br />

The maximum discharge rates of parallel HEVs with<br />

<strong>on</strong>e motor <strong>an</strong>d those of series-c<strong>on</strong>nected HEVs <strong>an</strong>d EVs<br />

c<strong>an</strong> be represented by Equati<strong>on</strong> (9) below, if the voltage<br />

drop caused by <strong>in</strong>ternal resist<strong>an</strong>ce is neglected.<br />

Pmotor<br />

� Pgen<br />

R max_ arg �<br />

(9)<br />

disch e<br />

V � � �1000�<br />

C<br />

batt<br />

motor<br />

Rmax_discharge : maximum discharge rate C<br />

Pmotor : maximum motor power W<br />

Pgen : maximum generator power W<br />

Vbatt : battery open circuit voltage V<br />

�motor : motor efficiency<br />

Cbatt : battery rated capacity Ah<br />

The maximum battery discharge rates for HEVs <strong>an</strong>d<br />

EVs, which have the specificati<strong>on</strong>s shown <strong>in</strong> Table 4, were<br />

estimated by us<strong>in</strong>g Equati<strong>on</strong> (9). These results are also<br />

given <strong>in</strong> Table 4 <strong>an</strong>d are plotted <strong>in</strong> Figure 12. From Figure<br />

12, the maximum discharge rate decreased as the battery<br />

capacity <strong>in</strong>creased.<br />

Table 4: Specificati<strong>on</strong>s of exist<strong>in</strong>g HEVs <strong>an</strong>d EVs<br />

� ������<br />

��� ���<br />

� ����<br />

��� ��<br />

��� �<br />

� ��������<br />

��� ��<br />

��� �<br />

� ������<br />

�������<br />

�� �<br />

� ������<br />

��������<br />

�� ��<br />

batt<br />

����� ����<br />

� �����������<br />

�� �<br />

����� ������ ���<br />

��������������<br />

�� �<br />

� �� ��� �� � ��� � ���� ����<br />

� �� ��� �� � ��� ��� ���� ����<br />

� �� ��� �� � ��� ��� ����� ����<br />

� �� ��� ��� �� ��� �� ����� ���<br />

�� ��� �� � ��� �� ����� ���<br />

�� ��� �� � ��� �� ����� ���<br />

�� ��� ��� � ��� �� ����� ���<br />

�� ��� �� � ��� �� ����� ���<br />

�� ��� �� � ��� �� ���� ��� �<br />

Estimated max. discharge discharge rate (C)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

HEVs<br />

y = 53.415x -0.703<br />

y = 53.415x<br />

R² = 0.8643<br />

-0.703<br />

R² = 0.8643<br />

0<br />

�� �� �� �� �� �� �� �� �� ��� ���<br />

Capacity (Ah)<br />

EVs<br />

Figure 12: Estimated maximum discharge rate vs. battery<br />

capacity. The solid curve represents a least-squares fit of the data<br />

po<strong>in</strong>ts shown.<br />

2.2.3.2 C<strong>on</strong>structi<strong>on</strong> of Generalized CLT Profiles<br />

Examples of generalized, PHEV CLT profiles are<br />

shown <strong>in</strong> Figure 13, with the vertical axis given <strong>in</strong> terms<br />

of relative discharge rates. From Figure 13, the absolute<br />

discharge rate c<strong>an</strong> be obta<strong>in</strong>ed by us<strong>in</strong>g Equati<strong>on</strong> (10).<br />

b<br />

R � R<br />

� a � C (10)<br />

discharg<br />

e<br />

relative _discharg<br />

e<br />

batt<br />


Rdischarge : discharge rate C<br />

Rrelative_discharge : relative discharge rate<br />

Cbatt : battery rated capacity Ah<br />

From a least-squares fit of the data <strong>in</strong> Figure 12, the<br />

<strong>in</strong>itial values of a <strong>an</strong>d b were 53.415 <strong>an</strong>d -0.703,<br />

respectively. Clearly, additi<strong>on</strong>al work is needed to verify<br />

these values. Data for c<strong>on</strong>struct<strong>in</strong>g the profiles shown <strong>in</strong><br />

Figure 13 <strong>an</strong>d for other EPVs are given <strong>in</strong> Table 5.<br />

