Views
5 years ago

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

152 Lemma 5.2 Let f 6

152 Lemma 5.2 Let f 6 Dif~(G/H) correspond to the coset g[H] £ N(H)/H. Then 0j([H]) is naturally isomorphic to the monogenic subgroup of N( H)/ H generated by g[H] and f : 0y([H]) ~ Oy([H]) is a group isomorphism. In particular, OA[H]) -~ T" × Zp for some positive integers r, p. Further, if II(T r × Zp) = K E $(N(H)/H), then r

(a) f(=) = ~(=)x, au x E GIH. (b) f(=) ~ cCG.) °, aU = ~ ClH. 153 Proof: The first assertion is trivial since Diff~G(G/H ) and N(H)/H are isomorphic. The second assertion foUows from Field[8, Lemma D] or directly from Proposition 3.2. | For the remainder of the section we discuss the case of G-equivariant vector fields on G/H. Here the situation is much simpler and we refer the reader to Field[f] and Krupa[14] for details of proofs we omit. Proposition ~.3 Let H be a closed subgroup of G. I. Every G-equivariant ~ector field on G/H is smooth. ~. C~(T(G/H)) ~ L(N(H)/H). s. x/ x E C~(T(G/H)), th~,~ ~ a ~x-i.va,~nt /oZiation ~X = {.~'~[x E G/H} of G/H b~ s-dimensional tori satisf71ing: (a) ~x = dosu~(,x(R)), = ~ GIH. (b) yrx = g~rX, all g E G, x E G/H. (c) • 1 respectively. ~. Given X E C~(T(G/H)), there ezist arbitrarily small perturbations X' of.)( such that the corresponding foliation yrx' of G / H is by tori of dimension rk( N ( H )/ H). Lemma 5.4 Let X E C~(T(G/H)). There e~ts a smooth map 7 : G/H ~ L(G) such that ~. 7(~) ~ LCC(G,)), aU x ~ Cla. Proof: By Lemma 3.4, there exists a smooth map 7 : G/H -, L(G) such that for all = E G/a, ~(=) E L(C(G.)) and The result follows. | X(x) = d/ds(exp(sT(X)))[,=o 6 Equivariant dynamics near invariant group orbits In this section we review the basic definitions of genericity for G-orbits left invariant by an equivariant diffeomorphism or flow. Much of what we describe is covered in greater detail in Field[6, 9] and Krupa[14] and so we often omit proofs, refering the reader to the references. Throughout this section, M will denote a riemannian G-manifold. We assume famil- iarity with the basic theory of normally hyperbolic sets for diffeomorplfisms and flows as described in Hirsch, Pugh and Shub[13]. As in Section 4, we start by considering diffeomorphisms.

DVAA: Flat Galaxies (by R.A.) A B C D E F G H I J K L 1 2 3 4 5 6 7 8 ...
Page 1 Page 2 D B 5 6 D MOTOR Mo~, lmotowon T R T ...
B E R L I N C H A U S S E E S T R A S S E 5 7 - 6 1 B ... - Glen Leddy
Page 1 7 6 5 | 4 L 3 | 2 | 1 CK T ll ll ll )l KLÖ'ZOJ T ll ll ll ll klözo) A B ...
D e se m b e r 0 5, V olum e 0 6, Issue 11 w w w .ta n go n o tica s.co m
H O T E L - R E S TA U R A N T- B A R S e e s t r a s s e 2 2 5 6 3 ...
P P P NP NP 12 3 4 5 6 7 8 W 9 10 11 12 13 14 W 15 16 0 17 A C B ...
1 5 . T T O - F O R U M 1 2 . T T O - F O R U M O c t o b e r 1 6 ...
Reading grade 6 2.A.5.b - mdk12
a 1 2 a b b a 3 4 a b b a 5 6 a b b a 7 8 a b b a 9 10 ... - CodeMath.com
8 * 5 * 4 * 3 * 2 * 1 A 8 A 7 A 6 A 5 A 4 A 3 A 2 B 8 B 7 B 6 B 5 B 4 B 3 ...
Lösung 6 Aufgabe 1 a) b) c) Aufgabe 2 Aufgabe 3 a) 5 4 2 6 4 20 9 2 ...
5 b 5 6 10 c 12 a 5 8 A a 13 b Classroom Exercises - flip@mrflip.com
EAS 540 - STABLE ISOTOPE GEOCHEMISTRY Thrs., BUS B-5; 6 ...
Panel B 4:45-5:30 Round 2 Panel A 5:30-6:15 | Panel B 6:15-7 ...
TEST ANSWERS Version A 1. B 2. B 3. E 4. E 5. D 6. B 7. C 8. B 9. A ...
¡' &) (10 , 2 354 6&7 98@ ) AC B$ E DG FH I 6 &Q ... - Université Lille 1
(0 12 3¡) 4(5 6 3 798 9 %@4a7(6 b cedgfhfhiqps rti u)vxwtwty
Solutions to Quiz 5 Sample B - Loyola University Chicago
V 5 1 5 B 6 L 4 X P T S F
1. Nyelvismereti feladatsor 1. C 2. B 3. D 4. D 5. A 6. B 7. B 8. C ... - Itk
1 A 2 B 3 A 4 B 5 6 7 8 A 9 B 10B½ 11 A 12 13 14 B 15 A 16 B 17 A ...
Friday Warm-up A 5:00-5:30 PM, Warm-up B 5:30-6:00 PM Starts at ...
1. Nyelvismereti feladatsor 1. A 2. B 3. A 4. A 5. D 6. D 7. B 8. C 9 ... - Itk
Midterm 1 KEY MC Answers 1. B 2. B 3. A 4. D 5. A 6. D 7. C 8. A 9 ...
C8051F340/1/2/3/4/5/6/7/8/9/A/B - HIT-Karlsruhe
a-B-C chart 97 abstract thinking 6 abulia 5, 24, 96, 183 ... - Ashgate
(' )(0 132 4 5 6(7 1 8 @BA &B' 1C0 ion Section Chair)9! DFEHGBIQP