5 years ago

chapter 5 turbulent diffusion flames - FedOA

chapter 5 turbulent diffusion flames - FedOA

66. Bruno A, de Lisio C,

66. Bruno A, de Lisio C, Minutolo P, D'Alessio A. Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy. Combustion and Flame 151(3), 472-481 (2007). 67. Dasch, CJ, One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods, Appl. Optics, 31, p. 1146 – 1152, (1992). 68. Walsh KT, Fielding J, Long MB, Effect of light-collection geometry on reconstruction errors in Abel inversions, Optics Letters, 25, 457 – 459, (2000). 69. D’Alessio A, Laser light scattering and fluorescence diagnostics of rich flames produced by gaseous and liquid fuels, in Particulate carbon: formation during combustion, Siegla DC and Smith GW (Ed.), Plenum Press, New York, p. 207 – 259, (1981). 70. Operation and Service Manual, Model 3936 Scanning Mobility Particle Sizer (SMPSTM) Spectrometer, TSI Incorporated 500 Cardigan Road, Shoreview, MN 55126 U.S.A., 71. Rolando A, D'Alessio A, D'Anna A, Allouis C, Beretta F, Minutolo P, Measurement of particulate volume fraction in a coflow diffusion flame using transient thermocouple technique. Combustion Science and Technology, 176(5-6), p. 945 – 958, (2004). 72. Kent JH, Wagner HG, Why do diffusion flames emit smoke?, Combustion Science and Technology, 41(5-6), p. 245-69, (1984). 73. Eisner AD, Rosner DE, Experimental studies of soot particle thermophoresis in nonisothermal combustion gases using thermocouple response technique. Combust. Flame 61, p. 153 – 166, (1985). 74. Borghese A, Merola SS, Time-resolved spectral and spatial description of laser-induced breakdown in air as a pulsed, bright, and broadband ultraviolet-visible light source. Applied Optics, 37(18), p. 3977-3983, (1998). 118

75. Cecere D, Sgro LA, Basile G, D'Alessio A, D'Anna A, Minutolo P, Evidence and characterization of nanoparticles produced in nonsooting premixed flames. Combustion Science and Technology, 174 (11-12), p. 377-398, (2002). 76. D’Anna A, Sirignano M, Commodo M, Pagliara R, Minutolo P, An experimental and modelling study of particulate formation in premixed flames burning methane. Proceeding of the Fifth Mediterranean Combustion Symposium, Monastir, Tunisia, September 9-13, (2007). 77. Basile G, Rolando A, D'Alessio A, D'Anna A, Minutolo P, Coagulation and carbonization processes in slightly sooting premixed flames. Proceedings of the Combustion Institute, 29(Pt. 2), p. 2391-2397, (2002). 78. Minutolo P, Gambi G, D'Alessio A, The optical band gap model in the interpretation of the UV-visible absorption spectra of rich premixed flames. Symposium (International) on Combustion, [Proceedings] (1996), 26th(Vol. 1), 951-957. 79. Smooke MD, McEnally CS, Pfefferle LD, Colket RJH, Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame, Combustion and Flame 117: p. 117–139 (1999). 80. Kent JH, Honnery D, Soot and mixture fraction in turbulent diffusion flames. Combust. Sci. Technol. 54, p. 383-397, (1987). 81. Toniato G, Zambon A, Lovato A, Tomasetto M, Mazzacavallo G, Metallic mat gas. In: Proceedings of the 29th Meeting of the Italian Section of the Combustion Institute, 14-17 June 2006, Pisa, Italy, paper I-3. 82. Sgro LA, Minutolo P, Basile G, D'Alessio A, UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames. Chemosphere, 42 (5-7), 671-680, (2001). 83. Hildemann LM, Markowski GR, Cass GR. Chemical Composition of Emissions from Urban Sources of Fine Organic Aerosol. Environ Sci Technol 25: p. 744-759, (1991). 119

DNS of Turbulent Nonpremixed Ethylene Flames
Heat release rate measurement in turbulent flames