Views
5 years ago

plant genetic resources for food and agriculture - FAO

plant genetic resources for food and agriculture - FAO

THE STATE OF EX SITU

THE STATE OF EX SITU CONSERVATION TABLE 3.4 Number and percentage of accessions of local origin in ex situ genebanks, excluding collections held in international and regional genebanks Region Subregion Number of indigenous accesions countries served by the genebank. However, the percentage of indigenous accessions in the national genebanks of Bulgaria, the Czech Republic, Germany, the Netherlands and the Russian Federation varies between 14 and 20 percent. Austria, France, Hungary, Italy, Poland and Ukraine conserve more foreign germplasm than native. In the Near East region, either all or the majority of accessions in the national genebanks are of native origin; exclusively so for Jordan, Kyrgyzstan and Lebanon and predominantly so for Pakistan, Tajikistan and Yemen. Total number of accessions ( a ) % of indigenous accessions Africa West Africa 32 733 40 677 80 Africa Central Africa 934 18 829 5 Africa Eastern Africa 100 125 119 676 84 Africa Sourthern Africa 40 853 41 171 99 Africa Indian Ocean Islands 131 273 48 America South America 145 242 180 604 80 America Central America and Mexico 41 370 51 513 80 America Caribbean 13 746 23 671 58 America North America 114 334 521 698 22 Asia and the Pacific East Asia 179 055 255 673 70 Asia and the Pacific South Asia 420 019 443 573 95 Asia and the Pacific Southeast Asia 74 466 137 763 54 Asia and the Pacific Pacific 42 649 188 988 23 Europe Europe 354 015 939 620 38 Near East South/East Mediterranean 66 363 73 428 90 Near East West Asia 54 735 55 255 99 Near East Central Asia 20 375 25 283 81 World 1 701 145 3 117 695 55 a Total number of accessions whose country of origin is reported. Source: WIEWS 2009 3.4.5 Gaps in collection coverage The extent of coverage of the total diversity of different crops in ex situ collections is difficult if not impossible to estimate with any real precision as it varies considerably according to crop and according to the perceptions of different stakeholder groups. Over recent years, the GCDT has supported the development of a number of crop and regional conservation strategies. 12 These have brought together information from different countries and organizations and, inter alia, have attempted to identify major gaps in ex situ collections as estimated 69

CHAPTER 3 by different stakeholders. Thus, for wheat, according to the opinion of collection managers, the major gaps in collections are of landraces and cultivars. Key users of wheat genetic resources, however, indicated the need for more mapping populations, mutants, genetic stocks and a wider range of wild relatives. For maize, the situation is slightly different as there are relatively few areas where no comprehensive collection has been made. Major gaps identified in existing ex situ maize collections thus include hybrids and tropical inbred lines, in addition to gaps resulting from the loss of accessions from collections; for example, the entire collection of Dominica was lost as was much of the maize collected by the International Board for Plant Genetic Resources (IBPGR) in the 1970s. For barley there are gaps in collections of wild relatives and many species and populations are endangered as a result of the loss of their natural habitats. For potatoes, the most useful genetic material has already been collected and there are currently few significant gaps. However, several Latin American collections are threatened by lack of funding and, if lost, would result in critical gaps in the overall coverage of the genepool. The situation for sweet potato is somewhat different, as important geographic as well as trait gaps have been identified. Among the best estimates of genepool coverage are those for banana and plantain. About 300-400 key cultivars are known to be missing from the International Transit Collection including 20 plantains from Africa, 50 Callimusa from Borneo, 20-30 Musa balbisiana and 20 other types from China and India, 10 accessions from Myanmar, 40 wild types from Indonesia and Thailand and up to 100 wild types from the Pacific. The situation for legumes differs from those described above. For lentils, landraces from China and Morocco and wild species, particularly from southeast Turkey, are not well represented in collections. There are gaps in chickpea collections from Central Asia and Ethiopia and there are relatively few accessions of wild relatives collected, particularly from the secondary genepool. For faba beans, various geographic gaps have been identified including local varieties and landraces from North Africa, the Egyptian oases, South America and China. The small-seeded subspecies, paucijuga, is also under-represented in collections and 70 THE SECOND REPORT ON THE STATE OF THE WORLD’S PGRFA there are trait gaps, especially for heat tolerance. An important consideration for many legume collections is also the need to collect and maintain samples of Rhizobium. This is especially the case for wild legume species, for which Rhizobium collections are rare. While there are still sizeable gaps in the ex situ collections of many major crops, these tend to be small in comparison with those in the collections of the numerous minor crops. Indeed, many useful plant species only occur in the wild or as landraces in farmers’ fields. In many cases these species are threatened by the vagaries of climate and changes in land use. A problem common to many crops is the difficulty in conserving their wild relatives, especially perennials. As a result, they are often missing from collections and are generally best conserved in situ as they can be difficult to collect and maintain ex situ, or can become serious weeds. While today there is a better understanding of the extent and nature of gaps in ex situ collections than at the time of the first SoW report, the picture is still far from complete. The use of molecular data to improve understanding on the nature, extent and distribution of genetic diversity, more detailed field surveys and better georeferencing of accessions would all be helpful in efforts to more accurately identify gaps and redundancy within and among individual collections and in genepools as a whole. 3.4.6 Conservation of deoxyribonucleic acid samples and nucleotide sequence information In addition to storage of seeds, whole plants and tissues, isolated DNA can be maintained at low temperatures or electronically as sequence data on computers, in silico. The latter is becoming increasingly possible as data storage costs fall and the power of analytical tools increases. While current technology does not permit the regeneration of the original plant from isolated DNA or electronic information sources, these can be used in many ways, e.g. in genetic diversity and taxonomic studies. In 2004, Bioversity International surveyed international and national conservation programmes, botanic gardens,