Relative discharge rate<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

Discharge<br />

Charge<br />

Charge deplet<strong>in</strong>g mode<br />

Charge susta<strong>in</strong><strong>in</strong>g mode<br />

0 10 20 30 40 50 60 70 80 90<br />

Time (s)<br />

Figure 13: Generalized CLT profiles for a PHEV battery<br />

Table 5: Generalized CLT profile data for EPVs<br />

Vehicle<br />

type<br />

PHEV<br />

CD mode<br />

PHEV<br />

CS mode<br />

HEV<br />

EV<br />

Step<br />

No.<br />

Step<br />

time<br />

(s)<br />

Cumulative Relative<br />

time discharge<br />

(s) rate<br />

1 4 4 1.000<br />

2 41 45 0.250<br />

3 2 47 0.000<br />

4 2 49 -0.800<br />

5 19 68 -0.125<br />

6 22 90 0.000<br />

1 2 2 0.800<br />

2 28 30 0.135<br />

3 3 33 0.000<br />

4 2 35 -0.800<br />

5 33 68 -0.115<br />

6 22 90 0.000<br />

1 2 2 1.000<br />

2 28 30 0.170<br />

3 3 33 0.000<br />

4 2 35 -1.000<br />

5 33 68 -0.145<br />

6 22 90 0.000<br />

1 2 2 1.000<br />

2 43 45 0.170<br />

3 2 47 0.000<br />

4 2 49 -0.450<br />

5 19 68 -0.070<br />

6 22 90 0.000<br />

2.3 Battery Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g> <strong>in</strong> the EU<br />

The development of battery test<strong>in</strong>g procedures <strong>in</strong><br />

Europe started <strong>in</strong> 1990 with various projects that were<br />

promoted by EUCAR 4 <strong>an</strong>d partially funded by the<br />

Europe<strong>an</strong> Commissi<strong>on</strong> (EC) <strong>in</strong> the framework of its<br />

Research <strong>an</strong>d Technology Development (RTD) programs.<br />

Those projects c<strong>on</strong>centrated <strong>on</strong> available battery<br />

technologies (i.e., lead-acid <strong>an</strong>d alkal<strong>in</strong>e) with <strong>an</strong> emphasis<br />

<strong>on</strong> EV <strong>an</strong>d HEV applicati<strong>on</strong>s. A reference vehicle was<br />

designed by the EUCAR Tracti<strong>on</strong> Battery <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g><br />

Work<strong>in</strong>g Group <strong>an</strong>d was used for def<strong>in</strong><strong>in</strong>g test<strong>in</strong>g<br />

procedures with the support of the Europe<strong>an</strong> <strong>in</strong>dependent<br />

test<strong>in</strong>g laboratories, battery m<strong>an</strong>ufacturers, <strong>an</strong>d research<br />

org<strong>an</strong>izati<strong>on</strong>s.<br />

4 EUCAR = Europe<strong>an</strong> Council for Automotive R&D, formed by the<br />

associati<strong>on</strong> of Europe<strong>an</strong> car m<strong>an</strong>ufacturers.<br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

In the sec<strong>on</strong>d half of the 1990’s, the first test<strong>in</strong>g<br />

procedures [9, 10, 11] were agreed to <strong>an</strong>d used <strong>in</strong> a<br />

subsequent EC project, ASTOR 5 . This three-year project<br />

started <strong>in</strong> 2001 with the aim of experimentally evaluat<strong>in</strong>g<br />

<strong>an</strong>d <strong>an</strong>alyz<strong>in</strong>g battery <strong>an</strong>d super-capacitor technologies,<br />

such as adv<strong>an</strong>ced lead/acid, nickel/metal-hydride, <strong>an</strong>d<br />

lithium-i<strong>on</strong>. Almost <strong>in</strong> parallel, <strong>an</strong>other research project<br />

was awarded by the EC with the objective to develop <strong>an</strong>d<br />

validate accelerated life test procedures for lithium battery<br />

technologies. This project, named LIBERAL (<strong>Lithium</strong><br />

Battery Evaluati<strong>on</strong> And Research - Accelerated Life Test<br />

Directi<strong>on</strong>), started <strong>in</strong> 2002 [12] <strong>an</strong>d completed <strong>in</strong> 2006.<br />

