Views
5 years ago

2 µm - eTheses Repository - University of Birmingham

2 µm - eTheses Repository - University of Birmingham

107. Travitzky, N.A. and

107. Travitzky, N.A. and Shlayen, A. : “Microstructure and Mechanical Properties of Al2O3/Cu–O Composites Fabricated by Pressureless Infiltration Technique”, Materials Science and Engineering, A244, (1998), 154-160. 108. Cardinal, S., R’Mili, M. and Merle, P. : “Improvement of High Pressure Infiltration Behaviour of Alumina Platelet Preforms: Manufacture and Characterization of Hybrid Preforms”, Composites Part A, 29A, (1998), 1433–1441. 109. Rootare, H.M. and Prenzlow, C.F.: “Surface Areas from Mercury Porosimeter Measurements”, Journal of Physical Chemistry, 71 (8),(1967), 2733-2743. 110. Leon, C.A.: “New perspectives in mercury porosimetry”, Advances in Colloid and Interface Science 76- 77, (1998), 341-372. 111. Bear, J. : Dynamics of fluids in porous media, Dover Publications, 1988. 112. Mortensen, A., Masur, L.J., Cornie, J.A. and Flemings, M.C. : “Infiltration of Fibrous Preforms by a Pure Metal: Part I – Theory”, Metallurgical Transactions A, 20A (11), (1989), 2535-2547. 113. Dopler, T., Modaressi, A. and Michaud, V. : “Simulation of Metal Matrix Composite Isothermal Infiltration Processing”, Metallurgical and Materials Transactions B, 31B (4), (2000), 225-234. 114. Mattern, A. : Interpenetrierende Metall-Keramik-Verbundwerkstoffe mit isotropen und anisotropen Al2O3-Verstärkungen, Dissertation of the University of Karlsruhe, 2004. 115. Genuchten-Van, M.T.: “A closed form equation for predicting the hydraulic conductivity of unsaturated soils”, Journal of the Soil Science Society of America, 44, (1980), 892-898. 116. Cappleman, G.R., Watts, J.F. and Clyne, T.W. : “The Interface Region in Squeeze-Infiltrated Composites containing Delta-Alumina Fibre in an Aluminium Matrix”, Journal of Materials Science, 20, (1985), 2159-2168. 117. Kang, C.G. and Yun, K.S. : “Fabrication of MMC by the Die Casting Technique and the Evaluation of their Mechanical Properties”, Journal of Materials Processing Technology, 62, (1996), 116-123. 118. Jolly, M.R. and Haour, G.: “Fibre Reinforcement of Aluminium by Squeeze Casting”, Proceedings of the Solidification Processing Conference, 21-24 Sept 1987, Sheffield, Ed. H. Jones and Beech, Institute of Metals, (1987), 505-509. 119. Hegeler, H., Buschmann, R. and Elstner, I. : “Herstellung von faserverstärkten Leichtmetallen unter Benutzung von faserkeramischen Formkörpern (Preforms)”, Proceedings of the DGM Seminar: Metallische Verbundwerkstoffe - TU Clausthal - Germany, Ed. K.U. Kainer, (1994), 101-116. 120. Requena, G., Lasagni, F. and Degischer, H.P. : “Lokale Verformung in diskontinuierlich verstärktem Aluminium”, Proceedings of the 14. Symposium Verbundwerkstoffe und Werkstoffverbunde, 02.-04. Juli 2003, Vienna – Austria , (2003), 171-176. 121. Mortensen, A. and Wong, T. : “Infiltration of Fibrous Preforms by a Pure Metal: Part III - Capillary Phenomena”, Metallurgical Transactions A, 21A, (1990), 2257-2263. 122. Michaud, M.J., Sommer, J.L. and Mortensen, A. : “Infiltration of a Fibrous Preform by a Pure Metal: Part V: Influence of Preform Compressibility”, Metallurgical and Materials Transactions A, 30 (2), (1999), 471-482. 123. Lange, F.F., Velamakanni, B. and Evans, A. : “Method for Processing Metal-Reinforced Ceramic Composites”, Journal of the American Ceramic Society, 73 (2), (1990), 388-393. 124. Cichocki, F.C., Trumble, K. and Rödel, J. : “Tailored Porosity Gradients via Colloidal Infiltration of Compression-Molded Sponges”, Journal of the American Ceramic Society, 81 (6), (1998), 1661-1664. 125. Peng, H.X., Fan, Z., Evans, J.R.G. and Busfield, J. : “Microstructure of Ceramic Foams”, Journal of European Ceramic Society, 20 (7), (2000), 807-813. 126. Xu, Y. and Chung, D.D.L. : “Low-Volume-Fraction Particulate Preforms for making Metal-Matrix Composites by Liquid Metal Infiltration”, Journal of Materials Science, 33 (19), (1998), 4707–4709. 245