  • Page 1 and 2:

    The Second Report on THE STATE OF T

  • Page 3 and 4:

    The designations employed and the p

  • Page 5 and 6:

    I hope and trust that the informati

  • Page 7 and 8:

    2.4 Global challenges to in situ co

  • Page 9 and 10:

    5.5 Changes since the first State o

  • Page 11 and 12:

    Appendix 2 Major germplasm collecti

  • Page 13 and 14:

    3.2 Holders of the six largest ex s

  • Page 15 and 16:

    The CGRFA requested that the SoWPGR

  • Page 17 and 18:

    Chapter 7 - Access to plant genetic

  • Page 20 and 21:

    Executive summary �his report des

  • Page 22 and 23:

    documentation and characterization

  • Page 24 and 25:

    Given the high level of interdepend

  • Page 28:

    Chapter 1 The state of diversity CH

  • Page 31 and 32:

    CHAPTER 1 1.2.1 Changes in the stat

  • Page 33 and 34:

    TABLE 1.2 Comparison between the co

  • Page 35 and 36:

    CHAPTER 1 in national agricultural

  • Page 37 and 38:

    FIGURE 1.1 Global priority genetic

  • Page 39 and 40:

    12 CHAPTER 1 AFRICA • Benin Molec

  • Page 41 and 42:

    14 CHAPTER 1 NEAR EAST effective at

  • Page 43 and 44:

    CHAPTER 1 comparisons, or use the i

  • Page 45 and 46: 18 CHAPTER 1 FIGURE 1.3 Interdepend
  • Page 47 and 48: TABLE 1.4 (continued) Indicators of
  • Page 49 and 50: CHAPTER 1 even national, germplasm
  • Page 51 and 52: 24 CHAPTER 1 9 Hammer, K. 2003. A p
  • Page 53: 26 CHAPTER 1 X. & Li, Z. 2006. Gene
  • Page 58 and 59: THE STATE OF IN SITU MANAGEMENT 2.1
  • Page 60 and 61: THE STATE OF IN SITU MANAGEMENT (ba
  • Page 62 and 63: THE STATE OF IN SITU MANAGEMENT the
  • Page 64 and 65: THE STATE OF IN SITU MANAGEMENT TAB
  • Page 66 and 67: THE STATE OF IN SITU MANAGEMENT TAB
  • Page 68 and 69: THE STATE OF IN SITU MANAGEMENT com
  • Page 70 and 71: THE STATE OF IN SITU MANAGEMENT on
  • Page 72 and 73: THE STATE OF IN SITU MANAGEMENT has
  • Page 74 and 75: THE STATE OF IN SITU MANAGEMENT 12
  • Page 76 and 77: THE STATE OF IN SITU MANAGEMENT 53
  • Page 78: THE STATE OF IN SITU MANAGEMENT Max
  • Page 82 and 83: THE STATE OF EX SITU CONSERVATION 3
  • Page 84 and 85: THE STATE OF EX SITU CONSERVATION F
  • Page 86 and 87: THE STATE OF EX SITU CONSERVATION A
  • Page 88 and 89: THE STATE OF EX SITU CONSERVATION t
  • Page 90 and 91: THE STATE OF EX SITU CONSERVATION T
  • Page 92 and 93: THE STATE OF EX SITU CONSERVATION T
  • Page 94 and 95: THE STATE OF EX SITU CONSERVATION U
  • Page 98 and 99: THE STATE OF EX SITU CONSERVATION u
  • Page 100 and 101: THE STATE OF EX SITU CONSERVATION A
  • Page 102 and 103: THE STATE OF EX SITU CONSERVATION l
  • Page 104 and 105: THE STATE OF EX SITU CONSERVATION A
  • Page 106 and 107: THE STATE OF EX SITU CONSERVATION p
  • Page 108 and 109: THE STATE OF EX SITU CONSERVATION T
  • Page 110 and 111: THE STATE OF EX SITU CONSERVATION C
  • Page 112 and 113: THE STATE OF EX SITU CONSERVATION N
  • Page 114 and 115: THE STATE OF EX SITU CONSERVATION t
  • Page 116 and 117: THE STATE OF EX SITU CONSERVATION 1
  • Page 120: Chapter 4 The state of use CHAPTER
  • Page 123 and 124: 96 CHAPTER 4 very similar (approxim
  • Page 125 and 126: 98 CHAPTER 4 including rice, maize
  • Page 127 and 128: CHAPTER 4 In the United States of A
  • Page 129 and 130: CHAPTER 4 biosafety monitoring and
  • Page 131 and 132: CHAPTER 4 improvement. While the fi
  • Page 133 and 134: CHAPTER 4 exchange of material and
  • Page 135 and 136: CHAPTER 4 4.7.4 Cooperation and lin
  • Page 137 and 138: CHAPTER 4 seed legislation to meet
  • Page 139 and 140: CHAPTER 4 A number of countries 36
  • Page 141 and 142: CHAPTER 4 Different plants are rich
  • Page 143 and 144: CHAPTER 4 breeding activities over
  • Page 145 and 146: 118 CHAPTER 4 16 Op cit. Endnote 8.
  • Page 148:

    Chapter 5 The state of national pro

  • Page 151 and 152:

    CHAPTER 5 national system based on

  • Page 153 and 154:

    CHAPTER 5 involvement vary from the

  • Page 155 and 156:

    CHAPTER 5 of Bolivia, for example,

  • Page 157 and 158:

    CHAPTER 5 In some countries includi

  • Page 159 and 160:

    CHAPTER 5 Africa, Burkina Faso, Cam

  • Page 161 and 162:

    CHAPTER 5 Box 5.2 India’s Protect

  • Page 163 and 164:

    CHAPTER 5 the adoption of national

  • Page 165 and 166:

    138 CHAPTER 5 10 Available at: http

  • Page 168:

    Chapter 6 The state of regional and

  • Page 171 and 172:

    CHAPTER 6 a) those that focus on co

  • Page 173 and 174:

    146 CHAPTER 6 PGRN has continued to

  • Page 175 and 176:

    CHAPTER 6 • the Regional Cooperat

  • Page 177 and 178:

    CHAPTER 6 and African countries for

  • Page 179 and 180:

    CHAPTER 6 few years, the CGIAR Syst

  • Page 181 and 182:

    CHAPTER 6 • ICBA: 64 ICBA was est

  • Page 183 and 184:

    CHAPTER 6 Varieties. Central Americ

  • Page 185 and 186:

    CHAPTER 6 the first SoW report was

  • Page 187 and 188:

    160 CHAPTER 6 12 Available at: www.

  • Page 190:

    Chapter 7 Access to Plant Genetic R

  • Page 193 and 194:

    CHAPTER 7 Box 7.1 Benefit-sharing u

  • Page 195 and 196:

    CHAPTER 7 laws, regulations and con

  • Page 197 and 198:

    170 CHAPTER 7 THE SECOND REPORT ON

  • Page 199 and 200:

    CHAPTER 7 has been adapted to incor

  • Page 201 and 202:

    CHAPTER 7 changes after the initial

  • Page 203 and 204:

    CHAPTER 7 regional workshops on Far

  • Page 205:

    178 CHAPTER 7 20 Experience of the

  • Page 210 and 211:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 212 and 213:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 214 and 215:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 216 and 217:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 218 and 219:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 220 and 221:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 222 and 223:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 224 and 225:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 226 and 227:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 228:

    THE CONTRIBUTION OF PGRFA TO FOOD S

  • Page 232 and 233:

    LIST OF COUNTRIES THAT PROVIDED INF

  • Page 234 and 235:

    LIST OF COUNTRIES THAT PROVIDED INF

  • Page 238:

    Annex 2 Regional distribution of co

  • Page 241:

    EUROPE 214 ANNEX 2 ASIA AND THE PAC

  • Page 246 and 247:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 248 and 249:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 250 and 251:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 252 and 253:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 254 and 255:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 256 and 257:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 258 and 259:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 260 and 261:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 262 and 263:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 264 and 265:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 266:

    STATUS BY COUNTRY OF NATIONAL LEGIS

  • Page 270 and 271:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 272 and 273:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 274 and 275:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 276 and 277:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 278 and 279:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 280 and 281:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 282 and 283:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 284 and 285:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 286 and 287:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 288 and 289:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 290 and 291:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 292 and 293:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 294 and 295:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 296 and 297:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 298 and 299:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 300 and 301:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 302 and 303:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 304 and 305:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 306 and 307:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 308 and 309:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 310:

    MAJOR GERMPLASM COLLECTIONS BY CROP

  • Page 314 and 315:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 316 and 317:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 318 and 319:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 320 and 321:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 322 and 323:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 324 and 325:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 326 and 327:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 328 and 329:

    THE STATE-OF-THE-ART: METHODOLOGIES

  • Page 332:

    Appendix 4 State of diversity of ma

  • Page 335 and 336:

    APPENDIX 4 some country reports. 6

  • Page 337 and 338:

    APPENDIX 4 option for perennial tax

  • Page 339 and 340:

    APPENDIX 4 (wild one-grain wheat, T

  • Page 341 and 342:

    APPENDIX 4 regeneration of existing

  • Page 343 and 344:

    APPENDIX 4 An operational comprehen

  • Page 345 and 346:

    APPENDIX 4 FIGURE A4.2 Global yield

  • Page 347 and 348:

    APPENDIX 4 actively contribute to t

  • Page 349 and 350:

    APPENDIX 4 Role of crop in sustaina

  • Page 351 and 352:

    APPENDIX 4 and Myanmar (3 percent).

  • Page 353 and 354:

    APPENDIX 4 progenitor is the wild s

  • Page 355 and 356:

    appendiX 4 Ex situ conservation sta

  • Page 357 and 358:

    APPENDIX 4 Documentation, character

  • Page 359 and 360:

    APPENDIX 4 The two global chickpea

  • Page 361 and 362:

    APPENDIX 4 in collections, absence

  • Page 363 and 364:

    APPENDIX 4 FIGURE A4.5 Global yield

  • Page 365 and 366:

    338 APPENDIX 4 are also conserved.

  • Page 367 and 368:

    340 APPENDIX 4 WebPDF/Crop percent2

  • Page 369 and 370:

    342 APPENDIX 4 90 Op cit. Endnote 2

  • Page 371 and 372:

    344 APPENDIX 4 159 GCDT. 2007. Glob

  • Page 373 and 374:

    346 APPENDIX 4 217 Op cit. Endnote

  • Page 375 and 376:

    348 APPENDIX 4 291 Op cit. Endnote

  • Page 377 and 378:

    350 APPENDIX 4 366 Ibid. Endnote 35

  • Page 379 and 380:

    BAAFS Beijing Academy of Agricultur

  • Page 381 and 382:

    CN Centre Néerlandais (Côte d’I

  • Page 383 and 384:

    DTRUFC División of Tropical Resear

  • Page 385 and 386:

    HRIGRU Horticultural Research Inter

  • Page 387 and 388:

    INIA CARI Centro Regional de Invest

  • Page 389 and 390:

    IVM Institute of Grape and Wine «M

  • Page 391 and 392:

    NISM National Information Sharing M

  • Page 393 and 394:

    REHOVOT Department of Field and Veg

  • Page 395 and 396:

    SRI Sugar Crop Research Institute,

  • Page 397:

    WCMC World Conservation Monitoring

Biodiversity for Food and Agriculture - FAO
The State of Food and Agriculture - FAO
The State of Food and Agriculture 2013 - FAO
ANIMAL GENETIC RESOURCES RESSOURCES ... - FAO
THE NATIONAL ANIMAL GENETIC RESOURCES CENTRE ... - FAO
indian society of plant genetic resources - Bioversity International
The state of food and agriculture, 1968 - FAO
The Right to Food and Access to Natural Resources - FAO
New Genetics, Food and Agriculture - International Council for Science
Food Security and Agricultural Mitigation in Developing ... - FAO
The State of the World's Land and Water Resources for Food ... - FAO
Genetically Modified Plants for Food Use and Human ... - Guardian
GROWING FOOD - FAO
ANIMAL GENETIC RESOURCES RESSOURCES ... - FAO
Conservation Agriculture and Sustainable Crop Intensification ... - FAO
varieties creation and conservation of plant genetic resources
New Genetics, Food and Agriculture: Scientific ... - ArgenBio
Food wastage footprint: Impacts on natural resources ... - FAO
Conservation agriculture as practised in Kenya: two case ... - FAO
food insecurity in the world - FAO
Genetic Modified Food - State Agriculture and Rural Leaders
Land tenure and international investments in agriculture - FAO
Climate change, water and food security - FAO
Global food losses and food waste - FAO
BIODIPLOMACY -- Genetic Resources and International Relations
Agriculture Sector Bulletin Summer 2011 [pdf] - FAO
Explanatory Guide to the International Treaty on Plant Genetic - IUCN