The work <strong>on</strong> test procedure development has c<strong>on</strong>t<strong>in</strong>ued<br />

with<strong>in</strong> the 7 th RTD Framework Program, HELIOS (High<br />

Energy <strong>Lithium</strong>-I<strong>on</strong> Storage Soluti<strong>on</strong>s). The emphasis<br />

here was batteries for EV <strong>an</strong>d PHEV applicati<strong>on</strong>s. For<br />

simplicity, this secti<strong>on</strong> describes <strong>on</strong>ly the results from the<br />

LIBERAL project.<br />

2.3.1 Assessment of degradati<strong>on</strong> mech<strong>an</strong>isms<br />

Initially, the most signific<strong>an</strong>t factors which accelerated<br />

the perform<strong>an</strong>ce degradati<strong>on</strong> of lithium batteries were<br />

identified <strong>an</strong>d r<strong>an</strong>ked <strong>in</strong> order of their relative import<strong>an</strong>ce<br />

[13]. The most import<strong>an</strong>t factors were as follows.<br />

� Temperature: High temperatures accelerated the<br />

degradati<strong>on</strong>, but low temperatures also had <strong>an</strong><br />

effect.<br />

� SOC: High <strong>an</strong>d low states of charge may reduce<br />

life.<br />

� Materials parameters: the age<strong>in</strong>g <strong>an</strong>d degradati<strong>on</strong><br />

effects of some accelerat<strong>in</strong>g factors str<strong>on</strong>gly depend<br />

<strong>on</strong> the cell materials.<br />

2.3.2 Accelerated Life <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>Procedures</str<strong>on</strong>g><br />

Two categories of tests, described below, were designed<br />

<strong>an</strong>d validated for high-power <strong>an</strong>d high-energy lithium<br />

batteries. For both types of batteries, a comm<strong>on</strong> storage<br />

(calendar life) test could be used. Periodically, the stateof-health<br />

of the cells was m<strong>on</strong>itored, as described below,<br />

<strong>an</strong>d <strong>in</strong>cluded capacity <strong>an</strong>d <strong>in</strong>ternal resist<strong>an</strong>ce<br />

measurements at room temperature) <strong>an</strong>d, occasi<strong>on</strong>ally,<br />

electrochemical imped<strong>an</strong>ce spectroscopy. From these<br />

results, a mathematical, semi-empirical model based <strong>on</strong><br />

the imped<strong>an</strong>ce spectra could be developed [14].<br />

2.3.2.1 High-energy cycl<strong>in</strong>g<br />

Figure 14 shows a high energy profile for life cycl<strong>in</strong>g.<br />

Here, the maximum current pulse was, <strong>in</strong> terms of absolute<br />

value, at the 2-C rate. A similar profile c<strong>an</strong> be c<strong>on</strong>structed<br />

that c<strong>on</strong>ta<strong>in</strong>s a 1-C maximum current pulse. These<br />

profiles were based <strong>on</strong> the power profiles of the previous<br />

EUCAR HEV power-assist test procedures which referred<br />

to the def<strong>in</strong>ed, reference vehicles.<br />

A discharge cycle, typically, started at 0% <strong>an</strong>d stopped at<br />

80% DOD. The battery was then recharged accord<strong>in</strong>g to<br />

the developer’s recommendati<strong>on</strong>s. To further accelerate<br />

the tests, the cycl<strong>in</strong>g could be performed at elevated<br />

temperatures, with reference tests every 6 weeks.<br />

5 ASTOR = Assessment <strong>an</strong>d <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g> of Adv<strong>an</strong>ced Energy Storage<br />

Systems for Propulsi<strong>on</strong> <strong>an</strong>d other Electrical Systems <strong>in</strong> Passenger Cars


Figure 14: Current profile for high-energy batteries, show<strong>in</strong>g a<br />

maximum current of 2C <strong>an</strong>d 2% SOC sw<strong>in</strong>g. Approximately 53<br />

profiles are needed to discharge the battery to 80% DOD.<br />

2.3.2.2 High-power cycl<strong>in</strong>g<br />

The basic profile for this test is given <strong>in</strong> Figure 15 <strong>an</strong>d<br />

shows a maximum current of 10C. Variati<strong>on</strong>s of this<br />

profile have been used. Here, the profiles are similar <strong>in</strong><br />

appear<strong>an</strong>ce, but the tim<strong>in</strong>gs <strong>an</strong>d the SOC limits differ. For<br />

example, this test could be performed with SOC limits of<br />

60-50% or 70-50%. Reference tests were performed every<br />

6 weeks.<br />

Figure 15: Current profile for high power batteries, high<br />

maximum current (10C) <strong>an</strong>d normal SOC w<strong>in</strong>dow (10%).<br />

