5 years ago

chapter 5 turbulent diffusion flames - FedOA

chapter 5 turbulent diffusion flames - FedOA

46. Santoro RJ, Santoro

46. Santoro RJ, Santoro HG, Semerjian RA, Dobbins RA, Soot particle measurements in diffusion flames. Combustion and Flame 51: 203–218 (1983). 47. Shaddix CR, Smyth KC, LII measurements of soot production in steady and flickering Methane, Propane and Ethylene Diffusion Flames. Combustion and Flame 107: 418–452 (1996). 48. McEnally CS, Koylu UO, Pfefferle LD, Rosner DE, Soot Volume fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples. Combustion and Flame 109: 701-720, (1997). 49. Hilbert R, Tap F, El-Rabii H, The´venin D, Impact of detailed chemistry and transport models on turbulent combustion simulations. Progress in Energy and Combustion Science 30, p.61–117, (2004). 50. Schulz C, Kock BF, Hofmann M, Michelsen, Will S, Bougie B, Suntz R, Smallwood G, Laser-induced incandescence: Recent trend and current questions. Appl. Phys. B 83 (3), p. 333-354 (2006). 51. Santoro RJ, Shaddix CR, Laser-Induced Incandescence, in Applied Combustion Diagnostics, Taylor & Francis, p. 252 – 286, (2002). 52. Eckbreth ACJ, Effects of laser-modulated particulate incandescence on Raman scattering diagnostics, Journal of Applied Physics 48, p. 4473-9, (1977). 53. Melton LA, Soot diagnostics based on laser heating, Chemical and Physical Processes in Combustion Paper 23, 4 pp.(1983). 54. Zizak G, Laser Induced Incandescence (LII) of soot, Lecture given at the ICS Training Course on Laser Diagnostics of Combustion Processes, NILES, University of Cairo, Egypt, 18-22 Nov. (2000). 55. Dalzell WH, Sarofim AF, Optical constants of soot and their application to heat flux calculations, J. Heat Transfer, 91, p. 100-104, (1969). 116

56. Bengtsson PE, Alden M, Soot-visualization strategies using laser techniques, Appl. Phys. B 60, p. 51- 59, (1995). 57. Vander Wal RL, Jensen KA, Choi MY, Simultaneous Laser-Induced Emission of Soot and Polycyclic Aromatic Hydrocarbons Within a Gas-Jet Diffusion Flame, Combustion and Flame 109: p. 399 – 414, (1997). 58. Vander Wal RL, Laser-induced incandescence: detection issues, Appl. Opt. 35, 6548, (1996). 59. Dasch CJ, Continuos-Wave Probe Laser Investigation of Laser Vaporization of Small Soot Particles in a Flame, Appl. Optics, 23, p. 2209 – 2215, (1984). 60. Michelsen HA, Witze PO, Kayes D, Hochgrb S, Time-resolved laser-induced incandescence of soot: the influence of experimental factors ans microphysical mechanisms, Applied Optics, 42, p. 5577 – 5590, (2003). 61. Ni T, Pinson JA, Gupta S, Santoro RJ, Two-Dimensional Imaging of Soot Volume fraction by the Use of Laser-Induced Incandescence, Applied Optics, 34, p. 7083 – 7091, (1995). 62. Brockhinke A, Linne MA, Short-Pulse Techniques: Picosecond Fluorescence, Energy Transfer, and “Quench-Free” Measurements, in Applied Combustion Diagnostics, Taylor & Francis, p. 128 – 154, (2002). 63. Smyth KC, Crosley D, Detection of Minor Species with Laser Techniques, in Applied Combustion Diagnostics, Taylor & Francis, p. 9 – 32, (2002). 64. Ciajolo A, Tregrossi A, Barbella R, Ragucci R, Apicella B, De Joannon M, The Relation Between Ultraviolet-Excited Fluorescence Spectroscopy and Aromatic Species Formed in Rich Laminar Ethylene Flames. COMBUSTION AND FLAME 125: p. 1225–1229 (2001). 65. Ciajolo A, Ragucci R, Apicella B, Barbella R, De Joannon M, Tregrossi A, Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene Flames. Chemosphere 42, p. 835-841, (2001). 117

DNS of Turbulent Nonpremixed Ethylene Flames
Heat release rate measurement in turbulent flames