Views
5 years ago

plant genetic resources for food and agriculture - FAO

plant genetic resources for food and agriculture - FAO

STATE OF DIVERSITY OF

STATE OF DIVERSITY OF MAJOR AND MINOR CROPS A4.1 Introduction In Annex 2 of the first SoW report, a number of crops of major and minor importance for food security in one or more global subregions were surveyed for the state of their diversity. Similarly in this Appendix, major crops (wheat, rice, maize, sorghum, cassava, potato, sweet potato, beans (Phaseolus), soybean, sugar crops, and banana/plantain) and a number of globally minor, but subregionally or nationally major, crops (millets, roots and tubers other than the ones listed above, pulse crops other than species of Phaseolus, grapes, tree nuts, and vegetables and melons) are surveyed. While this range of crops is not a definitive list of staple or important food and oil crops, it does include examples of different crop groups (cereals, food legumes, roots and tubers, tree crops), species with different breeding systems (cross-pollinating, self-pollinating, clonally propagated), and crops of temperate and tropical origins. It also includes crops for which there has been great investment in conservation and improvement, notably wheat, rice and maize, as well as crops for which there has been relatively less investment, such as cassava, sweet potato, and plantain. This list of major and minor crops also provides a good sampling of the crops listed in Annex 1 of the ITPGRFA, 1 although not all crops surveyed here are in Annex 1 (e.g. soybean, groundnut, sugar cane, grape and some millets). The purpose of this Appendix is not simply to repeat information presented in Chapters 1, 2, and 3 of the main report, but to highlight some of that information in a crop-oriented context. General information is provided here on the major patterns of production and on the area harvested of the major and minor crops over the years 1995 through 2008; 2 the composition of their genepools; the state of in situ diversity for crop species, if wild forms exist, and of CWR and in situ conservation programmes (more details are given in Chapter 2); specific reports of genetic erosion; summaries of the status of major ex situ collections (more details are given in Chapter 3 and Appendix 2); the status of safety duplication of ex situ collections, gaps, opportunities and priorities in the extent of coverage of the genepool diversity in ex situ collections; the extent of documentation, characterization and evaluation of collections; issues related to utilization of collections; the impact of climate change on priorities and concerns for both in situ and ex situ conservation; and the role of specific crops for sustainable production systems, organic production systems, and farmer opportunities. In the individual crop sections that follow, specific concerns are highlighted. 3 Diversity status Since 1995, more than 1 million germplasm samples have been added to ex situ collections and at least a quarter of these accessions are the result of new collecting missions (from fields, markets, and nature). 4 The remainder are probably a result of increased exchange of accessions among collections. The number of accessions is not a direct measure of diversity. There are many germplasm descriptors from which the diversity status of a collection can be inferred (for example, passport information, phenotype information for many characters, genotype information from many possible markers and assays, and basic taxon biology). The assessment of diversity thus depends upon the uniform availability of such information for the collections to be studied. As pointed out by many sources, uneven documentation of crop germplasm is a major shortcoming for most collections. Even less is known about the state of diversity represented in genebank accessions of wild species related to crops or about the status of diversity in taxa growing in any sort of natural reserve or other in situ conservation areas. As pointed out in Chapter 2, very few (