2.3.2.3 Calendar life<br />

The effects <strong>on</strong> age<strong>in</strong>g of time <strong>an</strong>d elevated temperatures�<br />

were identified with storage (or calendar life) tests.<br />

Typically, these tests are performed at a number of<br />

temperatures <strong>an</strong>d at different SOCs (e.g., 50 <strong>an</strong>d 100%).<br />

Reference tests were performed every 42 days at 25oC.<br />

The test<strong>in</strong>g period was usually 6 m<strong>on</strong>ths.<br />

2.3.2.4 Reference test<br />

The profile shown <strong>in</strong> Figure 16 was used to determ<strong>in</strong>e<br />

the state-of-health of the batteries under test. From the<br />

results, key parameters, such as capacity, several <strong>in</strong>ternal<br />

resist<strong>an</strong>ces, the pulse power capability <strong>an</strong>d the open circuit<br />

voltage, were measured or calculated. Opti<strong>on</strong>ally, EIS tests<br />

were carried out to support mathematical model<br />

development <strong>an</strong>d validati<strong>on</strong>.<br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

Figure 16: Current profile for determ<strong>in</strong>ati<strong>on</strong> of capacity, open<br />

circuit voltage, <strong>in</strong>ternal resist<strong>an</strong>ces <strong>an</strong>d c<strong>on</strong>st<strong>an</strong>t current power.<br />

3. C<strong>on</strong>clusi<strong>on</strong>s<br />

This paper represents the first step <strong>in</strong> the <strong>in</strong>ternati<strong>on</strong>al<br />

collaborati<strong>on</strong> to agree <strong>on</strong> a set of <strong>in</strong>ternati<strong>on</strong>al test<strong>in</strong>g<br />

protocols. Currently, each group uses somewhat different<br />

test protocols to establish life predicti<strong>on</strong>s for batteries <strong>in</strong><br />

PHEV <strong>an</strong>d EV applicati<strong>on</strong>s. Each approach has <strong>in</strong>tr<strong>in</strong>sic<br />

assumpti<strong>on</strong>s. Based <strong>on</strong> these assumpti<strong>on</strong>s, the result<strong>in</strong>g<br />

test procedures from <strong>on</strong>e approach may stress the battery<br />

more th<strong>an</strong> those from the others. Clearly, a careful<br />

comparis<strong>on</strong> of these procedures is needed to determ<strong>in</strong>e the<br />

similarities <strong>an</strong>d differences between them. Some<br />

experimental work may be needed to determ<strong>in</strong>e the<br />

magnitude of the differences which may be present <strong>in</strong> the<br />

test results.<br />

4. References<br />

[1] Battery Test M<strong>an</strong>ual for Plug-In Hybrid Electric Vehicles,<br />

INL/EXT 07-12536, June 2010.<br />

[2] G. H. Cole, A Simplified Battery Discharge Profile Based<br />

Up<strong>on</strong> the Urb<strong>an</strong> Driv<strong>in</strong>g Schedule, Proc. EVS9, EVS88-078,<br />

November 13-16, 1988, Tor<strong>on</strong>to, Ontario, C<strong>an</strong>ada.<br />

[3] G. H. Cole, A Generic SFUDS Battery Test Cycle for Electric<br />

Road Vehicle <strong>Batteries</strong>, SAE Technical Paper Series, 891664, pp.<br />

59-63, Future Tr<strong>an</strong>sportati<strong>on</strong> Technology C<strong>on</strong>ference <strong>an</strong>d<br />

Expositi<strong>on</strong>, V<strong>an</strong>couver, BC, C<strong>an</strong>ada, August 7-10, 1989.<br />

[4] A. F. Burke <strong>an</strong>d G. H. Cole, Applicati<strong>on</strong> of GSFUDS to<br />

Adv<strong>an</strong>ced <strong>Batteries</strong> <strong>an</strong>d Vehicles, Proc. 10 th Internati<strong>on</strong>al Electric<br />

Vehicle Symposium, H<strong>on</strong>g K<strong>on</strong>g, December 3-5, 1990, pp. 411-<br />

420.<br />

[5] G. H. Cole <strong>an</strong>d G. L. Hunt, Relat<strong>in</strong>g Vehicle Perform<strong>an</strong>ce<br />

