Views
5 years ago

# SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

## 138 (iii). If q(0+) /s

138 (iii). If q(0+) /s the adjoint eigenvector, i.e. q(0+)A(~o, Po) = 0, normalized such that (q(O+ ), D~A(,~o,/to)p(0)) = 1, then D.i(/to) = -(q(0+), First we recall the tIopf bifurcation theorem in finite dimensions, see for instance [Go1:85]. Consider the system of ODE = f(z,/t), (7.3) where x E R n and/t E R, i.e. p = 1. We assume that (Hfl) f(O,/t) = 0, f E C k, k > 2. If we let L(/t) = D~f(0,/t), then we assume that (Hf2) L(/to) has simple eigenvalues at :l:iwo and no other eigenvalue equals kiwo, k E I, (af3) TZe(D~,a(/to)) # O, where a(/t) is the branch of eigenvalues of L(p) through/wo at # =Po- Theorem 7.2 (ttopf bifurcation for a system of ODE) Let the above hypotheses be sat- isfied and let p be the eigenvector of L(/to) at iwo. Then there exist C k-1 functions/t*(e), w*(E) and x*(e), defined for e sufficiently small, such that at/t = /t*(e), z*(e) is a periodic solution of (7.3). Moreover/t* and w* are even in e, /t(0) = ~to, w(0) = wo and x'(E)(t) = ,TZe(e~'p) + o(E). In addition, if z is a small periodic solution of this equation with/t close to ~to and period close to 2_.~ then modulo a phase shift,/t =/t*(E) and z = x*(e). ol 0 , We recall the equation on the center manifold ( note that we do not assume that this equation is two dimensional) fl = Z(/to)y + P00*(/to) r°*N,noa(C(y, ~), v). (7.4) With respect to a basis in X(/to), this is an equation in fln. It is a consequence of (H(1) and the assumption on g that (Hfl) is satisfied. At/t =/to, i.e. v = 0, the eigenvalues of the linearization are given by the purely imaginary roots of the equation det(A(A,po)) = 0. To satisfy (Hf2) we assume (H(2) At p =/to, the equation det(A(,\,/t0)) = 0 has simple roots at ~ = +iwo and no other root equals )~ = kiwo, k E l. The eigenfunction of A(#o) at eigenvalue iwo is given by p(e) = p(0)e (7.5) where p(0) is a nontrivial solution of the equation A(iwo, po)p(0) = 0. Let q(0+) ~ 0 satisfy q(O+)A(-iwo,/to) = 0. If q(t) = q(0+) + ft g(r) dr (7.6) a(t) = f h then q(t) is an eigenfunction of A*(po) at the eigenvatue -iwo: A'(/to)q = -iwoq, (7.7)

and 139 (q,p) = foh d-"~)p(-r) (7.8) = q(O+)DxA(iwo, Po)p(O). We let P be the projection operator on the two dimensional subspace of Xo(Po) given by and we write PC = (q, ¢)P + (q, ¢)/T, (7.9) ¢ = u + v, u e 7~(P), v e Af(P). We let z = (q, ¢), ~, = (~, ¢). If w are coordinates in (I - P)X0(P0) then with respect to the coordinates z, ~., w the linear part of (7.4) is given by the matrix M(#) = M(p0) + D,M(po)(P-po)+o(p-po),where i~ 0 0 ) (7.10) M(#0) = o -i~ M(#) has a branch of eigenvalues, say a(p), through/tOo, and DI, a(po) = D,Mll(I~o) 0 ~o h = (q, Po°'r O* dD~,C(O, po)p(-O)) = (q, r ®" L h dD,C(O, po)p(-O)) -- (q(o+), dD,.C(O,.o)p(O)e So the condition that guarantees the transversality is (He3) TCe(q(O+)D~,A(iwo, Po)p(O)) ~ O. = We now state the Hopf bifurcation theorem for a system of FDE. Theorem 7.3 (Hopf bifurcation for a system of FDE) Assume (H~I-H~3) and let g be as in (7.1). Then there exist C k-1 functions p*(e), ¢*(e) and w*(e), with values in R, Xo(Po) and R respectively, defined for e sufficiently small, such that the solution of (7.1) with initial condition ¢ = C(¢*(,).p*(e)- Po) is ~ periodic. Moreover, #'(e) and w*(,) are even in, and if x is any small periodic solution of this equation with p close to Po and period close to ~--~ then modulo a translation zo = C(¢*(e),#*(e) - #o) and p = p*(e). tao' Proof. The assumptions guarantee that Theorem 7.2 applies to (7.4). So on the center manifold (7.1) has a periodic orbit. Conversely, any small periodic solution of (7.1) lies on the center manifold and hence is a small periodic solution of (7.4). [] Remark. The hypothesis (H(1) is somewhat restrictive. For instance, the problem = - + g(=,,#)