127. Corbin, S.F., Lee, J. and Qiao, X. : “Influence of Green Formulation and Pyrolyzable Particulates on the Porous Microstructure and Sintering Characteristics of Tape Cast Ceramics”, Journal of the American Ceramics Society, 84 (1), (2001), 41-47. 128. Mattern, A., Oberacker, R. and Hoffmann, M. : “Multiphase Ceramics by Computer-Controlled Pressure Filtration”, Journal of the European Ceramic Society, 24 (10-11), (2004), 3219-3225. 129. Konopka, K., Wodzynski, M. and Szafran, M. : “Fabrication of Al2O3-Al Composites by Infiltration Method”, Proceedings of the 12th International Scientific Conference, Achievements in Mechanical and Material Engineering, Gliwice-Poland, (2003), 491-494. 130. Cayron, C. : TEM Study of Interfacial Reactions and Precipitation Mechanisms in Al2O3 Short Fiber or High Volume Fraction SiC Particle Reinforced Al-4Cu-1Mg-0.5Ag Squeeze-Cast Composites, Dissertation EPFL- Ecole Polytechnique Fédérale de Lausanne- Switzerland., 2000. 131. Nagata, S. and Matsuda, K. : “Effects of some Factors on the Critical Preheating Temperature of Particles in Producing Metal-Particle Composites by Pressure Casting”, Journal of the Japan Foundrymen Society, 53 (12), (1981), 35-43. 132. Otte, B. and Reichstein, S. : German Patent DE10202184C1, Lasernitrieren von Aluminiumbasis- Verbundwerkstoffen, 2003. 133. Molina, J.M., Saravanan, R.A., Arpon, R., Garcia-Cordovilla, C., Louis, E. and Narciso, J. : “Pressure Infiltration of Liquid Aluminium into Packed SiC Particulate with a Bimodal Size Distribution”, Acta Materialia, 50 (2), (2002), 247-257. 134. Weber, L., Grüningen, C. and Frigeni, N. : “Entwicklung neuer teilchenverstärkter MMCs mit Cu- und Ag-Matrix für hohe thermische Leitfähigkeit und geringe thermische Dehnung”, Proceedings of the 14. Symposium Verbundwerkstoffe und Werkstoffverbunde, July 2003, Vienna- Austria , (2003), 802-807. 135. Ghomashchi, M.R. and Vikhrov, A. : “Squeeze Casting: An Overview”, Journal of Materials Processing Technology, 101 (1-3), (2000), 1-9. 136. Catterjee, S. and Daas, A.A. : “Effects of Pressure on Solidification of some Commercial Aluminium- Base Casting Alloys”, The British Foundryman, 11, (1990), 420-427. 137. Epanchistov, O.G. : “Structure and Properties of Metals Solidified under High Pressure”, Russian Casting Production, 6, (1972), 34-37. 138. Papworth, A. and Fox, P.: “Oxide film casting defects in squeeze cast metal matrix composites”, Materials Letters 29, (1996), 209-213. 139. Eskin, D., Du; Q., Ruvalcaba, D. and Katgerman, L. : “Experimental Study of Structure Formation in Binary Al-Cu Alloys at Different Cooling Rates”, Materials Science and Engineering A; 405 (1-2), (2005), 1-10. 140. Levi, C.G., Abbaschian, G.J. and Mehrabian, R. : “Interface Interactions During Fabrication of Aluminium Alloy- Alumina Fiber Composites”, Metallurgical Transactions A, 9 (5), (1978), 697-702. 141. Campbell, J. : “The Concept of Net Shape for Castings”, Materials and Design, 21 (4), (2000), 373-380. 142. Fagschlunger, C., Eichlseder, W., Sonsino, C.M., Poetter, K., Brune, M. and Gaenser, H.P. : “Abschätzung der tolerierbaren Oxidhautgröße in schwingend belasteten Druckgussbauteilen”, Giesserei Rundschau, 52 (3-4), (2005), 60-66. 143. Brunhuber, E.: Praxis der Druckgussfertigung, Schiele und Schön, Berlin, 1991. 144. Khalifa, W., Samuel, F-H. and Gruzleski, J.E.: “Iron intermetallic phases in the Al corner of the Al-Si-Fe system”, Metallurgical and Materials Transactions A; 34A (2), (2003), 807- 825. 145. Flores, V., Sukiennik, M., Castillejos, E., Acosta, G and Escobedo, B.: “A kinetic study on the nucleation and growth of the Al8FeMnSi2 intermetallic compound for aluminum scrap purification”, Intermetallics, 6 (3), (1998), 217- 227. 146. Rasmussen, N.W., Hansen, P.N. and Hansen, S.F. : “High Pressure Die Casting of Fibre Reinforced Aluminium by Preform Infiltration”, Materials Science and Engineering A 135, (1991), 41-43. 246

