Views
5 years ago

# SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

## 160 Lemma 7.1 Let H be a

160 Lemma 7.1 Let H be a closed subgroup of G. Let FB(G,H,S 1) denote the set of iso- morphism classes of G-fiber bundles over S I with fibers G / H. There is a natural bijeetion A :FB(G,H,S 1) --, Prin(N(H)/H,S 1) Proof: Let E G FB(G,H, S1). Define A(~2) = EH. If we take the obvious free N(H)/H- action on E H, it is clear that A(]C) E Prin(N(H)/H, \$1). Conversely, to define the inverse of A, let E be an N(H)/H-principal bundle over S 1. Define A-I(E) to be the fiber product G XN(H) E. Then A-I(E) has the structure of a G-fiber bundle over S ~, fibers GIH. • Lemma 7.2 Let H be a closed subgroup of G. Let E G FB(G,H,S 1) and set A(E) = E H E Prin(N(H)/H, S1). If~ is a G-equivariant flow on E, then is an equivariant flow on E H. Conversely, given any N( H)/ H-equivariant floto q~II on E H there exists a unique G-equivariant flow • on ~ such that ~[~H = ~bH. Similar statements hold for equivariant vector fields and diffeomorphisms. Suppose E E F B( G, H, S 1) corresponds to E E Prin( N ( H) / H, \$1). Choose an explicit representative E ¢ for E, where ~ E Rep(z), z E N(H)/N(H) °. Let ~¢ denote the G-fiber bundle G XN(H) E ¢ over S 1. Thus, V.¢ is an explicit representative for E. The canonical flow E ¢ on E ¢ determines a flow on E¢ which we shall also denote by E¢. Each trajectory of =¢ is periodic, period 2p(z)r. Of course, there will in general be many possible choices of ~ yielding the same isomorphism class in FB(G, H, \$1). However, the associated flows E ¢ will always be periodic with the same period 2p(z)r. Proposition 7.1 Let H be a closed subgroup of the compact Lie group G. Set K = N(H)/H. Let z G K/K °, ~ E Rep(z). Let • be a G-equivariant flow on ~¢ and assume that the induced flow on S 1 is not trivial. Then: I. For each z G~¢, closure(~x(R)) is isomorphic to a lotus of dimension at most rkCK, ZCz)) + 1. 2. For all O E S 1, elosure(~x(it)) n ~o is isomorphic to T r x Zq, where r < rk(K, Z(z)) and p( )lq. 3. There ezist a smooth G-equivariant map 7 : ~¢ x It --, G and a smooth map p : S 1 x It ---, It such that for all z G ~¢, (a) ~x(t) = 7(z,t)Z¢(z,p(p~x(z),t)), t E It. (b) 7(z,t) E C(Gx), all t E It. 4. If toe define ~'ffi = dosure(~(it)), z E ~¢, then ~ = {~'zlz E ~¢} is a ~-invariant foliation of E ¢. On each leaf Y~z, ~ is either a periodic ~ (dira(~x) = I) or a rational lotus floto. Proof: By virtue of Lemma 7.2, it is no loss of generality to assume that • is a K-eq~fivari- ant flow on the principal K-bundle E ¢. Since both ~' and Z. ¢ are K-equivariant and cover a non-trivial periodic flow on S a, we may (implicitly) define the map p : S ~ × tt --* tt by { = e s x tt p(~,0) =0, aeS 1

161 A straightforward application of the implicit function theorem proves that p is smooth. l~eparametrizing time, using p, it is no loss of generality of assume that p(O, t) = t, (0, t) E SXxR. Fix 0 E S 1, z E E~. Clearly, dosure(~,(R)) N E~ = closure({~(z, 2-~')ln e z} Hence, by Lemma 5.2, closure(~,(R))f3E~ is isomorphic to T" × Zq, where r < rk(K, Z(z)) and p(z)lq, proving 2. Set r = closure(~,(R)) f3 E~ and regard r as a subgroup of K with generator h = @2~(x). Following Smale[*5, page 797], we now suspend ~2~ and consider the manifold A = (r × R)/,.,, where (g,t + 2r) ~ (gh, t), g E r, t e R. The product abelian group structure on r × R drops down to an abelian Lie group structure on A. But A is K-eqttivariantly diffeomorphic to closure(~,(R)) by the map induced from (g,t) ~-* ~(gz,t). In particular, A is connected and is therefore a toms, proving 1. Statement 4 follows by translating the tori closure ~,(R) through E ¢ using K. Finally (3) follows using Lemma 6.2 (alternatively, see Krupa[14, Theorem 2.2]). • Proposition 7.2 Let H be a closed subgroup of G and set K = N(H)/H. Let z E K/K °, E Rep(z) and let PE : E --* S 1 be a G-fiber bundle over S a, fiber G/H. Suppose that E corresponds to E ¢ E Prin(K, S1). Let X be a G-equivariant vector field on ~ t~ith associated flow ~x. Assume that the induced flow on S 1 is non-trivial. Then there e~rist arbitrarily small G-equivariant perturbations X* of X such that: I. For all x e r. , e losu~ ~ 5 ' ( It ) ) is ~omorph e to a lotus o y d ime,~ ian r k ( g , Z(,))+*. Z. For all 0 e S 1, closure~'(It)) N V.o is isomorphic to a Z(z)-maxlmal subgroup of K. Proof: Both statements follow immediately from Lemma 6.5. • To condude this section, we show the relation between Proposition 7.2 and a result of Krupa[14, Theorem 5.1]. Let H be a closed subgroup of G. Let A be a dosed subset of G/H. Define Obviously, G^ is a closed subgroup of G. G^ = {g e GIgA = A} Lemma 7.3 Let A be a closed subset of G/H and suppose Then I. G^ c N(). 2. GA acts transitively on A. 3. G^/H is monogenic. rk( N( GA)IGA ) = rk( N( lt)l H, II(GA/ tt) ) - dlm(A)

