Views
5 years ago

2 µm - eTheses Repository - University of Birmingham

2 µm - eTheses Repository - University of Birmingham

22. Li, J.G., Coudurier,

22. Li, J.G., Coudurier, L. and Eustathopoulos, N. : “Wetting and Interfacial Energy in Liquid Metal-Ceramic Systems”, Journal of Materials Science, 24, (1989), 1109-1116. 23. Shen, P., Fujii, H., Matsumoto, T. and Nogi, K. : “The Influence of Surface Structure on Wetting of Alpha-Al2O3 by Aluminium in a Reduced Atmosphere”, Metallurgical and Materials Transactions A, 35A (2), ( 2004 ), 583-588. 24. Smith, J.W. : “Some Developments of Guggenheim's Simplified Procedure for Computing Electric Dipole Moments”, Transactions of the Faraday Society, 46, (1950), 394-400. 25. Koerber, K. and Loehberg, K. : “Oberflächen- und Grenzflächenenergien von Aluminium-Silicium- Schmelzen”, Gießereiforschung, 23 (4), (1971), 173-177. 26. Pech-Canul, M., Katz, R. and Makhlouf, M. : “The Role of Silicon in Wetting and Pressureless Infiltration of SiC(p) Preforms by Aluminium Alloys”, Journal of Materials Science, 35, (2000), 2167-2173. 27. Hansen, M. : Binary Alloy Phase Diagrams, Mc Graw Hill, 1958. 28. Emadi, D., Gruzleski, J.E. and Toguri, J.M. : “The Effect of Na and Sr Modification on Surface Tension and Volumetric Shrinkage of A356 Alloy and their Influence on Porosity Formation”, Metallurgical Transactions B, 24B, (1993), 1055-1063. 29. Ibe, G. : “Grundlagen der Verstärkung in Metallmatrix-Verbundwerkstoffen”, Proceedings of the DGM Seminar: Metallische Verbundwerkstoffe - TU Clausthal- Germany, Ed. K.U. Kainer, (1994), 3-41. 30. Kaufmann, H., Auer-Knöbel, R. and Degischer, H.P. : “Elevated Temperature Properties of Short-fiber Reinforced AlSi9Cu3 Produced by Pressure Die-casting”, Zeitschrift für Metallkunde, 85, (1994), 241– 248. 31. Clyne, W.E. and Withers, P.J. : An Introduction to Metal Matrix Composites, Cambridge University Press, 1993. 32. Das, S.K., Ballard, C.P., and Marikar, F. : “Metal Matrix Composites in the 1990s and Beyond- A Market Overview”, High performance composites for the 1990´s and beyond, TMS, (1991), 487-497. 33. Jolly, M.R. : “Opportunities for Aluminium Based Fibre Reinforced Metal Matrix Composites in Automotive Castings“, The Foundryman, 83 (11), (1990), 509-513. 34. Kainer, K.U. : “Partikel, Fasern und Kurzfasern zur Verstärkung von metallischen Werkstoffen ”, Proceedings of the DGM Seminar: Metallische Verbundwerkstoffe - TU Clausthal - Germany, Ed. K.U. Kainer, (1994), 43- 64. 35. Dwivedi, R.: “Development of Advanced Reinforced Aluminum Brake Rotors”, Society of Automotive Engineers - SAE, Paper 950264, (1995). 36. Beffort, O. : “Metal Matrix Composites (MMCs): Properties, Applications & Machining”, Presentation 6. International IWF-Colloquium, 18/19.04.2002, Egerkingen- Switzerland, (2002). 37. Biermann, D. and Meister, D. : “Spanende Bearbeitung von faser- und partikelverstärkten Leichtmetall- Verbundwerkstoffen”, Proceedings of the DGM Seminar: Metallische Verbundwerkstoffe - TU Clausthal - Germany, Ed. K.U. Kainer, (1994), 261- 283. 38. Zhaowei, Z. and Nguyen, P.H.: “Grinding of Al/Al2O3 composites”, Journal of Materials Processing, 123, (2002), 13-17. 39. Brown, A and Klier, E.M. : “Machinable MMC and Liquid Metal Infiltration Process for Making Same”; US-Patent 5511603, Chesapeake Composites Corporation, 1996. 40. Ejiofor, J.U. and Reddy, R.G. : “Developments in the Processing and Properties of Particulate Al-Si Composites”, JOM, 49 (11), (1997), 31-27. 41. Legzdins, C.F., Samarasekera, J.V. and Meech, J.A.: ” MMCX- An Expert System for Metal Matrix Composite Selection and Design”, Canadian Metallurgical Quarterly, 36 (3), (1997), 177-202. 42. Chawla, N. and Shen, Y.L. : “Mechanical Behaviour of Particle Reinforced Metal Matrix Composites”, Advanced Engineering Materials , 3 (6), (2001), 357-370. 241

