Views
5 years ago

Synthèse de haut-niveau de contrôleurs ultra-faible consommation ...

Synthèse de haut-niveau de contrôleurs ultra-faible consommation ...

tel-00553143, version 1

tel-00553143, version 1 - 6 Jan 2011 132 Experimental setup and results MSP430 Task Instr. Clk time Power Energy Name Count Cycles (µs) (mW) (nJ) tiMSP openMSP tiMSP openMSP crc8 30 81 5.1 8.8 0.96 44.9 4.9 crc16 27 77 4.8 8.8 0.96 42.2 4.6 tea-decipher 152 441 27.5 8.8 0.96 242 26.4 tea-encipher 149 433 27.0 8.8 0.96 237.6 26 fir 58 175 10.9 8.8 0.96 96 10.4 calcNeigh 110 324 20.2 8.8 0.96 177.7 19.4 sendFrame 132 506 31.6 8.8 0.96 278 30.3 receiveFrame 66 255 15.9 8.8 0.96 139.9 15.2 Table 6.1: Power/energy consumption of MSP430 for different application tasks (@ 16 MHz). 8-bit Micro-task Task No. timePowerEnergy P. Gain E. Gain Area Eq. No. E.Eff. Name States (µs) (µW) (pJ) (x) P1/P2(x) E1/E2 (µm 2 ) Nand Gates(pJ/Inst.) crc8 71 4.4 30.09 132.4 292/32 339/37 5831.7 730 4.4 crc16 103 6.4 46.92 300.3 187/20.4 140.5/15.3 8732.5 1092 11.1 tea-decipher 586 36.6 84.5 3090 104/11.4 78/8.55 19950 2494 20.3 tea-encipher 580 36.2 87.3 3160 101/11 75/8.2 20248 2531 21.2 fir 165 10.3 75.3 775.6 116/12.8 123.8/13.413323.7 1666 13.3 calcNeigh 269 16.8 74.3 1248.2 118/12.9 142.4/15.514239.4 1780 11.3 sendFrame 672 42 33.3 1400.3 264/28.8 198.5/21.7 10578 1323 10.6 receiveFrame 332 20.7 27.3 565 322/35 247.6/26.7 5075.3 635 8.5 Table 6.2: Power and energy gain of 8-bit micro-tasks over MSP430 (@ 16 MHz, 130 nm). Here, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas P2 and E2 are the power and energy gains w.r.t. openMSP. can not be measured. However, since these micro-tasks are comparable to the MSP430 in terms of their overall execution time, we used the instruction count for MSP430 implementation from Table 6.1 and the actual energy consumptions of the hardware micro-task (for each application and control task) to calculate equivalent energy efficiency for them. The values are given in the last column of respective tables (Table 6.2 through Table 6.5). It can be observed that even if the operating voltage is neglected, our hardware microtasks are better (in terms of energy efficiency) than the WSN-specific subthreshold processors that are manually designed and optimized for ultra low-power WSN domain. In addition, if we scale the results using a common subthreshold voltage then we would do a lot better than these approaches. Table 6.6 reflects this fact where the actual and normalized energy efficiencies of various WSN-specific processors are compared with that of an average hardware micro-task.

