Views
5 years ago

BoundedRationality_TheAdaptiveToolbox.pdf

BoundedRationality_TheAdaptiveToolbox.pdf

  • Page 2: February 2001 ISBN 0-262-07214-9 37
  • Page 6: 2 Gerd Gigerenzer andReinhard Selte
  • Page 10: 4 Gerd Gigerenzer andReinhard Selte
  • Page 14: 6 Gerd Gigerenzer and Reinhard Selt
  • Page 18: 8 Gerd Gigerenzer and Reinhard Selt
  • Page 22: 10 Gerd Gigerenzer and Reinhard Sel
  • Page 26: 12 Gerd Gigerenzer and Reinhard Sel
  • Page 30: 14 Reinhard Selten decision alterna
  • Page 34: 16 Reinhard Selten only an optimal
  • Page 38: 18 Reinhard Selten ASPIRATION ADAPT
  • Page 42: 20 Reinhard Selten The process may
  • Page 46: 22 Reinhard Selten last period's va
  • Page 50: 24 Reinhard Selten 2. local procedu
  • Page 54:

    26 Reinhard Selten whether the town

  • Page 58:

    28 Reinhard Selten The term ex post

  • Page 62:

    30 Reinhard Selten Human Problem So

  • Page 66:

    32 Reinhard Selten indirect influen

  • Page 70:

    34 Reinhard Selten Want Generator a

  • Page 74:

    36 Reinhard Selten Holland, J., K.

  • Page 78:

    38 Gerd Gigerenzer The notion of an

  • Page 82:

    40 Gerd Gigerenzer the psychologist

  • Page 86:

    42 Gerd Gigerenzer consider two com

  • Page 90:

    44 Gerd Gigerenzer (Simon 1955). Cu

  • Page 94:

    46 Gerd Gigerenzer Incommensurabili

  • Page 98:

    48 Gerd Gigerenzer To summarize, th

  • Page 102:

    50 Gerd Gigerenzer Selten, R. 1998.

  • Page 106:

    52 Peter M. Todd for which our mind

  • Page 110:

    54 Peter M. Todd behavior, as explo

  • Page 114:

    56 Peter M. Todd make a categorical

  • Page 118:

    58 Peter M. Todd One-reason Decisio

  • Page 122:

    60 Peter M. Todd Table 4.1 Performa

  • Page 126:

    62 Peter M. Todd Such distributions

  • Page 130:

    64 Peter M. Todd analysis of the re

  • Page 134:

    66 Peter M. Todd The early limitati

  • Page 138:

    68 Peter M. Todd within which heuri

  • Page 142:

    70 Peter M. Todd Luria, A.R. 1968.

  • Page 146:

    72 Peter Hammerstein Biologist: Let

  • Page 150:

    74 Peter Hammerstein organism throu

  • Page 154:

    76 Peter Hammerstein a' =a + 5/(^+1

  • Page 158:

    78 Peter Hammerstein Biologist: Wel

  • Page 162:

    80 Peter Hammerstein These are part

  • Page 166:

    Seated left to right: Bertrand Muni

  • Page 170:

    84 Abdolkarim Sadrieh et al. issue

  • Page 174:

    86 Abdolkarim Sadrieh et al. Using

  • Page 178:

    88 Abdolkarim Sadrieh et al Most im

  • Page 182:

    90 Abdolkarim Sadrieh et al arbitra

  • Page 186:

    92 Abdolkarim Sadrieh et al. with t

  • Page 190:

    94 Abdolkarim Sadrieh et al. search

  • Page 194:

    96 Abdolkarim Sadrieh et al. Divers

  • Page 198:

    98 Abdolkarim Sadrieh et al Dichoto

  • Page 202:

    100 Abdolkarim Sadrieh et al. imple

  • Page 206:

    102 Abdolkarim Sadrieh et ah Moxnes

  • Page 210:

    104 Gary Klein stem from limited co

  • Page 214:

    106 Gary Klein action were undertak

  • Page 218:

    108 Gary Klein optimization as find

  • Page 222:

    110 Gary Klein reasonable level. Th

  • Page 226:

    112 Gary Klein selecting the best o

  • Page 230:

    124 John W. Payne and James R. Bett

  • Page 234:

    126 John W. Payne and James R. Bett

  • Page 238:

    128 John W. Payne and James R. Bett

  • Page 242:

    130 John W. Payne and James R. Bett

  • Page 246:

    132 John W. Payne and James R. Bett

  • Page 250:

    134 John W. Payne and James R. Bett

  • Page 254:

    136 John W. Payne and James R. Bett

  • Page 258:

    138 John W. Payne and James R. Bett

  • Page 262:

    140 John W. Payne and James R. Bett

  • Page 266:

    142 John W. Payne and James R. Bett

  • Page 270:

    144 John W. Payne and James R. Bett

  • Page 274:

    9 Comparing Fast and Frugal Heurist

  • Page 278:

    Comparing Fast and Frugal Heuristic

  • Page 282:

    Comparing Fast and Frugal Heuristic

  • Page 286:

    ComparingFast andFrugal Heuristics

  • Page 290:

    Comparing Fast and Frugal Heuristic

  • Page 294:

    Comparing Fast and Frugal Heuristic

  • Page 298:

    Comparing Fast and Frugal Heuristic

  • Page 302:

    Comparing Fast and Frugal Heuristic

  • Page 306:

    Comparing Fast and Frugal Heuristic

  • Page 310:

    Comparing Fast and Frugal Heuristic

  • Page 314:

    ation ta emainin Reg = regression,

  • Page 318:

    Comparing Fast and Frugal Heuristic

  • Page 322:

    Comparing Fast and Frugal Heuristic

  • Page 326:

    174 Daniel G. Goldstein et al envir

  • Page 330:

    176 Daniel G. Goldstein et al. by r

  • Page 334:

    178 Daniel G. Goldstein et al What

  • Page 338:

    180 Daniel G. Goldstein et al secon

  • Page 342:

    182 Daniel G. Goldstein et al due t

  • Page 346:

    184 Daniel G. Goldstein et al. term

  • Page 350:

    186 Daniel G. Goldstein et ah depen

  • Page 354:

    188 Daniel G. Goldstein et al. aver

  • Page 358:

    190 Daniel G. Goldstein et al. Hoga

  • Page 362:

    192 Daniel M. T. Fessler and comple

  • Page 366:

    194 Daniel M.T. Fessler SHAME AND R

  • Page 370:

    196 Daniel M. T. Fessler and 3. As

  • Page 374:

    198 Daniel M. T. Fessler In many pr

  • Page 378:

    200 Daniel M. T. Fessler (i.e., "bl

  • Page 382:

    202 Daniel M. T. Fessler collaborat

  • Page 386:

    204 Daniel M. T. Fessler talents. N

  • Page 390:

    206 Daniel M. T. Fessler this syste

  • Page 394:

    208 Daniel M. T. Fessler The powerf

  • Page 398:

    210 Daniel M. T. Fessler 4 Througho

  • Page 402:

    Daniel M. T. Fessler rect. The auth

  • Page 406:

    214 Daniel M. T. Fessler Lerner, J.

  • Page 410:

    216 Ido Erev andAlvin E. Roth adjus

  • Page 414:

    218 game/ choice prob. S&A2: A2 B2

  • Page 418:

    220 Ido Erev andAlvin E. Roth \ ('+

  • Page 422:

    222 Sequential Effects Ido Erev and

  • Page 426:

    224 Ido Erev andAlvin E. Roth and 1

  • Page 430:

    226 Ido Erev andAlvin E. Roth The f

  • Page 434:

    228 Ido Erev andAlvin E. Roth C cho

  • Page 438:

    230 Ido Erev andAlvin E. Roth behav

  • Page 442:

    13 Imitation, Social Learning, and

  • Page 446:

    Imitation, Social Learning, and Pre

  • Page 450:

    Imitation, Social Learning, and Pre

  • Page 454:

    Imitation, Social Learning, and Pre

  • Page 458:

    Imitation, Social Learning, and Pre

  • Page 462:

    Imitation, Social Learning, and Pre

  • Page 466:

    Imitation, Social Learning, and Pre

  • Page 470:

    Imitation, Social Learning, and Pre

  • Page 474:

    250 Thomas D. Seeley workers) have

  • Page 478:

    252 Thomas D. Seeley group — be c

  • Page 482:

    254 Thomas D. Seeley ceased to danc

  • Page 486:

    256 Thomas D. Seeley scout bees wer

  • Page 490:

    258 Thomas D. Seeley ceased their d

  • Page 494:

    260 Thomas D. Seeley operates with

  • Page 498:

    NL r*;- Seated, left to right: Ido

  • Page 502:

    264 Barbara A. Mellers et al Darwin

  • Page 506:

    266 Barbara A. Mellers et al (Mesqu

  • Page 510:

    268 Barbara A. Mellers et al test s

  • Page 514:

    270 Barbara A. Mellers et ah decisi

  • Page 518:

    272 Barbara A. Mellers et ah Imitat

  • Page 522:

    274 Barbara A. Mellers et al. more

  • Page 526:

    276 Barbara A. Metiers et al REFERE

  • Page 530:

    278 Barbara A. Mellers et al Loewen

  • Page 534:

    16 Norms and Bounded Rationality Ro

  • Page 538:

    Norms and Bounded Rationality 283 g

  • Page 542:

    Probability Density of X Norms and

  • Page 546:

    Norms and Bounded Rationality 287 E

  • Page 550:

    3 Va E 3 J— lib 3 LU 1 0.9 0.8 0.

  • Page 554:

    Norms and Bounded Rationality 291 e

  • Page 558:

    m/a Norms and Bounded Rationality 2

  • Page 562:

    Norms and Bounded Rationality 295 f

  • Page 566:

    17 Prominence Theory as a Tool to M

  • Page 570:

    Prominence Theory 299 constructs he

  • Page 574:

    Prominence Theory 301 The presentat

  • Page 578:

    Prominence Theory 303 cruder relati

  • Page 582:

    Prominence Theory 305 frequency. We

  • Page 586:

    Prominence Theory 307 90%, 100%o, i

  • Page 590:

    Prominence Theory 309 equal relativ

  • Page 594:

    Prominence Theory 311 of 200. The p

  • Page 598:

    Prominence Theory 313 could decide

  • Page 602:

    Prominence Theory 315 (6) a stronge

  • Page 606:

    Prominence Theory 317 P.M. Todd, an

  • Page 610:

    320 Kevin A. McCabe and Vernon L. S

  • Page 614:

    322 Kevin A. McCabe and Vernon L. S

  • Page 618:

    324 Kevin A. McCabe and Vernon L. S

  • Page 622:

    326 Kevin A. McCabe and Vernon L. S

  • Page 626:

    328 Kevin A. McCabe and Vernon L. S

  • Page 630:

    330 Kevin A. McCabe and Vernon L. S

  • Page 634:

    332 Kevin A. McCabe and Vernon L. S

  • Page 640:

    ations 0 < g < 900. in i ? 3 4 5 6

  • Page 644:

    Goodwill Accounting and the Process

  • Page 648:

    Goodwill A ccoun ting and the Proce

  • Page 652:

    ^1 §# ; Standing, left to right: P

  • Page 656:

    344 Joseph Henrich et al. behaviora

  • Page 660:

    346 Joseph Henrich et al copiers as

  • Page 664:

    348 Joseph Henrich et ah and cooper

  • Page 668:

    350 Joseph Henrich et al. (so relia

  • Page 672:

    352 Joseph Henrich et al then this

  • Page 676:

    354 Joseph Henrich et al. explain t

  • Page 680:

    356 Joseph Henrich et al. continue

  • Page 684:

    358 Joseph Henrich et ah REFERENCES

  • Page 688:

    abundant information 157, 158, 188

  • Page 692:

    decision making continued ignorance

  • Page 696:

    fitting 59, 60, 78, 148, 150, 152,

  • Page 700:

    linear models 45,47, 155, 156, 168,

  • Page 704:

    social learning continued definitio

  • Page 708:

    List of Participants W. ALBERS Inst

  • Page 712:

    List of Participants with Fields of

  • Page 716:

    List of Participants with Fields of

  • Page 720:

    372 Byrne, R.W. 53 Caldecott, J.O.

  • Page 724:

    374 Jolls, C. 6, 37 Kacelnik,A. 173

  • Page 728:

    376 Name Index Schmitt,M. 152-154,

active learning - Sage Publications
Motivation-need theories and consumer behavior - Ideals ...
Theory at a Glance - National Cancer Institute
VET Boost: Towards a Theory of Professional ... - equi IHS
Theories on Diet and Lifestyle Behavior Change to Lower Cancer Risk
PROMOTING SOCIAL AND EMOTIONAL DEVELOPMENT: Building ...
Communicating Decisions - Bridgestep AG
A Behavioral Theory of the Firm - Organization Science - Informs
April 2012 Volume 15 Number 2 - Educational Technology & Society
Intelligent Information Processing and Web Mining : Proceedings of ...
Web-based Learning Solutions for Communities of Practice
Material de lectura adicional para consejeros - BVSDE Desarrollo ...
Turn Clicks Into Customers: Proven Marketing ... - The Search Strategy
Informality and formality in learning: a report for the Learning and ...
Enriching the Culture Context for Language Training, and vice versa…
On the (Ir)relevance of Prospect Theory in Modelling Uncertainty in ...
Prospect Theory and Choice Behaviour Strategies: Review and ...
Neural correlates of the affect heuristic during brand choice
Prospect Theory - Division of the Humanities and Social Sciences
(1) The Top 10 Barriers to Decision Making Jennifer Diebel, MA ...
Computers in Human Behavior - vLab