43. Davis, L.C. and Allison, J.E. : “Residual Stresses and their Effects on Deformation Behaviour in Particle Reinforced MMC”, Metallurgical Transactions A, 24A, (1993), 2487-2496. 44. Shi, S.; Taya, M.; Mori, T. and Mura, T.: "Dislocation punching from spherical inclusions in a metal matrix composite", Acta Metallurgica et Materialia 40 (11) (1992), 3141-3148. 45. Corbin, S.F. and Wilkinson, D.S. : “Low Strain Plasticity in a Particulate MMC”, Acta Metallurgica and Materialia, 42, (1994), 1319- 1327. 46. Humphreys, F.J., Basu, A. and Djazeb, M.R. : “The Microstructure and Strength of Particulate Metal- Matrix Composites”, Conference Proceedings: MMC- Processing, Microstructure and Properties; 1991; Roskilde, Denmark, 51-66. 47. Taya, M. : “Strengthening Mechanism of Metal Matrix Composites”, Materials Transactions JIM, 32 (1), (1991), 1-19. 48. Wu, Y. and Lavernia, E.J. : “Strengthening Behaviour of Particulate Reinforced MMCs”, Scripta Metallurgica et Materialia, 27 (2), 173-178. 49. Long, S., Beffort, O., Cayron, C. and Kübler, J.: “Structure and Properties of SiCp/AlCuMg squeeze cast composites for structural applications ”, http://www.empa.ch/deutsch/fachber/abt126/1.3.hybrid/ 1.3.8.literatur_mmc/literatur/aluminium/particle_re/cimlss.pdf, 1-8, (1999). 50. Long, S., Beffort, O., Moret, G. and Thevoz, P. : “Processing of Al-based MMCs by Indirect Squeeze Infiltration of Ceramic Preforms on a Shot-Control High Pressure Die Casting Machine”, Aluminium, 76 (1-2), (2000), 82-89. 51. Kniewallner, L. : “Einsetzbarkeit des Druckgießverfahrens zur Herstellung von kurzfaserverstärkten Aluminium-Gußstücken”, Disseration Montanuniversität Leoben - Austria, 1992. 52. Prielipp, H., Knechtel, M., Claussen, N., Streiffer, S.K., Müllejans, H., Rühle, M. and Rödel, J. : “Strength an Fracture Toughness of Aluminum/Alumina Composites with Interpenetrating Networks”, Materials Science and Engineering, A197, (1995), 19-30. 53. Beyer, P. : Verstärkung von Al-Bauteilen durch lokale In-Situ Synthese von Al2O3/TixAly-Verbunden im Squeeze Casting, Fortschritt-Berichte VDI, Reihe 5: Grund- und Werkstoffe/Kunststoffe, Band 643, 2002. 54. Peng, H.X., Fan, Z., Evans, J.R.G. and Busfield, J. : “Microstructure of Ceramic Foams”, Journal of European Ceramic Society, 20 (7), (2000), 807-813. 55. Hashin, Z. and Shtrikman, S. : “A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials”, Journal of Mechanical Physics of Solids, 11 (2), (1963), 127-140. 56. Feest, E.A. : “Interfacial Phenomena in Metal Matrix Composites”, Composites, 25 (2), (1994), 75-82. 57. Rack, H.J. and Ratnaparkhi, P. : “Damage Tolerance in Discontiniously Reinforced MMCs”, JOM, 40 (11), (1988), 55-62. 58. Gesing, A.J. and Burger, G. : “Crack Stability and Crack Velocity Considerations in Fracture of Metal- Ceramic Composites”, Processing of Ceramic and Metal Matrix Composites, Edited by H. Mostaghaci, Pergamon Press, New York (1989), 71-79. 59. Aradhya, K.S. and Surappa, M.K. : “Estimation of Mechanical Properties of 6061 Al-SiCp Composites using FEM methods”, Scripta Metallurgica et Materialia, 25, (1991), 817-823. 60. Couper, M.J. and Xia, K. : “Development of Microsphere Reinforced MMC”, Conference Proceedings: MMC-Processing, Microstructure and Properties, (1991), Roskilde- Denmark, 291-298. 61. Arsenault, R.J. and Shi, N.: “Dislocation Generation due to Difference between the Coeffients of Thermal Expansion”; Material Science and Engineering, 81 (1-2), (1986), 175-182. 62. Agrawal, P., Conlon, K., Bowman, K.J., Sun, C.T., Cichocki, F.R. and Trumble, K.P. : “Thermal Residual Stresses in Co-continuous Composites”, Acta Materialia, 51, (2003), 1143–1156. 63. Nogowizin, B. : “Druckgußlegierungen und ihre Eigenschaften”, Druckguss-Praxis, April 2003, 161-168. 242

