Views
5 years ago

Some Comments on Philatelic Latin Squares from Pakistan

Some Comments on Philatelic Latin Squares from Pakistan

468

468 ong>Someong> ong>Commentsong> on Philatelic Latin Squares from Pakistan [41] R. A. Fisher (1990). Statistical Methods, Experimental Design, and Scientific Inference, a reissue of (book 1) Statistical Methods for Research Workers [37], (book 2) The Design of Experiments [38] & (book 3) Statistical Methods and Scientific Inference, edited by J. H. Bennett. Oxford University Press. [Reprinted with corrections 1995.]2, 13, 41 [42] Sir Ronald A. Fisher & Frank Yates (1963). Statistical Tables for Biological, Agricultural and Medical Research, Sixth Edition, Revised and Enlarged. Oliver & Boyd, Edinburgh; online open-access: R. A. Fisher Digital Archive, Adelaide Research and Scholarship, 155 pp., 3.3 mb. [First published 1938, Sixth edition 1963, reprinted by Longman 1974.] 2 [43] Geoff Freeman (2005). Latin squares and su doku. Significance, 2 (3), 119–122; online at Wiley- InterScience, DOI: 10.1111/j.1740-9713.2005.00113.x 2 [44] Robert M. Gray (2006). Toeplitz and circulant matrices: a review. Foundations and Trends in Communications and Information Theory, 2 (3), 155–239: online at Stanford University. 7 [45] A. D. Keedwell (1983/2008). Graeco-Latin squares. In Encyclopedia of Statistical Sciences [49, vol. 3, pp. 469–474 (1983)], [48, vol. 5, pp. 2901–2906 (2006) & published online 15 February 2008, 7 pp.]. [Continuation of Preece [61].] 43 [46] Geoffrey Kibby (1977). Mushrooms and Toadstools. Octopus Books Limited & Chartwell Books, Secaucus, NJ. 18 [47] James E. Kloetzel, ed. Scott Standard Postage Stamp Catalogue, published annually by Scott Publishing, Sidney, Ohio. 3, 32 [48] Samuel Kotz, N. Balakrishnan, Campbell B. Read, & Brani Vidakovic, eds. (2006). Encyclopedia of Statistical Sciences, Second edition, by Samuel Kotz (Founding Editor), N. Balakrishnan, Campbell B. Read, & Brani Vidakovic (Editors-in-Chief). Paper copy, 16 vols. (paper) & online at Wiley-Interscience. 42, 43 [49] Samuel Kotz, Norman L. Johnson & Campbell B. Read, eds. (1983). Encyclopedia of Statistical Sciences, Wiley, New York. [Second edition [48].] 42, 43 [50] [Simon] de La Loubère, Envoyé extraordinaire du ROY auprés du Roy de Siam en 1687 & 1688 (1691). Du royaume de Siam, Tome Second: Contenant plusieurs Piéces détachées. Chez La Veuve de Jean Baptiste Coignard, Imprimeur & Libraire ordinaire du Roy, et Jean Baptiste Coignard, Imprimeur & Libraire ordinaire du Roy, Paris. 13 [51] Simon de La Loubère (1691). Du royaume de Siam, 2 volumes. A. Wolfgang, Amsterdam.13 [52] Charles F. Laywine & Gary L. Mullen (1998). Discrete Mathematics using Latin Squares. Wiley, New York. 2 [53] Peter D. Loly & George P. H. Styan (2009). Philatelic Latin squares. Report 2009-01, Department of Mathematics and Statistics, McGill University, Montréal. 3, 9 [54] A. Maack (2009). Sudoku-Download online open-access website. [Contains Sudoku puzzles and solutions of sizes 4 × 4,5 × 5,...,10 × 10,...,64 × 64.] 15, 16, 21, 22 [55] R. J. Martin (1986). On the design of experiments under spatial correlation. Biometrika, 73 (2), 247–277; online at JSTOR. [Amendments and corrections: Biometrika, 75 (2), 396 (1988); online at JSTOR.] 14 [56] Øivind Nissen (1951). The use of systematic 5 × 5 squares. Biometrics, 7 (2), 167–170; online at JSTOR. 1, 6, 12