APPENDIX 4 some country reports. 6 Political instability, changes in political systems, economic disparities and uneven development across national landscapes have also negative repercussions on biological diversity and both precede and follow outright conflicts. Specific impacts include destruction of habitat, basic infrastructure and the collections themselves. 7 Even as studies and reports have been identifying gaps and deficiencies and raising alarms, there has been progress in diversity assessments since the first SoW report, motivated by many factors, actors, and initiatives: • increasing country compliance with mandates of the 1992 CBD (in situ and ex situ conservation and access and sustainable use of biodiversity) as well as national biodiversity strategies and action plans for carrying them out; • the coming into force of the ITPGRFA and steps taken by countries for its implementation; • the FAO Commission on Genetic Resources for Food and Agriculture, the first SoW report, and the subsequent GPA; • the international research organization IPBGR/ IPGRI/Bioversity International and its efforts at research, documentation, and training dedicated to conservation of agrobiodiversity; • the efforts of the international centres of the CGIAR with their various mandated crops; • national and regional efforts (for example, the United States Department of Agriculture [USDA], the United States Agency for International Development [USAID], the Swedish International Development Cooperation Agency [Sida], the European Commissions) at training and capacity building for conservation and utilization in countries with priority crops; • the establishment of the GCDT and its efforts to motivate assessments and conservation strategies and to provide funding to carry out the priorities thus established. As reported in Chapter 2, since 1995 many countries have carried out specific surveys and inventories at least at the level of species, either as part of their National Biodiversity Strategy and Action Plans or within the framework of individual projects. Most have been limited to single crops, small groups of species, or 308 THE SECOND REPORT ON THE STATE OF THE WORLD’S PGRFA limited areas within the national territory. ICARDA has assisted countries in North Africa, the Near East and Central Asia in surveys to assess density, frequency, and threats to CWR. Academic research undertakings have surveyed active farms in several countries to assess the extent of traditional varieties still grown in spite of the availability of modern, high-yielding varieties of many crops and report that a significant amount of crop genetic diversity in the form of traditional varieties continues to be maintained on-farm (Chapter 2 and country reports from Bosnia Herzegovina, Iceland, the Niger, Poland, Switzerland and the Former Yugoslav Republic of Macedonia, which affirm that crop diversity is still high and that special efforts are made to keep it that way). For example, in the Niger, no genetic erosion was observed during recent collecting missions and many traditional cultivars still prevailed in farmers’ fields. No losses of millets and sorghum varieties could be detected in comparing collecting missions in 1973 and 2003, however, improved varieties of millet had increased. 8 On the other hand, there continue to be recurring reports and alerts about the dwindling diversity of landraces and traditional varieties in production and in conservation. 9 Among the country reports, the majority pointed to decreases in cultivation of traditional varieties and landraces due to replacement by modern varieties. 10 Along with this conclusion, however, most of these country reports also stated that the detailed surveys and inventories that could document these decreases have not been done. The strongest conclusion that can be made from these country reports is that the extent of diversity maintained in crop production systems or in the wild either is not known or varies greatly with crop or ecosystem and country. Among the strategies countries have reported for preventing genetic erosion caused by pressures for variety replacement are: • on-going collection of wild and on-farm germplasm and diversification of production with traditional cultivars to allow farmers to produce for local markets and traditional use; 11 • adequate conservation of landraces and traditional grass varieties by the Nordic Gene Bank; 12 • collection, identification and ex situ conservation of crop landraces by public and private institutions; 13

  • Page 1 and 2:

    The Second Report on THE STATE OF T

  • Page 3 and 4:

    The designations employed and the p

  • Page 5 and 6:

    I hope and trust that the informati

  • Page 7 and 8:

    2.4 Global challenges to in situ co

  • Page 9 and 10:

    5.5 Changes since the first State o

  • Page 11 and 12:

    Appendix 2 Major germplasm collecti

  • Page 13 and 14:

    3.2 Holders of the six largest ex s

  • Page 15 and 16:

    The CGRFA requested that the SoWPGR

  • Page 17 and 18:

    Chapter 7 - Access to plant genetic

  • Page 20 and 21:

    Executive summary �his report des

  • Page 22 and 23:

    documentation and characterization

  • Page 24 and 25:

    Given the high level of interdepend

  • Page 28:

    Chapter 1 The state of diversity CH

  • Page 31 and 32:

    CHAPTER 1 1.2.1 Changes in the stat

  • Page 33 and 34:

    TABLE 1.2 Comparison between the co

  • Page 35 and 36:

    CHAPTER 1 in national agricultural

  • Page 37 and 38:

    FIGURE 1.1 Global priority genetic

  • Page 39 and 40:

    12 CHAPTER 1 AFRICA • Benin Molec

  • Page 41 and 42:

    14 CHAPTER 1 NEAR EAST effective at

  • Page 43 and 44:

    CHAPTER 1 comparisons, or use the i

  • Page 45 and 46:

    18 CHAPTER 1 FIGURE 1.3 Interdepend

  • Page 47 and 48:

    TABLE 1.4 (continued) Indicators of

  • Page 49 and 50:

    CHAPTER 1 even national, germplasm

  • Page 51 and 52:

    24 CHAPTER 1 9 Hammer, K. 2003. A p

  • Page 53:

    26 CHAPTER 1 X. & Li, Z. 2006. Gene

  • Page 58 and 59:

    THE STATE OF IN SITU MANAGEMENT 2.1

  • Page 60 and 61:

    THE STATE OF IN SITU MANAGEMENT (ba

  • Page 62 and 63:

    THE STATE OF IN SITU MANAGEMENT the

  • Page 64 and 65:

    THE STATE OF IN SITU MANAGEMENT TAB

  • Page 66 and 67:

    THE STATE OF IN SITU MANAGEMENT TAB

  • Page 68 and 69:

    THE STATE OF IN SITU MANAGEMENT com

  • Page 70 and 71:

    THE STATE OF IN SITU MANAGEMENT on

  • Page 72 and 73:

    THE STATE OF IN SITU MANAGEMENT has

  • Page 74 and 75:

    THE STATE OF IN SITU MANAGEMENT 12

  • Page 76 and 77:

    THE STATE OF IN SITU MANAGEMENT 53

  • Page 78:

    THE STATE OF IN SITU MANAGEMENT Max

  • Page 82 and 83:

    THE STATE OF EX SITU CONSERVATION 3

  • Page 84 and 85:

    THE STATE OF EX SITU CONSERVATION F

  • Page 86 and 87:

    THE STATE OF EX SITU CONSERVATION A

  • Page 88 and 89:

    THE STATE OF EX SITU CONSERVATION t

  • Page 90 and 91:

    THE STATE OF EX SITU CONSERVATION T

  • Page 92 and 93:

    THE STATE OF EX SITU CONSERVATION T

  • Page 94 and 95:

    THE STATE OF EX SITU CONSERVATION U

  • Page 96 and 97:

    THE STATE OF EX SITU CONSERVATION T

  • Page 98 and 99:

    THE STATE OF EX SITU CONSERVATION u

  • Page 100 and 101:

    THE STATE OF EX SITU CONSERVATION A

  • Page 102 and 103:

    THE STATE OF EX SITU CONSERVATION l

  • Page 104 and 105:

    THE STATE OF EX SITU CONSERVATION A

  • Page 106 and 107:

    THE STATE OF EX SITU CONSERVATION p

  • Page 108 and 109:

    THE STATE OF EX SITU CONSERVATION T

  • Page 110 and 111:

    THE STATE OF EX SITU CONSERVATION C

  • Page 112 and 113:

    THE STATE OF EX SITU CONSERVATION N

  • Page 114 and 115:

    THE STATE OF EX SITU CONSERVATION t

  • Page 116 and 117:

    THE STATE OF EX SITU CONSERVATION 1

  • Page 120:

    Chapter 4 The state of use CHAPTER

  • Page 123 and 124:

    96 CHAPTER 4 very similar (approxim

  • Page 125 and 126:

    98 CHAPTER 4 including rice, maize

  • Page 127 and 128:

    CHAPTER 4 In the United States of A

  • Page 129 and 130:

    CHAPTER 4 biosafety monitoring and

  • Page 131 and 132:

    CHAPTER 4 improvement. While the fi

  • Page 133 and 134:

    CHAPTER 4 exchange of material and

  • Page 135 and 136:

    CHAPTER 4 4.7.4 Cooperation and lin

  • Page 137 and 138:

    CHAPTER 4 seed legislation to meet

  • Page 139 and 140:

    CHAPTER 4 A number of countries 36

  • Page 141 and 142:

    CHAPTER 4 Different plants are rich

  • Page 143 and 144:

    CHAPTER 4 breeding activities over

  • Page 145 and 146:

    118 CHAPTER 4 16 Op cit. Endnote 8.

  • Page 148:

    Chapter 5 The state of national pro

  • Page 151 and 152:

    CHAPTER 5 national system based on

  • Page 153 and 154:

    CHAPTER 5 involvement vary from the

  • Page 155 and 156:

    CHAPTER 5 of Bolivia, for example,

  • Page 157 and 158:

    CHAPTER 5 In some countries includi

  • Page 159 and 160:

    CHAPTER 5 Africa, Burkina Faso, Cam

  • Page 161 and 162:

    CHAPTER 5 Box 5.2 India’s Protect

  • Page 163 and 164:

    CHAPTER 5 the adoption of national

  • Page 165 and 166:

    138 CHAPTER 5 10 Available at: http

  • Page 168:

    Chapter 6 The state of regional and

  • Page 171 and 172:

    CHAPTER 6 a) those that focus on co

  • Page 173 and 174:

    146 CHAPTER 6 PGRN has continued to

  • Page 175 and 176:

    CHAPTER 6 • the Regional Cooperat

  • Page 177 and 178:

    CHAPTER 6 and African countries for

  • Page 179 and 180:

    CHAPTER 6 few years, the CGIAR Syst

  • Page 181 and 182:

    CHAPTER 6 • ICBA: 64 ICBA was est

  • Page 183 and 184:

    CHAPTER 6 Varieties. Central Americ

  • Page 185 and 186:

    CHAPTER 6 the first SoW report was

  • Page 187 and 188:

    160 CHAPTER 6 12 Available at: www.

  • Page 190:

    Chapter 7 Access to Plant Genetic R

  • Page 193 and 194:

    CHAPTER 7 Box 7.1 Benefit-sharing u

  • Page 195 and 196:

    CHAPTER 7 laws, regulations and con

  • Page 197 and 198:

    170 CHAPTER 7 THE SECOND REPORT ON

  • Page 199 and 200:

    CHAPTER 7 has been adapted to incor

  • Page 201 and 202:

    CHAPTER 7 changes after the initial

  • Page 203 and 204:

    CHAPTER 7 regional workshops on Far

  • Page 205:

    178 CHAPTER 7 20 Experience of the

  • Page 210 and 211:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 212 and 213:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 214 and 215:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 216 and 217:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 218 and 219:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 220 and 221:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 222 and 223:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 224 and 225:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 226 and 227:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 228:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 232 and 233:

    LIST OF COUNTRIES THAT PROVIDED INF

  • Page 234 and 235:

    LIST OF COUNTRIES THAT PROVIDED INF

  • Page 238:

    Annex 2 Regional distribution of co

  • Page 241:

    EUROPE 214 ANNEX 2 ASIA AND THE PAC

  • Page 246 and 247:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 248 and 249:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 250 and 251:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 252 and 253:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 254 and 255:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 256 and 257:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 258 and 259:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 260 and 261:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 262 and 263:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 264 and 265:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 266:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 270 and 271:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 272 and 273:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 274 and 275:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 276 and 277:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 278 and 279:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 280 and 281:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 282 and 283: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 284 and 285: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 286 and 287: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 288 and 289: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 290 and 291: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 292 and 293: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 294 and 295: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 296 and 297: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 298 and 299: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 300 and 301: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 302 and 303: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 304 and 305: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 306 and 307: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 308 and 309: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 310: MAJOR GERMPLASM COLLECTIONS BY CROP
  • Page 314 and 315: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 316 and 317: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 318 and 319: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 320 and 321: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 322 and 323: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 324 and 325: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 326 and 327: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 328 and 329: THE STATE-OF-THE-ART: METHODOLOGIES
  • Page 332: Appendix 4 State of diversity of ma
  • Page 337 and 338: APPENDIX 4 option for perennial tax
  • Page 339 and 340: APPENDIX 4 (wild one-grain wheat, T
  • Page 341 and 342: APPENDIX 4 regeneration of existing
  • Page 343 and 344: APPENDIX 4 An operational comprehen
  • Page 345 and 346: APPENDIX 4 FIGURE A4.2 Global yield
  • Page 347 and 348: APPENDIX 4 actively contribute to t
  • Page 349 and 350: APPENDIX 4 Role of crop in sustaina
  • Page 351 and 352: APPENDIX 4 and Myanmar (3 percent).
  • Page 353 and 354: APPENDIX 4 progenitor is the wild s
  • Page 355 and 356: appendiX 4 Ex situ conservation sta
  • Page 357 and 358: APPENDIX 4 Documentation, character
  • Page 359 and 360: APPENDIX 4 The two global chickpea
  • Page 361 and 362: APPENDIX 4 in collections, absence
  • Page 363 and 364: APPENDIX 4 FIGURE A4.5 Global yield
  • Page 365 and 366: 338 APPENDIX 4 are also conserved.
  • Page 367 and 368: 340 APPENDIX 4 WebPDF/Crop percent2
  • Page 369 and 370: 342 APPENDIX 4 90 Op cit. Endnote 2
  • Page 371 and 372: 344 APPENDIX 4 159 GCDT. 2007. Glob
  • Page 373 and 374: 346 APPENDIX 4 217 Op cit. Endnote
  • Page 375 and 376: 348 APPENDIX 4 291 Op cit. Endnote
  • Page 377 and 378: 350 APPENDIX 4 366 Ibid. Endnote 35
  • Page 379 and 380: BAAFS Beijing Academy of Agricultur
  • Page 381 and 382: CN Centre Néerlandais (Côte d’I
  • Page 383 and 384:

    DTRUFC División of Tropical Resear

  • Page 385 and 386:

    HRIGRU Horticultural Research Inter

  • Page 387 and 388:

    INIA CARI Centro Regional de Invest

  • Page 389 and 390:

    IVM Institute of Grape and Wine «M

  • Page 391 and 392:

    NISM National Information Sharing M

  • Page 393 and 394:

    REHOVOT Department of Field and Veg

  • Page 395 and 396:

    SRI Sugar Crop Research Institute,

  • Page 397:

    WCMC World Conservation Monitoring

Biodiversity for Food and Agriculture - FAO
The State of Food and Agriculture - FAO
ANIMAL GENETIC RESOURCES RESSOURCES ... - FAO
The State of Food and Agriculture 2013 - FAO
indian society of plant genetic resources - Bioversity International
THE NATIONAL ANIMAL GENETIC RESOURCES CENTRE ... - FAO
The state of food and agriculture, 1968 - FAO
The Right to Food and Access to Natural Resources - FAO
New Genetics, Food and Agriculture - International Council for Science
Food Security and Agricultural Mitigation in Developing ... - FAO
ANIMAL GENETIC RESOURCES RESSOURCES ... - FAO
Conservation Agriculture and Sustainable Crop Intensification ... - FAO
Genetically Modified Plants for Food Use and Human ... - Guardian
The State of the World's Land and Water Resources for Food ... - FAO
GROWING FOOD - FAO
varieties creation and conservation of plant genetic resources
New Genetics, Food and Agriculture: Scientific ... - ArgenBio
Genetic Modified Food - State Agriculture and Rural Leaders
Land tenure and international investments in agriculture - FAO
Climate change, water and food security - FAO
Food wastage footprint: Impacts on natural resources ... - FAO
Conservation agriculture as practised in Kenya: two case ... - FAO
BIODIPLOMACY -- Genetic Resources and International Relations
Explanatory Guide to the International Treaty on Plant Genetic - IUCN
food insecurity in the world - FAO
Agriculture Sector Bulletin Summer 2011 [pdf] - FAO
BEFS Module 3 – Agricultural commodities outlook - FAO