  • Page 1 and 2:

    Pressure Infiltration Behaviour and

  • Page 3 and 4:

    ABSTRACT In the pressure infiltrati

  • Page 5 and 6:

    CONTENTS 1. INTRODUCTION 1 2. LITER

  • Page 7 and 8:

    4.8.3 Evaluation of infiltration be

  • Page 9 and 10:

    Symbol Meaning γRv surface energy

  • Page 11 and 12:

    Symbol Meaning TYS tensile yield st

  • Page 13 and 14:

    these materials are the detrimental

  • Page 15 and 16:

    2. LITERATURE REVIEW 2.1. Materials

  • Page 17 and 18:

    changes in the oxide film chemistry

  • Page 19 and 20:

    or inside the bulk fluid only. Inte

  • Page 21 and 22:

    that are most effective in decreasi

  • Page 23 and 24:

    initiation stress of 25 %. Further,

  • Page 25 and 26:

    Beffort (36) suggested that even th

  • Page 27 and 28:

    einforcement interface and reinforc

  • Page 29 and 30:

    It is interesting to note that, for

  • Page 31 and 32:

    20 Table 2.1 Compilation of the mec

  • Page 33 and 34:

    General models to predict fracture

  • Page 35 and 36:

    with values observed by others for

  • Page 37 and 38:

    The work of adhesion characterises

  • Page 39 and 40:

    and vapour, is difficult to evaluat

  • Page 41 and 42:

    system Al-Al2O3 is 10 -49 Pa at 700

  • Page 43 and 44:

    In the Al-Cu system, although the p

  • Page 45 and 46:

    The heat of reaction ΔGr may be es

  • Page 47 and 48:

    al. (100) who found non-wetting beh

  • Page 49 and 50:

    capillary or threshold pressure has

  • Page 51 and 52:

    using constant gas pressure. Infilt

  • Page 53 and 54:

    The superficial velocity v0 in the

  • Page 55 and 56:

    The permeability K can be expressed

  • Page 57 and 58:

    2.4. Preform fabrication Composites

  • Page 59 and 60:

    According to Kniewallner (51) even

  • Page 61 and 62:

    2.4.3. Foamed preforms Another inte

  • Page 63 and 64:

    structure. This is shown schematica

  • Page 65 and 66:

    2.5.1. Gas pressure infiltration (G

  • Page 67 and 68:

    MMCs infiltrated with an Al-9Mg or

  • Page 69 and 70:

    layer oxide films. The Weber number

  • Page 71 and 72:

    Long et al. (50) suggested that v0

  • Page 73 and 74:

    3. EXPERIMENTAL PROCEDURE The influ

  • Page 75 and 76:

    sintered at 1550°C, which represen

  • Page 77 and 78:

    using a AVT-Horn (Aalen, Germany) m

  • Page 79 and 80:

    squares fit function within the MAP

  • Page 81 and 82:

    areas, SsBET ,of the powders were m

  • Page 83 and 84:

    with dimensions of 65 mm x 46 mm x

  • Page 85 and 86:

    The preform sintering process was o

  • Page 87 and 88:

    in the evaporation of mercury at lo

  • Page 89 and 90:

    The compressive strength, σc , of

  • Page 91 and 92:

    as the measured mean value 0.23. Th

  • Page 93 and 94:

    for 90 s to ensure complete solidif

  • Page 95 and 96:

    ottom punch surface. The temperatur

  • Page 97 and 98:

    A graphic presentation of the relat

  • Page 99 and 100:

    detected. This operation took appro

  • Page 101 and 102:

    modulus Edyn of the unreinforced al

  • Page 103 and 104:

    calculated using the methods outlin

  • Page 105 and 106:

    Positive volume changes were predic

  • Page 107 and 108:

    Figure 4.5 Droplet formation of the

  • Page 109 and 110:

    with the metal alloy IM: examples a

  • Page 111 and 112:

    As shown in Figure 4.9, apart from

  • Page 113 and 114:

    4.3.2 Powder specific surface area

  • Page 115 and 116:

    The particles of TO and MO were dis

  • Page 117 and 118:

    oom temperature and 270°C, with a

  • Page 119 and 120:

    obtain usable products when they we

  • Page 121 and 122:

    strengths, whereas with 10 and 20 w

  • Page 123 and 124:

    strength showed no significant diff

  • Page 125 and 126:

    Relative change in dimension s x, s

  • Page 127 and 128:

    (a) AOPC20 (b) AGPC15 2 µm (c) TOP

  • Page 129 and 130:

    At higher magnification, Figure 4.2

  • Page 131 and 132:

    intrusions started at 4 µm and end

  • Page 133 and 134:

    As shown in Figure 4.27, the pore s

  • Page 135 and 136:

    An overview of the specific values

  • Page 137 and 138:

    1.71 to 1.98·10 6 m²/m³. The sim

  • Page 139 and 140:

    logarithmic compression behaviour,

  • Page 141 and 142:

    The volumetric stiffness Eiso of th

  • Page 143 and 144:

    Figure 4.37 shows that the TOPC20 p

  • Page 145 and 146:

    unhindered through the gap between

  • Page 147 and 148:

    intrusions and the other areas were

  • Page 149 and 150:

    4.8.1 Unreinforced matrix propertie

  • Page 151 and 152:

    die, Tmelt,die , could not be recor

  • Page 153 and 154:

    pressure was recorded as a function

  • Page 155 and 156:

    the linear fits for AOPC20, TOPC20

  • Page 157 and 158:

    4.8.6 Non destructive testing of MM

  • Page 159 and 160:

    X-Y Y-Z Figure 4.51 Virtual cross-s

  • Page 161 and 162:

    The metal filling the intragranular

  • Page 163 and 164:

    the ceramic particles was not visib

  • Page 165 and 166:

    etween the dark grey ceramic phases

  • Page 167 and 168:

    The windows, one of which is marked

  • Page 169 and 170:

    potential interfacial reactions, th

  • Page 171 and 172:

    In order to determine the effect of

  • Page 173 and 174:

    Infiltration depth L² L² (mm²) /

  • Page 175 and 176:

    4.8.12 Microstructure of MMCs with

  • Page 177 and 178:

    minor fraction of suboxides with hi

  • Page 179 and 180:

    4.9. High pressure die casting infi

  • Page 181 and 182:

    In the Y-Z plane section in Figure

  • Page 183 and 184:

    4.9.2 Compression of preforms The c

  • Page 185 and 186:

    Relative preform compression c pr (

  • Page 187 and 188:

    decrease depended on the tooling us

  • Page 189 and 190:

    Bending stress σ (MPa) / MPa 500 4

  • Page 191 and 192:

    4.10.3 Influence of reinforcement t

  • Page 193 and 194:

    Significant deformation developed i

  • Page 195 and 196:

    a) b) 2 50 2 50 µm µm 2 50 2 50

  • Page 197 and 198:

    5. DISCUSSION First the properties

  • Page 199 and 200:

    The measured elastic modulus, Edyn

  • Page 201 and 202: The MMCs showed similar wear with t
  • Page 203 and 204: interfacial debonding: Peng et al.
  • Page 205 and 206: The area Sml was derived using data
  • Page 207 and 208: MMC. Due to the solidification shri
  • Page 209 and 210: measurements which resulted in a lo
  • Page 211 and 212: 5.1.5 Influence of reactions No rea
  • Page 213 and 214: 5.2. Preform pore formation The tar
  • Page 215 and 216: kinetics were reported to be rather
  • Page 217 and 218: The newly formed water vapour led t
  • Page 219 and 220: In order to achieve minimum porosit
  • Page 221 and 222: the present work. These pressures w
  • Page 223 and 224: indicated by zero values of the fre
  • Page 225 and 226: influence on the pO2,calc. The lowe
  • Page 227 and 228: during extended holding and acts as
  • Page 229 and 230: Compared to Hg, the Al melt may con
  • Page 231 and 232: preforms with IM, Figure 4.67. For
  • Page 233 and 234: preform compression, cpr , increase
  • Page 235 and 236: Specific Specific permeability Perm
  • Page 237 and 238: Permeability (m²) / m² 1x10 -12 1
  • Page 239 and 240: As the predominant fluid flow was a
  • Page 241 and 242: In the CP mode, the Preform 1D code
  • Page 243 and 244: Local Saturation saturation S () lo
  • Page 245 and 246: listed in Table 5.1 and 5.3 were us
  • Page 247 and 248: 6. CONCLUSIONS 1. An aqueous proces
  • Page 249 and 250: anged between 112 and 131° for the
  • Page 251: 8. REFERENCES 1. Altenpohl, D.: Alu
  • Page 255 and 256: 85. Gennes, P.G. : “Wetting: Stat
  • Page 257 and 258: 127. Corbin, S.F., Lee, J. and Qiao
  • Page 259: 171. Gmelin, L. : Handbook of Inorg
PDF File 2 - University of Alabama at Birmingham
no· l'2-'1t1 - Repository - Texas A&M University
eTheses Repository - University of Birmingham
chapter 1 - eTheses Repository - University of Birmingham
MODULE 2 - eTheses Repository - University of Birmingham
eA - eTheses Repository - University of Birmingham
eTheses Repository - University of Birmingham
eTheses Repository - University of Birmingham
Caroline Winstanley - eTheses Repository - University of Birmingham
pains of sin - eTheses Repository - University of Birmingham
Witch Shoes - eTheses Repository - University of Birmingham
epinician precepts - eTheses Repository - University of Birmingham
Cymbeline - eTheses Repository - University of Birmingham
B - eTheses Repository - University of Birmingham
1 - eTheses Repository - University of Birmingham
5% - eTheses Repository - University of Birmingham
View - eTheses Repository - University of Birmingham
here - eTheses Repository - University of Birmingham
J - eTheses Repository - University of Birmingham
B - eTheses Repository - University of Birmingham
Table of Contents - eTheses Repository - University of Birmingham
THE GOD–MAN - eTheses Repository - University of Birmingham
Life on Wings - eTheses Repository - University of Birmingham
Engineering texts - eTheses Repository - University of Birmingham
chapter 1 - eTheses Repository - University of Birmingham
ford madox brown - eTheses Repository - University of Birmingham
part i - eTheses Repository - University of Birmingham
soho depicted - eTheses Repository - University of Birmingham
PIERRE BOAISTUAU - eTheses Repository - University of Birmingham
Rewriting history - eTheses Repository - University of Birmingham