  • Page 1 and 2:

    Pressure Infiltration Behaviour and

  • Page 3 and 4:

    ABSTRACT In the pressure infiltrati

  • Page 5 and 6:

    CONTENTS 1. INTRODUCTION 1 2. LITER

  • Page 7 and 8:

    4.8.3 Evaluation of infiltration be

  • Page 9 and 10:

    Symbol Meaning γRv surface energy

  • Page 11 and 12:

    Symbol Meaning TYS tensile yield st

  • Page 13 and 14:

    these materials are the detrimental

  • Page 15 and 16:

    2. LITERATURE REVIEW 2.1. Materials

  • Page 17 and 18:

    changes in the oxide film chemistry

  • Page 19 and 20:

    or inside the bulk fluid only. Inte

  • Page 21 and 22:

    that are most effective in decreasi

  • Page 23 and 24:

    initiation stress of 25 %. Further,

  • Page 25 and 26:

    Beffort (36) suggested that even th

  • Page 27 and 28:

    einforcement interface and reinforc

  • Page 29 and 30:

    It is interesting to note that, for

  • Page 31 and 32:

    20 Table 2.1 Compilation of the mec

  • Page 33 and 34:

    General models to predict fracture

  • Page 35 and 36:

    with values observed by others for

  • Page 37 and 38:

    The work of adhesion characterises

  • Page 39 and 40:

    and vapour, is difficult to evaluat

  • Page 41 and 42:

    system Al-Al2O3 is 10 -49 Pa at 700

  • Page 43 and 44:

    In the Al-Cu system, although the p

  • Page 45 and 46:

    The heat of reaction ΔGr may be es

  • Page 47 and 48:

    al. (100) who found non-wetting beh

  • Page 49 and 50:

    capillary or threshold pressure has

  • Page 51 and 52:

    using constant gas pressure. Infilt

  • Page 53 and 54:

    The superficial velocity v0 in the

  • Page 55 and 56:

    The permeability K can be expressed

  • Page 57 and 58:

    2.4. Preform fabrication Composites

  • Page 59 and 60:

    According to Kniewallner (51) even

  • Page 61 and 62:

    2.4.3. Foamed preforms Another inte

  • Page 63 and 64:

    structure. This is shown schematica

  • Page 65 and 66:

    2.5.1. Gas pressure infiltration (G

  • Page 67 and 68:

    MMCs infiltrated with an Al-9Mg or

  • Page 69 and 70:

    layer oxide films. The Weber number

  • Page 71 and 72:

    Long et al. (50) suggested that v0

  • Page 73 and 74:

    3. EXPERIMENTAL PROCEDURE The influ

  • Page 75 and 76:

    sintered at 1550°C, which represen

  • Page 77 and 78:

    using a AVT-Horn (Aalen, Germany) m

  • Page 79 and 80:

    squares fit function within the MAP

  • Page 81 and 82:

    areas, SsBET ,of the powders were m

  • Page 83 and 84:

    with dimensions of 65 mm x 46 mm x

  • Page 85 and 86:

    The preform sintering process was o

  • Page 87 and 88:

    in the evaporation of mercury at lo

  • Page 89 and 90:

    The compressive strength, σc , of

  • Page 91 and 92:

    as the measured mean value 0.23. Th

  • Page 93 and 94:

    for 90 s to ensure complete solidif

  • Page 95 and 96:

    ottom punch surface. The temperatur

  • Page 97 and 98:

    A graphic presentation of the relat

  • Page 99 and 100:

    detected. This operation took appro

  • Page 101 and 102:

    modulus Edyn of the unreinforced al

  • Page 103 and 104:

    calculated using the methods outlin

  • Page 105 and 106:

    Positive volume changes were predic

  • Page 107 and 108:

    Figure 4.5 Droplet formation of the

  • Page 109 and 110:

    with the metal alloy IM: examples a

  • Page 111 and 112:

    As shown in Figure 4.9, apart from

  • Page 113 and 114:

    4.3.2 Powder specific surface area

  • Page 115 and 116:

    The particles of TO and MO were dis

  • Page 117 and 118:

    oom temperature and 270°C, with a

  • Page 119 and 120:

    obtain usable products when they we

  • Page 121 and 122:

    strengths, whereas with 10 and 20 w

  • Page 123 and 124:

    strength showed no significant diff

  • Page 125 and 126:

    Relative change in dimension s x, s

  • Page 127 and 128:

    (a) AOPC20 (b) AGPC15 2 µm (c) TOP

  • Page 129 and 130:

    At higher magnification, Figure 4.2

  • Page 131 and 132:

    intrusions started at 4 µm and end

  • Page 133 and 134:

    As shown in Figure 4.27, the pore s

  • Page 135 and 136:

    An overview of the specific values

  • Page 137 and 138:

    1.71 to 1.98·10 6 m²/m³. The sim

  • Page 139 and 140:

    logarithmic compression behaviour,

  • Page 141 and 142:

    The volumetric stiffness Eiso of th

  • Page 143 and 144:

    Figure 4.37 shows that the TOPC20 p

  • Page 145 and 146:

    unhindered through the gap between

  • Page 147 and 148:

    intrusions and the other areas were

  • Page 149 and 150:

    4.8.1 Unreinforced matrix propertie

  • Page 151 and 152:

    die, Tmelt,die , could not be recor

  • Page 153 and 154:

    pressure was recorded as a function

  • Page 155 and 156:

    the linear fits for AOPC20, TOPC20

  • Page 157 and 158:

    4.8.6 Non destructive testing of MM

  • Page 159 and 160:

    X-Y Y-Z Figure 4.51 Virtual cross-s

  • Page 161 and 162:

    The metal filling the intragranular

  • Page 163 and 164:

    the ceramic particles was not visib

  • Page 165 and 166:

    etween the dark grey ceramic phases

  • Page 167 and 168:

    The windows, one of which is marked

  • Page 169 and 170:

    potential interfacial reactions, th

  • Page 171 and 172:

    In order to determine the effect of

  • Page 173 and 174:

    Infiltration depth L² L² (mm²) /

  • Page 175 and 176:

    4.8.12 Microstructure of MMCs with

  • Page 177 and 178:

    minor fraction of suboxides with hi

  • Page 179 and 180:

    4.9. High pressure die casting infi

  • Page 181 and 182:

    In the Y-Z plane section in Figure

  • Page 183 and 184:

    4.9.2 Compression of preforms The c

  • Page 185 and 186:

    Relative preform compression c pr (

  • Page 187 and 188:

    decrease depended on the tooling us

  • Page 189 and 190:

    Bending stress σ (MPa) / MPa 500 4

  • Page 191 and 192:

    4.10.3 Influence of reinforcement t

  • Page 193 and 194:

    Significant deformation developed i

  • Page 195 and 196:

    a) b) 2 50 2 50 µm µm 2 50 2 50

  • Page 197 and 198:

    5. DISCUSSION First the properties

  • Page 199 and 200:

    The measured elastic modulus, Edyn

  • Page 201 and 202:

    The MMCs showed similar wear with t

  • Page 203 and 204:

    interfacial debonding: Peng et al.

  • Page 205 and 206: The area Sml was derived using data
  • Page 207 and 208: MMC. Due to the solidification shri
  • Page 209 and 210: measurements which resulted in a lo
  • Page 211 and 212: 5.1.5 Influence of reactions No rea
  • Page 213 and 214: 5.2. Preform pore formation The tar
  • Page 215 and 216: kinetics were reported to be rather
  • Page 217 and 218: The newly formed water vapour led t
  • Page 219 and 220: In order to achieve minimum porosit
  • Page 221 and 222: the present work. These pressures w
  • Page 223 and 224: indicated by zero values of the fre
  • Page 225 and 226: influence on the pO2,calc. The lowe
  • Page 227 and 228: during extended holding and acts as
  • Page 229 and 230: Compared to Hg, the Al melt may con
  • Page 231 and 232: preforms with IM, Figure 4.67. For
  • Page 233 and 234: preform compression, cpr , increase
  • Page 235 and 236: Specific Specific permeability Perm
  • Page 237 and 238: Permeability (m²) / m² 1x10 -12 1
  • Page 239 and 240: As the predominant fluid flow was a
  • Page 241 and 242: In the CP mode, the Preform 1D code
  • Page 243 and 244: Local Saturation saturation S () lo
  • Page 245 and 246: listed in Table 5.1 and 5.3 were us
  • Page 247 and 248: 6. CONCLUSIONS 1. An aqueous proces
  • Page 249 and 250: anged between 112 and 131° for the
  • Page 251 and 252: 8. REFERENCES 1. Altenpohl, D.: Alu
  • Page 253 and 254: 43. Davis, L.C. and Allison, J.E. :
  • Page 255: 85. Gennes, P.G. : “Wetting: Stat
  • Page 259: 171. Gmelin, L. : Handbook of Inorg
PDF File 2 - University of Alabama at Birmingham
no· l'2-'1t1 - Repository - Texas A&M University
eTheses Repository - University of Birmingham
MODULE 2 - eTheses Repository - University of Birmingham
chapter 1 - eTheses Repository - University of Birmingham
eTheses Repository - University of Birmingham
eA - eTheses Repository - University of Birmingham
eTheses Repository - University of Birmingham
Cymbeline - eTheses Repository - University of Birmingham
B - eTheses Repository - University of Birmingham
Witch Shoes - eTheses Repository - University of Birmingham
pains of sin - eTheses Repository - University of Birmingham
1 - eTheses Repository - University of Birmingham
5% - eTheses Repository - University of Birmingham
View - eTheses Repository - University of Birmingham
here - eTheses Repository - University of Birmingham
J - eTheses Repository - University of Birmingham
B - eTheses Repository - University of Birmingham
chapter 1 - eTheses Repository - University of Birmingham
part i - eTheses Repository - University of Birmingham