<strong>an</strong>d Battery Requirements, Abstracts from the 184 th<br />

Electrochemical Society Meet<strong>in</strong>g, October 12, 1993, New<br />

Orle<strong>an</strong>s, LA.<br />

[6] Electric Vehicle Battery Test Procedure M<strong>an</strong>ual, Rev. 2,<br />

J<strong>an</strong>uary 1996.<br />

[7] Battery Test M<strong>an</strong>ual for Plug-In Hybrid Electric Vehicles,<br />

INL/EXT-07-12536, Rev. 1, June 2010.<br />

[8] E. V. Thomas, I. Bloom, J. P. Christophersen, <strong>an</strong>d V. S.<br />

Battaglia, Statistical methodology for predict<strong>in</strong>g life of lithiumi<strong>on</strong><br />

cells via accelerated degradati<strong>on</strong> test<strong>in</strong>g, J. Power Sources,<br />

Vol. 184, (2008) pp. 312-317.<br />

[9] Kenji Morita et al., Development of Cycle Life Test<br />

Profiles of <strong>Lithium</strong>-i<strong>on</strong> <strong>Batteries</strong> for Plug-<strong>in</strong> Hybrid


Electric Vehicles, Proc. EVS-24, May 13-16, 2009,<br />

Stav<strong>an</strong>ger, Norway.<br />

[10] Hisashi Hirose, Activities for NEDO's Project "R&D<br />

of Fundamental Technologies <strong>on</strong> High Perform<strong>an</strong>ce<br />

Rechargeable <strong>Batteries</strong> for Next Generati<strong>on</strong> Vehicles" by<br />

FC-EV Center, JARI Research Journal, Vol. 30, No. 4,<br />

2008 (<strong>in</strong> Jap<strong>an</strong>ese).<br />

[11] EUCAR Tracti<strong>on</strong> Battery Work<strong>in</strong>g Group,<br />

Specificati<strong>on</strong> of Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g> for Electric Vehicle<br />

Tracti<strong>on</strong> <strong>Batteries</strong>, December 1996.<br />

[12] EUCAR Tracti<strong>on</strong> Battery Work<strong>in</strong>g Group,<br />

Specificati<strong>on</strong> of Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g> for Hybrid Electric<br />

Vehicle Tracti<strong>on</strong> <strong>Batteries</strong>, September 1998.<br />

[13] EUCAR Tracti<strong>on</strong> Battery Work<strong>in</strong>g Group,<br />

Specificati<strong>on</strong> of Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g> for High Voltage Hybrid<br />

Electric Vehicle Tracti<strong>on</strong> <strong>Batteries</strong>, J<strong>an</strong>uary 2005.<br />

[14] W. Josefowitz et alii, EUCAR Assessment <strong>an</strong>d <str<strong>on</strong>g>Test<strong>in</strong>g</str<strong>on</strong>g><br />

activities of adv<strong>an</strong>ced energy storage systems, AABC3, June 11-<br />

13, 2003, Nice, Fr<strong>an</strong>ce.<br />

[15] J. Vetter et alii, <str<strong>on</strong>g>Age<strong>in</strong>g</str<strong>on</strong>g> mech<strong>an</strong>isms <strong>in</strong> lithium-i<strong>on</strong><br />

batteries, Journal of Power Sources Vol. 147, (2005) pp.<br />

269–281.<br />

[16] EUCAR Tracti<strong>on</strong> Battery Work<strong>in</strong>g Group et alii,<br />

Specificati<strong>on</strong> of Accelerated Life Test <str<strong>on</strong>g>Procedures</str<strong>on</strong>g>,<br />

LIBERAL Project, August 2006.<br />

5. Authors<br />

Dr. Mario C<strong>on</strong>te<br />

Energy Storage Systems, Technical Unit<br />

“Adv<strong>an</strong>ced Technologies for Energy <strong>an</strong>d<br />

Industry”, Nati<strong>on</strong>al Agency for New<br />

Technologies, Energy <strong>an</strong>d Susta<strong>in</strong>able<br />

Ec<strong>on</strong>omic Development, S. Maria di Galeria,<br />

Rome, 00123, Italy<br />

Tel: +39 06 3048 4829;<br />

Fax: +39 06 3048 6306; Email: mario.c<strong>on</strong>te@enea.it<br />

Dr. C<strong>on</strong>te is the resp<strong>on</strong>sible for ENEA’s Energy Storage Systems<br />