Page 1 Page 2 D B 5 6 D MOTOR Mo~, lmotowon T R T ...
1O 9 I B I 7 I 6 5 4 I 3 2 1
B E R L I N C H A U S S E E S T R A S S E 5 7 - 6 1 B ... - Glen Leddy
Page 1 7 6 5 | 4 L 3 | 2 | 1 CK T ll ll ll )l KLÃ'ZOJ T ll ll ll ll klÃ¶zo) A B ...
D e se m b e r 0 5, V olum e 0 6, Issue 11 w w w .ta n go n o tica s.co m
1 5 . T T O - F O R U M 1 2 . T T O - F O R U M O c t o b e r 1 6 ...
P P P NP NP 12 3 4 5 6 7 8 W 9 10 11 12 13 14 W 15 16 0 17 A C B ...
DVAA: Flat Galaxies (by R.A.) A B C D E F G H I J K L 1 2 3 4 5 6 7 8 ...
H O T E L - R E S TA U R A N T- B A R S e e s t r a s s e 2 2 5 6 3 ...
6-5 Practice B cc.pdf - MrWalkerHomework
a 1 2 a b b a 3 4 a b b a 5 6 a b b a 7 8 a b b a 9 10 ... - CodeMath.com
Lösung 6 Aufgabe 1 a) b) c) Aufgabe 2 Aufgabe 3 a) 5 4 2 6 4 20 9 2 ...
8 * 5 * 4 * 3 * 2 * 1 A 8 A 7 A 6 A 5 A 4 A 3 A 2 B 8 B 7 B 6 B 5 B 4 B 3 ...
5 b 5 6 10 c 12 a 5 8 A a 13 b Classroom Exercises - flip@mrflip.com
EAS 540 - STABLE ISOTOPE GEOCHEMISTRY Thrs., BUS B-5; 6 ...
Panel B 4:45-5:30 Round 2 Panel A 5:30-6:15 | Panel B 6:15-7 ...
TEST ANSWERS Version A 1. B 2. B 3. E 4. E 5. D 6. B 7. C 8. B 9. A ...
Solutions to Quiz 5 Sample B - Loyola University Chicago
Â¡' &) (10 , 2 354 6&7 98@ ) AC B\$ E DG FH I 6 &Q ... - UniversitÃ© Lille 1
(0 12 3Â¡) 4(5 6 3 798 9 %@4a7(6 b cedgfhfhiqps rti u)vxwtwty
V 5 1 5 B 6 L 4 X P T S F
1. Nyelvismereti feladatsor 1. C 2. B 3. D 4. D 5. A 6. B 7. B 8. C ... - Itk
1 A 2 B 3 A 4 B 5 6 7 8 A 9 B 10BÂ½ 11 A 12 13 14 B 15 A 16 B 17 A ...
Friday Warm-up A 5:00-5:30 PM, Warm-up B 5:30-6:00 PM Starts at ...
1. NC 2. L 3. NP 4. D 5. F 6. A 7. M a) b) b) 8. T 9 ... - Bangladesh Bank
1 2 (a) 2 (b) 3 4 5 6 7 8 9 10 11 - Travel Insurance
1. 2. 3. 4. 5. 6. 7. 8. Meeting A. M B. Pl Approval Awards a Public He ...
A. LISTENING. 1-5 B. VOCABULARY 6-15 C. GRAMMAR. 16-25
Case 3:13-cv-03813-B Document 6 Filed 09/20/13 Page 1 of 5 ...