Ka Lok Chu et al. 469 [57] P. J. Owens (1987). Knight’s move squares. Discrete Mathematics, 63, 39–51; online at Elsevier ScienceDirect, DOI:10.1016/0012-365X(87)90150-6.13 [58] S. C. Pearce (1983). The Agricultural Field Experiment: A Statistical Examination of Theory and Practice. Wiley, Chichester. 2 [59] [Abbé François-Guillaume] Poignard, Grand Chanoine de Bruxelles (1704). Traité des quarrés sublimes contenant des méthodes générales, toutes nouvelles et faciles, pour faire les sept quarrés planétaires et tous autres à l’infini par des nombres, en toutes sortes de progressions. Chez Guillaume Fricx, Imprimeur & libraire, ruë Bergestract, à l’enseigne des quatre Evangelistes, Bruxelles, [4] 79 pp. (p. 71 folded). 13 [60] D. A. Preece (1966). Classifying Youden rectangles. Journal of the Royal Statistical Society, Series B (Methodological), 28 (1), 118–130; online at JSTOR.22 [61] D. A. Preece (1983/2006). Latin squares, Latin cubes, Latin rectangles. In Encyclopedia of Statistical Sciences [49, vol. 4, pp. 504–510 (1983)], [48, vol. 6, pp. 4018–4025 (2006) & published online 15 August 2006, 7 pp.]. [Continued by Keedwell [45].] 22, 42 [62] D. A. Preece (1990). R. A. Fisher and experimental design: a review. Biometrics, 46 (4), 925– 935; online at JSTOR. 3, 12, 19 [63] D. A. Preece (1990). Fifty years of Youden squares: a review. Bulletin of the Institute of Mathematics and its Applications, 26 (4), 65–75. 22 [64] D. A. Preece (1991). Latin squares as experimental designs. In Dénes & Keedwell [31, ch. 10, pp. 317–342]. 2 [65] John Rhˆys (1980). Celtic Folklore: Welsh and Manx, Volume I, Volume II. Reissued edition (reprinted 1983), Wildwood House Limited, London. [First published: 1903, Oxford University Press.] 19 [66] Terry Ritter (1998–2003). Latin squares: a literature survey. Research comments from Ciphers By Ritter. Online open-access: last updated 21 December 2003, 22 pp. 2 [67] Adam Rogers, Peter D. Loly & George P. H. Styan (2008). ong>Someong> comments on composite magic squares using matrices and Kronecker products. Unpublished manuscript, 30 pp., 1 November 2008. 30 [68] Rogers Mushrooms: online open-access website. Rogers Plants Ltd. 18 [69] Harold Ruben (2002). A simple conservative and robust solution of the Behrens–Fisher problem. Sankhyā: The Indian Journal of Statistics, Series A, 64 (1), 139–155: online at JSTOR. 14 [70] William L. Schaaf (1978). Mathematics and Science: An Adventure in Postage Stamps. National Council of Teachers of Mathematics, Reston, Virginia. 4 [71] Stephen Senn (2003). Dicing with Death: Chance, Risk and Health. Cambridge University Press. 19 [72] Smithsonian National Museum of Natural History (2009). Antarctic invertebrates: Cyphocaris richardi Chevreux, 1905: online open-access, 2 pp. 31 [73] Anne Penfold Street & Deborah J. Street (1988). Latin squares and agriculture: the other bicentennial. The Mathematical Scientist, 13, 48–55. 3, 40

Comments on 5×5 philatelic Latin squares - Chance
some comments on philatelic latin squares from pakistan1
April 09 - Pakistan Philatelic Club
Magic, Latin, and Sudoku Squares - Math Teachers' Circles
some properties of latin squares - Department of Computer Science
Biembeddings of Latin squares obtained from a voltage construction
Some comments about the Finite Square Well
A class of latin squares derived from nite abelian groups
some uredinales from northern areas of pakistan - Pakistan Journal ...
Anything but square: from magic squares to Sudoku - Plus Magazine
Some Orb Weaver Spiders From Punjab, Pakistan - Zsp.com.pk
effects of some common weeds from pakistan on plant-parasitic
to See Some Comments for This Page from Previous ... - Marmaris
Some Examples from Latin America. - Consultative Group on Early ...