Co-ord<strong>in</strong>ati<strong>on</strong> Unit. At ENEA, he has been work<strong>in</strong>g <strong>an</strong>d<br />

m<strong>an</strong>ag<strong>in</strong>g nati<strong>on</strong>al <strong>an</strong>d <strong>in</strong>ternati<strong>on</strong>al projects <strong>on</strong> electrochemical<br />

batteries, supercapacitors, hydrogen storage <strong>an</strong>d related mobile<br />

<strong>an</strong>d stati<strong>on</strong>ary applicati<strong>on</strong>s. He graduated <strong>in</strong> nuclear physics at<br />

the Naples University (1978) <strong>an</strong>d started work<strong>in</strong>g at ENEA <strong>on</strong><br />

energy storage systems <strong>in</strong> 1984. He is technical secretary of the<br />

Itali<strong>an</strong> EV associati<strong>on</strong> <strong>an</strong>d member of board of AVERE <strong>an</strong>d<br />

WEVA <strong>an</strong>d vice-chairm<strong>an</strong> of the IEA IA <strong>on</strong> electric <strong>an</strong>d hybrid<br />

vehicles.<br />

Dr. Fiorent<strong>in</strong>o Valerio C<strong>on</strong>te<br />

Electric Drive Technologies, Mobility<br />

Department, AIT Austri<strong>an</strong> Institute of<br />

Technology, Österreichisches Forschungs-<br />

und Prüfzentrum Arsenal Ges.m.b.H.,<br />

Gief<strong>in</strong>ggasse 2, Vienna, Austria<br />

Tel: +43 50 550 6217; Fax: +43 50 550 6595<br />

Email: valerio.c<strong>on</strong>te@ait.ac.at<br />

Dr. Fiorent<strong>in</strong>o Valerio C<strong>on</strong>te is energy storage group leader<br />

with<strong>in</strong> AIT. He leads projects deal<strong>in</strong>g with energy storage<br />

systems for HEVs <strong>an</strong>d EVs. He jo<strong>in</strong>ed AIT <strong>in</strong> 2003 after<br />

achiev<strong>in</strong>g his PhD <strong>in</strong> Tr<strong>an</strong>sportati<strong>on</strong> at the University of Pisa.<br />

Previously, Dr. C<strong>on</strong>te worked <strong>in</strong> a Germ<strong>an</strong> R&D department. Dr.<br />

C<strong>on</strong>te has over 10 years of experience <strong>in</strong> the field of adv<strong>an</strong>ced<br />

powertra<strong>in</strong>s. S<strong>in</strong>ce 2005 he has been <strong>in</strong>volved <strong>in</strong> the activities of<br />

the IEA IA <strong>on</strong> electric <strong>an</strong>d hybrid vehicles.<br />

EVS-25 Shenzhen, Ch<strong>in</strong>a, Nov. 5-9, 2010<br />

The 25th World Battery, Hybrid <strong>an</strong>d Fuel Cell Electric Vehicle Symposium & Exhibiti<strong>on</strong><br />

Dr. Ira D. Bloom<br />

Arg<strong>on</strong>ne Nati<strong>on</strong>al Laboratory, 9700 South<br />

Cass Avenue, Arg<strong>on</strong>ne, IL 60439, USA<br />

Tel: +1 630 252 4516; Fax: +1 630 252 4176;<br />

EMail: ira.bloom@<strong>an</strong>l.gov<br />

Dr. Bloom is the M<strong>an</strong>ager of the<br />

Electrochemical Analysis <strong>an</strong>d Diagnostics<br />

Laboratory at ANL. He is resp<strong>on</strong>sible for<br />

m<strong>an</strong>ag<strong>in</strong>g the battery <strong>an</strong>d fuel cell test group <strong>an</strong>d for data<br />

<strong>an</strong>alysis. At ANL, he has developed tools for the <strong>an</strong>alysis of<br />

battery data <strong>an</strong>d for battery life estimati<strong>on</strong>. He holds a BS degree<br />

<strong>in</strong> chemistry from Brown University (1978) <strong>an</strong>d a PhD degree <strong>in</strong><br />