Page 1 Page 2 D B 5 6 D MOTOR Mo~, lmotowon T R T ...
B E R L I N C H A U S S E E S T R A S S E 5 7 - 6 1 B ... - Glen Leddy
Page 1 7 6 5 | 4 L 3 | 2 | 1 CK T ll ll ll )l KLÃ'ZOJ T ll ll ll ll klÃ¶zo) A B ...
1 5 . T T O - F O R U M 1 2 . T T O - F O R U M O c t o b e r 1 6 ...
1O 9 I B I 7 I 6 5 4 I 3 2 1
D e se m b e r 0 5, V olum e 0 6, Issue 11 w w w .ta n go n o tica s.co m
P P P NP NP 12 3 4 5 6 7 8 W 9 10 11 12 13 14 W 15 16 0 17 A C B ...
DVAA: Flat Galaxies (by R.A.) A B C D E F G H I J K L 1 2 3 4 5 6 7 8 ...
H O T E L - R E S TA U R A N T- B A R S e e s t r a s s e 2 2 5 6 3 ...
a 1 2 a b b a 3 4 a b b a 5 6 a b b a 7 8 a b b a 9 10 ... - CodeMath.com
6-5 Practice B cc.pdf - MrWalkerHomework
Lösung 6 Aufgabe 1 a) b) c) Aufgabe 2 Aufgabe 3 a) 5 4 2 6 4 20 9 2 ...
8 * 5 * 4 * 3 * 2 * 1 A 8 A 7 A 6 A 5 A 4 A 3 A 2 B 8 B 7 B 6 B 5 B 4 B 3 ...
5 b 5 6 10 c 12 a 5 8 A a 13 b Classroom Exercises - flip@mrflip.com
EAS 540 - STABLE ISOTOPE GEOCHEMISTRY Thrs., BUS B-5; 6 ...
Panel B 4:45-5:30 Round 2 Panel A 5:30-6:15 | Panel B 6:15-7 ...
Solutions to Quiz 5 Sample B - Loyola University Chicago
Â¡' &) (10 , 2 354 6&7 98@ ) AC B\$ E DG FH I 6 &Q ... - UniversitÃ© Lille 1
TEST ANSWERS Version A 1. B 2. B 3. E 4. E 5. D 6. B 7. C 8. B 9. A ...
V 5 1 5 B 6 L 4 X P T S F
(0 12 3Â¡) 4(5 6 3 798 9 %@4a7(6 b cedgfhfhiqps rti u)vxwtwty
Friday Warm-up A 5:00-5:30 PM, Warm-up B 5:30-6:00 PM Starts at ...
1. Nyelvismereti feladatsor 1. C 2. B 3. D 4. D 5. A 6. B 7. B 8. C ... - Itk
1. NC 2. L 3. NP 4. D 5. F 6. A 7. M a) b) b) 8. T 9 ... - Bangladesh Bank
1 A 2 B 3 A 4 B 5 6 7 8 A 9 B 10BÂ½ 11 A 12 13 14 B 15 A 16 B 17 A ...
1 2 (a) 2 (b) 3 4 5 6 7 8 9 10 11 - Travel Insurance
1. 2. 3. 4. 5. 6. 7. 8. Meeting A. M B. Pl Approval Awards a Public He ...
1 2 (a) 2 (b) 3 4 5 6 7 8 9 10 11 - Travel Insurance
A. LISTENING. 1-5 B. VOCABULARY 6-15 C. GRAMMAR. 16-25