tel-00553143, version 1 - 6 Jan 2011 Dynamic power gains 133 8-bit Micro-task Task No. timePowerEnergy P. Gain E. Gain Area E.Eff. Name States (µs) (µW) (pJ) (x) P1/P2(x) E1/E2(µm 2 )(pJ/Inst.) crc8 71 4.4 8.0 35.3 1095/32 1272/37.3 1762 1.2 crc16 103 6.4 12.4 79.2 710/20.6 532.8/15.5 2678 2.9 tea-decipher 586 36.6 22.6 827 389/11.32 292.6/8.6 6138 5.4 tea-encipher 580 36.2 23.3 845 377/10.99 281/8.27 6230 5.6 fir 165 10.3 20.4 209.7 432/12.54 458/13.3 4124 3.6 calcNeigh 269 16.8 20.1 337.8 437/12.73 526/15.4 4454 3.1 sendFrame 672 42 8.84 371.3 995/29 748/21.7 3434 2.8 receiveFrame 332 20.7 7.4 53.2 1189/34.6 913/26.8 1561 0.8 Table 6.3: Power and energy gain of 8-bit micro-tasks over MSP430 (@ 16 MHz, 65 nm). Here, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas P2 and E2 are the power and energy gains w.r.t. openMSP. 16-bit Micro-task Task No. timePowerEnergy P. Gain E. Gain Area Eq. No. E.Eff. Name States (µs) (µW) (pJ) (x) P1/P2(x) E1/E2(µm 2 )Nand Gates(pJ/Inst.) crc8 71 4.4 55.3 242.6 159.6/17.4185.1/20.2 10348 1294 8.1 crc16 73 4.56 55.0 251.0 159.8/17.4168.1/18.3 10280 1285 9.3 tea-decipher 308 19.2 152.8 2940 57.6/6.2 82/9 27236 3405 19.3 tea-encipher 306 19.1 152.3 2910 57.8/6.3 81/8.93 27069 3384 19.5 fir 168 10.5 144.2 1514 61.02/6.7 63.4/6.9 23547 2944 26.1 calcNeigh 269 16.8 142.4 2392 61.8/6.7 74.3/8.1 24745 3094 21.7 sendFrame 672 42 58.1 2440 151.5/16.5 114/12.4 14863 1858 18.5 receiveFrame 332 20.7 50.0 1036 175.8/19.2 135/14.7 9485 1183 15.7 Table 6.4: Power and energy gain of 16-bit micro-tasks over MSP430 (@ 16 MHz, 130 nm). Here again, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas P2 and E2 are the power and energy gains w.r.t. openMSP. 16-bit Micro-task Task No. timePowerEnergy P. Gain E. Gain Area E.Eff. Name States (µs) (µW) (pJ) (x) P1/P2 (x) E1/E2(µm 2 )(pJ/Inst.) crc8 71 4.4 14.71 64.72 598.2/17.4 693.7/20.3 3097 2.1 crc16 73 4.56 14.69 66.98 599/17.4 630/18.4 3102 2.5 tea-decipher 308 19.2 40.85 784.3 215.4/6.3 308.5/9.04 8380 5.1 tea-encipher 306 19.1 40.61 776.0 216.7/6.3 306.2/9 621 5.2 fir 168 10.5 39.03 409.8 225.5/6.56 234.3/6.8 7164 7.0 calcNeigh 269 16.8 38.58 648.1 228/6.4 274/8 7613 5.9 sendFrame 672 42 15.53 652.2 566.6/16.5 426/12.52 4771 4.9 receiveFrame 332 20.7 13.67 283.0 643.7/18.72 494/14.42 2858 4.3 Table 6.5: Power and energy gain of 16-bit micro-tasks over MSP430 (@ 16 MHz, 65 nm). Here again, P1 and E1 are the power and energy gains w.r.t. tiMSP whereas P2 and E2 are the power and energy gains w.r.t. openMSP.

Les bus à haut niveau de service
Synthèse, caractérisation et polymérisation par ouverture de cycle ...
CONVENTION INDIVIDUELLE ATHLETES DE HAUT NIVEAU saison 2014-2015
UN SEMINAIRE INTERNATIONAL DE HAUT NIVEAU ... - EPSA 2011
Analyse et synthèse de sons de piano par modèles physiques et de ...
Emission gamma de haute énergie dans les systèmes binaires ...
[pastel-00600598, v1] Synthèse de composés ... - Chimie ParisTech
Synthèse, caractérisation et intérêt biomédical de (glyco ...
Martin Teichmann Atomes de lithium-6 ultra froids dans la ... - TEL
Test et Consommation des Circuits N é i P blé ti t Numériques ...
Etude des systèmes RFID opérants en rétrodiffusion modulée ultra ...
Du sillage des insectes aux gaz de Fermi ultra-froids: dynamique ...
Analyse tth, H EN WW avec ATLAS au LHC et étude des électrons à ...
Computer: PicoRadio Supports Ad Hoc Ultra-Low Power Wireless ...
Electroproduction de pions neutres dans le Hall A au Jefferson ...