<strong>in</strong>org<strong>an</strong>ic chemistry from the University of Chicago (1983). He<br />

has twelve years of experience test<strong>in</strong>g automotive-class batteries<br />

<strong>an</strong>d <strong>an</strong>alyz<strong>in</strong>g the result<strong>in</strong>g data.<br />

Kenji Morita<br />

Jap<strong>an</strong> Automobile Research Institute, 2530<br />

Karima, Tsukuba, Ibaraki 305-0822, Jap<strong>an</strong>;<br />

Tel: +81-29-856-0818;<br />

Fax: +81-29-856-1169;<br />

Email: kmorita@jari.or.jp<br />

Mr. Morita is the M<strong>an</strong>ager of the<br />

Perform<strong>an</strong>ce Research, FC-EV Research<br />

Divisi<strong>on</strong> at JARI. He is resp<strong>on</strong>sible for m<strong>an</strong>ag<strong>in</strong>g the<br />

perform<strong>an</strong>ce research group of electrically propelled vehicles. At<br />

JARI, he has developed exhaust emissi<strong>on</strong>s <strong>an</strong>d fuel c<strong>on</strong>sumpti<strong>on</strong><br />

test procedures for HEVs. He holds a BS degree <strong>in</strong> mech<strong>an</strong>ical<br />

<strong>an</strong>d system eng<strong>in</strong>eer<strong>in</strong>g from Toyota Technological Institute<br />

(1993). He has three years of experience test<strong>in</strong>g automotive-class<br />

batteries <strong>an</strong>d <strong>an</strong>alyz<strong>in</strong>g the result<strong>in</strong>g data.<br />

Dr. Tomohiko Ikeya<br />

Central Research Institute of Electric Power<br />

Industry, 2-6-1 Nagasaka, Yokosukashi<br />

K<strong>an</strong>agawaken 240-0196, Jap<strong>an</strong>;<br />

Tel: +81-46-856-2121;<br />

Fax: +81-46-856-5571<br />

Email: ikeya@criepi.denken.or.jp<br />

Dr. Ikeya is the Leader of the Adv<strong>an</strong>ced Functi<strong>on</strong> Materials<br />

Sector at Materials Science Laboratory <strong>in</strong> CRIEPI. He is<br />

resp<strong>on</strong>sible for m<strong>an</strong>ag<strong>in</strong>g the applicati<strong>on</strong> technologies for<br />

sec<strong>on</strong>dary batteries. At CRIEPI, he has studied the use of<br />

sec<strong>on</strong>dary batteries for electric vehicles <strong>an</strong>d energy storage<br />

systems <strong>on</strong> the dem<strong>an</strong>d side. He holds a BS <strong>an</strong>d a PhD degrees <strong>in</strong><br />

Applied Chemistry from Keio University (1989). He worked as a<br />

program m<strong>an</strong>ager for R&D of fuel cell, hydrogen <strong>an</strong>d sec<strong>on</strong>dary<br />

battery technologies for energy storage <strong>an</strong>d vehicle applicati<strong>on</strong>s<br />

at NEDO from 2002 to 2006.<br />

Jeffrey R. Belt<br />

Idaho Nati<strong>on</strong>al Laboratory, 2525 North<br />

Frem<strong>on</strong>t Street, Idaho Falls, ID 83415 USA<br />

Tel: +1 208 526 3813;<br />

Fax: +1 208 526 0690;<br />

Email: Jeffrey.belt@<strong>in</strong>l.gov<br />

Mr. Belt is a senior Chemical Eng<strong>in</strong>eer <strong>in</strong><br />

the Tr<strong>an</strong>sportati<strong>on</strong> Technology Department at INL. He is the<br />

chief INL battery test eng<strong>in</strong>eer resp<strong>on</strong>sible for the test<strong>in</strong>g of<br />

adv<strong>an</strong>ced batteries <strong>an</strong>d capacitors <strong>in</strong> support of the U.S.<br />

Department of Energy, FreedomCAR <strong>an</strong>d Vehicle Technologies<br />

Program. Mr. Belt holds a Masters Degree <strong>in</strong> Chemical<br />

Eng<strong>in</strong>eer<strong>in</strong>g from the University of Idaho (2007). He has thirteen<br />

years of experience develop<strong>in</strong>g <strong>an</strong>d test<strong>in</strong>g adv<strong>an</strong>ced batteries for<br />

automotive applicati<strong>on</strong>s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!